]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: add null check to page_cgroup_zoneinfo()
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54
d52aa412
KH
55/*
56 * Statistics for memory cgroup.
57 */
58enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
66
67 MEM_CGROUP_STAT_NSTATS,
68};
69
70struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72} ____cacheline_aligned_in_smp;
73
74struct mem_cgroup_stat {
c8dad2bb 75 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
76};
77
78/*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
addb9efe 81static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
82 enum mem_cgroup_stat_index idx, int val)
83{
addb9efe 84 stat->count[idx] += val;
d52aa412
KH
85}
86
87static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89{
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95}
96
6d12e2d8
KH
97/*
98 * per-zone information in memory controller.
99 */
6d12e2d8 100struct mem_cgroup_per_zone {
072c56c1
KH
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
b69408e8
CL
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
6d12e2d8
KH
106};
107/* Macro for accessing counter */
108#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
109
110struct mem_cgroup_per_node {
111 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
112};
113
114struct mem_cgroup_lru_info {
115 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
116};
117
8cdea7c0
BS
118/*
119 * The memory controller data structure. The memory controller controls both
120 * page cache and RSS per cgroup. We would eventually like to provide
121 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
122 * to help the administrator determine what knobs to tune.
123 *
124 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
125 * we hit the water mark. May be even add a low water mark, such that
126 * no reclaim occurs from a cgroup at it's low water mark, this is
127 * a feature that will be implemented much later in the future.
8cdea7c0
BS
128 */
129struct mem_cgroup {
130 struct cgroup_subsys_state css;
131 /*
132 * the counter to account for memory usage
133 */
134 struct res_counter res;
8c7c6e34
KH
135 /*
136 * the counter to account for mem+swap usage.
137 */
138 struct res_counter memsw;
78fb7466
PE
139 /*
140 * Per cgroup active and inactive list, similar to the
141 * per zone LRU lists.
78fb7466 142 */
6d12e2d8 143 struct mem_cgroup_lru_info info;
072c56c1 144
6c48a1d0 145 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
146
147 /*
148 * While reclaiming in a hiearchy, we cache the last child we
149 * reclaimed from. Protected by cgroup_lock()
150 */
151 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
152 /*
153 * Should the accounting and control be hierarchical, per subtree?
154 */
155 bool use_hierarchy;
a636b327 156 unsigned long last_oom_jiffies;
8c7c6e34
KH
157 int obsolete;
158 atomic_t refcnt;
d52aa412 159 /*
c8dad2bb 160 * statistics. This must be placed at the end of memcg.
d52aa412
KH
161 */
162 struct mem_cgroup_stat stat;
8cdea7c0
BS
163};
164
217bc319
KH
165enum charge_type {
166 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
167 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 168 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 169 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 170 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
171 NR_CHARGE_TYPE,
172};
173
52d4b9ac
KH
174/* only for here (for easy reading.) */
175#define PCGF_CACHE (1UL << PCG_CACHE)
176#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 177#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
178static const unsigned long
179pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
180 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
181 PCGF_USED | PCGF_LOCK, /* Anon */
182 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 183 0, /* FORCE */
217bc319
KH
184};
185
8c7c6e34
KH
186
187/* for encoding cft->private value on file */
188#define _MEM (0)
189#define _MEMSWAP (1)
190#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
191#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
192#define MEMFILE_ATTR(val) ((val) & 0xffff)
193
194static void mem_cgroup_get(struct mem_cgroup *mem);
195static void mem_cgroup_put(struct mem_cgroup *mem);
196
c05555b5
KH
197static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
198 struct page_cgroup *pc,
199 bool charge)
d52aa412
KH
200{
201 int val = (charge)? 1 : -1;
202 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 203 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 204 int cpu = get_cpu();
d52aa412 205
08e552c6 206 cpustat = &stat->cpustat[cpu];
c05555b5 207 if (PageCgroupCache(pc))
addb9efe 208 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 209 else
addb9efe 210 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
211
212 if (charge)
addb9efe 213 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
214 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
215 else
addb9efe 216 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 217 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 218 put_cpu();
6d12e2d8
KH
219}
220
d5b69e38 221static struct mem_cgroup_per_zone *
6d12e2d8
KH
222mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
223{
6d12e2d8
KH
224 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
225}
226
d5b69e38 227static struct mem_cgroup_per_zone *
6d12e2d8
KH
228page_cgroup_zoneinfo(struct page_cgroup *pc)
229{
230 struct mem_cgroup *mem = pc->mem_cgroup;
231 int nid = page_cgroup_nid(pc);
232 int zid = page_cgroup_zid(pc);
d52aa412 233
54992762
KM
234 if (!mem)
235 return NULL;
236
6d12e2d8
KH
237 return mem_cgroup_zoneinfo(mem, nid, zid);
238}
239
240static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 241 enum lru_list idx)
6d12e2d8
KH
242{
243 int nid, zid;
244 struct mem_cgroup_per_zone *mz;
245 u64 total = 0;
246
247 for_each_online_node(nid)
248 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
249 mz = mem_cgroup_zoneinfo(mem, nid, zid);
250 total += MEM_CGROUP_ZSTAT(mz, idx);
251 }
252 return total;
d52aa412
KH
253}
254
d5b69e38 255static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
256{
257 return container_of(cgroup_subsys_state(cont,
258 mem_cgroup_subsys_id), struct mem_cgroup,
259 css);
260}
261
cf475ad2 262struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 263{
31a78f23
BS
264 /*
265 * mm_update_next_owner() may clear mm->owner to NULL
266 * if it races with swapoff, page migration, etc.
267 * So this can be called with p == NULL.
268 */
269 if (unlikely(!p))
270 return NULL;
271
78fb7466
PE
272 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
273 struct mem_cgroup, css);
274}
275
08e552c6
KH
276/*
277 * Following LRU functions are allowed to be used without PCG_LOCK.
278 * Operations are called by routine of global LRU independently from memcg.
279 * What we have to take care of here is validness of pc->mem_cgroup.
280 *
281 * Changes to pc->mem_cgroup happens when
282 * 1. charge
283 * 2. moving account
284 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
285 * It is added to LRU before charge.
286 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
287 * When moving account, the page is not on LRU. It's isolated.
288 */
4f98a2fe 289
08e552c6
KH
290void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
291{
292 struct page_cgroup *pc;
293 struct mem_cgroup *mem;
294 struct mem_cgroup_per_zone *mz;
6d12e2d8 295
f8d66542 296 if (mem_cgroup_disabled())
08e552c6
KH
297 return;
298 pc = lookup_page_cgroup(page);
299 /* can happen while we handle swapcache. */
300 if (list_empty(&pc->lru))
301 return;
302 mz = page_cgroup_zoneinfo(pc);
303 mem = pc->mem_cgroup;
b69408e8 304 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
305 list_del_init(&pc->lru);
306 return;
6d12e2d8
KH
307}
308
08e552c6 309void mem_cgroup_del_lru(struct page *page)
6d12e2d8 310{
08e552c6
KH
311 mem_cgroup_del_lru_list(page, page_lru(page));
312}
b69408e8 313
08e552c6
KH
314void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
315{
316 struct mem_cgroup_per_zone *mz;
317 struct page_cgroup *pc;
b69408e8 318
f8d66542 319 if (mem_cgroup_disabled())
08e552c6 320 return;
6d12e2d8 321
08e552c6
KH
322 pc = lookup_page_cgroup(page);
323 smp_rmb();
324 /* unused page is not rotated. */
325 if (!PageCgroupUsed(pc))
326 return;
327 mz = page_cgroup_zoneinfo(pc);
328 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
329}
330
08e552c6 331void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 332{
08e552c6
KH
333 struct page_cgroup *pc;
334 struct mem_cgroup_per_zone *mz;
6d12e2d8 335
f8d66542 336 if (mem_cgroup_disabled())
08e552c6
KH
337 return;
338 pc = lookup_page_cgroup(page);
339 /* barrier to sync with "charge" */
340 smp_rmb();
341 if (!PageCgroupUsed(pc))
894bc310 342 return;
b69408e8 343
08e552c6 344 mz = page_cgroup_zoneinfo(pc);
b69408e8 345 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
346 list_add(&pc->lru, &mz->lists[lru]);
347}
348/*
349 * To add swapcache into LRU. Be careful to all this function.
350 * zone->lru_lock shouldn't be held and irq must not be disabled.
351 */
352static void mem_cgroup_lru_fixup(struct page *page)
353{
354 if (!isolate_lru_page(page))
355 putback_lru_page(page);
356}
357
358void mem_cgroup_move_lists(struct page *page,
359 enum lru_list from, enum lru_list to)
360{
f8d66542 361 if (mem_cgroup_disabled())
08e552c6
KH
362 return;
363 mem_cgroup_del_lru_list(page, from);
364 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
365}
366
4c4a2214
DR
367int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
368{
369 int ret;
370
371 task_lock(task);
bd845e38 372 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
373 task_unlock(task);
374 return ret;
375}
376
58ae83db
KH
377/*
378 * Calculate mapped_ratio under memory controller. This will be used in
379 * vmscan.c for deteremining we have to reclaim mapped pages.
380 */
381int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
382{
383 long total, rss;
384
385 /*
386 * usage is recorded in bytes. But, here, we assume the number of
387 * physical pages can be represented by "long" on any arch.
388 */
389 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
390 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
391 return (int)((rss * 100L) / total);
392}
8869b8f6 393
6c48a1d0
KH
394/*
395 * prev_priority control...this will be used in memory reclaim path.
396 */
397int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
398{
399 return mem->prev_priority;
400}
401
402void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
403{
404 if (priority < mem->prev_priority)
405 mem->prev_priority = priority;
406}
407
408void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
409{
410 mem->prev_priority = priority;
411}
412
cc38108e
KH
413/*
414 * Calculate # of pages to be scanned in this priority/zone.
415 * See also vmscan.c
416 *
417 * priority starts from "DEF_PRIORITY" and decremented in each loop.
418 * (see include/linux/mmzone.h)
419 */
420
b69408e8
CL
421long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
422 int priority, enum lru_list lru)
cc38108e 423{
b69408e8 424 long nr_pages;
cc38108e
KH
425 int nid = zone->zone_pgdat->node_id;
426 int zid = zone_idx(zone);
427 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
428
b69408e8 429 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 430
b69408e8 431 return (nr_pages >> priority);
cc38108e
KH
432}
433
66e1707b
BS
434unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
435 struct list_head *dst,
436 unsigned long *scanned, int order,
437 int mode, struct zone *z,
438 struct mem_cgroup *mem_cont,
4f98a2fe 439 int active, int file)
66e1707b
BS
440{
441 unsigned long nr_taken = 0;
442 struct page *page;
443 unsigned long scan;
444 LIST_HEAD(pc_list);
445 struct list_head *src;
ff7283fa 446 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
447 int nid = z->zone_pgdat->node_id;
448 int zid = zone_idx(z);
449 struct mem_cgroup_per_zone *mz;
4f98a2fe 450 int lru = LRU_FILE * !!file + !!active;
66e1707b 451
cf475ad2 452 BUG_ON(!mem_cont);
1ecaab2b 453 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 454 src = &mz->lists[lru];
66e1707b 455
ff7283fa
KH
456 scan = 0;
457 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 458 if (scan >= nr_to_scan)
ff7283fa 459 break;
08e552c6
KH
460
461 page = pc->page;
52d4b9ac
KH
462 if (unlikely(!PageCgroupUsed(pc)))
463 continue;
436c6541 464 if (unlikely(!PageLRU(page)))
ff7283fa 465 continue;
ff7283fa 466
436c6541 467 scan++;
4f98a2fe 468 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
469 list_move(&page->lru, dst);
470 nr_taken++;
471 }
472 }
473
66e1707b
BS
474 *scanned = scan;
475 return nr_taken;
476}
477
6d61ef40
BS
478#define mem_cgroup_from_res_counter(counter, member) \
479 container_of(counter, struct mem_cgroup, member)
480
481/*
482 * This routine finds the DFS walk successor. This routine should be
483 * called with cgroup_mutex held
484 */
485static struct mem_cgroup *
486mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
487{
488 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
489
490 curr_cgroup = curr->css.cgroup;
491 root_cgroup = root_mem->css.cgroup;
492
493 if (!list_empty(&curr_cgroup->children)) {
494 /*
495 * Walk down to children
496 */
497 mem_cgroup_put(curr);
498 cgroup = list_entry(curr_cgroup->children.next,
499 struct cgroup, sibling);
500 curr = mem_cgroup_from_cont(cgroup);
501 mem_cgroup_get(curr);
502 goto done;
503 }
504
505visit_parent:
506 if (curr_cgroup == root_cgroup) {
507 mem_cgroup_put(curr);
508 curr = root_mem;
509 mem_cgroup_get(curr);
510 goto done;
511 }
512
513 /*
514 * Goto next sibling
515 */
516 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
517 mem_cgroup_put(curr);
518 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
519 sibling);
520 curr = mem_cgroup_from_cont(cgroup);
521 mem_cgroup_get(curr);
522 goto done;
523 }
524
525 /*
526 * Go up to next parent and next parent's sibling if need be
527 */
528 curr_cgroup = curr_cgroup->parent;
529 goto visit_parent;
530
531done:
532 root_mem->last_scanned_child = curr;
533 return curr;
534}
535
536/*
537 * Visit the first child (need not be the first child as per the ordering
538 * of the cgroup list, since we track last_scanned_child) of @mem and use
539 * that to reclaim free pages from.
540 */
541static struct mem_cgroup *
542mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
543{
544 struct cgroup *cgroup;
545 struct mem_cgroup *ret;
546 bool obsolete = (root_mem->last_scanned_child &&
547 root_mem->last_scanned_child->obsolete);
548
549 /*
550 * Scan all children under the mem_cgroup mem
551 */
552 cgroup_lock();
553 if (list_empty(&root_mem->css.cgroup->children)) {
554 ret = root_mem;
555 goto done;
556 }
557
558 if (!root_mem->last_scanned_child || obsolete) {
559
560 if (obsolete)
561 mem_cgroup_put(root_mem->last_scanned_child);
562
563 cgroup = list_first_entry(&root_mem->css.cgroup->children,
564 struct cgroup, sibling);
565 ret = mem_cgroup_from_cont(cgroup);
566 mem_cgroup_get(ret);
567 } else
568 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
569 root_mem);
570
571done:
572 root_mem->last_scanned_child = ret;
573 cgroup_unlock();
574 return ret;
575}
576
b85a96c0
DN
577static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
578{
579 if (do_swap_account) {
580 if (res_counter_check_under_limit(&mem->res) &&
581 res_counter_check_under_limit(&mem->memsw))
582 return true;
583 } else
584 if (res_counter_check_under_limit(&mem->res))
585 return true;
586 return false;
587}
588
6d61ef40
BS
589/*
590 * Dance down the hierarchy if needed to reclaim memory. We remember the
591 * last child we reclaimed from, so that we don't end up penalizing
592 * one child extensively based on its position in the children list.
593 *
594 * root_mem is the original ancestor that we've been reclaim from.
595 */
596static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
597 gfp_t gfp_mask, bool noswap)
598{
599 struct mem_cgroup *next_mem;
600 int ret = 0;
601
602 /*
603 * Reclaim unconditionally and don't check for return value.
604 * We need to reclaim in the current group and down the tree.
605 * One might think about checking for children before reclaiming,
606 * but there might be left over accounting, even after children
607 * have left.
608 */
609 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
b85a96c0 610 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40 611 return 0;
670ec2f1
DN
612 if (!root_mem->use_hierarchy)
613 return ret;
6d61ef40
BS
614
615 next_mem = mem_cgroup_get_first_node(root_mem);
616
617 while (next_mem != root_mem) {
618 if (next_mem->obsolete) {
619 mem_cgroup_put(next_mem);
620 cgroup_lock();
621 next_mem = mem_cgroup_get_first_node(root_mem);
622 cgroup_unlock();
623 continue;
624 }
625 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
b85a96c0 626 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
627 return 0;
628 cgroup_lock();
629 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
630 cgroup_unlock();
631 }
632 return ret;
633}
634
a636b327
KH
635bool mem_cgroup_oom_called(struct task_struct *task)
636{
637 bool ret = false;
638 struct mem_cgroup *mem;
639 struct mm_struct *mm;
640
641 rcu_read_lock();
642 mm = task->mm;
643 if (!mm)
644 mm = &init_mm;
645 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
646 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
647 ret = true;
648 rcu_read_unlock();
649 return ret;
650}
f817ed48
KH
651/*
652 * Unlike exported interface, "oom" parameter is added. if oom==true,
653 * oom-killer can be invoked.
8a9f3ccd 654 */
f817ed48 655static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
656 gfp_t gfp_mask, struct mem_cgroup **memcg,
657 bool oom)
8a9f3ccd 658{
6d61ef40 659 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 660 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 661 struct res_counter *fail_res;
a636b327
KH
662
663 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
664 /* Don't account this! */
665 *memcg = NULL;
666 return 0;
667 }
668
8a9f3ccd 669 /*
3be91277
HD
670 * We always charge the cgroup the mm_struct belongs to.
671 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
672 * thread group leader migrates. It's possible that mm is not
673 * set, if so charge the init_mm (happens for pagecache usage).
674 */
7a81b88c 675 if (likely(!*memcg)) {
e8589cc1
KH
676 rcu_read_lock();
677 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
678 if (unlikely(!mem)) {
679 rcu_read_unlock();
31a78f23
BS
680 return 0;
681 }
e8589cc1
KH
682 /*
683 * For every charge from the cgroup, increment reference count
684 */
685 css_get(&mem->css);
7a81b88c 686 *memcg = mem;
e8589cc1
KH
687 rcu_read_unlock();
688 } else {
7a81b88c
KH
689 mem = *memcg;
690 css_get(&mem->css);
e8589cc1 691 }
8a9f3ccd 692
8c7c6e34
KH
693 while (1) {
694 int ret;
695 bool noswap = false;
7a81b88c 696
28dbc4b6 697 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
698 if (likely(!ret)) {
699 if (!do_swap_account)
700 break;
28dbc4b6
BS
701 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
702 &fail_res);
8c7c6e34
KH
703 if (likely(!ret))
704 break;
705 /* mem+swap counter fails */
706 res_counter_uncharge(&mem->res, PAGE_SIZE);
707 noswap = true;
6d61ef40
BS
708 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
709 memsw);
710 } else
711 /* mem counter fails */
712 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
713 res);
714
3be91277 715 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 716 goto nomem;
e1a1cd59 717
6d61ef40
BS
718 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
719 noswap);
66e1707b
BS
720
721 /*
8869b8f6
HD
722 * try_to_free_mem_cgroup_pages() might not give us a full
723 * picture of reclaim. Some pages are reclaimed and might be
724 * moved to swap cache or just unmapped from the cgroup.
725 * Check the limit again to see if the reclaim reduced the
726 * current usage of the cgroup before giving up
8c7c6e34 727 *
8869b8f6 728 */
b85a96c0
DN
729 if (mem_cgroup_check_under_limit(mem_over_limit))
730 continue;
3be91277
HD
731
732 if (!nr_retries--) {
a636b327 733 if (oom) {
88700756
KH
734 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
735 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 736 }
7a81b88c 737 goto nomem;
66e1707b 738 }
8a9f3ccd 739 }
7a81b88c
KH
740 return 0;
741nomem:
742 css_put(&mem->css);
743 return -ENOMEM;
744}
8a9f3ccd 745
f817ed48
KH
746/**
747 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
748 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
749 * @gfp_mask: gfp_mask for reclaim.
750 * @memcg: a pointer to memory cgroup which is charged against.
751 *
752 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
753 * memory cgroup from @mm is got and stored in *memcg.
754 *
755 * Returns 0 if success. -ENOMEM at failure.
756 * This call can invoke OOM-Killer.
757 */
758
759int mem_cgroup_try_charge(struct mm_struct *mm,
760 gfp_t mask, struct mem_cgroup **memcg)
761{
762 return __mem_cgroup_try_charge(mm, mask, memcg, true);
763}
764
7a81b88c
KH
765/*
766 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
767 * USED state. If already USED, uncharge and return.
768 */
769
770static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
771 struct page_cgroup *pc,
772 enum charge_type ctype)
773{
7a81b88c
KH
774 /* try_charge() can return NULL to *memcg, taking care of it. */
775 if (!mem)
776 return;
52d4b9ac
KH
777
778 lock_page_cgroup(pc);
779 if (unlikely(PageCgroupUsed(pc))) {
780 unlock_page_cgroup(pc);
781 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
782 if (do_swap_account)
783 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 784 css_put(&mem->css);
7a81b88c 785 return;
52d4b9ac 786 }
8a9f3ccd 787 pc->mem_cgroup = mem;
08e552c6 788 smp_wmb();
c05555b5 789 pc->flags = pcg_default_flags[ctype];
3be91277 790
08e552c6 791 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 792
52d4b9ac 793 unlock_page_cgroup(pc);
7a81b88c 794}
66e1707b 795
f817ed48
KH
796/**
797 * mem_cgroup_move_account - move account of the page
798 * @pc: page_cgroup of the page.
799 * @from: mem_cgroup which the page is moved from.
800 * @to: mem_cgroup which the page is moved to. @from != @to.
801 *
802 * The caller must confirm following.
08e552c6 803 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
804 *
805 * returns 0 at success,
806 * returns -EBUSY when lock is busy or "pc" is unstable.
807 *
808 * This function does "uncharge" from old cgroup but doesn't do "charge" to
809 * new cgroup. It should be done by a caller.
810 */
811
812static int mem_cgroup_move_account(struct page_cgroup *pc,
813 struct mem_cgroup *from, struct mem_cgroup *to)
814{
815 struct mem_cgroup_per_zone *from_mz, *to_mz;
816 int nid, zid;
817 int ret = -EBUSY;
818
f817ed48 819 VM_BUG_ON(from == to);
08e552c6 820 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
821
822 nid = page_cgroup_nid(pc);
823 zid = page_cgroup_zid(pc);
824 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
825 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
826
f817ed48
KH
827 if (!trylock_page_cgroup(pc))
828 return ret;
829
830 if (!PageCgroupUsed(pc))
831 goto out;
832
833 if (pc->mem_cgroup != from)
834 goto out;
835
08e552c6
KH
836 css_put(&from->css);
837 res_counter_uncharge(&from->res, PAGE_SIZE);
838 mem_cgroup_charge_statistics(from, pc, false);
839 if (do_swap_account)
840 res_counter_uncharge(&from->memsw, PAGE_SIZE);
841 pc->mem_cgroup = to;
842 mem_cgroup_charge_statistics(to, pc, true);
843 css_get(&to->css);
844 ret = 0;
f817ed48
KH
845out:
846 unlock_page_cgroup(pc);
847 return ret;
848}
849
850/*
851 * move charges to its parent.
852 */
853
854static int mem_cgroup_move_parent(struct page_cgroup *pc,
855 struct mem_cgroup *child,
856 gfp_t gfp_mask)
857{
08e552c6 858 struct page *page = pc->page;
f817ed48
KH
859 struct cgroup *cg = child->css.cgroup;
860 struct cgroup *pcg = cg->parent;
861 struct mem_cgroup *parent;
f817ed48
KH
862 int ret;
863
864 /* Is ROOT ? */
865 if (!pcg)
866 return -EINVAL;
867
08e552c6 868
f817ed48
KH
869 parent = mem_cgroup_from_cont(pcg);
870
08e552c6 871
f817ed48 872 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 873 if (ret || !parent)
f817ed48
KH
874 return ret;
875
08e552c6
KH
876 if (!get_page_unless_zero(page))
877 return -EBUSY;
878
879 ret = isolate_lru_page(page);
880
881 if (ret)
882 goto cancel;
f817ed48 883
f817ed48 884 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 885
08e552c6 886 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 887 css_put(&parent->css);
08e552c6
KH
888 putback_lru_page(page);
889 if (!ret) {
890 put_page(page);
891 return 0;
8c7c6e34 892 }
08e552c6
KH
893 /* uncharge if move fails */
894cancel:
895 res_counter_uncharge(&parent->res, PAGE_SIZE);
896 if (do_swap_account)
897 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
898 put_page(page);
f817ed48
KH
899 return ret;
900}
901
7a81b88c
KH
902/*
903 * Charge the memory controller for page usage.
904 * Return
905 * 0 if the charge was successful
906 * < 0 if the cgroup is over its limit
907 */
908static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
909 gfp_t gfp_mask, enum charge_type ctype,
910 struct mem_cgroup *memcg)
911{
912 struct mem_cgroup *mem;
913 struct page_cgroup *pc;
914 int ret;
915
916 pc = lookup_page_cgroup(page);
917 /* can happen at boot */
918 if (unlikely(!pc))
919 return 0;
920 prefetchw(pc);
921
922 mem = memcg;
f817ed48 923 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 924 if (ret || !mem)
7a81b88c
KH
925 return ret;
926
927 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 928 return 0;
8a9f3ccd
BS
929}
930
7a81b88c
KH
931int mem_cgroup_newpage_charge(struct page *page,
932 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 933{
f8d66542 934 if (mem_cgroup_disabled())
cede86ac 935 return 0;
52d4b9ac
KH
936 if (PageCompound(page))
937 return 0;
69029cd5
KH
938 /*
939 * If already mapped, we don't have to account.
940 * If page cache, page->mapping has address_space.
941 * But page->mapping may have out-of-use anon_vma pointer,
942 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
943 * is NULL.
944 */
945 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
946 return 0;
947 if (unlikely(!mm))
948 mm = &init_mm;
217bc319 949 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 950 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
951}
952
e1a1cd59
BS
953int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
954 gfp_t gfp_mask)
8697d331 955{
f8d66542 956 if (mem_cgroup_disabled())
cede86ac 957 return 0;
52d4b9ac
KH
958 if (PageCompound(page))
959 return 0;
accf163e
KH
960 /*
961 * Corner case handling. This is called from add_to_page_cache()
962 * in usual. But some FS (shmem) precharges this page before calling it
963 * and call add_to_page_cache() with GFP_NOWAIT.
964 *
965 * For GFP_NOWAIT case, the page may be pre-charged before calling
966 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
967 * charge twice. (It works but has to pay a bit larger cost.)
968 */
969 if (!(gfp_mask & __GFP_WAIT)) {
970 struct page_cgroup *pc;
971
52d4b9ac
KH
972
973 pc = lookup_page_cgroup(page);
974 if (!pc)
975 return 0;
976 lock_page_cgroup(pc);
977 if (PageCgroupUsed(pc)) {
978 unlock_page_cgroup(pc);
accf163e
KH
979 return 0;
980 }
52d4b9ac 981 unlock_page_cgroup(pc);
accf163e
KH
982 }
983
69029cd5 984 if (unlikely(!mm))
8697d331 985 mm = &init_mm;
accf163e 986
c05555b5
KH
987 if (page_is_file_cache(page))
988 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 989 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
990 else
991 return mem_cgroup_charge_common(page, mm, gfp_mask,
992 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
993}
994
8c7c6e34
KH
995int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
996 struct page *page,
997 gfp_t mask, struct mem_cgroup **ptr)
998{
999 struct mem_cgroup *mem;
1000 swp_entry_t ent;
1001
f8d66542 1002 if (mem_cgroup_disabled())
8c7c6e34
KH
1003 return 0;
1004
1005 if (!do_swap_account)
1006 goto charge_cur_mm;
1007
1008 /*
1009 * A racing thread's fault, or swapoff, may have already updated
1010 * the pte, and even removed page from swap cache: return success
1011 * to go on to do_swap_page()'s pte_same() test, which should fail.
1012 */
1013 if (!PageSwapCache(page))
1014 return 0;
1015
1016 ent.val = page_private(page);
1017
1018 mem = lookup_swap_cgroup(ent);
1019 if (!mem || mem->obsolete)
1020 goto charge_cur_mm;
1021 *ptr = mem;
1022 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1023charge_cur_mm:
1024 if (unlikely(!mm))
1025 mm = &init_mm;
1026 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1027}
1028
d13d1443 1029#ifdef CONFIG_SWAP
8c7c6e34 1030
d13d1443
KH
1031int mem_cgroup_cache_charge_swapin(struct page *page,
1032 struct mm_struct *mm, gfp_t mask, bool locked)
1033{
1034 int ret = 0;
1035
f8d66542 1036 if (mem_cgroup_disabled())
d13d1443
KH
1037 return 0;
1038 if (unlikely(!mm))
1039 mm = &init_mm;
1040 if (!locked)
1041 lock_page(page);
1042 /*
1043 * If not locked, the page can be dropped from SwapCache until
1044 * we reach here.
1045 */
1046 if (PageSwapCache(page)) {
8c7c6e34
KH
1047 struct mem_cgroup *mem = NULL;
1048 swp_entry_t ent;
1049
1050 ent.val = page_private(page);
1051 if (do_swap_account) {
1052 mem = lookup_swap_cgroup(ent);
1053 if (mem && mem->obsolete)
1054 mem = NULL;
1055 if (mem)
1056 mm = NULL;
1057 }
d13d1443 1058 ret = mem_cgroup_charge_common(page, mm, mask,
8c7c6e34
KH
1059 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1060
1061 if (!ret && do_swap_account) {
1062 /* avoid double counting */
1063 mem = swap_cgroup_record(ent, NULL);
1064 if (mem) {
1065 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1066 mem_cgroup_put(mem);
1067 }
1068 }
d13d1443
KH
1069 }
1070 if (!locked)
1071 unlock_page(page);
08e552c6
KH
1072 /* add this page(page_cgroup) to the LRU we want. */
1073 mem_cgroup_lru_fixup(page);
d13d1443
KH
1074
1075 return ret;
1076}
1077#endif
1078
7a81b88c
KH
1079void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1080{
1081 struct page_cgroup *pc;
1082
f8d66542 1083 if (mem_cgroup_disabled())
7a81b88c
KH
1084 return;
1085 if (!ptr)
1086 return;
1087 pc = lookup_page_cgroup(page);
1088 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
8c7c6e34
KH
1089 /*
1090 * Now swap is on-memory. This means this page may be
1091 * counted both as mem and swap....double count.
1092 * Fix it by uncharging from memsw. This SwapCache is stable
1093 * because we're still under lock_page().
1094 */
1095 if (do_swap_account) {
1096 swp_entry_t ent = {.val = page_private(page)};
1097 struct mem_cgroup *memcg;
1098 memcg = swap_cgroup_record(ent, NULL);
1099 if (memcg) {
1100 /* If memcg is obsolete, memcg can be != ptr */
1101 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1102 mem_cgroup_put(memcg);
1103 }
1104
1105 }
08e552c6
KH
1106 /* add this page(page_cgroup) to the LRU we want. */
1107 mem_cgroup_lru_fixup(page);
7a81b88c
KH
1108}
1109
1110void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1111{
f8d66542 1112 if (mem_cgroup_disabled())
7a81b88c
KH
1113 return;
1114 if (!mem)
1115 return;
1116 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1117 if (do_swap_account)
1118 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1119 css_put(&mem->css);
1120}
1121
1122
8a9f3ccd 1123/*
69029cd5 1124 * uncharge if !page_mapped(page)
8a9f3ccd 1125 */
8c7c6e34 1126static struct mem_cgroup *
69029cd5 1127__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1128{
8289546e 1129 struct page_cgroup *pc;
8c7c6e34 1130 struct mem_cgroup *mem = NULL;
072c56c1 1131 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1132
f8d66542 1133 if (mem_cgroup_disabled())
8c7c6e34 1134 return NULL;
4077960e 1135
d13d1443 1136 if (PageSwapCache(page))
8c7c6e34 1137 return NULL;
d13d1443 1138
8697d331 1139 /*
3c541e14 1140 * Check if our page_cgroup is valid
8697d331 1141 */
52d4b9ac
KH
1142 pc = lookup_page_cgroup(page);
1143 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1144 return NULL;
b9c565d5 1145
52d4b9ac 1146 lock_page_cgroup(pc);
d13d1443 1147
8c7c6e34
KH
1148 mem = pc->mem_cgroup;
1149
d13d1443
KH
1150 if (!PageCgroupUsed(pc))
1151 goto unlock_out;
1152
1153 switch (ctype) {
1154 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1155 if (page_mapped(page))
1156 goto unlock_out;
1157 break;
1158 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1159 if (!PageAnon(page)) { /* Shared memory */
1160 if (page->mapping && !page_is_file_cache(page))
1161 goto unlock_out;
1162 } else if (page_mapped(page)) /* Anon */
1163 goto unlock_out;
1164 break;
1165 default:
1166 break;
52d4b9ac 1167 }
d13d1443 1168
8c7c6e34
KH
1169 res_counter_uncharge(&mem->res, PAGE_SIZE);
1170 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1171 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1172
08e552c6 1173 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1174 ClearPageCgroupUsed(pc);
b9c565d5 1175
69029cd5 1176 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1177 unlock_page_cgroup(pc);
fb59e9f1 1178
a7fe942e
KH
1179 /* at swapout, this memcg will be accessed to record to swap */
1180 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1181 css_put(&mem->css);
6d12e2d8 1182
8c7c6e34 1183 return mem;
d13d1443
KH
1184
1185unlock_out:
1186 unlock_page_cgroup(pc);
8c7c6e34 1187 return NULL;
3c541e14
BS
1188}
1189
69029cd5
KH
1190void mem_cgroup_uncharge_page(struct page *page)
1191{
52d4b9ac
KH
1192 /* early check. */
1193 if (page_mapped(page))
1194 return;
1195 if (page->mapping && !PageAnon(page))
1196 return;
69029cd5
KH
1197 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1198}
1199
1200void mem_cgroup_uncharge_cache_page(struct page *page)
1201{
1202 VM_BUG_ON(page_mapped(page));
b7abea96 1203 VM_BUG_ON(page->mapping);
69029cd5
KH
1204 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1205}
1206
8c7c6e34
KH
1207/*
1208 * called from __delete_from_swap_cache() and drop "page" account.
1209 * memcg information is recorded to swap_cgroup of "ent"
1210 */
1211void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1212{
1213 struct mem_cgroup *memcg;
1214
1215 memcg = __mem_cgroup_uncharge_common(page,
1216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1217 /* record memcg information */
1218 if (do_swap_account && memcg) {
1219 swap_cgroup_record(ent, memcg);
1220 mem_cgroup_get(memcg);
1221 }
a7fe942e
KH
1222 if (memcg)
1223 css_put(&memcg->css);
8c7c6e34
KH
1224}
1225
1226#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1227/*
1228 * called from swap_entry_free(). remove record in swap_cgroup and
1229 * uncharge "memsw" account.
1230 */
1231void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1232{
8c7c6e34
KH
1233 struct mem_cgroup *memcg;
1234
1235 if (!do_swap_account)
1236 return;
1237
1238 memcg = swap_cgroup_record(ent, NULL);
1239 if (memcg) {
1240 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1241 mem_cgroup_put(memcg);
1242 }
d13d1443 1243}
8c7c6e34 1244#endif
d13d1443 1245
ae41be37 1246/*
01b1ae63
KH
1247 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1248 * page belongs to.
ae41be37 1249 */
01b1ae63 1250int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1251{
1252 struct page_cgroup *pc;
e8589cc1 1253 struct mem_cgroup *mem = NULL;
e8589cc1 1254 int ret = 0;
8869b8f6 1255
f8d66542 1256 if (mem_cgroup_disabled())
4077960e
BS
1257 return 0;
1258
52d4b9ac
KH
1259 pc = lookup_page_cgroup(page);
1260 lock_page_cgroup(pc);
1261 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1262 mem = pc->mem_cgroup;
1263 css_get(&mem->css);
e8589cc1 1264 }
52d4b9ac 1265 unlock_page_cgroup(pc);
01b1ae63 1266
e8589cc1 1267 if (mem) {
2c26fdd7 1268 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
e8589cc1
KH
1269 css_put(&mem->css);
1270 }
01b1ae63 1271 *ptr = mem;
e8589cc1 1272 return ret;
ae41be37 1273}
8869b8f6 1274
69029cd5 1275/* remove redundant charge if migration failed*/
01b1ae63
KH
1276void mem_cgroup_end_migration(struct mem_cgroup *mem,
1277 struct page *oldpage, struct page *newpage)
ae41be37 1278{
01b1ae63
KH
1279 struct page *target, *unused;
1280 struct page_cgroup *pc;
1281 enum charge_type ctype;
1282
1283 if (!mem)
1284 return;
1285
1286 /* at migration success, oldpage->mapping is NULL. */
1287 if (oldpage->mapping) {
1288 target = oldpage;
1289 unused = NULL;
1290 } else {
1291 target = newpage;
1292 unused = oldpage;
1293 }
1294
1295 if (PageAnon(target))
1296 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1297 else if (page_is_file_cache(target))
1298 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1299 else
1300 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1301
1302 /* unused page is not on radix-tree now. */
d13d1443 1303 if (unused)
01b1ae63
KH
1304 __mem_cgroup_uncharge_common(unused, ctype);
1305
1306 pc = lookup_page_cgroup(target);
69029cd5 1307 /*
01b1ae63
KH
1308 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1309 * So, double-counting is effectively avoided.
1310 */
1311 __mem_cgroup_commit_charge(mem, pc, ctype);
1312
1313 /*
1314 * Both of oldpage and newpage are still under lock_page().
1315 * Then, we don't have to care about race in radix-tree.
1316 * But we have to be careful that this page is unmapped or not.
1317 *
1318 * There is a case for !page_mapped(). At the start of
1319 * migration, oldpage was mapped. But now, it's zapped.
1320 * But we know *target* page is not freed/reused under us.
1321 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1322 */
01b1ae63
KH
1323 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1324 mem_cgroup_uncharge_page(target);
ae41be37 1325}
78fb7466 1326
c9b0ed51
KH
1327/*
1328 * A call to try to shrink memory usage under specified resource controller.
1329 * This is typically used for page reclaiming for shmem for reducing side
1330 * effect of page allocation from shmem, which is used by some mem_cgroup.
1331 */
1332int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1333{
1334 struct mem_cgroup *mem;
1335 int progress = 0;
1336 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1337
f8d66542 1338 if (mem_cgroup_disabled())
cede86ac 1339 return 0;
9623e078
HD
1340 if (!mm)
1341 return 0;
cede86ac 1342
c9b0ed51
KH
1343 rcu_read_lock();
1344 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
1345 if (unlikely(!mem)) {
1346 rcu_read_unlock();
1347 return 0;
1348 }
c9b0ed51
KH
1349 css_get(&mem->css);
1350 rcu_read_unlock();
1351
1352 do {
8c7c6e34 1353 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
b85a96c0 1354 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1355 } while (!progress && --retry);
1356
1357 css_put(&mem->css);
1358 if (!retry)
1359 return -ENOMEM;
1360 return 0;
1361}
1362
8c7c6e34
KH
1363static DEFINE_MUTEX(set_limit_mutex);
1364
d38d2a75 1365static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1366 unsigned long long val)
628f4235
KH
1367{
1368
1369 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1370 int progress;
8c7c6e34 1371 u64 memswlimit;
628f4235
KH
1372 int ret = 0;
1373
8c7c6e34 1374 while (retry_count) {
628f4235
KH
1375 if (signal_pending(current)) {
1376 ret = -EINTR;
1377 break;
1378 }
8c7c6e34
KH
1379 /*
1380 * Rather than hide all in some function, I do this in
1381 * open coded manner. You see what this really does.
1382 * We have to guarantee mem->res.limit < mem->memsw.limit.
1383 */
1384 mutex_lock(&set_limit_mutex);
1385 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1386 if (memswlimit < val) {
1387 ret = -EINVAL;
1388 mutex_unlock(&set_limit_mutex);
628f4235
KH
1389 break;
1390 }
8c7c6e34
KH
1391 ret = res_counter_set_limit(&memcg->res, val);
1392 mutex_unlock(&set_limit_mutex);
1393
1394 if (!ret)
1395 break;
1396
bced0520 1397 progress = try_to_free_mem_cgroup_pages(memcg,
2c26fdd7 1398 GFP_KERNEL, false);
8c7c6e34
KH
1399 if (!progress) retry_count--;
1400 }
1401 return ret;
1402}
1403
1404int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1405 unsigned long long val)
1406{
1407 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1408 u64 memlimit, oldusage, curusage;
1409 int ret;
1410
1411 if (!do_swap_account)
1412 return -EINVAL;
1413
1414 while (retry_count) {
1415 if (signal_pending(current)) {
1416 ret = -EINTR;
1417 break;
1418 }
1419 /*
1420 * Rather than hide all in some function, I do this in
1421 * open coded manner. You see what this really does.
1422 * We have to guarantee mem->res.limit < mem->memsw.limit.
1423 */
1424 mutex_lock(&set_limit_mutex);
1425 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1426 if (memlimit > val) {
1427 ret = -EINVAL;
1428 mutex_unlock(&set_limit_mutex);
1429 break;
1430 }
1431 ret = res_counter_set_limit(&memcg->memsw, val);
1432 mutex_unlock(&set_limit_mutex);
1433
1434 if (!ret)
1435 break;
1436
1437 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2c26fdd7 1438 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1439 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1440 if (curusage >= oldusage)
628f4235
KH
1441 retry_count--;
1442 }
1443 return ret;
1444}
1445
cc847582
KH
1446/*
1447 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1448 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1449 */
f817ed48 1450static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1451 int node, int zid, enum lru_list lru)
cc847582 1452{
08e552c6
KH
1453 struct zone *zone;
1454 struct mem_cgroup_per_zone *mz;
f817ed48 1455 struct page_cgroup *pc, *busy;
08e552c6 1456 unsigned long flags, loop;
072c56c1 1457 struct list_head *list;
f817ed48 1458 int ret = 0;
072c56c1 1459
08e552c6
KH
1460 zone = &NODE_DATA(node)->node_zones[zid];
1461 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1462 list = &mz->lists[lru];
cc847582 1463
f817ed48
KH
1464 loop = MEM_CGROUP_ZSTAT(mz, lru);
1465 /* give some margin against EBUSY etc...*/
1466 loop += 256;
1467 busy = NULL;
1468 while (loop--) {
1469 ret = 0;
08e552c6 1470 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1471 if (list_empty(list)) {
08e552c6 1472 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1473 break;
f817ed48
KH
1474 }
1475 pc = list_entry(list->prev, struct page_cgroup, lru);
1476 if (busy == pc) {
1477 list_move(&pc->lru, list);
1478 busy = 0;
08e552c6 1479 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1480 continue;
1481 }
08e552c6 1482 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1483
2c26fdd7 1484 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1485 if (ret == -ENOMEM)
52d4b9ac 1486 break;
f817ed48
KH
1487
1488 if (ret == -EBUSY || ret == -EINVAL) {
1489 /* found lock contention or "pc" is obsolete. */
1490 busy = pc;
1491 cond_resched();
1492 } else
1493 busy = NULL;
cc847582 1494 }
08e552c6 1495
f817ed48
KH
1496 if (!ret && !list_empty(list))
1497 return -EBUSY;
1498 return ret;
cc847582
KH
1499}
1500
1501/*
1502 * make mem_cgroup's charge to be 0 if there is no task.
1503 * This enables deleting this mem_cgroup.
1504 */
c1e862c1 1505static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1506{
f817ed48
KH
1507 int ret;
1508 int node, zid, shrink;
1509 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1510 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1511
cc847582 1512 css_get(&mem->css);
f817ed48
KH
1513
1514 shrink = 0;
c1e862c1
KH
1515 /* should free all ? */
1516 if (free_all)
1517 goto try_to_free;
f817ed48 1518move_account:
1ecaab2b 1519 while (mem->res.usage > 0) {
f817ed48 1520 ret = -EBUSY;
c1e862c1
KH
1521 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1522 goto out;
1523 ret = -EINTR;
1524 if (signal_pending(current))
cc847582 1525 goto out;
52d4b9ac
KH
1526 /* This is for making all *used* pages to be on LRU. */
1527 lru_add_drain_all();
f817ed48
KH
1528 ret = 0;
1529 for_each_node_state(node, N_POSSIBLE) {
1530 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1531 enum lru_list l;
f817ed48
KH
1532 for_each_lru(l) {
1533 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1534 node, zid, l);
f817ed48
KH
1535 if (ret)
1536 break;
1537 }
1ecaab2b 1538 }
f817ed48
KH
1539 if (ret)
1540 break;
1541 }
1542 /* it seems parent cgroup doesn't have enough mem */
1543 if (ret == -ENOMEM)
1544 goto try_to_free;
52d4b9ac 1545 cond_resched();
cc847582
KH
1546 }
1547 ret = 0;
1548out:
1549 css_put(&mem->css);
1550 return ret;
f817ed48
KH
1551
1552try_to_free:
c1e862c1
KH
1553 /* returns EBUSY if there is a task or if we come here twice. */
1554 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1555 ret = -EBUSY;
1556 goto out;
1557 }
c1e862c1
KH
1558 /* we call try-to-free pages for make this cgroup empty */
1559 lru_add_drain_all();
f817ed48
KH
1560 /* try to free all pages in this cgroup */
1561 shrink = 1;
1562 while (nr_retries && mem->res.usage > 0) {
1563 int progress;
c1e862c1
KH
1564
1565 if (signal_pending(current)) {
1566 ret = -EINTR;
1567 goto out;
1568 }
f817ed48 1569 progress = try_to_free_mem_cgroup_pages(mem,
2c26fdd7 1570 GFP_KERNEL, false);
c1e862c1 1571 if (!progress) {
f817ed48 1572 nr_retries--;
c1e862c1
KH
1573 /* maybe some writeback is necessary */
1574 congestion_wait(WRITE, HZ/10);
1575 }
f817ed48
KH
1576
1577 }
08e552c6 1578 lru_add_drain();
f817ed48
KH
1579 /* try move_account...there may be some *locked* pages. */
1580 if (mem->res.usage)
1581 goto move_account;
1582 ret = 0;
1583 goto out;
cc847582
KH
1584}
1585
c1e862c1
KH
1586int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1587{
1588 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1589}
1590
1591
18f59ea7
BS
1592static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1593{
1594 return mem_cgroup_from_cont(cont)->use_hierarchy;
1595}
1596
1597static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1598 u64 val)
1599{
1600 int retval = 0;
1601 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1602 struct cgroup *parent = cont->parent;
1603 struct mem_cgroup *parent_mem = NULL;
1604
1605 if (parent)
1606 parent_mem = mem_cgroup_from_cont(parent);
1607
1608 cgroup_lock();
1609 /*
1610 * If parent's use_hiearchy is set, we can't make any modifications
1611 * in the child subtrees. If it is unset, then the change can
1612 * occur, provided the current cgroup has no children.
1613 *
1614 * For the root cgroup, parent_mem is NULL, we allow value to be
1615 * set if there are no children.
1616 */
1617 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1618 (val == 1 || val == 0)) {
1619 if (list_empty(&cont->children))
1620 mem->use_hierarchy = val;
1621 else
1622 retval = -EBUSY;
1623 } else
1624 retval = -EINVAL;
1625 cgroup_unlock();
1626
1627 return retval;
1628}
1629
2c3daa72 1630static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1631{
8c7c6e34
KH
1632 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1633 u64 val = 0;
1634 int type, name;
1635
1636 type = MEMFILE_TYPE(cft->private);
1637 name = MEMFILE_ATTR(cft->private);
1638 switch (type) {
1639 case _MEM:
1640 val = res_counter_read_u64(&mem->res, name);
1641 break;
1642 case _MEMSWAP:
1643 if (do_swap_account)
1644 val = res_counter_read_u64(&mem->memsw, name);
1645 break;
1646 default:
1647 BUG();
1648 break;
1649 }
1650 return val;
8cdea7c0 1651}
628f4235
KH
1652/*
1653 * The user of this function is...
1654 * RES_LIMIT.
1655 */
856c13aa
PM
1656static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1657 const char *buffer)
8cdea7c0 1658{
628f4235 1659 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1660 int type, name;
628f4235
KH
1661 unsigned long long val;
1662 int ret;
1663
8c7c6e34
KH
1664 type = MEMFILE_TYPE(cft->private);
1665 name = MEMFILE_ATTR(cft->private);
1666 switch (name) {
628f4235
KH
1667 case RES_LIMIT:
1668 /* This function does all necessary parse...reuse it */
1669 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1670 if (ret)
1671 break;
1672 if (type == _MEM)
628f4235 1673 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1674 else
1675 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1676 break;
1677 default:
1678 ret = -EINVAL; /* should be BUG() ? */
1679 break;
1680 }
1681 return ret;
8cdea7c0
BS
1682}
1683
29f2a4da 1684static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1685{
1686 struct mem_cgroup *mem;
8c7c6e34 1687 int type, name;
c84872e1
PE
1688
1689 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1690 type = MEMFILE_TYPE(event);
1691 name = MEMFILE_ATTR(event);
1692 switch (name) {
29f2a4da 1693 case RES_MAX_USAGE:
8c7c6e34
KH
1694 if (type == _MEM)
1695 res_counter_reset_max(&mem->res);
1696 else
1697 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1698 break;
1699 case RES_FAILCNT:
8c7c6e34
KH
1700 if (type == _MEM)
1701 res_counter_reset_failcnt(&mem->res);
1702 else
1703 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1704 break;
1705 }
85cc59db 1706 return 0;
c84872e1
PE
1707}
1708
d2ceb9b7
KH
1709static const struct mem_cgroup_stat_desc {
1710 const char *msg;
1711 u64 unit;
1712} mem_cgroup_stat_desc[] = {
1713 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1714 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1715 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1716 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1717};
1718
c64745cf
PM
1719static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1720 struct cgroup_map_cb *cb)
d2ceb9b7 1721{
d2ceb9b7
KH
1722 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1723 struct mem_cgroup_stat *stat = &mem_cont->stat;
1724 int i;
1725
1726 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1727 s64 val;
1728
1729 val = mem_cgroup_read_stat(stat, i);
1730 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1731 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1732 }
6d12e2d8
KH
1733 /* showing # of active pages */
1734 {
4f98a2fe
RR
1735 unsigned long active_anon, inactive_anon;
1736 unsigned long active_file, inactive_file;
7b854121 1737 unsigned long unevictable;
4f98a2fe
RR
1738
1739 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1740 LRU_INACTIVE_ANON);
1741 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1742 LRU_ACTIVE_ANON);
1743 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1744 LRU_INACTIVE_FILE);
1745 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1746 LRU_ACTIVE_FILE);
7b854121
LS
1747 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1748 LRU_UNEVICTABLE);
1749
4f98a2fe
RR
1750 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1751 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1752 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1753 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1754 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1755
6d12e2d8 1756 }
d2ceb9b7
KH
1757 return 0;
1758}
1759
c1e862c1 1760
8cdea7c0
BS
1761static struct cftype mem_cgroup_files[] = {
1762 {
0eea1030 1763 .name = "usage_in_bytes",
8c7c6e34 1764 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1765 .read_u64 = mem_cgroup_read,
8cdea7c0 1766 },
c84872e1
PE
1767 {
1768 .name = "max_usage_in_bytes",
8c7c6e34 1769 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 1770 .trigger = mem_cgroup_reset,
c84872e1
PE
1771 .read_u64 = mem_cgroup_read,
1772 },
8cdea7c0 1773 {
0eea1030 1774 .name = "limit_in_bytes",
8c7c6e34 1775 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 1776 .write_string = mem_cgroup_write,
2c3daa72 1777 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1778 },
1779 {
1780 .name = "failcnt",
8c7c6e34 1781 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 1782 .trigger = mem_cgroup_reset,
2c3daa72 1783 .read_u64 = mem_cgroup_read,
8cdea7c0 1784 },
d2ceb9b7
KH
1785 {
1786 .name = "stat",
c64745cf 1787 .read_map = mem_control_stat_show,
d2ceb9b7 1788 },
c1e862c1
KH
1789 {
1790 .name = "force_empty",
1791 .trigger = mem_cgroup_force_empty_write,
1792 },
18f59ea7
BS
1793 {
1794 .name = "use_hierarchy",
1795 .write_u64 = mem_cgroup_hierarchy_write,
1796 .read_u64 = mem_cgroup_hierarchy_read,
1797 },
8cdea7c0
BS
1798};
1799
8c7c6e34
KH
1800#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1801static struct cftype memsw_cgroup_files[] = {
1802 {
1803 .name = "memsw.usage_in_bytes",
1804 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1805 .read_u64 = mem_cgroup_read,
1806 },
1807 {
1808 .name = "memsw.max_usage_in_bytes",
1809 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1810 .trigger = mem_cgroup_reset,
1811 .read_u64 = mem_cgroup_read,
1812 },
1813 {
1814 .name = "memsw.limit_in_bytes",
1815 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1816 .write_string = mem_cgroup_write,
1817 .read_u64 = mem_cgroup_read,
1818 },
1819 {
1820 .name = "memsw.failcnt",
1821 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1822 .trigger = mem_cgroup_reset,
1823 .read_u64 = mem_cgroup_read,
1824 },
1825};
1826
1827static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1828{
1829 if (!do_swap_account)
1830 return 0;
1831 return cgroup_add_files(cont, ss, memsw_cgroup_files,
1832 ARRAY_SIZE(memsw_cgroup_files));
1833};
1834#else
1835static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1836{
1837 return 0;
1838}
1839#endif
1840
6d12e2d8
KH
1841static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1842{
1843 struct mem_cgroup_per_node *pn;
1ecaab2b 1844 struct mem_cgroup_per_zone *mz;
b69408e8 1845 enum lru_list l;
41e3355d 1846 int zone, tmp = node;
1ecaab2b
KH
1847 /*
1848 * This routine is called against possible nodes.
1849 * But it's BUG to call kmalloc() against offline node.
1850 *
1851 * TODO: this routine can waste much memory for nodes which will
1852 * never be onlined. It's better to use memory hotplug callback
1853 * function.
1854 */
41e3355d
KH
1855 if (!node_state(node, N_NORMAL_MEMORY))
1856 tmp = -1;
1857 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1858 if (!pn)
1859 return 1;
1ecaab2b 1860
6d12e2d8
KH
1861 mem->info.nodeinfo[node] = pn;
1862 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1863
1864 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1865 mz = &pn->zoneinfo[zone];
b69408e8
CL
1866 for_each_lru(l)
1867 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1868 }
6d12e2d8
KH
1869 return 0;
1870}
1871
1ecaab2b
KH
1872static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1873{
1874 kfree(mem->info.nodeinfo[node]);
1875}
1876
c8dad2bb
JB
1877static int mem_cgroup_size(void)
1878{
1879 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1880 return sizeof(struct mem_cgroup) + cpustat_size;
1881}
1882
33327948
KH
1883static struct mem_cgroup *mem_cgroup_alloc(void)
1884{
1885 struct mem_cgroup *mem;
c8dad2bb 1886 int size = mem_cgroup_size();
33327948 1887
c8dad2bb
JB
1888 if (size < PAGE_SIZE)
1889 mem = kmalloc(size, GFP_KERNEL);
33327948 1890 else
c8dad2bb 1891 mem = vmalloc(size);
33327948
KH
1892
1893 if (mem)
c8dad2bb 1894 memset(mem, 0, size);
33327948
KH
1895 return mem;
1896}
1897
8c7c6e34
KH
1898/*
1899 * At destroying mem_cgroup, references from swap_cgroup can remain.
1900 * (scanning all at force_empty is too costly...)
1901 *
1902 * Instead of clearing all references at force_empty, we remember
1903 * the number of reference from swap_cgroup and free mem_cgroup when
1904 * it goes down to 0.
1905 *
1906 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
1907 * entry which points to this memcg will be ignore at swapin.
1908 *
1909 * Removal of cgroup itself succeeds regardless of refs from swap.
1910 */
1911
33327948
KH
1912static void mem_cgroup_free(struct mem_cgroup *mem)
1913{
08e552c6
KH
1914 int node;
1915
8c7c6e34
KH
1916 if (atomic_read(&mem->refcnt) > 0)
1917 return;
08e552c6
KH
1918
1919
1920 for_each_node_state(node, N_POSSIBLE)
1921 free_mem_cgroup_per_zone_info(mem, node);
1922
c8dad2bb 1923 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
1924 kfree(mem);
1925 else
1926 vfree(mem);
1927}
1928
8c7c6e34
KH
1929static void mem_cgroup_get(struct mem_cgroup *mem)
1930{
1931 atomic_inc(&mem->refcnt);
1932}
1933
1934static void mem_cgroup_put(struct mem_cgroup *mem)
1935{
1936 if (atomic_dec_and_test(&mem->refcnt)) {
1937 if (!mem->obsolete)
1938 return;
1939 mem_cgroup_free(mem);
1940 }
1941}
1942
33327948 1943
c077719b
KH
1944#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1945static void __init enable_swap_cgroup(void)
1946{
f8d66542 1947 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
1948 do_swap_account = 1;
1949}
1950#else
1951static void __init enable_swap_cgroup(void)
1952{
1953}
1954#endif
1955
8cdea7c0
BS
1956static struct cgroup_subsys_state *
1957mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1958{
28dbc4b6 1959 struct mem_cgroup *mem, *parent;
6d12e2d8 1960 int node;
8cdea7c0 1961
c8dad2bb
JB
1962 mem = mem_cgroup_alloc();
1963 if (!mem)
1964 return ERR_PTR(-ENOMEM);
78fb7466 1965
6d12e2d8
KH
1966 for_each_node_state(node, N_POSSIBLE)
1967 if (alloc_mem_cgroup_per_zone_info(mem, node))
1968 goto free_out;
c077719b 1969 /* root ? */
28dbc4b6 1970 if (cont->parent == NULL) {
c077719b 1971 enable_swap_cgroup();
28dbc4b6 1972 parent = NULL;
18f59ea7 1973 } else {
28dbc4b6 1974 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
1975 mem->use_hierarchy = parent->use_hierarchy;
1976 }
28dbc4b6 1977
18f59ea7
BS
1978 if (parent && parent->use_hierarchy) {
1979 res_counter_init(&mem->res, &parent->res);
1980 res_counter_init(&mem->memsw, &parent->memsw);
1981 } else {
1982 res_counter_init(&mem->res, NULL);
1983 res_counter_init(&mem->memsw, NULL);
1984 }
6d12e2d8 1985
6d61ef40
BS
1986 mem->last_scanned_child = NULL;
1987
8cdea7c0 1988 return &mem->css;
6d12e2d8
KH
1989free_out:
1990 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1991 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 1992 mem_cgroup_free(mem);
2dda81ca 1993 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1994}
1995
df878fb0
KH
1996static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1997 struct cgroup *cont)
1998{
1999 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8c7c6e34 2000 mem->obsolete = 1;
c1e862c1 2001 mem_cgroup_force_empty(mem, false);
df878fb0
KH
2002}
2003
8cdea7c0
BS
2004static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2005 struct cgroup *cont)
2006{
33327948 2007 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
2008}
2009
2010static int mem_cgroup_populate(struct cgroup_subsys *ss,
2011 struct cgroup *cont)
2012{
8c7c6e34
KH
2013 int ret;
2014
2015 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2016 ARRAY_SIZE(mem_cgroup_files));
2017
2018 if (!ret)
2019 ret = register_memsw_files(cont, ss);
2020 return ret;
8cdea7c0
BS
2021}
2022
67e465a7
BS
2023static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2024 struct cgroup *cont,
2025 struct cgroup *old_cont,
2026 struct task_struct *p)
2027{
67e465a7 2028 /*
f9717d28
NK
2029 * FIXME: It's better to move charges of this process from old
2030 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2031 */
67e465a7
BS
2032}
2033
8cdea7c0
BS
2034struct cgroup_subsys mem_cgroup_subsys = {
2035 .name = "memory",
2036 .subsys_id = mem_cgroup_subsys_id,
2037 .create = mem_cgroup_create,
df878fb0 2038 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2039 .destroy = mem_cgroup_destroy,
2040 .populate = mem_cgroup_populate,
67e465a7 2041 .attach = mem_cgroup_move_task,
6d12e2d8 2042 .early_init = 0,
8cdea7c0 2043};
c077719b
KH
2044
2045#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2046
2047static int __init disable_swap_account(char *s)
2048{
2049 really_do_swap_account = 0;
2050 return 1;
2051}
2052__setup("noswapaccount", disable_swap_account);
2053#endif