]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
vmscan: move isolate_lru_page() to vmscan.c
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
b6ac57d5 29#include <linux/slab.h>
66e1707b
BS
30#include <linux/swap.h>
31#include <linux/spinlock.h>
32#include <linux/fs.h>
d2ceb9b7 33#include <linux/seq_file.h>
33327948 34#include <linux/vmalloc.h>
8cdea7c0 35
8697d331
BS
36#include <asm/uaccess.h>
37
a181b0e8
KH
38struct cgroup_subsys mem_cgroup_subsys __read_mostly;
39static struct kmem_cache *page_cgroup_cache __read_mostly;
40#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 41
d52aa412
KH
42/*
43 * Statistics for memory cgroup.
44 */
45enum mem_cgroup_stat_index {
46 /*
47 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
48 */
49 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
50 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
51 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
52 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
53
54 MEM_CGROUP_STAT_NSTATS,
55};
56
57struct mem_cgroup_stat_cpu {
58 s64 count[MEM_CGROUP_STAT_NSTATS];
59} ____cacheline_aligned_in_smp;
60
61struct mem_cgroup_stat {
62 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
63};
64
65/*
66 * For accounting under irq disable, no need for increment preempt count.
67 */
68static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
69 enum mem_cgroup_stat_index idx, int val)
70{
71 int cpu = smp_processor_id();
72 stat->cpustat[cpu].count[idx] += val;
73}
74
75static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 enum mem_cgroup_stat_index idx)
77{
78 int cpu;
79 s64 ret = 0;
80 for_each_possible_cpu(cpu)
81 ret += stat->cpustat[cpu].count[idx];
82 return ret;
83}
84
6d12e2d8
KH
85/*
86 * per-zone information in memory controller.
87 */
88
89enum mem_cgroup_zstat_index {
90 MEM_CGROUP_ZSTAT_ACTIVE,
91 MEM_CGROUP_ZSTAT_INACTIVE,
92
93 NR_MEM_CGROUP_ZSTAT,
94};
95
96struct mem_cgroup_per_zone {
072c56c1
KH
97 /*
98 * spin_lock to protect the per cgroup LRU
99 */
100 spinlock_t lru_lock;
1ecaab2b
KH
101 struct list_head active_list;
102 struct list_head inactive_list;
6d12e2d8
KH
103 unsigned long count[NR_MEM_CGROUP_ZSTAT];
104};
105/* Macro for accessing counter */
106#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
107
108struct mem_cgroup_per_node {
109 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
110};
111
112struct mem_cgroup_lru_info {
113 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
114};
115
8cdea7c0
BS
116/*
117 * The memory controller data structure. The memory controller controls both
118 * page cache and RSS per cgroup. We would eventually like to provide
119 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
120 * to help the administrator determine what knobs to tune.
121 *
122 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
123 * we hit the water mark. May be even add a low water mark, such that
124 * no reclaim occurs from a cgroup at it's low water mark, this is
125 * a feature that will be implemented much later in the future.
8cdea7c0
BS
126 */
127struct mem_cgroup {
128 struct cgroup_subsys_state css;
129 /*
130 * the counter to account for memory usage
131 */
132 struct res_counter res;
78fb7466
PE
133 /*
134 * Per cgroup active and inactive list, similar to the
135 * per zone LRU lists.
78fb7466 136 */
6d12e2d8 137 struct mem_cgroup_lru_info info;
072c56c1 138
6c48a1d0 139 int prev_priority; /* for recording reclaim priority */
d52aa412
KH
140 /*
141 * statistics.
142 */
143 struct mem_cgroup_stat stat;
8cdea7c0 144};
8869b8f6 145static struct mem_cgroup init_mem_cgroup;
8cdea7c0 146
8a9f3ccd
BS
147/*
148 * We use the lower bit of the page->page_cgroup pointer as a bit spin
9442ec9d
HD
149 * lock. We need to ensure that page->page_cgroup is at least two
150 * byte aligned (based on comments from Nick Piggin). But since
151 * bit_spin_lock doesn't actually set that lock bit in a non-debug
152 * uniprocessor kernel, we should avoid setting it here too.
8a9f3ccd
BS
153 */
154#define PAGE_CGROUP_LOCK_BIT 0x0
9442ec9d
HD
155#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
156#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
157#else
158#define PAGE_CGROUP_LOCK 0x0
159#endif
8a9f3ccd 160
8cdea7c0
BS
161/*
162 * A page_cgroup page is associated with every page descriptor. The
163 * page_cgroup helps us identify information about the cgroup
164 */
165struct page_cgroup {
166 struct list_head lru; /* per cgroup LRU list */
167 struct page *page;
168 struct mem_cgroup *mem_cgroup;
8869b8f6 169 int flags;
8cdea7c0 170};
217bc319 171#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
3564c7c4 172#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
8cdea7c0 173
d5b69e38 174static int page_cgroup_nid(struct page_cgroup *pc)
c0149530
KH
175{
176 return page_to_nid(pc->page);
177}
178
d5b69e38 179static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
c0149530
KH
180{
181 return page_zonenum(pc->page);
182}
183
217bc319
KH
184enum charge_type {
185 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
186 MEM_CGROUP_CHARGE_TYPE_MAPPED,
69029cd5 187 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
217bc319
KH
188};
189
d52aa412
KH
190/*
191 * Always modified under lru lock. Then, not necessary to preempt_disable()
192 */
193static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
194 bool charge)
195{
196 int val = (charge)? 1 : -1;
197 struct mem_cgroup_stat *stat = &mem->stat;
d52aa412 198
8869b8f6 199 VM_BUG_ON(!irqs_disabled());
d52aa412 200 if (flags & PAGE_CGROUP_FLAG_CACHE)
8869b8f6 201 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
d52aa412
KH
202 else
203 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
204
205 if (charge)
206 __mem_cgroup_stat_add_safe(stat,
207 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
208 else
209 __mem_cgroup_stat_add_safe(stat,
210 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
6d12e2d8
KH
211}
212
d5b69e38 213static struct mem_cgroup_per_zone *
6d12e2d8
KH
214mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
215{
6d12e2d8
KH
216 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
217}
218
d5b69e38 219static struct mem_cgroup_per_zone *
6d12e2d8
KH
220page_cgroup_zoneinfo(struct page_cgroup *pc)
221{
222 struct mem_cgroup *mem = pc->mem_cgroup;
223 int nid = page_cgroup_nid(pc);
224 int zid = page_cgroup_zid(pc);
d52aa412 225
6d12e2d8
KH
226 return mem_cgroup_zoneinfo(mem, nid, zid);
227}
228
229static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
230 enum mem_cgroup_zstat_index idx)
231{
232 int nid, zid;
233 struct mem_cgroup_per_zone *mz;
234 u64 total = 0;
235
236 for_each_online_node(nid)
237 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
238 mz = mem_cgroup_zoneinfo(mem, nid, zid);
239 total += MEM_CGROUP_ZSTAT(mz, idx);
240 }
241 return total;
d52aa412
KH
242}
243
d5b69e38 244static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
245{
246 return container_of(cgroup_subsys_state(cont,
247 mem_cgroup_subsys_id), struct mem_cgroup,
248 css);
249}
250
cf475ad2 251struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 252{
31a78f23
BS
253 /*
254 * mm_update_next_owner() may clear mm->owner to NULL
255 * if it races with swapoff, page migration, etc.
256 * So this can be called with p == NULL.
257 */
258 if (unlikely(!p))
259 return NULL;
260
78fb7466
PE
261 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
262 struct mem_cgroup, css);
263}
264
8a9f3ccd
BS
265static inline int page_cgroup_locked(struct page *page)
266{
8869b8f6 267 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
8a9f3ccd
BS
268}
269
9442ec9d 270static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
78fb7466 271{
9442ec9d
HD
272 VM_BUG_ON(!page_cgroup_locked(page));
273 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
78fb7466
PE
274}
275
276struct page_cgroup *page_get_page_cgroup(struct page *page)
277{
8869b8f6 278 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
8a9f3ccd
BS
279}
280
d5b69e38 281static void lock_page_cgroup(struct page *page)
8a9f3ccd
BS
282{
283 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
8a9f3ccd
BS
284}
285
2680eed7
HD
286static int try_lock_page_cgroup(struct page *page)
287{
288 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
289}
290
d5b69e38 291static void unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
292{
293 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
294}
295
3eae90c3
KH
296static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
297 struct page_cgroup *pc)
6d12e2d8
KH
298{
299 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
6d12e2d8
KH
300
301 if (from)
302 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
303 else
304 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
305
306 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
508b7be0 307 list_del(&pc->lru);
6d12e2d8
KH
308}
309
3eae90c3
KH
310static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
311 struct page_cgroup *pc)
6d12e2d8
KH
312{
313 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
6d12e2d8
KH
314
315 if (!to) {
316 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
1ecaab2b 317 list_add(&pc->lru, &mz->inactive_list);
6d12e2d8
KH
318 } else {
319 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
1ecaab2b 320 list_add(&pc->lru, &mz->active_list);
6d12e2d8
KH
321 }
322 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
323}
324
8697d331 325static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b 326{
6d12e2d8
KH
327 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
328 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
329
330 if (from)
331 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
332 else
333 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
334
3564c7c4 335 if (active) {
6d12e2d8 336 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
3564c7c4 337 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 338 list_move(&pc->lru, &mz->active_list);
3564c7c4 339 } else {
6d12e2d8 340 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
3564c7c4 341 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 342 list_move(&pc->lru, &mz->inactive_list);
3564c7c4 343 }
66e1707b
BS
344}
345
4c4a2214
DR
346int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
347{
348 int ret;
349
350 task_lock(task);
bd845e38 351 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
352 task_unlock(task);
353 return ret;
354}
355
66e1707b
BS
356/*
357 * This routine assumes that the appropriate zone's lru lock is already held
358 */
427d5416 359void mem_cgroup_move_lists(struct page *page, bool active)
66e1707b 360{
427d5416 361 struct page_cgroup *pc;
072c56c1
KH
362 struct mem_cgroup_per_zone *mz;
363 unsigned long flags;
364
cede86ac
LZ
365 if (mem_cgroup_subsys.disabled)
366 return;
367
2680eed7
HD
368 /*
369 * We cannot lock_page_cgroup while holding zone's lru_lock,
370 * because other holders of lock_page_cgroup can be interrupted
371 * with an attempt to rotate_reclaimable_page. But we cannot
372 * safely get to page_cgroup without it, so just try_lock it:
373 * mem_cgroup_isolate_pages allows for page left on wrong list.
374 */
375 if (!try_lock_page_cgroup(page))
66e1707b
BS
376 return;
377
2680eed7
HD
378 pc = page_get_page_cgroup(page);
379 if (pc) {
2680eed7 380 mz = page_cgroup_zoneinfo(pc);
2680eed7 381 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 382 __mem_cgroup_move_lists(pc, active);
2680eed7 383 spin_unlock_irqrestore(&mz->lru_lock, flags);
9b3c0a07
HT
384 }
385 unlock_page_cgroup(page);
66e1707b
BS
386}
387
58ae83db
KH
388/*
389 * Calculate mapped_ratio under memory controller. This will be used in
390 * vmscan.c for deteremining we have to reclaim mapped pages.
391 */
392int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
393{
394 long total, rss;
395
396 /*
397 * usage is recorded in bytes. But, here, we assume the number of
398 * physical pages can be represented by "long" on any arch.
399 */
400 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
401 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
402 return (int)((rss * 100L) / total);
403}
8869b8f6 404
5932f367
KH
405/*
406 * This function is called from vmscan.c. In page reclaiming loop. balance
407 * between active and inactive list is calculated. For memory controller
408 * page reclaiming, we should use using mem_cgroup's imbalance rather than
409 * zone's global lru imbalance.
410 */
411long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
412{
413 unsigned long active, inactive;
414 /* active and inactive are the number of pages. 'long' is ok.*/
415 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
416 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
417 return (long) (active / (inactive + 1));
418}
58ae83db 419
6c48a1d0
KH
420/*
421 * prev_priority control...this will be used in memory reclaim path.
422 */
423int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
424{
425 return mem->prev_priority;
426}
427
428void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
429{
430 if (priority < mem->prev_priority)
431 mem->prev_priority = priority;
432}
433
434void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
435{
436 mem->prev_priority = priority;
437}
438
cc38108e
KH
439/*
440 * Calculate # of pages to be scanned in this priority/zone.
441 * See also vmscan.c
442 *
443 * priority starts from "DEF_PRIORITY" and decremented in each loop.
444 * (see include/linux/mmzone.h)
445 */
446
447long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
448 struct zone *zone, int priority)
449{
450 long nr_active;
451 int nid = zone->zone_pgdat->node_id;
452 int zid = zone_idx(zone);
453 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
454
455 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
456 return (nr_active >> priority);
457}
458
459long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
460 struct zone *zone, int priority)
461{
462 long nr_inactive;
463 int nid = zone->zone_pgdat->node_id;
464 int zid = zone_idx(zone);
465 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
466
467 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
cc38108e
KH
468 return (nr_inactive >> priority);
469}
470
66e1707b
BS
471unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
472 struct list_head *dst,
473 unsigned long *scanned, int order,
474 int mode, struct zone *z,
475 struct mem_cgroup *mem_cont,
476 int active)
477{
478 unsigned long nr_taken = 0;
479 struct page *page;
480 unsigned long scan;
481 LIST_HEAD(pc_list);
482 struct list_head *src;
ff7283fa 483 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
484 int nid = z->zone_pgdat->node_id;
485 int zid = zone_idx(z);
486 struct mem_cgroup_per_zone *mz;
66e1707b 487
cf475ad2 488 BUG_ON(!mem_cont);
1ecaab2b 489 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
66e1707b 490 if (active)
1ecaab2b 491 src = &mz->active_list;
66e1707b 492 else
1ecaab2b
KH
493 src = &mz->inactive_list;
494
66e1707b 495
072c56c1 496 spin_lock(&mz->lru_lock);
ff7283fa
KH
497 scan = 0;
498 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 499 if (scan >= nr_to_scan)
ff7283fa 500 break;
66e1707b 501 page = pc->page;
66e1707b 502
436c6541 503 if (unlikely(!PageLRU(page)))
ff7283fa 504 continue;
ff7283fa 505
66e1707b
BS
506 if (PageActive(page) && !active) {
507 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
508 continue;
509 }
510 if (!PageActive(page) && active) {
511 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
512 continue;
513 }
514
436c6541
HD
515 scan++;
516 list_move(&pc->lru, &pc_list);
66e1707b
BS
517
518 if (__isolate_lru_page(page, mode) == 0) {
519 list_move(&page->lru, dst);
520 nr_taken++;
521 }
522 }
523
524 list_splice(&pc_list, src);
072c56c1 525 spin_unlock(&mz->lru_lock);
66e1707b
BS
526
527 *scanned = scan;
528 return nr_taken;
529}
530
8a9f3ccd
BS
531/*
532 * Charge the memory controller for page usage.
533 * Return
534 * 0 if the charge was successful
535 * < 0 if the cgroup is over its limit
536 */
217bc319 537static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
e8589cc1
KH
538 gfp_t gfp_mask, enum charge_type ctype,
539 struct mem_cgroup *memcg)
8a9f3ccd
BS
540{
541 struct mem_cgroup *mem;
9175e031 542 struct page_cgroup *pc;
66e1707b
BS
543 unsigned long flags;
544 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
072c56c1 545 struct mem_cgroup_per_zone *mz;
8a9f3ccd 546
508b7be0 547 pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
b76734e5 548 if (unlikely(pc == NULL))
8a9f3ccd
BS
549 goto err;
550
8a9f3ccd 551 /*
3be91277
HD
552 * We always charge the cgroup the mm_struct belongs to.
553 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
554 * thread group leader migrates. It's possible that mm is not
555 * set, if so charge the init_mm (happens for pagecache usage).
556 */
69029cd5 557 if (likely(!memcg)) {
e8589cc1
KH
558 rcu_read_lock();
559 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
560 if (unlikely(!mem)) {
561 rcu_read_unlock();
562 kmem_cache_free(page_cgroup_cache, pc);
563 return 0;
564 }
e8589cc1
KH
565 /*
566 * For every charge from the cgroup, increment reference count
567 */
568 css_get(&mem->css);
569 rcu_read_unlock();
570 } else {
571 mem = memcg;
572 css_get(&memcg->css);
573 }
8a9f3ccd 574
0eea1030 575 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
576 if (!(gfp_mask & __GFP_WAIT))
577 goto out;
e1a1cd59
BS
578
579 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
580 continue;
581
582 /*
8869b8f6
HD
583 * try_to_free_mem_cgroup_pages() might not give us a full
584 * picture of reclaim. Some pages are reclaimed and might be
585 * moved to swap cache or just unmapped from the cgroup.
586 * Check the limit again to see if the reclaim reduced the
587 * current usage of the cgroup before giving up
588 */
66e1707b
BS
589 if (res_counter_check_under_limit(&mem->res))
590 continue;
3be91277
HD
591
592 if (!nr_retries--) {
593 mem_cgroup_out_of_memory(mem, gfp_mask);
594 goto out;
66e1707b 595 }
8a9f3ccd
BS
596 }
597
8a9f3ccd
BS
598 pc->mem_cgroup = mem;
599 pc->page = page;
508b7be0
KH
600 /*
601 * If a page is accounted as a page cache, insert to inactive list.
602 * If anon, insert to active list.
603 */
217bc319 604 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
4a56d02e 605 pc->flags = PAGE_CGROUP_FLAG_CACHE;
508b7be0
KH
606 else
607 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
3be91277 608
7e924aaf 609 lock_page_cgroup(page);
b76734e5 610 if (unlikely(page_get_page_cgroup(page))) {
7e924aaf 611 unlock_page_cgroup(page);
9175e031
KH
612 res_counter_uncharge(&mem->res, PAGE_SIZE);
613 css_put(&mem->css);
b6ac57d5 614 kmem_cache_free(page_cgroup_cache, pc);
accf163e 615 goto done;
9175e031 616 }
7e924aaf 617 page_assign_page_cgroup(page, pc);
8a9f3ccd 618
072c56c1
KH
619 mz = page_cgroup_zoneinfo(pc);
620 spin_lock_irqsave(&mz->lru_lock, flags);
3eae90c3 621 __mem_cgroup_add_list(mz, pc);
072c56c1 622 spin_unlock_irqrestore(&mz->lru_lock, flags);
66e1707b 623
fb59e9f1 624 unlock_page_cgroup(page);
8a9f3ccd 625done:
8a9f3ccd 626 return 0;
3be91277
HD
627out:
628 css_put(&mem->css);
b6ac57d5 629 kmem_cache_free(page_cgroup_cache, pc);
8a9f3ccd 630err:
8a9f3ccd
BS
631 return -ENOMEM;
632}
633
8869b8f6 634int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
217bc319 635{
cede86ac
LZ
636 if (mem_cgroup_subsys.disabled)
637 return 0;
638
69029cd5
KH
639 /*
640 * If already mapped, we don't have to account.
641 * If page cache, page->mapping has address_space.
642 * But page->mapping may have out-of-use anon_vma pointer,
643 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
644 * is NULL.
645 */
646 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
647 return 0;
648 if (unlikely(!mm))
649 mm = &init_mm;
217bc319 650 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 651 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
652}
653
e1a1cd59
BS
654int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
655 gfp_t gfp_mask)
8697d331 656{
cede86ac
LZ
657 if (mem_cgroup_subsys.disabled)
658 return 0;
659
accf163e
KH
660 /*
661 * Corner case handling. This is called from add_to_page_cache()
662 * in usual. But some FS (shmem) precharges this page before calling it
663 * and call add_to_page_cache() with GFP_NOWAIT.
664 *
665 * For GFP_NOWAIT case, the page may be pre-charged before calling
666 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
667 * charge twice. (It works but has to pay a bit larger cost.)
668 */
669 if (!(gfp_mask & __GFP_WAIT)) {
670 struct page_cgroup *pc;
671
672 lock_page_cgroup(page);
673 pc = page_get_page_cgroup(page);
674 if (pc) {
675 VM_BUG_ON(pc->page != page);
676 VM_BUG_ON(!pc->mem_cgroup);
677 unlock_page_cgroup(page);
678 return 0;
679 }
680 unlock_page_cgroup(page);
681 }
682
69029cd5 683 if (unlikely(!mm))
8697d331 684 mm = &init_mm;
accf163e 685
8869b8f6 686 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1
KH
687 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
688}
689
8a9f3ccd 690/*
69029cd5 691 * uncharge if !page_mapped(page)
8a9f3ccd 692 */
69029cd5
KH
693static void
694__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 695{
8289546e 696 struct page_cgroup *pc;
8a9f3ccd 697 struct mem_cgroup *mem;
072c56c1 698 struct mem_cgroup_per_zone *mz;
66e1707b 699 unsigned long flags;
8a9f3ccd 700
4077960e
BS
701 if (mem_cgroup_subsys.disabled)
702 return;
703
8697d331 704 /*
3c541e14 705 * Check if our page_cgroup is valid
8697d331 706 */
8289546e
HD
707 lock_page_cgroup(page);
708 pc = page_get_page_cgroup(page);
b76734e5 709 if (unlikely(!pc))
8289546e 710 goto unlock;
8a9f3ccd 711
b9c565d5 712 VM_BUG_ON(pc->page != page);
b9c565d5 713
69029cd5
KH
714 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
715 && ((pc->flags & PAGE_CGROUP_FLAG_CACHE)
716 || page_mapped(page)))
717 goto unlock;
b9c565d5 718
69029cd5
KH
719 mz = page_cgroup_zoneinfo(pc);
720 spin_lock_irqsave(&mz->lru_lock, flags);
721 __mem_cgroup_remove_list(mz, pc);
722 spin_unlock_irqrestore(&mz->lru_lock, flags);
fb59e9f1 723
69029cd5
KH
724 page_assign_page_cgroup(page, NULL);
725 unlock_page_cgroup(page);
6d48ff8b 726
69029cd5
KH
727 mem = pc->mem_cgroup;
728 res_counter_uncharge(&mem->res, PAGE_SIZE);
729 css_put(&mem->css);
6d12e2d8 730
69029cd5
KH
731 kmem_cache_free(page_cgroup_cache, pc);
732 return;
8289546e 733unlock:
3c541e14
BS
734 unlock_page_cgroup(page);
735}
736
69029cd5
KH
737void mem_cgroup_uncharge_page(struct page *page)
738{
739 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
740}
741
742void mem_cgroup_uncharge_cache_page(struct page *page)
743{
744 VM_BUG_ON(page_mapped(page));
745 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
746}
747
ae41be37 748/*
e8589cc1 749 * Before starting migration, account against new page.
ae41be37 750 */
e8589cc1 751int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
ae41be37
KH
752{
753 struct page_cgroup *pc;
e8589cc1
KH
754 struct mem_cgroup *mem = NULL;
755 enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
756 int ret = 0;
8869b8f6 757
4077960e
BS
758 if (mem_cgroup_subsys.disabled)
759 return 0;
760
ae41be37
KH
761 lock_page_cgroup(page);
762 pc = page_get_page_cgroup(page);
e8589cc1
KH
763 if (pc) {
764 mem = pc->mem_cgroup;
765 css_get(&mem->css);
766 if (pc->flags & PAGE_CGROUP_FLAG_CACHE)
767 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
768 }
ae41be37 769 unlock_page_cgroup(page);
e8589cc1
KH
770 if (mem) {
771 ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
772 ctype, mem);
773 css_put(&mem->css);
774 }
775 return ret;
ae41be37 776}
8869b8f6 777
69029cd5 778/* remove redundant charge if migration failed*/
e8589cc1 779void mem_cgroup_end_migration(struct page *newpage)
ae41be37 780{
69029cd5
KH
781 /*
782 * At success, page->mapping is not NULL.
783 * special rollback care is necessary when
784 * 1. at migration failure. (newpage->mapping is cleared in this case)
785 * 2. the newpage was moved but not remapped again because the task
786 * exits and the newpage is obsolete. In this case, the new page
787 * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
788 * always for avoiding mess. The page_cgroup will be removed if
789 * unnecessary. File cache pages is still on radix-tree. Don't
790 * care it.
791 */
792 if (!newpage->mapping)
793 __mem_cgroup_uncharge_common(newpage,
794 MEM_CGROUP_CHARGE_TYPE_FORCE);
795 else if (PageAnon(newpage))
796 mem_cgroup_uncharge_page(newpage);
ae41be37 797}
78fb7466 798
c9b0ed51
KH
799/*
800 * A call to try to shrink memory usage under specified resource controller.
801 * This is typically used for page reclaiming for shmem for reducing side
802 * effect of page allocation from shmem, which is used by some mem_cgroup.
803 */
804int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
805{
806 struct mem_cgroup *mem;
807 int progress = 0;
808 int retry = MEM_CGROUP_RECLAIM_RETRIES;
809
cede86ac
LZ
810 if (mem_cgroup_subsys.disabled)
811 return 0;
9623e078
HD
812 if (!mm)
813 return 0;
cede86ac 814
c9b0ed51
KH
815 rcu_read_lock();
816 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
817 if (unlikely(!mem)) {
818 rcu_read_unlock();
819 return 0;
820 }
c9b0ed51
KH
821 css_get(&mem->css);
822 rcu_read_unlock();
823
824 do {
825 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
a10cebf5 826 progress += res_counter_check_under_limit(&mem->res);
c9b0ed51
KH
827 } while (!progress && --retry);
828
829 css_put(&mem->css);
830 if (!retry)
831 return -ENOMEM;
832 return 0;
833}
834
628f4235
KH
835int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val)
836{
837
838 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
839 int progress;
840 int ret = 0;
841
842 while (res_counter_set_limit(&memcg->res, val)) {
843 if (signal_pending(current)) {
844 ret = -EINTR;
845 break;
846 }
847 if (!retry_count) {
848 ret = -EBUSY;
849 break;
850 }
851 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL);
852 if (!progress)
853 retry_count--;
854 }
855 return ret;
856}
857
858
cc847582
KH
859/*
860 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
861 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
862 */
863#define FORCE_UNCHARGE_BATCH (128)
8869b8f6 864static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
072c56c1
KH
865 struct mem_cgroup_per_zone *mz,
866 int active)
cc847582
KH
867{
868 struct page_cgroup *pc;
869 struct page *page;
9b3c0a07 870 int count = FORCE_UNCHARGE_BATCH;
cc847582 871 unsigned long flags;
072c56c1
KH
872 struct list_head *list;
873
874 if (active)
875 list = &mz->active_list;
876 else
877 list = &mz->inactive_list;
cc847582 878
072c56c1 879 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 880 while (!list_empty(list)) {
cc847582
KH
881 pc = list_entry(list->prev, struct page_cgroup, lru);
882 page = pc->page;
9b3c0a07
HT
883 get_page(page);
884 spin_unlock_irqrestore(&mz->lru_lock, flags);
e8589cc1
KH
885 /*
886 * Check if this page is on LRU. !LRU page can be found
887 * if it's under page migration.
888 */
889 if (PageLRU(page)) {
69029cd5
KH
890 __mem_cgroup_uncharge_common(page,
891 MEM_CGROUP_CHARGE_TYPE_FORCE);
e8589cc1
KH
892 put_page(page);
893 if (--count <= 0) {
894 count = FORCE_UNCHARGE_BATCH;
895 cond_resched();
896 }
897 } else
9b3c0a07 898 cond_resched();
9b3c0a07 899 spin_lock_irqsave(&mz->lru_lock, flags);
cc847582 900 }
072c56c1 901 spin_unlock_irqrestore(&mz->lru_lock, flags);
cc847582
KH
902}
903
904/*
905 * make mem_cgroup's charge to be 0 if there is no task.
906 * This enables deleting this mem_cgroup.
907 */
d5b69e38 908static int mem_cgroup_force_empty(struct mem_cgroup *mem)
cc847582
KH
909{
910 int ret = -EBUSY;
1ecaab2b 911 int node, zid;
8869b8f6 912
cc847582
KH
913 css_get(&mem->css);
914 /*
915 * page reclaim code (kswapd etc..) will move pages between
8869b8f6 916 * active_list <-> inactive_list while we don't take a lock.
cc847582
KH
917 * So, we have to do loop here until all lists are empty.
918 */
1ecaab2b 919 while (mem->res.usage > 0) {
cc847582
KH
920 if (atomic_read(&mem->css.cgroup->count) > 0)
921 goto out;
1ecaab2b
KH
922 for_each_node_state(node, N_POSSIBLE)
923 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
924 struct mem_cgroup_per_zone *mz;
925 mz = mem_cgroup_zoneinfo(mem, node, zid);
926 /* drop all page_cgroup in active_list */
072c56c1 927 mem_cgroup_force_empty_list(mem, mz, 1);
1ecaab2b 928 /* drop all page_cgroup in inactive_list */
072c56c1 929 mem_cgroup_force_empty_list(mem, mz, 0);
1ecaab2b 930 }
cc847582
KH
931 }
932 ret = 0;
933out:
934 css_put(&mem->css);
935 return ret;
936}
937
2c3daa72 938static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 939{
2c3daa72
PM
940 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
941 cft->private);
8cdea7c0 942}
628f4235
KH
943/*
944 * The user of this function is...
945 * RES_LIMIT.
946 */
856c13aa
PM
947static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
948 const char *buffer)
8cdea7c0 949{
628f4235
KH
950 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
951 unsigned long long val;
952 int ret;
953
954 switch (cft->private) {
955 case RES_LIMIT:
956 /* This function does all necessary parse...reuse it */
957 ret = res_counter_memparse_write_strategy(buffer, &val);
958 if (!ret)
959 ret = mem_cgroup_resize_limit(memcg, val);
960 break;
961 default:
962 ret = -EINVAL; /* should be BUG() ? */
963 break;
964 }
965 return ret;
8cdea7c0
BS
966}
967
29f2a4da 968static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
969{
970 struct mem_cgroup *mem;
971
972 mem = mem_cgroup_from_cont(cont);
29f2a4da
PE
973 switch (event) {
974 case RES_MAX_USAGE:
975 res_counter_reset_max(&mem->res);
976 break;
977 case RES_FAILCNT:
978 res_counter_reset_failcnt(&mem->res);
979 break;
980 }
85cc59db 981 return 0;
c84872e1
PE
982}
983
85cc59db 984static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
cc847582 985{
85cc59db 986 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
cc847582
KH
987}
988
d2ceb9b7
KH
989static const struct mem_cgroup_stat_desc {
990 const char *msg;
991 u64 unit;
992} mem_cgroup_stat_desc[] = {
993 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
994 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
995 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
996 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
997};
998
c64745cf
PM
999static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1000 struct cgroup_map_cb *cb)
d2ceb9b7 1001{
d2ceb9b7
KH
1002 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1003 struct mem_cgroup_stat *stat = &mem_cont->stat;
1004 int i;
1005
1006 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1007 s64 val;
1008
1009 val = mem_cgroup_read_stat(stat, i);
1010 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1011 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1012 }
6d12e2d8
KH
1013 /* showing # of active pages */
1014 {
1015 unsigned long active, inactive;
1016
1017 inactive = mem_cgroup_get_all_zonestat(mem_cont,
1018 MEM_CGROUP_ZSTAT_INACTIVE);
1019 active = mem_cgroup_get_all_zonestat(mem_cont,
1020 MEM_CGROUP_ZSTAT_ACTIVE);
c64745cf
PM
1021 cb->fill(cb, "active", (active) * PAGE_SIZE);
1022 cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
6d12e2d8 1023 }
d2ceb9b7
KH
1024 return 0;
1025}
1026
8cdea7c0
BS
1027static struct cftype mem_cgroup_files[] = {
1028 {
0eea1030 1029 .name = "usage_in_bytes",
8cdea7c0 1030 .private = RES_USAGE,
2c3daa72 1031 .read_u64 = mem_cgroup_read,
8cdea7c0 1032 },
c84872e1
PE
1033 {
1034 .name = "max_usage_in_bytes",
1035 .private = RES_MAX_USAGE,
29f2a4da 1036 .trigger = mem_cgroup_reset,
c84872e1
PE
1037 .read_u64 = mem_cgroup_read,
1038 },
8cdea7c0 1039 {
0eea1030 1040 .name = "limit_in_bytes",
8cdea7c0 1041 .private = RES_LIMIT,
856c13aa 1042 .write_string = mem_cgroup_write,
2c3daa72 1043 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1044 },
1045 {
1046 .name = "failcnt",
1047 .private = RES_FAILCNT,
29f2a4da 1048 .trigger = mem_cgroup_reset,
2c3daa72 1049 .read_u64 = mem_cgroup_read,
8cdea7c0 1050 },
cc847582
KH
1051 {
1052 .name = "force_empty",
85cc59db 1053 .trigger = mem_force_empty_write,
cc847582 1054 },
d2ceb9b7
KH
1055 {
1056 .name = "stat",
c64745cf 1057 .read_map = mem_control_stat_show,
d2ceb9b7 1058 },
8cdea7c0
BS
1059};
1060
6d12e2d8
KH
1061static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1062{
1063 struct mem_cgroup_per_node *pn;
1ecaab2b 1064 struct mem_cgroup_per_zone *mz;
41e3355d 1065 int zone, tmp = node;
1ecaab2b
KH
1066 /*
1067 * This routine is called against possible nodes.
1068 * But it's BUG to call kmalloc() against offline node.
1069 *
1070 * TODO: this routine can waste much memory for nodes which will
1071 * never be onlined. It's better to use memory hotplug callback
1072 * function.
1073 */
41e3355d
KH
1074 if (!node_state(node, N_NORMAL_MEMORY))
1075 tmp = -1;
1076 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1077 if (!pn)
1078 return 1;
1ecaab2b 1079
6d12e2d8
KH
1080 mem->info.nodeinfo[node] = pn;
1081 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1082
1083 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1084 mz = &pn->zoneinfo[zone];
1085 INIT_LIST_HEAD(&mz->active_list);
1086 INIT_LIST_HEAD(&mz->inactive_list);
072c56c1 1087 spin_lock_init(&mz->lru_lock);
1ecaab2b 1088 }
6d12e2d8
KH
1089 return 0;
1090}
1091
1ecaab2b
KH
1092static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1093{
1094 kfree(mem->info.nodeinfo[node]);
1095}
1096
33327948
KH
1097static struct mem_cgroup *mem_cgroup_alloc(void)
1098{
1099 struct mem_cgroup *mem;
1100
1101 if (sizeof(*mem) < PAGE_SIZE)
1102 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1103 else
1104 mem = vmalloc(sizeof(*mem));
1105
1106 if (mem)
1107 memset(mem, 0, sizeof(*mem));
1108 return mem;
1109}
1110
1111static void mem_cgroup_free(struct mem_cgroup *mem)
1112{
1113 if (sizeof(*mem) < PAGE_SIZE)
1114 kfree(mem);
1115 else
1116 vfree(mem);
1117}
1118
1119
8cdea7c0
BS
1120static struct cgroup_subsys_state *
1121mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1122{
1123 struct mem_cgroup *mem;
6d12e2d8 1124 int node;
8cdea7c0 1125
b6ac57d5 1126 if (unlikely((cont->parent) == NULL)) {
78fb7466 1127 mem = &init_mem_cgroup;
b6ac57d5
BS
1128 page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1129 } else {
33327948
KH
1130 mem = mem_cgroup_alloc();
1131 if (!mem)
1132 return ERR_PTR(-ENOMEM);
b6ac57d5 1133 }
78fb7466 1134
8cdea7c0 1135 res_counter_init(&mem->res);
1ecaab2b 1136
6d12e2d8
KH
1137 for_each_node_state(node, N_POSSIBLE)
1138 if (alloc_mem_cgroup_per_zone_info(mem, node))
1139 goto free_out;
1140
8cdea7c0 1141 return &mem->css;
6d12e2d8
KH
1142free_out:
1143 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1144 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1145 if (cont->parent != NULL)
33327948 1146 mem_cgroup_free(mem);
2dda81ca 1147 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1148}
1149
df878fb0
KH
1150static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1151 struct cgroup *cont)
1152{
1153 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1154 mem_cgroup_force_empty(mem);
1155}
1156
8cdea7c0
BS
1157static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1158 struct cgroup *cont)
1159{
6d12e2d8
KH
1160 int node;
1161 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1162
1163 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1164 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1165
33327948 1166 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
1167}
1168
1169static int mem_cgroup_populate(struct cgroup_subsys *ss,
1170 struct cgroup *cont)
1171{
1172 return cgroup_add_files(cont, ss, mem_cgroup_files,
1173 ARRAY_SIZE(mem_cgroup_files));
1174}
1175
67e465a7
BS
1176static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1177 struct cgroup *cont,
1178 struct cgroup *old_cont,
1179 struct task_struct *p)
1180{
1181 struct mm_struct *mm;
1182 struct mem_cgroup *mem, *old_mem;
1183
1184 mm = get_task_mm(p);
1185 if (mm == NULL)
1186 return;
1187
1188 mem = mem_cgroup_from_cont(cont);
1189 old_mem = mem_cgroup_from_cont(old_cont);
1190
67e465a7
BS
1191 /*
1192 * Only thread group leaders are allowed to migrate, the mm_struct is
1193 * in effect owned by the leader
1194 */
52ea27eb 1195 if (!thread_group_leader(p))
67e465a7
BS
1196 goto out;
1197
67e465a7
BS
1198out:
1199 mmput(mm);
67e465a7
BS
1200}
1201
8cdea7c0
BS
1202struct cgroup_subsys mem_cgroup_subsys = {
1203 .name = "memory",
1204 .subsys_id = mem_cgroup_subsys_id,
1205 .create = mem_cgroup_create,
df878fb0 1206 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1207 .destroy = mem_cgroup_destroy,
1208 .populate = mem_cgroup_populate,
67e465a7 1209 .attach = mem_cgroup_move_task,
6d12e2d8 1210 .early_init = 0,
8cdea7c0 1211};