]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: remove refcnt from page_cgroup
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
b6ac57d5 29#include <linux/slab.h>
66e1707b
BS
30#include <linux/swap.h>
31#include <linux/spinlock.h>
32#include <linux/fs.h>
d2ceb9b7 33#include <linux/seq_file.h>
33327948 34#include <linux/vmalloc.h>
8cdea7c0 35
8697d331
BS
36#include <asm/uaccess.h>
37
a181b0e8
KH
38struct cgroup_subsys mem_cgroup_subsys __read_mostly;
39static struct kmem_cache *page_cgroup_cache __read_mostly;
40#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 41
d52aa412
KH
42/*
43 * Statistics for memory cgroup.
44 */
45enum mem_cgroup_stat_index {
46 /*
47 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
48 */
49 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
50 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
51 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
52 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
53
54 MEM_CGROUP_STAT_NSTATS,
55};
56
57struct mem_cgroup_stat_cpu {
58 s64 count[MEM_CGROUP_STAT_NSTATS];
59} ____cacheline_aligned_in_smp;
60
61struct mem_cgroup_stat {
62 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
63};
64
65/*
66 * For accounting under irq disable, no need for increment preempt count.
67 */
68static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
69 enum mem_cgroup_stat_index idx, int val)
70{
71 int cpu = smp_processor_id();
72 stat->cpustat[cpu].count[idx] += val;
73}
74
75static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 enum mem_cgroup_stat_index idx)
77{
78 int cpu;
79 s64 ret = 0;
80 for_each_possible_cpu(cpu)
81 ret += stat->cpustat[cpu].count[idx];
82 return ret;
83}
84
6d12e2d8
KH
85/*
86 * per-zone information in memory controller.
87 */
88
89enum mem_cgroup_zstat_index {
90 MEM_CGROUP_ZSTAT_ACTIVE,
91 MEM_CGROUP_ZSTAT_INACTIVE,
92
93 NR_MEM_CGROUP_ZSTAT,
94};
95
96struct mem_cgroup_per_zone {
072c56c1
KH
97 /*
98 * spin_lock to protect the per cgroup LRU
99 */
100 spinlock_t lru_lock;
1ecaab2b
KH
101 struct list_head active_list;
102 struct list_head inactive_list;
6d12e2d8
KH
103 unsigned long count[NR_MEM_CGROUP_ZSTAT];
104};
105/* Macro for accessing counter */
106#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
107
108struct mem_cgroup_per_node {
109 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
110};
111
112struct mem_cgroup_lru_info {
113 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
114};
115
8cdea7c0
BS
116/*
117 * The memory controller data structure. The memory controller controls both
118 * page cache and RSS per cgroup. We would eventually like to provide
119 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
120 * to help the administrator determine what knobs to tune.
121 *
122 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
123 * we hit the water mark. May be even add a low water mark, such that
124 * no reclaim occurs from a cgroup at it's low water mark, this is
125 * a feature that will be implemented much later in the future.
8cdea7c0
BS
126 */
127struct mem_cgroup {
128 struct cgroup_subsys_state css;
129 /*
130 * the counter to account for memory usage
131 */
132 struct res_counter res;
78fb7466
PE
133 /*
134 * Per cgroup active and inactive list, similar to the
135 * per zone LRU lists.
78fb7466 136 */
6d12e2d8 137 struct mem_cgroup_lru_info info;
072c56c1 138
6c48a1d0 139 int prev_priority; /* for recording reclaim priority */
d52aa412
KH
140 /*
141 * statistics.
142 */
143 struct mem_cgroup_stat stat;
8cdea7c0 144};
8869b8f6 145static struct mem_cgroup init_mem_cgroup;
8cdea7c0 146
8a9f3ccd
BS
147/*
148 * We use the lower bit of the page->page_cgroup pointer as a bit spin
9442ec9d
HD
149 * lock. We need to ensure that page->page_cgroup is at least two
150 * byte aligned (based on comments from Nick Piggin). But since
151 * bit_spin_lock doesn't actually set that lock bit in a non-debug
152 * uniprocessor kernel, we should avoid setting it here too.
8a9f3ccd
BS
153 */
154#define PAGE_CGROUP_LOCK_BIT 0x0
9442ec9d
HD
155#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
156#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
157#else
158#define PAGE_CGROUP_LOCK 0x0
159#endif
8a9f3ccd 160
8cdea7c0
BS
161/*
162 * A page_cgroup page is associated with every page descriptor. The
163 * page_cgroup helps us identify information about the cgroup
164 */
165struct page_cgroup {
166 struct list_head lru; /* per cgroup LRU list */
167 struct page *page;
168 struct mem_cgroup *mem_cgroup;
8869b8f6 169 int flags;
8cdea7c0 170};
217bc319 171#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
3564c7c4 172#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
8cdea7c0 173
d5b69e38 174static int page_cgroup_nid(struct page_cgroup *pc)
c0149530
KH
175{
176 return page_to_nid(pc->page);
177}
178
d5b69e38 179static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
c0149530
KH
180{
181 return page_zonenum(pc->page);
182}
183
217bc319
KH
184enum charge_type {
185 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
186 MEM_CGROUP_CHARGE_TYPE_MAPPED,
69029cd5 187 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
217bc319
KH
188};
189
d52aa412
KH
190/*
191 * Always modified under lru lock. Then, not necessary to preempt_disable()
192 */
193static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
194 bool charge)
195{
196 int val = (charge)? 1 : -1;
197 struct mem_cgroup_stat *stat = &mem->stat;
d52aa412 198
8869b8f6 199 VM_BUG_ON(!irqs_disabled());
d52aa412 200 if (flags & PAGE_CGROUP_FLAG_CACHE)
8869b8f6 201 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
d52aa412
KH
202 else
203 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
204
205 if (charge)
206 __mem_cgroup_stat_add_safe(stat,
207 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
208 else
209 __mem_cgroup_stat_add_safe(stat,
210 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
6d12e2d8
KH
211}
212
d5b69e38 213static struct mem_cgroup_per_zone *
6d12e2d8
KH
214mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
215{
6d12e2d8
KH
216 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
217}
218
d5b69e38 219static struct mem_cgroup_per_zone *
6d12e2d8
KH
220page_cgroup_zoneinfo(struct page_cgroup *pc)
221{
222 struct mem_cgroup *mem = pc->mem_cgroup;
223 int nid = page_cgroup_nid(pc);
224 int zid = page_cgroup_zid(pc);
d52aa412 225
6d12e2d8
KH
226 return mem_cgroup_zoneinfo(mem, nid, zid);
227}
228
229static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
230 enum mem_cgroup_zstat_index idx)
231{
232 int nid, zid;
233 struct mem_cgroup_per_zone *mz;
234 u64 total = 0;
235
236 for_each_online_node(nid)
237 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
238 mz = mem_cgroup_zoneinfo(mem, nid, zid);
239 total += MEM_CGROUP_ZSTAT(mz, idx);
240 }
241 return total;
d52aa412
KH
242}
243
d5b69e38 244static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
245{
246 return container_of(cgroup_subsys_state(cont,
247 mem_cgroup_subsys_id), struct mem_cgroup,
248 css);
249}
250
cf475ad2 251struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466
PE
252{
253 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
254 struct mem_cgroup, css);
255}
256
8a9f3ccd
BS
257static inline int page_cgroup_locked(struct page *page)
258{
8869b8f6 259 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
8a9f3ccd
BS
260}
261
9442ec9d 262static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
78fb7466 263{
9442ec9d
HD
264 VM_BUG_ON(!page_cgroup_locked(page));
265 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
78fb7466
PE
266}
267
268struct page_cgroup *page_get_page_cgroup(struct page *page)
269{
8869b8f6 270 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
8a9f3ccd
BS
271}
272
d5b69e38 273static void lock_page_cgroup(struct page *page)
8a9f3ccd
BS
274{
275 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
8a9f3ccd
BS
276}
277
2680eed7
HD
278static int try_lock_page_cgroup(struct page *page)
279{
280 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
281}
282
d5b69e38 283static void unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
284{
285 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
286}
287
3eae90c3
KH
288static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
289 struct page_cgroup *pc)
6d12e2d8
KH
290{
291 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
6d12e2d8
KH
292
293 if (from)
294 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
295 else
296 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
297
298 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
508b7be0 299 list_del(&pc->lru);
6d12e2d8
KH
300}
301
3eae90c3
KH
302static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
303 struct page_cgroup *pc)
6d12e2d8
KH
304{
305 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
6d12e2d8
KH
306
307 if (!to) {
308 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
1ecaab2b 309 list_add(&pc->lru, &mz->inactive_list);
6d12e2d8
KH
310 } else {
311 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
1ecaab2b 312 list_add(&pc->lru, &mz->active_list);
6d12e2d8
KH
313 }
314 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
315}
316
8697d331 317static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b 318{
6d12e2d8
KH
319 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
320 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
321
322 if (from)
323 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
324 else
325 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
326
3564c7c4 327 if (active) {
6d12e2d8 328 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
3564c7c4 329 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 330 list_move(&pc->lru, &mz->active_list);
3564c7c4 331 } else {
6d12e2d8 332 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
3564c7c4 333 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 334 list_move(&pc->lru, &mz->inactive_list);
3564c7c4 335 }
66e1707b
BS
336}
337
4c4a2214
DR
338int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
339{
340 int ret;
341
342 task_lock(task);
bd845e38 343 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
344 task_unlock(task);
345 return ret;
346}
347
66e1707b
BS
348/*
349 * This routine assumes that the appropriate zone's lru lock is already held
350 */
427d5416 351void mem_cgroup_move_lists(struct page *page, bool active)
66e1707b 352{
427d5416 353 struct page_cgroup *pc;
072c56c1
KH
354 struct mem_cgroup_per_zone *mz;
355 unsigned long flags;
356
2680eed7
HD
357 /*
358 * We cannot lock_page_cgroup while holding zone's lru_lock,
359 * because other holders of lock_page_cgroup can be interrupted
360 * with an attempt to rotate_reclaimable_page. But we cannot
361 * safely get to page_cgroup without it, so just try_lock it:
362 * mem_cgroup_isolate_pages allows for page left on wrong list.
363 */
364 if (!try_lock_page_cgroup(page))
66e1707b
BS
365 return;
366
2680eed7
HD
367 pc = page_get_page_cgroup(page);
368 if (pc) {
2680eed7 369 mz = page_cgroup_zoneinfo(pc);
2680eed7 370 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 371 __mem_cgroup_move_lists(pc, active);
2680eed7 372 spin_unlock_irqrestore(&mz->lru_lock, flags);
9b3c0a07
HT
373 }
374 unlock_page_cgroup(page);
66e1707b
BS
375}
376
58ae83db
KH
377/*
378 * Calculate mapped_ratio under memory controller. This will be used in
379 * vmscan.c for deteremining we have to reclaim mapped pages.
380 */
381int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
382{
383 long total, rss;
384
385 /*
386 * usage is recorded in bytes. But, here, we assume the number of
387 * physical pages can be represented by "long" on any arch.
388 */
389 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
390 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
391 return (int)((rss * 100L) / total);
392}
8869b8f6 393
5932f367
KH
394/*
395 * This function is called from vmscan.c. In page reclaiming loop. balance
396 * between active and inactive list is calculated. For memory controller
397 * page reclaiming, we should use using mem_cgroup's imbalance rather than
398 * zone's global lru imbalance.
399 */
400long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
401{
402 unsigned long active, inactive;
403 /* active and inactive are the number of pages. 'long' is ok.*/
404 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
405 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
406 return (long) (active / (inactive + 1));
407}
58ae83db 408
6c48a1d0
KH
409/*
410 * prev_priority control...this will be used in memory reclaim path.
411 */
412int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
413{
414 return mem->prev_priority;
415}
416
417void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
418{
419 if (priority < mem->prev_priority)
420 mem->prev_priority = priority;
421}
422
423void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
424{
425 mem->prev_priority = priority;
426}
427
cc38108e
KH
428/*
429 * Calculate # of pages to be scanned in this priority/zone.
430 * See also vmscan.c
431 *
432 * priority starts from "DEF_PRIORITY" and decremented in each loop.
433 * (see include/linux/mmzone.h)
434 */
435
436long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
437 struct zone *zone, int priority)
438{
439 long nr_active;
440 int nid = zone->zone_pgdat->node_id;
441 int zid = zone_idx(zone);
442 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
443
444 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
445 return (nr_active >> priority);
446}
447
448long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
449 struct zone *zone, int priority)
450{
451 long nr_inactive;
452 int nid = zone->zone_pgdat->node_id;
453 int zid = zone_idx(zone);
454 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
455
456 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
cc38108e
KH
457 return (nr_inactive >> priority);
458}
459
66e1707b
BS
460unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
461 struct list_head *dst,
462 unsigned long *scanned, int order,
463 int mode, struct zone *z,
464 struct mem_cgroup *mem_cont,
465 int active)
466{
467 unsigned long nr_taken = 0;
468 struct page *page;
469 unsigned long scan;
470 LIST_HEAD(pc_list);
471 struct list_head *src;
ff7283fa 472 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
473 int nid = z->zone_pgdat->node_id;
474 int zid = zone_idx(z);
475 struct mem_cgroup_per_zone *mz;
66e1707b 476
cf475ad2 477 BUG_ON(!mem_cont);
1ecaab2b 478 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
66e1707b 479 if (active)
1ecaab2b 480 src = &mz->active_list;
66e1707b 481 else
1ecaab2b
KH
482 src = &mz->inactive_list;
483
66e1707b 484
072c56c1 485 spin_lock(&mz->lru_lock);
ff7283fa
KH
486 scan = 0;
487 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 488 if (scan >= nr_to_scan)
ff7283fa 489 break;
66e1707b 490 page = pc->page;
66e1707b 491
436c6541 492 if (unlikely(!PageLRU(page)))
ff7283fa 493 continue;
ff7283fa 494
66e1707b
BS
495 if (PageActive(page) && !active) {
496 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
497 continue;
498 }
499 if (!PageActive(page) && active) {
500 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
501 continue;
502 }
503
436c6541
HD
504 scan++;
505 list_move(&pc->lru, &pc_list);
66e1707b
BS
506
507 if (__isolate_lru_page(page, mode) == 0) {
508 list_move(&page->lru, dst);
509 nr_taken++;
510 }
511 }
512
513 list_splice(&pc_list, src);
072c56c1 514 spin_unlock(&mz->lru_lock);
66e1707b
BS
515
516 *scanned = scan;
517 return nr_taken;
518}
519
8a9f3ccd
BS
520/*
521 * Charge the memory controller for page usage.
522 * Return
523 * 0 if the charge was successful
524 * < 0 if the cgroup is over its limit
525 */
217bc319 526static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
e8589cc1
KH
527 gfp_t gfp_mask, enum charge_type ctype,
528 struct mem_cgroup *memcg)
8a9f3ccd
BS
529{
530 struct mem_cgroup *mem;
9175e031 531 struct page_cgroup *pc;
66e1707b
BS
532 unsigned long flags;
533 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
072c56c1 534 struct mem_cgroup_per_zone *mz;
8a9f3ccd 535
4077960e
BS
536 if (mem_cgroup_subsys.disabled)
537 return 0;
538
8a9f3ccd
BS
539 /*
540 * Should page_cgroup's go to their own slab?
541 * One could optimize the performance of the charging routine
542 * by saving a bit in the page_flags and using it as a lock
543 * to see if the cgroup page already has a page_cgroup associated
544 * with it
545 */
66e1707b 546retry:
7e924aaf
HD
547 lock_page_cgroup(page);
548 pc = page_get_page_cgroup(page);
549 /*
550 * The page_cgroup exists and
551 * the page has already been accounted.
552 */
553 if (pc) {
b9c565d5 554 VM_BUG_ON(pc->page != page);
69029cd5 555 VM_BUG_ON(!pc->mem_cgroup);
b9c565d5
HD
556 unlock_page_cgroup(page);
557 goto done;
8a9f3ccd 558 }
7e924aaf 559 unlock_page_cgroup(page);
8a9f3ccd 560
508b7be0 561 pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
8a9f3ccd
BS
562 if (pc == NULL)
563 goto err;
564
8a9f3ccd 565 /*
3be91277
HD
566 * We always charge the cgroup the mm_struct belongs to.
567 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
568 * thread group leader migrates. It's possible that mm is not
569 * set, if so charge the init_mm (happens for pagecache usage).
570 */
69029cd5 571 if (likely(!memcg)) {
e8589cc1
KH
572 rcu_read_lock();
573 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
574 /*
575 * For every charge from the cgroup, increment reference count
576 */
577 css_get(&mem->css);
578 rcu_read_unlock();
579 } else {
580 mem = memcg;
581 css_get(&memcg->css);
582 }
8a9f3ccd 583
0eea1030 584 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
585 if (!(gfp_mask & __GFP_WAIT))
586 goto out;
e1a1cd59
BS
587
588 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
589 continue;
590
591 /*
8869b8f6
HD
592 * try_to_free_mem_cgroup_pages() might not give us a full
593 * picture of reclaim. Some pages are reclaimed and might be
594 * moved to swap cache or just unmapped from the cgroup.
595 * Check the limit again to see if the reclaim reduced the
596 * current usage of the cgroup before giving up
597 */
66e1707b
BS
598 if (res_counter_check_under_limit(&mem->res))
599 continue;
3be91277
HD
600
601 if (!nr_retries--) {
602 mem_cgroup_out_of_memory(mem, gfp_mask);
603 goto out;
66e1707b 604 }
8a9f3ccd
BS
605 }
606
8a9f3ccd
BS
607 pc->mem_cgroup = mem;
608 pc->page = page;
508b7be0
KH
609 /*
610 * If a page is accounted as a page cache, insert to inactive list.
611 * If anon, insert to active list.
612 */
217bc319 613 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
4a56d02e 614 pc->flags = PAGE_CGROUP_FLAG_CACHE;
508b7be0
KH
615 else
616 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
3be91277 617
7e924aaf
HD
618 lock_page_cgroup(page);
619 if (page_get_page_cgroup(page)) {
620 unlock_page_cgroup(page);
9175e031 621 /*
3be91277
HD
622 * Another charge has been added to this page already.
623 * We take lock_page_cgroup(page) again and read
9175e031
KH
624 * page->cgroup, increment refcnt.... just retry is OK.
625 */
626 res_counter_uncharge(&mem->res, PAGE_SIZE);
627 css_put(&mem->css);
b6ac57d5 628 kmem_cache_free(page_cgroup_cache, pc);
9175e031
KH
629 goto retry;
630 }
7e924aaf 631 page_assign_page_cgroup(page, pc);
8a9f3ccd 632
072c56c1
KH
633 mz = page_cgroup_zoneinfo(pc);
634 spin_lock_irqsave(&mz->lru_lock, flags);
3eae90c3 635 __mem_cgroup_add_list(mz, pc);
072c56c1 636 spin_unlock_irqrestore(&mz->lru_lock, flags);
66e1707b 637
fb59e9f1 638 unlock_page_cgroup(page);
8a9f3ccd 639done:
8a9f3ccd 640 return 0;
3be91277
HD
641out:
642 css_put(&mem->css);
b6ac57d5 643 kmem_cache_free(page_cgroup_cache, pc);
8a9f3ccd 644err:
8a9f3ccd
BS
645 return -ENOMEM;
646}
647
8869b8f6 648int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
217bc319 649{
69029cd5
KH
650 /*
651 * If already mapped, we don't have to account.
652 * If page cache, page->mapping has address_space.
653 * But page->mapping may have out-of-use anon_vma pointer,
654 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
655 * is NULL.
656 */
657 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
658 return 0;
659 if (unlikely(!mm))
660 mm = &init_mm;
217bc319 661 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 662 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
663}
664
e1a1cd59
BS
665int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
666 gfp_t gfp_mask)
8697d331 667{
69029cd5 668 if (unlikely(!mm))
8697d331 669 mm = &init_mm;
8869b8f6 670 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1
KH
671 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
672}
673
8a9f3ccd 674/*
69029cd5 675 * uncharge if !page_mapped(page)
8a9f3ccd 676 */
69029cd5
KH
677static void
678__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 679{
8289546e 680 struct page_cgroup *pc;
8a9f3ccd 681 struct mem_cgroup *mem;
072c56c1 682 struct mem_cgroup_per_zone *mz;
66e1707b 683 unsigned long flags;
8a9f3ccd 684
4077960e
BS
685 if (mem_cgroup_subsys.disabled)
686 return;
687
8697d331 688 /*
3c541e14 689 * Check if our page_cgroup is valid
8697d331 690 */
8289546e
HD
691 lock_page_cgroup(page);
692 pc = page_get_page_cgroup(page);
8a9f3ccd 693 if (!pc)
8289546e 694 goto unlock;
8a9f3ccd 695
b9c565d5 696 VM_BUG_ON(pc->page != page);
b9c565d5 697
69029cd5
KH
698 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
699 && ((pc->flags & PAGE_CGROUP_FLAG_CACHE)
700 || page_mapped(page)))
701 goto unlock;
b9c565d5 702
69029cd5
KH
703 mz = page_cgroup_zoneinfo(pc);
704 spin_lock_irqsave(&mz->lru_lock, flags);
705 __mem_cgroup_remove_list(mz, pc);
706 spin_unlock_irqrestore(&mz->lru_lock, flags);
fb59e9f1 707
69029cd5
KH
708 page_assign_page_cgroup(page, NULL);
709 unlock_page_cgroup(page);
6d48ff8b 710
69029cd5
KH
711 mem = pc->mem_cgroup;
712 res_counter_uncharge(&mem->res, PAGE_SIZE);
713 css_put(&mem->css);
6d12e2d8 714
69029cd5
KH
715 kmem_cache_free(page_cgroup_cache, pc);
716 return;
8289546e 717unlock:
3c541e14
BS
718 unlock_page_cgroup(page);
719}
720
69029cd5
KH
721void mem_cgroup_uncharge_page(struct page *page)
722{
723 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
724}
725
726void mem_cgroup_uncharge_cache_page(struct page *page)
727{
728 VM_BUG_ON(page_mapped(page));
729 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
730}
731
ae41be37 732/*
e8589cc1 733 * Before starting migration, account against new page.
ae41be37 734 */
e8589cc1 735int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
ae41be37
KH
736{
737 struct page_cgroup *pc;
e8589cc1
KH
738 struct mem_cgroup *mem = NULL;
739 enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
740 int ret = 0;
8869b8f6 741
4077960e
BS
742 if (mem_cgroup_subsys.disabled)
743 return 0;
744
ae41be37
KH
745 lock_page_cgroup(page);
746 pc = page_get_page_cgroup(page);
e8589cc1
KH
747 if (pc) {
748 mem = pc->mem_cgroup;
749 css_get(&mem->css);
750 if (pc->flags & PAGE_CGROUP_FLAG_CACHE)
751 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
752 }
ae41be37 753 unlock_page_cgroup(page);
e8589cc1
KH
754 if (mem) {
755 ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
756 ctype, mem);
757 css_put(&mem->css);
758 }
759 return ret;
ae41be37 760}
8869b8f6 761
69029cd5 762/* remove redundant charge if migration failed*/
e8589cc1 763void mem_cgroup_end_migration(struct page *newpage)
ae41be37 764{
69029cd5
KH
765 /*
766 * At success, page->mapping is not NULL.
767 * special rollback care is necessary when
768 * 1. at migration failure. (newpage->mapping is cleared in this case)
769 * 2. the newpage was moved but not remapped again because the task
770 * exits and the newpage is obsolete. In this case, the new page
771 * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
772 * always for avoiding mess. The page_cgroup will be removed if
773 * unnecessary. File cache pages is still on radix-tree. Don't
774 * care it.
775 */
776 if (!newpage->mapping)
777 __mem_cgroup_uncharge_common(newpage,
778 MEM_CGROUP_CHARGE_TYPE_FORCE);
779 else if (PageAnon(newpage))
780 mem_cgroup_uncharge_page(newpage);
ae41be37 781}
78fb7466 782
cc847582
KH
783/*
784 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
785 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
786 */
787#define FORCE_UNCHARGE_BATCH (128)
8869b8f6 788static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
072c56c1
KH
789 struct mem_cgroup_per_zone *mz,
790 int active)
cc847582
KH
791{
792 struct page_cgroup *pc;
793 struct page *page;
9b3c0a07 794 int count = FORCE_UNCHARGE_BATCH;
cc847582 795 unsigned long flags;
072c56c1
KH
796 struct list_head *list;
797
798 if (active)
799 list = &mz->active_list;
800 else
801 list = &mz->inactive_list;
cc847582 802
072c56c1 803 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 804 while (!list_empty(list)) {
cc847582
KH
805 pc = list_entry(list->prev, struct page_cgroup, lru);
806 page = pc->page;
9b3c0a07
HT
807 get_page(page);
808 spin_unlock_irqrestore(&mz->lru_lock, flags);
e8589cc1
KH
809 /*
810 * Check if this page is on LRU. !LRU page can be found
811 * if it's under page migration.
812 */
813 if (PageLRU(page)) {
69029cd5
KH
814 __mem_cgroup_uncharge_common(page,
815 MEM_CGROUP_CHARGE_TYPE_FORCE);
e8589cc1
KH
816 put_page(page);
817 if (--count <= 0) {
818 count = FORCE_UNCHARGE_BATCH;
819 cond_resched();
820 }
821 } else
9b3c0a07 822 cond_resched();
9b3c0a07 823 spin_lock_irqsave(&mz->lru_lock, flags);
cc847582 824 }
072c56c1 825 spin_unlock_irqrestore(&mz->lru_lock, flags);
cc847582
KH
826}
827
828/*
829 * make mem_cgroup's charge to be 0 if there is no task.
830 * This enables deleting this mem_cgroup.
831 */
d5b69e38 832static int mem_cgroup_force_empty(struct mem_cgroup *mem)
cc847582
KH
833{
834 int ret = -EBUSY;
1ecaab2b 835 int node, zid;
8869b8f6 836
4077960e
BS
837 if (mem_cgroup_subsys.disabled)
838 return 0;
839
cc847582
KH
840 css_get(&mem->css);
841 /*
842 * page reclaim code (kswapd etc..) will move pages between
8869b8f6 843 * active_list <-> inactive_list while we don't take a lock.
cc847582
KH
844 * So, we have to do loop here until all lists are empty.
845 */
1ecaab2b 846 while (mem->res.usage > 0) {
cc847582
KH
847 if (atomic_read(&mem->css.cgroup->count) > 0)
848 goto out;
1ecaab2b
KH
849 for_each_node_state(node, N_POSSIBLE)
850 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
851 struct mem_cgroup_per_zone *mz;
852 mz = mem_cgroup_zoneinfo(mem, node, zid);
853 /* drop all page_cgroup in active_list */
072c56c1 854 mem_cgroup_force_empty_list(mem, mz, 1);
1ecaab2b 855 /* drop all page_cgroup in inactive_list */
072c56c1 856 mem_cgroup_force_empty_list(mem, mz, 0);
1ecaab2b 857 }
cc847582
KH
858 }
859 ret = 0;
860out:
861 css_put(&mem->css);
862 return ret;
863}
864
2c3daa72 865static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 866{
2c3daa72
PM
867 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
868 cft->private);
8cdea7c0
BS
869}
870
856c13aa
PM
871static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
872 const char *buffer)
8cdea7c0
BS
873{
874 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
856c13aa
PM
875 cft->private, buffer,
876 res_counter_memparse_write_strategy);
8cdea7c0
BS
877}
878
29f2a4da 879static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
880{
881 struct mem_cgroup *mem;
882
883 mem = mem_cgroup_from_cont(cont);
29f2a4da
PE
884 switch (event) {
885 case RES_MAX_USAGE:
886 res_counter_reset_max(&mem->res);
887 break;
888 case RES_FAILCNT:
889 res_counter_reset_failcnt(&mem->res);
890 break;
891 }
85cc59db 892 return 0;
c84872e1
PE
893}
894
85cc59db 895static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
cc847582 896{
85cc59db 897 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
cc847582
KH
898}
899
d2ceb9b7
KH
900static const struct mem_cgroup_stat_desc {
901 const char *msg;
902 u64 unit;
903} mem_cgroup_stat_desc[] = {
904 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
905 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
906 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
907 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
908};
909
c64745cf
PM
910static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
911 struct cgroup_map_cb *cb)
d2ceb9b7 912{
d2ceb9b7
KH
913 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
914 struct mem_cgroup_stat *stat = &mem_cont->stat;
915 int i;
916
917 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
918 s64 val;
919
920 val = mem_cgroup_read_stat(stat, i);
921 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 922 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 923 }
6d12e2d8
KH
924 /* showing # of active pages */
925 {
926 unsigned long active, inactive;
927
928 inactive = mem_cgroup_get_all_zonestat(mem_cont,
929 MEM_CGROUP_ZSTAT_INACTIVE);
930 active = mem_cgroup_get_all_zonestat(mem_cont,
931 MEM_CGROUP_ZSTAT_ACTIVE);
c64745cf
PM
932 cb->fill(cb, "active", (active) * PAGE_SIZE);
933 cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
6d12e2d8 934 }
d2ceb9b7
KH
935 return 0;
936}
937
8cdea7c0
BS
938static struct cftype mem_cgroup_files[] = {
939 {
0eea1030 940 .name = "usage_in_bytes",
8cdea7c0 941 .private = RES_USAGE,
2c3daa72 942 .read_u64 = mem_cgroup_read,
8cdea7c0 943 },
c84872e1
PE
944 {
945 .name = "max_usage_in_bytes",
946 .private = RES_MAX_USAGE,
29f2a4da 947 .trigger = mem_cgroup_reset,
c84872e1
PE
948 .read_u64 = mem_cgroup_read,
949 },
8cdea7c0 950 {
0eea1030 951 .name = "limit_in_bytes",
8cdea7c0 952 .private = RES_LIMIT,
856c13aa 953 .write_string = mem_cgroup_write,
2c3daa72 954 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
955 },
956 {
957 .name = "failcnt",
958 .private = RES_FAILCNT,
29f2a4da 959 .trigger = mem_cgroup_reset,
2c3daa72 960 .read_u64 = mem_cgroup_read,
8cdea7c0 961 },
cc847582
KH
962 {
963 .name = "force_empty",
85cc59db 964 .trigger = mem_force_empty_write,
cc847582 965 },
d2ceb9b7
KH
966 {
967 .name = "stat",
c64745cf 968 .read_map = mem_control_stat_show,
d2ceb9b7 969 },
8cdea7c0
BS
970};
971
6d12e2d8
KH
972static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
973{
974 struct mem_cgroup_per_node *pn;
1ecaab2b 975 struct mem_cgroup_per_zone *mz;
41e3355d 976 int zone, tmp = node;
1ecaab2b
KH
977 /*
978 * This routine is called against possible nodes.
979 * But it's BUG to call kmalloc() against offline node.
980 *
981 * TODO: this routine can waste much memory for nodes which will
982 * never be onlined. It's better to use memory hotplug callback
983 * function.
984 */
41e3355d
KH
985 if (!node_state(node, N_NORMAL_MEMORY))
986 tmp = -1;
987 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
988 if (!pn)
989 return 1;
1ecaab2b 990
6d12e2d8
KH
991 mem->info.nodeinfo[node] = pn;
992 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
993
994 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
995 mz = &pn->zoneinfo[zone];
996 INIT_LIST_HEAD(&mz->active_list);
997 INIT_LIST_HEAD(&mz->inactive_list);
072c56c1 998 spin_lock_init(&mz->lru_lock);
1ecaab2b 999 }
6d12e2d8
KH
1000 return 0;
1001}
1002
1ecaab2b
KH
1003static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1004{
1005 kfree(mem->info.nodeinfo[node]);
1006}
1007
33327948
KH
1008static struct mem_cgroup *mem_cgroup_alloc(void)
1009{
1010 struct mem_cgroup *mem;
1011
1012 if (sizeof(*mem) < PAGE_SIZE)
1013 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1014 else
1015 mem = vmalloc(sizeof(*mem));
1016
1017 if (mem)
1018 memset(mem, 0, sizeof(*mem));
1019 return mem;
1020}
1021
1022static void mem_cgroup_free(struct mem_cgroup *mem)
1023{
1024 if (sizeof(*mem) < PAGE_SIZE)
1025 kfree(mem);
1026 else
1027 vfree(mem);
1028}
1029
1030
8cdea7c0
BS
1031static struct cgroup_subsys_state *
1032mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1033{
1034 struct mem_cgroup *mem;
6d12e2d8 1035 int node;
8cdea7c0 1036
b6ac57d5 1037 if (unlikely((cont->parent) == NULL)) {
78fb7466 1038 mem = &init_mem_cgroup;
b6ac57d5
BS
1039 page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1040 } else {
33327948
KH
1041 mem = mem_cgroup_alloc();
1042 if (!mem)
1043 return ERR_PTR(-ENOMEM);
b6ac57d5 1044 }
78fb7466 1045
8cdea7c0 1046 res_counter_init(&mem->res);
1ecaab2b 1047
6d12e2d8
KH
1048 for_each_node_state(node, N_POSSIBLE)
1049 if (alloc_mem_cgroup_per_zone_info(mem, node))
1050 goto free_out;
1051
8cdea7c0 1052 return &mem->css;
6d12e2d8
KH
1053free_out:
1054 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1055 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1056 if (cont->parent != NULL)
33327948 1057 mem_cgroup_free(mem);
2dda81ca 1058 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1059}
1060
df878fb0
KH
1061static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1062 struct cgroup *cont)
1063{
1064 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1065 mem_cgroup_force_empty(mem);
1066}
1067
8cdea7c0
BS
1068static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1069 struct cgroup *cont)
1070{
6d12e2d8
KH
1071 int node;
1072 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1073
1074 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1075 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1076
33327948 1077 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
1078}
1079
1080static int mem_cgroup_populate(struct cgroup_subsys *ss,
1081 struct cgroup *cont)
1082{
4077960e
BS
1083 if (mem_cgroup_subsys.disabled)
1084 return 0;
8cdea7c0
BS
1085 return cgroup_add_files(cont, ss, mem_cgroup_files,
1086 ARRAY_SIZE(mem_cgroup_files));
1087}
1088
67e465a7
BS
1089static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1090 struct cgroup *cont,
1091 struct cgroup *old_cont,
1092 struct task_struct *p)
1093{
1094 struct mm_struct *mm;
1095 struct mem_cgroup *mem, *old_mem;
1096
4077960e
BS
1097 if (mem_cgroup_subsys.disabled)
1098 return;
1099
67e465a7
BS
1100 mm = get_task_mm(p);
1101 if (mm == NULL)
1102 return;
1103
1104 mem = mem_cgroup_from_cont(cont);
1105 old_mem = mem_cgroup_from_cont(old_cont);
1106
1107 if (mem == old_mem)
1108 goto out;
1109
1110 /*
1111 * Only thread group leaders are allowed to migrate, the mm_struct is
1112 * in effect owned by the leader
1113 */
52ea27eb 1114 if (!thread_group_leader(p))
67e465a7
BS
1115 goto out;
1116
67e465a7
BS
1117out:
1118 mmput(mm);
67e465a7
BS
1119}
1120
8cdea7c0
BS
1121struct cgroup_subsys mem_cgroup_subsys = {
1122 .name = "memory",
1123 .subsys_id = mem_cgroup_subsys_id,
1124 .create = mem_cgroup_create,
df878fb0 1125 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1126 .destroy = mem_cgroup_destroy,
1127 .populate = mem_cgroup_populate,
67e465a7 1128 .attach = mem_cgroup_move_task,
6d12e2d8 1129 .early_init = 0,
8cdea7c0 1130};