]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: fix swap accounting
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
e222432b 30#include <linux/limits.h>
8c7c6e34 31#include <linux/mutex.h>
b6ac57d5 32#include <linux/slab.h>
66e1707b
BS
33#include <linux/swap.h>
34#include <linux/spinlock.h>
35#include <linux/fs.h>
d2ceb9b7 36#include <linux/seq_file.h>
33327948 37#include <linux/vmalloc.h>
b69408e8 38#include <linux/mm_inline.h>
52d4b9ac 39#include <linux/page_cgroup.h>
08e552c6 40#include "internal.h"
8cdea7c0 41
8697d331
BS
42#include <asm/uaccess.h>
43
a181b0e8 44struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 45#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 46
c077719b 47#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 48/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
49int do_swap_account __read_mostly;
50static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51#else
52#define do_swap_account (0)
53#endif
54
7f4d454d 55static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 56
d52aa412
KH
57/*
58 * Statistics for memory cgroup.
59 */
60enum mem_cgroup_stat_index {
61 /*
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 */
64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f
BS
65 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
66 MEM_CGROUP_STAT_MAPPED_FILE, /* # of pages charged as file rss */
55e462b0
BR
67 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
68 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
69
70 MEM_CGROUP_STAT_NSTATS,
71};
72
73struct mem_cgroup_stat_cpu {
74 s64 count[MEM_CGROUP_STAT_NSTATS];
75} ____cacheline_aligned_in_smp;
76
77struct mem_cgroup_stat {
c8dad2bb 78 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
79};
80
81/*
82 * For accounting under irq disable, no need for increment preempt count.
83 */
addb9efe 84static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
85 enum mem_cgroup_stat_index idx, int val)
86{
addb9efe 87 stat->count[idx] += val;
d52aa412
KH
88}
89
90static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
91 enum mem_cgroup_stat_index idx)
92{
93 int cpu;
94 s64 ret = 0;
95 for_each_possible_cpu(cpu)
96 ret += stat->cpustat[cpu].count[idx];
97 return ret;
98}
99
04046e1a
KH
100static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
101{
102 s64 ret;
103
104 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
105 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
106 return ret;
107}
108
6d12e2d8
KH
109/*
110 * per-zone information in memory controller.
111 */
6d12e2d8 112struct mem_cgroup_per_zone {
072c56c1
KH
113 /*
114 * spin_lock to protect the per cgroup LRU
115 */
b69408e8
CL
116 struct list_head lists[NR_LRU_LISTS];
117 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
118
119 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
120};
121/* Macro for accessing counter */
122#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
123
124struct mem_cgroup_per_node {
125 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
126};
127
128struct mem_cgroup_lru_info {
129 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
130};
131
8cdea7c0
BS
132/*
133 * The memory controller data structure. The memory controller controls both
134 * page cache and RSS per cgroup. We would eventually like to provide
135 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
136 * to help the administrator determine what knobs to tune.
137 *
138 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
139 * we hit the water mark. May be even add a low water mark, such that
140 * no reclaim occurs from a cgroup at it's low water mark, this is
141 * a feature that will be implemented much later in the future.
8cdea7c0
BS
142 */
143struct mem_cgroup {
144 struct cgroup_subsys_state css;
145 /*
146 * the counter to account for memory usage
147 */
148 struct res_counter res;
8c7c6e34
KH
149 /*
150 * the counter to account for mem+swap usage.
151 */
152 struct res_counter memsw;
78fb7466
PE
153 /*
154 * Per cgroup active and inactive list, similar to the
155 * per zone LRU lists.
78fb7466 156 */
6d12e2d8 157 struct mem_cgroup_lru_info info;
072c56c1 158
2733c06a
KM
159 /*
160 protect against reclaim related member.
161 */
162 spinlock_t reclaim_param_lock;
163
6c48a1d0 164 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
165
166 /*
167 * While reclaiming in a hiearchy, we cache the last child we
04046e1a 168 * reclaimed from.
6d61ef40 169 */
04046e1a 170 int last_scanned_child;
18f59ea7
BS
171 /*
172 * Should the accounting and control be hierarchical, per subtree?
173 */
174 bool use_hierarchy;
a636b327 175 unsigned long last_oom_jiffies;
8c7c6e34 176 atomic_t refcnt;
14797e23 177
a7885eb8
KM
178 unsigned int swappiness;
179
d52aa412 180 /*
c8dad2bb 181 * statistics. This must be placed at the end of memcg.
d52aa412
KH
182 */
183 struct mem_cgroup_stat stat;
8cdea7c0
BS
184};
185
217bc319
KH
186enum charge_type {
187 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
188 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 189 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 190 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 191 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 192 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
193 NR_CHARGE_TYPE,
194};
195
52d4b9ac
KH
196/* only for here (for easy reading.) */
197#define PCGF_CACHE (1UL << PCG_CACHE)
198#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 199#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
200static const unsigned long
201pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
202 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
203 PCGF_USED | PCGF_LOCK, /* Anon */
204 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 205 0, /* FORCE */
217bc319
KH
206};
207
8c7c6e34
KH
208/* for encoding cft->private value on file */
209#define _MEM (0)
210#define _MEMSWAP (1)
211#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
212#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
213#define MEMFILE_ATTR(val) ((val) & 0xffff)
214
215static void mem_cgroup_get(struct mem_cgroup *mem);
216static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 217static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
8c7c6e34 218
c05555b5
KH
219static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
220 struct page_cgroup *pc,
221 bool charge)
d52aa412
KH
222{
223 int val = (charge)? 1 : -1;
224 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 225 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 226 int cpu = get_cpu();
d52aa412 227
08e552c6 228 cpustat = &stat->cpustat[cpu];
c05555b5 229 if (PageCgroupCache(pc))
addb9efe 230 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 231 else
addb9efe 232 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
233
234 if (charge)
addb9efe 235 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
236 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
237 else
addb9efe 238 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 239 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 240 put_cpu();
6d12e2d8
KH
241}
242
d5b69e38 243static struct mem_cgroup_per_zone *
6d12e2d8
KH
244mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
245{
6d12e2d8
KH
246 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
247}
248
d5b69e38 249static struct mem_cgroup_per_zone *
6d12e2d8
KH
250page_cgroup_zoneinfo(struct page_cgroup *pc)
251{
252 struct mem_cgroup *mem = pc->mem_cgroup;
253 int nid = page_cgroup_nid(pc);
254 int zid = page_cgroup_zid(pc);
d52aa412 255
54992762
KM
256 if (!mem)
257 return NULL;
258
6d12e2d8
KH
259 return mem_cgroup_zoneinfo(mem, nid, zid);
260}
261
14067bb3 262static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 263 enum lru_list idx)
6d12e2d8
KH
264{
265 int nid, zid;
266 struct mem_cgroup_per_zone *mz;
267 u64 total = 0;
268
269 for_each_online_node(nid)
270 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
271 mz = mem_cgroup_zoneinfo(mem, nid, zid);
272 total += MEM_CGROUP_ZSTAT(mz, idx);
273 }
274 return total;
d52aa412
KH
275}
276
d5b69e38 277static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
278{
279 return container_of(cgroup_subsys_state(cont,
280 mem_cgroup_subsys_id), struct mem_cgroup,
281 css);
282}
283
cf475ad2 284struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 285{
31a78f23
BS
286 /*
287 * mm_update_next_owner() may clear mm->owner to NULL
288 * if it races with swapoff, page migration, etc.
289 * So this can be called with p == NULL.
290 */
291 if (unlikely(!p))
292 return NULL;
293
78fb7466
PE
294 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
295 struct mem_cgroup, css);
296}
297
54595fe2
KH
298static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
299{
300 struct mem_cgroup *mem = NULL;
0b7f569e
KH
301
302 if (!mm)
303 return NULL;
54595fe2
KH
304 /*
305 * Because we have no locks, mm->owner's may be being moved to other
306 * cgroup. We use css_tryget() here even if this looks
307 * pessimistic (rather than adding locks here).
308 */
309 rcu_read_lock();
310 do {
311 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
312 if (unlikely(!mem))
313 break;
314 } while (!css_tryget(&mem->css));
315 rcu_read_unlock();
316 return mem;
317}
318
14067bb3
KH
319/*
320 * Call callback function against all cgroup under hierarchy tree.
321 */
322static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
323 int (*func)(struct mem_cgroup *, void *))
324{
325 int found, ret, nextid;
326 struct cgroup_subsys_state *css;
327 struct mem_cgroup *mem;
328
329 if (!root->use_hierarchy)
330 return (*func)(root, data);
331
332 nextid = 1;
333 do {
334 ret = 0;
335 mem = NULL;
336
337 rcu_read_lock();
338 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
339 &found);
340 if (css && css_tryget(css))
341 mem = container_of(css, struct mem_cgroup, css);
342 rcu_read_unlock();
343
344 if (mem) {
345 ret = (*func)(mem, data);
346 css_put(&mem->css);
347 }
348 nextid = found + 1;
349 } while (!ret && css);
350
351 return ret;
352}
353
08e552c6
KH
354/*
355 * Following LRU functions are allowed to be used without PCG_LOCK.
356 * Operations are called by routine of global LRU independently from memcg.
357 * What we have to take care of here is validness of pc->mem_cgroup.
358 *
359 * Changes to pc->mem_cgroup happens when
360 * 1. charge
361 * 2. moving account
362 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
363 * It is added to LRU before charge.
364 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
365 * When moving account, the page is not on LRU. It's isolated.
366 */
4f98a2fe 367
08e552c6
KH
368void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
369{
370 struct page_cgroup *pc;
371 struct mem_cgroup *mem;
372 struct mem_cgroup_per_zone *mz;
6d12e2d8 373
f8d66542 374 if (mem_cgroup_disabled())
08e552c6
KH
375 return;
376 pc = lookup_page_cgroup(page);
377 /* can happen while we handle swapcache. */
544122e5 378 if (list_empty(&pc->lru) || !pc->mem_cgroup)
08e552c6 379 return;
544122e5
KH
380 /*
381 * We don't check PCG_USED bit. It's cleared when the "page" is finally
382 * removed from global LRU.
383 */
08e552c6
KH
384 mz = page_cgroup_zoneinfo(pc);
385 mem = pc->mem_cgroup;
b69408e8 386 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
387 list_del_init(&pc->lru);
388 return;
6d12e2d8
KH
389}
390
08e552c6 391void mem_cgroup_del_lru(struct page *page)
6d12e2d8 392{
08e552c6
KH
393 mem_cgroup_del_lru_list(page, page_lru(page));
394}
b69408e8 395
08e552c6
KH
396void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
397{
398 struct mem_cgroup_per_zone *mz;
399 struct page_cgroup *pc;
b69408e8 400
f8d66542 401 if (mem_cgroup_disabled())
08e552c6 402 return;
6d12e2d8 403
08e552c6 404 pc = lookup_page_cgroup(page);
bd112db8
DN
405 /*
406 * Used bit is set without atomic ops but after smp_wmb().
407 * For making pc->mem_cgroup visible, insert smp_rmb() here.
408 */
08e552c6
KH
409 smp_rmb();
410 /* unused page is not rotated. */
411 if (!PageCgroupUsed(pc))
412 return;
413 mz = page_cgroup_zoneinfo(pc);
414 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
415}
416
08e552c6 417void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 418{
08e552c6
KH
419 struct page_cgroup *pc;
420 struct mem_cgroup_per_zone *mz;
6d12e2d8 421
f8d66542 422 if (mem_cgroup_disabled())
08e552c6
KH
423 return;
424 pc = lookup_page_cgroup(page);
bd112db8
DN
425 /*
426 * Used bit is set without atomic ops but after smp_wmb().
427 * For making pc->mem_cgroup visible, insert smp_rmb() here.
428 */
08e552c6
KH
429 smp_rmb();
430 if (!PageCgroupUsed(pc))
894bc310 431 return;
b69408e8 432
08e552c6 433 mz = page_cgroup_zoneinfo(pc);
b69408e8 434 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
435 list_add(&pc->lru, &mz->lists[lru]);
436}
544122e5 437
08e552c6 438/*
544122e5
KH
439 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
440 * lru because the page may.be reused after it's fully uncharged (because of
441 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
442 * it again. This function is only used to charge SwapCache. It's done under
443 * lock_page and expected that zone->lru_lock is never held.
08e552c6 444 */
544122e5 445static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 446{
544122e5
KH
447 unsigned long flags;
448 struct zone *zone = page_zone(page);
449 struct page_cgroup *pc = lookup_page_cgroup(page);
450
451 spin_lock_irqsave(&zone->lru_lock, flags);
452 /*
453 * Forget old LRU when this page_cgroup is *not* used. This Used bit
454 * is guarded by lock_page() because the page is SwapCache.
455 */
456 if (!PageCgroupUsed(pc))
457 mem_cgroup_del_lru_list(page, page_lru(page));
458 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
459}
460
544122e5
KH
461static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
462{
463 unsigned long flags;
464 struct zone *zone = page_zone(page);
465 struct page_cgroup *pc = lookup_page_cgroup(page);
466
467 spin_lock_irqsave(&zone->lru_lock, flags);
468 /* link when the page is linked to LRU but page_cgroup isn't */
469 if (PageLRU(page) && list_empty(&pc->lru))
470 mem_cgroup_add_lru_list(page, page_lru(page));
471 spin_unlock_irqrestore(&zone->lru_lock, flags);
472}
473
474
08e552c6
KH
475void mem_cgroup_move_lists(struct page *page,
476 enum lru_list from, enum lru_list to)
477{
f8d66542 478 if (mem_cgroup_disabled())
08e552c6
KH
479 return;
480 mem_cgroup_del_lru_list(page, from);
481 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
482}
483
4c4a2214
DR
484int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
485{
486 int ret;
0b7f569e 487 struct mem_cgroup *curr = NULL;
4c4a2214
DR
488
489 task_lock(task);
0b7f569e
KH
490 rcu_read_lock();
491 curr = try_get_mem_cgroup_from_mm(task->mm);
492 rcu_read_unlock();
4c4a2214 493 task_unlock(task);
0b7f569e
KH
494 if (!curr)
495 return 0;
496 if (curr->use_hierarchy)
497 ret = css_is_ancestor(&curr->css, &mem->css);
498 else
499 ret = (curr == mem);
500 css_put(&curr->css);
4c4a2214
DR
501 return ret;
502}
503
6c48a1d0
KH
504/*
505 * prev_priority control...this will be used in memory reclaim path.
506 */
507int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
508{
2733c06a
KM
509 int prev_priority;
510
511 spin_lock(&mem->reclaim_param_lock);
512 prev_priority = mem->prev_priority;
513 spin_unlock(&mem->reclaim_param_lock);
514
515 return prev_priority;
6c48a1d0
KH
516}
517
518void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
519{
2733c06a 520 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
521 if (priority < mem->prev_priority)
522 mem->prev_priority = priority;
2733c06a 523 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
524}
525
526void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
527{
2733c06a 528 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 529 mem->prev_priority = priority;
2733c06a 530 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
531}
532
c772be93 533static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
534{
535 unsigned long active;
536 unsigned long inactive;
c772be93
KM
537 unsigned long gb;
538 unsigned long inactive_ratio;
14797e23 539
14067bb3
KH
540 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
541 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 542
c772be93
KM
543 gb = (inactive + active) >> (30 - PAGE_SHIFT);
544 if (gb)
545 inactive_ratio = int_sqrt(10 * gb);
546 else
547 inactive_ratio = 1;
548
549 if (present_pages) {
550 present_pages[0] = inactive;
551 present_pages[1] = active;
552 }
553
554 return inactive_ratio;
555}
556
557int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
558{
559 unsigned long active;
560 unsigned long inactive;
561 unsigned long present_pages[2];
562 unsigned long inactive_ratio;
563
564 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
565
566 inactive = present_pages[0];
567 active = present_pages[1];
568
569 if (inactive * inactive_ratio < active)
14797e23
KM
570 return 1;
571
572 return 0;
573}
574
56e49d21
RR
575int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
576{
577 unsigned long active;
578 unsigned long inactive;
579
580 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
581 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
582
583 return (active > inactive);
584}
585
a3d8e054
KM
586unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
587 struct zone *zone,
588 enum lru_list lru)
589{
590 int nid = zone->zone_pgdat->node_id;
591 int zid = zone_idx(zone);
592 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
593
594 return MEM_CGROUP_ZSTAT(mz, lru);
595}
596
3e2f41f1
KM
597struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
598 struct zone *zone)
599{
600 int nid = zone->zone_pgdat->node_id;
601 int zid = zone_idx(zone);
602 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
603
604 return &mz->reclaim_stat;
605}
606
607struct zone_reclaim_stat *
608mem_cgroup_get_reclaim_stat_from_page(struct page *page)
609{
610 struct page_cgroup *pc;
611 struct mem_cgroup_per_zone *mz;
612
613 if (mem_cgroup_disabled())
614 return NULL;
615
616 pc = lookup_page_cgroup(page);
bd112db8
DN
617 /*
618 * Used bit is set without atomic ops but after smp_wmb().
619 * For making pc->mem_cgroup visible, insert smp_rmb() here.
620 */
621 smp_rmb();
622 if (!PageCgroupUsed(pc))
623 return NULL;
624
3e2f41f1
KM
625 mz = page_cgroup_zoneinfo(pc);
626 if (!mz)
627 return NULL;
628
629 return &mz->reclaim_stat;
630}
631
66e1707b
BS
632unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
633 struct list_head *dst,
634 unsigned long *scanned, int order,
635 int mode, struct zone *z,
636 struct mem_cgroup *mem_cont,
4f98a2fe 637 int active, int file)
66e1707b
BS
638{
639 unsigned long nr_taken = 0;
640 struct page *page;
641 unsigned long scan;
642 LIST_HEAD(pc_list);
643 struct list_head *src;
ff7283fa 644 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
645 int nid = z->zone_pgdat->node_id;
646 int zid = zone_idx(z);
647 struct mem_cgroup_per_zone *mz;
4f98a2fe 648 int lru = LRU_FILE * !!file + !!active;
66e1707b 649
cf475ad2 650 BUG_ON(!mem_cont);
1ecaab2b 651 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 652 src = &mz->lists[lru];
66e1707b 653
ff7283fa
KH
654 scan = 0;
655 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 656 if (scan >= nr_to_scan)
ff7283fa 657 break;
08e552c6
KH
658
659 page = pc->page;
52d4b9ac
KH
660 if (unlikely(!PageCgroupUsed(pc)))
661 continue;
436c6541 662 if (unlikely(!PageLRU(page)))
ff7283fa 663 continue;
ff7283fa 664
436c6541 665 scan++;
4f98a2fe 666 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
667 list_move(&page->lru, dst);
668 nr_taken++;
669 }
670 }
671
66e1707b
BS
672 *scanned = scan;
673 return nr_taken;
674}
675
6d61ef40
BS
676#define mem_cgroup_from_res_counter(counter, member) \
677 container_of(counter, struct mem_cgroup, member)
678
b85a96c0
DN
679static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
680{
681 if (do_swap_account) {
682 if (res_counter_check_under_limit(&mem->res) &&
683 res_counter_check_under_limit(&mem->memsw))
684 return true;
685 } else
686 if (res_counter_check_under_limit(&mem->res))
687 return true;
688 return false;
689}
690
a7885eb8
KM
691static unsigned int get_swappiness(struct mem_cgroup *memcg)
692{
693 struct cgroup *cgrp = memcg->css.cgroup;
694 unsigned int swappiness;
695
696 /* root ? */
697 if (cgrp->parent == NULL)
698 return vm_swappiness;
699
700 spin_lock(&memcg->reclaim_param_lock);
701 swappiness = memcg->swappiness;
702 spin_unlock(&memcg->reclaim_param_lock);
703
704 return swappiness;
705}
706
81d39c20
KH
707static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
708{
709 int *val = data;
710 (*val)++;
711 return 0;
712}
e222432b
BS
713
714/**
715 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
716 * @memcg: The memory cgroup that went over limit
717 * @p: Task that is going to be killed
718 *
719 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
720 * enabled
721 */
722void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
723{
724 struct cgroup *task_cgrp;
725 struct cgroup *mem_cgrp;
726 /*
727 * Need a buffer in BSS, can't rely on allocations. The code relies
728 * on the assumption that OOM is serialized for memory controller.
729 * If this assumption is broken, revisit this code.
730 */
731 static char memcg_name[PATH_MAX];
732 int ret;
733
734 if (!memcg)
735 return;
736
737
738 rcu_read_lock();
739
740 mem_cgrp = memcg->css.cgroup;
741 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
742
743 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
744 if (ret < 0) {
745 /*
746 * Unfortunately, we are unable to convert to a useful name
747 * But we'll still print out the usage information
748 */
749 rcu_read_unlock();
750 goto done;
751 }
752 rcu_read_unlock();
753
754 printk(KERN_INFO "Task in %s killed", memcg_name);
755
756 rcu_read_lock();
757 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
758 if (ret < 0) {
759 rcu_read_unlock();
760 goto done;
761 }
762 rcu_read_unlock();
763
764 /*
765 * Continues from above, so we don't need an KERN_ level
766 */
767 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
768done:
769
770 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
771 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
772 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
773 res_counter_read_u64(&memcg->res, RES_FAILCNT));
774 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
775 "failcnt %llu\n",
776 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
777 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
778 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
779}
780
81d39c20
KH
781/*
782 * This function returns the number of memcg under hierarchy tree. Returns
783 * 1(self count) if no children.
784 */
785static int mem_cgroup_count_children(struct mem_cgroup *mem)
786{
787 int num = 0;
788 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
789 return num;
790}
791
6d61ef40 792/*
04046e1a
KH
793 * Visit the first child (need not be the first child as per the ordering
794 * of the cgroup list, since we track last_scanned_child) of @mem and use
795 * that to reclaim free pages from.
796 */
797static struct mem_cgroup *
798mem_cgroup_select_victim(struct mem_cgroup *root_mem)
799{
800 struct mem_cgroup *ret = NULL;
801 struct cgroup_subsys_state *css;
802 int nextid, found;
803
804 if (!root_mem->use_hierarchy) {
805 css_get(&root_mem->css);
806 ret = root_mem;
807 }
808
809 while (!ret) {
810 rcu_read_lock();
811 nextid = root_mem->last_scanned_child + 1;
812 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
813 &found);
814 if (css && css_tryget(css))
815 ret = container_of(css, struct mem_cgroup, css);
816
817 rcu_read_unlock();
818 /* Updates scanning parameter */
819 spin_lock(&root_mem->reclaim_param_lock);
820 if (!css) {
821 /* this means start scan from ID:1 */
822 root_mem->last_scanned_child = 0;
823 } else
824 root_mem->last_scanned_child = found;
825 spin_unlock(&root_mem->reclaim_param_lock);
826 }
827
828 return ret;
829}
830
831/*
832 * Scan the hierarchy if needed to reclaim memory. We remember the last child
833 * we reclaimed from, so that we don't end up penalizing one child extensively
834 * based on its position in the children list.
6d61ef40
BS
835 *
836 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
837 *
838 * We give up and return to the caller when we visit root_mem twice.
839 * (other groups can be removed while we're walking....)
81d39c20
KH
840 *
841 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
842 */
843static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
81d39c20 844 gfp_t gfp_mask, bool noswap, bool shrink)
6d61ef40 845{
04046e1a
KH
846 struct mem_cgroup *victim;
847 int ret, total = 0;
848 int loop = 0;
849
850 while (loop < 2) {
851 victim = mem_cgroup_select_victim(root_mem);
852 if (victim == root_mem)
853 loop++;
854 if (!mem_cgroup_local_usage(&victim->stat)) {
855 /* this cgroup's local usage == 0 */
856 css_put(&victim->css);
6d61ef40
BS
857 continue;
858 }
04046e1a
KH
859 /* we use swappiness of local cgroup */
860 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
861 get_swappiness(victim));
862 css_put(&victim->css);
81d39c20
KH
863 /*
864 * At shrinking usage, we can't check we should stop here or
865 * reclaim more. It's depends on callers. last_scanned_child
866 * will work enough for keeping fairness under tree.
867 */
868 if (shrink)
869 return ret;
04046e1a 870 total += ret;
b85a96c0 871 if (mem_cgroup_check_under_limit(root_mem))
04046e1a 872 return 1 + total;
6d61ef40 873 }
04046e1a 874 return total;
6d61ef40
BS
875}
876
a636b327
KH
877bool mem_cgroup_oom_called(struct task_struct *task)
878{
879 bool ret = false;
880 struct mem_cgroup *mem;
881 struct mm_struct *mm;
882
883 rcu_read_lock();
884 mm = task->mm;
885 if (!mm)
886 mm = &init_mm;
887 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
888 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
889 ret = true;
890 rcu_read_unlock();
891 return ret;
892}
0b7f569e
KH
893
894static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
895{
896 mem->last_oom_jiffies = jiffies;
897 return 0;
898}
899
900static void record_last_oom(struct mem_cgroup *mem)
901{
902 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
903}
904
d69b042f
BS
905/*
906 * Currently used to update mapped file statistics, but the routine can be
907 * generalized to update other statistics as well.
908 */
909void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
910{
911 struct mem_cgroup *mem;
912 struct mem_cgroup_stat *stat;
913 struct mem_cgroup_stat_cpu *cpustat;
914 int cpu;
915 struct page_cgroup *pc;
916
917 if (!page_is_file_cache(page))
918 return;
919
920 pc = lookup_page_cgroup(page);
921 if (unlikely(!pc))
922 return;
923
924 lock_page_cgroup(pc);
925 mem = pc->mem_cgroup;
926 if (!mem)
927 goto done;
928
929 if (!PageCgroupUsed(pc))
930 goto done;
931
932 /*
933 * Preemption is already disabled, we don't need get_cpu()
934 */
935 cpu = smp_processor_id();
936 stat = &mem->stat;
937 cpustat = &stat->cpustat[cpu];
938
939 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
940done:
941 unlock_page_cgroup(pc);
942}
0b7f569e 943
f817ed48
KH
944/*
945 * Unlike exported interface, "oom" parameter is added. if oom==true,
946 * oom-killer can be invoked.
8a9f3ccd 947 */
f817ed48 948static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
949 gfp_t gfp_mask, struct mem_cgroup **memcg,
950 bool oom)
8a9f3ccd 951{
6d61ef40 952 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 953 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 954 struct res_counter *fail_res;
a636b327
KH
955
956 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
957 /* Don't account this! */
958 *memcg = NULL;
959 return 0;
960 }
961
8a9f3ccd 962 /*
3be91277
HD
963 * We always charge the cgroup the mm_struct belongs to.
964 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
965 * thread group leader migrates. It's possible that mm is not
966 * set, if so charge the init_mm (happens for pagecache usage).
967 */
54595fe2
KH
968 mem = *memcg;
969 if (likely(!mem)) {
970 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 971 *memcg = mem;
e8589cc1 972 } else {
7a81b88c 973 css_get(&mem->css);
e8589cc1 974 }
54595fe2
KH
975 if (unlikely(!mem))
976 return 0;
977
46f7e602 978 VM_BUG_ON(css_is_removed(&mem->css));
8a9f3ccd 979
8c7c6e34
KH
980 while (1) {
981 int ret;
982 bool noswap = false;
7a81b88c 983
28dbc4b6 984 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
985 if (likely(!ret)) {
986 if (!do_swap_account)
987 break;
28dbc4b6
BS
988 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
989 &fail_res);
8c7c6e34
KH
990 if (likely(!ret))
991 break;
992 /* mem+swap counter fails */
993 res_counter_uncharge(&mem->res, PAGE_SIZE);
994 noswap = true;
6d61ef40
BS
995 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
996 memsw);
997 } else
998 /* mem counter fails */
999 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1000 res);
1001
3be91277 1002 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1003 goto nomem;
e1a1cd59 1004
6d61ef40 1005 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
81d39c20 1006 noswap, false);
4d1c6273
DN
1007 if (ret)
1008 continue;
66e1707b
BS
1009
1010 /*
8869b8f6
HD
1011 * try_to_free_mem_cgroup_pages() might not give us a full
1012 * picture of reclaim. Some pages are reclaimed and might be
1013 * moved to swap cache or just unmapped from the cgroup.
1014 * Check the limit again to see if the reclaim reduced the
1015 * current usage of the cgroup before giving up
8c7c6e34 1016 *
8869b8f6 1017 */
b85a96c0
DN
1018 if (mem_cgroup_check_under_limit(mem_over_limit))
1019 continue;
3be91277
HD
1020
1021 if (!nr_retries--) {
a636b327 1022 if (oom) {
7f4d454d 1023 mutex_lock(&memcg_tasklist);
88700756 1024 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 1025 mutex_unlock(&memcg_tasklist);
0b7f569e 1026 record_last_oom(mem_over_limit);
a636b327 1027 }
7a81b88c 1028 goto nomem;
66e1707b 1029 }
8a9f3ccd 1030 }
7a81b88c
KH
1031 return 0;
1032nomem:
1033 css_put(&mem->css);
1034 return -ENOMEM;
1035}
8a9f3ccd 1036
a3b2d692
KH
1037
1038/*
1039 * A helper function to get mem_cgroup from ID. must be called under
1040 * rcu_read_lock(). The caller must check css_is_removed() or some if
1041 * it's concern. (dropping refcnt from swap can be called against removed
1042 * memcg.)
1043 */
1044static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1045{
1046 struct cgroup_subsys_state *css;
1047
1048 /* ID 0 is unused ID */
1049 if (!id)
1050 return NULL;
1051 css = css_lookup(&mem_cgroup_subsys, id);
1052 if (!css)
1053 return NULL;
1054 return container_of(css, struct mem_cgroup, css);
1055}
1056
b5a84319
KH
1057static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1058{
1059 struct mem_cgroup *mem;
3c776e64 1060 struct page_cgroup *pc;
a3b2d692 1061 unsigned short id;
b5a84319
KH
1062 swp_entry_t ent;
1063
3c776e64
DN
1064 VM_BUG_ON(!PageLocked(page));
1065
b5a84319
KH
1066 if (!PageSwapCache(page))
1067 return NULL;
1068
3c776e64 1069 pc = lookup_page_cgroup(page);
c0bd3f63 1070 lock_page_cgroup(pc);
a3b2d692 1071 if (PageCgroupUsed(pc)) {
3c776e64 1072 mem = pc->mem_cgroup;
a3b2d692
KH
1073 if (mem && !css_tryget(&mem->css))
1074 mem = NULL;
1075 } else {
3c776e64 1076 ent.val = page_private(page);
a3b2d692
KH
1077 id = lookup_swap_cgroup(ent);
1078 rcu_read_lock();
1079 mem = mem_cgroup_lookup(id);
1080 if (mem && !css_tryget(&mem->css))
1081 mem = NULL;
1082 rcu_read_unlock();
3c776e64 1083 }
c0bd3f63 1084 unlock_page_cgroup(pc);
b5a84319
KH
1085 return mem;
1086}
1087
7a81b88c 1088/*
a5e924f5 1089 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1090 * USED state. If already USED, uncharge and return.
1091 */
1092
1093static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1094 struct page_cgroup *pc,
1095 enum charge_type ctype)
1096{
7a81b88c
KH
1097 /* try_charge() can return NULL to *memcg, taking care of it. */
1098 if (!mem)
1099 return;
52d4b9ac
KH
1100
1101 lock_page_cgroup(pc);
1102 if (unlikely(PageCgroupUsed(pc))) {
1103 unlock_page_cgroup(pc);
1104 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1105 if (do_swap_account)
1106 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 1107 css_put(&mem->css);
7a81b88c 1108 return;
52d4b9ac 1109 }
8a9f3ccd 1110 pc->mem_cgroup = mem;
08e552c6 1111 smp_wmb();
c05555b5 1112 pc->flags = pcg_default_flags[ctype];
3be91277 1113
08e552c6 1114 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1115
52d4b9ac 1116 unlock_page_cgroup(pc);
7a81b88c 1117}
66e1707b 1118
f817ed48
KH
1119/**
1120 * mem_cgroup_move_account - move account of the page
1121 * @pc: page_cgroup of the page.
1122 * @from: mem_cgroup which the page is moved from.
1123 * @to: mem_cgroup which the page is moved to. @from != @to.
1124 *
1125 * The caller must confirm following.
08e552c6 1126 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
1127 *
1128 * returns 0 at success,
1129 * returns -EBUSY when lock is busy or "pc" is unstable.
1130 *
1131 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1132 * new cgroup. It should be done by a caller.
1133 */
1134
1135static int mem_cgroup_move_account(struct page_cgroup *pc,
1136 struct mem_cgroup *from, struct mem_cgroup *to)
1137{
1138 struct mem_cgroup_per_zone *from_mz, *to_mz;
1139 int nid, zid;
1140 int ret = -EBUSY;
d69b042f
BS
1141 struct page *page;
1142 int cpu;
1143 struct mem_cgroup_stat *stat;
1144 struct mem_cgroup_stat_cpu *cpustat;
f817ed48 1145
f817ed48 1146 VM_BUG_ON(from == to);
08e552c6 1147 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
1148
1149 nid = page_cgroup_nid(pc);
1150 zid = page_cgroup_zid(pc);
1151 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1152 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1153
f817ed48
KH
1154 if (!trylock_page_cgroup(pc))
1155 return ret;
1156
1157 if (!PageCgroupUsed(pc))
1158 goto out;
1159
1160 if (pc->mem_cgroup != from)
1161 goto out;
1162
08e552c6
KH
1163 res_counter_uncharge(&from->res, PAGE_SIZE);
1164 mem_cgroup_charge_statistics(from, pc, false);
d69b042f
BS
1165
1166 page = pc->page;
1167 if (page_is_file_cache(page) && page_mapped(page)) {
1168 cpu = smp_processor_id();
1169 /* Update mapped_file data for mem_cgroup "from" */
1170 stat = &from->stat;
1171 cpustat = &stat->cpustat[cpu];
1172 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1173 -1);
1174
1175 /* Update mapped_file data for mem_cgroup "to" */
1176 stat = &to->stat;
1177 cpustat = &stat->cpustat[cpu];
1178 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1179 1);
1180 }
1181
08e552c6
KH
1182 if (do_swap_account)
1183 res_counter_uncharge(&from->memsw, PAGE_SIZE);
40d58138
DN
1184 css_put(&from->css);
1185
1186 css_get(&to->css);
08e552c6
KH
1187 pc->mem_cgroup = to;
1188 mem_cgroup_charge_statistics(to, pc, true);
08e552c6 1189 ret = 0;
f817ed48
KH
1190out:
1191 unlock_page_cgroup(pc);
1192 return ret;
1193}
1194
1195/*
1196 * move charges to its parent.
1197 */
1198
1199static int mem_cgroup_move_parent(struct page_cgroup *pc,
1200 struct mem_cgroup *child,
1201 gfp_t gfp_mask)
1202{
08e552c6 1203 struct page *page = pc->page;
f817ed48
KH
1204 struct cgroup *cg = child->css.cgroup;
1205 struct cgroup *pcg = cg->parent;
1206 struct mem_cgroup *parent;
f817ed48
KH
1207 int ret;
1208
1209 /* Is ROOT ? */
1210 if (!pcg)
1211 return -EINVAL;
1212
08e552c6 1213
f817ed48
KH
1214 parent = mem_cgroup_from_cont(pcg);
1215
08e552c6 1216
f817ed48 1217 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1218 if (ret || !parent)
f817ed48
KH
1219 return ret;
1220
40d58138
DN
1221 if (!get_page_unless_zero(page)) {
1222 ret = -EBUSY;
1223 goto uncharge;
1224 }
08e552c6
KH
1225
1226 ret = isolate_lru_page(page);
1227
1228 if (ret)
1229 goto cancel;
f817ed48 1230
f817ed48 1231 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1232
08e552c6
KH
1233 putback_lru_page(page);
1234 if (!ret) {
1235 put_page(page);
40d58138
DN
1236 /* drop extra refcnt by try_charge() */
1237 css_put(&parent->css);
08e552c6 1238 return 0;
8c7c6e34 1239 }
40d58138 1240
08e552c6 1241cancel:
40d58138
DN
1242 put_page(page);
1243uncharge:
1244 /* drop extra refcnt by try_charge() */
1245 css_put(&parent->css);
1246 /* uncharge if move fails */
08e552c6
KH
1247 res_counter_uncharge(&parent->res, PAGE_SIZE);
1248 if (do_swap_account)
1249 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
f817ed48
KH
1250 return ret;
1251}
1252
7a81b88c
KH
1253/*
1254 * Charge the memory controller for page usage.
1255 * Return
1256 * 0 if the charge was successful
1257 * < 0 if the cgroup is over its limit
1258 */
1259static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1260 gfp_t gfp_mask, enum charge_type ctype,
1261 struct mem_cgroup *memcg)
1262{
1263 struct mem_cgroup *mem;
1264 struct page_cgroup *pc;
1265 int ret;
1266
1267 pc = lookup_page_cgroup(page);
1268 /* can happen at boot */
1269 if (unlikely(!pc))
1270 return 0;
1271 prefetchw(pc);
1272
1273 mem = memcg;
f817ed48 1274 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1275 if (ret || !mem)
7a81b88c
KH
1276 return ret;
1277
1278 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1279 return 0;
8a9f3ccd
BS
1280}
1281
7a81b88c
KH
1282int mem_cgroup_newpage_charge(struct page *page,
1283 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1284{
f8d66542 1285 if (mem_cgroup_disabled())
cede86ac 1286 return 0;
52d4b9ac
KH
1287 if (PageCompound(page))
1288 return 0;
69029cd5
KH
1289 /*
1290 * If already mapped, we don't have to account.
1291 * If page cache, page->mapping has address_space.
1292 * But page->mapping may have out-of-use anon_vma pointer,
1293 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1294 * is NULL.
1295 */
1296 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1297 return 0;
1298 if (unlikely(!mm))
1299 mm = &init_mm;
217bc319 1300 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1301 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1302}
1303
83aae4c7
DN
1304static void
1305__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1306 enum charge_type ctype);
1307
e1a1cd59
BS
1308int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1309 gfp_t gfp_mask)
8697d331 1310{
b5a84319
KH
1311 struct mem_cgroup *mem = NULL;
1312 int ret;
1313
f8d66542 1314 if (mem_cgroup_disabled())
cede86ac 1315 return 0;
52d4b9ac
KH
1316 if (PageCompound(page))
1317 return 0;
accf163e
KH
1318 /*
1319 * Corner case handling. This is called from add_to_page_cache()
1320 * in usual. But some FS (shmem) precharges this page before calling it
1321 * and call add_to_page_cache() with GFP_NOWAIT.
1322 *
1323 * For GFP_NOWAIT case, the page may be pre-charged before calling
1324 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1325 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1326 * And when the page is SwapCache, it should take swap information
1327 * into account. This is under lock_page() now.
accf163e
KH
1328 */
1329 if (!(gfp_mask & __GFP_WAIT)) {
1330 struct page_cgroup *pc;
1331
52d4b9ac
KH
1332
1333 pc = lookup_page_cgroup(page);
1334 if (!pc)
1335 return 0;
1336 lock_page_cgroup(pc);
1337 if (PageCgroupUsed(pc)) {
1338 unlock_page_cgroup(pc);
accf163e
KH
1339 return 0;
1340 }
52d4b9ac 1341 unlock_page_cgroup(pc);
accf163e
KH
1342 }
1343
b5a84319 1344 if (unlikely(!mm && !mem))
8697d331 1345 mm = &init_mm;
accf163e 1346
c05555b5
KH
1347 if (page_is_file_cache(page))
1348 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1349 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1350
83aae4c7
DN
1351 /* shmem */
1352 if (PageSwapCache(page)) {
1353 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1354 if (!ret)
1355 __mem_cgroup_commit_charge_swapin(page, mem,
1356 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1357 } else
1358 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1359 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1360
b5a84319 1361 return ret;
e8589cc1
KH
1362}
1363
54595fe2
KH
1364/*
1365 * While swap-in, try_charge -> commit or cancel, the page is locked.
1366 * And when try_charge() successfully returns, one refcnt to memcg without
1367 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1368 * "commit()" or removed by "cancel()"
1369 */
8c7c6e34
KH
1370int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1371 struct page *page,
1372 gfp_t mask, struct mem_cgroup **ptr)
1373{
1374 struct mem_cgroup *mem;
54595fe2 1375 int ret;
8c7c6e34 1376
f8d66542 1377 if (mem_cgroup_disabled())
8c7c6e34
KH
1378 return 0;
1379
1380 if (!do_swap_account)
1381 goto charge_cur_mm;
8c7c6e34
KH
1382 /*
1383 * A racing thread's fault, or swapoff, may have already updated
1384 * the pte, and even removed page from swap cache: return success
1385 * to go on to do_swap_page()'s pte_same() test, which should fail.
1386 */
1387 if (!PageSwapCache(page))
1388 return 0;
b5a84319 1389 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1390 if (!mem)
1391 goto charge_cur_mm;
8c7c6e34 1392 *ptr = mem;
54595fe2
KH
1393 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1394 /* drop extra refcnt from tryget */
1395 css_put(&mem->css);
1396 return ret;
8c7c6e34
KH
1397charge_cur_mm:
1398 if (unlikely(!mm))
1399 mm = &init_mm;
1400 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1401}
1402
83aae4c7
DN
1403static void
1404__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1405 enum charge_type ctype)
7a81b88c
KH
1406{
1407 struct page_cgroup *pc;
1408
f8d66542 1409 if (mem_cgroup_disabled())
7a81b88c
KH
1410 return;
1411 if (!ptr)
1412 return;
1413 pc = lookup_page_cgroup(page);
544122e5 1414 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1415 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1416 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1417 /*
1418 * Now swap is on-memory. This means this page may be
1419 * counted both as mem and swap....double count.
03f3c433
KH
1420 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1421 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1422 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1423 */
03f3c433 1424 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1425 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1426 unsigned short id;
8c7c6e34 1427 struct mem_cgroup *memcg;
a3b2d692
KH
1428
1429 id = swap_cgroup_record(ent, 0);
1430 rcu_read_lock();
1431 memcg = mem_cgroup_lookup(id);
8c7c6e34 1432 if (memcg) {
a3b2d692
KH
1433 /*
1434 * This recorded memcg can be obsolete one. So, avoid
1435 * calling css_tryget
1436 */
8c7c6e34
KH
1437 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1438 mem_cgroup_put(memcg);
1439 }
a3b2d692 1440 rcu_read_unlock();
8c7c6e34 1441 }
08e552c6 1442 /* add this page(page_cgroup) to the LRU we want. */
544122e5 1443
7a81b88c
KH
1444}
1445
83aae4c7
DN
1446void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1447{
1448 __mem_cgroup_commit_charge_swapin(page, ptr,
1449 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1450}
1451
7a81b88c
KH
1452void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1453{
f8d66542 1454 if (mem_cgroup_disabled())
7a81b88c
KH
1455 return;
1456 if (!mem)
1457 return;
1458 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1459 if (do_swap_account)
1460 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1461 css_put(&mem->css);
1462}
1463
1464
8a9f3ccd 1465/*
69029cd5 1466 * uncharge if !page_mapped(page)
8a9f3ccd 1467 */
8c7c6e34 1468static struct mem_cgroup *
69029cd5 1469__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1470{
8289546e 1471 struct page_cgroup *pc;
8c7c6e34 1472 struct mem_cgroup *mem = NULL;
072c56c1 1473 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1474
f8d66542 1475 if (mem_cgroup_disabled())
8c7c6e34 1476 return NULL;
4077960e 1477
d13d1443 1478 if (PageSwapCache(page))
8c7c6e34 1479 return NULL;
d13d1443 1480
8697d331 1481 /*
3c541e14 1482 * Check if our page_cgroup is valid
8697d331 1483 */
52d4b9ac
KH
1484 pc = lookup_page_cgroup(page);
1485 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1486 return NULL;
b9c565d5 1487
52d4b9ac 1488 lock_page_cgroup(pc);
d13d1443 1489
8c7c6e34
KH
1490 mem = pc->mem_cgroup;
1491
d13d1443
KH
1492 if (!PageCgroupUsed(pc))
1493 goto unlock_out;
1494
1495 switch (ctype) {
1496 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 1497 case MEM_CGROUP_CHARGE_TYPE_DROP:
d13d1443
KH
1498 if (page_mapped(page))
1499 goto unlock_out;
1500 break;
1501 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1502 if (!PageAnon(page)) { /* Shared memory */
1503 if (page->mapping && !page_is_file_cache(page))
1504 goto unlock_out;
1505 } else if (page_mapped(page)) /* Anon */
1506 goto unlock_out;
1507 break;
1508 default:
1509 break;
52d4b9ac 1510 }
d13d1443 1511
8c7c6e34
KH
1512 res_counter_uncharge(&mem->res, PAGE_SIZE);
1513 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1514 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
08e552c6 1515 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 1516
52d4b9ac 1517 ClearPageCgroupUsed(pc);
544122e5
KH
1518 /*
1519 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1520 * freed from LRU. This is safe because uncharged page is expected not
1521 * to be reused (freed soon). Exception is SwapCache, it's handled by
1522 * special functions.
1523 */
b9c565d5 1524
69029cd5 1525 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1526 unlock_page_cgroup(pc);
fb59e9f1 1527
a7fe942e
KH
1528 /* at swapout, this memcg will be accessed to record to swap */
1529 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1530 css_put(&mem->css);
6d12e2d8 1531
8c7c6e34 1532 return mem;
d13d1443
KH
1533
1534unlock_out:
1535 unlock_page_cgroup(pc);
8c7c6e34 1536 return NULL;
3c541e14
BS
1537}
1538
69029cd5
KH
1539void mem_cgroup_uncharge_page(struct page *page)
1540{
52d4b9ac
KH
1541 /* early check. */
1542 if (page_mapped(page))
1543 return;
1544 if (page->mapping && !PageAnon(page))
1545 return;
69029cd5
KH
1546 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1547}
1548
1549void mem_cgroup_uncharge_cache_page(struct page *page)
1550{
1551 VM_BUG_ON(page_mapped(page));
b7abea96 1552 VM_BUG_ON(page->mapping);
69029cd5
KH
1553 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1554}
1555
e767e056 1556#ifdef CONFIG_SWAP
8c7c6e34 1557/*
e767e056 1558 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
1559 * memcg information is recorded to swap_cgroup of "ent"
1560 */
8a9478ca
KH
1561void
1562mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
1563{
1564 struct mem_cgroup *memcg;
8a9478ca
KH
1565 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1566
1567 if (!swapout) /* this was a swap cache but the swap is unused ! */
1568 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1569
1570 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 1571
8c7c6e34 1572 /* record memcg information */
8a9478ca 1573 if (do_swap_account && swapout && memcg) {
a3b2d692 1574 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
1575 mem_cgroup_get(memcg);
1576 }
8a9478ca 1577 if (swapout && memcg)
a7fe942e 1578 css_put(&memcg->css);
8c7c6e34 1579}
e767e056 1580#endif
8c7c6e34
KH
1581
1582#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1583/*
1584 * called from swap_entry_free(). remove record in swap_cgroup and
1585 * uncharge "memsw" account.
1586 */
1587void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1588{
8c7c6e34 1589 struct mem_cgroup *memcg;
a3b2d692 1590 unsigned short id;
8c7c6e34
KH
1591
1592 if (!do_swap_account)
1593 return;
1594
a3b2d692
KH
1595 id = swap_cgroup_record(ent, 0);
1596 rcu_read_lock();
1597 memcg = mem_cgroup_lookup(id);
8c7c6e34 1598 if (memcg) {
a3b2d692
KH
1599 /*
1600 * We uncharge this because swap is freed.
1601 * This memcg can be obsolete one. We avoid calling css_tryget
1602 */
8c7c6e34
KH
1603 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1604 mem_cgroup_put(memcg);
1605 }
a3b2d692 1606 rcu_read_unlock();
d13d1443 1607}
8c7c6e34 1608#endif
d13d1443 1609
ae41be37 1610/*
01b1ae63
KH
1611 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1612 * page belongs to.
ae41be37 1613 */
01b1ae63 1614int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1615{
1616 struct page_cgroup *pc;
e8589cc1 1617 struct mem_cgroup *mem = NULL;
e8589cc1 1618 int ret = 0;
8869b8f6 1619
f8d66542 1620 if (mem_cgroup_disabled())
4077960e
BS
1621 return 0;
1622
52d4b9ac
KH
1623 pc = lookup_page_cgroup(page);
1624 lock_page_cgroup(pc);
1625 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1626 mem = pc->mem_cgroup;
1627 css_get(&mem->css);
e8589cc1 1628 }
52d4b9ac 1629 unlock_page_cgroup(pc);
01b1ae63 1630
e8589cc1 1631 if (mem) {
3bb4edf2 1632 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1633 css_put(&mem->css);
1634 }
01b1ae63 1635 *ptr = mem;
e8589cc1 1636 return ret;
ae41be37 1637}
8869b8f6 1638
69029cd5 1639/* remove redundant charge if migration failed*/
01b1ae63
KH
1640void mem_cgroup_end_migration(struct mem_cgroup *mem,
1641 struct page *oldpage, struct page *newpage)
ae41be37 1642{
01b1ae63
KH
1643 struct page *target, *unused;
1644 struct page_cgroup *pc;
1645 enum charge_type ctype;
1646
1647 if (!mem)
1648 return;
1649
1650 /* at migration success, oldpage->mapping is NULL. */
1651 if (oldpage->mapping) {
1652 target = oldpage;
1653 unused = NULL;
1654 } else {
1655 target = newpage;
1656 unused = oldpage;
1657 }
1658
1659 if (PageAnon(target))
1660 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1661 else if (page_is_file_cache(target))
1662 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1663 else
1664 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1665
1666 /* unused page is not on radix-tree now. */
d13d1443 1667 if (unused)
01b1ae63
KH
1668 __mem_cgroup_uncharge_common(unused, ctype);
1669
1670 pc = lookup_page_cgroup(target);
69029cd5 1671 /*
01b1ae63
KH
1672 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1673 * So, double-counting is effectively avoided.
1674 */
1675 __mem_cgroup_commit_charge(mem, pc, ctype);
1676
1677 /*
1678 * Both of oldpage and newpage are still under lock_page().
1679 * Then, we don't have to care about race in radix-tree.
1680 * But we have to be careful that this page is unmapped or not.
1681 *
1682 * There is a case for !page_mapped(). At the start of
1683 * migration, oldpage was mapped. But now, it's zapped.
1684 * But we know *target* page is not freed/reused under us.
1685 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1686 */
01b1ae63
KH
1687 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1688 mem_cgroup_uncharge_page(target);
ae41be37 1689}
78fb7466 1690
c9b0ed51 1691/*
ae3abae6
DN
1692 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1693 * Calling hierarchical_reclaim is not enough because we should update
1694 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1695 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1696 * not from the memcg which this page would be charged to.
1697 * try_charge_swapin does all of these works properly.
c9b0ed51 1698 */
ae3abae6 1699int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
1700 struct mm_struct *mm,
1701 gfp_t gfp_mask)
c9b0ed51 1702{
b5a84319 1703 struct mem_cgroup *mem = NULL;
ae3abae6 1704 int ret;
c9b0ed51 1705
f8d66542 1706 if (mem_cgroup_disabled())
cede86ac 1707 return 0;
c9b0ed51 1708
ae3abae6
DN
1709 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1710 if (!ret)
1711 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 1712
ae3abae6 1713 return ret;
c9b0ed51
KH
1714}
1715
8c7c6e34
KH
1716static DEFINE_MUTEX(set_limit_mutex);
1717
d38d2a75 1718static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1719 unsigned long long val)
628f4235 1720{
81d39c20 1721 int retry_count;
628f4235 1722 int progress;
8c7c6e34 1723 u64 memswlimit;
628f4235 1724 int ret = 0;
81d39c20
KH
1725 int children = mem_cgroup_count_children(memcg);
1726 u64 curusage, oldusage;
1727
1728 /*
1729 * For keeping hierarchical_reclaim simple, how long we should retry
1730 * is depends on callers. We set our retry-count to be function
1731 * of # of children which we should visit in this loop.
1732 */
1733 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1734
1735 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 1736
8c7c6e34 1737 while (retry_count) {
628f4235
KH
1738 if (signal_pending(current)) {
1739 ret = -EINTR;
1740 break;
1741 }
8c7c6e34
KH
1742 /*
1743 * Rather than hide all in some function, I do this in
1744 * open coded manner. You see what this really does.
1745 * We have to guarantee mem->res.limit < mem->memsw.limit.
1746 */
1747 mutex_lock(&set_limit_mutex);
1748 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1749 if (memswlimit < val) {
1750 ret = -EINVAL;
1751 mutex_unlock(&set_limit_mutex);
628f4235
KH
1752 break;
1753 }
8c7c6e34
KH
1754 ret = res_counter_set_limit(&memcg->res, val);
1755 mutex_unlock(&set_limit_mutex);
1756
1757 if (!ret)
1758 break;
1759
42e9abb6 1760 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
81d39c20
KH
1761 false, true);
1762 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1763 /* Usage is reduced ? */
1764 if (curusage >= oldusage)
1765 retry_count--;
1766 else
1767 oldusage = curusage;
8c7c6e34 1768 }
14797e23 1769
8c7c6e34
KH
1770 return ret;
1771}
1772
338c8431
LZ
1773static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1774 unsigned long long val)
8c7c6e34 1775{
81d39c20 1776 int retry_count;
8c7c6e34 1777 u64 memlimit, oldusage, curusage;
81d39c20
KH
1778 int children = mem_cgroup_count_children(memcg);
1779 int ret = -EBUSY;
8c7c6e34 1780
81d39c20
KH
1781 /* see mem_cgroup_resize_res_limit */
1782 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1783 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
1784 while (retry_count) {
1785 if (signal_pending(current)) {
1786 ret = -EINTR;
1787 break;
1788 }
1789 /*
1790 * Rather than hide all in some function, I do this in
1791 * open coded manner. You see what this really does.
1792 * We have to guarantee mem->res.limit < mem->memsw.limit.
1793 */
1794 mutex_lock(&set_limit_mutex);
1795 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1796 if (memlimit > val) {
1797 ret = -EINVAL;
1798 mutex_unlock(&set_limit_mutex);
1799 break;
1800 }
1801 ret = res_counter_set_limit(&memcg->memsw, val);
1802 mutex_unlock(&set_limit_mutex);
1803
1804 if (!ret)
1805 break;
1806
81d39c20 1807 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
8c7c6e34 1808 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 1809 /* Usage is reduced ? */
8c7c6e34 1810 if (curusage >= oldusage)
628f4235 1811 retry_count--;
81d39c20
KH
1812 else
1813 oldusage = curusage;
628f4235
KH
1814 }
1815 return ret;
1816}
1817
cc847582
KH
1818/*
1819 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1820 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1821 */
f817ed48 1822static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1823 int node, int zid, enum lru_list lru)
cc847582 1824{
08e552c6
KH
1825 struct zone *zone;
1826 struct mem_cgroup_per_zone *mz;
f817ed48 1827 struct page_cgroup *pc, *busy;
08e552c6 1828 unsigned long flags, loop;
072c56c1 1829 struct list_head *list;
f817ed48 1830 int ret = 0;
072c56c1 1831
08e552c6
KH
1832 zone = &NODE_DATA(node)->node_zones[zid];
1833 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1834 list = &mz->lists[lru];
cc847582 1835
f817ed48
KH
1836 loop = MEM_CGROUP_ZSTAT(mz, lru);
1837 /* give some margin against EBUSY etc...*/
1838 loop += 256;
1839 busy = NULL;
1840 while (loop--) {
1841 ret = 0;
08e552c6 1842 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1843 if (list_empty(list)) {
08e552c6 1844 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1845 break;
f817ed48
KH
1846 }
1847 pc = list_entry(list->prev, struct page_cgroup, lru);
1848 if (busy == pc) {
1849 list_move(&pc->lru, list);
1850 busy = 0;
08e552c6 1851 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1852 continue;
1853 }
08e552c6 1854 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1855
2c26fdd7 1856 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1857 if (ret == -ENOMEM)
52d4b9ac 1858 break;
f817ed48
KH
1859
1860 if (ret == -EBUSY || ret == -EINVAL) {
1861 /* found lock contention or "pc" is obsolete. */
1862 busy = pc;
1863 cond_resched();
1864 } else
1865 busy = NULL;
cc847582 1866 }
08e552c6 1867
f817ed48
KH
1868 if (!ret && !list_empty(list))
1869 return -EBUSY;
1870 return ret;
cc847582
KH
1871}
1872
1873/*
1874 * make mem_cgroup's charge to be 0 if there is no task.
1875 * This enables deleting this mem_cgroup.
1876 */
c1e862c1 1877static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1878{
f817ed48
KH
1879 int ret;
1880 int node, zid, shrink;
1881 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1882 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1883
cc847582 1884 css_get(&mem->css);
f817ed48
KH
1885
1886 shrink = 0;
c1e862c1
KH
1887 /* should free all ? */
1888 if (free_all)
1889 goto try_to_free;
f817ed48 1890move_account:
1ecaab2b 1891 while (mem->res.usage > 0) {
f817ed48 1892 ret = -EBUSY;
c1e862c1
KH
1893 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1894 goto out;
1895 ret = -EINTR;
1896 if (signal_pending(current))
cc847582 1897 goto out;
52d4b9ac
KH
1898 /* This is for making all *used* pages to be on LRU. */
1899 lru_add_drain_all();
f817ed48 1900 ret = 0;
299b4eaa 1901 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 1902 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1903 enum lru_list l;
f817ed48
KH
1904 for_each_lru(l) {
1905 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1906 node, zid, l);
f817ed48
KH
1907 if (ret)
1908 break;
1909 }
1ecaab2b 1910 }
f817ed48
KH
1911 if (ret)
1912 break;
1913 }
1914 /* it seems parent cgroup doesn't have enough mem */
1915 if (ret == -ENOMEM)
1916 goto try_to_free;
52d4b9ac 1917 cond_resched();
cc847582
KH
1918 }
1919 ret = 0;
1920out:
1921 css_put(&mem->css);
1922 return ret;
f817ed48
KH
1923
1924try_to_free:
c1e862c1
KH
1925 /* returns EBUSY if there is a task or if we come here twice. */
1926 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1927 ret = -EBUSY;
1928 goto out;
1929 }
c1e862c1
KH
1930 /* we call try-to-free pages for make this cgroup empty */
1931 lru_add_drain_all();
f817ed48
KH
1932 /* try to free all pages in this cgroup */
1933 shrink = 1;
1934 while (nr_retries && mem->res.usage > 0) {
1935 int progress;
c1e862c1
KH
1936
1937 if (signal_pending(current)) {
1938 ret = -EINTR;
1939 goto out;
1940 }
a7885eb8
KM
1941 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1942 false, get_swappiness(mem));
c1e862c1 1943 if (!progress) {
f817ed48 1944 nr_retries--;
c1e862c1
KH
1945 /* maybe some writeback is necessary */
1946 congestion_wait(WRITE, HZ/10);
1947 }
f817ed48
KH
1948
1949 }
08e552c6 1950 lru_add_drain();
f817ed48
KH
1951 /* try move_account...there may be some *locked* pages. */
1952 if (mem->res.usage)
1953 goto move_account;
1954 ret = 0;
1955 goto out;
cc847582
KH
1956}
1957
c1e862c1
KH
1958int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1959{
1960 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1961}
1962
1963
18f59ea7
BS
1964static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1965{
1966 return mem_cgroup_from_cont(cont)->use_hierarchy;
1967}
1968
1969static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1970 u64 val)
1971{
1972 int retval = 0;
1973 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1974 struct cgroup *parent = cont->parent;
1975 struct mem_cgroup *parent_mem = NULL;
1976
1977 if (parent)
1978 parent_mem = mem_cgroup_from_cont(parent);
1979
1980 cgroup_lock();
1981 /*
1982 * If parent's use_hiearchy is set, we can't make any modifications
1983 * in the child subtrees. If it is unset, then the change can
1984 * occur, provided the current cgroup has no children.
1985 *
1986 * For the root cgroup, parent_mem is NULL, we allow value to be
1987 * set if there are no children.
1988 */
1989 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1990 (val == 1 || val == 0)) {
1991 if (list_empty(&cont->children))
1992 mem->use_hierarchy = val;
1993 else
1994 retval = -EBUSY;
1995 } else
1996 retval = -EINVAL;
1997 cgroup_unlock();
1998
1999 return retval;
2000}
2001
2c3daa72 2002static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 2003{
8c7c6e34
KH
2004 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2005 u64 val = 0;
2006 int type, name;
2007
2008 type = MEMFILE_TYPE(cft->private);
2009 name = MEMFILE_ATTR(cft->private);
2010 switch (type) {
2011 case _MEM:
2012 val = res_counter_read_u64(&mem->res, name);
2013 break;
2014 case _MEMSWAP:
338c8431 2015 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
2016 break;
2017 default:
2018 BUG();
2019 break;
2020 }
2021 return val;
8cdea7c0 2022}
628f4235
KH
2023/*
2024 * The user of this function is...
2025 * RES_LIMIT.
2026 */
856c13aa
PM
2027static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2028 const char *buffer)
8cdea7c0 2029{
628f4235 2030 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 2031 int type, name;
628f4235
KH
2032 unsigned long long val;
2033 int ret;
2034
8c7c6e34
KH
2035 type = MEMFILE_TYPE(cft->private);
2036 name = MEMFILE_ATTR(cft->private);
2037 switch (name) {
628f4235
KH
2038 case RES_LIMIT:
2039 /* This function does all necessary parse...reuse it */
2040 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
2041 if (ret)
2042 break;
2043 if (type == _MEM)
628f4235 2044 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
2045 else
2046 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
2047 break;
2048 default:
2049 ret = -EINVAL; /* should be BUG() ? */
2050 break;
2051 }
2052 return ret;
8cdea7c0
BS
2053}
2054
fee7b548
KH
2055static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2056 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2057{
2058 struct cgroup *cgroup;
2059 unsigned long long min_limit, min_memsw_limit, tmp;
2060
2061 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2062 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2063 cgroup = memcg->css.cgroup;
2064 if (!memcg->use_hierarchy)
2065 goto out;
2066
2067 while (cgroup->parent) {
2068 cgroup = cgroup->parent;
2069 memcg = mem_cgroup_from_cont(cgroup);
2070 if (!memcg->use_hierarchy)
2071 break;
2072 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2073 min_limit = min(min_limit, tmp);
2074 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2075 min_memsw_limit = min(min_memsw_limit, tmp);
2076 }
2077out:
2078 *mem_limit = min_limit;
2079 *memsw_limit = min_memsw_limit;
2080 return;
2081}
2082
29f2a4da 2083static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2084{
2085 struct mem_cgroup *mem;
8c7c6e34 2086 int type, name;
c84872e1
PE
2087
2088 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2089 type = MEMFILE_TYPE(event);
2090 name = MEMFILE_ATTR(event);
2091 switch (name) {
29f2a4da 2092 case RES_MAX_USAGE:
8c7c6e34
KH
2093 if (type == _MEM)
2094 res_counter_reset_max(&mem->res);
2095 else
2096 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2097 break;
2098 case RES_FAILCNT:
8c7c6e34
KH
2099 if (type == _MEM)
2100 res_counter_reset_failcnt(&mem->res);
2101 else
2102 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2103 break;
2104 }
85cc59db 2105 return 0;
c84872e1
PE
2106}
2107
14067bb3
KH
2108
2109/* For read statistics */
2110enum {
2111 MCS_CACHE,
2112 MCS_RSS,
d69b042f 2113 MCS_MAPPED_FILE,
14067bb3
KH
2114 MCS_PGPGIN,
2115 MCS_PGPGOUT,
2116 MCS_INACTIVE_ANON,
2117 MCS_ACTIVE_ANON,
2118 MCS_INACTIVE_FILE,
2119 MCS_ACTIVE_FILE,
2120 MCS_UNEVICTABLE,
2121 NR_MCS_STAT,
2122};
2123
2124struct mcs_total_stat {
2125 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
2126};
2127
14067bb3
KH
2128struct {
2129 char *local_name;
2130 char *total_name;
2131} memcg_stat_strings[NR_MCS_STAT] = {
2132 {"cache", "total_cache"},
2133 {"rss", "total_rss"},
d69b042f 2134 {"mapped_file", "total_mapped_file"},
14067bb3
KH
2135 {"pgpgin", "total_pgpgin"},
2136 {"pgpgout", "total_pgpgout"},
2137 {"inactive_anon", "total_inactive_anon"},
2138 {"active_anon", "total_active_anon"},
2139 {"inactive_file", "total_inactive_file"},
2140 {"active_file", "total_active_file"},
2141 {"unevictable", "total_unevictable"}
2142};
2143
2144
2145static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2146{
2147 struct mcs_total_stat *s = data;
2148 s64 val;
2149
2150 /* per cpu stat */
2151 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2152 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2153 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2154 s->stat[MCS_RSS] += val * PAGE_SIZE;
d69b042f
BS
2155 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2156 s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
14067bb3
KH
2157 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2158 s->stat[MCS_PGPGIN] += val;
2159 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2160 s->stat[MCS_PGPGOUT] += val;
2161
2162 /* per zone stat */
2163 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2164 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2165 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2166 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2167 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2168 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2169 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2170 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2171 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2172 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2173 return 0;
2174}
2175
2176static void
2177mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2178{
2179 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2180}
2181
c64745cf
PM
2182static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2183 struct cgroup_map_cb *cb)
d2ceb9b7 2184{
d2ceb9b7 2185 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 2186 struct mcs_total_stat mystat;
d2ceb9b7
KH
2187 int i;
2188
14067bb3
KH
2189 memset(&mystat, 0, sizeof(mystat));
2190 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 2191
14067bb3
KH
2192 for (i = 0; i < NR_MCS_STAT; i++)
2193 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
7b854121 2194
14067bb3 2195 /* Hierarchical information */
fee7b548
KH
2196 {
2197 unsigned long long limit, memsw_limit;
2198 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2199 cb->fill(cb, "hierarchical_memory_limit", limit);
2200 if (do_swap_account)
2201 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2202 }
7f016ee8 2203
14067bb3
KH
2204 memset(&mystat, 0, sizeof(mystat));
2205 mem_cgroup_get_total_stat(mem_cont, &mystat);
2206 for (i = 0; i < NR_MCS_STAT; i++)
2207 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2208
2209
7f016ee8 2210#ifdef CONFIG_DEBUG_VM
c772be93 2211 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
2212
2213 {
2214 int nid, zid;
2215 struct mem_cgroup_per_zone *mz;
2216 unsigned long recent_rotated[2] = {0, 0};
2217 unsigned long recent_scanned[2] = {0, 0};
2218
2219 for_each_online_node(nid)
2220 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2221 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2222
2223 recent_rotated[0] +=
2224 mz->reclaim_stat.recent_rotated[0];
2225 recent_rotated[1] +=
2226 mz->reclaim_stat.recent_rotated[1];
2227 recent_scanned[0] +=
2228 mz->reclaim_stat.recent_scanned[0];
2229 recent_scanned[1] +=
2230 mz->reclaim_stat.recent_scanned[1];
2231 }
2232 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2233 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2234 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2235 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2236 }
2237#endif
2238
d2ceb9b7
KH
2239 return 0;
2240}
2241
a7885eb8
KM
2242static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2243{
2244 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2245
2246 return get_swappiness(memcg);
2247}
2248
2249static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2250 u64 val)
2251{
2252 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2253 struct mem_cgroup *parent;
068b38c1 2254
a7885eb8
KM
2255 if (val > 100)
2256 return -EINVAL;
2257
2258 if (cgrp->parent == NULL)
2259 return -EINVAL;
2260
2261 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
2262
2263 cgroup_lock();
2264
a7885eb8
KM
2265 /* If under hierarchy, only empty-root can set this value */
2266 if ((parent->use_hierarchy) ||
068b38c1
LZ
2267 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2268 cgroup_unlock();
a7885eb8 2269 return -EINVAL;
068b38c1 2270 }
a7885eb8
KM
2271
2272 spin_lock(&memcg->reclaim_param_lock);
2273 memcg->swappiness = val;
2274 spin_unlock(&memcg->reclaim_param_lock);
2275
068b38c1
LZ
2276 cgroup_unlock();
2277
a7885eb8
KM
2278 return 0;
2279}
2280
c1e862c1 2281
8cdea7c0
BS
2282static struct cftype mem_cgroup_files[] = {
2283 {
0eea1030 2284 .name = "usage_in_bytes",
8c7c6e34 2285 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 2286 .read_u64 = mem_cgroup_read,
8cdea7c0 2287 },
c84872e1
PE
2288 {
2289 .name = "max_usage_in_bytes",
8c7c6e34 2290 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2291 .trigger = mem_cgroup_reset,
c84872e1
PE
2292 .read_u64 = mem_cgroup_read,
2293 },
8cdea7c0 2294 {
0eea1030 2295 .name = "limit_in_bytes",
8c7c6e34 2296 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2297 .write_string = mem_cgroup_write,
2c3daa72 2298 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
2299 },
2300 {
2301 .name = "failcnt",
8c7c6e34 2302 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2303 .trigger = mem_cgroup_reset,
2c3daa72 2304 .read_u64 = mem_cgroup_read,
8cdea7c0 2305 },
d2ceb9b7
KH
2306 {
2307 .name = "stat",
c64745cf 2308 .read_map = mem_control_stat_show,
d2ceb9b7 2309 },
c1e862c1
KH
2310 {
2311 .name = "force_empty",
2312 .trigger = mem_cgroup_force_empty_write,
2313 },
18f59ea7
BS
2314 {
2315 .name = "use_hierarchy",
2316 .write_u64 = mem_cgroup_hierarchy_write,
2317 .read_u64 = mem_cgroup_hierarchy_read,
2318 },
a7885eb8
KM
2319 {
2320 .name = "swappiness",
2321 .read_u64 = mem_cgroup_swappiness_read,
2322 .write_u64 = mem_cgroup_swappiness_write,
2323 },
8cdea7c0
BS
2324};
2325
8c7c6e34
KH
2326#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2327static struct cftype memsw_cgroup_files[] = {
2328 {
2329 .name = "memsw.usage_in_bytes",
2330 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2331 .read_u64 = mem_cgroup_read,
2332 },
2333 {
2334 .name = "memsw.max_usage_in_bytes",
2335 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2336 .trigger = mem_cgroup_reset,
2337 .read_u64 = mem_cgroup_read,
2338 },
2339 {
2340 .name = "memsw.limit_in_bytes",
2341 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2342 .write_string = mem_cgroup_write,
2343 .read_u64 = mem_cgroup_read,
2344 },
2345 {
2346 .name = "memsw.failcnt",
2347 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2348 .trigger = mem_cgroup_reset,
2349 .read_u64 = mem_cgroup_read,
2350 },
2351};
2352
2353static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2354{
2355 if (!do_swap_account)
2356 return 0;
2357 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2358 ARRAY_SIZE(memsw_cgroup_files));
2359};
2360#else
2361static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2362{
2363 return 0;
2364}
2365#endif
2366
6d12e2d8
KH
2367static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2368{
2369 struct mem_cgroup_per_node *pn;
1ecaab2b 2370 struct mem_cgroup_per_zone *mz;
b69408e8 2371 enum lru_list l;
41e3355d 2372 int zone, tmp = node;
1ecaab2b
KH
2373 /*
2374 * This routine is called against possible nodes.
2375 * But it's BUG to call kmalloc() against offline node.
2376 *
2377 * TODO: this routine can waste much memory for nodes which will
2378 * never be onlined. It's better to use memory hotplug callback
2379 * function.
2380 */
41e3355d
KH
2381 if (!node_state(node, N_NORMAL_MEMORY))
2382 tmp = -1;
2383 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2384 if (!pn)
2385 return 1;
1ecaab2b 2386
6d12e2d8
KH
2387 mem->info.nodeinfo[node] = pn;
2388 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2389
2390 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2391 mz = &pn->zoneinfo[zone];
b69408e8
CL
2392 for_each_lru(l)
2393 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2394 }
6d12e2d8
KH
2395 return 0;
2396}
2397
1ecaab2b
KH
2398static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2399{
2400 kfree(mem->info.nodeinfo[node]);
2401}
2402
c8dad2bb
JB
2403static int mem_cgroup_size(void)
2404{
2405 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2406 return sizeof(struct mem_cgroup) + cpustat_size;
2407}
2408
33327948
KH
2409static struct mem_cgroup *mem_cgroup_alloc(void)
2410{
2411 struct mem_cgroup *mem;
c8dad2bb 2412 int size = mem_cgroup_size();
33327948 2413
c8dad2bb
JB
2414 if (size < PAGE_SIZE)
2415 mem = kmalloc(size, GFP_KERNEL);
33327948 2416 else
c8dad2bb 2417 mem = vmalloc(size);
33327948
KH
2418
2419 if (mem)
c8dad2bb 2420 memset(mem, 0, size);
33327948
KH
2421 return mem;
2422}
2423
8c7c6e34
KH
2424/*
2425 * At destroying mem_cgroup, references from swap_cgroup can remain.
2426 * (scanning all at force_empty is too costly...)
2427 *
2428 * Instead of clearing all references at force_empty, we remember
2429 * the number of reference from swap_cgroup and free mem_cgroup when
2430 * it goes down to 0.
2431 *
8c7c6e34
KH
2432 * Removal of cgroup itself succeeds regardless of refs from swap.
2433 */
2434
a7ba0eef 2435static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2436{
08e552c6
KH
2437 int node;
2438
04046e1a
KH
2439 free_css_id(&mem_cgroup_subsys, &mem->css);
2440
08e552c6
KH
2441 for_each_node_state(node, N_POSSIBLE)
2442 free_mem_cgroup_per_zone_info(mem, node);
2443
c8dad2bb 2444 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2445 kfree(mem);
2446 else
2447 vfree(mem);
2448}
2449
8c7c6e34
KH
2450static void mem_cgroup_get(struct mem_cgroup *mem)
2451{
2452 atomic_inc(&mem->refcnt);
2453}
2454
2455static void mem_cgroup_put(struct mem_cgroup *mem)
2456{
7bcc1bb1
DN
2457 if (atomic_dec_and_test(&mem->refcnt)) {
2458 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 2459 __mem_cgroup_free(mem);
7bcc1bb1
DN
2460 if (parent)
2461 mem_cgroup_put(parent);
2462 }
8c7c6e34
KH
2463}
2464
7bcc1bb1
DN
2465/*
2466 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2467 */
2468static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2469{
2470 if (!mem->res.parent)
2471 return NULL;
2472 return mem_cgroup_from_res_counter(mem->res.parent, res);
2473}
33327948 2474
c077719b
KH
2475#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2476static void __init enable_swap_cgroup(void)
2477{
f8d66542 2478 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2479 do_swap_account = 1;
2480}
2481#else
2482static void __init enable_swap_cgroup(void)
2483{
2484}
2485#endif
2486
0eb253e2 2487static struct cgroup_subsys_state * __ref
8cdea7c0
BS
2488mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2489{
28dbc4b6 2490 struct mem_cgroup *mem, *parent;
04046e1a 2491 long error = -ENOMEM;
6d12e2d8 2492 int node;
8cdea7c0 2493
c8dad2bb
JB
2494 mem = mem_cgroup_alloc();
2495 if (!mem)
04046e1a 2496 return ERR_PTR(error);
78fb7466 2497
6d12e2d8
KH
2498 for_each_node_state(node, N_POSSIBLE)
2499 if (alloc_mem_cgroup_per_zone_info(mem, node))
2500 goto free_out;
c077719b 2501 /* root ? */
28dbc4b6 2502 if (cont->parent == NULL) {
c077719b 2503 enable_swap_cgroup();
28dbc4b6 2504 parent = NULL;
18f59ea7 2505 } else {
28dbc4b6 2506 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2507 mem->use_hierarchy = parent->use_hierarchy;
2508 }
28dbc4b6 2509
18f59ea7
BS
2510 if (parent && parent->use_hierarchy) {
2511 res_counter_init(&mem->res, &parent->res);
2512 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
2513 /*
2514 * We increment refcnt of the parent to ensure that we can
2515 * safely access it on res_counter_charge/uncharge.
2516 * This refcnt will be decremented when freeing this
2517 * mem_cgroup(see mem_cgroup_put).
2518 */
2519 mem_cgroup_get(parent);
18f59ea7
BS
2520 } else {
2521 res_counter_init(&mem->res, NULL);
2522 res_counter_init(&mem->memsw, NULL);
2523 }
04046e1a 2524 mem->last_scanned_child = 0;
2733c06a 2525 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2526
a7885eb8
KM
2527 if (parent)
2528 mem->swappiness = get_swappiness(parent);
a7ba0eef 2529 atomic_set(&mem->refcnt, 1);
8cdea7c0 2530 return &mem->css;
6d12e2d8 2531free_out:
a7ba0eef 2532 __mem_cgroup_free(mem);
04046e1a 2533 return ERR_PTR(error);
8cdea7c0
BS
2534}
2535
ec64f515 2536static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
2537 struct cgroup *cont)
2538{
2539 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
2540
2541 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
2542}
2543
8cdea7c0
BS
2544static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2545 struct cgroup *cont)
2546{
c268e994 2547 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 2548
c268e994 2549 mem_cgroup_put(mem);
8cdea7c0
BS
2550}
2551
2552static int mem_cgroup_populate(struct cgroup_subsys *ss,
2553 struct cgroup *cont)
2554{
8c7c6e34
KH
2555 int ret;
2556
2557 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2558 ARRAY_SIZE(mem_cgroup_files));
2559
2560 if (!ret)
2561 ret = register_memsw_files(cont, ss);
2562 return ret;
8cdea7c0
BS
2563}
2564
67e465a7
BS
2565static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2566 struct cgroup *cont,
2567 struct cgroup *old_cont,
2568 struct task_struct *p)
2569{
7f4d454d 2570 mutex_lock(&memcg_tasklist);
67e465a7 2571 /*
f9717d28
NK
2572 * FIXME: It's better to move charges of this process from old
2573 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2574 */
7f4d454d 2575 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2576}
2577
8cdea7c0
BS
2578struct cgroup_subsys mem_cgroup_subsys = {
2579 .name = "memory",
2580 .subsys_id = mem_cgroup_subsys_id,
2581 .create = mem_cgroup_create,
df878fb0 2582 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2583 .destroy = mem_cgroup_destroy,
2584 .populate = mem_cgroup_populate,
67e465a7 2585 .attach = mem_cgroup_move_task,
6d12e2d8 2586 .early_init = 0,
04046e1a 2587 .use_id = 1,
8cdea7c0 2588};
c077719b
KH
2589
2590#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2591
2592static int __init disable_swap_account(char *s)
2593{
2594 really_do_swap_account = 0;
2595 return 1;
2596}
2597__setup("noswapaccount", disable_swap_account);
2598#endif