]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
bugfix for memory cgroup controller: avoid !PageLRU page in mem_cgroup_isolate_pages
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
8a9f3ccd 24#include <linux/page-flags.h>
66e1707b 25#include <linux/backing-dev.h>
8a9f3ccd
BS
26#include <linux/bit_spinlock.h>
27#include <linux/rcupdate.h>
66e1707b
BS
28#include <linux/swap.h>
29#include <linux/spinlock.h>
30#include <linux/fs.h>
8cdea7c0 31
8697d331
BS
32#include <asm/uaccess.h>
33
8cdea7c0 34struct cgroup_subsys mem_cgroup_subsys;
66e1707b 35static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
8cdea7c0
BS
36
37/*
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
42 *
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
8cdea7c0
BS
47 */
48struct mem_cgroup {
49 struct cgroup_subsys_state css;
50 /*
51 * the counter to account for memory usage
52 */
53 struct res_counter res;
78fb7466
PE
54 /*
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
58 */
59 struct list_head active_list;
60 struct list_head inactive_list;
66e1707b
BS
61 /*
62 * spin_lock to protect the per cgroup LRU
63 */
64 spinlock_t lru_lock;
8697d331 65 unsigned long control_type; /* control RSS or RSS+Pagecache */
8cdea7c0
BS
66};
67
8a9f3ccd
BS
68/*
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
72 */
73#define PAGE_CGROUP_LOCK_BIT 0x0
74#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
75
8cdea7c0
BS
76/*
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
79 */
80struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
8a9f3ccd
BS
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
8cdea7c0
BS
86};
87
8697d331
BS
88enum {
89 MEM_CGROUP_TYPE_UNSPEC = 0,
90 MEM_CGROUP_TYPE_MAPPED,
91 MEM_CGROUP_TYPE_CACHED,
92 MEM_CGROUP_TYPE_ALL,
93 MEM_CGROUP_TYPE_MAX,
94};
95
96static struct mem_cgroup init_mem_cgroup;
8cdea7c0
BS
97
98static inline
99struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
100{
101 return container_of(cgroup_subsys_state(cont,
102 mem_cgroup_subsys_id), struct mem_cgroup,
103 css);
104}
105
78fb7466
PE
106static inline
107struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
108{
109 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
110 struct mem_cgroup, css);
111}
112
113void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
114{
115 struct mem_cgroup *mem;
116
117 mem = mem_cgroup_from_task(p);
118 css_get(&mem->css);
119 mm->mem_cgroup = mem;
120}
121
122void mm_free_cgroup(struct mm_struct *mm)
123{
124 css_put(&mm->mem_cgroup->css);
125}
126
8a9f3ccd
BS
127static inline int page_cgroup_locked(struct page *page)
128{
129 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
130 &page->page_cgroup);
131}
132
78fb7466
PE
133void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
134{
8a9f3ccd
BS
135 int locked;
136
137 /*
138 * While resetting the page_cgroup we might not hold the
139 * page_cgroup lock. free_hot_cold_page() is an example
140 * of such a scenario
141 */
142 if (pc)
143 VM_BUG_ON(!page_cgroup_locked(page));
144 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
145 page->page_cgroup = ((unsigned long)pc | locked);
78fb7466
PE
146}
147
148struct page_cgroup *page_get_page_cgroup(struct page *page)
149{
8a9f3ccd
BS
150 return (struct page_cgroup *)
151 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
152}
153
8697d331 154static void __always_inline lock_page_cgroup(struct page *page)
8a9f3ccd
BS
155{
156 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
157 VM_BUG_ON(!page_cgroup_locked(page));
158}
159
8697d331 160static void __always_inline unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
161{
162 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
163}
164
9175e031
KH
165/*
166 * Tie new page_cgroup to struct page under lock_page_cgroup()
167 * This can fail if the page has been tied to a page_cgroup.
168 * If success, returns 0.
169 */
170static inline int
171page_cgroup_assign_new_page_cgroup(struct page *page, struct page_cgroup *pc)
172{
173 int ret = 0;
174
175 lock_page_cgroup(page);
176 if (!page_get_page_cgroup(page))
177 page_assign_page_cgroup(page, pc);
178 else /* A page is tied to other pc. */
179 ret = 1;
180 unlock_page_cgroup(page);
181 return ret;
182}
183
184/*
185 * Clear page->page_cgroup member under lock_page_cgroup().
186 * If given "pc" value is different from one page->page_cgroup,
187 * page->cgroup is not cleared.
188 * Returns a value of page->page_cgroup at lock taken.
189 * A can can detect failure of clearing by following
190 * clear_page_cgroup(page, pc) == pc
191 */
192
193static inline struct page_cgroup *
194clear_page_cgroup(struct page *page, struct page_cgroup *pc)
195{
196 struct page_cgroup *ret;
197 /* lock and clear */
198 lock_page_cgroup(page);
199 ret = page_get_page_cgroup(page);
200 if (likely(ret == pc))
201 page_assign_page_cgroup(page, NULL);
202 unlock_page_cgroup(page);
203 return ret;
204}
205
206
8697d331 207static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b
BS
208{
209 if (active)
210 list_move(&pc->lru, &pc->mem_cgroup->active_list);
211 else
212 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
213}
214
4c4a2214
DR
215int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
216{
217 int ret;
218
219 task_lock(task);
220 ret = task->mm && mm_cgroup(task->mm) == mem;
221 task_unlock(task);
222 return ret;
223}
224
66e1707b
BS
225/*
226 * This routine assumes that the appropriate zone's lru lock is already held
227 */
228void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
229{
230 struct mem_cgroup *mem;
231 if (!pc)
232 return;
233
234 mem = pc->mem_cgroup;
235
236 spin_lock(&mem->lru_lock);
237 __mem_cgroup_move_lists(pc, active);
238 spin_unlock(&mem->lru_lock);
239}
240
241unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
242 struct list_head *dst,
243 unsigned long *scanned, int order,
244 int mode, struct zone *z,
245 struct mem_cgroup *mem_cont,
246 int active)
247{
248 unsigned long nr_taken = 0;
249 struct page *page;
250 unsigned long scan;
251 LIST_HEAD(pc_list);
252 struct list_head *src;
ff7283fa 253 struct page_cgroup *pc, *tmp;
66e1707b
BS
254
255 if (active)
256 src = &mem_cont->active_list;
257 else
258 src = &mem_cont->inactive_list;
259
260 spin_lock(&mem_cont->lru_lock);
ff7283fa
KH
261 scan = 0;
262 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
263 if (scan++ > nr_to_scan)
264 break;
66e1707b
BS
265 page = pc->page;
266 VM_BUG_ON(!pc);
267
ff7283fa
KH
268 if (unlikely(!PageLRU(page))) {
269 scan--;
270 continue;
271 }
272
66e1707b
BS
273 if (PageActive(page) && !active) {
274 __mem_cgroup_move_lists(pc, true);
275 scan--;
276 continue;
277 }
278 if (!PageActive(page) && active) {
279 __mem_cgroup_move_lists(pc, false);
280 scan--;
281 continue;
282 }
283
284 /*
285 * Reclaim, per zone
286 * TODO: make the active/inactive lists per zone
287 */
288 if (page_zone(page) != z)
289 continue;
290
291 /*
292 * Check if the meta page went away from under us
293 */
294 if (!list_empty(&pc->lru))
295 list_move(&pc->lru, &pc_list);
296 else
297 continue;
298
299 if (__isolate_lru_page(page, mode) == 0) {
300 list_move(&page->lru, dst);
301 nr_taken++;
302 }
303 }
304
305 list_splice(&pc_list, src);
306 spin_unlock(&mem_cont->lru_lock);
307
308 *scanned = scan;
309 return nr_taken;
310}
311
8a9f3ccd
BS
312/*
313 * Charge the memory controller for page usage.
314 * Return
315 * 0 if the charge was successful
316 * < 0 if the cgroup is over its limit
317 */
e1a1cd59
BS
318int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
319 gfp_t gfp_mask)
8a9f3ccd
BS
320{
321 struct mem_cgroup *mem;
9175e031 322 struct page_cgroup *pc;
66e1707b
BS
323 unsigned long flags;
324 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8a9f3ccd
BS
325
326 /*
327 * Should page_cgroup's go to their own slab?
328 * One could optimize the performance of the charging routine
329 * by saving a bit in the page_flags and using it as a lock
330 * to see if the cgroup page already has a page_cgroup associated
331 * with it
332 */
66e1707b 333retry:
8a9f3ccd
BS
334 lock_page_cgroup(page);
335 pc = page_get_page_cgroup(page);
336 /*
337 * The page_cgroup exists and the page has already been accounted
338 */
339 if (pc) {
66e1707b
BS
340 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
341 /* this page is under being uncharged ? */
342 unlock_page_cgroup(page);
343 cpu_relax();
344 goto retry;
9175e031
KH
345 } else {
346 unlock_page_cgroup(page);
66e1707b 347 goto done;
9175e031 348 }
8a9f3ccd
BS
349 }
350
351 unlock_page_cgroup(page);
352
e1a1cd59 353 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
8a9f3ccd
BS
354 if (pc == NULL)
355 goto err;
356
357 rcu_read_lock();
358 /*
359 * We always charge the cgroup the mm_struct belongs to
360 * the mm_struct's mem_cgroup changes on task migration if the
361 * thread group leader migrates. It's possible that mm is not
362 * set, if so charge the init_mm (happens for pagecache usage).
363 */
364 if (!mm)
365 mm = &init_mm;
366
367 mem = rcu_dereference(mm->mem_cgroup);
368 /*
369 * For every charge from the cgroup, increment reference
370 * count
371 */
372 css_get(&mem->css);
373 rcu_read_unlock();
374
375 /*
376 * If we created the page_cgroup, we should free it on exceeding
377 * the cgroup limit.
378 */
0eea1030 379 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
e1a1cd59
BS
380 bool is_atomic = gfp_mask & GFP_ATOMIC;
381 /*
382 * We cannot reclaim under GFP_ATOMIC, fail the charge
383 */
384 if (is_atomic)
385 goto noreclaim;
386
387 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
388 continue;
389
390 /*
391 * try_to_free_mem_cgroup_pages() might not give us a full
392 * picture of reclaim. Some pages are reclaimed and might be
393 * moved to swap cache or just unmapped from the cgroup.
394 * Check the limit again to see if the reclaim reduced the
395 * current usage of the cgroup before giving up
396 */
397 if (res_counter_check_under_limit(&mem->res))
398 continue;
399 /*
400 * Since we control both RSS and cache, we end up with a
401 * very interesting scenario where we end up reclaiming
402 * memory (essentially RSS), since the memory is pushed
403 * to swap cache, we eventually end up adding those
404 * pages back to our list. Hence we give ourselves a
405 * few chances before we fail
406 */
407 else if (nr_retries--) {
408 congestion_wait(WRITE, HZ/10);
409 continue;
410 }
e1a1cd59 411noreclaim:
8a9f3ccd 412 css_put(&mem->css);
e1a1cd59
BS
413 if (!is_atomic)
414 mem_cgroup_out_of_memory(mem, GFP_KERNEL);
8a9f3ccd
BS
415 goto free_pc;
416 }
417
8a9f3ccd
BS
418 atomic_set(&pc->ref_cnt, 1);
419 pc->mem_cgroup = mem;
420 pc->page = page;
9175e031
KH
421 if (page_cgroup_assign_new_page_cgroup(page, pc)) {
422 /*
423 * an another charge is added to this page already.
424 * we do take lock_page_cgroup(page) again and read
425 * page->cgroup, increment refcnt.... just retry is OK.
426 */
427 res_counter_uncharge(&mem->res, PAGE_SIZE);
428 css_put(&mem->css);
429 kfree(pc);
430 goto retry;
431 }
8a9f3ccd 432
66e1707b
BS
433 spin_lock_irqsave(&mem->lru_lock, flags);
434 list_add(&pc->lru, &mem->active_list);
435 spin_unlock_irqrestore(&mem->lru_lock, flags);
436
8a9f3ccd 437done:
8a9f3ccd
BS
438 return 0;
439free_pc:
440 kfree(pc);
8a9f3ccd 441err:
8a9f3ccd
BS
442 return -ENOMEM;
443}
444
8697d331
BS
445/*
446 * See if the cached pages should be charged at all?
447 */
e1a1cd59
BS
448int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
449 gfp_t gfp_mask)
8697d331
BS
450{
451 struct mem_cgroup *mem;
452 if (!mm)
453 mm = &init_mm;
454
455 mem = rcu_dereference(mm->mem_cgroup);
456 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
e1a1cd59 457 return mem_cgroup_charge(page, mm, gfp_mask);
8697d331
BS
458 else
459 return 0;
460}
461
8a9f3ccd
BS
462/*
463 * Uncharging is always a welcome operation, we never complain, simply
464 * uncharge.
465 */
466void mem_cgroup_uncharge(struct page_cgroup *pc)
467{
468 struct mem_cgroup *mem;
469 struct page *page;
66e1707b 470 unsigned long flags;
8a9f3ccd 471
8697d331
BS
472 /*
473 * This can handle cases when a page is not charged at all and we
474 * are switching between handling the control_type.
475 */
8a9f3ccd
BS
476 if (!pc)
477 return;
478
479 if (atomic_dec_and_test(&pc->ref_cnt)) {
480 page = pc->page;
9175e031
KH
481 /*
482 * get page->cgroup and clear it under lock.
483 */
484 if (clear_page_cgroup(page, pc) == pc) {
485 mem = pc->mem_cgroup;
486 css_put(&mem->css);
487 res_counter_uncharge(&mem->res, PAGE_SIZE);
488 spin_lock_irqsave(&mem->lru_lock, flags);
489 list_del_init(&pc->lru);
490 spin_unlock_irqrestore(&mem->lru_lock, flags);
491 kfree(pc);
492 } else {
493 /*
494 * Note:This will be removed when force-empty patch is
495 * applied. just show warning here.
496 */
497 printk(KERN_ERR "Race in mem_cgroup_uncharge() ?");
498 dump_stack();
499 }
8a9f3ccd 500 }
78fb7466 501}
ae41be37
KH
502/*
503 * Returns non-zero if a page (under migration) has valid page_cgroup member.
504 * Refcnt of page_cgroup is incremented.
505 */
506
507int mem_cgroup_prepare_migration(struct page *page)
508{
509 struct page_cgroup *pc;
510 int ret = 0;
511 lock_page_cgroup(page);
512 pc = page_get_page_cgroup(page);
513 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
514 ret = 1;
515 unlock_page_cgroup(page);
516 return ret;
517}
518
519void mem_cgroup_end_migration(struct page *page)
520{
521 struct page_cgroup *pc = page_get_page_cgroup(page);
522 mem_cgroup_uncharge(pc);
523}
524/*
525 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
526 * And no race with uncharge() routines because page_cgroup for *page*
527 * has extra one reference by mem_cgroup_prepare_migration.
528 */
529
530void mem_cgroup_page_migration(struct page *page, struct page *newpage)
531{
532 struct page_cgroup *pc;
533retry:
534 pc = page_get_page_cgroup(page);
535 if (!pc)
536 return;
537 if (clear_page_cgroup(page, pc) != pc)
538 goto retry;
539 pc->page = newpage;
540 lock_page_cgroup(newpage);
541 page_assign_page_cgroup(newpage, pc);
542 unlock_page_cgroup(newpage);
543 return;
544}
78fb7466 545
0eea1030
BS
546int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
547{
548 *tmp = memparse(buf, &buf);
549 if (*buf != '\0')
550 return -EINVAL;
551
552 /*
553 * Round up the value to the closest page size
554 */
555 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
556 return 0;
557}
558
559static ssize_t mem_cgroup_read(struct cgroup *cont,
560 struct cftype *cft, struct file *file,
561 char __user *userbuf, size_t nbytes, loff_t *ppos)
8cdea7c0
BS
562{
563 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
564 cft->private, userbuf, nbytes, ppos,
565 NULL);
8cdea7c0
BS
566}
567
568static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
569 struct file *file, const char __user *userbuf,
570 size_t nbytes, loff_t *ppos)
571{
572 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
573 cft->private, userbuf, nbytes, ppos,
574 mem_cgroup_write_strategy);
8cdea7c0
BS
575}
576
8697d331
BS
577static ssize_t mem_control_type_write(struct cgroup *cont,
578 struct cftype *cft, struct file *file,
579 const char __user *userbuf,
580 size_t nbytes, loff_t *pos)
581{
582 int ret;
583 char *buf, *end;
584 unsigned long tmp;
585 struct mem_cgroup *mem;
586
587 mem = mem_cgroup_from_cont(cont);
588 buf = kmalloc(nbytes + 1, GFP_KERNEL);
589 ret = -ENOMEM;
590 if (buf == NULL)
591 goto out;
592
593 buf[nbytes] = 0;
594 ret = -EFAULT;
595 if (copy_from_user(buf, userbuf, nbytes))
596 goto out_free;
597
598 ret = -EINVAL;
599 tmp = simple_strtoul(buf, &end, 10);
600 if (*end != '\0')
601 goto out_free;
602
603 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
604 goto out_free;
605
606 mem->control_type = tmp;
607 ret = nbytes;
608out_free:
609 kfree(buf);
610out:
611 return ret;
612}
613
614static ssize_t mem_control_type_read(struct cgroup *cont,
615 struct cftype *cft,
616 struct file *file, char __user *userbuf,
617 size_t nbytes, loff_t *ppos)
618{
619 unsigned long val;
620 char buf[64], *s;
621 struct mem_cgroup *mem;
622
623 mem = mem_cgroup_from_cont(cont);
624 s = buf;
625 val = mem->control_type;
626 s += sprintf(s, "%lu\n", val);
627 return simple_read_from_buffer((void __user *)userbuf, nbytes,
628 ppos, buf, s - buf);
629}
630
8cdea7c0
BS
631static struct cftype mem_cgroup_files[] = {
632 {
0eea1030 633 .name = "usage_in_bytes",
8cdea7c0
BS
634 .private = RES_USAGE,
635 .read = mem_cgroup_read,
636 },
637 {
0eea1030 638 .name = "limit_in_bytes",
8cdea7c0
BS
639 .private = RES_LIMIT,
640 .write = mem_cgroup_write,
641 .read = mem_cgroup_read,
642 },
643 {
644 .name = "failcnt",
645 .private = RES_FAILCNT,
646 .read = mem_cgroup_read,
647 },
8697d331
BS
648 {
649 .name = "control_type",
650 .write = mem_control_type_write,
651 .read = mem_control_type_read,
652 },
8cdea7c0
BS
653};
654
78fb7466
PE
655static struct mem_cgroup init_mem_cgroup;
656
8cdea7c0
BS
657static struct cgroup_subsys_state *
658mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
659{
660 struct mem_cgroup *mem;
661
78fb7466
PE
662 if (unlikely((cont->parent) == NULL)) {
663 mem = &init_mem_cgroup;
664 init_mm.mem_cgroup = mem;
665 } else
666 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
667
668 if (mem == NULL)
669 return NULL;
8cdea7c0
BS
670
671 res_counter_init(&mem->res);
8a9f3ccd
BS
672 INIT_LIST_HEAD(&mem->active_list);
673 INIT_LIST_HEAD(&mem->inactive_list);
66e1707b 674 spin_lock_init(&mem->lru_lock);
8697d331 675 mem->control_type = MEM_CGROUP_TYPE_ALL;
8cdea7c0
BS
676 return &mem->css;
677}
678
679static void mem_cgroup_destroy(struct cgroup_subsys *ss,
680 struct cgroup *cont)
681{
682 kfree(mem_cgroup_from_cont(cont));
683}
684
685static int mem_cgroup_populate(struct cgroup_subsys *ss,
686 struct cgroup *cont)
687{
688 return cgroup_add_files(cont, ss, mem_cgroup_files,
689 ARRAY_SIZE(mem_cgroup_files));
690}
691
67e465a7
BS
692static void mem_cgroup_move_task(struct cgroup_subsys *ss,
693 struct cgroup *cont,
694 struct cgroup *old_cont,
695 struct task_struct *p)
696{
697 struct mm_struct *mm;
698 struct mem_cgroup *mem, *old_mem;
699
700 mm = get_task_mm(p);
701 if (mm == NULL)
702 return;
703
704 mem = mem_cgroup_from_cont(cont);
705 old_mem = mem_cgroup_from_cont(old_cont);
706
707 if (mem == old_mem)
708 goto out;
709
710 /*
711 * Only thread group leaders are allowed to migrate, the mm_struct is
712 * in effect owned by the leader
713 */
714 if (p->tgid != p->pid)
715 goto out;
716
717 css_get(&mem->css);
718 rcu_assign_pointer(mm->mem_cgroup, mem);
719 css_put(&old_mem->css);
720
721out:
722 mmput(mm);
723 return;
724}
725
8cdea7c0
BS
726struct cgroup_subsys mem_cgroup_subsys = {
727 .name = "memory",
728 .subsys_id = mem_cgroup_subsys_id,
729 .create = mem_cgroup_create,
730 .destroy = mem_cgroup_destroy,
731 .populate = mem_cgroup_populate,
67e465a7 732 .attach = mem_cgroup_move_task,
78fb7466 733 .early_init = 1,
8cdea7c0 734};