]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memory cgroup enhancements: remember "a page is on active list of cgroup or not"
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
8a9f3ccd 24#include <linux/page-flags.h>
66e1707b 25#include <linux/backing-dev.h>
8a9f3ccd
BS
26#include <linux/bit_spinlock.h>
27#include <linux/rcupdate.h>
66e1707b
BS
28#include <linux/swap.h>
29#include <linux/spinlock.h>
30#include <linux/fs.h>
8cdea7c0 31
8697d331
BS
32#include <asm/uaccess.h>
33
8cdea7c0 34struct cgroup_subsys mem_cgroup_subsys;
66e1707b 35static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
8cdea7c0
BS
36
37/*
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
42 *
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
8cdea7c0
BS
47 */
48struct mem_cgroup {
49 struct cgroup_subsys_state css;
50 /*
51 * the counter to account for memory usage
52 */
53 struct res_counter res;
78fb7466
PE
54 /*
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
58 */
59 struct list_head active_list;
60 struct list_head inactive_list;
66e1707b
BS
61 /*
62 * spin_lock to protect the per cgroup LRU
63 */
64 spinlock_t lru_lock;
8697d331 65 unsigned long control_type; /* control RSS or RSS+Pagecache */
8cdea7c0
BS
66};
67
8a9f3ccd
BS
68/*
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
72 */
73#define PAGE_CGROUP_LOCK_BIT 0x0
74#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
75
8cdea7c0
BS
76/*
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
79 */
80struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
8a9f3ccd
BS
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
217bc319 86 int flags;
8cdea7c0 87};
217bc319 88#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
3564c7c4 89#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
8cdea7c0 90
8697d331
BS
91enum {
92 MEM_CGROUP_TYPE_UNSPEC = 0,
93 MEM_CGROUP_TYPE_MAPPED,
94 MEM_CGROUP_TYPE_CACHED,
95 MEM_CGROUP_TYPE_ALL,
96 MEM_CGROUP_TYPE_MAX,
97};
98
217bc319
KH
99enum charge_type {
100 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
101 MEM_CGROUP_CHARGE_TYPE_MAPPED,
102};
103
8697d331 104static struct mem_cgroup init_mem_cgroup;
8cdea7c0
BS
105
106static inline
107struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
108{
109 return container_of(cgroup_subsys_state(cont,
110 mem_cgroup_subsys_id), struct mem_cgroup,
111 css);
112}
113
78fb7466
PE
114static inline
115struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
116{
117 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
118 struct mem_cgroup, css);
119}
120
121void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
122{
123 struct mem_cgroup *mem;
124
125 mem = mem_cgroup_from_task(p);
126 css_get(&mem->css);
127 mm->mem_cgroup = mem;
128}
129
130void mm_free_cgroup(struct mm_struct *mm)
131{
132 css_put(&mm->mem_cgroup->css);
133}
134
8a9f3ccd
BS
135static inline int page_cgroup_locked(struct page *page)
136{
137 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
138 &page->page_cgroup);
139}
140
78fb7466
PE
141void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
142{
8a9f3ccd
BS
143 int locked;
144
145 /*
146 * While resetting the page_cgroup we might not hold the
147 * page_cgroup lock. free_hot_cold_page() is an example
148 * of such a scenario
149 */
150 if (pc)
151 VM_BUG_ON(!page_cgroup_locked(page));
152 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
153 page->page_cgroup = ((unsigned long)pc | locked);
78fb7466
PE
154}
155
156struct page_cgroup *page_get_page_cgroup(struct page *page)
157{
8a9f3ccd
BS
158 return (struct page_cgroup *)
159 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
160}
161
8697d331 162static void __always_inline lock_page_cgroup(struct page *page)
8a9f3ccd
BS
163{
164 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
165 VM_BUG_ON(!page_cgroup_locked(page));
166}
167
8697d331 168static void __always_inline unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
169{
170 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
171}
172
9175e031
KH
173/*
174 * Tie new page_cgroup to struct page under lock_page_cgroup()
175 * This can fail if the page has been tied to a page_cgroup.
176 * If success, returns 0.
177 */
178static inline int
179page_cgroup_assign_new_page_cgroup(struct page *page, struct page_cgroup *pc)
180{
181 int ret = 0;
182
183 lock_page_cgroup(page);
184 if (!page_get_page_cgroup(page))
185 page_assign_page_cgroup(page, pc);
186 else /* A page is tied to other pc. */
187 ret = 1;
188 unlock_page_cgroup(page);
189 return ret;
190}
191
192/*
193 * Clear page->page_cgroup member under lock_page_cgroup().
194 * If given "pc" value is different from one page->page_cgroup,
195 * page->cgroup is not cleared.
196 * Returns a value of page->page_cgroup at lock taken.
197 * A can can detect failure of clearing by following
198 * clear_page_cgroup(page, pc) == pc
199 */
200
201static inline struct page_cgroup *
202clear_page_cgroup(struct page *page, struct page_cgroup *pc)
203{
204 struct page_cgroup *ret;
205 /* lock and clear */
206 lock_page_cgroup(page);
207 ret = page_get_page_cgroup(page);
208 if (likely(ret == pc))
209 page_assign_page_cgroup(page, NULL);
210 unlock_page_cgroup(page);
211 return ret;
212}
213
214
8697d331 215static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b 216{
3564c7c4
KH
217 if (active) {
218 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
66e1707b 219 list_move(&pc->lru, &pc->mem_cgroup->active_list);
3564c7c4
KH
220 } else {
221 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
66e1707b 222 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
3564c7c4 223 }
66e1707b
BS
224}
225
4c4a2214
DR
226int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
227{
228 int ret;
229
230 task_lock(task);
231 ret = task->mm && mm_cgroup(task->mm) == mem;
232 task_unlock(task);
233 return ret;
234}
235
66e1707b
BS
236/*
237 * This routine assumes that the appropriate zone's lru lock is already held
238 */
239void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
240{
241 struct mem_cgroup *mem;
242 if (!pc)
243 return;
244
245 mem = pc->mem_cgroup;
246
247 spin_lock(&mem->lru_lock);
248 __mem_cgroup_move_lists(pc, active);
249 spin_unlock(&mem->lru_lock);
250}
251
252unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
253 struct list_head *dst,
254 unsigned long *scanned, int order,
255 int mode, struct zone *z,
256 struct mem_cgroup *mem_cont,
257 int active)
258{
259 unsigned long nr_taken = 0;
260 struct page *page;
261 unsigned long scan;
262 LIST_HEAD(pc_list);
263 struct list_head *src;
ff7283fa 264 struct page_cgroup *pc, *tmp;
66e1707b
BS
265
266 if (active)
267 src = &mem_cont->active_list;
268 else
269 src = &mem_cont->inactive_list;
270
271 spin_lock(&mem_cont->lru_lock);
ff7283fa
KH
272 scan = 0;
273 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 274 if (scan >= nr_to_scan)
ff7283fa 275 break;
66e1707b
BS
276 page = pc->page;
277 VM_BUG_ON(!pc);
278
436c6541 279 if (unlikely(!PageLRU(page)))
ff7283fa 280 continue;
ff7283fa 281
66e1707b
BS
282 if (PageActive(page) && !active) {
283 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
284 continue;
285 }
286 if (!PageActive(page) && active) {
287 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
288 continue;
289 }
290
291 /*
292 * Reclaim, per zone
293 * TODO: make the active/inactive lists per zone
294 */
295 if (page_zone(page) != z)
296 continue;
297
436c6541
HD
298 scan++;
299 list_move(&pc->lru, &pc_list);
66e1707b
BS
300
301 if (__isolate_lru_page(page, mode) == 0) {
302 list_move(&page->lru, dst);
303 nr_taken++;
304 }
305 }
306
307 list_splice(&pc_list, src);
308 spin_unlock(&mem_cont->lru_lock);
309
310 *scanned = scan;
311 return nr_taken;
312}
313
8a9f3ccd
BS
314/*
315 * Charge the memory controller for page usage.
316 * Return
317 * 0 if the charge was successful
318 * < 0 if the cgroup is over its limit
319 */
217bc319
KH
320static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
321 gfp_t gfp_mask, enum charge_type ctype)
8a9f3ccd
BS
322{
323 struct mem_cgroup *mem;
9175e031 324 struct page_cgroup *pc;
66e1707b
BS
325 unsigned long flags;
326 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8a9f3ccd
BS
327
328 /*
329 * Should page_cgroup's go to their own slab?
330 * One could optimize the performance of the charging routine
331 * by saving a bit in the page_flags and using it as a lock
332 * to see if the cgroup page already has a page_cgroup associated
333 * with it
334 */
66e1707b 335retry:
82369553
HD
336 if (page) {
337 lock_page_cgroup(page);
338 pc = page_get_page_cgroup(page);
339 /*
340 * The page_cgroup exists and
341 * the page has already been accounted.
342 */
343 if (pc) {
344 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
345 /* this page is under being uncharged ? */
346 unlock_page_cgroup(page);
347 cpu_relax();
348 goto retry;
349 } else {
350 unlock_page_cgroup(page);
351 goto done;
352 }
9175e031 353 }
82369553 354 unlock_page_cgroup(page);
8a9f3ccd 355 }
8a9f3ccd 356
e1a1cd59 357 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
8a9f3ccd
BS
358 if (pc == NULL)
359 goto err;
360
8a9f3ccd 361 /*
3be91277
HD
362 * We always charge the cgroup the mm_struct belongs to.
363 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
364 * thread group leader migrates. It's possible that mm is not
365 * set, if so charge the init_mm (happens for pagecache usage).
366 */
367 if (!mm)
368 mm = &init_mm;
369
3be91277 370 rcu_read_lock();
8a9f3ccd
BS
371 mem = rcu_dereference(mm->mem_cgroup);
372 /*
373 * For every charge from the cgroup, increment reference
374 * count
375 */
376 css_get(&mem->css);
377 rcu_read_unlock();
378
379 /*
380 * If we created the page_cgroup, we should free it on exceeding
381 * the cgroup limit.
382 */
0eea1030 383 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
384 if (!(gfp_mask & __GFP_WAIT))
385 goto out;
e1a1cd59
BS
386
387 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
388 continue;
389
390 /*
391 * try_to_free_mem_cgroup_pages() might not give us a full
392 * picture of reclaim. Some pages are reclaimed and might be
393 * moved to swap cache or just unmapped from the cgroup.
394 * Check the limit again to see if the reclaim reduced the
395 * current usage of the cgroup before giving up
396 */
397 if (res_counter_check_under_limit(&mem->res))
398 continue;
3be91277
HD
399
400 if (!nr_retries--) {
401 mem_cgroup_out_of_memory(mem, gfp_mask);
402 goto out;
66e1707b 403 }
3be91277 404 congestion_wait(WRITE, HZ/10);
8a9f3ccd
BS
405 }
406
8a9f3ccd
BS
407 atomic_set(&pc->ref_cnt, 1);
408 pc->mem_cgroup = mem;
409 pc->page = page;
3564c7c4 410 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
217bc319
KH
411 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
412 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
3be91277 413
82369553 414 if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
9175e031 415 /*
3be91277
HD
416 * Another charge has been added to this page already.
417 * We take lock_page_cgroup(page) again and read
9175e031
KH
418 * page->cgroup, increment refcnt.... just retry is OK.
419 */
420 res_counter_uncharge(&mem->res, PAGE_SIZE);
421 css_put(&mem->css);
422 kfree(pc);
82369553
HD
423 if (!page)
424 goto done;
9175e031
KH
425 goto retry;
426 }
8a9f3ccd 427
66e1707b
BS
428 spin_lock_irqsave(&mem->lru_lock, flags);
429 list_add(&pc->lru, &mem->active_list);
430 spin_unlock_irqrestore(&mem->lru_lock, flags);
431
8a9f3ccd 432done:
8a9f3ccd 433 return 0;
3be91277
HD
434out:
435 css_put(&mem->css);
8a9f3ccd 436 kfree(pc);
8a9f3ccd 437err:
8a9f3ccd
BS
438 return -ENOMEM;
439}
440
217bc319
KH
441int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
442 gfp_t gfp_mask)
443{
444 return mem_cgroup_charge_common(page, mm, gfp_mask,
445 MEM_CGROUP_CHARGE_TYPE_MAPPED);
446}
447
8697d331
BS
448/*
449 * See if the cached pages should be charged at all?
450 */
e1a1cd59
BS
451int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
452 gfp_t gfp_mask)
8697d331 453{
ac44d354 454 int ret = 0;
8697d331
BS
455 struct mem_cgroup *mem;
456 if (!mm)
457 mm = &init_mm;
458
ac44d354 459 rcu_read_lock();
8697d331 460 mem = rcu_dereference(mm->mem_cgroup);
ac44d354
BS
461 css_get(&mem->css);
462 rcu_read_unlock();
8697d331 463 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
ac44d354 464 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
217bc319 465 MEM_CGROUP_CHARGE_TYPE_CACHE);
ac44d354
BS
466 css_put(&mem->css);
467 return ret;
8697d331
BS
468}
469
8a9f3ccd
BS
470/*
471 * Uncharging is always a welcome operation, we never complain, simply
472 * uncharge.
473 */
474void mem_cgroup_uncharge(struct page_cgroup *pc)
475{
476 struct mem_cgroup *mem;
477 struct page *page;
66e1707b 478 unsigned long flags;
8a9f3ccd 479
8697d331
BS
480 /*
481 * This can handle cases when a page is not charged at all and we
482 * are switching between handling the control_type.
483 */
8a9f3ccd
BS
484 if (!pc)
485 return;
486
487 if (atomic_dec_and_test(&pc->ref_cnt)) {
488 page = pc->page;
9175e031
KH
489 /*
490 * get page->cgroup and clear it under lock.
cc847582 491 * force_empty can drop page->cgroup without checking refcnt.
9175e031
KH
492 */
493 if (clear_page_cgroup(page, pc) == pc) {
494 mem = pc->mem_cgroup;
495 css_put(&mem->css);
496 res_counter_uncharge(&mem->res, PAGE_SIZE);
497 spin_lock_irqsave(&mem->lru_lock, flags);
498 list_del_init(&pc->lru);
499 spin_unlock_irqrestore(&mem->lru_lock, flags);
500 kfree(pc);
9175e031 501 }
8a9f3ccd 502 }
78fb7466 503}
ae41be37
KH
504/*
505 * Returns non-zero if a page (under migration) has valid page_cgroup member.
506 * Refcnt of page_cgroup is incremented.
507 */
508
509int mem_cgroup_prepare_migration(struct page *page)
510{
511 struct page_cgroup *pc;
512 int ret = 0;
513 lock_page_cgroup(page);
514 pc = page_get_page_cgroup(page);
515 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
516 ret = 1;
517 unlock_page_cgroup(page);
518 return ret;
519}
520
521void mem_cgroup_end_migration(struct page *page)
522{
523 struct page_cgroup *pc = page_get_page_cgroup(page);
524 mem_cgroup_uncharge(pc);
525}
526/*
527 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
528 * And no race with uncharge() routines because page_cgroup for *page*
529 * has extra one reference by mem_cgroup_prepare_migration.
530 */
531
532void mem_cgroup_page_migration(struct page *page, struct page *newpage)
533{
534 struct page_cgroup *pc;
535retry:
536 pc = page_get_page_cgroup(page);
537 if (!pc)
538 return;
539 if (clear_page_cgroup(page, pc) != pc)
540 goto retry;
541 pc->page = newpage;
542 lock_page_cgroup(newpage);
543 page_assign_page_cgroup(newpage, pc);
544 unlock_page_cgroup(newpage);
545 return;
546}
78fb7466 547
cc847582
KH
548/*
549 * This routine traverse page_cgroup in given list and drop them all.
550 * This routine ignores page_cgroup->ref_cnt.
551 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
552 */
553#define FORCE_UNCHARGE_BATCH (128)
554static void
555mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
556{
557 struct page_cgroup *pc;
558 struct page *page;
559 int count;
560 unsigned long flags;
561
562retry:
563 count = FORCE_UNCHARGE_BATCH;
564 spin_lock_irqsave(&mem->lru_lock, flags);
565
566 while (--count && !list_empty(list)) {
567 pc = list_entry(list->prev, struct page_cgroup, lru);
568 page = pc->page;
569 /* Avoid race with charge */
570 atomic_set(&pc->ref_cnt, 0);
571 if (clear_page_cgroup(page, pc) == pc) {
572 css_put(&mem->css);
573 res_counter_uncharge(&mem->res, PAGE_SIZE);
574 list_del_init(&pc->lru);
575 kfree(pc);
576 } else /* being uncharged ? ...do relax */
577 break;
578 }
579 spin_unlock_irqrestore(&mem->lru_lock, flags);
580 if (!list_empty(list)) {
581 cond_resched();
582 goto retry;
583 }
584 return;
585}
586
587/*
588 * make mem_cgroup's charge to be 0 if there is no task.
589 * This enables deleting this mem_cgroup.
590 */
591
592int mem_cgroup_force_empty(struct mem_cgroup *mem)
593{
594 int ret = -EBUSY;
595 css_get(&mem->css);
596 /*
597 * page reclaim code (kswapd etc..) will move pages between
598` * active_list <-> inactive_list while we don't take a lock.
599 * So, we have to do loop here until all lists are empty.
600 */
601 while (!(list_empty(&mem->active_list) &&
602 list_empty(&mem->inactive_list))) {
603 if (atomic_read(&mem->css.cgroup->count) > 0)
604 goto out;
605 /* drop all page_cgroup in active_list */
606 mem_cgroup_force_empty_list(mem, &mem->active_list);
607 /* drop all page_cgroup in inactive_list */
608 mem_cgroup_force_empty_list(mem, &mem->inactive_list);
609 }
610 ret = 0;
611out:
612 css_put(&mem->css);
613 return ret;
614}
615
616
617
0eea1030
BS
618int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
619{
620 *tmp = memparse(buf, &buf);
621 if (*buf != '\0')
622 return -EINVAL;
623
624 /*
625 * Round up the value to the closest page size
626 */
627 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
628 return 0;
629}
630
631static ssize_t mem_cgroup_read(struct cgroup *cont,
632 struct cftype *cft, struct file *file,
633 char __user *userbuf, size_t nbytes, loff_t *ppos)
8cdea7c0
BS
634{
635 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
636 cft->private, userbuf, nbytes, ppos,
637 NULL);
8cdea7c0
BS
638}
639
640static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
641 struct file *file, const char __user *userbuf,
642 size_t nbytes, loff_t *ppos)
643{
644 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
645 cft->private, userbuf, nbytes, ppos,
646 mem_cgroup_write_strategy);
8cdea7c0
BS
647}
648
8697d331
BS
649static ssize_t mem_control_type_write(struct cgroup *cont,
650 struct cftype *cft, struct file *file,
651 const char __user *userbuf,
652 size_t nbytes, loff_t *pos)
653{
654 int ret;
655 char *buf, *end;
656 unsigned long tmp;
657 struct mem_cgroup *mem;
658
659 mem = mem_cgroup_from_cont(cont);
660 buf = kmalloc(nbytes + 1, GFP_KERNEL);
661 ret = -ENOMEM;
662 if (buf == NULL)
663 goto out;
664
665 buf[nbytes] = 0;
666 ret = -EFAULT;
667 if (copy_from_user(buf, userbuf, nbytes))
668 goto out_free;
669
670 ret = -EINVAL;
671 tmp = simple_strtoul(buf, &end, 10);
672 if (*end != '\0')
673 goto out_free;
674
675 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
676 goto out_free;
677
678 mem->control_type = tmp;
679 ret = nbytes;
680out_free:
681 kfree(buf);
682out:
683 return ret;
684}
685
686static ssize_t mem_control_type_read(struct cgroup *cont,
687 struct cftype *cft,
688 struct file *file, char __user *userbuf,
689 size_t nbytes, loff_t *ppos)
690{
691 unsigned long val;
692 char buf[64], *s;
693 struct mem_cgroup *mem;
694
695 mem = mem_cgroup_from_cont(cont);
696 s = buf;
697 val = mem->control_type;
698 s += sprintf(s, "%lu\n", val);
699 return simple_read_from_buffer((void __user *)userbuf, nbytes,
700 ppos, buf, s - buf);
701}
702
cc847582
KH
703
704static ssize_t mem_force_empty_write(struct cgroup *cont,
705 struct cftype *cft, struct file *file,
706 const char __user *userbuf,
707 size_t nbytes, loff_t *ppos)
708{
709 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
710 int ret;
711 ret = mem_cgroup_force_empty(mem);
712 if (!ret)
713 ret = nbytes;
714 return ret;
715}
716
717/*
718 * Note: This should be removed if cgroup supports write-only file.
719 */
720
721static ssize_t mem_force_empty_read(struct cgroup *cont,
722 struct cftype *cft,
723 struct file *file, char __user *userbuf,
724 size_t nbytes, loff_t *ppos)
725{
726 return -EINVAL;
727}
728
729
8cdea7c0
BS
730static struct cftype mem_cgroup_files[] = {
731 {
0eea1030 732 .name = "usage_in_bytes",
8cdea7c0
BS
733 .private = RES_USAGE,
734 .read = mem_cgroup_read,
735 },
736 {
0eea1030 737 .name = "limit_in_bytes",
8cdea7c0
BS
738 .private = RES_LIMIT,
739 .write = mem_cgroup_write,
740 .read = mem_cgroup_read,
741 },
742 {
743 .name = "failcnt",
744 .private = RES_FAILCNT,
745 .read = mem_cgroup_read,
746 },
8697d331
BS
747 {
748 .name = "control_type",
749 .write = mem_control_type_write,
750 .read = mem_control_type_read,
751 },
cc847582
KH
752 {
753 .name = "force_empty",
754 .write = mem_force_empty_write,
755 .read = mem_force_empty_read,
756 },
8cdea7c0
BS
757};
758
78fb7466
PE
759static struct mem_cgroup init_mem_cgroup;
760
8cdea7c0
BS
761static struct cgroup_subsys_state *
762mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
763{
764 struct mem_cgroup *mem;
765
78fb7466
PE
766 if (unlikely((cont->parent) == NULL)) {
767 mem = &init_mem_cgroup;
768 init_mm.mem_cgroup = mem;
769 } else
770 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
771
772 if (mem == NULL)
773 return NULL;
8cdea7c0
BS
774
775 res_counter_init(&mem->res);
8a9f3ccd
BS
776 INIT_LIST_HEAD(&mem->active_list);
777 INIT_LIST_HEAD(&mem->inactive_list);
66e1707b 778 spin_lock_init(&mem->lru_lock);
8697d331 779 mem->control_type = MEM_CGROUP_TYPE_ALL;
8cdea7c0
BS
780 return &mem->css;
781}
782
783static void mem_cgroup_destroy(struct cgroup_subsys *ss,
784 struct cgroup *cont)
785{
786 kfree(mem_cgroup_from_cont(cont));
787}
788
789static int mem_cgroup_populate(struct cgroup_subsys *ss,
790 struct cgroup *cont)
791{
792 return cgroup_add_files(cont, ss, mem_cgroup_files,
793 ARRAY_SIZE(mem_cgroup_files));
794}
795
67e465a7
BS
796static void mem_cgroup_move_task(struct cgroup_subsys *ss,
797 struct cgroup *cont,
798 struct cgroup *old_cont,
799 struct task_struct *p)
800{
801 struct mm_struct *mm;
802 struct mem_cgroup *mem, *old_mem;
803
804 mm = get_task_mm(p);
805 if (mm == NULL)
806 return;
807
808 mem = mem_cgroup_from_cont(cont);
809 old_mem = mem_cgroup_from_cont(old_cont);
810
811 if (mem == old_mem)
812 goto out;
813
814 /*
815 * Only thread group leaders are allowed to migrate, the mm_struct is
816 * in effect owned by the leader
817 */
818 if (p->tgid != p->pid)
819 goto out;
820
821 css_get(&mem->css);
822 rcu_assign_pointer(mm->mem_cgroup, mem);
823 css_put(&old_mem->css);
824
825out:
826 mmput(mm);
827 return;
828}
829
8cdea7c0
BS
830struct cgroup_subsys mem_cgroup_subsys = {
831 .name = "memory",
832 .subsys_id = mem_cgroup_subsys_id,
833 .create = mem_cgroup_create,
834 .destroy = mem_cgroup_destroy,
835 .populate = mem_cgroup_populate,
67e465a7 836 .attach = mem_cgroup_move_task,
78fb7466 837 .early_init = 1,
8cdea7c0 838};