]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: remove the overhead associated with the root cgroup
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
e222432b 30#include <linux/limits.h>
8c7c6e34 31#include <linux/mutex.h>
b6ac57d5 32#include <linux/slab.h>
66e1707b
BS
33#include <linux/swap.h>
34#include <linux/spinlock.h>
35#include <linux/fs.h>
d2ceb9b7 36#include <linux/seq_file.h>
33327948 37#include <linux/vmalloc.h>
b69408e8 38#include <linux/mm_inline.h>
52d4b9ac 39#include <linux/page_cgroup.h>
08e552c6 40#include "internal.h"
8cdea7c0 41
8697d331
BS
42#include <asm/uaccess.h>
43
a181b0e8 44struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 45#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 46struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 47
c077719b 48#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 49/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
50int do_swap_account __read_mostly;
51static int really_do_swap_account __initdata = 1; /* for remember boot option*/
52#else
53#define do_swap_account (0)
54#endif
55
7f4d454d 56static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 57
d52aa412
KH
58/*
59 * Statistics for memory cgroup.
60 */
61enum mem_cgroup_stat_index {
62 /*
63 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
64 */
65 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f
BS
66 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
67 MEM_CGROUP_STAT_MAPPED_FILE, /* # of pages charged as file rss */
55e462b0
BR
68 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
69 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
70
71 MEM_CGROUP_STAT_NSTATS,
72};
73
74struct mem_cgroup_stat_cpu {
75 s64 count[MEM_CGROUP_STAT_NSTATS];
76} ____cacheline_aligned_in_smp;
77
78struct mem_cgroup_stat {
c8dad2bb 79 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
80};
81
82/*
83 * For accounting under irq disable, no need for increment preempt count.
84 */
addb9efe 85static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
86 enum mem_cgroup_stat_index idx, int val)
87{
addb9efe 88 stat->count[idx] += val;
d52aa412
KH
89}
90
91static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
92 enum mem_cgroup_stat_index idx)
93{
94 int cpu;
95 s64 ret = 0;
96 for_each_possible_cpu(cpu)
97 ret += stat->cpustat[cpu].count[idx];
98 return ret;
99}
100
04046e1a
KH
101static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
102{
103 s64 ret;
104
105 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
106 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
107 return ret;
108}
109
6d12e2d8
KH
110/*
111 * per-zone information in memory controller.
112 */
6d12e2d8 113struct mem_cgroup_per_zone {
072c56c1
KH
114 /*
115 * spin_lock to protect the per cgroup LRU
116 */
b69408e8
CL
117 struct list_head lists[NR_LRU_LISTS];
118 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
119
120 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
121};
122/* Macro for accessing counter */
123#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
124
125struct mem_cgroup_per_node {
126 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
127};
128
129struct mem_cgroup_lru_info {
130 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
131};
132
8cdea7c0
BS
133/*
134 * The memory controller data structure. The memory controller controls both
135 * page cache and RSS per cgroup. We would eventually like to provide
136 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
137 * to help the administrator determine what knobs to tune.
138 *
139 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
140 * we hit the water mark. May be even add a low water mark, such that
141 * no reclaim occurs from a cgroup at it's low water mark, this is
142 * a feature that will be implemented much later in the future.
8cdea7c0
BS
143 */
144struct mem_cgroup {
145 struct cgroup_subsys_state css;
146 /*
147 * the counter to account for memory usage
148 */
149 struct res_counter res;
8c7c6e34
KH
150 /*
151 * the counter to account for mem+swap usage.
152 */
153 struct res_counter memsw;
78fb7466
PE
154 /*
155 * Per cgroup active and inactive list, similar to the
156 * per zone LRU lists.
78fb7466 157 */
6d12e2d8 158 struct mem_cgroup_lru_info info;
072c56c1 159
2733c06a
KM
160 /*
161 protect against reclaim related member.
162 */
163 spinlock_t reclaim_param_lock;
164
6c48a1d0 165 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
166
167 /*
168 * While reclaiming in a hiearchy, we cache the last child we
04046e1a 169 * reclaimed from.
6d61ef40 170 */
04046e1a 171 int last_scanned_child;
18f59ea7
BS
172 /*
173 * Should the accounting and control be hierarchical, per subtree?
174 */
175 bool use_hierarchy;
a636b327 176 unsigned long last_oom_jiffies;
8c7c6e34 177 atomic_t refcnt;
14797e23 178
a7885eb8
KM
179 unsigned int swappiness;
180
22a668d7
KH
181 /* set when res.limit == memsw.limit */
182 bool memsw_is_minimum;
183
d52aa412 184 /*
c8dad2bb 185 * statistics. This must be placed at the end of memcg.
d52aa412
KH
186 */
187 struct mem_cgroup_stat stat;
8cdea7c0
BS
188};
189
217bc319
KH
190enum charge_type {
191 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
192 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 193 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 194 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 195 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 196 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
197 NR_CHARGE_TYPE,
198};
199
52d4b9ac
KH
200/* only for here (for easy reading.) */
201#define PCGF_CACHE (1UL << PCG_CACHE)
202#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 203#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
204/* Not used, but added here for completeness */
205#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 206
8c7c6e34
KH
207/* for encoding cft->private value on file */
208#define _MEM (0)
209#define _MEMSWAP (1)
210#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
211#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
212#define MEMFILE_ATTR(val) ((val) & 0xffff)
213
214static void mem_cgroup_get(struct mem_cgroup *mem);
215static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 216static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
8c7c6e34 217
c05555b5
KH
218static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
219 struct page_cgroup *pc,
220 bool charge)
d52aa412
KH
221{
222 int val = (charge)? 1 : -1;
223 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 224 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 225 int cpu = get_cpu();
d52aa412 226
08e552c6 227 cpustat = &stat->cpustat[cpu];
c05555b5 228 if (PageCgroupCache(pc))
addb9efe 229 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 230 else
addb9efe 231 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
232
233 if (charge)
addb9efe 234 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
235 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
236 else
addb9efe 237 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 238 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 239 put_cpu();
6d12e2d8
KH
240}
241
d5b69e38 242static struct mem_cgroup_per_zone *
6d12e2d8
KH
243mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
244{
6d12e2d8
KH
245 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
246}
247
d5b69e38 248static struct mem_cgroup_per_zone *
6d12e2d8
KH
249page_cgroup_zoneinfo(struct page_cgroup *pc)
250{
251 struct mem_cgroup *mem = pc->mem_cgroup;
252 int nid = page_cgroup_nid(pc);
253 int zid = page_cgroup_zid(pc);
d52aa412 254
54992762
KM
255 if (!mem)
256 return NULL;
257
6d12e2d8
KH
258 return mem_cgroup_zoneinfo(mem, nid, zid);
259}
260
14067bb3 261static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 262 enum lru_list idx)
6d12e2d8
KH
263{
264 int nid, zid;
265 struct mem_cgroup_per_zone *mz;
266 u64 total = 0;
267
268 for_each_online_node(nid)
269 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
270 mz = mem_cgroup_zoneinfo(mem, nid, zid);
271 total += MEM_CGROUP_ZSTAT(mz, idx);
272 }
273 return total;
d52aa412
KH
274}
275
d5b69e38 276static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
277{
278 return container_of(cgroup_subsys_state(cont,
279 mem_cgroup_subsys_id), struct mem_cgroup,
280 css);
281}
282
cf475ad2 283struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 284{
31a78f23
BS
285 /*
286 * mm_update_next_owner() may clear mm->owner to NULL
287 * if it races with swapoff, page migration, etc.
288 * So this can be called with p == NULL.
289 */
290 if (unlikely(!p))
291 return NULL;
292
78fb7466
PE
293 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
294 struct mem_cgroup, css);
295}
296
54595fe2
KH
297static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
298{
299 struct mem_cgroup *mem = NULL;
0b7f569e
KH
300
301 if (!mm)
302 return NULL;
54595fe2
KH
303 /*
304 * Because we have no locks, mm->owner's may be being moved to other
305 * cgroup. We use css_tryget() here even if this looks
306 * pessimistic (rather than adding locks here).
307 */
308 rcu_read_lock();
309 do {
310 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
311 if (unlikely(!mem))
312 break;
313 } while (!css_tryget(&mem->css));
314 rcu_read_unlock();
315 return mem;
316}
317
14067bb3
KH
318/*
319 * Call callback function against all cgroup under hierarchy tree.
320 */
321static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
322 int (*func)(struct mem_cgroup *, void *))
323{
324 int found, ret, nextid;
325 struct cgroup_subsys_state *css;
326 struct mem_cgroup *mem;
327
328 if (!root->use_hierarchy)
329 return (*func)(root, data);
330
331 nextid = 1;
332 do {
333 ret = 0;
334 mem = NULL;
335
336 rcu_read_lock();
337 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
338 &found);
339 if (css && css_tryget(css))
340 mem = container_of(css, struct mem_cgroup, css);
341 rcu_read_unlock();
342
343 if (mem) {
344 ret = (*func)(mem, data);
345 css_put(&mem->css);
346 }
347 nextid = found + 1;
348 } while (!ret && css);
349
350 return ret;
351}
352
4b3bde4c
BS
353static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
354{
355 return (mem == root_mem_cgroup);
356}
357
08e552c6
KH
358/*
359 * Following LRU functions are allowed to be used without PCG_LOCK.
360 * Operations are called by routine of global LRU independently from memcg.
361 * What we have to take care of here is validness of pc->mem_cgroup.
362 *
363 * Changes to pc->mem_cgroup happens when
364 * 1. charge
365 * 2. moving account
366 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
367 * It is added to LRU before charge.
368 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
369 * When moving account, the page is not on LRU. It's isolated.
370 */
4f98a2fe 371
08e552c6
KH
372void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
373{
374 struct page_cgroup *pc;
08e552c6 375 struct mem_cgroup_per_zone *mz;
6d12e2d8 376
f8d66542 377 if (mem_cgroup_disabled())
08e552c6
KH
378 return;
379 pc = lookup_page_cgroup(page);
380 /* can happen while we handle swapcache. */
4b3bde4c 381 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 382 return;
4b3bde4c 383 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
384 /*
385 * We don't check PCG_USED bit. It's cleared when the "page" is finally
386 * removed from global LRU.
387 */
08e552c6 388 mz = page_cgroup_zoneinfo(pc);
b69408e8 389 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
390 if (mem_cgroup_is_root(pc->mem_cgroup))
391 return;
392 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
393 list_del_init(&pc->lru);
394 return;
6d12e2d8
KH
395}
396
08e552c6 397void mem_cgroup_del_lru(struct page *page)
6d12e2d8 398{
08e552c6
KH
399 mem_cgroup_del_lru_list(page, page_lru(page));
400}
b69408e8 401
08e552c6
KH
402void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
403{
404 struct mem_cgroup_per_zone *mz;
405 struct page_cgroup *pc;
b69408e8 406
f8d66542 407 if (mem_cgroup_disabled())
08e552c6 408 return;
6d12e2d8 409
08e552c6 410 pc = lookup_page_cgroup(page);
bd112db8
DN
411 /*
412 * Used bit is set without atomic ops but after smp_wmb().
413 * For making pc->mem_cgroup visible, insert smp_rmb() here.
414 */
08e552c6 415 smp_rmb();
4b3bde4c
BS
416 /* unused or root page is not rotated. */
417 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
418 return;
419 mz = page_cgroup_zoneinfo(pc);
420 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
421}
422
08e552c6 423void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 424{
08e552c6
KH
425 struct page_cgroup *pc;
426 struct mem_cgroup_per_zone *mz;
6d12e2d8 427
f8d66542 428 if (mem_cgroup_disabled())
08e552c6
KH
429 return;
430 pc = lookup_page_cgroup(page);
4b3bde4c 431 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
432 /*
433 * Used bit is set without atomic ops but after smp_wmb().
434 * For making pc->mem_cgroup visible, insert smp_rmb() here.
435 */
08e552c6
KH
436 smp_rmb();
437 if (!PageCgroupUsed(pc))
894bc310 438 return;
b69408e8 439
08e552c6 440 mz = page_cgroup_zoneinfo(pc);
b69408e8 441 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
442 SetPageCgroupAcctLRU(pc);
443 if (mem_cgroup_is_root(pc->mem_cgroup))
444 return;
08e552c6
KH
445 list_add(&pc->lru, &mz->lists[lru]);
446}
544122e5 447
08e552c6 448/*
544122e5
KH
449 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
450 * lru because the page may.be reused after it's fully uncharged (because of
451 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
452 * it again. This function is only used to charge SwapCache. It's done under
453 * lock_page and expected that zone->lru_lock is never held.
08e552c6 454 */
544122e5 455static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 456{
544122e5
KH
457 unsigned long flags;
458 struct zone *zone = page_zone(page);
459 struct page_cgroup *pc = lookup_page_cgroup(page);
460
461 spin_lock_irqsave(&zone->lru_lock, flags);
462 /*
463 * Forget old LRU when this page_cgroup is *not* used. This Used bit
464 * is guarded by lock_page() because the page is SwapCache.
465 */
466 if (!PageCgroupUsed(pc))
467 mem_cgroup_del_lru_list(page, page_lru(page));
468 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
469}
470
544122e5
KH
471static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
472{
473 unsigned long flags;
474 struct zone *zone = page_zone(page);
475 struct page_cgroup *pc = lookup_page_cgroup(page);
476
477 spin_lock_irqsave(&zone->lru_lock, flags);
478 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 479 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
480 mem_cgroup_add_lru_list(page, page_lru(page));
481 spin_unlock_irqrestore(&zone->lru_lock, flags);
482}
483
484
08e552c6
KH
485void mem_cgroup_move_lists(struct page *page,
486 enum lru_list from, enum lru_list to)
487{
f8d66542 488 if (mem_cgroup_disabled())
08e552c6
KH
489 return;
490 mem_cgroup_del_lru_list(page, from);
491 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
492}
493
4c4a2214
DR
494int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
495{
496 int ret;
0b7f569e 497 struct mem_cgroup *curr = NULL;
4c4a2214
DR
498
499 task_lock(task);
0b7f569e
KH
500 rcu_read_lock();
501 curr = try_get_mem_cgroup_from_mm(task->mm);
502 rcu_read_unlock();
4c4a2214 503 task_unlock(task);
0b7f569e
KH
504 if (!curr)
505 return 0;
506 if (curr->use_hierarchy)
507 ret = css_is_ancestor(&curr->css, &mem->css);
508 else
509 ret = (curr == mem);
510 css_put(&curr->css);
4c4a2214
DR
511 return ret;
512}
513
6c48a1d0
KH
514/*
515 * prev_priority control...this will be used in memory reclaim path.
516 */
517int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
518{
2733c06a
KM
519 int prev_priority;
520
521 spin_lock(&mem->reclaim_param_lock);
522 prev_priority = mem->prev_priority;
523 spin_unlock(&mem->reclaim_param_lock);
524
525 return prev_priority;
6c48a1d0
KH
526}
527
528void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
529{
2733c06a 530 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
531 if (priority < mem->prev_priority)
532 mem->prev_priority = priority;
2733c06a 533 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
534}
535
536void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
537{
2733c06a 538 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 539 mem->prev_priority = priority;
2733c06a 540 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
541}
542
c772be93 543static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
544{
545 unsigned long active;
546 unsigned long inactive;
c772be93
KM
547 unsigned long gb;
548 unsigned long inactive_ratio;
14797e23 549
14067bb3
KH
550 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
551 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 552
c772be93
KM
553 gb = (inactive + active) >> (30 - PAGE_SHIFT);
554 if (gb)
555 inactive_ratio = int_sqrt(10 * gb);
556 else
557 inactive_ratio = 1;
558
559 if (present_pages) {
560 present_pages[0] = inactive;
561 present_pages[1] = active;
562 }
563
564 return inactive_ratio;
565}
566
567int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
568{
569 unsigned long active;
570 unsigned long inactive;
571 unsigned long present_pages[2];
572 unsigned long inactive_ratio;
573
574 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
575
576 inactive = present_pages[0];
577 active = present_pages[1];
578
579 if (inactive * inactive_ratio < active)
14797e23
KM
580 return 1;
581
582 return 0;
583}
584
56e49d21
RR
585int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
586{
587 unsigned long active;
588 unsigned long inactive;
589
590 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
591 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
592
593 return (active > inactive);
594}
595
a3d8e054
KM
596unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
597 struct zone *zone,
598 enum lru_list lru)
599{
600 int nid = zone->zone_pgdat->node_id;
601 int zid = zone_idx(zone);
602 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
603
604 return MEM_CGROUP_ZSTAT(mz, lru);
605}
606
3e2f41f1
KM
607struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
608 struct zone *zone)
609{
610 int nid = zone->zone_pgdat->node_id;
611 int zid = zone_idx(zone);
612 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
613
614 return &mz->reclaim_stat;
615}
616
617struct zone_reclaim_stat *
618mem_cgroup_get_reclaim_stat_from_page(struct page *page)
619{
620 struct page_cgroup *pc;
621 struct mem_cgroup_per_zone *mz;
622
623 if (mem_cgroup_disabled())
624 return NULL;
625
626 pc = lookup_page_cgroup(page);
bd112db8
DN
627 /*
628 * Used bit is set without atomic ops but after smp_wmb().
629 * For making pc->mem_cgroup visible, insert smp_rmb() here.
630 */
631 smp_rmb();
632 if (!PageCgroupUsed(pc))
633 return NULL;
634
3e2f41f1
KM
635 mz = page_cgroup_zoneinfo(pc);
636 if (!mz)
637 return NULL;
638
639 return &mz->reclaim_stat;
640}
641
66e1707b
BS
642unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
643 struct list_head *dst,
644 unsigned long *scanned, int order,
645 int mode, struct zone *z,
646 struct mem_cgroup *mem_cont,
4f98a2fe 647 int active, int file)
66e1707b
BS
648{
649 unsigned long nr_taken = 0;
650 struct page *page;
651 unsigned long scan;
652 LIST_HEAD(pc_list);
653 struct list_head *src;
ff7283fa 654 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
655 int nid = z->zone_pgdat->node_id;
656 int zid = zone_idx(z);
657 struct mem_cgroup_per_zone *mz;
b7c46d15 658 int lru = LRU_FILE * file + active;
2ffebca6 659 int ret;
66e1707b 660
cf475ad2 661 BUG_ON(!mem_cont);
1ecaab2b 662 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 663 src = &mz->lists[lru];
66e1707b 664
ff7283fa
KH
665 scan = 0;
666 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 667 if (scan >= nr_to_scan)
ff7283fa 668 break;
08e552c6
KH
669
670 page = pc->page;
52d4b9ac
KH
671 if (unlikely(!PageCgroupUsed(pc)))
672 continue;
436c6541 673 if (unlikely(!PageLRU(page)))
ff7283fa 674 continue;
ff7283fa 675
436c6541 676 scan++;
2ffebca6
KH
677 ret = __isolate_lru_page(page, mode, file);
678 switch (ret) {
679 case 0:
66e1707b 680 list_move(&page->lru, dst);
2ffebca6 681 mem_cgroup_del_lru(page);
66e1707b 682 nr_taken++;
2ffebca6
KH
683 break;
684 case -EBUSY:
685 /* we don't affect global LRU but rotate in our LRU */
686 mem_cgroup_rotate_lru_list(page, page_lru(page));
687 break;
688 default:
689 break;
66e1707b
BS
690 }
691 }
692
66e1707b
BS
693 *scanned = scan;
694 return nr_taken;
695}
696
6d61ef40
BS
697#define mem_cgroup_from_res_counter(counter, member) \
698 container_of(counter, struct mem_cgroup, member)
699
b85a96c0
DN
700static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
701{
702 if (do_swap_account) {
703 if (res_counter_check_under_limit(&mem->res) &&
704 res_counter_check_under_limit(&mem->memsw))
705 return true;
706 } else
707 if (res_counter_check_under_limit(&mem->res))
708 return true;
709 return false;
710}
711
a7885eb8
KM
712static unsigned int get_swappiness(struct mem_cgroup *memcg)
713{
714 struct cgroup *cgrp = memcg->css.cgroup;
715 unsigned int swappiness;
716
717 /* root ? */
718 if (cgrp->parent == NULL)
719 return vm_swappiness;
720
721 spin_lock(&memcg->reclaim_param_lock);
722 swappiness = memcg->swappiness;
723 spin_unlock(&memcg->reclaim_param_lock);
724
725 return swappiness;
726}
727
81d39c20
KH
728static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
729{
730 int *val = data;
731 (*val)++;
732 return 0;
733}
e222432b
BS
734
735/**
736 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
737 * @memcg: The memory cgroup that went over limit
738 * @p: Task that is going to be killed
739 *
740 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
741 * enabled
742 */
743void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
744{
745 struct cgroup *task_cgrp;
746 struct cgroup *mem_cgrp;
747 /*
748 * Need a buffer in BSS, can't rely on allocations. The code relies
749 * on the assumption that OOM is serialized for memory controller.
750 * If this assumption is broken, revisit this code.
751 */
752 static char memcg_name[PATH_MAX];
753 int ret;
754
755 if (!memcg)
756 return;
757
758
759 rcu_read_lock();
760
761 mem_cgrp = memcg->css.cgroup;
762 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
763
764 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
765 if (ret < 0) {
766 /*
767 * Unfortunately, we are unable to convert to a useful name
768 * But we'll still print out the usage information
769 */
770 rcu_read_unlock();
771 goto done;
772 }
773 rcu_read_unlock();
774
775 printk(KERN_INFO "Task in %s killed", memcg_name);
776
777 rcu_read_lock();
778 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
779 if (ret < 0) {
780 rcu_read_unlock();
781 goto done;
782 }
783 rcu_read_unlock();
784
785 /*
786 * Continues from above, so we don't need an KERN_ level
787 */
788 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
789done:
790
791 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
792 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
793 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
794 res_counter_read_u64(&memcg->res, RES_FAILCNT));
795 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
796 "failcnt %llu\n",
797 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
798 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
799 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
800}
801
81d39c20
KH
802/*
803 * This function returns the number of memcg under hierarchy tree. Returns
804 * 1(self count) if no children.
805 */
806static int mem_cgroup_count_children(struct mem_cgroup *mem)
807{
808 int num = 0;
809 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
810 return num;
811}
812
6d61ef40 813/*
04046e1a
KH
814 * Visit the first child (need not be the first child as per the ordering
815 * of the cgroup list, since we track last_scanned_child) of @mem and use
816 * that to reclaim free pages from.
817 */
818static struct mem_cgroup *
819mem_cgroup_select_victim(struct mem_cgroup *root_mem)
820{
821 struct mem_cgroup *ret = NULL;
822 struct cgroup_subsys_state *css;
823 int nextid, found;
824
825 if (!root_mem->use_hierarchy) {
826 css_get(&root_mem->css);
827 ret = root_mem;
828 }
829
830 while (!ret) {
831 rcu_read_lock();
832 nextid = root_mem->last_scanned_child + 1;
833 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
834 &found);
835 if (css && css_tryget(css))
836 ret = container_of(css, struct mem_cgroup, css);
837
838 rcu_read_unlock();
839 /* Updates scanning parameter */
840 spin_lock(&root_mem->reclaim_param_lock);
841 if (!css) {
842 /* this means start scan from ID:1 */
843 root_mem->last_scanned_child = 0;
844 } else
845 root_mem->last_scanned_child = found;
846 spin_unlock(&root_mem->reclaim_param_lock);
847 }
848
849 return ret;
850}
851
852/*
853 * Scan the hierarchy if needed to reclaim memory. We remember the last child
854 * we reclaimed from, so that we don't end up penalizing one child extensively
855 * based on its position in the children list.
6d61ef40
BS
856 *
857 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
858 *
859 * We give up and return to the caller when we visit root_mem twice.
860 * (other groups can be removed while we're walking....)
81d39c20
KH
861 *
862 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
863 */
864static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
81d39c20 865 gfp_t gfp_mask, bool noswap, bool shrink)
6d61ef40 866{
04046e1a
KH
867 struct mem_cgroup *victim;
868 int ret, total = 0;
869 int loop = 0;
870
22a668d7
KH
871 /* If memsw_is_minimum==1, swap-out is of-no-use. */
872 if (root_mem->memsw_is_minimum)
873 noswap = true;
874
04046e1a
KH
875 while (loop < 2) {
876 victim = mem_cgroup_select_victim(root_mem);
877 if (victim == root_mem)
878 loop++;
879 if (!mem_cgroup_local_usage(&victim->stat)) {
880 /* this cgroup's local usage == 0 */
881 css_put(&victim->css);
6d61ef40
BS
882 continue;
883 }
04046e1a
KH
884 /* we use swappiness of local cgroup */
885 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
886 get_swappiness(victim));
887 css_put(&victim->css);
81d39c20
KH
888 /*
889 * At shrinking usage, we can't check we should stop here or
890 * reclaim more. It's depends on callers. last_scanned_child
891 * will work enough for keeping fairness under tree.
892 */
893 if (shrink)
894 return ret;
04046e1a 895 total += ret;
b85a96c0 896 if (mem_cgroup_check_under_limit(root_mem))
04046e1a 897 return 1 + total;
6d61ef40 898 }
04046e1a 899 return total;
6d61ef40
BS
900}
901
a636b327
KH
902bool mem_cgroup_oom_called(struct task_struct *task)
903{
904 bool ret = false;
905 struct mem_cgroup *mem;
906 struct mm_struct *mm;
907
908 rcu_read_lock();
909 mm = task->mm;
910 if (!mm)
911 mm = &init_mm;
912 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
913 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
914 ret = true;
915 rcu_read_unlock();
916 return ret;
917}
0b7f569e
KH
918
919static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
920{
921 mem->last_oom_jiffies = jiffies;
922 return 0;
923}
924
925static void record_last_oom(struct mem_cgroup *mem)
926{
927 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
928}
929
d69b042f
BS
930/*
931 * Currently used to update mapped file statistics, but the routine can be
932 * generalized to update other statistics as well.
933 */
934void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
935{
936 struct mem_cgroup *mem;
937 struct mem_cgroup_stat *stat;
938 struct mem_cgroup_stat_cpu *cpustat;
939 int cpu;
940 struct page_cgroup *pc;
941
942 if (!page_is_file_cache(page))
943 return;
944
945 pc = lookup_page_cgroup(page);
946 if (unlikely(!pc))
947 return;
948
949 lock_page_cgroup(pc);
950 mem = pc->mem_cgroup;
951 if (!mem)
952 goto done;
953
954 if (!PageCgroupUsed(pc))
955 goto done;
956
957 /*
958 * Preemption is already disabled, we don't need get_cpu()
959 */
960 cpu = smp_processor_id();
961 stat = &mem->stat;
962 cpustat = &stat->cpustat[cpu];
963
964 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
965done:
966 unlock_page_cgroup(pc);
967}
0b7f569e 968
f817ed48
KH
969/*
970 * Unlike exported interface, "oom" parameter is added. if oom==true,
971 * oom-killer can be invoked.
8a9f3ccd 972 */
f817ed48 973static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
974 gfp_t gfp_mask, struct mem_cgroup **memcg,
975 bool oom)
8a9f3ccd 976{
6d61ef40 977 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 978 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 979 struct res_counter *fail_res;
a636b327
KH
980
981 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
982 /* Don't account this! */
983 *memcg = NULL;
984 return 0;
985 }
986
8a9f3ccd 987 /*
3be91277
HD
988 * We always charge the cgroup the mm_struct belongs to.
989 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
990 * thread group leader migrates. It's possible that mm is not
991 * set, if so charge the init_mm (happens for pagecache usage).
992 */
54595fe2
KH
993 mem = *memcg;
994 if (likely(!mem)) {
995 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 996 *memcg = mem;
e8589cc1 997 } else {
7a81b88c 998 css_get(&mem->css);
e8589cc1 999 }
54595fe2
KH
1000 if (unlikely(!mem))
1001 return 0;
1002
46f7e602 1003 VM_BUG_ON(css_is_removed(&mem->css));
8a9f3ccd 1004
8c7c6e34
KH
1005 while (1) {
1006 int ret;
1007 bool noswap = false;
7a81b88c 1008
28dbc4b6 1009 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
1010 if (likely(!ret)) {
1011 if (!do_swap_account)
1012 break;
28dbc4b6
BS
1013 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1014 &fail_res);
8c7c6e34
KH
1015 if (likely(!ret))
1016 break;
1017 /* mem+swap counter fails */
1018 res_counter_uncharge(&mem->res, PAGE_SIZE);
1019 noswap = true;
6d61ef40
BS
1020 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1021 memsw);
1022 } else
1023 /* mem counter fails */
1024 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1025 res);
1026
3be91277 1027 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1028 goto nomem;
e1a1cd59 1029
6d61ef40 1030 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
81d39c20 1031 noswap, false);
4d1c6273
DN
1032 if (ret)
1033 continue;
66e1707b
BS
1034
1035 /*
8869b8f6
HD
1036 * try_to_free_mem_cgroup_pages() might not give us a full
1037 * picture of reclaim. Some pages are reclaimed and might be
1038 * moved to swap cache or just unmapped from the cgroup.
1039 * Check the limit again to see if the reclaim reduced the
1040 * current usage of the cgroup before giving up
8c7c6e34 1041 *
8869b8f6 1042 */
b85a96c0
DN
1043 if (mem_cgroup_check_under_limit(mem_over_limit))
1044 continue;
3be91277
HD
1045
1046 if (!nr_retries--) {
a636b327 1047 if (oom) {
7f4d454d 1048 mutex_lock(&memcg_tasklist);
88700756 1049 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 1050 mutex_unlock(&memcg_tasklist);
0b7f569e 1051 record_last_oom(mem_over_limit);
a636b327 1052 }
7a81b88c 1053 goto nomem;
66e1707b 1054 }
8a9f3ccd 1055 }
7a81b88c
KH
1056 return 0;
1057nomem:
1058 css_put(&mem->css);
1059 return -ENOMEM;
1060}
8a9f3ccd 1061
a3b2d692
KH
1062
1063/*
1064 * A helper function to get mem_cgroup from ID. must be called under
1065 * rcu_read_lock(). The caller must check css_is_removed() or some if
1066 * it's concern. (dropping refcnt from swap can be called against removed
1067 * memcg.)
1068 */
1069static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1070{
1071 struct cgroup_subsys_state *css;
1072
1073 /* ID 0 is unused ID */
1074 if (!id)
1075 return NULL;
1076 css = css_lookup(&mem_cgroup_subsys, id);
1077 if (!css)
1078 return NULL;
1079 return container_of(css, struct mem_cgroup, css);
1080}
1081
b5a84319
KH
1082static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1083{
1084 struct mem_cgroup *mem;
3c776e64 1085 struct page_cgroup *pc;
a3b2d692 1086 unsigned short id;
b5a84319
KH
1087 swp_entry_t ent;
1088
3c776e64
DN
1089 VM_BUG_ON(!PageLocked(page));
1090
b5a84319
KH
1091 if (!PageSwapCache(page))
1092 return NULL;
1093
3c776e64 1094 pc = lookup_page_cgroup(page);
c0bd3f63 1095 lock_page_cgroup(pc);
a3b2d692 1096 if (PageCgroupUsed(pc)) {
3c776e64 1097 mem = pc->mem_cgroup;
a3b2d692
KH
1098 if (mem && !css_tryget(&mem->css))
1099 mem = NULL;
1100 } else {
3c776e64 1101 ent.val = page_private(page);
a3b2d692
KH
1102 id = lookup_swap_cgroup(ent);
1103 rcu_read_lock();
1104 mem = mem_cgroup_lookup(id);
1105 if (mem && !css_tryget(&mem->css))
1106 mem = NULL;
1107 rcu_read_unlock();
3c776e64 1108 }
c0bd3f63 1109 unlock_page_cgroup(pc);
b5a84319
KH
1110 return mem;
1111}
1112
7a81b88c 1113/*
a5e924f5 1114 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1115 * USED state. If already USED, uncharge and return.
1116 */
1117
1118static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1119 struct page_cgroup *pc,
1120 enum charge_type ctype)
1121{
7a81b88c
KH
1122 /* try_charge() can return NULL to *memcg, taking care of it. */
1123 if (!mem)
1124 return;
52d4b9ac
KH
1125
1126 lock_page_cgroup(pc);
1127 if (unlikely(PageCgroupUsed(pc))) {
1128 unlock_page_cgroup(pc);
1129 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1130 if (do_swap_account)
1131 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 1132 css_put(&mem->css);
7a81b88c 1133 return;
52d4b9ac 1134 }
4b3bde4c 1135
8a9f3ccd 1136 pc->mem_cgroup = mem;
08e552c6 1137 smp_wmb();
4b3bde4c
BS
1138 switch (ctype) {
1139 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1140 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1141 SetPageCgroupCache(pc);
1142 SetPageCgroupUsed(pc);
1143 break;
1144 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1145 ClearPageCgroupCache(pc);
1146 SetPageCgroupUsed(pc);
1147 break;
1148 default:
1149 break;
1150 }
3be91277 1151
08e552c6 1152 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1153
52d4b9ac 1154 unlock_page_cgroup(pc);
7a81b88c 1155}
66e1707b 1156
f817ed48
KH
1157/**
1158 * mem_cgroup_move_account - move account of the page
1159 * @pc: page_cgroup of the page.
1160 * @from: mem_cgroup which the page is moved from.
1161 * @to: mem_cgroup which the page is moved to. @from != @to.
1162 *
1163 * The caller must confirm following.
08e552c6 1164 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
1165 *
1166 * returns 0 at success,
1167 * returns -EBUSY when lock is busy or "pc" is unstable.
1168 *
1169 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1170 * new cgroup. It should be done by a caller.
1171 */
1172
1173static int mem_cgroup_move_account(struct page_cgroup *pc,
1174 struct mem_cgroup *from, struct mem_cgroup *to)
1175{
1176 struct mem_cgroup_per_zone *from_mz, *to_mz;
1177 int nid, zid;
1178 int ret = -EBUSY;
d69b042f
BS
1179 struct page *page;
1180 int cpu;
1181 struct mem_cgroup_stat *stat;
1182 struct mem_cgroup_stat_cpu *cpustat;
f817ed48 1183
f817ed48 1184 VM_BUG_ON(from == to);
08e552c6 1185 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
1186
1187 nid = page_cgroup_nid(pc);
1188 zid = page_cgroup_zid(pc);
1189 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1190 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1191
f817ed48
KH
1192 if (!trylock_page_cgroup(pc))
1193 return ret;
1194
1195 if (!PageCgroupUsed(pc))
1196 goto out;
1197
1198 if (pc->mem_cgroup != from)
1199 goto out;
1200
08e552c6
KH
1201 res_counter_uncharge(&from->res, PAGE_SIZE);
1202 mem_cgroup_charge_statistics(from, pc, false);
d69b042f
BS
1203
1204 page = pc->page;
1205 if (page_is_file_cache(page) && page_mapped(page)) {
1206 cpu = smp_processor_id();
1207 /* Update mapped_file data for mem_cgroup "from" */
1208 stat = &from->stat;
1209 cpustat = &stat->cpustat[cpu];
1210 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1211 -1);
1212
1213 /* Update mapped_file data for mem_cgroup "to" */
1214 stat = &to->stat;
1215 cpustat = &stat->cpustat[cpu];
1216 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1217 1);
1218 }
1219
08e552c6
KH
1220 if (do_swap_account)
1221 res_counter_uncharge(&from->memsw, PAGE_SIZE);
40d58138
DN
1222 css_put(&from->css);
1223
1224 css_get(&to->css);
08e552c6
KH
1225 pc->mem_cgroup = to;
1226 mem_cgroup_charge_statistics(to, pc, true);
08e552c6 1227 ret = 0;
f817ed48
KH
1228out:
1229 unlock_page_cgroup(pc);
88703267
KH
1230 /*
1231 * We charges against "to" which may not have any tasks. Then, "to"
1232 * can be under rmdir(). But in current implementation, caller of
1233 * this function is just force_empty() and it's garanteed that
1234 * "to" is never removed. So, we don't check rmdir status here.
1235 */
f817ed48
KH
1236 return ret;
1237}
1238
1239/*
1240 * move charges to its parent.
1241 */
1242
1243static int mem_cgroup_move_parent(struct page_cgroup *pc,
1244 struct mem_cgroup *child,
1245 gfp_t gfp_mask)
1246{
08e552c6 1247 struct page *page = pc->page;
f817ed48
KH
1248 struct cgroup *cg = child->css.cgroup;
1249 struct cgroup *pcg = cg->parent;
1250 struct mem_cgroup *parent;
f817ed48
KH
1251 int ret;
1252
1253 /* Is ROOT ? */
1254 if (!pcg)
1255 return -EINVAL;
1256
08e552c6 1257
f817ed48
KH
1258 parent = mem_cgroup_from_cont(pcg);
1259
08e552c6 1260
f817ed48 1261 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1262 if (ret || !parent)
f817ed48
KH
1263 return ret;
1264
40d58138
DN
1265 if (!get_page_unless_zero(page)) {
1266 ret = -EBUSY;
1267 goto uncharge;
1268 }
08e552c6
KH
1269
1270 ret = isolate_lru_page(page);
1271
1272 if (ret)
1273 goto cancel;
f817ed48 1274
f817ed48 1275 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1276
08e552c6
KH
1277 putback_lru_page(page);
1278 if (!ret) {
1279 put_page(page);
40d58138
DN
1280 /* drop extra refcnt by try_charge() */
1281 css_put(&parent->css);
08e552c6 1282 return 0;
8c7c6e34 1283 }
40d58138 1284
08e552c6 1285cancel:
40d58138
DN
1286 put_page(page);
1287uncharge:
1288 /* drop extra refcnt by try_charge() */
1289 css_put(&parent->css);
1290 /* uncharge if move fails */
08e552c6
KH
1291 res_counter_uncharge(&parent->res, PAGE_SIZE);
1292 if (do_swap_account)
1293 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
f817ed48
KH
1294 return ret;
1295}
1296
7a81b88c
KH
1297/*
1298 * Charge the memory controller for page usage.
1299 * Return
1300 * 0 if the charge was successful
1301 * < 0 if the cgroup is over its limit
1302 */
1303static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1304 gfp_t gfp_mask, enum charge_type ctype,
1305 struct mem_cgroup *memcg)
1306{
1307 struct mem_cgroup *mem;
1308 struct page_cgroup *pc;
1309 int ret;
1310
1311 pc = lookup_page_cgroup(page);
1312 /* can happen at boot */
1313 if (unlikely(!pc))
1314 return 0;
1315 prefetchw(pc);
1316
1317 mem = memcg;
f817ed48 1318 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1319 if (ret || !mem)
7a81b88c
KH
1320 return ret;
1321
1322 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1323 return 0;
8a9f3ccd
BS
1324}
1325
7a81b88c
KH
1326int mem_cgroup_newpage_charge(struct page *page,
1327 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1328{
f8d66542 1329 if (mem_cgroup_disabled())
cede86ac 1330 return 0;
52d4b9ac
KH
1331 if (PageCompound(page))
1332 return 0;
69029cd5
KH
1333 /*
1334 * If already mapped, we don't have to account.
1335 * If page cache, page->mapping has address_space.
1336 * But page->mapping may have out-of-use anon_vma pointer,
1337 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1338 * is NULL.
1339 */
1340 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1341 return 0;
1342 if (unlikely(!mm))
1343 mm = &init_mm;
217bc319 1344 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1345 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1346}
1347
83aae4c7
DN
1348static void
1349__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1350 enum charge_type ctype);
1351
e1a1cd59
BS
1352int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1353 gfp_t gfp_mask)
8697d331 1354{
b5a84319
KH
1355 struct mem_cgroup *mem = NULL;
1356 int ret;
1357
f8d66542 1358 if (mem_cgroup_disabled())
cede86ac 1359 return 0;
52d4b9ac
KH
1360 if (PageCompound(page))
1361 return 0;
accf163e
KH
1362 /*
1363 * Corner case handling. This is called from add_to_page_cache()
1364 * in usual. But some FS (shmem) precharges this page before calling it
1365 * and call add_to_page_cache() with GFP_NOWAIT.
1366 *
1367 * For GFP_NOWAIT case, the page may be pre-charged before calling
1368 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1369 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1370 * And when the page is SwapCache, it should take swap information
1371 * into account. This is under lock_page() now.
accf163e
KH
1372 */
1373 if (!(gfp_mask & __GFP_WAIT)) {
1374 struct page_cgroup *pc;
1375
52d4b9ac
KH
1376
1377 pc = lookup_page_cgroup(page);
1378 if (!pc)
1379 return 0;
1380 lock_page_cgroup(pc);
1381 if (PageCgroupUsed(pc)) {
1382 unlock_page_cgroup(pc);
accf163e
KH
1383 return 0;
1384 }
52d4b9ac 1385 unlock_page_cgroup(pc);
accf163e
KH
1386 }
1387
b5a84319 1388 if (unlikely(!mm && !mem))
8697d331 1389 mm = &init_mm;
accf163e 1390
c05555b5
KH
1391 if (page_is_file_cache(page))
1392 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1393 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1394
83aae4c7
DN
1395 /* shmem */
1396 if (PageSwapCache(page)) {
1397 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1398 if (!ret)
1399 __mem_cgroup_commit_charge_swapin(page, mem,
1400 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1401 } else
1402 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1403 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1404
b5a84319 1405 return ret;
e8589cc1
KH
1406}
1407
54595fe2
KH
1408/*
1409 * While swap-in, try_charge -> commit or cancel, the page is locked.
1410 * And when try_charge() successfully returns, one refcnt to memcg without
1411 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1412 * "commit()" or removed by "cancel()"
1413 */
8c7c6e34
KH
1414int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1415 struct page *page,
1416 gfp_t mask, struct mem_cgroup **ptr)
1417{
1418 struct mem_cgroup *mem;
54595fe2 1419 int ret;
8c7c6e34 1420
f8d66542 1421 if (mem_cgroup_disabled())
8c7c6e34
KH
1422 return 0;
1423
1424 if (!do_swap_account)
1425 goto charge_cur_mm;
8c7c6e34
KH
1426 /*
1427 * A racing thread's fault, or swapoff, may have already updated
1428 * the pte, and even removed page from swap cache: return success
1429 * to go on to do_swap_page()'s pte_same() test, which should fail.
1430 */
1431 if (!PageSwapCache(page))
1432 return 0;
b5a84319 1433 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1434 if (!mem)
1435 goto charge_cur_mm;
8c7c6e34 1436 *ptr = mem;
54595fe2
KH
1437 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1438 /* drop extra refcnt from tryget */
1439 css_put(&mem->css);
1440 return ret;
8c7c6e34
KH
1441charge_cur_mm:
1442 if (unlikely(!mm))
1443 mm = &init_mm;
1444 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1445}
1446
83aae4c7
DN
1447static void
1448__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1449 enum charge_type ctype)
7a81b88c
KH
1450{
1451 struct page_cgroup *pc;
1452
f8d66542 1453 if (mem_cgroup_disabled())
7a81b88c
KH
1454 return;
1455 if (!ptr)
1456 return;
88703267 1457 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 1458 pc = lookup_page_cgroup(page);
544122e5 1459 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1460 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1461 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1462 /*
1463 * Now swap is on-memory. This means this page may be
1464 * counted both as mem and swap....double count.
03f3c433
KH
1465 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1466 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1467 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1468 */
03f3c433 1469 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1470 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1471 unsigned short id;
8c7c6e34 1472 struct mem_cgroup *memcg;
a3b2d692
KH
1473
1474 id = swap_cgroup_record(ent, 0);
1475 rcu_read_lock();
1476 memcg = mem_cgroup_lookup(id);
8c7c6e34 1477 if (memcg) {
a3b2d692
KH
1478 /*
1479 * This recorded memcg can be obsolete one. So, avoid
1480 * calling css_tryget
1481 */
8c7c6e34
KH
1482 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1483 mem_cgroup_put(memcg);
1484 }
a3b2d692 1485 rcu_read_unlock();
8c7c6e34 1486 }
88703267
KH
1487 /*
1488 * At swapin, we may charge account against cgroup which has no tasks.
1489 * So, rmdir()->pre_destroy() can be called while we do this charge.
1490 * In that case, we need to call pre_destroy() again. check it here.
1491 */
1492 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
1493}
1494
83aae4c7
DN
1495void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1496{
1497 __mem_cgroup_commit_charge_swapin(page, ptr,
1498 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1499}
1500
7a81b88c
KH
1501void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1502{
f8d66542 1503 if (mem_cgroup_disabled())
7a81b88c
KH
1504 return;
1505 if (!mem)
1506 return;
1507 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1508 if (do_swap_account)
1509 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1510 css_put(&mem->css);
1511}
1512
1513
8a9f3ccd 1514/*
69029cd5 1515 * uncharge if !page_mapped(page)
8a9f3ccd 1516 */
8c7c6e34 1517static struct mem_cgroup *
69029cd5 1518__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1519{
8289546e 1520 struct page_cgroup *pc;
8c7c6e34 1521 struct mem_cgroup *mem = NULL;
072c56c1 1522 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1523
f8d66542 1524 if (mem_cgroup_disabled())
8c7c6e34 1525 return NULL;
4077960e 1526
d13d1443 1527 if (PageSwapCache(page))
8c7c6e34 1528 return NULL;
d13d1443 1529
8697d331 1530 /*
3c541e14 1531 * Check if our page_cgroup is valid
8697d331 1532 */
52d4b9ac
KH
1533 pc = lookup_page_cgroup(page);
1534 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1535 return NULL;
b9c565d5 1536
52d4b9ac 1537 lock_page_cgroup(pc);
d13d1443 1538
8c7c6e34
KH
1539 mem = pc->mem_cgroup;
1540
d13d1443
KH
1541 if (!PageCgroupUsed(pc))
1542 goto unlock_out;
1543
1544 switch (ctype) {
1545 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 1546 case MEM_CGROUP_CHARGE_TYPE_DROP:
d13d1443
KH
1547 if (page_mapped(page))
1548 goto unlock_out;
1549 break;
1550 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1551 if (!PageAnon(page)) { /* Shared memory */
1552 if (page->mapping && !page_is_file_cache(page))
1553 goto unlock_out;
1554 } else if (page_mapped(page)) /* Anon */
1555 goto unlock_out;
1556 break;
1557 default:
1558 break;
52d4b9ac 1559 }
d13d1443 1560
8c7c6e34
KH
1561 res_counter_uncharge(&mem->res, PAGE_SIZE);
1562 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1563 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
08e552c6 1564 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 1565
52d4b9ac 1566 ClearPageCgroupUsed(pc);
544122e5
KH
1567 /*
1568 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1569 * freed from LRU. This is safe because uncharged page is expected not
1570 * to be reused (freed soon). Exception is SwapCache, it's handled by
1571 * special functions.
1572 */
b9c565d5 1573
69029cd5 1574 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1575 unlock_page_cgroup(pc);
fb59e9f1 1576
a7fe942e
KH
1577 /* at swapout, this memcg will be accessed to record to swap */
1578 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1579 css_put(&mem->css);
6d12e2d8 1580
8c7c6e34 1581 return mem;
d13d1443
KH
1582
1583unlock_out:
1584 unlock_page_cgroup(pc);
8c7c6e34 1585 return NULL;
3c541e14
BS
1586}
1587
69029cd5
KH
1588void mem_cgroup_uncharge_page(struct page *page)
1589{
52d4b9ac
KH
1590 /* early check. */
1591 if (page_mapped(page))
1592 return;
1593 if (page->mapping && !PageAnon(page))
1594 return;
69029cd5
KH
1595 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1596}
1597
1598void mem_cgroup_uncharge_cache_page(struct page *page)
1599{
1600 VM_BUG_ON(page_mapped(page));
b7abea96 1601 VM_BUG_ON(page->mapping);
69029cd5
KH
1602 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1603}
1604
e767e056 1605#ifdef CONFIG_SWAP
8c7c6e34 1606/*
e767e056 1607 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
1608 * memcg information is recorded to swap_cgroup of "ent"
1609 */
8a9478ca
KH
1610void
1611mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
1612{
1613 struct mem_cgroup *memcg;
8a9478ca
KH
1614 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1615
1616 if (!swapout) /* this was a swap cache but the swap is unused ! */
1617 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1618
1619 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 1620
8c7c6e34 1621 /* record memcg information */
8a9478ca 1622 if (do_swap_account && swapout && memcg) {
a3b2d692 1623 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
1624 mem_cgroup_get(memcg);
1625 }
8a9478ca 1626 if (swapout && memcg)
a7fe942e 1627 css_put(&memcg->css);
8c7c6e34 1628}
e767e056 1629#endif
8c7c6e34
KH
1630
1631#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1632/*
1633 * called from swap_entry_free(). remove record in swap_cgroup and
1634 * uncharge "memsw" account.
1635 */
1636void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1637{
8c7c6e34 1638 struct mem_cgroup *memcg;
a3b2d692 1639 unsigned short id;
8c7c6e34
KH
1640
1641 if (!do_swap_account)
1642 return;
1643
a3b2d692
KH
1644 id = swap_cgroup_record(ent, 0);
1645 rcu_read_lock();
1646 memcg = mem_cgroup_lookup(id);
8c7c6e34 1647 if (memcg) {
a3b2d692
KH
1648 /*
1649 * We uncharge this because swap is freed.
1650 * This memcg can be obsolete one. We avoid calling css_tryget
1651 */
8c7c6e34
KH
1652 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1653 mem_cgroup_put(memcg);
1654 }
a3b2d692 1655 rcu_read_unlock();
d13d1443 1656}
8c7c6e34 1657#endif
d13d1443 1658
ae41be37 1659/*
01b1ae63
KH
1660 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1661 * page belongs to.
ae41be37 1662 */
01b1ae63 1663int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1664{
1665 struct page_cgroup *pc;
e8589cc1 1666 struct mem_cgroup *mem = NULL;
e8589cc1 1667 int ret = 0;
8869b8f6 1668
f8d66542 1669 if (mem_cgroup_disabled())
4077960e
BS
1670 return 0;
1671
52d4b9ac
KH
1672 pc = lookup_page_cgroup(page);
1673 lock_page_cgroup(pc);
1674 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1675 mem = pc->mem_cgroup;
1676 css_get(&mem->css);
e8589cc1 1677 }
52d4b9ac 1678 unlock_page_cgroup(pc);
01b1ae63 1679
e8589cc1 1680 if (mem) {
3bb4edf2 1681 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1682 css_put(&mem->css);
1683 }
01b1ae63 1684 *ptr = mem;
e8589cc1 1685 return ret;
ae41be37 1686}
8869b8f6 1687
69029cd5 1688/* remove redundant charge if migration failed*/
01b1ae63
KH
1689void mem_cgroup_end_migration(struct mem_cgroup *mem,
1690 struct page *oldpage, struct page *newpage)
ae41be37 1691{
01b1ae63
KH
1692 struct page *target, *unused;
1693 struct page_cgroup *pc;
1694 enum charge_type ctype;
1695
1696 if (!mem)
1697 return;
88703267 1698 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
1699 /* at migration success, oldpage->mapping is NULL. */
1700 if (oldpage->mapping) {
1701 target = oldpage;
1702 unused = NULL;
1703 } else {
1704 target = newpage;
1705 unused = oldpage;
1706 }
1707
1708 if (PageAnon(target))
1709 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1710 else if (page_is_file_cache(target))
1711 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1712 else
1713 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1714
1715 /* unused page is not on radix-tree now. */
d13d1443 1716 if (unused)
01b1ae63
KH
1717 __mem_cgroup_uncharge_common(unused, ctype);
1718
1719 pc = lookup_page_cgroup(target);
69029cd5 1720 /*
01b1ae63
KH
1721 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1722 * So, double-counting is effectively avoided.
1723 */
1724 __mem_cgroup_commit_charge(mem, pc, ctype);
1725
1726 /*
1727 * Both of oldpage and newpage are still under lock_page().
1728 * Then, we don't have to care about race in radix-tree.
1729 * But we have to be careful that this page is unmapped or not.
1730 *
1731 * There is a case for !page_mapped(). At the start of
1732 * migration, oldpage was mapped. But now, it's zapped.
1733 * But we know *target* page is not freed/reused under us.
1734 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1735 */
01b1ae63
KH
1736 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1737 mem_cgroup_uncharge_page(target);
88703267
KH
1738 /*
1739 * At migration, we may charge account against cgroup which has no tasks
1740 * So, rmdir()->pre_destroy() can be called while we do this charge.
1741 * In that case, we need to call pre_destroy() again. check it here.
1742 */
1743 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 1744}
78fb7466 1745
c9b0ed51 1746/*
ae3abae6
DN
1747 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1748 * Calling hierarchical_reclaim is not enough because we should update
1749 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1750 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1751 * not from the memcg which this page would be charged to.
1752 * try_charge_swapin does all of these works properly.
c9b0ed51 1753 */
ae3abae6 1754int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
1755 struct mm_struct *mm,
1756 gfp_t gfp_mask)
c9b0ed51 1757{
b5a84319 1758 struct mem_cgroup *mem = NULL;
ae3abae6 1759 int ret;
c9b0ed51 1760
f8d66542 1761 if (mem_cgroup_disabled())
cede86ac 1762 return 0;
c9b0ed51 1763
ae3abae6
DN
1764 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1765 if (!ret)
1766 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 1767
ae3abae6 1768 return ret;
c9b0ed51
KH
1769}
1770
8c7c6e34
KH
1771static DEFINE_MUTEX(set_limit_mutex);
1772
d38d2a75 1773static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1774 unsigned long long val)
628f4235 1775{
81d39c20 1776 int retry_count;
628f4235 1777 int progress;
8c7c6e34 1778 u64 memswlimit;
628f4235 1779 int ret = 0;
81d39c20
KH
1780 int children = mem_cgroup_count_children(memcg);
1781 u64 curusage, oldusage;
1782
1783 /*
1784 * For keeping hierarchical_reclaim simple, how long we should retry
1785 * is depends on callers. We set our retry-count to be function
1786 * of # of children which we should visit in this loop.
1787 */
1788 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1789
1790 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 1791
8c7c6e34 1792 while (retry_count) {
628f4235
KH
1793 if (signal_pending(current)) {
1794 ret = -EINTR;
1795 break;
1796 }
8c7c6e34
KH
1797 /*
1798 * Rather than hide all in some function, I do this in
1799 * open coded manner. You see what this really does.
1800 * We have to guarantee mem->res.limit < mem->memsw.limit.
1801 */
1802 mutex_lock(&set_limit_mutex);
1803 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1804 if (memswlimit < val) {
1805 ret = -EINVAL;
1806 mutex_unlock(&set_limit_mutex);
628f4235
KH
1807 break;
1808 }
8c7c6e34 1809 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
1810 if (!ret) {
1811 if (memswlimit == val)
1812 memcg->memsw_is_minimum = true;
1813 else
1814 memcg->memsw_is_minimum = false;
1815 }
8c7c6e34
KH
1816 mutex_unlock(&set_limit_mutex);
1817
1818 if (!ret)
1819 break;
1820
42e9abb6 1821 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
81d39c20
KH
1822 false, true);
1823 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1824 /* Usage is reduced ? */
1825 if (curusage >= oldusage)
1826 retry_count--;
1827 else
1828 oldusage = curusage;
8c7c6e34 1829 }
14797e23 1830
8c7c6e34
KH
1831 return ret;
1832}
1833
338c8431
LZ
1834static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1835 unsigned long long val)
8c7c6e34 1836{
81d39c20 1837 int retry_count;
8c7c6e34 1838 u64 memlimit, oldusage, curusage;
81d39c20
KH
1839 int children = mem_cgroup_count_children(memcg);
1840 int ret = -EBUSY;
8c7c6e34 1841
81d39c20
KH
1842 /* see mem_cgroup_resize_res_limit */
1843 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1844 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
1845 while (retry_count) {
1846 if (signal_pending(current)) {
1847 ret = -EINTR;
1848 break;
1849 }
1850 /*
1851 * Rather than hide all in some function, I do this in
1852 * open coded manner. You see what this really does.
1853 * We have to guarantee mem->res.limit < mem->memsw.limit.
1854 */
1855 mutex_lock(&set_limit_mutex);
1856 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1857 if (memlimit > val) {
1858 ret = -EINVAL;
1859 mutex_unlock(&set_limit_mutex);
1860 break;
1861 }
1862 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
1863 if (!ret) {
1864 if (memlimit == val)
1865 memcg->memsw_is_minimum = true;
1866 else
1867 memcg->memsw_is_minimum = false;
1868 }
8c7c6e34
KH
1869 mutex_unlock(&set_limit_mutex);
1870
1871 if (!ret)
1872 break;
1873
81d39c20 1874 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
8c7c6e34 1875 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 1876 /* Usage is reduced ? */
8c7c6e34 1877 if (curusage >= oldusage)
628f4235 1878 retry_count--;
81d39c20
KH
1879 else
1880 oldusage = curusage;
628f4235
KH
1881 }
1882 return ret;
1883}
1884
cc847582
KH
1885/*
1886 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1887 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1888 */
f817ed48 1889static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1890 int node, int zid, enum lru_list lru)
cc847582 1891{
08e552c6
KH
1892 struct zone *zone;
1893 struct mem_cgroup_per_zone *mz;
f817ed48 1894 struct page_cgroup *pc, *busy;
08e552c6 1895 unsigned long flags, loop;
072c56c1 1896 struct list_head *list;
f817ed48 1897 int ret = 0;
072c56c1 1898
08e552c6
KH
1899 zone = &NODE_DATA(node)->node_zones[zid];
1900 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1901 list = &mz->lists[lru];
cc847582 1902
f817ed48
KH
1903 loop = MEM_CGROUP_ZSTAT(mz, lru);
1904 /* give some margin against EBUSY etc...*/
1905 loop += 256;
1906 busy = NULL;
1907 while (loop--) {
1908 ret = 0;
08e552c6 1909 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1910 if (list_empty(list)) {
08e552c6 1911 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1912 break;
f817ed48
KH
1913 }
1914 pc = list_entry(list->prev, struct page_cgroup, lru);
1915 if (busy == pc) {
1916 list_move(&pc->lru, list);
1917 busy = 0;
08e552c6 1918 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1919 continue;
1920 }
08e552c6 1921 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1922
2c26fdd7 1923 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1924 if (ret == -ENOMEM)
52d4b9ac 1925 break;
f817ed48
KH
1926
1927 if (ret == -EBUSY || ret == -EINVAL) {
1928 /* found lock contention or "pc" is obsolete. */
1929 busy = pc;
1930 cond_resched();
1931 } else
1932 busy = NULL;
cc847582 1933 }
08e552c6 1934
f817ed48
KH
1935 if (!ret && !list_empty(list))
1936 return -EBUSY;
1937 return ret;
cc847582
KH
1938}
1939
1940/*
1941 * make mem_cgroup's charge to be 0 if there is no task.
1942 * This enables deleting this mem_cgroup.
1943 */
c1e862c1 1944static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1945{
f817ed48
KH
1946 int ret;
1947 int node, zid, shrink;
1948 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1949 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1950
cc847582 1951 css_get(&mem->css);
f817ed48
KH
1952
1953 shrink = 0;
c1e862c1
KH
1954 /* should free all ? */
1955 if (free_all)
1956 goto try_to_free;
f817ed48 1957move_account:
1ecaab2b 1958 while (mem->res.usage > 0) {
f817ed48 1959 ret = -EBUSY;
c1e862c1
KH
1960 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1961 goto out;
1962 ret = -EINTR;
1963 if (signal_pending(current))
cc847582 1964 goto out;
52d4b9ac
KH
1965 /* This is for making all *used* pages to be on LRU. */
1966 lru_add_drain_all();
f817ed48 1967 ret = 0;
299b4eaa 1968 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 1969 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1970 enum lru_list l;
f817ed48
KH
1971 for_each_lru(l) {
1972 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1973 node, zid, l);
f817ed48
KH
1974 if (ret)
1975 break;
1976 }
1ecaab2b 1977 }
f817ed48
KH
1978 if (ret)
1979 break;
1980 }
1981 /* it seems parent cgroup doesn't have enough mem */
1982 if (ret == -ENOMEM)
1983 goto try_to_free;
52d4b9ac 1984 cond_resched();
cc847582
KH
1985 }
1986 ret = 0;
1987out:
1988 css_put(&mem->css);
1989 return ret;
f817ed48
KH
1990
1991try_to_free:
c1e862c1
KH
1992 /* returns EBUSY if there is a task or if we come here twice. */
1993 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1994 ret = -EBUSY;
1995 goto out;
1996 }
c1e862c1
KH
1997 /* we call try-to-free pages for make this cgroup empty */
1998 lru_add_drain_all();
f817ed48
KH
1999 /* try to free all pages in this cgroup */
2000 shrink = 1;
2001 while (nr_retries && mem->res.usage > 0) {
2002 int progress;
c1e862c1
KH
2003
2004 if (signal_pending(current)) {
2005 ret = -EINTR;
2006 goto out;
2007 }
a7885eb8
KM
2008 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2009 false, get_swappiness(mem));
c1e862c1 2010 if (!progress) {
f817ed48 2011 nr_retries--;
c1e862c1 2012 /* maybe some writeback is necessary */
8aa7e847 2013 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2014 }
f817ed48
KH
2015
2016 }
08e552c6 2017 lru_add_drain();
f817ed48
KH
2018 /* try move_account...there may be some *locked* pages. */
2019 if (mem->res.usage)
2020 goto move_account;
2021 ret = 0;
2022 goto out;
cc847582
KH
2023}
2024
c1e862c1
KH
2025int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2026{
2027 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2028}
2029
2030
18f59ea7
BS
2031static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2032{
2033 return mem_cgroup_from_cont(cont)->use_hierarchy;
2034}
2035
2036static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2037 u64 val)
2038{
2039 int retval = 0;
2040 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2041 struct cgroup *parent = cont->parent;
2042 struct mem_cgroup *parent_mem = NULL;
2043
2044 if (parent)
2045 parent_mem = mem_cgroup_from_cont(parent);
2046
2047 cgroup_lock();
2048 /*
2049 * If parent's use_hiearchy is set, we can't make any modifications
2050 * in the child subtrees. If it is unset, then the change can
2051 * occur, provided the current cgroup has no children.
2052 *
2053 * For the root cgroup, parent_mem is NULL, we allow value to be
2054 * set if there are no children.
2055 */
2056 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2057 (val == 1 || val == 0)) {
2058 if (list_empty(&cont->children))
2059 mem->use_hierarchy = val;
2060 else
2061 retval = -EBUSY;
2062 } else
2063 retval = -EINVAL;
2064 cgroup_unlock();
2065
2066 return retval;
2067}
2068
2c3daa72 2069static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 2070{
8c7c6e34
KH
2071 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2072 u64 val = 0;
2073 int type, name;
2074
2075 type = MEMFILE_TYPE(cft->private);
2076 name = MEMFILE_ATTR(cft->private);
2077 switch (type) {
2078 case _MEM:
2079 val = res_counter_read_u64(&mem->res, name);
2080 break;
2081 case _MEMSWAP:
338c8431 2082 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
2083 break;
2084 default:
2085 BUG();
2086 break;
2087 }
2088 return val;
8cdea7c0 2089}
628f4235
KH
2090/*
2091 * The user of this function is...
2092 * RES_LIMIT.
2093 */
856c13aa
PM
2094static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2095 const char *buffer)
8cdea7c0 2096{
628f4235 2097 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 2098 int type, name;
628f4235
KH
2099 unsigned long long val;
2100 int ret;
2101
8c7c6e34
KH
2102 type = MEMFILE_TYPE(cft->private);
2103 name = MEMFILE_ATTR(cft->private);
2104 switch (name) {
628f4235 2105 case RES_LIMIT:
4b3bde4c
BS
2106 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2107 ret = -EINVAL;
2108 break;
2109 }
628f4235
KH
2110 /* This function does all necessary parse...reuse it */
2111 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
2112 if (ret)
2113 break;
2114 if (type == _MEM)
628f4235 2115 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
2116 else
2117 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
2118 break;
2119 default:
2120 ret = -EINVAL; /* should be BUG() ? */
2121 break;
2122 }
2123 return ret;
8cdea7c0
BS
2124}
2125
fee7b548
KH
2126static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2127 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2128{
2129 struct cgroup *cgroup;
2130 unsigned long long min_limit, min_memsw_limit, tmp;
2131
2132 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2133 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2134 cgroup = memcg->css.cgroup;
2135 if (!memcg->use_hierarchy)
2136 goto out;
2137
2138 while (cgroup->parent) {
2139 cgroup = cgroup->parent;
2140 memcg = mem_cgroup_from_cont(cgroup);
2141 if (!memcg->use_hierarchy)
2142 break;
2143 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2144 min_limit = min(min_limit, tmp);
2145 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2146 min_memsw_limit = min(min_memsw_limit, tmp);
2147 }
2148out:
2149 *mem_limit = min_limit;
2150 *memsw_limit = min_memsw_limit;
2151 return;
2152}
2153
29f2a4da 2154static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2155{
2156 struct mem_cgroup *mem;
8c7c6e34 2157 int type, name;
c84872e1
PE
2158
2159 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2160 type = MEMFILE_TYPE(event);
2161 name = MEMFILE_ATTR(event);
2162 switch (name) {
29f2a4da 2163 case RES_MAX_USAGE:
8c7c6e34
KH
2164 if (type == _MEM)
2165 res_counter_reset_max(&mem->res);
2166 else
2167 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2168 break;
2169 case RES_FAILCNT:
8c7c6e34
KH
2170 if (type == _MEM)
2171 res_counter_reset_failcnt(&mem->res);
2172 else
2173 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2174 break;
2175 }
85cc59db 2176 return 0;
c84872e1
PE
2177}
2178
14067bb3
KH
2179
2180/* For read statistics */
2181enum {
2182 MCS_CACHE,
2183 MCS_RSS,
d69b042f 2184 MCS_MAPPED_FILE,
14067bb3
KH
2185 MCS_PGPGIN,
2186 MCS_PGPGOUT,
2187 MCS_INACTIVE_ANON,
2188 MCS_ACTIVE_ANON,
2189 MCS_INACTIVE_FILE,
2190 MCS_ACTIVE_FILE,
2191 MCS_UNEVICTABLE,
2192 NR_MCS_STAT,
2193};
2194
2195struct mcs_total_stat {
2196 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
2197};
2198
14067bb3
KH
2199struct {
2200 char *local_name;
2201 char *total_name;
2202} memcg_stat_strings[NR_MCS_STAT] = {
2203 {"cache", "total_cache"},
2204 {"rss", "total_rss"},
d69b042f 2205 {"mapped_file", "total_mapped_file"},
14067bb3
KH
2206 {"pgpgin", "total_pgpgin"},
2207 {"pgpgout", "total_pgpgout"},
2208 {"inactive_anon", "total_inactive_anon"},
2209 {"active_anon", "total_active_anon"},
2210 {"inactive_file", "total_inactive_file"},
2211 {"active_file", "total_active_file"},
2212 {"unevictable", "total_unevictable"}
2213};
2214
2215
2216static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2217{
2218 struct mcs_total_stat *s = data;
2219 s64 val;
2220
2221 /* per cpu stat */
2222 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2223 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2224 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2225 s->stat[MCS_RSS] += val * PAGE_SIZE;
d69b042f
BS
2226 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2227 s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
14067bb3
KH
2228 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2229 s->stat[MCS_PGPGIN] += val;
2230 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2231 s->stat[MCS_PGPGOUT] += val;
2232
2233 /* per zone stat */
2234 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2235 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2236 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2237 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2238 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2239 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2240 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2241 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2242 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2243 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2244 return 0;
2245}
2246
2247static void
2248mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2249{
2250 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2251}
2252
c64745cf
PM
2253static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2254 struct cgroup_map_cb *cb)
d2ceb9b7 2255{
d2ceb9b7 2256 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 2257 struct mcs_total_stat mystat;
d2ceb9b7
KH
2258 int i;
2259
14067bb3
KH
2260 memset(&mystat, 0, sizeof(mystat));
2261 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 2262
14067bb3
KH
2263 for (i = 0; i < NR_MCS_STAT; i++)
2264 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
7b854121 2265
14067bb3 2266 /* Hierarchical information */
fee7b548
KH
2267 {
2268 unsigned long long limit, memsw_limit;
2269 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2270 cb->fill(cb, "hierarchical_memory_limit", limit);
2271 if (do_swap_account)
2272 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2273 }
7f016ee8 2274
14067bb3
KH
2275 memset(&mystat, 0, sizeof(mystat));
2276 mem_cgroup_get_total_stat(mem_cont, &mystat);
2277 for (i = 0; i < NR_MCS_STAT; i++)
2278 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2279
2280
7f016ee8 2281#ifdef CONFIG_DEBUG_VM
c772be93 2282 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
2283
2284 {
2285 int nid, zid;
2286 struct mem_cgroup_per_zone *mz;
2287 unsigned long recent_rotated[2] = {0, 0};
2288 unsigned long recent_scanned[2] = {0, 0};
2289
2290 for_each_online_node(nid)
2291 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2292 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2293
2294 recent_rotated[0] +=
2295 mz->reclaim_stat.recent_rotated[0];
2296 recent_rotated[1] +=
2297 mz->reclaim_stat.recent_rotated[1];
2298 recent_scanned[0] +=
2299 mz->reclaim_stat.recent_scanned[0];
2300 recent_scanned[1] +=
2301 mz->reclaim_stat.recent_scanned[1];
2302 }
2303 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2304 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2305 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2306 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2307 }
2308#endif
2309
d2ceb9b7
KH
2310 return 0;
2311}
2312
a7885eb8
KM
2313static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2314{
2315 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2316
2317 return get_swappiness(memcg);
2318}
2319
2320static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2321 u64 val)
2322{
2323 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2324 struct mem_cgroup *parent;
068b38c1 2325
a7885eb8
KM
2326 if (val > 100)
2327 return -EINVAL;
2328
2329 if (cgrp->parent == NULL)
2330 return -EINVAL;
2331
2332 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
2333
2334 cgroup_lock();
2335
a7885eb8
KM
2336 /* If under hierarchy, only empty-root can set this value */
2337 if ((parent->use_hierarchy) ||
068b38c1
LZ
2338 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2339 cgroup_unlock();
a7885eb8 2340 return -EINVAL;
068b38c1 2341 }
a7885eb8
KM
2342
2343 spin_lock(&memcg->reclaim_param_lock);
2344 memcg->swappiness = val;
2345 spin_unlock(&memcg->reclaim_param_lock);
2346
068b38c1
LZ
2347 cgroup_unlock();
2348
a7885eb8
KM
2349 return 0;
2350}
2351
c1e862c1 2352
8cdea7c0
BS
2353static struct cftype mem_cgroup_files[] = {
2354 {
0eea1030 2355 .name = "usage_in_bytes",
8c7c6e34 2356 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 2357 .read_u64 = mem_cgroup_read,
8cdea7c0 2358 },
c84872e1
PE
2359 {
2360 .name = "max_usage_in_bytes",
8c7c6e34 2361 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2362 .trigger = mem_cgroup_reset,
c84872e1
PE
2363 .read_u64 = mem_cgroup_read,
2364 },
8cdea7c0 2365 {
0eea1030 2366 .name = "limit_in_bytes",
8c7c6e34 2367 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2368 .write_string = mem_cgroup_write,
2c3daa72 2369 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
2370 },
2371 {
2372 .name = "failcnt",
8c7c6e34 2373 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2374 .trigger = mem_cgroup_reset,
2c3daa72 2375 .read_u64 = mem_cgroup_read,
8cdea7c0 2376 },
d2ceb9b7
KH
2377 {
2378 .name = "stat",
c64745cf 2379 .read_map = mem_control_stat_show,
d2ceb9b7 2380 },
c1e862c1
KH
2381 {
2382 .name = "force_empty",
2383 .trigger = mem_cgroup_force_empty_write,
2384 },
18f59ea7
BS
2385 {
2386 .name = "use_hierarchy",
2387 .write_u64 = mem_cgroup_hierarchy_write,
2388 .read_u64 = mem_cgroup_hierarchy_read,
2389 },
a7885eb8
KM
2390 {
2391 .name = "swappiness",
2392 .read_u64 = mem_cgroup_swappiness_read,
2393 .write_u64 = mem_cgroup_swappiness_write,
2394 },
8cdea7c0
BS
2395};
2396
8c7c6e34
KH
2397#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2398static struct cftype memsw_cgroup_files[] = {
2399 {
2400 .name = "memsw.usage_in_bytes",
2401 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2402 .read_u64 = mem_cgroup_read,
2403 },
2404 {
2405 .name = "memsw.max_usage_in_bytes",
2406 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2407 .trigger = mem_cgroup_reset,
2408 .read_u64 = mem_cgroup_read,
2409 },
2410 {
2411 .name = "memsw.limit_in_bytes",
2412 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2413 .write_string = mem_cgroup_write,
2414 .read_u64 = mem_cgroup_read,
2415 },
2416 {
2417 .name = "memsw.failcnt",
2418 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2419 .trigger = mem_cgroup_reset,
2420 .read_u64 = mem_cgroup_read,
2421 },
2422};
2423
2424static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2425{
2426 if (!do_swap_account)
2427 return 0;
2428 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2429 ARRAY_SIZE(memsw_cgroup_files));
2430};
2431#else
2432static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2433{
2434 return 0;
2435}
2436#endif
2437
6d12e2d8
KH
2438static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2439{
2440 struct mem_cgroup_per_node *pn;
1ecaab2b 2441 struct mem_cgroup_per_zone *mz;
b69408e8 2442 enum lru_list l;
41e3355d 2443 int zone, tmp = node;
1ecaab2b
KH
2444 /*
2445 * This routine is called against possible nodes.
2446 * But it's BUG to call kmalloc() against offline node.
2447 *
2448 * TODO: this routine can waste much memory for nodes which will
2449 * never be onlined. It's better to use memory hotplug callback
2450 * function.
2451 */
41e3355d
KH
2452 if (!node_state(node, N_NORMAL_MEMORY))
2453 tmp = -1;
2454 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2455 if (!pn)
2456 return 1;
1ecaab2b 2457
6d12e2d8
KH
2458 mem->info.nodeinfo[node] = pn;
2459 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2460
2461 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2462 mz = &pn->zoneinfo[zone];
b69408e8
CL
2463 for_each_lru(l)
2464 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2465 }
6d12e2d8
KH
2466 return 0;
2467}
2468
1ecaab2b
KH
2469static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2470{
2471 kfree(mem->info.nodeinfo[node]);
2472}
2473
c8dad2bb
JB
2474static int mem_cgroup_size(void)
2475{
2476 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2477 return sizeof(struct mem_cgroup) + cpustat_size;
2478}
2479
33327948
KH
2480static struct mem_cgroup *mem_cgroup_alloc(void)
2481{
2482 struct mem_cgroup *mem;
c8dad2bb 2483 int size = mem_cgroup_size();
33327948 2484
c8dad2bb
JB
2485 if (size < PAGE_SIZE)
2486 mem = kmalloc(size, GFP_KERNEL);
33327948 2487 else
c8dad2bb 2488 mem = vmalloc(size);
33327948
KH
2489
2490 if (mem)
c8dad2bb 2491 memset(mem, 0, size);
33327948
KH
2492 return mem;
2493}
2494
8c7c6e34
KH
2495/*
2496 * At destroying mem_cgroup, references from swap_cgroup can remain.
2497 * (scanning all at force_empty is too costly...)
2498 *
2499 * Instead of clearing all references at force_empty, we remember
2500 * the number of reference from swap_cgroup and free mem_cgroup when
2501 * it goes down to 0.
2502 *
8c7c6e34
KH
2503 * Removal of cgroup itself succeeds regardless of refs from swap.
2504 */
2505
a7ba0eef 2506static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2507{
08e552c6
KH
2508 int node;
2509
04046e1a
KH
2510 free_css_id(&mem_cgroup_subsys, &mem->css);
2511
08e552c6
KH
2512 for_each_node_state(node, N_POSSIBLE)
2513 free_mem_cgroup_per_zone_info(mem, node);
2514
c8dad2bb 2515 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2516 kfree(mem);
2517 else
2518 vfree(mem);
2519}
2520
8c7c6e34
KH
2521static void mem_cgroup_get(struct mem_cgroup *mem)
2522{
2523 atomic_inc(&mem->refcnt);
2524}
2525
2526static void mem_cgroup_put(struct mem_cgroup *mem)
2527{
7bcc1bb1
DN
2528 if (atomic_dec_and_test(&mem->refcnt)) {
2529 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 2530 __mem_cgroup_free(mem);
7bcc1bb1
DN
2531 if (parent)
2532 mem_cgroup_put(parent);
2533 }
8c7c6e34
KH
2534}
2535
7bcc1bb1
DN
2536/*
2537 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2538 */
2539static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2540{
2541 if (!mem->res.parent)
2542 return NULL;
2543 return mem_cgroup_from_res_counter(mem->res.parent, res);
2544}
33327948 2545
c077719b
KH
2546#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2547static void __init enable_swap_cgroup(void)
2548{
f8d66542 2549 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2550 do_swap_account = 1;
2551}
2552#else
2553static void __init enable_swap_cgroup(void)
2554{
2555}
2556#endif
2557
0eb253e2 2558static struct cgroup_subsys_state * __ref
8cdea7c0
BS
2559mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2560{
28dbc4b6 2561 struct mem_cgroup *mem, *parent;
04046e1a 2562 long error = -ENOMEM;
6d12e2d8 2563 int node;
8cdea7c0 2564
c8dad2bb
JB
2565 mem = mem_cgroup_alloc();
2566 if (!mem)
04046e1a 2567 return ERR_PTR(error);
78fb7466 2568
6d12e2d8
KH
2569 for_each_node_state(node, N_POSSIBLE)
2570 if (alloc_mem_cgroup_per_zone_info(mem, node))
2571 goto free_out;
c077719b 2572 /* root ? */
28dbc4b6 2573 if (cont->parent == NULL) {
c077719b 2574 enable_swap_cgroup();
28dbc4b6 2575 parent = NULL;
4b3bde4c 2576 root_mem_cgroup = mem;
18f59ea7 2577 } else {
28dbc4b6 2578 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2579 mem->use_hierarchy = parent->use_hierarchy;
2580 }
28dbc4b6 2581
18f59ea7
BS
2582 if (parent && parent->use_hierarchy) {
2583 res_counter_init(&mem->res, &parent->res);
2584 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
2585 /*
2586 * We increment refcnt of the parent to ensure that we can
2587 * safely access it on res_counter_charge/uncharge.
2588 * This refcnt will be decremented when freeing this
2589 * mem_cgroup(see mem_cgroup_put).
2590 */
2591 mem_cgroup_get(parent);
18f59ea7
BS
2592 } else {
2593 res_counter_init(&mem->res, NULL);
2594 res_counter_init(&mem->memsw, NULL);
2595 }
04046e1a 2596 mem->last_scanned_child = 0;
2733c06a 2597 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2598
a7885eb8
KM
2599 if (parent)
2600 mem->swappiness = get_swappiness(parent);
a7ba0eef 2601 atomic_set(&mem->refcnt, 1);
8cdea7c0 2602 return &mem->css;
6d12e2d8 2603free_out:
a7ba0eef 2604 __mem_cgroup_free(mem);
4b3bde4c 2605 root_mem_cgroup = NULL;
04046e1a 2606 return ERR_PTR(error);
8cdea7c0
BS
2607}
2608
ec64f515 2609static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
2610 struct cgroup *cont)
2611{
2612 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
2613
2614 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
2615}
2616
8cdea7c0
BS
2617static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2618 struct cgroup *cont)
2619{
c268e994 2620 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 2621
c268e994 2622 mem_cgroup_put(mem);
8cdea7c0
BS
2623}
2624
2625static int mem_cgroup_populate(struct cgroup_subsys *ss,
2626 struct cgroup *cont)
2627{
8c7c6e34
KH
2628 int ret;
2629
2630 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2631 ARRAY_SIZE(mem_cgroup_files));
2632
2633 if (!ret)
2634 ret = register_memsw_files(cont, ss);
2635 return ret;
8cdea7c0
BS
2636}
2637
67e465a7
BS
2638static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2639 struct cgroup *cont,
2640 struct cgroup *old_cont,
be367d09
BB
2641 struct task_struct *p,
2642 bool threadgroup)
67e465a7 2643{
7f4d454d 2644 mutex_lock(&memcg_tasklist);
67e465a7 2645 /*
f9717d28
NK
2646 * FIXME: It's better to move charges of this process from old
2647 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2648 */
7f4d454d 2649 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2650}
2651
8cdea7c0
BS
2652struct cgroup_subsys mem_cgroup_subsys = {
2653 .name = "memory",
2654 .subsys_id = mem_cgroup_subsys_id,
2655 .create = mem_cgroup_create,
df878fb0 2656 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2657 .destroy = mem_cgroup_destroy,
2658 .populate = mem_cgroup_populate,
67e465a7 2659 .attach = mem_cgroup_move_task,
6d12e2d8 2660 .early_init = 0,
04046e1a 2661 .use_id = 1,
8cdea7c0 2662};
c077719b
KH
2663
2664#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2665
2666static int __init disable_swap_account(char *s)
2667{
2668 really_do_swap_account = 0;
2669 return 1;
2670}
2671__setup("noswapaccount", disable_swap_account);
2672#endif