]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: mem_cgroup_charge never NULL
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
66e1707b
BS
29#include <linux/swap.h>
30#include <linux/spinlock.h>
31#include <linux/fs.h>
d2ceb9b7 32#include <linux/seq_file.h>
8cdea7c0 33
8697d331
BS
34#include <asm/uaccess.h>
35
8cdea7c0 36struct cgroup_subsys mem_cgroup_subsys;
66e1707b 37static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
8cdea7c0 38
d52aa412
KH
39/*
40 * Statistics for memory cgroup.
41 */
42enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50};
51
52struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54} ____cacheline_aligned_in_smp;
55
56struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58};
59
60/*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65{
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68}
69
70static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72{
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78}
79
6d12e2d8
KH
80/*
81 * per-zone information in memory controller.
82 */
83
84enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89};
90
91struct mem_cgroup_per_zone {
072c56c1
KH
92 /*
93 * spin_lock to protect the per cgroup LRU
94 */
95 spinlock_t lru_lock;
1ecaab2b
KH
96 struct list_head active_list;
97 struct list_head inactive_list;
6d12e2d8
KH
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
99};
100/* Macro for accessing counter */
101#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
102
103struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105};
106
107struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109};
110
8cdea7c0
BS
111/*
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
116 *
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
8cdea7c0
BS
121 */
122struct mem_cgroup {
123 struct cgroup_subsys_state css;
124 /*
125 * the counter to account for memory usage
126 */
127 struct res_counter res;
78fb7466
PE
128 /*
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
78fb7466 131 */
6d12e2d8 132 struct mem_cgroup_lru_info info;
072c56c1 133
6c48a1d0 134 int prev_priority; /* for recording reclaim priority */
d52aa412
KH
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
8cdea7c0
BS
139};
140
8a9f3ccd
BS
141/*
142 * We use the lower bit of the page->page_cgroup pointer as a bit spin
9442ec9d
HD
143 * lock. We need to ensure that page->page_cgroup is at least two
144 * byte aligned (based on comments from Nick Piggin). But since
145 * bit_spin_lock doesn't actually set that lock bit in a non-debug
146 * uniprocessor kernel, we should avoid setting it here too.
8a9f3ccd
BS
147 */
148#define PAGE_CGROUP_LOCK_BIT 0x0
9442ec9d
HD
149#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
150#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
151#else
152#define PAGE_CGROUP_LOCK 0x0
153#endif
8a9f3ccd 154
8cdea7c0
BS
155/*
156 * A page_cgroup page is associated with every page descriptor. The
157 * page_cgroup helps us identify information about the cgroup
158 */
159struct page_cgroup {
160 struct list_head lru; /* per cgroup LRU list */
161 struct page *page;
162 struct mem_cgroup *mem_cgroup;
8a9f3ccd
BS
163 atomic_t ref_cnt; /* Helpful when pages move b/w */
164 /* mapped and cached states */
217bc319 165 int flags;
8cdea7c0 166};
217bc319 167#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
3564c7c4 168#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
8cdea7c0 169
c0149530
KH
170static inline int page_cgroup_nid(struct page_cgroup *pc)
171{
172 return page_to_nid(pc->page);
173}
174
175static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
176{
177 return page_zonenum(pc->page);
178}
179
8697d331
BS
180enum {
181 MEM_CGROUP_TYPE_UNSPEC = 0,
182 MEM_CGROUP_TYPE_MAPPED,
183 MEM_CGROUP_TYPE_CACHED,
184 MEM_CGROUP_TYPE_ALL,
185 MEM_CGROUP_TYPE_MAX,
186};
187
217bc319
KH
188enum charge_type {
189 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
190 MEM_CGROUP_CHARGE_TYPE_MAPPED,
191};
192
6d12e2d8 193
d52aa412
KH
194/*
195 * Always modified under lru lock. Then, not necessary to preempt_disable()
196 */
197static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
198 bool charge)
199{
200 int val = (charge)? 1 : -1;
201 struct mem_cgroup_stat *stat = &mem->stat;
202 VM_BUG_ON(!irqs_disabled());
203
204 if (flags & PAGE_CGROUP_FLAG_CACHE)
205 __mem_cgroup_stat_add_safe(stat,
206 MEM_CGROUP_STAT_CACHE, val);
207 else
208 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
6d12e2d8
KH
209}
210
211static inline struct mem_cgroup_per_zone *
212mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
213{
214 BUG_ON(!mem->info.nodeinfo[nid]);
215 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
216}
217
218static inline struct mem_cgroup_per_zone *
219page_cgroup_zoneinfo(struct page_cgroup *pc)
220{
221 struct mem_cgroup *mem = pc->mem_cgroup;
222 int nid = page_cgroup_nid(pc);
223 int zid = page_cgroup_zid(pc);
d52aa412 224
6d12e2d8
KH
225 return mem_cgroup_zoneinfo(mem, nid, zid);
226}
227
228static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
229 enum mem_cgroup_zstat_index idx)
230{
231 int nid, zid;
232 struct mem_cgroup_per_zone *mz;
233 u64 total = 0;
234
235 for_each_online_node(nid)
236 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
237 mz = mem_cgroup_zoneinfo(mem, nid, zid);
238 total += MEM_CGROUP_ZSTAT(mz, idx);
239 }
240 return total;
d52aa412
KH
241}
242
8697d331 243static struct mem_cgroup init_mem_cgroup;
8cdea7c0
BS
244
245static inline
246struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
247{
248 return container_of(cgroup_subsys_state(cont,
249 mem_cgroup_subsys_id), struct mem_cgroup,
250 css);
251}
252
78fb7466
PE
253static inline
254struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
255{
256 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
257 struct mem_cgroup, css);
258}
259
260void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
261{
262 struct mem_cgroup *mem;
263
264 mem = mem_cgroup_from_task(p);
265 css_get(&mem->css);
266 mm->mem_cgroup = mem;
267}
268
269void mm_free_cgroup(struct mm_struct *mm)
270{
271 css_put(&mm->mem_cgroup->css);
272}
273
8a9f3ccd
BS
274static inline int page_cgroup_locked(struct page *page)
275{
276 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
277 &page->page_cgroup);
278}
279
9442ec9d 280static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
78fb7466 281{
9442ec9d
HD
282 VM_BUG_ON(!page_cgroup_locked(page));
283 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
78fb7466
PE
284}
285
286struct page_cgroup *page_get_page_cgroup(struct page *page)
287{
8a9f3ccd
BS
288 return (struct page_cgroup *)
289 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
290}
291
8697d331 292static void __always_inline lock_page_cgroup(struct page *page)
8a9f3ccd
BS
293{
294 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
295 VM_BUG_ON(!page_cgroup_locked(page));
296}
297
8697d331 298static void __always_inline unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
299{
300 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
301}
302
9175e031
KH
303/*
304 * Clear page->page_cgroup member under lock_page_cgroup().
305 * If given "pc" value is different from one page->page_cgroup,
306 * page->cgroup is not cleared.
307 * Returns a value of page->page_cgroup at lock taken.
308 * A can can detect failure of clearing by following
309 * clear_page_cgroup(page, pc) == pc
310 */
311
d52aa412
KH
312static struct page_cgroup *clear_page_cgroup(struct page *page,
313 struct page_cgroup *pc)
9175e031
KH
314{
315 struct page_cgroup *ret;
316 /* lock and clear */
317 lock_page_cgroup(page);
318 ret = page_get_page_cgroup(page);
319 if (likely(ret == pc))
320 page_assign_page_cgroup(page, NULL);
321 unlock_page_cgroup(page);
322 return ret;
323}
324
6d12e2d8
KH
325static void __mem_cgroup_remove_list(struct page_cgroup *pc)
326{
327 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
328 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
329
330 if (from)
331 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
332 else
333 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
334
335 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
336 list_del_init(&pc->lru);
337}
338
339static void __mem_cgroup_add_list(struct page_cgroup *pc)
340{
341 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
342 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
343
344 if (!to) {
345 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
1ecaab2b 346 list_add(&pc->lru, &mz->inactive_list);
6d12e2d8
KH
347 } else {
348 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
1ecaab2b 349 list_add(&pc->lru, &mz->active_list);
6d12e2d8
KH
350 }
351 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
352}
353
8697d331 354static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b 355{
6d12e2d8
KH
356 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
357 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
358
359 if (from)
360 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
361 else
362 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
363
3564c7c4 364 if (active) {
6d12e2d8 365 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
3564c7c4 366 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 367 list_move(&pc->lru, &mz->active_list);
3564c7c4 368 } else {
6d12e2d8 369 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
3564c7c4 370 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 371 list_move(&pc->lru, &mz->inactive_list);
3564c7c4 372 }
66e1707b
BS
373}
374
4c4a2214
DR
375int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
376{
377 int ret;
378
379 task_lock(task);
bd845e38 380 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
381 task_unlock(task);
382 return ret;
383}
384
66e1707b
BS
385/*
386 * This routine assumes that the appropriate zone's lru lock is already held
387 */
427d5416 388void mem_cgroup_move_lists(struct page *page, bool active)
66e1707b 389{
427d5416 390 struct page_cgroup *pc;
072c56c1
KH
391 struct mem_cgroup_per_zone *mz;
392 unsigned long flags;
393
427d5416 394 pc = page_get_page_cgroup(page);
66e1707b
BS
395 if (!pc)
396 return;
397
072c56c1
KH
398 mz = page_cgroup_zoneinfo(pc);
399 spin_lock_irqsave(&mz->lru_lock, flags);
66e1707b 400 __mem_cgroup_move_lists(pc, active);
072c56c1 401 spin_unlock_irqrestore(&mz->lru_lock, flags);
66e1707b
BS
402}
403
58ae83db
KH
404/*
405 * Calculate mapped_ratio under memory controller. This will be used in
406 * vmscan.c for deteremining we have to reclaim mapped pages.
407 */
408int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
409{
410 long total, rss;
411
412 /*
413 * usage is recorded in bytes. But, here, we assume the number of
414 * physical pages can be represented by "long" on any arch.
415 */
416 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
417 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
418 return (int)((rss * 100L) / total);
419}
5932f367
KH
420/*
421 * This function is called from vmscan.c. In page reclaiming loop. balance
422 * between active and inactive list is calculated. For memory controller
423 * page reclaiming, we should use using mem_cgroup's imbalance rather than
424 * zone's global lru imbalance.
425 */
426long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
427{
428 unsigned long active, inactive;
429 /* active and inactive are the number of pages. 'long' is ok.*/
430 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
431 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
432 return (long) (active / (inactive + 1));
433}
58ae83db 434
6c48a1d0
KH
435/*
436 * prev_priority control...this will be used in memory reclaim path.
437 */
438int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
439{
440 return mem->prev_priority;
441}
442
443void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
444{
445 if (priority < mem->prev_priority)
446 mem->prev_priority = priority;
447}
448
449void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
450{
451 mem->prev_priority = priority;
452}
453
cc38108e
KH
454/*
455 * Calculate # of pages to be scanned in this priority/zone.
456 * See also vmscan.c
457 *
458 * priority starts from "DEF_PRIORITY" and decremented in each loop.
459 * (see include/linux/mmzone.h)
460 */
461
462long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
463 struct zone *zone, int priority)
464{
465 long nr_active;
466 int nid = zone->zone_pgdat->node_id;
467 int zid = zone_idx(zone);
468 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
469
470 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
471 return (nr_active >> priority);
472}
473
474long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
475 struct zone *zone, int priority)
476{
477 long nr_inactive;
478 int nid = zone->zone_pgdat->node_id;
479 int zid = zone_idx(zone);
480 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
481
482 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
483
484 return (nr_inactive >> priority);
485}
486
66e1707b
BS
487unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
488 struct list_head *dst,
489 unsigned long *scanned, int order,
490 int mode, struct zone *z,
491 struct mem_cgroup *mem_cont,
492 int active)
493{
494 unsigned long nr_taken = 0;
495 struct page *page;
496 unsigned long scan;
497 LIST_HEAD(pc_list);
498 struct list_head *src;
ff7283fa 499 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
500 int nid = z->zone_pgdat->node_id;
501 int zid = zone_idx(z);
502 struct mem_cgroup_per_zone *mz;
66e1707b 503
1ecaab2b 504 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
66e1707b 505 if (active)
1ecaab2b 506 src = &mz->active_list;
66e1707b 507 else
1ecaab2b
KH
508 src = &mz->inactive_list;
509
66e1707b 510
072c56c1 511 spin_lock(&mz->lru_lock);
ff7283fa
KH
512 scan = 0;
513 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 514 if (scan >= nr_to_scan)
ff7283fa 515 break;
66e1707b 516 page = pc->page;
66e1707b 517
436c6541 518 if (unlikely(!PageLRU(page)))
ff7283fa 519 continue;
ff7283fa 520
66e1707b
BS
521 if (PageActive(page) && !active) {
522 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
523 continue;
524 }
525 if (!PageActive(page) && active) {
526 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
527 continue;
528 }
529
436c6541
HD
530 scan++;
531 list_move(&pc->lru, &pc_list);
66e1707b
BS
532
533 if (__isolate_lru_page(page, mode) == 0) {
534 list_move(&page->lru, dst);
535 nr_taken++;
536 }
537 }
538
539 list_splice(&pc_list, src);
072c56c1 540 spin_unlock(&mz->lru_lock);
66e1707b
BS
541
542 *scanned = scan;
543 return nr_taken;
544}
545
8a9f3ccd
BS
546/*
547 * Charge the memory controller for page usage.
548 * Return
549 * 0 if the charge was successful
550 * < 0 if the cgroup is over its limit
551 */
217bc319
KH
552static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
553 gfp_t gfp_mask, enum charge_type ctype)
8a9f3ccd
BS
554{
555 struct mem_cgroup *mem;
9175e031 556 struct page_cgroup *pc;
66e1707b
BS
557 unsigned long flags;
558 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
072c56c1 559 struct mem_cgroup_per_zone *mz;
8a9f3ccd
BS
560
561 /*
562 * Should page_cgroup's go to their own slab?
563 * One could optimize the performance of the charging routine
564 * by saving a bit in the page_flags and using it as a lock
565 * to see if the cgroup page already has a page_cgroup associated
566 * with it
567 */
66e1707b 568retry:
7e924aaf
HD
569 lock_page_cgroup(page);
570 pc = page_get_page_cgroup(page);
571 /*
572 * The page_cgroup exists and
573 * the page has already been accounted.
574 */
575 if (pc) {
576 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
577 /* this page is under being uncharged ? */
578 unlock_page_cgroup(page);
579 cpu_relax();
580 goto retry;
581 } else {
582 unlock_page_cgroup(page);
583 goto done;
9175e031 584 }
8a9f3ccd 585 }
7e924aaf 586 unlock_page_cgroup(page);
8a9f3ccd 587
e1a1cd59 588 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
8a9f3ccd
BS
589 if (pc == NULL)
590 goto err;
591
8a9f3ccd 592 /*
3be91277
HD
593 * We always charge the cgroup the mm_struct belongs to.
594 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
595 * thread group leader migrates. It's possible that mm is not
596 * set, if so charge the init_mm (happens for pagecache usage).
597 */
598 if (!mm)
599 mm = &init_mm;
600
3be91277 601 rcu_read_lock();
8a9f3ccd
BS
602 mem = rcu_dereference(mm->mem_cgroup);
603 /*
604 * For every charge from the cgroup, increment reference
605 * count
606 */
607 css_get(&mem->css);
608 rcu_read_unlock();
609
610 /*
611 * If we created the page_cgroup, we should free it on exceeding
612 * the cgroup limit.
613 */
0eea1030 614 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
615 if (!(gfp_mask & __GFP_WAIT))
616 goto out;
e1a1cd59
BS
617
618 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
619 continue;
620
621 /*
622 * try_to_free_mem_cgroup_pages() might not give us a full
623 * picture of reclaim. Some pages are reclaimed and might be
624 * moved to swap cache or just unmapped from the cgroup.
625 * Check the limit again to see if the reclaim reduced the
626 * current usage of the cgroup before giving up
627 */
628 if (res_counter_check_under_limit(&mem->res))
629 continue;
3be91277
HD
630
631 if (!nr_retries--) {
632 mem_cgroup_out_of_memory(mem, gfp_mask);
633 goto out;
66e1707b 634 }
3be91277 635 congestion_wait(WRITE, HZ/10);
8a9f3ccd
BS
636 }
637
8a9f3ccd
BS
638 atomic_set(&pc->ref_cnt, 1);
639 pc->mem_cgroup = mem;
640 pc->page = page;
3564c7c4 641 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
217bc319
KH
642 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
643 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
3be91277 644
7e924aaf
HD
645 lock_page_cgroup(page);
646 if (page_get_page_cgroup(page)) {
647 unlock_page_cgroup(page);
9175e031 648 /*
3be91277
HD
649 * Another charge has been added to this page already.
650 * We take lock_page_cgroup(page) again and read
9175e031
KH
651 * page->cgroup, increment refcnt.... just retry is OK.
652 */
653 res_counter_uncharge(&mem->res, PAGE_SIZE);
654 css_put(&mem->css);
655 kfree(pc);
656 goto retry;
657 }
7e924aaf
HD
658 page_assign_page_cgroup(page, pc);
659 unlock_page_cgroup(page);
8a9f3ccd 660
072c56c1
KH
661 mz = page_cgroup_zoneinfo(pc);
662 spin_lock_irqsave(&mz->lru_lock, flags);
d52aa412 663 /* Update statistics vector */
6d12e2d8 664 __mem_cgroup_add_list(pc);
072c56c1 665 spin_unlock_irqrestore(&mz->lru_lock, flags);
66e1707b 666
8a9f3ccd 667done:
8a9f3ccd 668 return 0;
3be91277
HD
669out:
670 css_put(&mem->css);
8a9f3ccd 671 kfree(pc);
8a9f3ccd 672err:
8a9f3ccd
BS
673 return -ENOMEM;
674}
675
217bc319
KH
676int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
677 gfp_t gfp_mask)
678{
679 return mem_cgroup_charge_common(page, mm, gfp_mask,
680 MEM_CGROUP_CHARGE_TYPE_MAPPED);
681}
682
8697d331
BS
683/*
684 * See if the cached pages should be charged at all?
685 */
e1a1cd59
BS
686int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
687 gfp_t gfp_mask)
8697d331 688{
ac44d354 689 int ret = 0;
8697d331
BS
690 if (!mm)
691 mm = &init_mm;
692
3c541e14 693 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
217bc319 694 MEM_CGROUP_CHARGE_TYPE_CACHE);
ac44d354 695 return ret;
8697d331
BS
696}
697
8a9f3ccd
BS
698/*
699 * Uncharging is always a welcome operation, we never complain, simply
3c541e14 700 * uncharge. This routine should be called with lock_page_cgroup held
8a9f3ccd
BS
701 */
702void mem_cgroup_uncharge(struct page_cgroup *pc)
703{
704 struct mem_cgroup *mem;
072c56c1 705 struct mem_cgroup_per_zone *mz;
8a9f3ccd 706 struct page *page;
66e1707b 707 unsigned long flags;
8a9f3ccd 708
8697d331 709 /*
3c541e14 710 * Check if our page_cgroup is valid
8697d331 711 */
8a9f3ccd
BS
712 if (!pc)
713 return;
714
715 if (atomic_dec_and_test(&pc->ref_cnt)) {
716 page = pc->page;
072c56c1 717 mz = page_cgroup_zoneinfo(pc);
9175e031
KH
718 /*
719 * get page->cgroup and clear it under lock.
cc847582 720 * force_empty can drop page->cgroup without checking refcnt.
9175e031 721 */
3c541e14 722 unlock_page_cgroup(page);
9175e031
KH
723 if (clear_page_cgroup(page, pc) == pc) {
724 mem = pc->mem_cgroup;
725 css_put(&mem->css);
726 res_counter_uncharge(&mem->res, PAGE_SIZE);
072c56c1 727 spin_lock_irqsave(&mz->lru_lock, flags);
6d12e2d8 728 __mem_cgroup_remove_list(pc);
072c56c1 729 spin_unlock_irqrestore(&mz->lru_lock, flags);
9175e031 730 kfree(pc);
9175e031 731 }
3c541e14 732 lock_page_cgroup(page);
8a9f3ccd 733 }
78fb7466 734}
6d12e2d8 735
3c541e14
BS
736void mem_cgroup_uncharge_page(struct page *page)
737{
738 lock_page_cgroup(page);
739 mem_cgroup_uncharge(page_get_page_cgroup(page));
740 unlock_page_cgroup(page);
741}
742
ae41be37
KH
743/*
744 * Returns non-zero if a page (under migration) has valid page_cgroup member.
745 * Refcnt of page_cgroup is incremented.
746 */
747
748int mem_cgroup_prepare_migration(struct page *page)
749{
750 struct page_cgroup *pc;
751 int ret = 0;
752 lock_page_cgroup(page);
753 pc = page_get_page_cgroup(page);
754 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
755 ret = 1;
756 unlock_page_cgroup(page);
757 return ret;
758}
759
760void mem_cgroup_end_migration(struct page *page)
761{
3c541e14
BS
762 struct page_cgroup *pc;
763
764 lock_page_cgroup(page);
765 pc = page_get_page_cgroup(page);
ae41be37 766 mem_cgroup_uncharge(pc);
3c541e14 767 unlock_page_cgroup(page);
ae41be37
KH
768}
769/*
770 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
771 * And no race with uncharge() routines because page_cgroup for *page*
772 * has extra one reference by mem_cgroup_prepare_migration.
773 */
774
775void mem_cgroup_page_migration(struct page *page, struct page *newpage)
776{
777 struct page_cgroup *pc;
6d12e2d8
KH
778 struct mem_cgroup *mem;
779 unsigned long flags;
072c56c1 780 struct mem_cgroup_per_zone *mz;
ae41be37
KH
781retry:
782 pc = page_get_page_cgroup(page);
783 if (!pc)
784 return;
6d12e2d8 785 mem = pc->mem_cgroup;
072c56c1 786 mz = page_cgroup_zoneinfo(pc);
ae41be37
KH
787 if (clear_page_cgroup(page, pc) != pc)
788 goto retry;
072c56c1 789 spin_lock_irqsave(&mz->lru_lock, flags);
6d12e2d8
KH
790
791 __mem_cgroup_remove_list(pc);
072c56c1
KH
792 spin_unlock_irqrestore(&mz->lru_lock, flags);
793
ae41be37
KH
794 pc->page = newpage;
795 lock_page_cgroup(newpage);
796 page_assign_page_cgroup(newpage, pc);
797 unlock_page_cgroup(newpage);
6d12e2d8 798
072c56c1
KH
799 mz = page_cgroup_zoneinfo(pc);
800 spin_lock_irqsave(&mz->lru_lock, flags);
801 __mem_cgroup_add_list(pc);
802 spin_unlock_irqrestore(&mz->lru_lock, flags);
ae41be37
KH
803 return;
804}
78fb7466 805
cc847582
KH
806/*
807 * This routine traverse page_cgroup in given list and drop them all.
808 * This routine ignores page_cgroup->ref_cnt.
809 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
810 */
811#define FORCE_UNCHARGE_BATCH (128)
812static void
072c56c1
KH
813mem_cgroup_force_empty_list(struct mem_cgroup *mem,
814 struct mem_cgroup_per_zone *mz,
815 int active)
cc847582
KH
816{
817 struct page_cgroup *pc;
818 struct page *page;
819 int count;
820 unsigned long flags;
072c56c1
KH
821 struct list_head *list;
822
823 if (active)
824 list = &mz->active_list;
825 else
826 list = &mz->inactive_list;
cc847582 827
1ecaab2b
KH
828 if (list_empty(list))
829 return;
cc847582
KH
830retry:
831 count = FORCE_UNCHARGE_BATCH;
072c56c1 832 spin_lock_irqsave(&mz->lru_lock, flags);
cc847582
KH
833
834 while (--count && !list_empty(list)) {
835 pc = list_entry(list->prev, struct page_cgroup, lru);
836 page = pc->page;
837 /* Avoid race with charge */
838 atomic_set(&pc->ref_cnt, 0);
839 if (clear_page_cgroup(page, pc) == pc) {
840 css_put(&mem->css);
841 res_counter_uncharge(&mem->res, PAGE_SIZE);
6d12e2d8 842 __mem_cgroup_remove_list(pc);
cc847582
KH
843 kfree(pc);
844 } else /* being uncharged ? ...do relax */
845 break;
846 }
072c56c1 847 spin_unlock_irqrestore(&mz->lru_lock, flags);
cc847582
KH
848 if (!list_empty(list)) {
849 cond_resched();
850 goto retry;
851 }
852 return;
853}
854
855/*
856 * make mem_cgroup's charge to be 0 if there is no task.
857 * This enables deleting this mem_cgroup.
858 */
859
860int mem_cgroup_force_empty(struct mem_cgroup *mem)
861{
862 int ret = -EBUSY;
1ecaab2b 863 int node, zid;
cc847582
KH
864 css_get(&mem->css);
865 /*
866 * page reclaim code (kswapd etc..) will move pages between
867` * active_list <-> inactive_list while we don't take a lock.
868 * So, we have to do loop here until all lists are empty.
869 */
1ecaab2b 870 while (mem->res.usage > 0) {
cc847582
KH
871 if (atomic_read(&mem->css.cgroup->count) > 0)
872 goto out;
1ecaab2b
KH
873 for_each_node_state(node, N_POSSIBLE)
874 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
875 struct mem_cgroup_per_zone *mz;
876 mz = mem_cgroup_zoneinfo(mem, node, zid);
877 /* drop all page_cgroup in active_list */
072c56c1 878 mem_cgroup_force_empty_list(mem, mz, 1);
1ecaab2b 879 /* drop all page_cgroup in inactive_list */
072c56c1 880 mem_cgroup_force_empty_list(mem, mz, 0);
1ecaab2b 881 }
cc847582
KH
882 }
883 ret = 0;
884out:
885 css_put(&mem->css);
886 return ret;
887}
888
889
890
0eea1030
BS
891int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
892{
893 *tmp = memparse(buf, &buf);
894 if (*buf != '\0')
895 return -EINVAL;
896
897 /*
898 * Round up the value to the closest page size
899 */
900 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
901 return 0;
902}
903
904static ssize_t mem_cgroup_read(struct cgroup *cont,
905 struct cftype *cft, struct file *file,
906 char __user *userbuf, size_t nbytes, loff_t *ppos)
8cdea7c0
BS
907{
908 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
909 cft->private, userbuf, nbytes, ppos,
910 NULL);
8cdea7c0
BS
911}
912
913static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
914 struct file *file, const char __user *userbuf,
915 size_t nbytes, loff_t *ppos)
916{
917 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
918 cft->private, userbuf, nbytes, ppos,
919 mem_cgroup_write_strategy);
8cdea7c0
BS
920}
921
cc847582
KH
922static ssize_t mem_force_empty_write(struct cgroup *cont,
923 struct cftype *cft, struct file *file,
924 const char __user *userbuf,
925 size_t nbytes, loff_t *ppos)
926{
927 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
928 int ret;
929 ret = mem_cgroup_force_empty(mem);
930 if (!ret)
931 ret = nbytes;
932 return ret;
933}
934
935/*
936 * Note: This should be removed if cgroup supports write-only file.
937 */
938
939static ssize_t mem_force_empty_read(struct cgroup *cont,
940 struct cftype *cft,
941 struct file *file, char __user *userbuf,
942 size_t nbytes, loff_t *ppos)
943{
944 return -EINVAL;
945}
946
947
d2ceb9b7
KH
948static const struct mem_cgroup_stat_desc {
949 const char *msg;
950 u64 unit;
951} mem_cgroup_stat_desc[] = {
952 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
953 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
954};
955
956static int mem_control_stat_show(struct seq_file *m, void *arg)
957{
958 struct cgroup *cont = m->private;
959 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
960 struct mem_cgroup_stat *stat = &mem_cont->stat;
961 int i;
962
963 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
964 s64 val;
965
966 val = mem_cgroup_read_stat(stat, i);
967 val *= mem_cgroup_stat_desc[i].unit;
968 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
969 (long long)val);
970 }
6d12e2d8
KH
971 /* showing # of active pages */
972 {
973 unsigned long active, inactive;
974
975 inactive = mem_cgroup_get_all_zonestat(mem_cont,
976 MEM_CGROUP_ZSTAT_INACTIVE);
977 active = mem_cgroup_get_all_zonestat(mem_cont,
978 MEM_CGROUP_ZSTAT_ACTIVE);
979 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
980 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
981 }
d2ceb9b7
KH
982 return 0;
983}
984
985static const struct file_operations mem_control_stat_file_operations = {
986 .read = seq_read,
987 .llseek = seq_lseek,
988 .release = single_release,
989};
990
991static int mem_control_stat_open(struct inode *unused, struct file *file)
992{
993 /* XXX __d_cont */
994 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
995
996 file->f_op = &mem_control_stat_file_operations;
997 return single_open(file, mem_control_stat_show, cont);
998}
999
1000
1001
8cdea7c0
BS
1002static struct cftype mem_cgroup_files[] = {
1003 {
0eea1030 1004 .name = "usage_in_bytes",
8cdea7c0
BS
1005 .private = RES_USAGE,
1006 .read = mem_cgroup_read,
1007 },
1008 {
0eea1030 1009 .name = "limit_in_bytes",
8cdea7c0
BS
1010 .private = RES_LIMIT,
1011 .write = mem_cgroup_write,
1012 .read = mem_cgroup_read,
1013 },
1014 {
1015 .name = "failcnt",
1016 .private = RES_FAILCNT,
1017 .read = mem_cgroup_read,
1018 },
cc847582
KH
1019 {
1020 .name = "force_empty",
1021 .write = mem_force_empty_write,
1022 .read = mem_force_empty_read,
1023 },
d2ceb9b7
KH
1024 {
1025 .name = "stat",
1026 .open = mem_control_stat_open,
1027 },
8cdea7c0
BS
1028};
1029
6d12e2d8
KH
1030static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1031{
1032 struct mem_cgroup_per_node *pn;
1ecaab2b
KH
1033 struct mem_cgroup_per_zone *mz;
1034 int zone;
1035 /*
1036 * This routine is called against possible nodes.
1037 * But it's BUG to call kmalloc() against offline node.
1038 *
1039 * TODO: this routine can waste much memory for nodes which will
1040 * never be onlined. It's better to use memory hotplug callback
1041 * function.
1042 */
1043 if (node_state(node, N_HIGH_MEMORY))
1044 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1045 else
1046 pn = kmalloc(sizeof(*pn), GFP_KERNEL);
6d12e2d8
KH
1047 if (!pn)
1048 return 1;
1ecaab2b 1049
6d12e2d8
KH
1050 mem->info.nodeinfo[node] = pn;
1051 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1052
1053 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1054 mz = &pn->zoneinfo[zone];
1055 INIT_LIST_HEAD(&mz->active_list);
1056 INIT_LIST_HEAD(&mz->inactive_list);
072c56c1 1057 spin_lock_init(&mz->lru_lock);
1ecaab2b 1058 }
6d12e2d8
KH
1059 return 0;
1060}
1061
1ecaab2b
KH
1062static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1063{
1064 kfree(mem->info.nodeinfo[node]);
1065}
1066
1067
78fb7466
PE
1068static struct mem_cgroup init_mem_cgroup;
1069
8cdea7c0
BS
1070static struct cgroup_subsys_state *
1071mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1072{
1073 struct mem_cgroup *mem;
6d12e2d8 1074 int node;
8cdea7c0 1075
78fb7466
PE
1076 if (unlikely((cont->parent) == NULL)) {
1077 mem = &init_mem_cgroup;
1078 init_mm.mem_cgroup = mem;
1079 } else
1080 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1081
1082 if (mem == NULL)
2dda81ca 1083 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1084
1085 res_counter_init(&mem->res);
1ecaab2b 1086
6d12e2d8
KH
1087 memset(&mem->info, 0, sizeof(mem->info));
1088
1089 for_each_node_state(node, N_POSSIBLE)
1090 if (alloc_mem_cgroup_per_zone_info(mem, node))
1091 goto free_out;
1092
8cdea7c0 1093 return &mem->css;
6d12e2d8
KH
1094free_out:
1095 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1096 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8
KH
1097 if (cont->parent != NULL)
1098 kfree(mem);
2dda81ca 1099 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1100}
1101
df878fb0
KH
1102static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1103 struct cgroup *cont)
1104{
1105 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1106 mem_cgroup_force_empty(mem);
1107}
1108
8cdea7c0
BS
1109static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1110 struct cgroup *cont)
1111{
6d12e2d8
KH
1112 int node;
1113 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1114
1115 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1116 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1117
8cdea7c0
BS
1118 kfree(mem_cgroup_from_cont(cont));
1119}
1120
1121static int mem_cgroup_populate(struct cgroup_subsys *ss,
1122 struct cgroup *cont)
1123{
1124 return cgroup_add_files(cont, ss, mem_cgroup_files,
1125 ARRAY_SIZE(mem_cgroup_files));
1126}
1127
67e465a7
BS
1128static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1129 struct cgroup *cont,
1130 struct cgroup *old_cont,
1131 struct task_struct *p)
1132{
1133 struct mm_struct *mm;
1134 struct mem_cgroup *mem, *old_mem;
1135
1136 mm = get_task_mm(p);
1137 if (mm == NULL)
1138 return;
1139
1140 mem = mem_cgroup_from_cont(cont);
1141 old_mem = mem_cgroup_from_cont(old_cont);
1142
1143 if (mem == old_mem)
1144 goto out;
1145
1146 /*
1147 * Only thread group leaders are allowed to migrate, the mm_struct is
1148 * in effect owned by the leader
1149 */
1150 if (p->tgid != p->pid)
1151 goto out;
1152
1153 css_get(&mem->css);
1154 rcu_assign_pointer(mm->mem_cgroup, mem);
1155 css_put(&old_mem->css);
1156
1157out:
1158 mmput(mm);
1159 return;
1160}
1161
8cdea7c0
BS
1162struct cgroup_subsys mem_cgroup_subsys = {
1163 .name = "memory",
1164 .subsys_id = mem_cgroup_subsys_id,
1165 .create = mem_cgroup_create,
df878fb0 1166 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1167 .destroy = mem_cgroup_destroy,
1168 .populate = mem_cgroup_populate,
67e465a7 1169 .attach = mem_cgroup_move_task,
6d12e2d8 1170 .early_init = 0,
8cdea7c0 1171};