]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: cpu hotplug aware percpu count updates
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
63int do_swap_account __read_mostly;
64static int really_do_swap_account __initdata = 1; /* for remember boot option*/
65#else
66#define do_swap_account (0)
67#endif
68
d2265e6f
KH
69/*
70 * Per memcg event counter is incremented at every pagein/pageout. This counter
71 * is used for trigger some periodic events. This is straightforward and better
72 * than using jiffies etc. to handle periodic memcg event.
73 *
74 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
75 */
76#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
77#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 78
d52aa412
KH
79/*
80 * Statistics for memory cgroup.
81 */
82enum mem_cgroup_stat_index {
83 /*
84 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 */
86 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 87 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 88 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
89 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
90 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 91 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
92 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
93 /* incremented at every pagein/pageout */
94 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 95 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
96
97 MEM_CGROUP_STAT_NSTATS,
98};
99
100struct mem_cgroup_stat_cpu {
101 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
102};
103
6d12e2d8
KH
104/*
105 * per-zone information in memory controller.
106 */
6d12e2d8 107struct mem_cgroup_per_zone {
072c56c1
KH
108 /*
109 * spin_lock to protect the per cgroup LRU
110 */
b69408e8
CL
111 struct list_head lists[NR_LRU_LISTS];
112 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
113
114 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
115 struct rb_node tree_node; /* RB tree node */
116 unsigned long long usage_in_excess;/* Set to the value by which */
117 /* the soft limit is exceeded*/
118 bool on_tree;
4e416953
BS
119 struct mem_cgroup *mem; /* Back pointer, we cannot */
120 /* use container_of */
6d12e2d8
KH
121};
122/* Macro for accessing counter */
123#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
124
125struct mem_cgroup_per_node {
126 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
127};
128
129struct mem_cgroup_lru_info {
130 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
131};
132
f64c3f54
BS
133/*
134 * Cgroups above their limits are maintained in a RB-Tree, independent of
135 * their hierarchy representation
136 */
137
138struct mem_cgroup_tree_per_zone {
139 struct rb_root rb_root;
140 spinlock_t lock;
141};
142
143struct mem_cgroup_tree_per_node {
144 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
145};
146
147struct mem_cgroup_tree {
148 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
149};
150
151static struct mem_cgroup_tree soft_limit_tree __read_mostly;
152
2e72b634
KS
153struct mem_cgroup_threshold {
154 struct eventfd_ctx *eventfd;
155 u64 threshold;
156};
157
9490ff27 158/* For threshold */
2e72b634
KS
159struct mem_cgroup_threshold_ary {
160 /* An array index points to threshold just below usage. */
5407a562 161 int current_threshold;
2e72b634
KS
162 /* Size of entries[] */
163 unsigned int size;
164 /* Array of thresholds */
165 struct mem_cgroup_threshold entries[0];
166};
2c488db2
KS
167
168struct mem_cgroup_thresholds {
169 /* Primary thresholds array */
170 struct mem_cgroup_threshold_ary *primary;
171 /*
172 * Spare threshold array.
173 * This is needed to make mem_cgroup_unregister_event() "never fail".
174 * It must be able to store at least primary->size - 1 entries.
175 */
176 struct mem_cgroup_threshold_ary *spare;
177};
178
9490ff27
KH
179/* for OOM */
180struct mem_cgroup_eventfd_list {
181 struct list_head list;
182 struct eventfd_ctx *eventfd;
183};
2e72b634 184
2e72b634 185static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 186static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 187
8cdea7c0
BS
188/*
189 * The memory controller data structure. The memory controller controls both
190 * page cache and RSS per cgroup. We would eventually like to provide
191 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
192 * to help the administrator determine what knobs to tune.
193 *
194 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
195 * we hit the water mark. May be even add a low water mark, such that
196 * no reclaim occurs from a cgroup at it's low water mark, this is
197 * a feature that will be implemented much later in the future.
8cdea7c0
BS
198 */
199struct mem_cgroup {
200 struct cgroup_subsys_state css;
201 /*
202 * the counter to account for memory usage
203 */
204 struct res_counter res;
8c7c6e34
KH
205 /*
206 * the counter to account for mem+swap usage.
207 */
208 struct res_counter memsw;
78fb7466
PE
209 /*
210 * Per cgroup active and inactive list, similar to the
211 * per zone LRU lists.
78fb7466 212 */
6d12e2d8 213 struct mem_cgroup_lru_info info;
072c56c1 214
2733c06a
KM
215 /*
216 protect against reclaim related member.
217 */
218 spinlock_t reclaim_param_lock;
219
6d61ef40 220 /*
af901ca1 221 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 222 * reclaimed from.
6d61ef40 223 */
04046e1a 224 int last_scanned_child;
18f59ea7
BS
225 /*
226 * Should the accounting and control be hierarchical, per subtree?
227 */
228 bool use_hierarchy;
867578cb 229 atomic_t oom_lock;
8c7c6e34 230 atomic_t refcnt;
14797e23 231
a7885eb8 232 unsigned int swappiness;
3c11ecf4
KH
233 /* OOM-Killer disable */
234 int oom_kill_disable;
a7885eb8 235
22a668d7
KH
236 /* set when res.limit == memsw.limit */
237 bool memsw_is_minimum;
238
2e72b634
KS
239 /* protect arrays of thresholds */
240 struct mutex thresholds_lock;
241
242 /* thresholds for memory usage. RCU-protected */
2c488db2 243 struct mem_cgroup_thresholds thresholds;
907860ed 244
2e72b634 245 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 246 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 247
9490ff27
KH
248 /* For oom notifier event fd */
249 struct list_head oom_notify;
250
7dc74be0
DN
251 /*
252 * Should we move charges of a task when a task is moved into this
253 * mem_cgroup ? And what type of charges should we move ?
254 */
255 unsigned long move_charge_at_immigrate;
d52aa412 256 /*
c62b1a3b 257 * percpu counter.
d52aa412 258 */
c62b1a3b 259 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
260 /*
261 * used when a cpu is offlined or other synchronizations
262 * See mem_cgroup_read_stat().
263 */
264 struct mem_cgroup_stat_cpu nocpu_base;
265 spinlock_t pcp_counter_lock;
8cdea7c0
BS
266};
267
7dc74be0
DN
268/* Stuffs for move charges at task migration. */
269/*
270 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
271 * left-shifted bitmap of these types.
272 */
273enum move_type {
4ffef5fe 274 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 275 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
276 NR_MOVE_TYPE,
277};
278
4ffef5fe
DN
279/* "mc" and its members are protected by cgroup_mutex */
280static struct move_charge_struct {
2bd9bb20 281 spinlock_t lock; /* for from, to, moving_task */
4ffef5fe
DN
282 struct mem_cgroup *from;
283 struct mem_cgroup *to;
284 unsigned long precharge;
854ffa8d 285 unsigned long moved_charge;
483c30b5 286 unsigned long moved_swap;
8033b97c
DN
287 struct task_struct *moving_task; /* a task moving charges */
288 wait_queue_head_t waitq; /* a waitq for other context */
289} mc = {
2bd9bb20 290 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
291 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
292};
4ffef5fe 293
90254a65
DN
294static bool move_anon(void)
295{
296 return test_bit(MOVE_CHARGE_TYPE_ANON,
297 &mc.to->move_charge_at_immigrate);
298}
299
87946a72
DN
300static bool move_file(void)
301{
302 return test_bit(MOVE_CHARGE_TYPE_FILE,
303 &mc.to->move_charge_at_immigrate);
304}
305
4e416953
BS
306/*
307 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
308 * limit reclaim to prevent infinite loops, if they ever occur.
309 */
310#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
311#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
312
217bc319
KH
313enum charge_type {
314 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
315 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 316 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 317 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 318 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 319 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
320 NR_CHARGE_TYPE,
321};
322
52d4b9ac
KH
323/* only for here (for easy reading.) */
324#define PCGF_CACHE (1UL << PCG_CACHE)
325#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 326#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
327/* Not used, but added here for completeness */
328#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 329
8c7c6e34
KH
330/* for encoding cft->private value on file */
331#define _MEM (0)
332#define _MEMSWAP (1)
9490ff27 333#define _OOM_TYPE (2)
8c7c6e34
KH
334#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
336#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
337/* Used for OOM nofiier */
338#define OOM_CONTROL (0)
8c7c6e34 339
75822b44
BS
340/*
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
342 */
343#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
344#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
346#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
347#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
348#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 349
8c7c6e34
KH
350static void mem_cgroup_get(struct mem_cgroup *mem);
351static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 352static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 353static void drain_all_stock_async(void);
8c7c6e34 354
f64c3f54
BS
355static struct mem_cgroup_per_zone *
356mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357{
358 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359}
360
d324236b
WF
361struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362{
363 return &mem->css;
364}
365
f64c3f54
BS
366static struct mem_cgroup_per_zone *
367page_cgroup_zoneinfo(struct page_cgroup *pc)
368{
369 struct mem_cgroup *mem = pc->mem_cgroup;
370 int nid = page_cgroup_nid(pc);
371 int zid = page_cgroup_zid(pc);
372
373 if (!mem)
374 return NULL;
375
376 return mem_cgroup_zoneinfo(mem, nid, zid);
377}
378
379static struct mem_cgroup_tree_per_zone *
380soft_limit_tree_node_zone(int nid, int zid)
381{
382 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383}
384
385static struct mem_cgroup_tree_per_zone *
386soft_limit_tree_from_page(struct page *page)
387{
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
390
391 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392}
393
394static void
4e416953 395__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 396 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
397 struct mem_cgroup_tree_per_zone *mctz,
398 unsigned long long new_usage_in_excess)
f64c3f54
BS
399{
400 struct rb_node **p = &mctz->rb_root.rb_node;
401 struct rb_node *parent = NULL;
402 struct mem_cgroup_per_zone *mz_node;
403
404 if (mz->on_tree)
405 return;
406
ef8745c1
KH
407 mz->usage_in_excess = new_usage_in_excess;
408 if (!mz->usage_in_excess)
409 return;
f64c3f54
BS
410 while (*p) {
411 parent = *p;
412 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
413 tree_node);
414 if (mz->usage_in_excess < mz_node->usage_in_excess)
415 p = &(*p)->rb_left;
416 /*
417 * We can't avoid mem cgroups that are over their soft
418 * limit by the same amount
419 */
420 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
421 p = &(*p)->rb_right;
422 }
423 rb_link_node(&mz->tree_node, parent, p);
424 rb_insert_color(&mz->tree_node, &mctz->rb_root);
425 mz->on_tree = true;
4e416953
BS
426}
427
428static void
429__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
430 struct mem_cgroup_per_zone *mz,
431 struct mem_cgroup_tree_per_zone *mctz)
432{
433 if (!mz->on_tree)
434 return;
435 rb_erase(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = false;
437}
438
f64c3f54
BS
439static void
440mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441 struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443{
444 spin_lock(&mctz->lock);
4e416953 445 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
446 spin_unlock(&mctz->lock);
447}
448
f64c3f54
BS
449
450static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
451{
ef8745c1 452 unsigned long long excess;
f64c3f54
BS
453 struct mem_cgroup_per_zone *mz;
454 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
455 int nid = page_to_nid(page);
456 int zid = page_zonenum(page);
f64c3f54
BS
457 mctz = soft_limit_tree_from_page(page);
458
459 /*
4e649152
KH
460 * Necessary to update all ancestors when hierarchy is used.
461 * because their event counter is not touched.
f64c3f54 462 */
4e649152
KH
463 for (; mem; mem = parent_mem_cgroup(mem)) {
464 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 465 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
466 /*
467 * We have to update the tree if mz is on RB-tree or
468 * mem is over its softlimit.
469 */
ef8745c1 470 if (excess || mz->on_tree) {
4e649152
KH
471 spin_lock(&mctz->lock);
472 /* if on-tree, remove it */
473 if (mz->on_tree)
474 __mem_cgroup_remove_exceeded(mem, mz, mctz);
475 /*
ef8745c1
KH
476 * Insert again. mz->usage_in_excess will be updated.
477 * If excess is 0, no tree ops.
4e649152 478 */
ef8745c1 479 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
480 spin_unlock(&mctz->lock);
481 }
f64c3f54
BS
482 }
483}
484
485static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
486{
487 int node, zone;
488 struct mem_cgroup_per_zone *mz;
489 struct mem_cgroup_tree_per_zone *mctz;
490
491 for_each_node_state(node, N_POSSIBLE) {
492 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
493 mz = mem_cgroup_zoneinfo(mem, node, zone);
494 mctz = soft_limit_tree_node_zone(node, zone);
495 mem_cgroup_remove_exceeded(mem, mz, mctz);
496 }
497 }
498}
499
4e416953
BS
500static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
501{
502 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
503}
504
505static struct mem_cgroup_per_zone *
506__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
507{
508 struct rb_node *rightmost = NULL;
26251eaf 509 struct mem_cgroup_per_zone *mz;
4e416953
BS
510
511retry:
26251eaf 512 mz = NULL;
4e416953
BS
513 rightmost = rb_last(&mctz->rb_root);
514 if (!rightmost)
515 goto done; /* Nothing to reclaim from */
516
517 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
518 /*
519 * Remove the node now but someone else can add it back,
520 * we will to add it back at the end of reclaim to its correct
521 * position in the tree.
522 */
523 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
524 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
525 !css_tryget(&mz->mem->css))
526 goto retry;
527done:
528 return mz;
529}
530
531static struct mem_cgroup_per_zone *
532mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
533{
534 struct mem_cgroup_per_zone *mz;
535
536 spin_lock(&mctz->lock);
537 mz = __mem_cgroup_largest_soft_limit_node(mctz);
538 spin_unlock(&mctz->lock);
539 return mz;
540}
541
711d3d2c
KH
542/*
543 * Implementation Note: reading percpu statistics for memcg.
544 *
545 * Both of vmstat[] and percpu_counter has threshold and do periodic
546 * synchronization to implement "quick" read. There are trade-off between
547 * reading cost and precision of value. Then, we may have a chance to implement
548 * a periodic synchronizion of counter in memcg's counter.
549 *
550 * But this _read() function is used for user interface now. The user accounts
551 * memory usage by memory cgroup and he _always_ requires exact value because
552 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
553 * have to visit all online cpus and make sum. So, for now, unnecessary
554 * synchronization is not implemented. (just implemented for cpu hotplug)
555 *
556 * If there are kernel internal actions which can make use of some not-exact
557 * value, and reading all cpu value can be performance bottleneck in some
558 * common workload, threashold and synchonization as vmstat[] should be
559 * implemented.
560 */
c62b1a3b
KH
561static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
562 enum mem_cgroup_stat_index idx)
563{
564 int cpu;
565 s64 val = 0;
566
711d3d2c
KH
567 get_online_cpus();
568 for_each_online_cpu(cpu)
c62b1a3b 569 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
570#ifdef CONFIG_HOTPLUG_CPU
571 spin_lock(&mem->pcp_counter_lock);
572 val += mem->nocpu_base.count[idx];
573 spin_unlock(&mem->pcp_counter_lock);
574#endif
575 put_online_cpus();
c62b1a3b
KH
576 return val;
577}
578
579static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
580{
581 s64 ret;
582
583 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
584 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
585 return ret;
586}
587
0c3e73e8
BS
588static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
589 bool charge)
590{
591 int val = (charge) ? 1 : -1;
c62b1a3b 592 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
593}
594
c05555b5
KH
595static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
596 struct page_cgroup *pc,
597 bool charge)
d52aa412 598{
0c3e73e8 599 int val = (charge) ? 1 : -1;
d52aa412 600
c62b1a3b
KH
601 preempt_disable();
602
c05555b5 603 if (PageCgroupCache(pc))
c62b1a3b 604 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
d52aa412 605 else
c62b1a3b 606 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
55e462b0
BR
607
608 if (charge)
c62b1a3b 609 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
55e462b0 610 else
c62b1a3b 611 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
d2265e6f 612 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
2e72b634 613
c62b1a3b 614 preempt_enable();
6d12e2d8
KH
615}
616
14067bb3 617static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 618 enum lru_list idx)
6d12e2d8
KH
619{
620 int nid, zid;
621 struct mem_cgroup_per_zone *mz;
622 u64 total = 0;
623
624 for_each_online_node(nid)
625 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
626 mz = mem_cgroup_zoneinfo(mem, nid, zid);
627 total += MEM_CGROUP_ZSTAT(mz, idx);
628 }
629 return total;
d52aa412
KH
630}
631
d2265e6f
KH
632static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
633{
634 s64 val;
635
636 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
637
638 return !(val & ((1 << event_mask_shift) - 1));
639}
640
641/*
642 * Check events in order.
643 *
644 */
645static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
646{
647 /* threshold event is triggered in finer grain than soft limit */
648 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
649 mem_cgroup_threshold(mem);
650 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
651 mem_cgroup_update_tree(mem, page);
652 }
653}
654
d5b69e38 655static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
656{
657 return container_of(cgroup_subsys_state(cont,
658 mem_cgroup_subsys_id), struct mem_cgroup,
659 css);
660}
661
cf475ad2 662struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 663{
31a78f23
BS
664 /*
665 * mm_update_next_owner() may clear mm->owner to NULL
666 * if it races with swapoff, page migration, etc.
667 * So this can be called with p == NULL.
668 */
669 if (unlikely(!p))
670 return NULL;
671
78fb7466
PE
672 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
673 struct mem_cgroup, css);
674}
675
54595fe2
KH
676static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
677{
678 struct mem_cgroup *mem = NULL;
0b7f569e
KH
679
680 if (!mm)
681 return NULL;
54595fe2
KH
682 /*
683 * Because we have no locks, mm->owner's may be being moved to other
684 * cgroup. We use css_tryget() here even if this looks
685 * pessimistic (rather than adding locks here).
686 */
687 rcu_read_lock();
688 do {
689 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
690 if (unlikely(!mem))
691 break;
692 } while (!css_tryget(&mem->css));
693 rcu_read_unlock();
694 return mem;
695}
696
7d74b06f
KH
697/* The caller has to guarantee "mem" exists before calling this */
698static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 699{
711d3d2c
KH
700 struct cgroup_subsys_state *css;
701 int found;
702
703 if (!mem) /* ROOT cgroup has the smallest ID */
704 return root_mem_cgroup; /*css_put/get against root is ignored*/
705 if (!mem->use_hierarchy) {
706 if (css_tryget(&mem->css))
707 return mem;
708 return NULL;
709 }
710 rcu_read_lock();
711 /*
712 * searching a memory cgroup which has the smallest ID under given
713 * ROOT cgroup. (ID >= 1)
714 */
715 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
716 if (css && css_tryget(css))
717 mem = container_of(css, struct mem_cgroup, css);
718 else
719 mem = NULL;
720 rcu_read_unlock();
721 return mem;
7d74b06f
KH
722}
723
724static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
725 struct mem_cgroup *root,
726 bool cond)
727{
728 int nextid = css_id(&iter->css) + 1;
729 int found;
730 int hierarchy_used;
14067bb3 731 struct cgroup_subsys_state *css;
14067bb3 732
7d74b06f 733 hierarchy_used = iter->use_hierarchy;
14067bb3 734
7d74b06f 735 css_put(&iter->css);
711d3d2c
KH
736 /* If no ROOT, walk all, ignore hierarchy */
737 if (!cond || (root && !hierarchy_used))
7d74b06f 738 return NULL;
14067bb3 739
711d3d2c
KH
740 if (!root)
741 root = root_mem_cgroup;
742
7d74b06f
KH
743 do {
744 iter = NULL;
14067bb3 745 rcu_read_lock();
7d74b06f
KH
746
747 css = css_get_next(&mem_cgroup_subsys, nextid,
748 &root->css, &found);
14067bb3 749 if (css && css_tryget(css))
7d74b06f 750 iter = container_of(css, struct mem_cgroup, css);
14067bb3 751 rcu_read_unlock();
7d74b06f 752 /* If css is NULL, no more cgroups will be found */
14067bb3 753 nextid = found + 1;
7d74b06f 754 } while (css && !iter);
14067bb3 755
7d74b06f 756 return iter;
14067bb3 757}
7d74b06f
KH
758/*
759 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
760 * be careful that "break" loop is not allowed. We have reference count.
761 * Instead of that modify "cond" to be false and "continue" to exit the loop.
762 */
763#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
764 for (iter = mem_cgroup_start_loop(root);\
765 iter != NULL;\
766 iter = mem_cgroup_get_next(iter, root, cond))
767
768#define for_each_mem_cgroup_tree(iter, root) \
769 for_each_mem_cgroup_tree_cond(iter, root, true)
770
711d3d2c
KH
771#define for_each_mem_cgroup_all(iter) \
772 for_each_mem_cgroup_tree_cond(iter, NULL, true)
773
14067bb3 774
4b3bde4c
BS
775static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
776{
777 return (mem == root_mem_cgroup);
778}
779
08e552c6
KH
780/*
781 * Following LRU functions are allowed to be used without PCG_LOCK.
782 * Operations are called by routine of global LRU independently from memcg.
783 * What we have to take care of here is validness of pc->mem_cgroup.
784 *
785 * Changes to pc->mem_cgroup happens when
786 * 1. charge
787 * 2. moving account
788 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
789 * It is added to LRU before charge.
790 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
791 * When moving account, the page is not on LRU. It's isolated.
792 */
4f98a2fe 793
08e552c6
KH
794void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
795{
796 struct page_cgroup *pc;
08e552c6 797 struct mem_cgroup_per_zone *mz;
6d12e2d8 798
f8d66542 799 if (mem_cgroup_disabled())
08e552c6
KH
800 return;
801 pc = lookup_page_cgroup(page);
802 /* can happen while we handle swapcache. */
4b3bde4c 803 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 804 return;
4b3bde4c 805 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
806 /*
807 * We don't check PCG_USED bit. It's cleared when the "page" is finally
808 * removed from global LRU.
809 */
08e552c6 810 mz = page_cgroup_zoneinfo(pc);
b69408e8 811 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
812 if (mem_cgroup_is_root(pc->mem_cgroup))
813 return;
814 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
815 list_del_init(&pc->lru);
816 return;
6d12e2d8
KH
817}
818
08e552c6 819void mem_cgroup_del_lru(struct page *page)
6d12e2d8 820{
08e552c6
KH
821 mem_cgroup_del_lru_list(page, page_lru(page));
822}
b69408e8 823
08e552c6
KH
824void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
825{
826 struct mem_cgroup_per_zone *mz;
827 struct page_cgroup *pc;
b69408e8 828
f8d66542 829 if (mem_cgroup_disabled())
08e552c6 830 return;
6d12e2d8 831
08e552c6 832 pc = lookup_page_cgroup(page);
bd112db8
DN
833 /*
834 * Used bit is set without atomic ops but after smp_wmb().
835 * For making pc->mem_cgroup visible, insert smp_rmb() here.
836 */
08e552c6 837 smp_rmb();
4b3bde4c
BS
838 /* unused or root page is not rotated. */
839 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
840 return;
841 mz = page_cgroup_zoneinfo(pc);
842 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
843}
844
08e552c6 845void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 846{
08e552c6
KH
847 struct page_cgroup *pc;
848 struct mem_cgroup_per_zone *mz;
6d12e2d8 849
f8d66542 850 if (mem_cgroup_disabled())
08e552c6
KH
851 return;
852 pc = lookup_page_cgroup(page);
4b3bde4c 853 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
854 /*
855 * Used bit is set without atomic ops but after smp_wmb().
856 * For making pc->mem_cgroup visible, insert smp_rmb() here.
857 */
08e552c6
KH
858 smp_rmb();
859 if (!PageCgroupUsed(pc))
894bc310 860 return;
b69408e8 861
08e552c6 862 mz = page_cgroup_zoneinfo(pc);
b69408e8 863 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
864 SetPageCgroupAcctLRU(pc);
865 if (mem_cgroup_is_root(pc->mem_cgroup))
866 return;
08e552c6
KH
867 list_add(&pc->lru, &mz->lists[lru]);
868}
544122e5 869
08e552c6 870/*
544122e5
KH
871 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
872 * lru because the page may.be reused after it's fully uncharged (because of
873 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
874 * it again. This function is only used to charge SwapCache. It's done under
875 * lock_page and expected that zone->lru_lock is never held.
08e552c6 876 */
544122e5 877static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 878{
544122e5
KH
879 unsigned long flags;
880 struct zone *zone = page_zone(page);
881 struct page_cgroup *pc = lookup_page_cgroup(page);
882
883 spin_lock_irqsave(&zone->lru_lock, flags);
884 /*
885 * Forget old LRU when this page_cgroup is *not* used. This Used bit
886 * is guarded by lock_page() because the page is SwapCache.
887 */
888 if (!PageCgroupUsed(pc))
889 mem_cgroup_del_lru_list(page, page_lru(page));
890 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
891}
892
544122e5
KH
893static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
894{
895 unsigned long flags;
896 struct zone *zone = page_zone(page);
897 struct page_cgroup *pc = lookup_page_cgroup(page);
898
899 spin_lock_irqsave(&zone->lru_lock, flags);
900 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 901 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
902 mem_cgroup_add_lru_list(page, page_lru(page));
903 spin_unlock_irqrestore(&zone->lru_lock, flags);
904}
905
906
08e552c6
KH
907void mem_cgroup_move_lists(struct page *page,
908 enum lru_list from, enum lru_list to)
909{
f8d66542 910 if (mem_cgroup_disabled())
08e552c6
KH
911 return;
912 mem_cgroup_del_lru_list(page, from);
913 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
914}
915
4c4a2214
DR
916int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
917{
918 int ret;
0b7f569e 919 struct mem_cgroup *curr = NULL;
158e0a2d 920 struct task_struct *p;
4c4a2214 921
158e0a2d
KH
922 p = find_lock_task_mm(task);
923 if (!p)
924 return 0;
925 curr = try_get_mem_cgroup_from_mm(p->mm);
926 task_unlock(p);
0b7f569e
KH
927 if (!curr)
928 return 0;
d31f56db
DN
929 /*
930 * We should check use_hierarchy of "mem" not "curr". Because checking
931 * use_hierarchy of "curr" here make this function true if hierarchy is
932 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
933 * hierarchy(even if use_hierarchy is disabled in "mem").
934 */
935 if (mem->use_hierarchy)
0b7f569e
KH
936 ret = css_is_ancestor(&curr->css, &mem->css);
937 else
938 ret = (curr == mem);
939 css_put(&curr->css);
4c4a2214
DR
940 return ret;
941}
942
c772be93 943static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
944{
945 unsigned long active;
946 unsigned long inactive;
c772be93
KM
947 unsigned long gb;
948 unsigned long inactive_ratio;
14797e23 949
14067bb3
KH
950 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
951 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 952
c772be93
KM
953 gb = (inactive + active) >> (30 - PAGE_SHIFT);
954 if (gb)
955 inactive_ratio = int_sqrt(10 * gb);
956 else
957 inactive_ratio = 1;
958
959 if (present_pages) {
960 present_pages[0] = inactive;
961 present_pages[1] = active;
962 }
963
964 return inactive_ratio;
965}
966
967int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
968{
969 unsigned long active;
970 unsigned long inactive;
971 unsigned long present_pages[2];
972 unsigned long inactive_ratio;
973
974 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
975
976 inactive = present_pages[0];
977 active = present_pages[1];
978
979 if (inactive * inactive_ratio < active)
14797e23
KM
980 return 1;
981
982 return 0;
983}
984
56e49d21
RR
985int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
986{
987 unsigned long active;
988 unsigned long inactive;
989
990 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
991 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
992
993 return (active > inactive);
994}
995
a3d8e054
KM
996unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
997 struct zone *zone,
998 enum lru_list lru)
999{
13d7e3a2 1000 int nid = zone_to_nid(zone);
a3d8e054
KM
1001 int zid = zone_idx(zone);
1002 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1003
1004 return MEM_CGROUP_ZSTAT(mz, lru);
1005}
1006
3e2f41f1
KM
1007struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1008 struct zone *zone)
1009{
13d7e3a2 1010 int nid = zone_to_nid(zone);
3e2f41f1
KM
1011 int zid = zone_idx(zone);
1012 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1013
1014 return &mz->reclaim_stat;
1015}
1016
1017struct zone_reclaim_stat *
1018mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1019{
1020 struct page_cgroup *pc;
1021 struct mem_cgroup_per_zone *mz;
1022
1023 if (mem_cgroup_disabled())
1024 return NULL;
1025
1026 pc = lookup_page_cgroup(page);
bd112db8
DN
1027 /*
1028 * Used bit is set without atomic ops but after smp_wmb().
1029 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1030 */
1031 smp_rmb();
1032 if (!PageCgroupUsed(pc))
1033 return NULL;
1034
3e2f41f1
KM
1035 mz = page_cgroup_zoneinfo(pc);
1036 if (!mz)
1037 return NULL;
1038
1039 return &mz->reclaim_stat;
1040}
1041
66e1707b
BS
1042unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1043 struct list_head *dst,
1044 unsigned long *scanned, int order,
1045 int mode, struct zone *z,
1046 struct mem_cgroup *mem_cont,
4f98a2fe 1047 int active, int file)
66e1707b
BS
1048{
1049 unsigned long nr_taken = 0;
1050 struct page *page;
1051 unsigned long scan;
1052 LIST_HEAD(pc_list);
1053 struct list_head *src;
ff7283fa 1054 struct page_cgroup *pc, *tmp;
13d7e3a2 1055 int nid = zone_to_nid(z);
1ecaab2b
KH
1056 int zid = zone_idx(z);
1057 struct mem_cgroup_per_zone *mz;
b7c46d15 1058 int lru = LRU_FILE * file + active;
2ffebca6 1059 int ret;
66e1707b 1060
cf475ad2 1061 BUG_ON(!mem_cont);
1ecaab2b 1062 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1063 src = &mz->lists[lru];
66e1707b 1064
ff7283fa
KH
1065 scan = 0;
1066 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1067 if (scan >= nr_to_scan)
ff7283fa 1068 break;
08e552c6
KH
1069
1070 page = pc->page;
52d4b9ac
KH
1071 if (unlikely(!PageCgroupUsed(pc)))
1072 continue;
436c6541 1073 if (unlikely(!PageLRU(page)))
ff7283fa 1074 continue;
ff7283fa 1075
436c6541 1076 scan++;
2ffebca6
KH
1077 ret = __isolate_lru_page(page, mode, file);
1078 switch (ret) {
1079 case 0:
66e1707b 1080 list_move(&page->lru, dst);
2ffebca6 1081 mem_cgroup_del_lru(page);
66e1707b 1082 nr_taken++;
2ffebca6
KH
1083 break;
1084 case -EBUSY:
1085 /* we don't affect global LRU but rotate in our LRU */
1086 mem_cgroup_rotate_lru_list(page, page_lru(page));
1087 break;
1088 default:
1089 break;
66e1707b
BS
1090 }
1091 }
1092
66e1707b 1093 *scanned = scan;
cc8e970c
KM
1094
1095 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1096 0, 0, 0, mode);
1097
66e1707b
BS
1098 return nr_taken;
1099}
1100
6d61ef40
BS
1101#define mem_cgroup_from_res_counter(counter, member) \
1102 container_of(counter, struct mem_cgroup, member)
1103
b85a96c0
DN
1104static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1105{
1106 if (do_swap_account) {
1107 if (res_counter_check_under_limit(&mem->res) &&
1108 res_counter_check_under_limit(&mem->memsw))
1109 return true;
1110 } else
1111 if (res_counter_check_under_limit(&mem->res))
1112 return true;
1113 return false;
1114}
1115
a7885eb8
KM
1116static unsigned int get_swappiness(struct mem_cgroup *memcg)
1117{
1118 struct cgroup *cgrp = memcg->css.cgroup;
1119 unsigned int swappiness;
1120
1121 /* root ? */
1122 if (cgrp->parent == NULL)
1123 return vm_swappiness;
1124
1125 spin_lock(&memcg->reclaim_param_lock);
1126 swappiness = memcg->swappiness;
1127 spin_unlock(&memcg->reclaim_param_lock);
1128
1129 return swappiness;
1130}
1131
32047e2a
KH
1132static void mem_cgroup_start_move(struct mem_cgroup *mem)
1133{
1134 int cpu;
1135 /* Because this is for moving account, reuse mc.lock */
1136 spin_lock(&mc.lock);
1137 for_each_possible_cpu(cpu)
1138 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1139 spin_unlock(&mc.lock);
1140
1141 synchronize_rcu();
1142}
1143
1144static void mem_cgroup_end_move(struct mem_cgroup *mem)
1145{
1146 int cpu;
1147
1148 if (!mem)
1149 return;
1150 spin_lock(&mc.lock);
1151 for_each_possible_cpu(cpu)
1152 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1153 spin_unlock(&mc.lock);
1154}
1155/*
1156 * 2 routines for checking "mem" is under move_account() or not.
1157 *
1158 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1159 * for avoiding race in accounting. If true,
1160 * pc->mem_cgroup may be overwritten.
1161 *
1162 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1163 * under hierarchy of moving cgroups. This is for
1164 * waiting at hith-memory prressure caused by "move".
1165 */
1166
1167static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1168{
1169 VM_BUG_ON(!rcu_read_lock_held());
1170 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1171}
4b534334
KH
1172
1173static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1174{
2bd9bb20
KH
1175 struct mem_cgroup *from;
1176 struct mem_cgroup *to;
4b534334 1177 bool ret = false;
2bd9bb20
KH
1178 /*
1179 * Unlike task_move routines, we access mc.to, mc.from not under
1180 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1181 */
1182 spin_lock(&mc.lock);
1183 from = mc.from;
1184 to = mc.to;
1185 if (!from)
1186 goto unlock;
1187 if (from == mem || to == mem
1188 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1189 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1190 ret = true;
1191unlock:
1192 spin_unlock(&mc.lock);
4b534334
KH
1193 return ret;
1194}
1195
1196static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1197{
1198 if (mc.moving_task && current != mc.moving_task) {
1199 if (mem_cgroup_under_move(mem)) {
1200 DEFINE_WAIT(wait);
1201 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1202 /* moving charge context might have finished. */
1203 if (mc.moving_task)
1204 schedule();
1205 finish_wait(&mc.waitq, &wait);
1206 return true;
1207 }
1208 }
1209 return false;
1210}
1211
e222432b 1212/**
6a6135b6 1213 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1214 * @memcg: The memory cgroup that went over limit
1215 * @p: Task that is going to be killed
1216 *
1217 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1218 * enabled
1219 */
1220void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1221{
1222 struct cgroup *task_cgrp;
1223 struct cgroup *mem_cgrp;
1224 /*
1225 * Need a buffer in BSS, can't rely on allocations. The code relies
1226 * on the assumption that OOM is serialized for memory controller.
1227 * If this assumption is broken, revisit this code.
1228 */
1229 static char memcg_name[PATH_MAX];
1230 int ret;
1231
d31f56db 1232 if (!memcg || !p)
e222432b
BS
1233 return;
1234
1235
1236 rcu_read_lock();
1237
1238 mem_cgrp = memcg->css.cgroup;
1239 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1240
1241 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1242 if (ret < 0) {
1243 /*
1244 * Unfortunately, we are unable to convert to a useful name
1245 * But we'll still print out the usage information
1246 */
1247 rcu_read_unlock();
1248 goto done;
1249 }
1250 rcu_read_unlock();
1251
1252 printk(KERN_INFO "Task in %s killed", memcg_name);
1253
1254 rcu_read_lock();
1255 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1256 if (ret < 0) {
1257 rcu_read_unlock();
1258 goto done;
1259 }
1260 rcu_read_unlock();
1261
1262 /*
1263 * Continues from above, so we don't need an KERN_ level
1264 */
1265 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1266done:
1267
1268 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1269 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1270 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1271 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1272 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1273 "failcnt %llu\n",
1274 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1275 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1276 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1277}
1278
81d39c20
KH
1279/*
1280 * This function returns the number of memcg under hierarchy tree. Returns
1281 * 1(self count) if no children.
1282 */
1283static int mem_cgroup_count_children(struct mem_cgroup *mem)
1284{
1285 int num = 0;
7d74b06f
KH
1286 struct mem_cgroup *iter;
1287
1288 for_each_mem_cgroup_tree(iter, mem)
1289 num++;
81d39c20
KH
1290 return num;
1291}
1292
a63d83f4
DR
1293/*
1294 * Return the memory (and swap, if configured) limit for a memcg.
1295 */
1296u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1297{
1298 u64 limit;
1299 u64 memsw;
1300
1301 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1302 total_swap_pages;
1303 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1304 /*
1305 * If memsw is finite and limits the amount of swap space available
1306 * to this memcg, return that limit.
1307 */
1308 return min(limit, memsw);
1309}
1310
6d61ef40 1311/*
04046e1a
KH
1312 * Visit the first child (need not be the first child as per the ordering
1313 * of the cgroup list, since we track last_scanned_child) of @mem and use
1314 * that to reclaim free pages from.
1315 */
1316static struct mem_cgroup *
1317mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1318{
1319 struct mem_cgroup *ret = NULL;
1320 struct cgroup_subsys_state *css;
1321 int nextid, found;
1322
1323 if (!root_mem->use_hierarchy) {
1324 css_get(&root_mem->css);
1325 ret = root_mem;
1326 }
1327
1328 while (!ret) {
1329 rcu_read_lock();
1330 nextid = root_mem->last_scanned_child + 1;
1331 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1332 &found);
1333 if (css && css_tryget(css))
1334 ret = container_of(css, struct mem_cgroup, css);
1335
1336 rcu_read_unlock();
1337 /* Updates scanning parameter */
1338 spin_lock(&root_mem->reclaim_param_lock);
1339 if (!css) {
1340 /* this means start scan from ID:1 */
1341 root_mem->last_scanned_child = 0;
1342 } else
1343 root_mem->last_scanned_child = found;
1344 spin_unlock(&root_mem->reclaim_param_lock);
1345 }
1346
1347 return ret;
1348}
1349
1350/*
1351 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1352 * we reclaimed from, so that we don't end up penalizing one child extensively
1353 * based on its position in the children list.
6d61ef40
BS
1354 *
1355 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1356 *
1357 * We give up and return to the caller when we visit root_mem twice.
1358 * (other groups can be removed while we're walking....)
81d39c20
KH
1359 *
1360 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1361 */
1362static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1363 struct zone *zone,
75822b44
BS
1364 gfp_t gfp_mask,
1365 unsigned long reclaim_options)
6d61ef40 1366{
04046e1a
KH
1367 struct mem_cgroup *victim;
1368 int ret, total = 0;
1369 int loop = 0;
75822b44
BS
1370 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1371 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1372 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1373 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1374
22a668d7
KH
1375 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1376 if (root_mem->memsw_is_minimum)
1377 noswap = true;
1378
4e416953 1379 while (1) {
04046e1a 1380 victim = mem_cgroup_select_victim(root_mem);
4e416953 1381 if (victim == root_mem) {
04046e1a 1382 loop++;
cdec2e42
KH
1383 if (loop >= 1)
1384 drain_all_stock_async();
4e416953
BS
1385 if (loop >= 2) {
1386 /*
1387 * If we have not been able to reclaim
1388 * anything, it might because there are
1389 * no reclaimable pages under this hierarchy
1390 */
1391 if (!check_soft || !total) {
1392 css_put(&victim->css);
1393 break;
1394 }
1395 /*
1396 * We want to do more targetted reclaim.
1397 * excess >> 2 is not to excessive so as to
1398 * reclaim too much, nor too less that we keep
1399 * coming back to reclaim from this cgroup
1400 */
1401 if (total >= (excess >> 2) ||
1402 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1403 css_put(&victim->css);
1404 break;
1405 }
1406 }
1407 }
c62b1a3b 1408 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1409 /* this cgroup's local usage == 0 */
1410 css_put(&victim->css);
6d61ef40
BS
1411 continue;
1412 }
04046e1a 1413 /* we use swappiness of local cgroup */
4e416953
BS
1414 if (check_soft)
1415 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1416 noswap, get_swappiness(victim), zone);
4e416953
BS
1417 else
1418 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1419 noswap, get_swappiness(victim));
04046e1a 1420 css_put(&victim->css);
81d39c20
KH
1421 /*
1422 * At shrinking usage, we can't check we should stop here or
1423 * reclaim more. It's depends on callers. last_scanned_child
1424 * will work enough for keeping fairness under tree.
1425 */
1426 if (shrink)
1427 return ret;
04046e1a 1428 total += ret;
4e416953
BS
1429 if (check_soft) {
1430 if (res_counter_check_under_soft_limit(&root_mem->res))
1431 return total;
1432 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1433 return 1 + total;
6d61ef40 1434 }
04046e1a 1435 return total;
6d61ef40
BS
1436}
1437
867578cb
KH
1438/*
1439 * Check OOM-Killer is already running under our hierarchy.
1440 * If someone is running, return false.
1441 */
1442static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1443{
7d74b06f
KH
1444 int x, lock_count = 0;
1445 struct mem_cgroup *iter;
a636b327 1446
7d74b06f
KH
1447 for_each_mem_cgroup_tree(iter, mem) {
1448 x = atomic_inc_return(&iter->oom_lock);
1449 lock_count = max(x, lock_count);
1450 }
867578cb
KH
1451
1452 if (lock_count == 1)
1453 return true;
1454 return false;
a636b327 1455}
0b7f569e 1456
7d74b06f 1457static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1458{
7d74b06f
KH
1459 struct mem_cgroup *iter;
1460
867578cb
KH
1461 /*
1462 * When a new child is created while the hierarchy is under oom,
1463 * mem_cgroup_oom_lock() may not be called. We have to use
1464 * atomic_add_unless() here.
1465 */
7d74b06f
KH
1466 for_each_mem_cgroup_tree(iter, mem)
1467 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1468 return 0;
1469}
1470
867578cb
KH
1471
1472static DEFINE_MUTEX(memcg_oom_mutex);
1473static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1474
dc98df5a
KH
1475struct oom_wait_info {
1476 struct mem_cgroup *mem;
1477 wait_queue_t wait;
1478};
1479
1480static int memcg_oom_wake_function(wait_queue_t *wait,
1481 unsigned mode, int sync, void *arg)
1482{
1483 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1484 struct oom_wait_info *oom_wait_info;
1485
1486 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1487
1488 if (oom_wait_info->mem == wake_mem)
1489 goto wakeup;
1490 /* if no hierarchy, no match */
1491 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1492 return 0;
1493 /*
1494 * Both of oom_wait_info->mem and wake_mem are stable under us.
1495 * Then we can use css_is_ancestor without taking care of RCU.
1496 */
1497 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1498 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1499 return 0;
1500
1501wakeup:
1502 return autoremove_wake_function(wait, mode, sync, arg);
1503}
1504
1505static void memcg_wakeup_oom(struct mem_cgroup *mem)
1506{
1507 /* for filtering, pass "mem" as argument. */
1508 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1509}
1510
3c11ecf4
KH
1511static void memcg_oom_recover(struct mem_cgroup *mem)
1512{
2bd9bb20 1513 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1514 memcg_wakeup_oom(mem);
1515}
1516
867578cb
KH
1517/*
1518 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1519 */
1520bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1521{
dc98df5a 1522 struct oom_wait_info owait;
3c11ecf4 1523 bool locked, need_to_kill;
867578cb 1524
dc98df5a
KH
1525 owait.mem = mem;
1526 owait.wait.flags = 0;
1527 owait.wait.func = memcg_oom_wake_function;
1528 owait.wait.private = current;
1529 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1530 need_to_kill = true;
867578cb
KH
1531 /* At first, try to OOM lock hierarchy under mem.*/
1532 mutex_lock(&memcg_oom_mutex);
1533 locked = mem_cgroup_oom_lock(mem);
1534 /*
1535 * Even if signal_pending(), we can't quit charge() loop without
1536 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1537 * under OOM is always welcomed, use TASK_KILLABLE here.
1538 */
3c11ecf4
KH
1539 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1540 if (!locked || mem->oom_kill_disable)
1541 need_to_kill = false;
1542 if (locked)
9490ff27 1543 mem_cgroup_oom_notify(mem);
867578cb
KH
1544 mutex_unlock(&memcg_oom_mutex);
1545
3c11ecf4
KH
1546 if (need_to_kill) {
1547 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1548 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1549 } else {
867578cb 1550 schedule();
dc98df5a 1551 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1552 }
1553 mutex_lock(&memcg_oom_mutex);
1554 mem_cgroup_oom_unlock(mem);
dc98df5a 1555 memcg_wakeup_oom(mem);
867578cb
KH
1556 mutex_unlock(&memcg_oom_mutex);
1557
1558 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1559 return false;
1560 /* Give chance to dying process */
1561 schedule_timeout(1);
1562 return true;
0b7f569e
KH
1563}
1564
d69b042f
BS
1565/*
1566 * Currently used to update mapped file statistics, but the routine can be
1567 * generalized to update other statistics as well.
32047e2a
KH
1568 *
1569 * Notes: Race condition
1570 *
1571 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1572 * it tends to be costly. But considering some conditions, we doesn't need
1573 * to do so _always_.
1574 *
1575 * Considering "charge", lock_page_cgroup() is not required because all
1576 * file-stat operations happen after a page is attached to radix-tree. There
1577 * are no race with "charge".
1578 *
1579 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1580 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1581 * if there are race with "uncharge". Statistics itself is properly handled
1582 * by flags.
1583 *
1584 * Considering "move", this is an only case we see a race. To make the race
1585 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1586 * possibility of race condition. If there is, we take a lock.
d69b042f 1587 */
d8046582 1588void mem_cgroup_update_file_mapped(struct page *page, int val)
d69b042f
BS
1589{
1590 struct mem_cgroup *mem;
32047e2a
KH
1591 struct page_cgroup *pc = lookup_page_cgroup(page);
1592 bool need_unlock = false;
d69b042f 1593
d69b042f
BS
1594 if (unlikely(!pc))
1595 return;
1596
32047e2a 1597 rcu_read_lock();
d69b042f 1598 mem = pc->mem_cgroup;
32047e2a
KH
1599 if (unlikely(!mem || !PageCgroupUsed(pc)))
1600 goto out;
1601 /* pc->mem_cgroup is unstable ? */
1602 if (unlikely(mem_cgroup_stealed(mem))) {
1603 /* take a lock against to access pc->mem_cgroup */
1604 lock_page_cgroup(pc);
1605 need_unlock = true;
1606 mem = pc->mem_cgroup;
1607 if (!mem || !PageCgroupUsed(pc))
1608 goto out;
1609 }
8725d541 1610 if (val > 0) {
32047e2a 1611 this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
8725d541
KH
1612 SetPageCgroupFileMapped(pc);
1613 } else {
32047e2a 1614 this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
0c270f8f
KH
1615 if (!page_mapped(page)) /* for race between dec->inc counter */
1616 ClearPageCgroupFileMapped(pc);
8725d541 1617 }
d69b042f 1618
32047e2a
KH
1619out:
1620 if (unlikely(need_unlock))
1621 unlock_page_cgroup(pc);
1622 rcu_read_unlock();
1623 return;
d69b042f 1624}
0b7f569e 1625
cdec2e42
KH
1626/*
1627 * size of first charge trial. "32" comes from vmscan.c's magic value.
1628 * TODO: maybe necessary to use big numbers in big irons.
1629 */
1630#define CHARGE_SIZE (32 * PAGE_SIZE)
1631struct memcg_stock_pcp {
1632 struct mem_cgroup *cached; /* this never be root cgroup */
1633 int charge;
1634 struct work_struct work;
1635};
1636static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1637static atomic_t memcg_drain_count;
1638
1639/*
1640 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1641 * from local stock and true is returned. If the stock is 0 or charges from a
1642 * cgroup which is not current target, returns false. This stock will be
1643 * refilled.
1644 */
1645static bool consume_stock(struct mem_cgroup *mem)
1646{
1647 struct memcg_stock_pcp *stock;
1648 bool ret = true;
1649
1650 stock = &get_cpu_var(memcg_stock);
1651 if (mem == stock->cached && stock->charge)
1652 stock->charge -= PAGE_SIZE;
1653 else /* need to call res_counter_charge */
1654 ret = false;
1655 put_cpu_var(memcg_stock);
1656 return ret;
1657}
1658
1659/*
1660 * Returns stocks cached in percpu to res_counter and reset cached information.
1661 */
1662static void drain_stock(struct memcg_stock_pcp *stock)
1663{
1664 struct mem_cgroup *old = stock->cached;
1665
1666 if (stock->charge) {
1667 res_counter_uncharge(&old->res, stock->charge);
1668 if (do_swap_account)
1669 res_counter_uncharge(&old->memsw, stock->charge);
1670 }
1671 stock->cached = NULL;
1672 stock->charge = 0;
1673}
1674
1675/*
1676 * This must be called under preempt disabled or must be called by
1677 * a thread which is pinned to local cpu.
1678 */
1679static void drain_local_stock(struct work_struct *dummy)
1680{
1681 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1682 drain_stock(stock);
1683}
1684
1685/*
1686 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1687 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1688 */
1689static void refill_stock(struct mem_cgroup *mem, int val)
1690{
1691 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1692
1693 if (stock->cached != mem) { /* reset if necessary */
1694 drain_stock(stock);
1695 stock->cached = mem;
1696 }
1697 stock->charge += val;
1698 put_cpu_var(memcg_stock);
1699}
1700
1701/*
1702 * Tries to drain stocked charges in other cpus. This function is asynchronous
1703 * and just put a work per cpu for draining localy on each cpu. Caller can
1704 * expects some charges will be back to res_counter later but cannot wait for
1705 * it.
1706 */
1707static void drain_all_stock_async(void)
1708{
1709 int cpu;
1710 /* This function is for scheduling "drain" in asynchronous way.
1711 * The result of "drain" is not directly handled by callers. Then,
1712 * if someone is calling drain, we don't have to call drain more.
1713 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1714 * there is a race. We just do loose check here.
1715 */
1716 if (atomic_read(&memcg_drain_count))
1717 return;
1718 /* Notify other cpus that system-wide "drain" is running */
1719 atomic_inc(&memcg_drain_count);
1720 get_online_cpus();
1721 for_each_online_cpu(cpu) {
1722 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1723 schedule_work_on(cpu, &stock->work);
1724 }
1725 put_online_cpus();
1726 atomic_dec(&memcg_drain_count);
1727 /* We don't wait for flush_work */
1728}
1729
1730/* This is a synchronous drain interface. */
1731static void drain_all_stock_sync(void)
1732{
1733 /* called when force_empty is called */
1734 atomic_inc(&memcg_drain_count);
1735 schedule_on_each_cpu(drain_local_stock);
1736 atomic_dec(&memcg_drain_count);
1737}
1738
711d3d2c
KH
1739/*
1740 * This function drains percpu counter value from DEAD cpu and
1741 * move it to local cpu. Note that this function can be preempted.
1742 */
1743static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1744{
1745 int i;
1746
1747 spin_lock(&mem->pcp_counter_lock);
1748 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1749 s64 x = per_cpu(mem->stat->count[i], cpu);
1750
1751 per_cpu(mem->stat->count[i], cpu) = 0;
1752 mem->nocpu_base.count[i] += x;
1753 }
1754 spin_unlock(&mem->pcp_counter_lock);
1755}
1756
1757static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1758 unsigned long action,
1759 void *hcpu)
1760{
1761 int cpu = (unsigned long)hcpu;
1762 struct memcg_stock_pcp *stock;
711d3d2c 1763 struct mem_cgroup *iter;
cdec2e42 1764
711d3d2c 1765 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1766 return NOTIFY_OK;
711d3d2c
KH
1767
1768 for_each_mem_cgroup_all(iter)
1769 mem_cgroup_drain_pcp_counter(iter, cpu);
1770
cdec2e42
KH
1771 stock = &per_cpu(memcg_stock, cpu);
1772 drain_stock(stock);
1773 return NOTIFY_OK;
1774}
1775
4b534334
KH
1776
1777/* See __mem_cgroup_try_charge() for details */
1778enum {
1779 CHARGE_OK, /* success */
1780 CHARGE_RETRY, /* need to retry but retry is not bad */
1781 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1782 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1783 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1784};
1785
1786static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1787 int csize, bool oom_check)
1788{
1789 struct mem_cgroup *mem_over_limit;
1790 struct res_counter *fail_res;
1791 unsigned long flags = 0;
1792 int ret;
1793
1794 ret = res_counter_charge(&mem->res, csize, &fail_res);
1795
1796 if (likely(!ret)) {
1797 if (!do_swap_account)
1798 return CHARGE_OK;
1799 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1800 if (likely(!ret))
1801 return CHARGE_OK;
1802
1803 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1804 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1805 } else
1806 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1807
1808 if (csize > PAGE_SIZE) /* change csize and retry */
1809 return CHARGE_RETRY;
1810
1811 if (!(gfp_mask & __GFP_WAIT))
1812 return CHARGE_WOULDBLOCK;
1813
1814 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1815 gfp_mask, flags);
1816 /*
1817 * try_to_free_mem_cgroup_pages() might not give us a full
1818 * picture of reclaim. Some pages are reclaimed and might be
1819 * moved to swap cache or just unmapped from the cgroup.
1820 * Check the limit again to see if the reclaim reduced the
1821 * current usage of the cgroup before giving up
1822 */
1823 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1824 return CHARGE_RETRY;
1825
1826 /*
1827 * At task move, charge accounts can be doubly counted. So, it's
1828 * better to wait until the end of task_move if something is going on.
1829 */
1830 if (mem_cgroup_wait_acct_move(mem_over_limit))
1831 return CHARGE_RETRY;
1832
1833 /* If we don't need to call oom-killer at el, return immediately */
1834 if (!oom_check)
1835 return CHARGE_NOMEM;
1836 /* check OOM */
1837 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1838 return CHARGE_OOM_DIE;
1839
1840 return CHARGE_RETRY;
1841}
1842
f817ed48
KH
1843/*
1844 * Unlike exported interface, "oom" parameter is added. if oom==true,
1845 * oom-killer can be invoked.
8a9f3ccd 1846 */
f817ed48 1847static int __mem_cgroup_try_charge(struct mm_struct *mm,
4b534334 1848 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
8a9f3ccd 1849{
4b534334
KH
1850 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1851 struct mem_cgroup *mem = NULL;
1852 int ret;
cdec2e42 1853 int csize = CHARGE_SIZE;
a636b327 1854
867578cb
KH
1855 /*
1856 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1857 * in system level. So, allow to go ahead dying process in addition to
1858 * MEMDIE process.
1859 */
1860 if (unlikely(test_thread_flag(TIF_MEMDIE)
1861 || fatal_signal_pending(current)))
1862 goto bypass;
a636b327 1863
8a9f3ccd 1864 /*
3be91277
HD
1865 * We always charge the cgroup the mm_struct belongs to.
1866 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1867 * thread group leader migrates. It's possible that mm is not
1868 * set, if so charge the init_mm (happens for pagecache usage).
1869 */
f75ca962
KH
1870 if (!*memcg && !mm)
1871 goto bypass;
1872again:
1873 if (*memcg) { /* css should be a valid one */
4b534334 1874 mem = *memcg;
f75ca962
KH
1875 VM_BUG_ON(css_is_removed(&mem->css));
1876 if (mem_cgroup_is_root(mem))
1877 goto done;
1878 if (consume_stock(mem))
1879 goto done;
4b534334
KH
1880 css_get(&mem->css);
1881 } else {
f75ca962 1882 struct task_struct *p;
54595fe2 1883
f75ca962
KH
1884 rcu_read_lock();
1885 p = rcu_dereference(mm->owner);
1886 VM_BUG_ON(!p);
1887 /*
1888 * because we don't have task_lock(), "p" can exit while
1889 * we're here. In that case, "mem" can point to root
1890 * cgroup but never be NULL. (and task_struct itself is freed
1891 * by RCU, cgroup itself is RCU safe.) Then, we have small
1892 * risk here to get wrong cgroup. But such kind of mis-account
1893 * by race always happens because we don't have cgroup_mutex().
1894 * It's overkill and we allow that small race, here.
1895 */
1896 mem = mem_cgroup_from_task(p);
1897 VM_BUG_ON(!mem);
1898 if (mem_cgroup_is_root(mem)) {
1899 rcu_read_unlock();
1900 goto done;
1901 }
1902 if (consume_stock(mem)) {
1903 /*
1904 * It seems dagerous to access memcg without css_get().
1905 * But considering how consume_stok works, it's not
1906 * necessary. If consume_stock success, some charges
1907 * from this memcg are cached on this cpu. So, we
1908 * don't need to call css_get()/css_tryget() before
1909 * calling consume_stock().
1910 */
1911 rcu_read_unlock();
1912 goto done;
1913 }
1914 /* after here, we may be blocked. we need to get refcnt */
1915 if (!css_tryget(&mem->css)) {
1916 rcu_read_unlock();
1917 goto again;
1918 }
1919 rcu_read_unlock();
1920 }
8a9f3ccd 1921
4b534334
KH
1922 do {
1923 bool oom_check;
7a81b88c 1924
4b534334 1925 /* If killed, bypass charge */
f75ca962
KH
1926 if (fatal_signal_pending(current)) {
1927 css_put(&mem->css);
4b534334 1928 goto bypass;
f75ca962 1929 }
6d61ef40 1930
4b534334
KH
1931 oom_check = false;
1932 if (oom && !nr_oom_retries) {
1933 oom_check = true;
1934 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 1935 }
66e1707b 1936
4b534334 1937 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 1938
4b534334
KH
1939 switch (ret) {
1940 case CHARGE_OK:
1941 break;
1942 case CHARGE_RETRY: /* not in OOM situation but retry */
1943 csize = PAGE_SIZE;
f75ca962
KH
1944 css_put(&mem->css);
1945 mem = NULL;
1946 goto again;
4b534334 1947 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 1948 css_put(&mem->css);
4b534334
KH
1949 goto nomem;
1950 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
1951 if (!oom) {
1952 css_put(&mem->css);
867578cb 1953 goto nomem;
f75ca962 1954 }
4b534334
KH
1955 /* If oom, we never return -ENOMEM */
1956 nr_oom_retries--;
1957 break;
1958 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 1959 css_put(&mem->css);
867578cb 1960 goto bypass;
66e1707b 1961 }
4b534334
KH
1962 } while (ret != CHARGE_OK);
1963
cdec2e42
KH
1964 if (csize > PAGE_SIZE)
1965 refill_stock(mem, csize - PAGE_SIZE);
f75ca962 1966 css_put(&mem->css);
0c3e73e8 1967done:
f75ca962 1968 *memcg = mem;
7a81b88c
KH
1969 return 0;
1970nomem:
f75ca962 1971 *memcg = NULL;
7a81b88c 1972 return -ENOMEM;
867578cb
KH
1973bypass:
1974 *memcg = NULL;
1975 return 0;
7a81b88c 1976}
8a9f3ccd 1977
a3032a2c
DN
1978/*
1979 * Somemtimes we have to undo a charge we got by try_charge().
1980 * This function is for that and do uncharge, put css's refcnt.
1981 * gotten by try_charge().
1982 */
854ffa8d
DN
1983static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1984 unsigned long count)
a3032a2c
DN
1985{
1986 if (!mem_cgroup_is_root(mem)) {
854ffa8d 1987 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 1988 if (do_swap_account)
854ffa8d 1989 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 1990 }
854ffa8d
DN
1991}
1992
1993static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1994{
1995 __mem_cgroup_cancel_charge(mem, 1);
a3032a2c
DN
1996}
1997
a3b2d692
KH
1998/*
1999 * A helper function to get mem_cgroup from ID. must be called under
2000 * rcu_read_lock(). The caller must check css_is_removed() or some if
2001 * it's concern. (dropping refcnt from swap can be called against removed
2002 * memcg.)
2003 */
2004static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2005{
2006 struct cgroup_subsys_state *css;
2007
2008 /* ID 0 is unused ID */
2009 if (!id)
2010 return NULL;
2011 css = css_lookup(&mem_cgroup_subsys, id);
2012 if (!css)
2013 return NULL;
2014 return container_of(css, struct mem_cgroup, css);
2015}
2016
e42d9d5d 2017struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2018{
e42d9d5d 2019 struct mem_cgroup *mem = NULL;
3c776e64 2020 struct page_cgroup *pc;
a3b2d692 2021 unsigned short id;
b5a84319
KH
2022 swp_entry_t ent;
2023
3c776e64
DN
2024 VM_BUG_ON(!PageLocked(page));
2025
3c776e64 2026 pc = lookup_page_cgroup(page);
c0bd3f63 2027 lock_page_cgroup(pc);
a3b2d692 2028 if (PageCgroupUsed(pc)) {
3c776e64 2029 mem = pc->mem_cgroup;
a3b2d692
KH
2030 if (mem && !css_tryget(&mem->css))
2031 mem = NULL;
e42d9d5d 2032 } else if (PageSwapCache(page)) {
3c776e64 2033 ent.val = page_private(page);
a3b2d692
KH
2034 id = lookup_swap_cgroup(ent);
2035 rcu_read_lock();
2036 mem = mem_cgroup_lookup(id);
2037 if (mem && !css_tryget(&mem->css))
2038 mem = NULL;
2039 rcu_read_unlock();
3c776e64 2040 }
c0bd3f63 2041 unlock_page_cgroup(pc);
b5a84319
KH
2042 return mem;
2043}
2044
7a81b88c 2045/*
a5e924f5 2046 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
2047 * USED state. If already USED, uncharge and return.
2048 */
2049
2050static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2051 struct page_cgroup *pc,
2052 enum charge_type ctype)
2053{
7a81b88c
KH
2054 /* try_charge() can return NULL to *memcg, taking care of it. */
2055 if (!mem)
2056 return;
52d4b9ac
KH
2057
2058 lock_page_cgroup(pc);
2059 if (unlikely(PageCgroupUsed(pc))) {
2060 unlock_page_cgroup(pc);
a3032a2c 2061 mem_cgroup_cancel_charge(mem);
7a81b88c 2062 return;
52d4b9ac 2063 }
4b3bde4c 2064
8a9f3ccd 2065 pc->mem_cgroup = mem;
261fb61a
KH
2066 /*
2067 * We access a page_cgroup asynchronously without lock_page_cgroup().
2068 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2069 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2070 * before USED bit, we need memory barrier here.
2071 * See mem_cgroup_add_lru_list(), etc.
2072 */
08e552c6 2073 smp_wmb();
4b3bde4c
BS
2074 switch (ctype) {
2075 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2076 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2077 SetPageCgroupCache(pc);
2078 SetPageCgroupUsed(pc);
2079 break;
2080 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2081 ClearPageCgroupCache(pc);
2082 SetPageCgroupUsed(pc);
2083 break;
2084 default:
2085 break;
2086 }
3be91277 2087
08e552c6 2088 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 2089
52d4b9ac 2090 unlock_page_cgroup(pc);
430e4863
KH
2091 /*
2092 * "charge_statistics" updated event counter. Then, check it.
2093 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2094 * if they exceeds softlimit.
2095 */
d2265e6f 2096 memcg_check_events(mem, pc->page);
7a81b88c 2097}
66e1707b 2098
f817ed48 2099/**
57f9fd7d 2100 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
2101 * @pc: page_cgroup of the page.
2102 * @from: mem_cgroup which the page is moved from.
2103 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2104 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2105 *
2106 * The caller must confirm following.
08e552c6 2107 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 2108 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 2109 *
854ffa8d
DN
2110 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2111 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2112 * true, this function does "uncharge" from old cgroup, but it doesn't if
2113 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
2114 */
2115
57f9fd7d 2116static void __mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 2117 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
f817ed48 2118{
f817ed48 2119 VM_BUG_ON(from == to);
08e552c6 2120 VM_BUG_ON(PageLRU(pc->page));
57f9fd7d
DN
2121 VM_BUG_ON(!PageCgroupLocked(pc));
2122 VM_BUG_ON(!PageCgroupUsed(pc));
2123 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 2124
8725d541 2125 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2126 /* Update mapped_file data for mem_cgroup */
2127 preempt_disable();
2128 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2129 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2130 preempt_enable();
d69b042f 2131 }
854ffa8d
DN
2132 mem_cgroup_charge_statistics(from, pc, false);
2133 if (uncharge)
2134 /* This is not "cancel", but cancel_charge does all we need. */
2135 mem_cgroup_cancel_charge(from);
d69b042f 2136
854ffa8d 2137 /* caller should have done css_get */
08e552c6
KH
2138 pc->mem_cgroup = to;
2139 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
2140 /*
2141 * We charges against "to" which may not have any tasks. Then, "to"
2142 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2143 * this function is just force_empty() and move charge, so it's
2144 * garanteed that "to" is never removed. So, we don't check rmdir
2145 * status here.
88703267 2146 */
57f9fd7d
DN
2147}
2148
2149/*
2150 * check whether the @pc is valid for moving account and call
2151 * __mem_cgroup_move_account()
2152 */
2153static int mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 2154 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
57f9fd7d
DN
2155{
2156 int ret = -EINVAL;
2157 lock_page_cgroup(pc);
2158 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
854ffa8d 2159 __mem_cgroup_move_account(pc, from, to, uncharge);
57f9fd7d
DN
2160 ret = 0;
2161 }
2162 unlock_page_cgroup(pc);
d2265e6f
KH
2163 /*
2164 * check events
2165 */
2166 memcg_check_events(to, pc->page);
2167 memcg_check_events(from, pc->page);
f817ed48
KH
2168 return ret;
2169}
2170
2171/*
2172 * move charges to its parent.
2173 */
2174
2175static int mem_cgroup_move_parent(struct page_cgroup *pc,
2176 struct mem_cgroup *child,
2177 gfp_t gfp_mask)
2178{
08e552c6 2179 struct page *page = pc->page;
f817ed48
KH
2180 struct cgroup *cg = child->css.cgroup;
2181 struct cgroup *pcg = cg->parent;
2182 struct mem_cgroup *parent;
f817ed48
KH
2183 int ret;
2184
2185 /* Is ROOT ? */
2186 if (!pcg)
2187 return -EINVAL;
2188
57f9fd7d
DN
2189 ret = -EBUSY;
2190 if (!get_page_unless_zero(page))
2191 goto out;
2192 if (isolate_lru_page(page))
2193 goto put;
08e552c6 2194
f817ed48 2195 parent = mem_cgroup_from_cont(pcg);
430e4863 2196 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 2197 if (ret || !parent)
57f9fd7d 2198 goto put_back;
f817ed48 2199
854ffa8d
DN
2200 ret = mem_cgroup_move_account(pc, child, parent, true);
2201 if (ret)
2202 mem_cgroup_cancel_charge(parent);
57f9fd7d 2203put_back:
08e552c6 2204 putback_lru_page(page);
57f9fd7d 2205put:
40d58138 2206 put_page(page);
57f9fd7d 2207out:
f817ed48
KH
2208 return ret;
2209}
2210
7a81b88c
KH
2211/*
2212 * Charge the memory controller for page usage.
2213 * Return
2214 * 0 if the charge was successful
2215 * < 0 if the cgroup is over its limit
2216 */
2217static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2218 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2219{
73045c47 2220 struct mem_cgroup *mem = NULL;
7a81b88c
KH
2221 struct page_cgroup *pc;
2222 int ret;
2223
2224 pc = lookup_page_cgroup(page);
2225 /* can happen at boot */
2226 if (unlikely(!pc))
2227 return 0;
2228 prefetchw(pc);
2229
430e4863 2230 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 2231 if (ret || !mem)
7a81b88c
KH
2232 return ret;
2233
2234 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 2235 return 0;
8a9f3ccd
BS
2236}
2237
7a81b88c
KH
2238int mem_cgroup_newpage_charge(struct page *page,
2239 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2240{
f8d66542 2241 if (mem_cgroup_disabled())
cede86ac 2242 return 0;
52d4b9ac
KH
2243 if (PageCompound(page))
2244 return 0;
69029cd5
KH
2245 /*
2246 * If already mapped, we don't have to account.
2247 * If page cache, page->mapping has address_space.
2248 * But page->mapping may have out-of-use anon_vma pointer,
2249 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2250 * is NULL.
2251 */
2252 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2253 return 0;
2254 if (unlikely(!mm))
2255 mm = &init_mm;
217bc319 2256 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2257 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2258}
2259
83aae4c7
DN
2260static void
2261__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2262 enum charge_type ctype);
2263
e1a1cd59
BS
2264int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2265 gfp_t gfp_mask)
8697d331 2266{
b5a84319
KH
2267 int ret;
2268
f8d66542 2269 if (mem_cgroup_disabled())
cede86ac 2270 return 0;
52d4b9ac
KH
2271 if (PageCompound(page))
2272 return 0;
accf163e
KH
2273 /*
2274 * Corner case handling. This is called from add_to_page_cache()
2275 * in usual. But some FS (shmem) precharges this page before calling it
2276 * and call add_to_page_cache() with GFP_NOWAIT.
2277 *
2278 * For GFP_NOWAIT case, the page may be pre-charged before calling
2279 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2280 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2281 * And when the page is SwapCache, it should take swap information
2282 * into account. This is under lock_page() now.
accf163e
KH
2283 */
2284 if (!(gfp_mask & __GFP_WAIT)) {
2285 struct page_cgroup *pc;
2286
52d4b9ac
KH
2287 pc = lookup_page_cgroup(page);
2288 if (!pc)
2289 return 0;
2290 lock_page_cgroup(pc);
2291 if (PageCgroupUsed(pc)) {
2292 unlock_page_cgroup(pc);
accf163e
KH
2293 return 0;
2294 }
52d4b9ac 2295 unlock_page_cgroup(pc);
accf163e
KH
2296 }
2297
73045c47 2298 if (unlikely(!mm))
8697d331 2299 mm = &init_mm;
accf163e 2300
c05555b5
KH
2301 if (page_is_file_cache(page))
2302 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2303 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2304
83aae4c7
DN
2305 /* shmem */
2306 if (PageSwapCache(page)) {
73045c47
DN
2307 struct mem_cgroup *mem = NULL;
2308
83aae4c7
DN
2309 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2310 if (!ret)
2311 __mem_cgroup_commit_charge_swapin(page, mem,
2312 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2313 } else
2314 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2315 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2316
b5a84319 2317 return ret;
e8589cc1
KH
2318}
2319
54595fe2
KH
2320/*
2321 * While swap-in, try_charge -> commit or cancel, the page is locked.
2322 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2323 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2324 * "commit()" or removed by "cancel()"
2325 */
8c7c6e34
KH
2326int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2327 struct page *page,
2328 gfp_t mask, struct mem_cgroup **ptr)
2329{
2330 struct mem_cgroup *mem;
54595fe2 2331 int ret;
8c7c6e34 2332
f8d66542 2333 if (mem_cgroup_disabled())
8c7c6e34
KH
2334 return 0;
2335
2336 if (!do_swap_account)
2337 goto charge_cur_mm;
8c7c6e34
KH
2338 /*
2339 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2340 * the pte, and even removed page from swap cache: in those cases
2341 * do_swap_page()'s pte_same() test will fail; but there's also a
2342 * KSM case which does need to charge the page.
8c7c6e34
KH
2343 */
2344 if (!PageSwapCache(page))
407f9c8b 2345 goto charge_cur_mm;
e42d9d5d 2346 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2347 if (!mem)
2348 goto charge_cur_mm;
8c7c6e34 2349 *ptr = mem;
430e4863 2350 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
54595fe2
KH
2351 css_put(&mem->css);
2352 return ret;
8c7c6e34
KH
2353charge_cur_mm:
2354 if (unlikely(!mm))
2355 mm = &init_mm;
430e4863 2356 return __mem_cgroup_try_charge(mm, mask, ptr, true);
8c7c6e34
KH
2357}
2358
83aae4c7
DN
2359static void
2360__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2361 enum charge_type ctype)
7a81b88c
KH
2362{
2363 struct page_cgroup *pc;
2364
f8d66542 2365 if (mem_cgroup_disabled())
7a81b88c
KH
2366 return;
2367 if (!ptr)
2368 return;
88703267 2369 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2370 pc = lookup_page_cgroup(page);
544122e5 2371 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 2372 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 2373 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2374 /*
2375 * Now swap is on-memory. This means this page may be
2376 * counted both as mem and swap....double count.
03f3c433
KH
2377 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2378 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2379 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2380 */
03f3c433 2381 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2382 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2383 unsigned short id;
8c7c6e34 2384 struct mem_cgroup *memcg;
a3b2d692
KH
2385
2386 id = swap_cgroup_record(ent, 0);
2387 rcu_read_lock();
2388 memcg = mem_cgroup_lookup(id);
8c7c6e34 2389 if (memcg) {
a3b2d692
KH
2390 /*
2391 * This recorded memcg can be obsolete one. So, avoid
2392 * calling css_tryget
2393 */
0c3e73e8 2394 if (!mem_cgroup_is_root(memcg))
4e649152 2395 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2396 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2397 mem_cgroup_put(memcg);
2398 }
a3b2d692 2399 rcu_read_unlock();
8c7c6e34 2400 }
88703267
KH
2401 /*
2402 * At swapin, we may charge account against cgroup which has no tasks.
2403 * So, rmdir()->pre_destroy() can be called while we do this charge.
2404 * In that case, we need to call pre_destroy() again. check it here.
2405 */
2406 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2407}
2408
83aae4c7
DN
2409void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2410{
2411 __mem_cgroup_commit_charge_swapin(page, ptr,
2412 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2413}
2414
7a81b88c
KH
2415void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2416{
f8d66542 2417 if (mem_cgroup_disabled())
7a81b88c
KH
2418 return;
2419 if (!mem)
2420 return;
a3032a2c 2421 mem_cgroup_cancel_charge(mem);
7a81b88c
KH
2422}
2423
569b846d
KH
2424static void
2425__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2426{
2427 struct memcg_batch_info *batch = NULL;
2428 bool uncharge_memsw = true;
2429 /* If swapout, usage of swap doesn't decrease */
2430 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2431 uncharge_memsw = false;
569b846d
KH
2432
2433 batch = &current->memcg_batch;
2434 /*
2435 * In usual, we do css_get() when we remember memcg pointer.
2436 * But in this case, we keep res->usage until end of a series of
2437 * uncharges. Then, it's ok to ignore memcg's refcnt.
2438 */
2439 if (!batch->memcg)
2440 batch->memcg = mem;
3c11ecf4
KH
2441 /*
2442 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2443 * In those cases, all pages freed continously can be expected to be in
2444 * the same cgroup and we have chance to coalesce uncharges.
2445 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2446 * because we want to do uncharge as soon as possible.
2447 */
2448
2449 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2450 goto direct_uncharge;
2451
569b846d
KH
2452 /*
2453 * In typical case, batch->memcg == mem. This means we can
2454 * merge a series of uncharges to an uncharge of res_counter.
2455 * If not, we uncharge res_counter ony by one.
2456 */
2457 if (batch->memcg != mem)
2458 goto direct_uncharge;
2459 /* remember freed charge and uncharge it later */
2460 batch->bytes += PAGE_SIZE;
2461 if (uncharge_memsw)
2462 batch->memsw_bytes += PAGE_SIZE;
2463 return;
2464direct_uncharge:
2465 res_counter_uncharge(&mem->res, PAGE_SIZE);
2466 if (uncharge_memsw)
2467 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
3c11ecf4
KH
2468 if (unlikely(batch->memcg != mem))
2469 memcg_oom_recover(mem);
569b846d
KH
2470 return;
2471}
7a81b88c 2472
8a9f3ccd 2473/*
69029cd5 2474 * uncharge if !page_mapped(page)
8a9f3ccd 2475 */
8c7c6e34 2476static struct mem_cgroup *
69029cd5 2477__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2478{
8289546e 2479 struct page_cgroup *pc;
8c7c6e34 2480 struct mem_cgroup *mem = NULL;
8a9f3ccd 2481
f8d66542 2482 if (mem_cgroup_disabled())
8c7c6e34 2483 return NULL;
4077960e 2484
d13d1443 2485 if (PageSwapCache(page))
8c7c6e34 2486 return NULL;
d13d1443 2487
8697d331 2488 /*
3c541e14 2489 * Check if our page_cgroup is valid
8697d331 2490 */
52d4b9ac
KH
2491 pc = lookup_page_cgroup(page);
2492 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2493 return NULL;
b9c565d5 2494
52d4b9ac 2495 lock_page_cgroup(pc);
d13d1443 2496
8c7c6e34
KH
2497 mem = pc->mem_cgroup;
2498
d13d1443
KH
2499 if (!PageCgroupUsed(pc))
2500 goto unlock_out;
2501
2502 switch (ctype) {
2503 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2504 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2505 /* See mem_cgroup_prepare_migration() */
2506 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2507 goto unlock_out;
2508 break;
2509 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2510 if (!PageAnon(page)) { /* Shared memory */
2511 if (page->mapping && !page_is_file_cache(page))
2512 goto unlock_out;
2513 } else if (page_mapped(page)) /* Anon */
2514 goto unlock_out;
2515 break;
2516 default:
2517 break;
52d4b9ac 2518 }
d13d1443 2519
08e552c6 2520 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 2521
52d4b9ac 2522 ClearPageCgroupUsed(pc);
544122e5
KH
2523 /*
2524 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2525 * freed from LRU. This is safe because uncharged page is expected not
2526 * to be reused (freed soon). Exception is SwapCache, it's handled by
2527 * special functions.
2528 */
b9c565d5 2529
52d4b9ac 2530 unlock_page_cgroup(pc);
f75ca962
KH
2531 /*
2532 * even after unlock, we have mem->res.usage here and this memcg
2533 * will never be freed.
2534 */
d2265e6f 2535 memcg_check_events(mem, page);
f75ca962
KH
2536 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2537 mem_cgroup_swap_statistics(mem, true);
2538 mem_cgroup_get(mem);
2539 }
2540 if (!mem_cgroup_is_root(mem))
2541 __do_uncharge(mem, ctype);
6d12e2d8 2542
8c7c6e34 2543 return mem;
d13d1443
KH
2544
2545unlock_out:
2546 unlock_page_cgroup(pc);
8c7c6e34 2547 return NULL;
3c541e14
BS
2548}
2549
69029cd5
KH
2550void mem_cgroup_uncharge_page(struct page *page)
2551{
52d4b9ac
KH
2552 /* early check. */
2553 if (page_mapped(page))
2554 return;
2555 if (page->mapping && !PageAnon(page))
2556 return;
69029cd5
KH
2557 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2558}
2559
2560void mem_cgroup_uncharge_cache_page(struct page *page)
2561{
2562 VM_BUG_ON(page_mapped(page));
b7abea96 2563 VM_BUG_ON(page->mapping);
69029cd5
KH
2564 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2565}
2566
569b846d
KH
2567/*
2568 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2569 * In that cases, pages are freed continuously and we can expect pages
2570 * are in the same memcg. All these calls itself limits the number of
2571 * pages freed at once, then uncharge_start/end() is called properly.
2572 * This may be called prural(2) times in a context,
2573 */
2574
2575void mem_cgroup_uncharge_start(void)
2576{
2577 current->memcg_batch.do_batch++;
2578 /* We can do nest. */
2579 if (current->memcg_batch.do_batch == 1) {
2580 current->memcg_batch.memcg = NULL;
2581 current->memcg_batch.bytes = 0;
2582 current->memcg_batch.memsw_bytes = 0;
2583 }
2584}
2585
2586void mem_cgroup_uncharge_end(void)
2587{
2588 struct memcg_batch_info *batch = &current->memcg_batch;
2589
2590 if (!batch->do_batch)
2591 return;
2592
2593 batch->do_batch--;
2594 if (batch->do_batch) /* If stacked, do nothing. */
2595 return;
2596
2597 if (!batch->memcg)
2598 return;
2599 /*
2600 * This "batch->memcg" is valid without any css_get/put etc...
2601 * bacause we hide charges behind us.
2602 */
2603 if (batch->bytes)
2604 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2605 if (batch->memsw_bytes)
2606 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2607 memcg_oom_recover(batch->memcg);
569b846d
KH
2608 /* forget this pointer (for sanity check) */
2609 batch->memcg = NULL;
2610}
2611
e767e056 2612#ifdef CONFIG_SWAP
8c7c6e34 2613/*
e767e056 2614 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2615 * memcg information is recorded to swap_cgroup of "ent"
2616 */
8a9478ca
KH
2617void
2618mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2619{
2620 struct mem_cgroup *memcg;
8a9478ca
KH
2621 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2622
2623 if (!swapout) /* this was a swap cache but the swap is unused ! */
2624 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2625
2626 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2627
f75ca962
KH
2628 /*
2629 * record memcg information, if swapout && memcg != NULL,
2630 * mem_cgroup_get() was called in uncharge().
2631 */
2632 if (do_swap_account && swapout && memcg)
a3b2d692 2633 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2634}
e767e056 2635#endif
8c7c6e34
KH
2636
2637#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2638/*
2639 * called from swap_entry_free(). remove record in swap_cgroup and
2640 * uncharge "memsw" account.
2641 */
2642void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2643{
8c7c6e34 2644 struct mem_cgroup *memcg;
a3b2d692 2645 unsigned short id;
8c7c6e34
KH
2646
2647 if (!do_swap_account)
2648 return;
2649
a3b2d692
KH
2650 id = swap_cgroup_record(ent, 0);
2651 rcu_read_lock();
2652 memcg = mem_cgroup_lookup(id);
8c7c6e34 2653 if (memcg) {
a3b2d692
KH
2654 /*
2655 * We uncharge this because swap is freed.
2656 * This memcg can be obsolete one. We avoid calling css_tryget
2657 */
0c3e73e8 2658 if (!mem_cgroup_is_root(memcg))
4e649152 2659 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2660 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2661 mem_cgroup_put(memcg);
2662 }
a3b2d692 2663 rcu_read_unlock();
d13d1443 2664}
02491447
DN
2665
2666/**
2667 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2668 * @entry: swap entry to be moved
2669 * @from: mem_cgroup which the entry is moved from
2670 * @to: mem_cgroup which the entry is moved to
483c30b5 2671 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2672 *
2673 * It succeeds only when the swap_cgroup's record for this entry is the same
2674 * as the mem_cgroup's id of @from.
2675 *
2676 * Returns 0 on success, -EINVAL on failure.
2677 *
2678 * The caller must have charged to @to, IOW, called res_counter_charge() about
2679 * both res and memsw, and called css_get().
2680 */
2681static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2682 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2683{
2684 unsigned short old_id, new_id;
2685
2686 old_id = css_id(&from->css);
2687 new_id = css_id(&to->css);
2688
2689 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2690 mem_cgroup_swap_statistics(from, false);
483c30b5 2691 mem_cgroup_swap_statistics(to, true);
02491447 2692 /*
483c30b5
DN
2693 * This function is only called from task migration context now.
2694 * It postpones res_counter and refcount handling till the end
2695 * of task migration(mem_cgroup_clear_mc()) for performance
2696 * improvement. But we cannot postpone mem_cgroup_get(to)
2697 * because if the process that has been moved to @to does
2698 * swap-in, the refcount of @to might be decreased to 0.
02491447 2699 */
02491447 2700 mem_cgroup_get(to);
483c30b5
DN
2701 if (need_fixup) {
2702 if (!mem_cgroup_is_root(from))
2703 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2704 mem_cgroup_put(from);
2705 /*
2706 * we charged both to->res and to->memsw, so we should
2707 * uncharge to->res.
2708 */
2709 if (!mem_cgroup_is_root(to))
2710 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2711 }
02491447
DN
2712 return 0;
2713 }
2714 return -EINVAL;
2715}
2716#else
2717static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2718 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2719{
2720 return -EINVAL;
2721}
8c7c6e34 2722#endif
d13d1443 2723
ae41be37 2724/*
01b1ae63
KH
2725 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2726 * page belongs to.
ae41be37 2727 */
ac39cf8c 2728int mem_cgroup_prepare_migration(struct page *page,
2729 struct page *newpage, struct mem_cgroup **ptr)
ae41be37
KH
2730{
2731 struct page_cgroup *pc;
e8589cc1 2732 struct mem_cgroup *mem = NULL;
ac39cf8c 2733 enum charge_type ctype;
e8589cc1 2734 int ret = 0;
8869b8f6 2735
f8d66542 2736 if (mem_cgroup_disabled())
4077960e
BS
2737 return 0;
2738
52d4b9ac
KH
2739 pc = lookup_page_cgroup(page);
2740 lock_page_cgroup(pc);
2741 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2742 mem = pc->mem_cgroup;
2743 css_get(&mem->css);
ac39cf8c 2744 /*
2745 * At migrating an anonymous page, its mapcount goes down
2746 * to 0 and uncharge() will be called. But, even if it's fully
2747 * unmapped, migration may fail and this page has to be
2748 * charged again. We set MIGRATION flag here and delay uncharge
2749 * until end_migration() is called
2750 *
2751 * Corner Case Thinking
2752 * A)
2753 * When the old page was mapped as Anon and it's unmap-and-freed
2754 * while migration was ongoing.
2755 * If unmap finds the old page, uncharge() of it will be delayed
2756 * until end_migration(). If unmap finds a new page, it's
2757 * uncharged when it make mapcount to be 1->0. If unmap code
2758 * finds swap_migration_entry, the new page will not be mapped
2759 * and end_migration() will find it(mapcount==0).
2760 *
2761 * B)
2762 * When the old page was mapped but migraion fails, the kernel
2763 * remaps it. A charge for it is kept by MIGRATION flag even
2764 * if mapcount goes down to 0. We can do remap successfully
2765 * without charging it again.
2766 *
2767 * C)
2768 * The "old" page is under lock_page() until the end of
2769 * migration, so, the old page itself will not be swapped-out.
2770 * If the new page is swapped out before end_migraton, our
2771 * hook to usual swap-out path will catch the event.
2772 */
2773 if (PageAnon(page))
2774 SetPageCgroupMigration(pc);
e8589cc1 2775 }
52d4b9ac 2776 unlock_page_cgroup(pc);
ac39cf8c 2777 /*
2778 * If the page is not charged at this point,
2779 * we return here.
2780 */
2781 if (!mem)
2782 return 0;
01b1ae63 2783
93d5c9be 2784 *ptr = mem;
ac39cf8c 2785 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2786 css_put(&mem->css);/* drop extra refcnt */
2787 if (ret || *ptr == NULL) {
2788 if (PageAnon(page)) {
2789 lock_page_cgroup(pc);
2790 ClearPageCgroupMigration(pc);
2791 unlock_page_cgroup(pc);
2792 /*
2793 * The old page may be fully unmapped while we kept it.
2794 */
2795 mem_cgroup_uncharge_page(page);
2796 }
2797 return -ENOMEM;
e8589cc1 2798 }
ac39cf8c 2799 /*
2800 * We charge new page before it's used/mapped. So, even if unlock_page()
2801 * is called before end_migration, we can catch all events on this new
2802 * page. In the case new page is migrated but not remapped, new page's
2803 * mapcount will be finally 0 and we call uncharge in end_migration().
2804 */
2805 pc = lookup_page_cgroup(newpage);
2806 if (PageAnon(page))
2807 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2808 else if (page_is_file_cache(page))
2809 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2810 else
2811 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2812 __mem_cgroup_commit_charge(mem, pc, ctype);
e8589cc1 2813 return ret;
ae41be37 2814}
8869b8f6 2815
69029cd5 2816/* remove redundant charge if migration failed*/
01b1ae63 2817void mem_cgroup_end_migration(struct mem_cgroup *mem,
ac39cf8c 2818 struct page *oldpage, struct page *newpage)
ae41be37 2819{
ac39cf8c 2820 struct page *used, *unused;
01b1ae63 2821 struct page_cgroup *pc;
01b1ae63
KH
2822
2823 if (!mem)
2824 return;
ac39cf8c 2825 /* blocks rmdir() */
88703267 2826 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2827 /* at migration success, oldpage->mapping is NULL. */
2828 if (oldpage->mapping) {
ac39cf8c 2829 used = oldpage;
2830 unused = newpage;
01b1ae63 2831 } else {
ac39cf8c 2832 used = newpage;
01b1ae63
KH
2833 unused = oldpage;
2834 }
69029cd5 2835 /*
ac39cf8c 2836 * We disallowed uncharge of pages under migration because mapcount
2837 * of the page goes down to zero, temporarly.
2838 * Clear the flag and check the page should be charged.
01b1ae63 2839 */
ac39cf8c 2840 pc = lookup_page_cgroup(oldpage);
2841 lock_page_cgroup(pc);
2842 ClearPageCgroupMigration(pc);
2843 unlock_page_cgroup(pc);
01b1ae63 2844
ac39cf8c 2845 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2846
01b1ae63 2847 /*
ac39cf8c 2848 * If a page is a file cache, radix-tree replacement is very atomic
2849 * and we can skip this check. When it was an Anon page, its mapcount
2850 * goes down to 0. But because we added MIGRATION flage, it's not
2851 * uncharged yet. There are several case but page->mapcount check
2852 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2853 * check. (see prepare_charge() also)
69029cd5 2854 */
ac39cf8c 2855 if (PageAnon(used))
2856 mem_cgroup_uncharge_page(used);
88703267 2857 /*
ac39cf8c 2858 * At migration, we may charge account against cgroup which has no
2859 * tasks.
88703267
KH
2860 * So, rmdir()->pre_destroy() can be called while we do this charge.
2861 * In that case, we need to call pre_destroy() again. check it here.
2862 */
2863 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2864}
78fb7466 2865
c9b0ed51 2866/*
ae3abae6
DN
2867 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2868 * Calling hierarchical_reclaim is not enough because we should update
2869 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2870 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2871 * not from the memcg which this page would be charged to.
2872 * try_charge_swapin does all of these works properly.
c9b0ed51 2873 */
ae3abae6 2874int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2875 struct mm_struct *mm,
2876 gfp_t gfp_mask)
c9b0ed51 2877{
b5a84319 2878 struct mem_cgroup *mem = NULL;
ae3abae6 2879 int ret;
c9b0ed51 2880
f8d66542 2881 if (mem_cgroup_disabled())
cede86ac 2882 return 0;
c9b0ed51 2883
ae3abae6
DN
2884 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2885 if (!ret)
2886 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2887
ae3abae6 2888 return ret;
c9b0ed51
KH
2889}
2890
8c7c6e34
KH
2891static DEFINE_MUTEX(set_limit_mutex);
2892
d38d2a75 2893static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2894 unsigned long long val)
628f4235 2895{
81d39c20 2896 int retry_count;
3c11ecf4 2897 u64 memswlimit, memlimit;
628f4235 2898 int ret = 0;
81d39c20
KH
2899 int children = mem_cgroup_count_children(memcg);
2900 u64 curusage, oldusage;
3c11ecf4 2901 int enlarge;
81d39c20
KH
2902
2903 /*
2904 * For keeping hierarchical_reclaim simple, how long we should retry
2905 * is depends on callers. We set our retry-count to be function
2906 * of # of children which we should visit in this loop.
2907 */
2908 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2909
2910 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2911
3c11ecf4 2912 enlarge = 0;
8c7c6e34 2913 while (retry_count) {
628f4235
KH
2914 if (signal_pending(current)) {
2915 ret = -EINTR;
2916 break;
2917 }
8c7c6e34
KH
2918 /*
2919 * Rather than hide all in some function, I do this in
2920 * open coded manner. You see what this really does.
2921 * We have to guarantee mem->res.limit < mem->memsw.limit.
2922 */
2923 mutex_lock(&set_limit_mutex);
2924 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2925 if (memswlimit < val) {
2926 ret = -EINVAL;
2927 mutex_unlock(&set_limit_mutex);
628f4235
KH
2928 break;
2929 }
3c11ecf4
KH
2930
2931 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2932 if (memlimit < val)
2933 enlarge = 1;
2934
8c7c6e34 2935 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2936 if (!ret) {
2937 if (memswlimit == val)
2938 memcg->memsw_is_minimum = true;
2939 else
2940 memcg->memsw_is_minimum = false;
2941 }
8c7c6e34
KH
2942 mutex_unlock(&set_limit_mutex);
2943
2944 if (!ret)
2945 break;
2946
aa20d489 2947 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 2948 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2949 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2950 /* Usage is reduced ? */
2951 if (curusage >= oldusage)
2952 retry_count--;
2953 else
2954 oldusage = curusage;
8c7c6e34 2955 }
3c11ecf4
KH
2956 if (!ret && enlarge)
2957 memcg_oom_recover(memcg);
14797e23 2958
8c7c6e34
KH
2959 return ret;
2960}
2961
338c8431
LZ
2962static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2963 unsigned long long val)
8c7c6e34 2964{
81d39c20 2965 int retry_count;
3c11ecf4 2966 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
2967 int children = mem_cgroup_count_children(memcg);
2968 int ret = -EBUSY;
3c11ecf4 2969 int enlarge = 0;
8c7c6e34 2970
81d39c20
KH
2971 /* see mem_cgroup_resize_res_limit */
2972 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2973 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2974 while (retry_count) {
2975 if (signal_pending(current)) {
2976 ret = -EINTR;
2977 break;
2978 }
2979 /*
2980 * Rather than hide all in some function, I do this in
2981 * open coded manner. You see what this really does.
2982 * We have to guarantee mem->res.limit < mem->memsw.limit.
2983 */
2984 mutex_lock(&set_limit_mutex);
2985 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2986 if (memlimit > val) {
2987 ret = -EINVAL;
2988 mutex_unlock(&set_limit_mutex);
2989 break;
2990 }
3c11ecf4
KH
2991 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2992 if (memswlimit < val)
2993 enlarge = 1;
8c7c6e34 2994 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2995 if (!ret) {
2996 if (memlimit == val)
2997 memcg->memsw_is_minimum = true;
2998 else
2999 memcg->memsw_is_minimum = false;
3000 }
8c7c6e34
KH
3001 mutex_unlock(&set_limit_mutex);
3002
3003 if (!ret)
3004 break;
3005
4e416953 3006 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3007 MEM_CGROUP_RECLAIM_NOSWAP |
3008 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3009 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3010 /* Usage is reduced ? */
8c7c6e34 3011 if (curusage >= oldusage)
628f4235 3012 retry_count--;
81d39c20
KH
3013 else
3014 oldusage = curusage;
628f4235 3015 }
3c11ecf4
KH
3016 if (!ret && enlarge)
3017 memcg_oom_recover(memcg);
628f4235
KH
3018 return ret;
3019}
3020
4e416953 3021unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3022 gfp_t gfp_mask)
4e416953
BS
3023{
3024 unsigned long nr_reclaimed = 0;
3025 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3026 unsigned long reclaimed;
3027 int loop = 0;
3028 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3029 unsigned long long excess;
4e416953
BS
3030
3031 if (order > 0)
3032 return 0;
3033
00918b6a 3034 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3035 /*
3036 * This loop can run a while, specially if mem_cgroup's continuously
3037 * keep exceeding their soft limit and putting the system under
3038 * pressure
3039 */
3040 do {
3041 if (next_mz)
3042 mz = next_mz;
3043 else
3044 mz = mem_cgroup_largest_soft_limit_node(mctz);
3045 if (!mz)
3046 break;
3047
3048 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3049 gfp_mask,
3050 MEM_CGROUP_RECLAIM_SOFT);
3051 nr_reclaimed += reclaimed;
3052 spin_lock(&mctz->lock);
3053
3054 /*
3055 * If we failed to reclaim anything from this memory cgroup
3056 * it is time to move on to the next cgroup
3057 */
3058 next_mz = NULL;
3059 if (!reclaimed) {
3060 do {
3061 /*
3062 * Loop until we find yet another one.
3063 *
3064 * By the time we get the soft_limit lock
3065 * again, someone might have aded the
3066 * group back on the RB tree. Iterate to
3067 * make sure we get a different mem.
3068 * mem_cgroup_largest_soft_limit_node returns
3069 * NULL if no other cgroup is present on
3070 * the tree
3071 */
3072 next_mz =
3073 __mem_cgroup_largest_soft_limit_node(mctz);
3074 if (next_mz == mz) {
3075 css_put(&next_mz->mem->css);
3076 next_mz = NULL;
3077 } else /* next_mz == NULL or other memcg */
3078 break;
3079 } while (1);
3080 }
4e416953 3081 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3082 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3083 /*
3084 * One school of thought says that we should not add
3085 * back the node to the tree if reclaim returns 0.
3086 * But our reclaim could return 0, simply because due
3087 * to priority we are exposing a smaller subset of
3088 * memory to reclaim from. Consider this as a longer
3089 * term TODO.
3090 */
ef8745c1
KH
3091 /* If excess == 0, no tree ops */
3092 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3093 spin_unlock(&mctz->lock);
3094 css_put(&mz->mem->css);
3095 loop++;
3096 /*
3097 * Could not reclaim anything and there are no more
3098 * mem cgroups to try or we seem to be looping without
3099 * reclaiming anything.
3100 */
3101 if (!nr_reclaimed &&
3102 (next_mz == NULL ||
3103 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3104 break;
3105 } while (!nr_reclaimed);
3106 if (next_mz)
3107 css_put(&next_mz->mem->css);
3108 return nr_reclaimed;
3109}
3110
cc847582
KH
3111/*
3112 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3113 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3114 */
f817ed48 3115static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3116 int node, int zid, enum lru_list lru)
cc847582 3117{
08e552c6
KH
3118 struct zone *zone;
3119 struct mem_cgroup_per_zone *mz;
f817ed48 3120 struct page_cgroup *pc, *busy;
08e552c6 3121 unsigned long flags, loop;
072c56c1 3122 struct list_head *list;
f817ed48 3123 int ret = 0;
072c56c1 3124
08e552c6
KH
3125 zone = &NODE_DATA(node)->node_zones[zid];
3126 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3127 list = &mz->lists[lru];
cc847582 3128
f817ed48
KH
3129 loop = MEM_CGROUP_ZSTAT(mz, lru);
3130 /* give some margin against EBUSY etc...*/
3131 loop += 256;
3132 busy = NULL;
3133 while (loop--) {
3134 ret = 0;
08e552c6 3135 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3136 if (list_empty(list)) {
08e552c6 3137 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3138 break;
f817ed48
KH
3139 }
3140 pc = list_entry(list->prev, struct page_cgroup, lru);
3141 if (busy == pc) {
3142 list_move(&pc->lru, list);
648bcc77 3143 busy = NULL;
08e552c6 3144 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3145 continue;
3146 }
08e552c6 3147 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3148
2c26fdd7 3149 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 3150 if (ret == -ENOMEM)
52d4b9ac 3151 break;
f817ed48
KH
3152
3153 if (ret == -EBUSY || ret == -EINVAL) {
3154 /* found lock contention or "pc" is obsolete. */
3155 busy = pc;
3156 cond_resched();
3157 } else
3158 busy = NULL;
cc847582 3159 }
08e552c6 3160
f817ed48
KH
3161 if (!ret && !list_empty(list))
3162 return -EBUSY;
3163 return ret;
cc847582
KH
3164}
3165
3166/*
3167 * make mem_cgroup's charge to be 0 if there is no task.
3168 * This enables deleting this mem_cgroup.
3169 */
c1e862c1 3170static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3171{
f817ed48
KH
3172 int ret;
3173 int node, zid, shrink;
3174 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3175 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3176
cc847582 3177 css_get(&mem->css);
f817ed48
KH
3178
3179 shrink = 0;
c1e862c1
KH
3180 /* should free all ? */
3181 if (free_all)
3182 goto try_to_free;
f817ed48 3183move_account:
fce66477 3184 do {
f817ed48 3185 ret = -EBUSY;
c1e862c1
KH
3186 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3187 goto out;
3188 ret = -EINTR;
3189 if (signal_pending(current))
cc847582 3190 goto out;
52d4b9ac
KH
3191 /* This is for making all *used* pages to be on LRU. */
3192 lru_add_drain_all();
cdec2e42 3193 drain_all_stock_sync();
f817ed48 3194 ret = 0;
32047e2a 3195 mem_cgroup_start_move(mem);
299b4eaa 3196 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3197 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3198 enum lru_list l;
f817ed48
KH
3199 for_each_lru(l) {
3200 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3201 node, zid, l);
f817ed48
KH
3202 if (ret)
3203 break;
3204 }
1ecaab2b 3205 }
f817ed48
KH
3206 if (ret)
3207 break;
3208 }
32047e2a 3209 mem_cgroup_end_move(mem);
3c11ecf4 3210 memcg_oom_recover(mem);
f817ed48
KH
3211 /* it seems parent cgroup doesn't have enough mem */
3212 if (ret == -ENOMEM)
3213 goto try_to_free;
52d4b9ac 3214 cond_resched();
fce66477
DN
3215 /* "ret" should also be checked to ensure all lists are empty. */
3216 } while (mem->res.usage > 0 || ret);
cc847582
KH
3217out:
3218 css_put(&mem->css);
3219 return ret;
f817ed48
KH
3220
3221try_to_free:
c1e862c1
KH
3222 /* returns EBUSY if there is a task or if we come here twice. */
3223 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3224 ret = -EBUSY;
3225 goto out;
3226 }
c1e862c1
KH
3227 /* we call try-to-free pages for make this cgroup empty */
3228 lru_add_drain_all();
f817ed48
KH
3229 /* try to free all pages in this cgroup */
3230 shrink = 1;
3231 while (nr_retries && mem->res.usage > 0) {
3232 int progress;
c1e862c1
KH
3233
3234 if (signal_pending(current)) {
3235 ret = -EINTR;
3236 goto out;
3237 }
a7885eb8
KM
3238 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3239 false, get_swappiness(mem));
c1e862c1 3240 if (!progress) {
f817ed48 3241 nr_retries--;
c1e862c1 3242 /* maybe some writeback is necessary */
8aa7e847 3243 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3244 }
f817ed48
KH
3245
3246 }
08e552c6 3247 lru_add_drain();
f817ed48 3248 /* try move_account...there may be some *locked* pages. */
fce66477 3249 goto move_account;
cc847582
KH
3250}
3251
c1e862c1
KH
3252int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3253{
3254 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3255}
3256
3257
18f59ea7
BS
3258static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3259{
3260 return mem_cgroup_from_cont(cont)->use_hierarchy;
3261}
3262
3263static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3264 u64 val)
3265{
3266 int retval = 0;
3267 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3268 struct cgroup *parent = cont->parent;
3269 struct mem_cgroup *parent_mem = NULL;
3270
3271 if (parent)
3272 parent_mem = mem_cgroup_from_cont(parent);
3273
3274 cgroup_lock();
3275 /*
af901ca1 3276 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3277 * in the child subtrees. If it is unset, then the change can
3278 * occur, provided the current cgroup has no children.
3279 *
3280 * For the root cgroup, parent_mem is NULL, we allow value to be
3281 * set if there are no children.
3282 */
3283 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3284 (val == 1 || val == 0)) {
3285 if (list_empty(&cont->children))
3286 mem->use_hierarchy = val;
3287 else
3288 retval = -EBUSY;
3289 } else
3290 retval = -EINVAL;
3291 cgroup_unlock();
3292
3293 return retval;
3294}
3295
0c3e73e8 3296
7d74b06f
KH
3297static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3298 enum mem_cgroup_stat_index idx)
0c3e73e8 3299{
7d74b06f
KH
3300 struct mem_cgroup *iter;
3301 s64 val = 0;
0c3e73e8 3302
7d74b06f
KH
3303 /* each per cpu's value can be minus.Then, use s64 */
3304 for_each_mem_cgroup_tree(iter, mem)
3305 val += mem_cgroup_read_stat(iter, idx);
3306
3307 if (val < 0) /* race ? */
3308 val = 0;
3309 return val;
0c3e73e8
BS
3310}
3311
104f3928
KS
3312static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3313{
7d74b06f 3314 u64 val;
104f3928
KS
3315
3316 if (!mem_cgroup_is_root(mem)) {
3317 if (!swap)
3318 return res_counter_read_u64(&mem->res, RES_USAGE);
3319 else
3320 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3321 }
3322
7d74b06f
KH
3323 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3324 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3325
7d74b06f
KH
3326 if (swap)
3327 val += mem_cgroup_get_recursive_idx_stat(mem,
3328 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3329
3330 return val << PAGE_SHIFT;
3331}
3332
2c3daa72 3333static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3334{
8c7c6e34 3335 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3336 u64 val;
8c7c6e34
KH
3337 int type, name;
3338
3339 type = MEMFILE_TYPE(cft->private);
3340 name = MEMFILE_ATTR(cft->private);
3341 switch (type) {
3342 case _MEM:
104f3928
KS
3343 if (name == RES_USAGE)
3344 val = mem_cgroup_usage(mem, false);
3345 else
0c3e73e8 3346 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3347 break;
3348 case _MEMSWAP:
104f3928
KS
3349 if (name == RES_USAGE)
3350 val = mem_cgroup_usage(mem, true);
3351 else
0c3e73e8 3352 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3353 break;
3354 default:
3355 BUG();
3356 break;
3357 }
3358 return val;
8cdea7c0 3359}
628f4235
KH
3360/*
3361 * The user of this function is...
3362 * RES_LIMIT.
3363 */
856c13aa
PM
3364static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3365 const char *buffer)
8cdea7c0 3366{
628f4235 3367 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3368 int type, name;
628f4235
KH
3369 unsigned long long val;
3370 int ret;
3371
8c7c6e34
KH
3372 type = MEMFILE_TYPE(cft->private);
3373 name = MEMFILE_ATTR(cft->private);
3374 switch (name) {
628f4235 3375 case RES_LIMIT:
4b3bde4c
BS
3376 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3377 ret = -EINVAL;
3378 break;
3379 }
628f4235
KH
3380 /* This function does all necessary parse...reuse it */
3381 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3382 if (ret)
3383 break;
3384 if (type == _MEM)
628f4235 3385 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3386 else
3387 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3388 break;
296c81d8
BS
3389 case RES_SOFT_LIMIT:
3390 ret = res_counter_memparse_write_strategy(buffer, &val);
3391 if (ret)
3392 break;
3393 /*
3394 * For memsw, soft limits are hard to implement in terms
3395 * of semantics, for now, we support soft limits for
3396 * control without swap
3397 */
3398 if (type == _MEM)
3399 ret = res_counter_set_soft_limit(&memcg->res, val);
3400 else
3401 ret = -EINVAL;
3402 break;
628f4235
KH
3403 default:
3404 ret = -EINVAL; /* should be BUG() ? */
3405 break;
3406 }
3407 return ret;
8cdea7c0
BS
3408}
3409
fee7b548
KH
3410static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3411 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3412{
3413 struct cgroup *cgroup;
3414 unsigned long long min_limit, min_memsw_limit, tmp;
3415
3416 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3417 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3418 cgroup = memcg->css.cgroup;
3419 if (!memcg->use_hierarchy)
3420 goto out;
3421
3422 while (cgroup->parent) {
3423 cgroup = cgroup->parent;
3424 memcg = mem_cgroup_from_cont(cgroup);
3425 if (!memcg->use_hierarchy)
3426 break;
3427 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3428 min_limit = min(min_limit, tmp);
3429 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3430 min_memsw_limit = min(min_memsw_limit, tmp);
3431 }
3432out:
3433 *mem_limit = min_limit;
3434 *memsw_limit = min_memsw_limit;
3435 return;
3436}
3437
29f2a4da 3438static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3439{
3440 struct mem_cgroup *mem;
8c7c6e34 3441 int type, name;
c84872e1
PE
3442
3443 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3444 type = MEMFILE_TYPE(event);
3445 name = MEMFILE_ATTR(event);
3446 switch (name) {
29f2a4da 3447 case RES_MAX_USAGE:
8c7c6e34
KH
3448 if (type == _MEM)
3449 res_counter_reset_max(&mem->res);
3450 else
3451 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3452 break;
3453 case RES_FAILCNT:
8c7c6e34
KH
3454 if (type == _MEM)
3455 res_counter_reset_failcnt(&mem->res);
3456 else
3457 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3458 break;
3459 }
f64c3f54 3460
85cc59db 3461 return 0;
c84872e1
PE
3462}
3463
7dc74be0
DN
3464static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3465 struct cftype *cft)
3466{
3467 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3468}
3469
02491447 3470#ifdef CONFIG_MMU
7dc74be0
DN
3471static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3472 struct cftype *cft, u64 val)
3473{
3474 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3475
3476 if (val >= (1 << NR_MOVE_TYPE))
3477 return -EINVAL;
3478 /*
3479 * We check this value several times in both in can_attach() and
3480 * attach(), so we need cgroup lock to prevent this value from being
3481 * inconsistent.
3482 */
3483 cgroup_lock();
3484 mem->move_charge_at_immigrate = val;
3485 cgroup_unlock();
3486
3487 return 0;
3488}
02491447
DN
3489#else
3490static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3491 struct cftype *cft, u64 val)
3492{
3493 return -ENOSYS;
3494}
3495#endif
7dc74be0 3496
14067bb3
KH
3497
3498/* For read statistics */
3499enum {
3500 MCS_CACHE,
3501 MCS_RSS,
d8046582 3502 MCS_FILE_MAPPED,
14067bb3
KH
3503 MCS_PGPGIN,
3504 MCS_PGPGOUT,
1dd3a273 3505 MCS_SWAP,
14067bb3
KH
3506 MCS_INACTIVE_ANON,
3507 MCS_ACTIVE_ANON,
3508 MCS_INACTIVE_FILE,
3509 MCS_ACTIVE_FILE,
3510 MCS_UNEVICTABLE,
3511 NR_MCS_STAT,
3512};
3513
3514struct mcs_total_stat {
3515 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3516};
3517
14067bb3
KH
3518struct {
3519 char *local_name;
3520 char *total_name;
3521} memcg_stat_strings[NR_MCS_STAT] = {
3522 {"cache", "total_cache"},
3523 {"rss", "total_rss"},
d69b042f 3524 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3525 {"pgpgin", "total_pgpgin"},
3526 {"pgpgout", "total_pgpgout"},
1dd3a273 3527 {"swap", "total_swap"},
14067bb3
KH
3528 {"inactive_anon", "total_inactive_anon"},
3529 {"active_anon", "total_active_anon"},
3530 {"inactive_file", "total_inactive_file"},
3531 {"active_file", "total_active_file"},
3532 {"unevictable", "total_unevictable"}
3533};
3534
3535
7d74b06f
KH
3536static void
3537mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3538{
14067bb3
KH
3539 s64 val;
3540
3541 /* per cpu stat */
c62b1a3b 3542 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3543 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3544 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3545 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3546 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3547 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3548 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3549 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3550 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3551 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3552 if (do_swap_account) {
c62b1a3b 3553 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3554 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3555 }
14067bb3
KH
3556
3557 /* per zone stat */
3558 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3559 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3560 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3561 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3562 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3563 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3564 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3565 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3566 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3567 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3568}
3569
3570static void
3571mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3572{
7d74b06f
KH
3573 struct mem_cgroup *iter;
3574
3575 for_each_mem_cgroup_tree(iter, mem)
3576 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3577}
3578
c64745cf
PM
3579static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3580 struct cgroup_map_cb *cb)
d2ceb9b7 3581{
d2ceb9b7 3582 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3583 struct mcs_total_stat mystat;
d2ceb9b7
KH
3584 int i;
3585
14067bb3
KH
3586 memset(&mystat, 0, sizeof(mystat));
3587 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3588
1dd3a273
DN
3589 for (i = 0; i < NR_MCS_STAT; i++) {
3590 if (i == MCS_SWAP && !do_swap_account)
3591 continue;
14067bb3 3592 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3593 }
7b854121 3594
14067bb3 3595 /* Hierarchical information */
fee7b548
KH
3596 {
3597 unsigned long long limit, memsw_limit;
3598 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3599 cb->fill(cb, "hierarchical_memory_limit", limit);
3600 if (do_swap_account)
3601 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3602 }
7f016ee8 3603
14067bb3
KH
3604 memset(&mystat, 0, sizeof(mystat));
3605 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3606 for (i = 0; i < NR_MCS_STAT; i++) {
3607 if (i == MCS_SWAP && !do_swap_account)
3608 continue;
14067bb3 3609 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3610 }
14067bb3 3611
7f016ee8 3612#ifdef CONFIG_DEBUG_VM
c772be93 3613 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3614
3615 {
3616 int nid, zid;
3617 struct mem_cgroup_per_zone *mz;
3618 unsigned long recent_rotated[2] = {0, 0};
3619 unsigned long recent_scanned[2] = {0, 0};
3620
3621 for_each_online_node(nid)
3622 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3623 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3624
3625 recent_rotated[0] +=
3626 mz->reclaim_stat.recent_rotated[0];
3627 recent_rotated[1] +=
3628 mz->reclaim_stat.recent_rotated[1];
3629 recent_scanned[0] +=
3630 mz->reclaim_stat.recent_scanned[0];
3631 recent_scanned[1] +=
3632 mz->reclaim_stat.recent_scanned[1];
3633 }
3634 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3635 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3636 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3637 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3638 }
3639#endif
3640
d2ceb9b7
KH
3641 return 0;
3642}
3643
a7885eb8
KM
3644static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3645{
3646 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3647
3648 return get_swappiness(memcg);
3649}
3650
3651static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3652 u64 val)
3653{
3654 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3655 struct mem_cgroup *parent;
068b38c1 3656
a7885eb8
KM
3657 if (val > 100)
3658 return -EINVAL;
3659
3660 if (cgrp->parent == NULL)
3661 return -EINVAL;
3662
3663 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3664
3665 cgroup_lock();
3666
a7885eb8
KM
3667 /* If under hierarchy, only empty-root can set this value */
3668 if ((parent->use_hierarchy) ||
068b38c1
LZ
3669 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3670 cgroup_unlock();
a7885eb8 3671 return -EINVAL;
068b38c1 3672 }
a7885eb8
KM
3673
3674 spin_lock(&memcg->reclaim_param_lock);
3675 memcg->swappiness = val;
3676 spin_unlock(&memcg->reclaim_param_lock);
3677
068b38c1
LZ
3678 cgroup_unlock();
3679
a7885eb8
KM
3680 return 0;
3681}
3682
2e72b634
KS
3683static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3684{
3685 struct mem_cgroup_threshold_ary *t;
3686 u64 usage;
3687 int i;
3688
3689 rcu_read_lock();
3690 if (!swap)
2c488db2 3691 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3692 else
2c488db2 3693 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3694
3695 if (!t)
3696 goto unlock;
3697
3698 usage = mem_cgroup_usage(memcg, swap);
3699
3700 /*
3701 * current_threshold points to threshold just below usage.
3702 * If it's not true, a threshold was crossed after last
3703 * call of __mem_cgroup_threshold().
3704 */
5407a562 3705 i = t->current_threshold;
2e72b634
KS
3706
3707 /*
3708 * Iterate backward over array of thresholds starting from
3709 * current_threshold and check if a threshold is crossed.
3710 * If none of thresholds below usage is crossed, we read
3711 * only one element of the array here.
3712 */
3713 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3714 eventfd_signal(t->entries[i].eventfd, 1);
3715
3716 /* i = current_threshold + 1 */
3717 i++;
3718
3719 /*
3720 * Iterate forward over array of thresholds starting from
3721 * current_threshold+1 and check if a threshold is crossed.
3722 * If none of thresholds above usage is crossed, we read
3723 * only one element of the array here.
3724 */
3725 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3726 eventfd_signal(t->entries[i].eventfd, 1);
3727
3728 /* Update current_threshold */
5407a562 3729 t->current_threshold = i - 1;
2e72b634
KS
3730unlock:
3731 rcu_read_unlock();
3732}
3733
3734static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3735{
ad4ca5f4
KS
3736 while (memcg) {
3737 __mem_cgroup_threshold(memcg, false);
3738 if (do_swap_account)
3739 __mem_cgroup_threshold(memcg, true);
3740
3741 memcg = parent_mem_cgroup(memcg);
3742 }
2e72b634
KS
3743}
3744
3745static int compare_thresholds(const void *a, const void *b)
3746{
3747 const struct mem_cgroup_threshold *_a = a;
3748 const struct mem_cgroup_threshold *_b = b;
3749
3750 return _a->threshold - _b->threshold;
3751}
3752
7d74b06f 3753static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3754{
3755 struct mem_cgroup_eventfd_list *ev;
3756
3757 list_for_each_entry(ev, &mem->oom_notify, list)
3758 eventfd_signal(ev->eventfd, 1);
3759 return 0;
3760}
3761
3762static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3763{
7d74b06f
KH
3764 struct mem_cgroup *iter;
3765
3766 for_each_mem_cgroup_tree(iter, mem)
3767 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3768}
3769
3770static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3771 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3772{
3773 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3774 struct mem_cgroup_thresholds *thresholds;
3775 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3776 int type = MEMFILE_TYPE(cft->private);
3777 u64 threshold, usage;
2c488db2 3778 int i, size, ret;
2e72b634
KS
3779
3780 ret = res_counter_memparse_write_strategy(args, &threshold);
3781 if (ret)
3782 return ret;
3783
3784 mutex_lock(&memcg->thresholds_lock);
2c488db2 3785
2e72b634 3786 if (type == _MEM)
2c488db2 3787 thresholds = &memcg->thresholds;
2e72b634 3788 else if (type == _MEMSWAP)
2c488db2 3789 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3790 else
3791 BUG();
3792
3793 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3794
3795 /* Check if a threshold crossed before adding a new one */
2c488db2 3796 if (thresholds->primary)
2e72b634
KS
3797 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3798
2c488db2 3799 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3800
3801 /* Allocate memory for new array of thresholds */
2c488db2 3802 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3803 GFP_KERNEL);
2c488db2 3804 if (!new) {
2e72b634
KS
3805 ret = -ENOMEM;
3806 goto unlock;
3807 }
2c488db2 3808 new->size = size;
2e72b634
KS
3809
3810 /* Copy thresholds (if any) to new array */
2c488db2
KS
3811 if (thresholds->primary) {
3812 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3813 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3814 }
3815
2e72b634 3816 /* Add new threshold */
2c488db2
KS
3817 new->entries[size - 1].eventfd = eventfd;
3818 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3819
3820 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3821 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3822 compare_thresholds, NULL);
3823
3824 /* Find current threshold */
2c488db2 3825 new->current_threshold = -1;
2e72b634 3826 for (i = 0; i < size; i++) {
2c488db2 3827 if (new->entries[i].threshold < usage) {
2e72b634 3828 /*
2c488db2
KS
3829 * new->current_threshold will not be used until
3830 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3831 * it here.
3832 */
2c488db2 3833 ++new->current_threshold;
2e72b634
KS
3834 }
3835 }
3836
2c488db2
KS
3837 /* Free old spare buffer and save old primary buffer as spare */
3838 kfree(thresholds->spare);
3839 thresholds->spare = thresholds->primary;
3840
3841 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3842
907860ed 3843 /* To be sure that nobody uses thresholds */
2e72b634
KS
3844 synchronize_rcu();
3845
2e72b634
KS
3846unlock:
3847 mutex_unlock(&memcg->thresholds_lock);
3848
3849 return ret;
3850}
3851
907860ed 3852static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 3853 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
3854{
3855 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3856 struct mem_cgroup_thresholds *thresholds;
3857 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3858 int type = MEMFILE_TYPE(cft->private);
3859 u64 usage;
2c488db2 3860 int i, j, size;
2e72b634
KS
3861
3862 mutex_lock(&memcg->thresholds_lock);
3863 if (type == _MEM)
2c488db2 3864 thresholds = &memcg->thresholds;
2e72b634 3865 else if (type == _MEMSWAP)
2c488db2 3866 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3867 else
3868 BUG();
3869
3870 /*
3871 * Something went wrong if we trying to unregister a threshold
3872 * if we don't have thresholds
3873 */
3874 BUG_ON(!thresholds);
3875
3876 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3877
3878 /* Check if a threshold crossed before removing */
3879 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3880
3881 /* Calculate new number of threshold */
2c488db2
KS
3882 size = 0;
3883 for (i = 0; i < thresholds->primary->size; i++) {
3884 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3885 size++;
3886 }
3887
2c488db2 3888 new = thresholds->spare;
907860ed 3889
2e72b634
KS
3890 /* Set thresholds array to NULL if we don't have thresholds */
3891 if (!size) {
2c488db2
KS
3892 kfree(new);
3893 new = NULL;
907860ed 3894 goto swap_buffers;
2e72b634
KS
3895 }
3896
2c488db2 3897 new->size = size;
2e72b634
KS
3898
3899 /* Copy thresholds and find current threshold */
2c488db2
KS
3900 new->current_threshold = -1;
3901 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3902 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3903 continue;
3904
2c488db2
KS
3905 new->entries[j] = thresholds->primary->entries[i];
3906 if (new->entries[j].threshold < usage) {
2e72b634 3907 /*
2c488db2 3908 * new->current_threshold will not be used
2e72b634
KS
3909 * until rcu_assign_pointer(), so it's safe to increment
3910 * it here.
3911 */
2c488db2 3912 ++new->current_threshold;
2e72b634
KS
3913 }
3914 j++;
3915 }
3916
907860ed 3917swap_buffers:
2c488db2
KS
3918 /* Swap primary and spare array */
3919 thresholds->spare = thresholds->primary;
3920 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3921
907860ed 3922 /* To be sure that nobody uses thresholds */
2e72b634
KS
3923 synchronize_rcu();
3924
2e72b634 3925 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3926}
c1e862c1 3927
9490ff27
KH
3928static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3929 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3930{
3931 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3932 struct mem_cgroup_eventfd_list *event;
3933 int type = MEMFILE_TYPE(cft->private);
3934
3935 BUG_ON(type != _OOM_TYPE);
3936 event = kmalloc(sizeof(*event), GFP_KERNEL);
3937 if (!event)
3938 return -ENOMEM;
3939
3940 mutex_lock(&memcg_oom_mutex);
3941
3942 event->eventfd = eventfd;
3943 list_add(&event->list, &memcg->oom_notify);
3944
3945 /* already in OOM ? */
3946 if (atomic_read(&memcg->oom_lock))
3947 eventfd_signal(eventfd, 1);
3948 mutex_unlock(&memcg_oom_mutex);
3949
3950 return 0;
3951}
3952
907860ed 3953static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
3954 struct cftype *cft, struct eventfd_ctx *eventfd)
3955{
3956 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3957 struct mem_cgroup_eventfd_list *ev, *tmp;
3958 int type = MEMFILE_TYPE(cft->private);
3959
3960 BUG_ON(type != _OOM_TYPE);
3961
3962 mutex_lock(&memcg_oom_mutex);
3963
3964 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3965 if (ev->eventfd == eventfd) {
3966 list_del(&ev->list);
3967 kfree(ev);
3968 }
3969 }
3970
3971 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
3972}
3973
3c11ecf4
KH
3974static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3975 struct cftype *cft, struct cgroup_map_cb *cb)
3976{
3977 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3978
3979 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3980
3981 if (atomic_read(&mem->oom_lock))
3982 cb->fill(cb, "under_oom", 1);
3983 else
3984 cb->fill(cb, "under_oom", 0);
3985 return 0;
3986}
3987
3c11ecf4
KH
3988static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3989 struct cftype *cft, u64 val)
3990{
3991 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3992 struct mem_cgroup *parent;
3993
3994 /* cannot set to root cgroup and only 0 and 1 are allowed */
3995 if (!cgrp->parent || !((val == 0) || (val == 1)))
3996 return -EINVAL;
3997
3998 parent = mem_cgroup_from_cont(cgrp->parent);
3999
4000 cgroup_lock();
4001 /* oom-kill-disable is a flag for subhierarchy. */
4002 if ((parent->use_hierarchy) ||
4003 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4004 cgroup_unlock();
4005 return -EINVAL;
4006 }
4007 mem->oom_kill_disable = val;
4d845ebf
KH
4008 if (!val)
4009 memcg_oom_recover(mem);
3c11ecf4
KH
4010 cgroup_unlock();
4011 return 0;
4012}
4013
8cdea7c0
BS
4014static struct cftype mem_cgroup_files[] = {
4015 {
0eea1030 4016 .name = "usage_in_bytes",
8c7c6e34 4017 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4018 .read_u64 = mem_cgroup_read,
9490ff27
KH
4019 .register_event = mem_cgroup_usage_register_event,
4020 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4021 },
c84872e1
PE
4022 {
4023 .name = "max_usage_in_bytes",
8c7c6e34 4024 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4025 .trigger = mem_cgroup_reset,
c84872e1
PE
4026 .read_u64 = mem_cgroup_read,
4027 },
8cdea7c0 4028 {
0eea1030 4029 .name = "limit_in_bytes",
8c7c6e34 4030 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4031 .write_string = mem_cgroup_write,
2c3daa72 4032 .read_u64 = mem_cgroup_read,
8cdea7c0 4033 },
296c81d8
BS
4034 {
4035 .name = "soft_limit_in_bytes",
4036 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4037 .write_string = mem_cgroup_write,
4038 .read_u64 = mem_cgroup_read,
4039 },
8cdea7c0
BS
4040 {
4041 .name = "failcnt",
8c7c6e34 4042 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4043 .trigger = mem_cgroup_reset,
2c3daa72 4044 .read_u64 = mem_cgroup_read,
8cdea7c0 4045 },
d2ceb9b7
KH
4046 {
4047 .name = "stat",
c64745cf 4048 .read_map = mem_control_stat_show,
d2ceb9b7 4049 },
c1e862c1
KH
4050 {
4051 .name = "force_empty",
4052 .trigger = mem_cgroup_force_empty_write,
4053 },
18f59ea7
BS
4054 {
4055 .name = "use_hierarchy",
4056 .write_u64 = mem_cgroup_hierarchy_write,
4057 .read_u64 = mem_cgroup_hierarchy_read,
4058 },
a7885eb8
KM
4059 {
4060 .name = "swappiness",
4061 .read_u64 = mem_cgroup_swappiness_read,
4062 .write_u64 = mem_cgroup_swappiness_write,
4063 },
7dc74be0
DN
4064 {
4065 .name = "move_charge_at_immigrate",
4066 .read_u64 = mem_cgroup_move_charge_read,
4067 .write_u64 = mem_cgroup_move_charge_write,
4068 },
9490ff27
KH
4069 {
4070 .name = "oom_control",
3c11ecf4
KH
4071 .read_map = mem_cgroup_oom_control_read,
4072 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4073 .register_event = mem_cgroup_oom_register_event,
4074 .unregister_event = mem_cgroup_oom_unregister_event,
4075 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4076 },
8cdea7c0
BS
4077};
4078
8c7c6e34
KH
4079#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4080static struct cftype memsw_cgroup_files[] = {
4081 {
4082 .name = "memsw.usage_in_bytes",
4083 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4084 .read_u64 = mem_cgroup_read,
9490ff27
KH
4085 .register_event = mem_cgroup_usage_register_event,
4086 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4087 },
4088 {
4089 .name = "memsw.max_usage_in_bytes",
4090 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4091 .trigger = mem_cgroup_reset,
4092 .read_u64 = mem_cgroup_read,
4093 },
4094 {
4095 .name = "memsw.limit_in_bytes",
4096 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4097 .write_string = mem_cgroup_write,
4098 .read_u64 = mem_cgroup_read,
4099 },
4100 {
4101 .name = "memsw.failcnt",
4102 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4103 .trigger = mem_cgroup_reset,
4104 .read_u64 = mem_cgroup_read,
4105 },
4106};
4107
4108static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4109{
4110 if (!do_swap_account)
4111 return 0;
4112 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4113 ARRAY_SIZE(memsw_cgroup_files));
4114};
4115#else
4116static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4117{
4118 return 0;
4119}
4120#endif
4121
6d12e2d8
KH
4122static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4123{
4124 struct mem_cgroup_per_node *pn;
1ecaab2b 4125 struct mem_cgroup_per_zone *mz;
b69408e8 4126 enum lru_list l;
41e3355d 4127 int zone, tmp = node;
1ecaab2b
KH
4128 /*
4129 * This routine is called against possible nodes.
4130 * But it's BUG to call kmalloc() against offline node.
4131 *
4132 * TODO: this routine can waste much memory for nodes which will
4133 * never be onlined. It's better to use memory hotplug callback
4134 * function.
4135 */
41e3355d
KH
4136 if (!node_state(node, N_NORMAL_MEMORY))
4137 tmp = -1;
4138 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4139 if (!pn)
4140 return 1;
1ecaab2b 4141
6d12e2d8
KH
4142 mem->info.nodeinfo[node] = pn;
4143 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
4144
4145 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4146 mz = &pn->zoneinfo[zone];
b69408e8
CL
4147 for_each_lru(l)
4148 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4149 mz->usage_in_excess = 0;
4e416953
BS
4150 mz->on_tree = false;
4151 mz->mem = mem;
1ecaab2b 4152 }
6d12e2d8
KH
4153 return 0;
4154}
4155
1ecaab2b
KH
4156static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4157{
4158 kfree(mem->info.nodeinfo[node]);
4159}
4160
33327948
KH
4161static struct mem_cgroup *mem_cgroup_alloc(void)
4162{
4163 struct mem_cgroup *mem;
c62b1a3b 4164 int size = sizeof(struct mem_cgroup);
33327948 4165
c62b1a3b 4166 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb
JB
4167 if (size < PAGE_SIZE)
4168 mem = kmalloc(size, GFP_KERNEL);
33327948 4169 else
c8dad2bb 4170 mem = vmalloc(size);
33327948 4171
e7bbcdf3
DC
4172 if (!mem)
4173 return NULL;
4174
4175 memset(mem, 0, size);
c62b1a3b
KH
4176 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4177 if (!mem->stat) {
4178 if (size < PAGE_SIZE)
4179 kfree(mem);
4180 else
4181 vfree(mem);
4182 mem = NULL;
4183 }
711d3d2c 4184 spin_lock_init(&mem->pcp_counter_lock);
33327948
KH
4185 return mem;
4186}
4187
8c7c6e34
KH
4188/*
4189 * At destroying mem_cgroup, references from swap_cgroup can remain.
4190 * (scanning all at force_empty is too costly...)
4191 *
4192 * Instead of clearing all references at force_empty, we remember
4193 * the number of reference from swap_cgroup and free mem_cgroup when
4194 * it goes down to 0.
4195 *
8c7c6e34
KH
4196 * Removal of cgroup itself succeeds regardless of refs from swap.
4197 */
4198
a7ba0eef 4199static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4200{
08e552c6
KH
4201 int node;
4202
f64c3f54 4203 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4204 free_css_id(&mem_cgroup_subsys, &mem->css);
4205
08e552c6
KH
4206 for_each_node_state(node, N_POSSIBLE)
4207 free_mem_cgroup_per_zone_info(mem, node);
4208
c62b1a3b
KH
4209 free_percpu(mem->stat);
4210 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4211 kfree(mem);
4212 else
4213 vfree(mem);
4214}
4215
8c7c6e34
KH
4216static void mem_cgroup_get(struct mem_cgroup *mem)
4217{
4218 atomic_inc(&mem->refcnt);
4219}
4220
483c30b5 4221static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4222{
483c30b5 4223 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4224 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4225 __mem_cgroup_free(mem);
7bcc1bb1
DN
4226 if (parent)
4227 mem_cgroup_put(parent);
4228 }
8c7c6e34
KH
4229}
4230
483c30b5
DN
4231static void mem_cgroup_put(struct mem_cgroup *mem)
4232{
4233 __mem_cgroup_put(mem, 1);
4234}
4235
7bcc1bb1
DN
4236/*
4237 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4238 */
4239static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4240{
4241 if (!mem->res.parent)
4242 return NULL;
4243 return mem_cgroup_from_res_counter(mem->res.parent, res);
4244}
33327948 4245
c077719b
KH
4246#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4247static void __init enable_swap_cgroup(void)
4248{
f8d66542 4249 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4250 do_swap_account = 1;
4251}
4252#else
4253static void __init enable_swap_cgroup(void)
4254{
4255}
4256#endif
4257
f64c3f54
BS
4258static int mem_cgroup_soft_limit_tree_init(void)
4259{
4260 struct mem_cgroup_tree_per_node *rtpn;
4261 struct mem_cgroup_tree_per_zone *rtpz;
4262 int tmp, node, zone;
4263
4264 for_each_node_state(node, N_POSSIBLE) {
4265 tmp = node;
4266 if (!node_state(node, N_NORMAL_MEMORY))
4267 tmp = -1;
4268 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4269 if (!rtpn)
4270 return 1;
4271
4272 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4273
4274 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4275 rtpz = &rtpn->rb_tree_per_zone[zone];
4276 rtpz->rb_root = RB_ROOT;
4277 spin_lock_init(&rtpz->lock);
4278 }
4279 }
4280 return 0;
4281}
4282
0eb253e2 4283static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4284mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4285{
28dbc4b6 4286 struct mem_cgroup *mem, *parent;
04046e1a 4287 long error = -ENOMEM;
6d12e2d8 4288 int node;
8cdea7c0 4289
c8dad2bb
JB
4290 mem = mem_cgroup_alloc();
4291 if (!mem)
04046e1a 4292 return ERR_PTR(error);
78fb7466 4293
6d12e2d8
KH
4294 for_each_node_state(node, N_POSSIBLE)
4295 if (alloc_mem_cgroup_per_zone_info(mem, node))
4296 goto free_out;
f64c3f54 4297
c077719b 4298 /* root ? */
28dbc4b6 4299 if (cont->parent == NULL) {
cdec2e42 4300 int cpu;
c077719b 4301 enable_swap_cgroup();
28dbc4b6 4302 parent = NULL;
4b3bde4c 4303 root_mem_cgroup = mem;
f64c3f54
BS
4304 if (mem_cgroup_soft_limit_tree_init())
4305 goto free_out;
cdec2e42
KH
4306 for_each_possible_cpu(cpu) {
4307 struct memcg_stock_pcp *stock =
4308 &per_cpu(memcg_stock, cpu);
4309 INIT_WORK(&stock->work, drain_local_stock);
4310 }
711d3d2c 4311 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4312 } else {
28dbc4b6 4313 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4314 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4315 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4316 }
28dbc4b6 4317
18f59ea7
BS
4318 if (parent && parent->use_hierarchy) {
4319 res_counter_init(&mem->res, &parent->res);
4320 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4321 /*
4322 * We increment refcnt of the parent to ensure that we can
4323 * safely access it on res_counter_charge/uncharge.
4324 * This refcnt will be decremented when freeing this
4325 * mem_cgroup(see mem_cgroup_put).
4326 */
4327 mem_cgroup_get(parent);
18f59ea7
BS
4328 } else {
4329 res_counter_init(&mem->res, NULL);
4330 res_counter_init(&mem->memsw, NULL);
4331 }
04046e1a 4332 mem->last_scanned_child = 0;
2733c06a 4333 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4334 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4335
a7885eb8
KM
4336 if (parent)
4337 mem->swappiness = get_swappiness(parent);
a7ba0eef 4338 atomic_set(&mem->refcnt, 1);
7dc74be0 4339 mem->move_charge_at_immigrate = 0;
2e72b634 4340 mutex_init(&mem->thresholds_lock);
8cdea7c0 4341 return &mem->css;
6d12e2d8 4342free_out:
a7ba0eef 4343 __mem_cgroup_free(mem);
4b3bde4c 4344 root_mem_cgroup = NULL;
04046e1a 4345 return ERR_PTR(error);
8cdea7c0
BS
4346}
4347
ec64f515 4348static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4349 struct cgroup *cont)
4350{
4351 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4352
4353 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4354}
4355
8cdea7c0
BS
4356static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4357 struct cgroup *cont)
4358{
c268e994 4359 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4360
c268e994 4361 mem_cgroup_put(mem);
8cdea7c0
BS
4362}
4363
4364static int mem_cgroup_populate(struct cgroup_subsys *ss,
4365 struct cgroup *cont)
4366{
8c7c6e34
KH
4367 int ret;
4368
4369 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4370 ARRAY_SIZE(mem_cgroup_files));
4371
4372 if (!ret)
4373 ret = register_memsw_files(cont, ss);
4374 return ret;
8cdea7c0
BS
4375}
4376
02491447 4377#ifdef CONFIG_MMU
7dc74be0 4378/* Handlers for move charge at task migration. */
854ffa8d
DN
4379#define PRECHARGE_COUNT_AT_ONCE 256
4380static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4381{
854ffa8d
DN
4382 int ret = 0;
4383 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4384 struct mem_cgroup *mem = mc.to;
4385
854ffa8d
DN
4386 if (mem_cgroup_is_root(mem)) {
4387 mc.precharge += count;
4388 /* we don't need css_get for root */
4389 return ret;
4390 }
4391 /* try to charge at once */
4392 if (count > 1) {
4393 struct res_counter *dummy;
4394 /*
4395 * "mem" cannot be under rmdir() because we've already checked
4396 * by cgroup_lock_live_cgroup() that it is not removed and we
4397 * are still under the same cgroup_mutex. So we can postpone
4398 * css_get().
4399 */
4400 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4401 goto one_by_one;
4402 if (do_swap_account && res_counter_charge(&mem->memsw,
4403 PAGE_SIZE * count, &dummy)) {
4404 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4405 goto one_by_one;
4406 }
4407 mc.precharge += count;
854ffa8d
DN
4408 return ret;
4409 }
4410one_by_one:
4411 /* fall back to one by one charge */
4412 while (count--) {
4413 if (signal_pending(current)) {
4414 ret = -EINTR;
4415 break;
4416 }
4417 if (!batch_count--) {
4418 batch_count = PRECHARGE_COUNT_AT_ONCE;
4419 cond_resched();
4420 }
430e4863 4421 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
854ffa8d
DN
4422 if (ret || !mem)
4423 /* mem_cgroup_clear_mc() will do uncharge later */
4424 return -ENOMEM;
4425 mc.precharge++;
4426 }
4ffef5fe
DN
4427 return ret;
4428}
4429
4430/**
4431 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4432 * @vma: the vma the pte to be checked belongs
4433 * @addr: the address corresponding to the pte to be checked
4434 * @ptent: the pte to be checked
02491447 4435 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4436 *
4437 * Returns
4438 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4439 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4440 * move charge. if @target is not NULL, the page is stored in target->page
4441 * with extra refcnt got(Callers should handle it).
02491447
DN
4442 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4443 * target for charge migration. if @target is not NULL, the entry is stored
4444 * in target->ent.
4ffef5fe
DN
4445 *
4446 * Called with pte lock held.
4447 */
4ffef5fe
DN
4448union mc_target {
4449 struct page *page;
02491447 4450 swp_entry_t ent;
4ffef5fe
DN
4451};
4452
4ffef5fe
DN
4453enum mc_target_type {
4454 MC_TARGET_NONE, /* not used */
4455 MC_TARGET_PAGE,
02491447 4456 MC_TARGET_SWAP,
4ffef5fe
DN
4457};
4458
90254a65
DN
4459static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4460 unsigned long addr, pte_t ptent)
4ffef5fe 4461{
90254a65 4462 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4463
90254a65
DN
4464 if (!page || !page_mapped(page))
4465 return NULL;
4466 if (PageAnon(page)) {
4467 /* we don't move shared anon */
4468 if (!move_anon() || page_mapcount(page) > 2)
4469 return NULL;
87946a72
DN
4470 } else if (!move_file())
4471 /* we ignore mapcount for file pages */
90254a65
DN
4472 return NULL;
4473 if (!get_page_unless_zero(page))
4474 return NULL;
4475
4476 return page;
4477}
4478
4479static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4480 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4481{
4482 int usage_count;
4483 struct page *page = NULL;
4484 swp_entry_t ent = pte_to_swp_entry(ptent);
4485
4486 if (!move_anon() || non_swap_entry(ent))
4487 return NULL;
4488 usage_count = mem_cgroup_count_swap_user(ent, &page);
4489 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4490 if (page)
4491 put_page(page);
90254a65 4492 return NULL;
02491447 4493 }
90254a65
DN
4494 if (do_swap_account)
4495 entry->val = ent.val;
4496
4497 return page;
4498}
4499
87946a72
DN
4500static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4501 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4502{
4503 struct page *page = NULL;
4504 struct inode *inode;
4505 struct address_space *mapping;
4506 pgoff_t pgoff;
4507
4508 if (!vma->vm_file) /* anonymous vma */
4509 return NULL;
4510 if (!move_file())
4511 return NULL;
4512
4513 inode = vma->vm_file->f_path.dentry->d_inode;
4514 mapping = vma->vm_file->f_mapping;
4515 if (pte_none(ptent))
4516 pgoff = linear_page_index(vma, addr);
4517 else /* pte_file(ptent) is true */
4518 pgoff = pte_to_pgoff(ptent);
4519
4520 /* page is moved even if it's not RSS of this task(page-faulted). */
4521 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4522 page = find_get_page(mapping, pgoff);
4523 } else { /* shmem/tmpfs file. we should take account of swap too. */
4524 swp_entry_t ent;
4525 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4526 if (do_swap_account)
4527 entry->val = ent.val;
4528 }
4529
4530 return page;
4531}
4532
90254a65
DN
4533static int is_target_pte_for_mc(struct vm_area_struct *vma,
4534 unsigned long addr, pte_t ptent, union mc_target *target)
4535{
4536 struct page *page = NULL;
4537 struct page_cgroup *pc;
4538 int ret = 0;
4539 swp_entry_t ent = { .val = 0 };
4540
4541 if (pte_present(ptent))
4542 page = mc_handle_present_pte(vma, addr, ptent);
4543 else if (is_swap_pte(ptent))
4544 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4545 else if (pte_none(ptent) || pte_file(ptent))
4546 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4547
4548 if (!page && !ent.val)
4549 return 0;
02491447
DN
4550 if (page) {
4551 pc = lookup_page_cgroup(page);
4552 /*
4553 * Do only loose check w/o page_cgroup lock.
4554 * mem_cgroup_move_account() checks the pc is valid or not under
4555 * the lock.
4556 */
4557 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4558 ret = MC_TARGET_PAGE;
4559 if (target)
4560 target->page = page;
4561 }
4562 if (!ret || !target)
4563 put_page(page);
4564 }
90254a65
DN
4565 /* There is a swap entry and a page doesn't exist or isn't charged */
4566 if (ent.val && !ret &&
7f0f1546
KH
4567 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4568 ret = MC_TARGET_SWAP;
4569 if (target)
4570 target->ent = ent;
4ffef5fe 4571 }
4ffef5fe
DN
4572 return ret;
4573}
4574
4575static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4576 unsigned long addr, unsigned long end,
4577 struct mm_walk *walk)
4578{
4579 struct vm_area_struct *vma = walk->private;
4580 pte_t *pte;
4581 spinlock_t *ptl;
4582
4583 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4584 for (; addr != end; pte++, addr += PAGE_SIZE)
4585 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4586 mc.precharge++; /* increment precharge temporarily */
4587 pte_unmap_unlock(pte - 1, ptl);
4588 cond_resched();
4589
7dc74be0
DN
4590 return 0;
4591}
4592
4ffef5fe
DN
4593static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4594{
4595 unsigned long precharge;
4596 struct vm_area_struct *vma;
4597
4598 down_read(&mm->mmap_sem);
4599 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4600 struct mm_walk mem_cgroup_count_precharge_walk = {
4601 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4602 .mm = mm,
4603 .private = vma,
4604 };
4605 if (is_vm_hugetlb_page(vma))
4606 continue;
4ffef5fe
DN
4607 walk_page_range(vma->vm_start, vma->vm_end,
4608 &mem_cgroup_count_precharge_walk);
4609 }
4610 up_read(&mm->mmap_sem);
4611
4612 precharge = mc.precharge;
4613 mc.precharge = 0;
4614
4615 return precharge;
4616}
4617
4ffef5fe
DN
4618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619{
854ffa8d 4620 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4ffef5fe
DN
4621}
4622
4623static void mem_cgroup_clear_mc(void)
4624{
2bd9bb20
KH
4625 struct mem_cgroup *from = mc.from;
4626 struct mem_cgroup *to = mc.to;
4627
4ffef5fe 4628 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4629 if (mc.precharge) {
4630 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4631 mc.precharge = 0;
4632 }
4633 /*
4634 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4635 * we must uncharge here.
4636 */
4637 if (mc.moved_charge) {
4638 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4639 mc.moved_charge = 0;
4ffef5fe 4640 }
483c30b5
DN
4641 /* we must fixup refcnts and charges */
4642 if (mc.moved_swap) {
483c30b5
DN
4643 /* uncharge swap account from the old cgroup */
4644 if (!mem_cgroup_is_root(mc.from))
4645 res_counter_uncharge(&mc.from->memsw,
4646 PAGE_SIZE * mc.moved_swap);
4647 __mem_cgroup_put(mc.from, mc.moved_swap);
4648
4649 if (!mem_cgroup_is_root(mc.to)) {
4650 /*
4651 * we charged both to->res and to->memsw, so we should
4652 * uncharge to->res.
4653 */
4654 res_counter_uncharge(&mc.to->res,
4655 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4656 }
4657 /* we've already done mem_cgroup_get(mc.to) */
4658
4659 mc.moved_swap = 0;
4660 }
2bd9bb20 4661 spin_lock(&mc.lock);
4ffef5fe
DN
4662 mc.from = NULL;
4663 mc.to = NULL;
8033b97c 4664 mc.moving_task = NULL;
2bd9bb20 4665 spin_unlock(&mc.lock);
32047e2a 4666 mem_cgroup_end_move(from);
2bd9bb20
KH
4667 memcg_oom_recover(from);
4668 memcg_oom_recover(to);
8033b97c 4669 wake_up_all(&mc.waitq);
4ffef5fe
DN
4670}
4671
7dc74be0
DN
4672static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4673 struct cgroup *cgroup,
4674 struct task_struct *p,
4675 bool threadgroup)
4676{
4677 int ret = 0;
4678 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4679
4680 if (mem->move_charge_at_immigrate) {
4681 struct mm_struct *mm;
4682 struct mem_cgroup *from = mem_cgroup_from_task(p);
4683
4684 VM_BUG_ON(from == mem);
4685
4686 mm = get_task_mm(p);
4687 if (!mm)
4688 return 0;
7dc74be0 4689 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4690 if (mm->owner == p) {
4691 VM_BUG_ON(mc.from);
4692 VM_BUG_ON(mc.to);
4693 VM_BUG_ON(mc.precharge);
854ffa8d 4694 VM_BUG_ON(mc.moved_charge);
483c30b5 4695 VM_BUG_ON(mc.moved_swap);
8033b97c 4696 VM_BUG_ON(mc.moving_task);
32047e2a 4697 mem_cgroup_start_move(from);
2bd9bb20 4698 spin_lock(&mc.lock);
4ffef5fe
DN
4699 mc.from = from;
4700 mc.to = mem;
4701 mc.precharge = 0;
854ffa8d 4702 mc.moved_charge = 0;
483c30b5 4703 mc.moved_swap = 0;
8033b97c 4704 mc.moving_task = current;
2bd9bb20 4705 spin_unlock(&mc.lock);
4ffef5fe
DN
4706
4707 ret = mem_cgroup_precharge_mc(mm);
4708 if (ret)
4709 mem_cgroup_clear_mc();
4710 }
7dc74be0
DN
4711 mmput(mm);
4712 }
4713 return ret;
4714}
4715
4716static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4717 struct cgroup *cgroup,
4718 struct task_struct *p,
4719 bool threadgroup)
4720{
4ffef5fe 4721 mem_cgroup_clear_mc();
7dc74be0
DN
4722}
4723
4ffef5fe
DN
4724static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4725 unsigned long addr, unsigned long end,
4726 struct mm_walk *walk)
7dc74be0 4727{
4ffef5fe
DN
4728 int ret = 0;
4729 struct vm_area_struct *vma = walk->private;
4730 pte_t *pte;
4731 spinlock_t *ptl;
4732
4733retry:
4734 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4735 for (; addr != end; addr += PAGE_SIZE) {
4736 pte_t ptent = *(pte++);
4737 union mc_target target;
4738 int type;
4739 struct page *page;
4740 struct page_cgroup *pc;
02491447 4741 swp_entry_t ent;
4ffef5fe
DN
4742
4743 if (!mc.precharge)
4744 break;
4745
4746 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4747 switch (type) {
4748 case MC_TARGET_PAGE:
4749 page = target.page;
4750 if (isolate_lru_page(page))
4751 goto put;
4752 pc = lookup_page_cgroup(page);
854ffa8d
DN
4753 if (!mem_cgroup_move_account(pc,
4754 mc.from, mc.to, false)) {
4ffef5fe 4755 mc.precharge--;
854ffa8d
DN
4756 /* we uncharge from mc.from later. */
4757 mc.moved_charge++;
4ffef5fe
DN
4758 }
4759 putback_lru_page(page);
4760put: /* is_target_pte_for_mc() gets the page */
4761 put_page(page);
4762 break;
02491447
DN
4763 case MC_TARGET_SWAP:
4764 ent = target.ent;
483c30b5
DN
4765 if (!mem_cgroup_move_swap_account(ent,
4766 mc.from, mc.to, false)) {
02491447 4767 mc.precharge--;
483c30b5
DN
4768 /* we fixup refcnts and charges later. */
4769 mc.moved_swap++;
4770 }
02491447 4771 break;
4ffef5fe
DN
4772 default:
4773 break;
4774 }
4775 }
4776 pte_unmap_unlock(pte - 1, ptl);
4777 cond_resched();
4778
4779 if (addr != end) {
4780 /*
4781 * We have consumed all precharges we got in can_attach().
4782 * We try charge one by one, but don't do any additional
4783 * charges to mc.to if we have failed in charge once in attach()
4784 * phase.
4785 */
854ffa8d 4786 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4787 if (!ret)
4788 goto retry;
4789 }
4790
4791 return ret;
4792}
4793
4794static void mem_cgroup_move_charge(struct mm_struct *mm)
4795{
4796 struct vm_area_struct *vma;
4797
4798 lru_add_drain_all();
4799 down_read(&mm->mmap_sem);
4800 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4801 int ret;
4802 struct mm_walk mem_cgroup_move_charge_walk = {
4803 .pmd_entry = mem_cgroup_move_charge_pte_range,
4804 .mm = mm,
4805 .private = vma,
4806 };
4807 if (is_vm_hugetlb_page(vma))
4808 continue;
4ffef5fe
DN
4809 ret = walk_page_range(vma->vm_start, vma->vm_end,
4810 &mem_cgroup_move_charge_walk);
4811 if (ret)
4812 /*
4813 * means we have consumed all precharges and failed in
4814 * doing additional charge. Just abandon here.
4815 */
4816 break;
4817 }
4818 up_read(&mm->mmap_sem);
7dc74be0
DN
4819}
4820
67e465a7
BS
4821static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4822 struct cgroup *cont,
4823 struct cgroup *old_cont,
be367d09
BB
4824 struct task_struct *p,
4825 bool threadgroup)
67e465a7 4826{
4ffef5fe
DN
4827 struct mm_struct *mm;
4828
4829 if (!mc.to)
4830 /* no need to move charge */
4831 return;
4832
4833 mm = get_task_mm(p);
4834 if (mm) {
4835 mem_cgroup_move_charge(mm);
4836 mmput(mm);
4837 }
4838 mem_cgroup_clear_mc();
67e465a7 4839}
5cfb80a7
DN
4840#else /* !CONFIG_MMU */
4841static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4842 struct cgroup *cgroup,
4843 struct task_struct *p,
4844 bool threadgroup)
4845{
4846 return 0;
4847}
4848static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4849 struct cgroup *cgroup,
4850 struct task_struct *p,
4851 bool threadgroup)
4852{
4853}
4854static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4855 struct cgroup *cont,
4856 struct cgroup *old_cont,
4857 struct task_struct *p,
4858 bool threadgroup)
4859{
4860}
4861#endif
67e465a7 4862
8cdea7c0
BS
4863struct cgroup_subsys mem_cgroup_subsys = {
4864 .name = "memory",
4865 .subsys_id = mem_cgroup_subsys_id,
4866 .create = mem_cgroup_create,
df878fb0 4867 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
4868 .destroy = mem_cgroup_destroy,
4869 .populate = mem_cgroup_populate,
7dc74be0
DN
4870 .can_attach = mem_cgroup_can_attach,
4871 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 4872 .attach = mem_cgroup_move_task,
6d12e2d8 4873 .early_init = 0,
04046e1a 4874 .use_id = 1,
8cdea7c0 4875};
c077719b
KH
4876
4877#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4878
4879static int __init disable_swap_account(char *s)
4880{
4881 really_do_swap_account = 0;
4882 return 1;
4883}
4884__setup("noswapaccount", disable_swap_account);
4885#endif