]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: hierarchical stat
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
7f4d454d 54static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 55
d52aa412
KH
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60 /*
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 */
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
67
68 MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
c8dad2bb 76 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
addb9efe 82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
83 enum mem_cgroup_stat_index idx, int val)
84{
addb9efe 85 stat->count[idx] += val;
d52aa412
KH
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
96}
97
04046e1a
KH
98static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
99{
100 s64 ret;
101
102 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
103 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
104 return ret;
105}
106
6d12e2d8
KH
107/*
108 * per-zone information in memory controller.
109 */
6d12e2d8 110struct mem_cgroup_per_zone {
072c56c1
KH
111 /*
112 * spin_lock to protect the per cgroup LRU
113 */
b69408e8
CL
114 struct list_head lists[NR_LRU_LISTS];
115 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
116
117 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
118};
119/* Macro for accessing counter */
120#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
121
122struct mem_cgroup_per_node {
123 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
124};
125
126struct mem_cgroup_lru_info {
127 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
128};
129
8cdea7c0
BS
130/*
131 * The memory controller data structure. The memory controller controls both
132 * page cache and RSS per cgroup. We would eventually like to provide
133 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
134 * to help the administrator determine what knobs to tune.
135 *
136 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
137 * we hit the water mark. May be even add a low water mark, such that
138 * no reclaim occurs from a cgroup at it's low water mark, this is
139 * a feature that will be implemented much later in the future.
8cdea7c0
BS
140 */
141struct mem_cgroup {
142 struct cgroup_subsys_state css;
143 /*
144 * the counter to account for memory usage
145 */
146 struct res_counter res;
8c7c6e34
KH
147 /*
148 * the counter to account for mem+swap usage.
149 */
150 struct res_counter memsw;
78fb7466
PE
151 /*
152 * Per cgroup active and inactive list, similar to the
153 * per zone LRU lists.
78fb7466 154 */
6d12e2d8 155 struct mem_cgroup_lru_info info;
072c56c1 156
2733c06a
KM
157 /*
158 protect against reclaim related member.
159 */
160 spinlock_t reclaim_param_lock;
161
6c48a1d0 162 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
163
164 /*
165 * While reclaiming in a hiearchy, we cache the last child we
04046e1a 166 * reclaimed from.
6d61ef40 167 */
04046e1a 168 int last_scanned_child;
18f59ea7
BS
169 /*
170 * Should the accounting and control be hierarchical, per subtree?
171 */
172 bool use_hierarchy;
a636b327 173 unsigned long last_oom_jiffies;
8c7c6e34 174 atomic_t refcnt;
14797e23 175
a7885eb8
KM
176 unsigned int swappiness;
177
d52aa412 178 /*
c8dad2bb 179 * statistics. This must be placed at the end of memcg.
d52aa412
KH
180 */
181 struct mem_cgroup_stat stat;
8cdea7c0
BS
182};
183
217bc319
KH
184enum charge_type {
185 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
186 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 187 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 188 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 189 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
190 NR_CHARGE_TYPE,
191};
192
52d4b9ac
KH
193/* only for here (for easy reading.) */
194#define PCGF_CACHE (1UL << PCG_CACHE)
195#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 196#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
197static const unsigned long
198pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
199 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
200 PCGF_USED | PCGF_LOCK, /* Anon */
201 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 202 0, /* FORCE */
217bc319
KH
203};
204
8c7c6e34
KH
205/* for encoding cft->private value on file */
206#define _MEM (0)
207#define _MEMSWAP (1)
208#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
209#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
210#define MEMFILE_ATTR(val) ((val) & 0xffff)
211
212static void mem_cgroup_get(struct mem_cgroup *mem);
213static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 214static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
8c7c6e34 215
c05555b5
KH
216static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
217 struct page_cgroup *pc,
218 bool charge)
d52aa412
KH
219{
220 int val = (charge)? 1 : -1;
221 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 222 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 223 int cpu = get_cpu();
d52aa412 224
08e552c6 225 cpustat = &stat->cpustat[cpu];
c05555b5 226 if (PageCgroupCache(pc))
addb9efe 227 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 228 else
addb9efe 229 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
230
231 if (charge)
addb9efe 232 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
233 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
234 else
addb9efe 235 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 236 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 237 put_cpu();
6d12e2d8
KH
238}
239
d5b69e38 240static struct mem_cgroup_per_zone *
6d12e2d8
KH
241mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
242{
6d12e2d8
KH
243 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
244}
245
d5b69e38 246static struct mem_cgroup_per_zone *
6d12e2d8
KH
247page_cgroup_zoneinfo(struct page_cgroup *pc)
248{
249 struct mem_cgroup *mem = pc->mem_cgroup;
250 int nid = page_cgroup_nid(pc);
251 int zid = page_cgroup_zid(pc);
d52aa412 252
54992762
KM
253 if (!mem)
254 return NULL;
255
6d12e2d8
KH
256 return mem_cgroup_zoneinfo(mem, nid, zid);
257}
258
14067bb3 259static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 260 enum lru_list idx)
6d12e2d8
KH
261{
262 int nid, zid;
263 struct mem_cgroup_per_zone *mz;
264 u64 total = 0;
265
266 for_each_online_node(nid)
267 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
268 mz = mem_cgroup_zoneinfo(mem, nid, zid);
269 total += MEM_CGROUP_ZSTAT(mz, idx);
270 }
271 return total;
d52aa412
KH
272}
273
d5b69e38 274static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
275{
276 return container_of(cgroup_subsys_state(cont,
277 mem_cgroup_subsys_id), struct mem_cgroup,
278 css);
279}
280
cf475ad2 281struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 282{
31a78f23
BS
283 /*
284 * mm_update_next_owner() may clear mm->owner to NULL
285 * if it races with swapoff, page migration, etc.
286 * So this can be called with p == NULL.
287 */
288 if (unlikely(!p))
289 return NULL;
290
78fb7466
PE
291 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
292 struct mem_cgroup, css);
293}
294
54595fe2
KH
295static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
296{
297 struct mem_cgroup *mem = NULL;
298 /*
299 * Because we have no locks, mm->owner's may be being moved to other
300 * cgroup. We use css_tryget() here even if this looks
301 * pessimistic (rather than adding locks here).
302 */
303 rcu_read_lock();
304 do {
305 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
306 if (unlikely(!mem))
307 break;
308 } while (!css_tryget(&mem->css));
309 rcu_read_unlock();
310 return mem;
311}
312
313static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
314{
315 if (!mem)
316 return true;
317 return css_is_removed(&mem->css);
318}
319
14067bb3
KH
320
321/*
322 * Call callback function against all cgroup under hierarchy tree.
323 */
324static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
325 int (*func)(struct mem_cgroup *, void *))
326{
327 int found, ret, nextid;
328 struct cgroup_subsys_state *css;
329 struct mem_cgroup *mem;
330
331 if (!root->use_hierarchy)
332 return (*func)(root, data);
333
334 nextid = 1;
335 do {
336 ret = 0;
337 mem = NULL;
338
339 rcu_read_lock();
340 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
341 &found);
342 if (css && css_tryget(css))
343 mem = container_of(css, struct mem_cgroup, css);
344 rcu_read_unlock();
345
346 if (mem) {
347 ret = (*func)(mem, data);
348 css_put(&mem->css);
349 }
350 nextid = found + 1;
351 } while (!ret && css);
352
353 return ret;
354}
355
08e552c6
KH
356/*
357 * Following LRU functions are allowed to be used without PCG_LOCK.
358 * Operations are called by routine of global LRU independently from memcg.
359 * What we have to take care of here is validness of pc->mem_cgroup.
360 *
361 * Changes to pc->mem_cgroup happens when
362 * 1. charge
363 * 2. moving account
364 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
365 * It is added to LRU before charge.
366 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
367 * When moving account, the page is not on LRU. It's isolated.
368 */
4f98a2fe 369
08e552c6
KH
370void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
371{
372 struct page_cgroup *pc;
373 struct mem_cgroup *mem;
374 struct mem_cgroup_per_zone *mz;
6d12e2d8 375
f8d66542 376 if (mem_cgroup_disabled())
08e552c6
KH
377 return;
378 pc = lookup_page_cgroup(page);
379 /* can happen while we handle swapcache. */
544122e5 380 if (list_empty(&pc->lru) || !pc->mem_cgroup)
08e552c6 381 return;
544122e5
KH
382 /*
383 * We don't check PCG_USED bit. It's cleared when the "page" is finally
384 * removed from global LRU.
385 */
08e552c6
KH
386 mz = page_cgroup_zoneinfo(pc);
387 mem = pc->mem_cgroup;
b69408e8 388 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
389 list_del_init(&pc->lru);
390 return;
6d12e2d8
KH
391}
392
08e552c6 393void mem_cgroup_del_lru(struct page *page)
6d12e2d8 394{
08e552c6
KH
395 mem_cgroup_del_lru_list(page, page_lru(page));
396}
b69408e8 397
08e552c6
KH
398void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
399{
400 struct mem_cgroup_per_zone *mz;
401 struct page_cgroup *pc;
b69408e8 402
f8d66542 403 if (mem_cgroup_disabled())
08e552c6 404 return;
6d12e2d8 405
08e552c6 406 pc = lookup_page_cgroup(page);
bd112db8
DN
407 /*
408 * Used bit is set without atomic ops but after smp_wmb().
409 * For making pc->mem_cgroup visible, insert smp_rmb() here.
410 */
08e552c6
KH
411 smp_rmb();
412 /* unused page is not rotated. */
413 if (!PageCgroupUsed(pc))
414 return;
415 mz = page_cgroup_zoneinfo(pc);
416 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
417}
418
08e552c6 419void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 420{
08e552c6
KH
421 struct page_cgroup *pc;
422 struct mem_cgroup_per_zone *mz;
6d12e2d8 423
f8d66542 424 if (mem_cgroup_disabled())
08e552c6
KH
425 return;
426 pc = lookup_page_cgroup(page);
bd112db8
DN
427 /*
428 * Used bit is set without atomic ops but after smp_wmb().
429 * For making pc->mem_cgroup visible, insert smp_rmb() here.
430 */
08e552c6
KH
431 smp_rmb();
432 if (!PageCgroupUsed(pc))
894bc310 433 return;
b69408e8 434
08e552c6 435 mz = page_cgroup_zoneinfo(pc);
b69408e8 436 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
437 list_add(&pc->lru, &mz->lists[lru]);
438}
544122e5 439
08e552c6 440/*
544122e5
KH
441 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
442 * lru because the page may.be reused after it's fully uncharged (because of
443 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
444 * it again. This function is only used to charge SwapCache. It's done under
445 * lock_page and expected that zone->lru_lock is never held.
08e552c6 446 */
544122e5 447static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 448{
544122e5
KH
449 unsigned long flags;
450 struct zone *zone = page_zone(page);
451 struct page_cgroup *pc = lookup_page_cgroup(page);
452
453 spin_lock_irqsave(&zone->lru_lock, flags);
454 /*
455 * Forget old LRU when this page_cgroup is *not* used. This Used bit
456 * is guarded by lock_page() because the page is SwapCache.
457 */
458 if (!PageCgroupUsed(pc))
459 mem_cgroup_del_lru_list(page, page_lru(page));
460 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
461}
462
544122e5
KH
463static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
464{
465 unsigned long flags;
466 struct zone *zone = page_zone(page);
467 struct page_cgroup *pc = lookup_page_cgroup(page);
468
469 spin_lock_irqsave(&zone->lru_lock, flags);
470 /* link when the page is linked to LRU but page_cgroup isn't */
471 if (PageLRU(page) && list_empty(&pc->lru))
472 mem_cgroup_add_lru_list(page, page_lru(page));
473 spin_unlock_irqrestore(&zone->lru_lock, flags);
474}
475
476
08e552c6
KH
477void mem_cgroup_move_lists(struct page *page,
478 enum lru_list from, enum lru_list to)
479{
f8d66542 480 if (mem_cgroup_disabled())
08e552c6
KH
481 return;
482 mem_cgroup_del_lru_list(page, from);
483 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
484}
485
4c4a2214
DR
486int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
487{
488 int ret;
489
490 task_lock(task);
bd845e38 491 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
492 task_unlock(task);
493 return ret;
494}
495
58ae83db
KH
496/*
497 * Calculate mapped_ratio under memory controller. This will be used in
498 * vmscan.c for deteremining we have to reclaim mapped pages.
499 */
500int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
501{
502 long total, rss;
503
504 /*
505 * usage is recorded in bytes. But, here, we assume the number of
506 * physical pages can be represented by "long" on any arch.
507 */
508 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
509 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
510 return (int)((rss * 100L) / total);
511}
8869b8f6 512
6c48a1d0
KH
513/*
514 * prev_priority control...this will be used in memory reclaim path.
515 */
516int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
517{
2733c06a
KM
518 int prev_priority;
519
520 spin_lock(&mem->reclaim_param_lock);
521 prev_priority = mem->prev_priority;
522 spin_unlock(&mem->reclaim_param_lock);
523
524 return prev_priority;
6c48a1d0
KH
525}
526
527void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
528{
2733c06a 529 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
530 if (priority < mem->prev_priority)
531 mem->prev_priority = priority;
2733c06a 532 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
533}
534
535void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
536{
2733c06a 537 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 538 mem->prev_priority = priority;
2733c06a 539 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
540}
541
c772be93 542static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
543{
544 unsigned long active;
545 unsigned long inactive;
c772be93
KM
546 unsigned long gb;
547 unsigned long inactive_ratio;
14797e23 548
14067bb3
KH
549 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
550 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 551
c772be93
KM
552 gb = (inactive + active) >> (30 - PAGE_SHIFT);
553 if (gb)
554 inactive_ratio = int_sqrt(10 * gb);
555 else
556 inactive_ratio = 1;
557
558 if (present_pages) {
559 present_pages[0] = inactive;
560 present_pages[1] = active;
561 }
562
563 return inactive_ratio;
564}
565
566int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
567{
568 unsigned long active;
569 unsigned long inactive;
570 unsigned long present_pages[2];
571 unsigned long inactive_ratio;
572
573 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
574
575 inactive = present_pages[0];
576 active = present_pages[1];
577
578 if (inactive * inactive_ratio < active)
14797e23
KM
579 return 1;
580
581 return 0;
582}
583
a3d8e054
KM
584unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
585 struct zone *zone,
586 enum lru_list lru)
587{
588 int nid = zone->zone_pgdat->node_id;
589 int zid = zone_idx(zone);
590 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
591
592 return MEM_CGROUP_ZSTAT(mz, lru);
593}
594
3e2f41f1
KM
595struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
596 struct zone *zone)
597{
598 int nid = zone->zone_pgdat->node_id;
599 int zid = zone_idx(zone);
600 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
601
602 return &mz->reclaim_stat;
603}
604
605struct zone_reclaim_stat *
606mem_cgroup_get_reclaim_stat_from_page(struct page *page)
607{
608 struct page_cgroup *pc;
609 struct mem_cgroup_per_zone *mz;
610
611 if (mem_cgroup_disabled())
612 return NULL;
613
614 pc = lookup_page_cgroup(page);
bd112db8
DN
615 /*
616 * Used bit is set without atomic ops but after smp_wmb().
617 * For making pc->mem_cgroup visible, insert smp_rmb() here.
618 */
619 smp_rmb();
620 if (!PageCgroupUsed(pc))
621 return NULL;
622
3e2f41f1
KM
623 mz = page_cgroup_zoneinfo(pc);
624 if (!mz)
625 return NULL;
626
627 return &mz->reclaim_stat;
628}
629
66e1707b
BS
630unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
631 struct list_head *dst,
632 unsigned long *scanned, int order,
633 int mode, struct zone *z,
634 struct mem_cgroup *mem_cont,
4f98a2fe 635 int active, int file)
66e1707b
BS
636{
637 unsigned long nr_taken = 0;
638 struct page *page;
639 unsigned long scan;
640 LIST_HEAD(pc_list);
641 struct list_head *src;
ff7283fa 642 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
643 int nid = z->zone_pgdat->node_id;
644 int zid = zone_idx(z);
645 struct mem_cgroup_per_zone *mz;
4f98a2fe 646 int lru = LRU_FILE * !!file + !!active;
66e1707b 647
cf475ad2 648 BUG_ON(!mem_cont);
1ecaab2b 649 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 650 src = &mz->lists[lru];
66e1707b 651
ff7283fa
KH
652 scan = 0;
653 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 654 if (scan >= nr_to_scan)
ff7283fa 655 break;
08e552c6
KH
656
657 page = pc->page;
52d4b9ac
KH
658 if (unlikely(!PageCgroupUsed(pc)))
659 continue;
436c6541 660 if (unlikely(!PageLRU(page)))
ff7283fa 661 continue;
ff7283fa 662
436c6541 663 scan++;
4f98a2fe 664 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
665 list_move(&page->lru, dst);
666 nr_taken++;
667 }
668 }
669
66e1707b
BS
670 *scanned = scan;
671 return nr_taken;
672}
673
6d61ef40
BS
674#define mem_cgroup_from_res_counter(counter, member) \
675 container_of(counter, struct mem_cgroup, member)
676
b85a96c0
DN
677static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
678{
679 if (do_swap_account) {
680 if (res_counter_check_under_limit(&mem->res) &&
681 res_counter_check_under_limit(&mem->memsw))
682 return true;
683 } else
684 if (res_counter_check_under_limit(&mem->res))
685 return true;
686 return false;
687}
688
a7885eb8
KM
689static unsigned int get_swappiness(struct mem_cgroup *memcg)
690{
691 struct cgroup *cgrp = memcg->css.cgroup;
692 unsigned int swappiness;
693
694 /* root ? */
695 if (cgrp->parent == NULL)
696 return vm_swappiness;
697
698 spin_lock(&memcg->reclaim_param_lock);
699 swappiness = memcg->swappiness;
700 spin_unlock(&memcg->reclaim_param_lock);
701
702 return swappiness;
703}
704
6d61ef40 705/*
04046e1a
KH
706 * Visit the first child (need not be the first child as per the ordering
707 * of the cgroup list, since we track last_scanned_child) of @mem and use
708 * that to reclaim free pages from.
709 */
710static struct mem_cgroup *
711mem_cgroup_select_victim(struct mem_cgroup *root_mem)
712{
713 struct mem_cgroup *ret = NULL;
714 struct cgroup_subsys_state *css;
715 int nextid, found;
716
717 if (!root_mem->use_hierarchy) {
718 css_get(&root_mem->css);
719 ret = root_mem;
720 }
721
722 while (!ret) {
723 rcu_read_lock();
724 nextid = root_mem->last_scanned_child + 1;
725 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
726 &found);
727 if (css && css_tryget(css))
728 ret = container_of(css, struct mem_cgroup, css);
729
730 rcu_read_unlock();
731 /* Updates scanning parameter */
732 spin_lock(&root_mem->reclaim_param_lock);
733 if (!css) {
734 /* this means start scan from ID:1 */
735 root_mem->last_scanned_child = 0;
736 } else
737 root_mem->last_scanned_child = found;
738 spin_unlock(&root_mem->reclaim_param_lock);
739 }
740
741 return ret;
742}
743
744/*
745 * Scan the hierarchy if needed to reclaim memory. We remember the last child
746 * we reclaimed from, so that we don't end up penalizing one child extensively
747 * based on its position in the children list.
6d61ef40
BS
748 *
749 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
750 *
751 * We give up and return to the caller when we visit root_mem twice.
752 * (other groups can be removed while we're walking....)
6d61ef40
BS
753 */
754static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
755 gfp_t gfp_mask, bool noswap)
756{
04046e1a
KH
757 struct mem_cgroup *victim;
758 int ret, total = 0;
759 int loop = 0;
760
761 while (loop < 2) {
762 victim = mem_cgroup_select_victim(root_mem);
763 if (victim == root_mem)
764 loop++;
765 if (!mem_cgroup_local_usage(&victim->stat)) {
766 /* this cgroup's local usage == 0 */
767 css_put(&victim->css);
6d61ef40
BS
768 continue;
769 }
04046e1a
KH
770 /* we use swappiness of local cgroup */
771 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
772 get_swappiness(victim));
773 css_put(&victim->css);
774 total += ret;
b85a96c0 775 if (mem_cgroup_check_under_limit(root_mem))
04046e1a 776 return 1 + total;
6d61ef40 777 }
04046e1a 778 return total;
6d61ef40
BS
779}
780
a636b327
KH
781bool mem_cgroup_oom_called(struct task_struct *task)
782{
783 bool ret = false;
784 struct mem_cgroup *mem;
785 struct mm_struct *mm;
786
787 rcu_read_lock();
788 mm = task->mm;
789 if (!mm)
790 mm = &init_mm;
791 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
792 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
793 ret = true;
794 rcu_read_unlock();
795 return ret;
796}
f817ed48
KH
797/*
798 * Unlike exported interface, "oom" parameter is added. if oom==true,
799 * oom-killer can be invoked.
8a9f3ccd 800 */
f817ed48 801static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
802 gfp_t gfp_mask, struct mem_cgroup **memcg,
803 bool oom)
8a9f3ccd 804{
6d61ef40 805 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 806 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 807 struct res_counter *fail_res;
a636b327
KH
808
809 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
810 /* Don't account this! */
811 *memcg = NULL;
812 return 0;
813 }
814
8a9f3ccd 815 /*
3be91277
HD
816 * We always charge the cgroup the mm_struct belongs to.
817 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
818 * thread group leader migrates. It's possible that mm is not
819 * set, if so charge the init_mm (happens for pagecache usage).
820 */
54595fe2
KH
821 mem = *memcg;
822 if (likely(!mem)) {
823 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 824 *memcg = mem;
e8589cc1 825 } else {
7a81b88c 826 css_get(&mem->css);
e8589cc1 827 }
54595fe2
KH
828 if (unlikely(!mem))
829 return 0;
830
831 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
8a9f3ccd 832
8c7c6e34
KH
833 while (1) {
834 int ret;
835 bool noswap = false;
7a81b88c 836
28dbc4b6 837 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
838 if (likely(!ret)) {
839 if (!do_swap_account)
840 break;
28dbc4b6
BS
841 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
842 &fail_res);
8c7c6e34
KH
843 if (likely(!ret))
844 break;
845 /* mem+swap counter fails */
846 res_counter_uncharge(&mem->res, PAGE_SIZE);
847 noswap = true;
6d61ef40
BS
848 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
849 memsw);
850 } else
851 /* mem counter fails */
852 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
853 res);
854
3be91277 855 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 856 goto nomem;
e1a1cd59 857
6d61ef40
BS
858 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
859 noswap);
4d1c6273
DN
860 if (ret)
861 continue;
66e1707b
BS
862
863 /*
8869b8f6
HD
864 * try_to_free_mem_cgroup_pages() might not give us a full
865 * picture of reclaim. Some pages are reclaimed and might be
866 * moved to swap cache or just unmapped from the cgroup.
867 * Check the limit again to see if the reclaim reduced the
868 * current usage of the cgroup before giving up
8c7c6e34 869 *
8869b8f6 870 */
b85a96c0
DN
871 if (mem_cgroup_check_under_limit(mem_over_limit))
872 continue;
3be91277
HD
873
874 if (!nr_retries--) {
a636b327 875 if (oom) {
7f4d454d 876 mutex_lock(&memcg_tasklist);
88700756 877 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 878 mutex_unlock(&memcg_tasklist);
88700756 879 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 880 }
7a81b88c 881 goto nomem;
66e1707b 882 }
8a9f3ccd 883 }
7a81b88c
KH
884 return 0;
885nomem:
886 css_put(&mem->css);
887 return -ENOMEM;
888}
8a9f3ccd 889
b5a84319
KH
890static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
891{
892 struct mem_cgroup *mem;
893 swp_entry_t ent;
894
895 if (!PageSwapCache(page))
896 return NULL;
897
898 ent.val = page_private(page);
899 mem = lookup_swap_cgroup(ent);
900 if (!mem)
901 return NULL;
902 if (!css_tryget(&mem->css))
903 return NULL;
904 return mem;
905}
906
7a81b88c 907/*
a5e924f5 908 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
909 * USED state. If already USED, uncharge and return.
910 */
911
912static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
913 struct page_cgroup *pc,
914 enum charge_type ctype)
915{
7a81b88c
KH
916 /* try_charge() can return NULL to *memcg, taking care of it. */
917 if (!mem)
918 return;
52d4b9ac
KH
919
920 lock_page_cgroup(pc);
921 if (unlikely(PageCgroupUsed(pc))) {
922 unlock_page_cgroup(pc);
923 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
924 if (do_swap_account)
925 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 926 css_put(&mem->css);
7a81b88c 927 return;
52d4b9ac 928 }
8a9f3ccd 929 pc->mem_cgroup = mem;
08e552c6 930 smp_wmb();
c05555b5 931 pc->flags = pcg_default_flags[ctype];
3be91277 932
08e552c6 933 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 934
52d4b9ac 935 unlock_page_cgroup(pc);
7a81b88c 936}
66e1707b 937
f817ed48
KH
938/**
939 * mem_cgroup_move_account - move account of the page
940 * @pc: page_cgroup of the page.
941 * @from: mem_cgroup which the page is moved from.
942 * @to: mem_cgroup which the page is moved to. @from != @to.
943 *
944 * The caller must confirm following.
08e552c6 945 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
946 *
947 * returns 0 at success,
948 * returns -EBUSY when lock is busy or "pc" is unstable.
949 *
950 * This function does "uncharge" from old cgroup but doesn't do "charge" to
951 * new cgroup. It should be done by a caller.
952 */
953
954static int mem_cgroup_move_account(struct page_cgroup *pc,
955 struct mem_cgroup *from, struct mem_cgroup *to)
956{
957 struct mem_cgroup_per_zone *from_mz, *to_mz;
958 int nid, zid;
959 int ret = -EBUSY;
960
f817ed48 961 VM_BUG_ON(from == to);
08e552c6 962 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
963
964 nid = page_cgroup_nid(pc);
965 zid = page_cgroup_zid(pc);
966 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
967 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
968
f817ed48
KH
969 if (!trylock_page_cgroup(pc))
970 return ret;
971
972 if (!PageCgroupUsed(pc))
973 goto out;
974
975 if (pc->mem_cgroup != from)
976 goto out;
977
08e552c6
KH
978 res_counter_uncharge(&from->res, PAGE_SIZE);
979 mem_cgroup_charge_statistics(from, pc, false);
980 if (do_swap_account)
981 res_counter_uncharge(&from->memsw, PAGE_SIZE);
40d58138
DN
982 css_put(&from->css);
983
984 css_get(&to->css);
08e552c6
KH
985 pc->mem_cgroup = to;
986 mem_cgroup_charge_statistics(to, pc, true);
08e552c6 987 ret = 0;
f817ed48
KH
988out:
989 unlock_page_cgroup(pc);
990 return ret;
991}
992
993/*
994 * move charges to its parent.
995 */
996
997static int mem_cgroup_move_parent(struct page_cgroup *pc,
998 struct mem_cgroup *child,
999 gfp_t gfp_mask)
1000{
08e552c6 1001 struct page *page = pc->page;
f817ed48
KH
1002 struct cgroup *cg = child->css.cgroup;
1003 struct cgroup *pcg = cg->parent;
1004 struct mem_cgroup *parent;
f817ed48
KH
1005 int ret;
1006
1007 /* Is ROOT ? */
1008 if (!pcg)
1009 return -EINVAL;
1010
08e552c6 1011
f817ed48
KH
1012 parent = mem_cgroup_from_cont(pcg);
1013
08e552c6 1014
f817ed48 1015 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1016 if (ret || !parent)
f817ed48
KH
1017 return ret;
1018
40d58138
DN
1019 if (!get_page_unless_zero(page)) {
1020 ret = -EBUSY;
1021 goto uncharge;
1022 }
08e552c6
KH
1023
1024 ret = isolate_lru_page(page);
1025
1026 if (ret)
1027 goto cancel;
f817ed48 1028
f817ed48 1029 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1030
08e552c6
KH
1031 putback_lru_page(page);
1032 if (!ret) {
1033 put_page(page);
40d58138
DN
1034 /* drop extra refcnt by try_charge() */
1035 css_put(&parent->css);
08e552c6 1036 return 0;
8c7c6e34 1037 }
40d58138 1038
08e552c6 1039cancel:
40d58138
DN
1040 put_page(page);
1041uncharge:
1042 /* drop extra refcnt by try_charge() */
1043 css_put(&parent->css);
1044 /* uncharge if move fails */
08e552c6
KH
1045 res_counter_uncharge(&parent->res, PAGE_SIZE);
1046 if (do_swap_account)
1047 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
f817ed48
KH
1048 return ret;
1049}
1050
7a81b88c
KH
1051/*
1052 * Charge the memory controller for page usage.
1053 * Return
1054 * 0 if the charge was successful
1055 * < 0 if the cgroup is over its limit
1056 */
1057static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1058 gfp_t gfp_mask, enum charge_type ctype,
1059 struct mem_cgroup *memcg)
1060{
1061 struct mem_cgroup *mem;
1062 struct page_cgroup *pc;
1063 int ret;
1064
1065 pc = lookup_page_cgroup(page);
1066 /* can happen at boot */
1067 if (unlikely(!pc))
1068 return 0;
1069 prefetchw(pc);
1070
1071 mem = memcg;
f817ed48 1072 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1073 if (ret || !mem)
7a81b88c
KH
1074 return ret;
1075
1076 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1077 return 0;
8a9f3ccd
BS
1078}
1079
7a81b88c
KH
1080int mem_cgroup_newpage_charge(struct page *page,
1081 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1082{
f8d66542 1083 if (mem_cgroup_disabled())
cede86ac 1084 return 0;
52d4b9ac
KH
1085 if (PageCompound(page))
1086 return 0;
69029cd5
KH
1087 /*
1088 * If already mapped, we don't have to account.
1089 * If page cache, page->mapping has address_space.
1090 * But page->mapping may have out-of-use anon_vma pointer,
1091 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1092 * is NULL.
1093 */
1094 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1095 return 0;
1096 if (unlikely(!mm))
1097 mm = &init_mm;
217bc319 1098 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1099 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1100}
1101
e1a1cd59
BS
1102int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1103 gfp_t gfp_mask)
8697d331 1104{
b5a84319
KH
1105 struct mem_cgroup *mem = NULL;
1106 int ret;
1107
f8d66542 1108 if (mem_cgroup_disabled())
cede86ac 1109 return 0;
52d4b9ac
KH
1110 if (PageCompound(page))
1111 return 0;
accf163e
KH
1112 /*
1113 * Corner case handling. This is called from add_to_page_cache()
1114 * in usual. But some FS (shmem) precharges this page before calling it
1115 * and call add_to_page_cache() with GFP_NOWAIT.
1116 *
1117 * For GFP_NOWAIT case, the page may be pre-charged before calling
1118 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1119 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1120 * And when the page is SwapCache, it should take swap information
1121 * into account. This is under lock_page() now.
accf163e
KH
1122 */
1123 if (!(gfp_mask & __GFP_WAIT)) {
1124 struct page_cgroup *pc;
1125
52d4b9ac
KH
1126
1127 pc = lookup_page_cgroup(page);
1128 if (!pc)
1129 return 0;
1130 lock_page_cgroup(pc);
1131 if (PageCgroupUsed(pc)) {
1132 unlock_page_cgroup(pc);
accf163e
KH
1133 return 0;
1134 }
52d4b9ac 1135 unlock_page_cgroup(pc);
accf163e
KH
1136 }
1137
b5a84319
KH
1138 if (do_swap_account && PageSwapCache(page)) {
1139 mem = try_get_mem_cgroup_from_swapcache(page);
1140 if (mem)
1141 mm = NULL;
1142 else
1143 mem = NULL;
1144 /* SwapCache may be still linked to LRU now. */
1145 mem_cgroup_lru_del_before_commit_swapcache(page);
1146 }
1147
1148 if (unlikely(!mm && !mem))
8697d331 1149 mm = &init_mm;
accf163e 1150
c05555b5
KH
1151 if (page_is_file_cache(page))
1152 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1153 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319
KH
1154
1155 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1156 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1157 if (mem)
1158 css_put(&mem->css);
1159 if (PageSwapCache(page))
1160 mem_cgroup_lru_add_after_commit_swapcache(page);
1161
1162 if (do_swap_account && !ret && PageSwapCache(page)) {
1163 swp_entry_t ent = {.val = page_private(page)};
1164 /* avoid double counting */
1165 mem = swap_cgroup_record(ent, NULL);
1166 if (mem) {
1167 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1168 mem_cgroup_put(mem);
1169 }
1170 }
1171 return ret;
e8589cc1
KH
1172}
1173
54595fe2
KH
1174/*
1175 * While swap-in, try_charge -> commit or cancel, the page is locked.
1176 * And when try_charge() successfully returns, one refcnt to memcg without
1177 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1178 * "commit()" or removed by "cancel()"
1179 */
8c7c6e34
KH
1180int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1181 struct page *page,
1182 gfp_t mask, struct mem_cgroup **ptr)
1183{
1184 struct mem_cgroup *mem;
54595fe2 1185 int ret;
8c7c6e34 1186
f8d66542 1187 if (mem_cgroup_disabled())
8c7c6e34
KH
1188 return 0;
1189
1190 if (!do_swap_account)
1191 goto charge_cur_mm;
8c7c6e34
KH
1192 /*
1193 * A racing thread's fault, or swapoff, may have already updated
1194 * the pte, and even removed page from swap cache: return success
1195 * to go on to do_swap_page()'s pte_same() test, which should fail.
1196 */
1197 if (!PageSwapCache(page))
1198 return 0;
b5a84319 1199 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1200 if (!mem)
1201 goto charge_cur_mm;
8c7c6e34 1202 *ptr = mem;
54595fe2
KH
1203 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1204 /* drop extra refcnt from tryget */
1205 css_put(&mem->css);
1206 return ret;
8c7c6e34
KH
1207charge_cur_mm:
1208 if (unlikely(!mm))
1209 mm = &init_mm;
1210 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1211}
1212
7a81b88c
KH
1213void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1214{
1215 struct page_cgroup *pc;
1216
f8d66542 1217 if (mem_cgroup_disabled())
7a81b88c
KH
1218 return;
1219 if (!ptr)
1220 return;
1221 pc = lookup_page_cgroup(page);
544122e5 1222 mem_cgroup_lru_del_before_commit_swapcache(page);
7a81b88c 1223 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
544122e5 1224 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1225 /*
1226 * Now swap is on-memory. This means this page may be
1227 * counted both as mem and swap....double count.
03f3c433
KH
1228 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1229 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1230 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1231 */
03f3c433 1232 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34
KH
1233 swp_entry_t ent = {.val = page_private(page)};
1234 struct mem_cgroup *memcg;
1235 memcg = swap_cgroup_record(ent, NULL);
1236 if (memcg) {
8c7c6e34
KH
1237 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1238 mem_cgroup_put(memcg);
1239 }
1240
1241 }
08e552c6 1242 /* add this page(page_cgroup) to the LRU we want. */
544122e5 1243
7a81b88c
KH
1244}
1245
1246void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1247{
f8d66542 1248 if (mem_cgroup_disabled())
7a81b88c
KH
1249 return;
1250 if (!mem)
1251 return;
1252 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1253 if (do_swap_account)
1254 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1255 css_put(&mem->css);
1256}
1257
1258
8a9f3ccd 1259/*
69029cd5 1260 * uncharge if !page_mapped(page)
8a9f3ccd 1261 */
8c7c6e34 1262static struct mem_cgroup *
69029cd5 1263__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1264{
8289546e 1265 struct page_cgroup *pc;
8c7c6e34 1266 struct mem_cgroup *mem = NULL;
072c56c1 1267 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1268
f8d66542 1269 if (mem_cgroup_disabled())
8c7c6e34 1270 return NULL;
4077960e 1271
d13d1443 1272 if (PageSwapCache(page))
8c7c6e34 1273 return NULL;
d13d1443 1274
8697d331 1275 /*
3c541e14 1276 * Check if our page_cgroup is valid
8697d331 1277 */
52d4b9ac
KH
1278 pc = lookup_page_cgroup(page);
1279 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1280 return NULL;
b9c565d5 1281
52d4b9ac 1282 lock_page_cgroup(pc);
d13d1443 1283
8c7c6e34
KH
1284 mem = pc->mem_cgroup;
1285
d13d1443
KH
1286 if (!PageCgroupUsed(pc))
1287 goto unlock_out;
1288
1289 switch (ctype) {
1290 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1291 if (page_mapped(page))
1292 goto unlock_out;
1293 break;
1294 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1295 if (!PageAnon(page)) { /* Shared memory */
1296 if (page->mapping && !page_is_file_cache(page))
1297 goto unlock_out;
1298 } else if (page_mapped(page)) /* Anon */
1299 goto unlock_out;
1300 break;
1301 default:
1302 break;
52d4b9ac 1303 }
d13d1443 1304
8c7c6e34
KH
1305 res_counter_uncharge(&mem->res, PAGE_SIZE);
1306 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1307 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
08e552c6 1308 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 1309
52d4b9ac 1310 ClearPageCgroupUsed(pc);
544122e5
KH
1311 /*
1312 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1313 * freed from LRU. This is safe because uncharged page is expected not
1314 * to be reused (freed soon). Exception is SwapCache, it's handled by
1315 * special functions.
1316 */
b9c565d5 1317
69029cd5 1318 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1319 unlock_page_cgroup(pc);
fb59e9f1 1320
a7fe942e
KH
1321 /* at swapout, this memcg will be accessed to record to swap */
1322 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1323 css_put(&mem->css);
6d12e2d8 1324
8c7c6e34 1325 return mem;
d13d1443
KH
1326
1327unlock_out:
1328 unlock_page_cgroup(pc);
8c7c6e34 1329 return NULL;
3c541e14
BS
1330}
1331
69029cd5
KH
1332void mem_cgroup_uncharge_page(struct page *page)
1333{
52d4b9ac
KH
1334 /* early check. */
1335 if (page_mapped(page))
1336 return;
1337 if (page->mapping && !PageAnon(page))
1338 return;
69029cd5
KH
1339 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1340}
1341
1342void mem_cgroup_uncharge_cache_page(struct page *page)
1343{
1344 VM_BUG_ON(page_mapped(page));
b7abea96 1345 VM_BUG_ON(page->mapping);
69029cd5
KH
1346 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1347}
1348
8c7c6e34
KH
1349/*
1350 * called from __delete_from_swap_cache() and drop "page" account.
1351 * memcg information is recorded to swap_cgroup of "ent"
1352 */
1353void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1354{
1355 struct mem_cgroup *memcg;
1356
1357 memcg = __mem_cgroup_uncharge_common(page,
1358 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1359 /* record memcg information */
1360 if (do_swap_account && memcg) {
1361 swap_cgroup_record(ent, memcg);
1362 mem_cgroup_get(memcg);
1363 }
a7fe942e
KH
1364 if (memcg)
1365 css_put(&memcg->css);
8c7c6e34
KH
1366}
1367
1368#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1369/*
1370 * called from swap_entry_free(). remove record in swap_cgroup and
1371 * uncharge "memsw" account.
1372 */
1373void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1374{
8c7c6e34
KH
1375 struct mem_cgroup *memcg;
1376
1377 if (!do_swap_account)
1378 return;
1379
1380 memcg = swap_cgroup_record(ent, NULL);
1381 if (memcg) {
1382 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1383 mem_cgroup_put(memcg);
1384 }
d13d1443 1385}
8c7c6e34 1386#endif
d13d1443 1387
ae41be37 1388/*
01b1ae63
KH
1389 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1390 * page belongs to.
ae41be37 1391 */
01b1ae63 1392int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1393{
1394 struct page_cgroup *pc;
e8589cc1 1395 struct mem_cgroup *mem = NULL;
e8589cc1 1396 int ret = 0;
8869b8f6 1397
f8d66542 1398 if (mem_cgroup_disabled())
4077960e
BS
1399 return 0;
1400
52d4b9ac
KH
1401 pc = lookup_page_cgroup(page);
1402 lock_page_cgroup(pc);
1403 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1404 mem = pc->mem_cgroup;
1405 css_get(&mem->css);
e8589cc1 1406 }
52d4b9ac 1407 unlock_page_cgroup(pc);
01b1ae63 1408
e8589cc1 1409 if (mem) {
3bb4edf2 1410 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1411 css_put(&mem->css);
1412 }
01b1ae63 1413 *ptr = mem;
e8589cc1 1414 return ret;
ae41be37 1415}
8869b8f6 1416
69029cd5 1417/* remove redundant charge if migration failed*/
01b1ae63
KH
1418void mem_cgroup_end_migration(struct mem_cgroup *mem,
1419 struct page *oldpage, struct page *newpage)
ae41be37 1420{
01b1ae63
KH
1421 struct page *target, *unused;
1422 struct page_cgroup *pc;
1423 enum charge_type ctype;
1424
1425 if (!mem)
1426 return;
1427
1428 /* at migration success, oldpage->mapping is NULL. */
1429 if (oldpage->mapping) {
1430 target = oldpage;
1431 unused = NULL;
1432 } else {
1433 target = newpage;
1434 unused = oldpage;
1435 }
1436
1437 if (PageAnon(target))
1438 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1439 else if (page_is_file_cache(target))
1440 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1441 else
1442 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1443
1444 /* unused page is not on radix-tree now. */
d13d1443 1445 if (unused)
01b1ae63
KH
1446 __mem_cgroup_uncharge_common(unused, ctype);
1447
1448 pc = lookup_page_cgroup(target);
69029cd5 1449 /*
01b1ae63
KH
1450 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1451 * So, double-counting is effectively avoided.
1452 */
1453 __mem_cgroup_commit_charge(mem, pc, ctype);
1454
1455 /*
1456 * Both of oldpage and newpage are still under lock_page().
1457 * Then, we don't have to care about race in radix-tree.
1458 * But we have to be careful that this page is unmapped or not.
1459 *
1460 * There is a case for !page_mapped(). At the start of
1461 * migration, oldpage was mapped. But now, it's zapped.
1462 * But we know *target* page is not freed/reused under us.
1463 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1464 */
01b1ae63
KH
1465 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1466 mem_cgroup_uncharge_page(target);
ae41be37 1467}
78fb7466 1468
c9b0ed51
KH
1469/*
1470 * A call to try to shrink memory usage under specified resource controller.
1471 * This is typically used for page reclaiming for shmem for reducing side
1472 * effect of page allocation from shmem, which is used by some mem_cgroup.
1473 */
b5a84319
KH
1474int mem_cgroup_shrink_usage(struct page *page,
1475 struct mm_struct *mm,
1476 gfp_t gfp_mask)
c9b0ed51 1477{
b5a84319 1478 struct mem_cgroup *mem = NULL;
c9b0ed51
KH
1479 int progress = 0;
1480 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1481
f8d66542 1482 if (mem_cgroup_disabled())
cede86ac 1483 return 0;
b5a84319
KH
1484 if (page)
1485 mem = try_get_mem_cgroup_from_swapcache(page);
1486 if (!mem && mm)
1487 mem = try_get_mem_cgroup_from_mm(mm);
54595fe2 1488 if (unlikely(!mem))
31a78f23 1489 return 0;
c9b0ed51
KH
1490
1491 do {
42e9abb6 1492 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
b85a96c0 1493 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1494 } while (!progress && --retry);
1495
1496 css_put(&mem->css);
1497 if (!retry)
1498 return -ENOMEM;
1499 return 0;
1500}
1501
8c7c6e34
KH
1502static DEFINE_MUTEX(set_limit_mutex);
1503
d38d2a75 1504static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1505 unsigned long long val)
628f4235
KH
1506{
1507
1508 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1509 int progress;
8c7c6e34 1510 u64 memswlimit;
628f4235
KH
1511 int ret = 0;
1512
8c7c6e34 1513 while (retry_count) {
628f4235
KH
1514 if (signal_pending(current)) {
1515 ret = -EINTR;
1516 break;
1517 }
8c7c6e34
KH
1518 /*
1519 * Rather than hide all in some function, I do this in
1520 * open coded manner. You see what this really does.
1521 * We have to guarantee mem->res.limit < mem->memsw.limit.
1522 */
1523 mutex_lock(&set_limit_mutex);
1524 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1525 if (memswlimit < val) {
1526 ret = -EINVAL;
1527 mutex_unlock(&set_limit_mutex);
628f4235
KH
1528 break;
1529 }
8c7c6e34
KH
1530 ret = res_counter_set_limit(&memcg->res, val);
1531 mutex_unlock(&set_limit_mutex);
1532
1533 if (!ret)
1534 break;
1535
42e9abb6
DN
1536 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1537 false);
8c7c6e34
KH
1538 if (!progress) retry_count--;
1539 }
14797e23 1540
8c7c6e34
KH
1541 return ret;
1542}
1543
1544int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1545 unsigned long long val)
1546{
1547 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1548 u64 memlimit, oldusage, curusage;
1549 int ret;
1550
1551 if (!do_swap_account)
1552 return -EINVAL;
1553
1554 while (retry_count) {
1555 if (signal_pending(current)) {
1556 ret = -EINTR;
1557 break;
1558 }
1559 /*
1560 * Rather than hide all in some function, I do this in
1561 * open coded manner. You see what this really does.
1562 * We have to guarantee mem->res.limit < mem->memsw.limit.
1563 */
1564 mutex_lock(&set_limit_mutex);
1565 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1566 if (memlimit > val) {
1567 ret = -EINVAL;
1568 mutex_unlock(&set_limit_mutex);
1569 break;
1570 }
1571 ret = res_counter_set_limit(&memcg->memsw, val);
1572 mutex_unlock(&set_limit_mutex);
1573
1574 if (!ret)
1575 break;
1576
1577 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
42e9abb6 1578 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1579 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1580 if (curusage >= oldusage)
628f4235
KH
1581 retry_count--;
1582 }
1583 return ret;
1584}
1585
cc847582
KH
1586/*
1587 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1588 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1589 */
f817ed48 1590static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1591 int node, int zid, enum lru_list lru)
cc847582 1592{
08e552c6
KH
1593 struct zone *zone;
1594 struct mem_cgroup_per_zone *mz;
f817ed48 1595 struct page_cgroup *pc, *busy;
08e552c6 1596 unsigned long flags, loop;
072c56c1 1597 struct list_head *list;
f817ed48 1598 int ret = 0;
072c56c1 1599
08e552c6
KH
1600 zone = &NODE_DATA(node)->node_zones[zid];
1601 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1602 list = &mz->lists[lru];
cc847582 1603
f817ed48
KH
1604 loop = MEM_CGROUP_ZSTAT(mz, lru);
1605 /* give some margin against EBUSY etc...*/
1606 loop += 256;
1607 busy = NULL;
1608 while (loop--) {
1609 ret = 0;
08e552c6 1610 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1611 if (list_empty(list)) {
08e552c6 1612 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1613 break;
f817ed48
KH
1614 }
1615 pc = list_entry(list->prev, struct page_cgroup, lru);
1616 if (busy == pc) {
1617 list_move(&pc->lru, list);
1618 busy = 0;
08e552c6 1619 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1620 continue;
1621 }
08e552c6 1622 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1623
2c26fdd7 1624 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1625 if (ret == -ENOMEM)
52d4b9ac 1626 break;
f817ed48
KH
1627
1628 if (ret == -EBUSY || ret == -EINVAL) {
1629 /* found lock contention or "pc" is obsolete. */
1630 busy = pc;
1631 cond_resched();
1632 } else
1633 busy = NULL;
cc847582 1634 }
08e552c6 1635
f817ed48
KH
1636 if (!ret && !list_empty(list))
1637 return -EBUSY;
1638 return ret;
cc847582
KH
1639}
1640
1641/*
1642 * make mem_cgroup's charge to be 0 if there is no task.
1643 * This enables deleting this mem_cgroup.
1644 */
c1e862c1 1645static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1646{
f817ed48
KH
1647 int ret;
1648 int node, zid, shrink;
1649 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1650 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1651
cc847582 1652 css_get(&mem->css);
f817ed48
KH
1653
1654 shrink = 0;
c1e862c1
KH
1655 /* should free all ? */
1656 if (free_all)
1657 goto try_to_free;
f817ed48 1658move_account:
1ecaab2b 1659 while (mem->res.usage > 0) {
f817ed48 1660 ret = -EBUSY;
c1e862c1
KH
1661 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1662 goto out;
1663 ret = -EINTR;
1664 if (signal_pending(current))
cc847582 1665 goto out;
52d4b9ac
KH
1666 /* This is for making all *used* pages to be on LRU. */
1667 lru_add_drain_all();
f817ed48 1668 ret = 0;
299b4eaa 1669 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 1670 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1671 enum lru_list l;
f817ed48
KH
1672 for_each_lru(l) {
1673 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1674 node, zid, l);
f817ed48
KH
1675 if (ret)
1676 break;
1677 }
1ecaab2b 1678 }
f817ed48
KH
1679 if (ret)
1680 break;
1681 }
1682 /* it seems parent cgroup doesn't have enough mem */
1683 if (ret == -ENOMEM)
1684 goto try_to_free;
52d4b9ac 1685 cond_resched();
cc847582
KH
1686 }
1687 ret = 0;
1688out:
1689 css_put(&mem->css);
1690 return ret;
f817ed48
KH
1691
1692try_to_free:
c1e862c1
KH
1693 /* returns EBUSY if there is a task or if we come here twice. */
1694 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1695 ret = -EBUSY;
1696 goto out;
1697 }
c1e862c1
KH
1698 /* we call try-to-free pages for make this cgroup empty */
1699 lru_add_drain_all();
f817ed48
KH
1700 /* try to free all pages in this cgroup */
1701 shrink = 1;
1702 while (nr_retries && mem->res.usage > 0) {
1703 int progress;
c1e862c1
KH
1704
1705 if (signal_pending(current)) {
1706 ret = -EINTR;
1707 goto out;
1708 }
a7885eb8
KM
1709 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1710 false, get_swappiness(mem));
c1e862c1 1711 if (!progress) {
f817ed48 1712 nr_retries--;
c1e862c1
KH
1713 /* maybe some writeback is necessary */
1714 congestion_wait(WRITE, HZ/10);
1715 }
f817ed48
KH
1716
1717 }
08e552c6 1718 lru_add_drain();
f817ed48
KH
1719 /* try move_account...there may be some *locked* pages. */
1720 if (mem->res.usage)
1721 goto move_account;
1722 ret = 0;
1723 goto out;
cc847582
KH
1724}
1725
c1e862c1
KH
1726int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1727{
1728 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1729}
1730
1731
18f59ea7
BS
1732static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1733{
1734 return mem_cgroup_from_cont(cont)->use_hierarchy;
1735}
1736
1737static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1738 u64 val)
1739{
1740 int retval = 0;
1741 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1742 struct cgroup *parent = cont->parent;
1743 struct mem_cgroup *parent_mem = NULL;
1744
1745 if (parent)
1746 parent_mem = mem_cgroup_from_cont(parent);
1747
1748 cgroup_lock();
1749 /*
1750 * If parent's use_hiearchy is set, we can't make any modifications
1751 * in the child subtrees. If it is unset, then the change can
1752 * occur, provided the current cgroup has no children.
1753 *
1754 * For the root cgroup, parent_mem is NULL, we allow value to be
1755 * set if there are no children.
1756 */
1757 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1758 (val == 1 || val == 0)) {
1759 if (list_empty(&cont->children))
1760 mem->use_hierarchy = val;
1761 else
1762 retval = -EBUSY;
1763 } else
1764 retval = -EINVAL;
1765 cgroup_unlock();
1766
1767 return retval;
1768}
1769
2c3daa72 1770static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1771{
8c7c6e34
KH
1772 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1773 u64 val = 0;
1774 int type, name;
1775
1776 type = MEMFILE_TYPE(cft->private);
1777 name = MEMFILE_ATTR(cft->private);
1778 switch (type) {
1779 case _MEM:
1780 val = res_counter_read_u64(&mem->res, name);
1781 break;
1782 case _MEMSWAP:
1783 if (do_swap_account)
1784 val = res_counter_read_u64(&mem->memsw, name);
1785 break;
1786 default:
1787 BUG();
1788 break;
1789 }
1790 return val;
8cdea7c0 1791}
628f4235
KH
1792/*
1793 * The user of this function is...
1794 * RES_LIMIT.
1795 */
856c13aa
PM
1796static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1797 const char *buffer)
8cdea7c0 1798{
628f4235 1799 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1800 int type, name;
628f4235
KH
1801 unsigned long long val;
1802 int ret;
1803
8c7c6e34
KH
1804 type = MEMFILE_TYPE(cft->private);
1805 name = MEMFILE_ATTR(cft->private);
1806 switch (name) {
628f4235
KH
1807 case RES_LIMIT:
1808 /* This function does all necessary parse...reuse it */
1809 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1810 if (ret)
1811 break;
1812 if (type == _MEM)
628f4235 1813 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1814 else
1815 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1816 break;
1817 default:
1818 ret = -EINVAL; /* should be BUG() ? */
1819 break;
1820 }
1821 return ret;
8cdea7c0
BS
1822}
1823
fee7b548
KH
1824static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1825 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1826{
1827 struct cgroup *cgroup;
1828 unsigned long long min_limit, min_memsw_limit, tmp;
1829
1830 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1831 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1832 cgroup = memcg->css.cgroup;
1833 if (!memcg->use_hierarchy)
1834 goto out;
1835
1836 while (cgroup->parent) {
1837 cgroup = cgroup->parent;
1838 memcg = mem_cgroup_from_cont(cgroup);
1839 if (!memcg->use_hierarchy)
1840 break;
1841 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1842 min_limit = min(min_limit, tmp);
1843 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1844 min_memsw_limit = min(min_memsw_limit, tmp);
1845 }
1846out:
1847 *mem_limit = min_limit;
1848 *memsw_limit = min_memsw_limit;
1849 return;
1850}
1851
29f2a4da 1852static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1853{
1854 struct mem_cgroup *mem;
8c7c6e34 1855 int type, name;
c84872e1
PE
1856
1857 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1858 type = MEMFILE_TYPE(event);
1859 name = MEMFILE_ATTR(event);
1860 switch (name) {
29f2a4da 1861 case RES_MAX_USAGE:
8c7c6e34
KH
1862 if (type == _MEM)
1863 res_counter_reset_max(&mem->res);
1864 else
1865 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1866 break;
1867 case RES_FAILCNT:
8c7c6e34
KH
1868 if (type == _MEM)
1869 res_counter_reset_failcnt(&mem->res);
1870 else
1871 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1872 break;
1873 }
85cc59db 1874 return 0;
c84872e1
PE
1875}
1876
14067bb3
KH
1877
1878/* For read statistics */
1879enum {
1880 MCS_CACHE,
1881 MCS_RSS,
1882 MCS_PGPGIN,
1883 MCS_PGPGOUT,
1884 MCS_INACTIVE_ANON,
1885 MCS_ACTIVE_ANON,
1886 MCS_INACTIVE_FILE,
1887 MCS_ACTIVE_FILE,
1888 MCS_UNEVICTABLE,
1889 NR_MCS_STAT,
1890};
1891
1892struct mcs_total_stat {
1893 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
1894};
1895
14067bb3
KH
1896struct {
1897 char *local_name;
1898 char *total_name;
1899} memcg_stat_strings[NR_MCS_STAT] = {
1900 {"cache", "total_cache"},
1901 {"rss", "total_rss"},
1902 {"pgpgin", "total_pgpgin"},
1903 {"pgpgout", "total_pgpgout"},
1904 {"inactive_anon", "total_inactive_anon"},
1905 {"active_anon", "total_active_anon"},
1906 {"inactive_file", "total_inactive_file"},
1907 {"active_file", "total_active_file"},
1908 {"unevictable", "total_unevictable"}
1909};
1910
1911
1912static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
1913{
1914 struct mcs_total_stat *s = data;
1915 s64 val;
1916
1917 /* per cpu stat */
1918 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
1919 s->stat[MCS_CACHE] += val * PAGE_SIZE;
1920 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
1921 s->stat[MCS_RSS] += val * PAGE_SIZE;
1922 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
1923 s->stat[MCS_PGPGIN] += val;
1924 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
1925 s->stat[MCS_PGPGOUT] += val;
1926
1927 /* per zone stat */
1928 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
1929 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
1930 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
1931 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
1932 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
1933 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
1934 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
1935 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
1936 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
1937 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
1938 return 0;
1939}
1940
1941static void
1942mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
1943{
1944 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
1945}
1946
c64745cf
PM
1947static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1948 struct cgroup_map_cb *cb)
d2ceb9b7 1949{
d2ceb9b7 1950 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 1951 struct mcs_total_stat mystat;
d2ceb9b7
KH
1952 int i;
1953
14067bb3
KH
1954 memset(&mystat, 0, sizeof(mystat));
1955 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 1956
14067bb3
KH
1957 for (i = 0; i < NR_MCS_STAT; i++)
1958 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
7b854121 1959
14067bb3 1960 /* Hierarchical information */
fee7b548
KH
1961 {
1962 unsigned long long limit, memsw_limit;
1963 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1964 cb->fill(cb, "hierarchical_memory_limit", limit);
1965 if (do_swap_account)
1966 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1967 }
7f016ee8 1968
14067bb3
KH
1969 memset(&mystat, 0, sizeof(mystat));
1970 mem_cgroup_get_total_stat(mem_cont, &mystat);
1971 for (i = 0; i < NR_MCS_STAT; i++)
1972 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1973
1974
7f016ee8 1975#ifdef CONFIG_DEBUG_VM
c772be93 1976 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
1977
1978 {
1979 int nid, zid;
1980 struct mem_cgroup_per_zone *mz;
1981 unsigned long recent_rotated[2] = {0, 0};
1982 unsigned long recent_scanned[2] = {0, 0};
1983
1984 for_each_online_node(nid)
1985 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1986 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1987
1988 recent_rotated[0] +=
1989 mz->reclaim_stat.recent_rotated[0];
1990 recent_rotated[1] +=
1991 mz->reclaim_stat.recent_rotated[1];
1992 recent_scanned[0] +=
1993 mz->reclaim_stat.recent_scanned[0];
1994 recent_scanned[1] +=
1995 mz->reclaim_stat.recent_scanned[1];
1996 }
1997 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1998 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1999 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2000 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2001 }
2002#endif
2003
d2ceb9b7
KH
2004 return 0;
2005}
2006
a7885eb8
KM
2007static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2008{
2009 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2010
2011 return get_swappiness(memcg);
2012}
2013
2014static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2015 u64 val)
2016{
2017 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2018 struct mem_cgroup *parent;
068b38c1 2019
a7885eb8
KM
2020 if (val > 100)
2021 return -EINVAL;
2022
2023 if (cgrp->parent == NULL)
2024 return -EINVAL;
2025
2026 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
2027
2028 cgroup_lock();
2029
a7885eb8
KM
2030 /* If under hierarchy, only empty-root can set this value */
2031 if ((parent->use_hierarchy) ||
068b38c1
LZ
2032 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2033 cgroup_unlock();
a7885eb8 2034 return -EINVAL;
068b38c1 2035 }
a7885eb8
KM
2036
2037 spin_lock(&memcg->reclaim_param_lock);
2038 memcg->swappiness = val;
2039 spin_unlock(&memcg->reclaim_param_lock);
2040
068b38c1
LZ
2041 cgroup_unlock();
2042
a7885eb8
KM
2043 return 0;
2044}
2045
c1e862c1 2046
8cdea7c0
BS
2047static struct cftype mem_cgroup_files[] = {
2048 {
0eea1030 2049 .name = "usage_in_bytes",
8c7c6e34 2050 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 2051 .read_u64 = mem_cgroup_read,
8cdea7c0 2052 },
c84872e1
PE
2053 {
2054 .name = "max_usage_in_bytes",
8c7c6e34 2055 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2056 .trigger = mem_cgroup_reset,
c84872e1
PE
2057 .read_u64 = mem_cgroup_read,
2058 },
8cdea7c0 2059 {
0eea1030 2060 .name = "limit_in_bytes",
8c7c6e34 2061 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2062 .write_string = mem_cgroup_write,
2c3daa72 2063 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
2064 },
2065 {
2066 .name = "failcnt",
8c7c6e34 2067 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2068 .trigger = mem_cgroup_reset,
2c3daa72 2069 .read_u64 = mem_cgroup_read,
8cdea7c0 2070 },
d2ceb9b7
KH
2071 {
2072 .name = "stat",
c64745cf 2073 .read_map = mem_control_stat_show,
d2ceb9b7 2074 },
c1e862c1
KH
2075 {
2076 .name = "force_empty",
2077 .trigger = mem_cgroup_force_empty_write,
2078 },
18f59ea7
BS
2079 {
2080 .name = "use_hierarchy",
2081 .write_u64 = mem_cgroup_hierarchy_write,
2082 .read_u64 = mem_cgroup_hierarchy_read,
2083 },
a7885eb8
KM
2084 {
2085 .name = "swappiness",
2086 .read_u64 = mem_cgroup_swappiness_read,
2087 .write_u64 = mem_cgroup_swappiness_write,
2088 },
8cdea7c0
BS
2089};
2090
8c7c6e34
KH
2091#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2092static struct cftype memsw_cgroup_files[] = {
2093 {
2094 .name = "memsw.usage_in_bytes",
2095 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2096 .read_u64 = mem_cgroup_read,
2097 },
2098 {
2099 .name = "memsw.max_usage_in_bytes",
2100 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2101 .trigger = mem_cgroup_reset,
2102 .read_u64 = mem_cgroup_read,
2103 },
2104 {
2105 .name = "memsw.limit_in_bytes",
2106 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2107 .write_string = mem_cgroup_write,
2108 .read_u64 = mem_cgroup_read,
2109 },
2110 {
2111 .name = "memsw.failcnt",
2112 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2113 .trigger = mem_cgroup_reset,
2114 .read_u64 = mem_cgroup_read,
2115 },
2116};
2117
2118static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2119{
2120 if (!do_swap_account)
2121 return 0;
2122 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2123 ARRAY_SIZE(memsw_cgroup_files));
2124};
2125#else
2126static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2127{
2128 return 0;
2129}
2130#endif
2131
6d12e2d8
KH
2132static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2133{
2134 struct mem_cgroup_per_node *pn;
1ecaab2b 2135 struct mem_cgroup_per_zone *mz;
b69408e8 2136 enum lru_list l;
41e3355d 2137 int zone, tmp = node;
1ecaab2b
KH
2138 /*
2139 * This routine is called against possible nodes.
2140 * But it's BUG to call kmalloc() against offline node.
2141 *
2142 * TODO: this routine can waste much memory for nodes which will
2143 * never be onlined. It's better to use memory hotplug callback
2144 * function.
2145 */
41e3355d
KH
2146 if (!node_state(node, N_NORMAL_MEMORY))
2147 tmp = -1;
2148 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2149 if (!pn)
2150 return 1;
1ecaab2b 2151
6d12e2d8
KH
2152 mem->info.nodeinfo[node] = pn;
2153 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2154
2155 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2156 mz = &pn->zoneinfo[zone];
b69408e8
CL
2157 for_each_lru(l)
2158 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2159 }
6d12e2d8
KH
2160 return 0;
2161}
2162
1ecaab2b
KH
2163static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2164{
2165 kfree(mem->info.nodeinfo[node]);
2166}
2167
c8dad2bb
JB
2168static int mem_cgroup_size(void)
2169{
2170 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2171 return sizeof(struct mem_cgroup) + cpustat_size;
2172}
2173
33327948
KH
2174static struct mem_cgroup *mem_cgroup_alloc(void)
2175{
2176 struct mem_cgroup *mem;
c8dad2bb 2177 int size = mem_cgroup_size();
33327948 2178
c8dad2bb
JB
2179 if (size < PAGE_SIZE)
2180 mem = kmalloc(size, GFP_KERNEL);
33327948 2181 else
c8dad2bb 2182 mem = vmalloc(size);
33327948
KH
2183
2184 if (mem)
c8dad2bb 2185 memset(mem, 0, size);
33327948
KH
2186 return mem;
2187}
2188
8c7c6e34
KH
2189/*
2190 * At destroying mem_cgroup, references from swap_cgroup can remain.
2191 * (scanning all at force_empty is too costly...)
2192 *
2193 * Instead of clearing all references at force_empty, we remember
2194 * the number of reference from swap_cgroup and free mem_cgroup when
2195 * it goes down to 0.
2196 *
8c7c6e34
KH
2197 * Removal of cgroup itself succeeds regardless of refs from swap.
2198 */
2199
a7ba0eef 2200static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2201{
08e552c6
KH
2202 int node;
2203
04046e1a
KH
2204 free_css_id(&mem_cgroup_subsys, &mem->css);
2205
08e552c6
KH
2206 for_each_node_state(node, N_POSSIBLE)
2207 free_mem_cgroup_per_zone_info(mem, node);
2208
c8dad2bb 2209 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2210 kfree(mem);
2211 else
2212 vfree(mem);
2213}
2214
8c7c6e34
KH
2215static void mem_cgroup_get(struct mem_cgroup *mem)
2216{
2217 atomic_inc(&mem->refcnt);
2218}
2219
2220static void mem_cgroup_put(struct mem_cgroup *mem)
2221{
7bcc1bb1
DN
2222 if (atomic_dec_and_test(&mem->refcnt)) {
2223 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 2224 __mem_cgroup_free(mem);
7bcc1bb1
DN
2225 if (parent)
2226 mem_cgroup_put(parent);
2227 }
8c7c6e34
KH
2228}
2229
7bcc1bb1
DN
2230/*
2231 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2232 */
2233static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2234{
2235 if (!mem->res.parent)
2236 return NULL;
2237 return mem_cgroup_from_res_counter(mem->res.parent, res);
2238}
33327948 2239
c077719b
KH
2240#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2241static void __init enable_swap_cgroup(void)
2242{
f8d66542 2243 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2244 do_swap_account = 1;
2245}
2246#else
2247static void __init enable_swap_cgroup(void)
2248{
2249}
2250#endif
2251
0eb253e2 2252static struct cgroup_subsys_state * __ref
8cdea7c0
BS
2253mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2254{
28dbc4b6 2255 struct mem_cgroup *mem, *parent;
04046e1a 2256 long error = -ENOMEM;
6d12e2d8 2257 int node;
8cdea7c0 2258
c8dad2bb
JB
2259 mem = mem_cgroup_alloc();
2260 if (!mem)
04046e1a 2261 return ERR_PTR(error);
78fb7466 2262
6d12e2d8
KH
2263 for_each_node_state(node, N_POSSIBLE)
2264 if (alloc_mem_cgroup_per_zone_info(mem, node))
2265 goto free_out;
c077719b 2266 /* root ? */
28dbc4b6 2267 if (cont->parent == NULL) {
c077719b 2268 enable_swap_cgroup();
28dbc4b6 2269 parent = NULL;
18f59ea7 2270 } else {
28dbc4b6 2271 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2272 mem->use_hierarchy = parent->use_hierarchy;
2273 }
28dbc4b6 2274
18f59ea7
BS
2275 if (parent && parent->use_hierarchy) {
2276 res_counter_init(&mem->res, &parent->res);
2277 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
2278 /*
2279 * We increment refcnt of the parent to ensure that we can
2280 * safely access it on res_counter_charge/uncharge.
2281 * This refcnt will be decremented when freeing this
2282 * mem_cgroup(see mem_cgroup_put).
2283 */
2284 mem_cgroup_get(parent);
18f59ea7
BS
2285 } else {
2286 res_counter_init(&mem->res, NULL);
2287 res_counter_init(&mem->memsw, NULL);
2288 }
04046e1a 2289 mem->last_scanned_child = 0;
2733c06a 2290 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2291
a7885eb8
KM
2292 if (parent)
2293 mem->swappiness = get_swappiness(parent);
a7ba0eef 2294 atomic_set(&mem->refcnt, 1);
8cdea7c0 2295 return &mem->css;
6d12e2d8 2296free_out:
a7ba0eef 2297 __mem_cgroup_free(mem);
04046e1a 2298 return ERR_PTR(error);
8cdea7c0
BS
2299}
2300
ec64f515 2301static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
2302 struct cgroup *cont)
2303{
2304 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
2305
2306 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
2307}
2308
8cdea7c0
BS
2309static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2310 struct cgroup *cont)
2311{
c268e994 2312 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 2313
c268e994 2314 mem_cgroup_put(mem);
8cdea7c0
BS
2315}
2316
2317static int mem_cgroup_populate(struct cgroup_subsys *ss,
2318 struct cgroup *cont)
2319{
8c7c6e34
KH
2320 int ret;
2321
2322 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2323 ARRAY_SIZE(mem_cgroup_files));
2324
2325 if (!ret)
2326 ret = register_memsw_files(cont, ss);
2327 return ret;
8cdea7c0
BS
2328}
2329
67e465a7
BS
2330static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2331 struct cgroup *cont,
2332 struct cgroup *old_cont,
2333 struct task_struct *p)
2334{
7f4d454d 2335 mutex_lock(&memcg_tasklist);
67e465a7 2336 /*
f9717d28
NK
2337 * FIXME: It's better to move charges of this process from old
2338 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2339 */
7f4d454d 2340 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2341}
2342
8cdea7c0
BS
2343struct cgroup_subsys mem_cgroup_subsys = {
2344 .name = "memory",
2345 .subsys_id = mem_cgroup_subsys_id,
2346 .create = mem_cgroup_create,
df878fb0 2347 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2348 .destroy = mem_cgroup_destroy,
2349 .populate = mem_cgroup_populate,
67e465a7 2350 .attach = mem_cgroup_move_task,
6d12e2d8 2351 .early_init = 0,
04046e1a 2352 .use_id = 1,
8cdea7c0 2353};
c077719b
KH
2354
2355#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2356
2357static int __init disable_swap_account(char *s)
2358{
2359 really_do_swap_account = 0;
2360 return 1;
2361}
2362__setup("noswapaccount", disable_swap_account);
2363#endif