]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
per-zone and reclaim enhancements for memory controller: per zone lru for cgroup
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
66e1707b
BS
29#include <linux/swap.h>
30#include <linux/spinlock.h>
31#include <linux/fs.h>
d2ceb9b7 32#include <linux/seq_file.h>
8cdea7c0 33
8697d331
BS
34#include <asm/uaccess.h>
35
8cdea7c0 36struct cgroup_subsys mem_cgroup_subsys;
66e1707b 37static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
8cdea7c0 38
d52aa412
KH
39/*
40 * Statistics for memory cgroup.
41 */
42enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50};
51
52struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54} ____cacheline_aligned_in_smp;
55
56struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58};
59
60/*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65{
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68}
69
70static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72{
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78}
79
6d12e2d8
KH
80/*
81 * per-zone information in memory controller.
82 */
83
84enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89};
90
91struct mem_cgroup_per_zone {
1ecaab2b
KH
92 struct list_head active_list;
93 struct list_head inactive_list;
6d12e2d8
KH
94 unsigned long count[NR_MEM_CGROUP_ZSTAT];
95};
96/* Macro for accessing counter */
97#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
98
99struct mem_cgroup_per_node {
100 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
101};
102
103struct mem_cgroup_lru_info {
104 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
105};
106
8cdea7c0
BS
107/*
108 * The memory controller data structure. The memory controller controls both
109 * page cache and RSS per cgroup. We would eventually like to provide
110 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
111 * to help the administrator determine what knobs to tune.
112 *
113 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
114 * we hit the water mark. May be even add a low water mark, such that
115 * no reclaim occurs from a cgroup at it's low water mark, this is
116 * a feature that will be implemented much later in the future.
8cdea7c0
BS
117 */
118struct mem_cgroup {
119 struct cgroup_subsys_state css;
120 /*
121 * the counter to account for memory usage
122 */
123 struct res_counter res;
78fb7466
PE
124 /*
125 * Per cgroup active and inactive list, similar to the
126 * per zone LRU lists.
78fb7466 127 */
6d12e2d8 128 struct mem_cgroup_lru_info info;
66e1707b
BS
129 /*
130 * spin_lock to protect the per cgroup LRU
131 */
132 spinlock_t lru_lock;
8697d331 133 unsigned long control_type; /* control RSS or RSS+Pagecache */
6c48a1d0 134 int prev_priority; /* for recording reclaim priority */
d52aa412
KH
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
8cdea7c0
BS
139};
140
8a9f3ccd
BS
141/*
142 * We use the lower bit of the page->page_cgroup pointer as a bit spin
143 * lock. We need to ensure that page->page_cgroup is atleast two
144 * byte aligned (based on comments from Nick Piggin)
145 */
146#define PAGE_CGROUP_LOCK_BIT 0x0
147#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
148
8cdea7c0
BS
149/*
150 * A page_cgroup page is associated with every page descriptor. The
151 * page_cgroup helps us identify information about the cgroup
152 */
153struct page_cgroup {
154 struct list_head lru; /* per cgroup LRU list */
155 struct page *page;
156 struct mem_cgroup *mem_cgroup;
8a9f3ccd
BS
157 atomic_t ref_cnt; /* Helpful when pages move b/w */
158 /* mapped and cached states */
217bc319 159 int flags;
8cdea7c0 160};
217bc319 161#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
3564c7c4 162#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
8cdea7c0 163
c0149530
KH
164static inline int page_cgroup_nid(struct page_cgroup *pc)
165{
166 return page_to_nid(pc->page);
167}
168
169static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
170{
171 return page_zonenum(pc->page);
172}
173
8697d331
BS
174enum {
175 MEM_CGROUP_TYPE_UNSPEC = 0,
176 MEM_CGROUP_TYPE_MAPPED,
177 MEM_CGROUP_TYPE_CACHED,
178 MEM_CGROUP_TYPE_ALL,
179 MEM_CGROUP_TYPE_MAX,
180};
181
217bc319
KH
182enum charge_type {
183 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
184 MEM_CGROUP_CHARGE_TYPE_MAPPED,
185};
186
6d12e2d8 187
d52aa412
KH
188/*
189 * Always modified under lru lock. Then, not necessary to preempt_disable()
190 */
191static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
192 bool charge)
193{
194 int val = (charge)? 1 : -1;
195 struct mem_cgroup_stat *stat = &mem->stat;
196 VM_BUG_ON(!irqs_disabled());
197
198 if (flags & PAGE_CGROUP_FLAG_CACHE)
199 __mem_cgroup_stat_add_safe(stat,
200 MEM_CGROUP_STAT_CACHE, val);
201 else
202 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
6d12e2d8
KH
203}
204
205static inline struct mem_cgroup_per_zone *
206mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
207{
208 BUG_ON(!mem->info.nodeinfo[nid]);
209 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
210}
211
212static inline struct mem_cgroup_per_zone *
213page_cgroup_zoneinfo(struct page_cgroup *pc)
214{
215 struct mem_cgroup *mem = pc->mem_cgroup;
216 int nid = page_cgroup_nid(pc);
217 int zid = page_cgroup_zid(pc);
d52aa412 218
6d12e2d8
KH
219 return mem_cgroup_zoneinfo(mem, nid, zid);
220}
221
222static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
223 enum mem_cgroup_zstat_index idx)
224{
225 int nid, zid;
226 struct mem_cgroup_per_zone *mz;
227 u64 total = 0;
228
229 for_each_online_node(nid)
230 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
231 mz = mem_cgroup_zoneinfo(mem, nid, zid);
232 total += MEM_CGROUP_ZSTAT(mz, idx);
233 }
234 return total;
d52aa412
KH
235}
236
8697d331 237static struct mem_cgroup init_mem_cgroup;
8cdea7c0
BS
238
239static inline
240struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
241{
242 return container_of(cgroup_subsys_state(cont,
243 mem_cgroup_subsys_id), struct mem_cgroup,
244 css);
245}
246
78fb7466
PE
247static inline
248struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
249{
250 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
251 struct mem_cgroup, css);
252}
253
254void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
255{
256 struct mem_cgroup *mem;
257
258 mem = mem_cgroup_from_task(p);
259 css_get(&mem->css);
260 mm->mem_cgroup = mem;
261}
262
263void mm_free_cgroup(struct mm_struct *mm)
264{
265 css_put(&mm->mem_cgroup->css);
266}
267
8a9f3ccd
BS
268static inline int page_cgroup_locked(struct page *page)
269{
270 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
271 &page->page_cgroup);
272}
273
78fb7466
PE
274void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
275{
8a9f3ccd
BS
276 int locked;
277
278 /*
279 * While resetting the page_cgroup we might not hold the
280 * page_cgroup lock. free_hot_cold_page() is an example
281 * of such a scenario
282 */
283 if (pc)
284 VM_BUG_ON(!page_cgroup_locked(page));
285 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
286 page->page_cgroup = ((unsigned long)pc | locked);
78fb7466
PE
287}
288
289struct page_cgroup *page_get_page_cgroup(struct page *page)
290{
8a9f3ccd
BS
291 return (struct page_cgroup *)
292 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
293}
294
8697d331 295static void __always_inline lock_page_cgroup(struct page *page)
8a9f3ccd
BS
296{
297 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
298 VM_BUG_ON(!page_cgroup_locked(page));
299}
300
8697d331 301static void __always_inline unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
302{
303 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
304}
305
9175e031
KH
306/*
307 * Tie new page_cgroup to struct page under lock_page_cgroup()
308 * This can fail if the page has been tied to a page_cgroup.
309 * If success, returns 0.
310 */
d52aa412
KH
311static int page_cgroup_assign_new_page_cgroup(struct page *page,
312 struct page_cgroup *pc)
9175e031
KH
313{
314 int ret = 0;
315
316 lock_page_cgroup(page);
317 if (!page_get_page_cgroup(page))
318 page_assign_page_cgroup(page, pc);
319 else /* A page is tied to other pc. */
320 ret = 1;
321 unlock_page_cgroup(page);
322 return ret;
323}
324
325/*
326 * Clear page->page_cgroup member under lock_page_cgroup().
327 * If given "pc" value is different from one page->page_cgroup,
328 * page->cgroup is not cleared.
329 * Returns a value of page->page_cgroup at lock taken.
330 * A can can detect failure of clearing by following
331 * clear_page_cgroup(page, pc) == pc
332 */
333
d52aa412
KH
334static struct page_cgroup *clear_page_cgroup(struct page *page,
335 struct page_cgroup *pc)
9175e031
KH
336{
337 struct page_cgroup *ret;
338 /* lock and clear */
339 lock_page_cgroup(page);
340 ret = page_get_page_cgroup(page);
341 if (likely(ret == pc))
342 page_assign_page_cgroup(page, NULL);
343 unlock_page_cgroup(page);
344 return ret;
345}
346
6d12e2d8
KH
347static void __mem_cgroup_remove_list(struct page_cgroup *pc)
348{
349 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
350 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
351
352 if (from)
353 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
354 else
355 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
356
357 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
358 list_del_init(&pc->lru);
359}
360
361static void __mem_cgroup_add_list(struct page_cgroup *pc)
362{
363 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
364 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
365
366 if (!to) {
367 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
1ecaab2b 368 list_add(&pc->lru, &mz->inactive_list);
6d12e2d8
KH
369 } else {
370 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
1ecaab2b 371 list_add(&pc->lru, &mz->active_list);
6d12e2d8
KH
372 }
373 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
374}
375
8697d331 376static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b 377{
6d12e2d8
KH
378 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
379 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
380
381 if (from)
382 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
383 else
384 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
385
3564c7c4 386 if (active) {
6d12e2d8 387 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
3564c7c4 388 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 389 list_move(&pc->lru, &mz->active_list);
3564c7c4 390 } else {
6d12e2d8 391 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
3564c7c4 392 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 393 list_move(&pc->lru, &mz->inactive_list);
3564c7c4 394 }
66e1707b
BS
395}
396
4c4a2214
DR
397int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
398{
399 int ret;
400
401 task_lock(task);
402 ret = task->mm && mm_cgroup(task->mm) == mem;
403 task_unlock(task);
404 return ret;
405}
406
66e1707b
BS
407/*
408 * This routine assumes that the appropriate zone's lru lock is already held
409 */
410void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
411{
412 struct mem_cgroup *mem;
413 if (!pc)
414 return;
415
416 mem = pc->mem_cgroup;
417
418 spin_lock(&mem->lru_lock);
419 __mem_cgroup_move_lists(pc, active);
420 spin_unlock(&mem->lru_lock);
421}
422
58ae83db
KH
423/*
424 * Calculate mapped_ratio under memory controller. This will be used in
425 * vmscan.c for deteremining we have to reclaim mapped pages.
426 */
427int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
428{
429 long total, rss;
430
431 /*
432 * usage is recorded in bytes. But, here, we assume the number of
433 * physical pages can be represented by "long" on any arch.
434 */
435 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
436 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
437 return (int)((rss * 100L) / total);
438}
5932f367
KH
439/*
440 * This function is called from vmscan.c. In page reclaiming loop. balance
441 * between active and inactive list is calculated. For memory controller
442 * page reclaiming, we should use using mem_cgroup's imbalance rather than
443 * zone's global lru imbalance.
444 */
445long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
446{
447 unsigned long active, inactive;
448 /* active and inactive are the number of pages. 'long' is ok.*/
449 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
450 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
451 return (long) (active / (inactive + 1));
452}
58ae83db 453
6c48a1d0
KH
454/*
455 * prev_priority control...this will be used in memory reclaim path.
456 */
457int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
458{
459 return mem->prev_priority;
460}
461
462void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
463{
464 if (priority < mem->prev_priority)
465 mem->prev_priority = priority;
466}
467
468void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
469{
470 mem->prev_priority = priority;
471}
472
cc38108e
KH
473/*
474 * Calculate # of pages to be scanned in this priority/zone.
475 * See also vmscan.c
476 *
477 * priority starts from "DEF_PRIORITY" and decremented in each loop.
478 * (see include/linux/mmzone.h)
479 */
480
481long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
482 struct zone *zone, int priority)
483{
484 long nr_active;
485 int nid = zone->zone_pgdat->node_id;
486 int zid = zone_idx(zone);
487 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
488
489 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
490 return (nr_active >> priority);
491}
492
493long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
494 struct zone *zone, int priority)
495{
496 long nr_inactive;
497 int nid = zone->zone_pgdat->node_id;
498 int zid = zone_idx(zone);
499 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
500
501 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
502
503 return (nr_inactive >> priority);
504}
505
66e1707b
BS
506unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
507 struct list_head *dst,
508 unsigned long *scanned, int order,
509 int mode, struct zone *z,
510 struct mem_cgroup *mem_cont,
511 int active)
512{
513 unsigned long nr_taken = 0;
514 struct page *page;
515 unsigned long scan;
516 LIST_HEAD(pc_list);
517 struct list_head *src;
ff7283fa 518 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
519 int nid = z->zone_pgdat->node_id;
520 int zid = zone_idx(z);
521 struct mem_cgroup_per_zone *mz;
66e1707b 522
1ecaab2b 523 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
66e1707b 524 if (active)
1ecaab2b 525 src = &mz->active_list;
66e1707b 526 else
1ecaab2b
KH
527 src = &mz->inactive_list;
528
66e1707b
BS
529
530 spin_lock(&mem_cont->lru_lock);
ff7283fa
KH
531 scan = 0;
532 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 533 if (scan >= nr_to_scan)
ff7283fa 534 break;
66e1707b
BS
535 page = pc->page;
536 VM_BUG_ON(!pc);
537
436c6541 538 if (unlikely(!PageLRU(page)))
ff7283fa 539 continue;
ff7283fa 540
66e1707b
BS
541 if (PageActive(page) && !active) {
542 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
543 continue;
544 }
545 if (!PageActive(page) && active) {
546 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
547 continue;
548 }
549
436c6541
HD
550 scan++;
551 list_move(&pc->lru, &pc_list);
66e1707b
BS
552
553 if (__isolate_lru_page(page, mode) == 0) {
554 list_move(&page->lru, dst);
555 nr_taken++;
556 }
557 }
558
559 list_splice(&pc_list, src);
560 spin_unlock(&mem_cont->lru_lock);
561
562 *scanned = scan;
563 return nr_taken;
564}
565
8a9f3ccd
BS
566/*
567 * Charge the memory controller for page usage.
568 * Return
569 * 0 if the charge was successful
570 * < 0 if the cgroup is over its limit
571 */
217bc319
KH
572static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
573 gfp_t gfp_mask, enum charge_type ctype)
8a9f3ccd
BS
574{
575 struct mem_cgroup *mem;
9175e031 576 struct page_cgroup *pc;
66e1707b
BS
577 unsigned long flags;
578 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8a9f3ccd
BS
579
580 /*
581 * Should page_cgroup's go to their own slab?
582 * One could optimize the performance of the charging routine
583 * by saving a bit in the page_flags and using it as a lock
584 * to see if the cgroup page already has a page_cgroup associated
585 * with it
586 */
66e1707b 587retry:
82369553
HD
588 if (page) {
589 lock_page_cgroup(page);
590 pc = page_get_page_cgroup(page);
591 /*
592 * The page_cgroup exists and
593 * the page has already been accounted.
594 */
595 if (pc) {
596 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
597 /* this page is under being uncharged ? */
598 unlock_page_cgroup(page);
599 cpu_relax();
600 goto retry;
601 } else {
602 unlock_page_cgroup(page);
603 goto done;
604 }
9175e031 605 }
82369553 606 unlock_page_cgroup(page);
8a9f3ccd 607 }
8a9f3ccd 608
e1a1cd59 609 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
8a9f3ccd
BS
610 if (pc == NULL)
611 goto err;
612
8a9f3ccd 613 /*
3be91277
HD
614 * We always charge the cgroup the mm_struct belongs to.
615 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
616 * thread group leader migrates. It's possible that mm is not
617 * set, if so charge the init_mm (happens for pagecache usage).
618 */
619 if (!mm)
620 mm = &init_mm;
621
3be91277 622 rcu_read_lock();
8a9f3ccd
BS
623 mem = rcu_dereference(mm->mem_cgroup);
624 /*
625 * For every charge from the cgroup, increment reference
626 * count
627 */
628 css_get(&mem->css);
629 rcu_read_unlock();
630
631 /*
632 * If we created the page_cgroup, we should free it on exceeding
633 * the cgroup limit.
634 */
0eea1030 635 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
636 if (!(gfp_mask & __GFP_WAIT))
637 goto out;
e1a1cd59
BS
638
639 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
640 continue;
641
642 /*
643 * try_to_free_mem_cgroup_pages() might not give us a full
644 * picture of reclaim. Some pages are reclaimed and might be
645 * moved to swap cache or just unmapped from the cgroup.
646 * Check the limit again to see if the reclaim reduced the
647 * current usage of the cgroup before giving up
648 */
649 if (res_counter_check_under_limit(&mem->res))
650 continue;
3be91277
HD
651
652 if (!nr_retries--) {
653 mem_cgroup_out_of_memory(mem, gfp_mask);
654 goto out;
66e1707b 655 }
3be91277 656 congestion_wait(WRITE, HZ/10);
8a9f3ccd
BS
657 }
658
8a9f3ccd
BS
659 atomic_set(&pc->ref_cnt, 1);
660 pc->mem_cgroup = mem;
661 pc->page = page;
3564c7c4 662 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
217bc319
KH
663 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
664 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
3be91277 665
82369553 666 if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
9175e031 667 /*
3be91277
HD
668 * Another charge has been added to this page already.
669 * We take lock_page_cgroup(page) again and read
9175e031
KH
670 * page->cgroup, increment refcnt.... just retry is OK.
671 */
672 res_counter_uncharge(&mem->res, PAGE_SIZE);
673 css_put(&mem->css);
674 kfree(pc);
82369553
HD
675 if (!page)
676 goto done;
9175e031
KH
677 goto retry;
678 }
8a9f3ccd 679
66e1707b 680 spin_lock_irqsave(&mem->lru_lock, flags);
d52aa412 681 /* Update statistics vector */
6d12e2d8 682 __mem_cgroup_add_list(pc);
66e1707b
BS
683 spin_unlock_irqrestore(&mem->lru_lock, flags);
684
8a9f3ccd 685done:
8a9f3ccd 686 return 0;
3be91277
HD
687out:
688 css_put(&mem->css);
8a9f3ccd 689 kfree(pc);
8a9f3ccd 690err:
8a9f3ccd
BS
691 return -ENOMEM;
692}
693
217bc319
KH
694int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
695 gfp_t gfp_mask)
696{
697 return mem_cgroup_charge_common(page, mm, gfp_mask,
698 MEM_CGROUP_CHARGE_TYPE_MAPPED);
699}
700
8697d331
BS
701/*
702 * See if the cached pages should be charged at all?
703 */
e1a1cd59
BS
704int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
705 gfp_t gfp_mask)
8697d331 706{
ac44d354 707 int ret = 0;
8697d331
BS
708 struct mem_cgroup *mem;
709 if (!mm)
710 mm = &init_mm;
711
ac44d354 712 rcu_read_lock();
8697d331 713 mem = rcu_dereference(mm->mem_cgroup);
ac44d354
BS
714 css_get(&mem->css);
715 rcu_read_unlock();
8697d331 716 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
ac44d354 717 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
217bc319 718 MEM_CGROUP_CHARGE_TYPE_CACHE);
ac44d354
BS
719 css_put(&mem->css);
720 return ret;
8697d331
BS
721}
722
8a9f3ccd
BS
723/*
724 * Uncharging is always a welcome operation, we never complain, simply
725 * uncharge.
726 */
727void mem_cgroup_uncharge(struct page_cgroup *pc)
728{
729 struct mem_cgroup *mem;
730 struct page *page;
66e1707b 731 unsigned long flags;
8a9f3ccd 732
8697d331
BS
733 /*
734 * This can handle cases when a page is not charged at all and we
735 * are switching between handling the control_type.
736 */
8a9f3ccd
BS
737 if (!pc)
738 return;
739
740 if (atomic_dec_and_test(&pc->ref_cnt)) {
741 page = pc->page;
9175e031
KH
742 /*
743 * get page->cgroup and clear it under lock.
cc847582 744 * force_empty can drop page->cgroup without checking refcnt.
9175e031
KH
745 */
746 if (clear_page_cgroup(page, pc) == pc) {
747 mem = pc->mem_cgroup;
748 css_put(&mem->css);
749 res_counter_uncharge(&mem->res, PAGE_SIZE);
750 spin_lock_irqsave(&mem->lru_lock, flags);
6d12e2d8 751 __mem_cgroup_remove_list(pc);
9175e031
KH
752 spin_unlock_irqrestore(&mem->lru_lock, flags);
753 kfree(pc);
9175e031 754 }
8a9f3ccd 755 }
78fb7466 756}
6d12e2d8 757
ae41be37
KH
758/*
759 * Returns non-zero if a page (under migration) has valid page_cgroup member.
760 * Refcnt of page_cgroup is incremented.
761 */
762
763int mem_cgroup_prepare_migration(struct page *page)
764{
765 struct page_cgroup *pc;
766 int ret = 0;
767 lock_page_cgroup(page);
768 pc = page_get_page_cgroup(page);
769 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
770 ret = 1;
771 unlock_page_cgroup(page);
772 return ret;
773}
774
775void mem_cgroup_end_migration(struct page *page)
776{
777 struct page_cgroup *pc = page_get_page_cgroup(page);
778 mem_cgroup_uncharge(pc);
779}
780/*
781 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
782 * And no race with uncharge() routines because page_cgroup for *page*
783 * has extra one reference by mem_cgroup_prepare_migration.
784 */
785
786void mem_cgroup_page_migration(struct page *page, struct page *newpage)
787{
788 struct page_cgroup *pc;
6d12e2d8
KH
789 struct mem_cgroup *mem;
790 unsigned long flags;
ae41be37
KH
791retry:
792 pc = page_get_page_cgroup(page);
793 if (!pc)
794 return;
6d12e2d8 795 mem = pc->mem_cgroup;
ae41be37
KH
796 if (clear_page_cgroup(page, pc) != pc)
797 goto retry;
6d12e2d8
KH
798
799 spin_lock_irqsave(&mem->lru_lock, flags);
800
801 __mem_cgroup_remove_list(pc);
ae41be37
KH
802 pc->page = newpage;
803 lock_page_cgroup(newpage);
804 page_assign_page_cgroup(newpage, pc);
805 unlock_page_cgroup(newpage);
6d12e2d8
KH
806 __mem_cgroup_add_list(pc);
807
808 spin_unlock_irqrestore(&mem->lru_lock, flags);
ae41be37
KH
809 return;
810}
78fb7466 811
cc847582
KH
812/*
813 * This routine traverse page_cgroup in given list and drop them all.
814 * This routine ignores page_cgroup->ref_cnt.
815 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
816 */
817#define FORCE_UNCHARGE_BATCH (128)
818static void
819mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
820{
821 struct page_cgroup *pc;
822 struct page *page;
823 int count;
824 unsigned long flags;
825
1ecaab2b
KH
826 if (list_empty(list))
827 return;
cc847582
KH
828retry:
829 count = FORCE_UNCHARGE_BATCH;
830 spin_lock_irqsave(&mem->lru_lock, flags);
831
832 while (--count && !list_empty(list)) {
833 pc = list_entry(list->prev, struct page_cgroup, lru);
834 page = pc->page;
835 /* Avoid race with charge */
836 atomic_set(&pc->ref_cnt, 0);
837 if (clear_page_cgroup(page, pc) == pc) {
838 css_put(&mem->css);
839 res_counter_uncharge(&mem->res, PAGE_SIZE);
6d12e2d8 840 __mem_cgroup_remove_list(pc);
cc847582
KH
841 kfree(pc);
842 } else /* being uncharged ? ...do relax */
843 break;
844 }
845 spin_unlock_irqrestore(&mem->lru_lock, flags);
846 if (!list_empty(list)) {
847 cond_resched();
848 goto retry;
849 }
850 return;
851}
852
853/*
854 * make mem_cgroup's charge to be 0 if there is no task.
855 * This enables deleting this mem_cgroup.
856 */
857
858int mem_cgroup_force_empty(struct mem_cgroup *mem)
859{
860 int ret = -EBUSY;
1ecaab2b 861 int node, zid;
cc847582
KH
862 css_get(&mem->css);
863 /*
864 * page reclaim code (kswapd etc..) will move pages between
865` * active_list <-> inactive_list while we don't take a lock.
866 * So, we have to do loop here until all lists are empty.
867 */
1ecaab2b 868 while (mem->res.usage > 0) {
cc847582
KH
869 if (atomic_read(&mem->css.cgroup->count) > 0)
870 goto out;
1ecaab2b
KH
871 for_each_node_state(node, N_POSSIBLE)
872 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
873 struct mem_cgroup_per_zone *mz;
874 mz = mem_cgroup_zoneinfo(mem, node, zid);
875 /* drop all page_cgroup in active_list */
876 mem_cgroup_force_empty_list(mem,
877 &mz->active_list);
878 /* drop all page_cgroup in inactive_list */
879 mem_cgroup_force_empty_list(mem,
880 &mz->inactive_list);
881 }
cc847582
KH
882 }
883 ret = 0;
884out:
885 css_put(&mem->css);
886 return ret;
887}
888
889
890
0eea1030
BS
891int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
892{
893 *tmp = memparse(buf, &buf);
894 if (*buf != '\0')
895 return -EINVAL;
896
897 /*
898 * Round up the value to the closest page size
899 */
900 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
901 return 0;
902}
903
904static ssize_t mem_cgroup_read(struct cgroup *cont,
905 struct cftype *cft, struct file *file,
906 char __user *userbuf, size_t nbytes, loff_t *ppos)
8cdea7c0
BS
907{
908 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
909 cft->private, userbuf, nbytes, ppos,
910 NULL);
8cdea7c0
BS
911}
912
913static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
914 struct file *file, const char __user *userbuf,
915 size_t nbytes, loff_t *ppos)
916{
917 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
918 cft->private, userbuf, nbytes, ppos,
919 mem_cgroup_write_strategy);
8cdea7c0
BS
920}
921
8697d331
BS
922static ssize_t mem_control_type_write(struct cgroup *cont,
923 struct cftype *cft, struct file *file,
924 const char __user *userbuf,
925 size_t nbytes, loff_t *pos)
926{
927 int ret;
928 char *buf, *end;
929 unsigned long tmp;
930 struct mem_cgroup *mem;
931
932 mem = mem_cgroup_from_cont(cont);
933 buf = kmalloc(nbytes + 1, GFP_KERNEL);
934 ret = -ENOMEM;
935 if (buf == NULL)
936 goto out;
937
938 buf[nbytes] = 0;
939 ret = -EFAULT;
940 if (copy_from_user(buf, userbuf, nbytes))
941 goto out_free;
942
943 ret = -EINVAL;
944 tmp = simple_strtoul(buf, &end, 10);
945 if (*end != '\0')
946 goto out_free;
947
948 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
949 goto out_free;
950
951 mem->control_type = tmp;
952 ret = nbytes;
953out_free:
954 kfree(buf);
955out:
956 return ret;
957}
958
959static ssize_t mem_control_type_read(struct cgroup *cont,
960 struct cftype *cft,
961 struct file *file, char __user *userbuf,
962 size_t nbytes, loff_t *ppos)
963{
964 unsigned long val;
965 char buf[64], *s;
966 struct mem_cgroup *mem;
967
968 mem = mem_cgroup_from_cont(cont);
969 s = buf;
970 val = mem->control_type;
971 s += sprintf(s, "%lu\n", val);
972 return simple_read_from_buffer((void __user *)userbuf, nbytes,
973 ppos, buf, s - buf);
974}
975
cc847582
KH
976
977static ssize_t mem_force_empty_write(struct cgroup *cont,
978 struct cftype *cft, struct file *file,
979 const char __user *userbuf,
980 size_t nbytes, loff_t *ppos)
981{
982 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
983 int ret;
984 ret = mem_cgroup_force_empty(mem);
985 if (!ret)
986 ret = nbytes;
987 return ret;
988}
989
990/*
991 * Note: This should be removed if cgroup supports write-only file.
992 */
993
994static ssize_t mem_force_empty_read(struct cgroup *cont,
995 struct cftype *cft,
996 struct file *file, char __user *userbuf,
997 size_t nbytes, loff_t *ppos)
998{
999 return -EINVAL;
1000}
1001
1002
d2ceb9b7
KH
1003static const struct mem_cgroup_stat_desc {
1004 const char *msg;
1005 u64 unit;
1006} mem_cgroup_stat_desc[] = {
1007 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1008 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1009};
1010
1011static int mem_control_stat_show(struct seq_file *m, void *arg)
1012{
1013 struct cgroup *cont = m->private;
1014 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1015 struct mem_cgroup_stat *stat = &mem_cont->stat;
1016 int i;
1017
1018 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1019 s64 val;
1020
1021 val = mem_cgroup_read_stat(stat, i);
1022 val *= mem_cgroup_stat_desc[i].unit;
1023 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
1024 (long long)val);
1025 }
6d12e2d8
KH
1026 /* showing # of active pages */
1027 {
1028 unsigned long active, inactive;
1029
1030 inactive = mem_cgroup_get_all_zonestat(mem_cont,
1031 MEM_CGROUP_ZSTAT_INACTIVE);
1032 active = mem_cgroup_get_all_zonestat(mem_cont,
1033 MEM_CGROUP_ZSTAT_ACTIVE);
1034 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
1035 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
1036 }
d2ceb9b7
KH
1037 return 0;
1038}
1039
1040static const struct file_operations mem_control_stat_file_operations = {
1041 .read = seq_read,
1042 .llseek = seq_lseek,
1043 .release = single_release,
1044};
1045
1046static int mem_control_stat_open(struct inode *unused, struct file *file)
1047{
1048 /* XXX __d_cont */
1049 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
1050
1051 file->f_op = &mem_control_stat_file_operations;
1052 return single_open(file, mem_control_stat_show, cont);
1053}
1054
1055
1056
8cdea7c0
BS
1057static struct cftype mem_cgroup_files[] = {
1058 {
0eea1030 1059 .name = "usage_in_bytes",
8cdea7c0
BS
1060 .private = RES_USAGE,
1061 .read = mem_cgroup_read,
1062 },
1063 {
0eea1030 1064 .name = "limit_in_bytes",
8cdea7c0
BS
1065 .private = RES_LIMIT,
1066 .write = mem_cgroup_write,
1067 .read = mem_cgroup_read,
1068 },
1069 {
1070 .name = "failcnt",
1071 .private = RES_FAILCNT,
1072 .read = mem_cgroup_read,
1073 },
8697d331
BS
1074 {
1075 .name = "control_type",
1076 .write = mem_control_type_write,
1077 .read = mem_control_type_read,
1078 },
cc847582
KH
1079 {
1080 .name = "force_empty",
1081 .write = mem_force_empty_write,
1082 .read = mem_force_empty_read,
1083 },
d2ceb9b7
KH
1084 {
1085 .name = "stat",
1086 .open = mem_control_stat_open,
1087 },
8cdea7c0
BS
1088};
1089
6d12e2d8
KH
1090static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1091{
1092 struct mem_cgroup_per_node *pn;
1ecaab2b
KH
1093 struct mem_cgroup_per_zone *mz;
1094 int zone;
1095 /*
1096 * This routine is called against possible nodes.
1097 * But it's BUG to call kmalloc() against offline node.
1098 *
1099 * TODO: this routine can waste much memory for nodes which will
1100 * never be onlined. It's better to use memory hotplug callback
1101 * function.
1102 */
1103 if (node_state(node, N_HIGH_MEMORY))
1104 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1105 else
1106 pn = kmalloc(sizeof(*pn), GFP_KERNEL);
6d12e2d8
KH
1107 if (!pn)
1108 return 1;
1ecaab2b 1109
6d12e2d8
KH
1110 mem->info.nodeinfo[node] = pn;
1111 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1112
1113 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1114 mz = &pn->zoneinfo[zone];
1115 INIT_LIST_HEAD(&mz->active_list);
1116 INIT_LIST_HEAD(&mz->inactive_list);
1117 }
6d12e2d8
KH
1118 return 0;
1119}
1120
1ecaab2b
KH
1121static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1122{
1123 kfree(mem->info.nodeinfo[node]);
1124}
1125
1126
78fb7466
PE
1127static struct mem_cgroup init_mem_cgroup;
1128
8cdea7c0
BS
1129static struct cgroup_subsys_state *
1130mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1131{
1132 struct mem_cgroup *mem;
6d12e2d8 1133 int node;
8cdea7c0 1134
78fb7466
PE
1135 if (unlikely((cont->parent) == NULL)) {
1136 mem = &init_mem_cgroup;
1137 init_mm.mem_cgroup = mem;
1138 } else
1139 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1140
1141 if (mem == NULL)
1142 return NULL;
8cdea7c0
BS
1143
1144 res_counter_init(&mem->res);
1ecaab2b 1145
66e1707b 1146 spin_lock_init(&mem->lru_lock);
8697d331 1147 mem->control_type = MEM_CGROUP_TYPE_ALL;
6d12e2d8
KH
1148 memset(&mem->info, 0, sizeof(mem->info));
1149
1150 for_each_node_state(node, N_POSSIBLE)
1151 if (alloc_mem_cgroup_per_zone_info(mem, node))
1152 goto free_out;
1153
8cdea7c0 1154 return &mem->css;
6d12e2d8
KH
1155free_out:
1156 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1157 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8
KH
1158 if (cont->parent != NULL)
1159 kfree(mem);
1160 return NULL;
8cdea7c0
BS
1161}
1162
df878fb0
KH
1163static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1164 struct cgroup *cont)
1165{
1166 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1167 mem_cgroup_force_empty(mem);
1168}
1169
8cdea7c0
BS
1170static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1171 struct cgroup *cont)
1172{
6d12e2d8
KH
1173 int node;
1174 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1175
1176 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1177 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1178
8cdea7c0
BS
1179 kfree(mem_cgroup_from_cont(cont));
1180}
1181
1182static int mem_cgroup_populate(struct cgroup_subsys *ss,
1183 struct cgroup *cont)
1184{
1185 return cgroup_add_files(cont, ss, mem_cgroup_files,
1186 ARRAY_SIZE(mem_cgroup_files));
1187}
1188
67e465a7
BS
1189static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1190 struct cgroup *cont,
1191 struct cgroup *old_cont,
1192 struct task_struct *p)
1193{
1194 struct mm_struct *mm;
1195 struct mem_cgroup *mem, *old_mem;
1196
1197 mm = get_task_mm(p);
1198 if (mm == NULL)
1199 return;
1200
1201 mem = mem_cgroup_from_cont(cont);
1202 old_mem = mem_cgroup_from_cont(old_cont);
1203
1204 if (mem == old_mem)
1205 goto out;
1206
1207 /*
1208 * Only thread group leaders are allowed to migrate, the mm_struct is
1209 * in effect owned by the leader
1210 */
1211 if (p->tgid != p->pid)
1212 goto out;
1213
1214 css_get(&mem->css);
1215 rcu_assign_pointer(mm->mem_cgroup, mem);
1216 css_put(&old_mem->css);
1217
1218out:
1219 mmput(mm);
1220 return;
1221}
1222
8cdea7c0
BS
1223struct cgroup_subsys mem_cgroup_subsys = {
1224 .name = "memory",
1225 .subsys_id = mem_cgroup_subsys_id,
1226 .create = mem_cgroup_create,
df878fb0 1227 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1228 .destroy = mem_cgroup_destroy,
1229 .populate = mem_cgroup_populate,
67e465a7 1230 .attach = mem_cgroup_move_task,
6d12e2d8 1231 .early_init = 0,
8cdea7c0 1232};