]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: swap cgroup for remembering usage
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
b6ac57d5 30#include <linux/slab.h>
66e1707b
BS
31#include <linux/swap.h>
32#include <linux/spinlock.h>
33#include <linux/fs.h>
d2ceb9b7 34#include <linux/seq_file.h>
33327948 35#include <linux/vmalloc.h>
b69408e8 36#include <linux/mm_inline.h>
52d4b9ac 37#include <linux/page_cgroup.h>
8cdea7c0 38
8697d331
BS
39#include <asm/uaccess.h>
40
a181b0e8 41struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 42#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 43
c077719b
KH
44#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
45/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
46int do_swap_account __read_mostly;
47static int really_do_swap_account __initdata = 1; /* for remember boot option*/
48#else
49#define do_swap_account (0)
50#endif
51
52
d52aa412
KH
53/*
54 * Statistics for memory cgroup.
55 */
56enum mem_cgroup_stat_index {
57 /*
58 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
59 */
60 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
61 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
62 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
63 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
64
65 MEM_CGROUP_STAT_NSTATS,
66};
67
68struct mem_cgroup_stat_cpu {
69 s64 count[MEM_CGROUP_STAT_NSTATS];
70} ____cacheline_aligned_in_smp;
71
72struct mem_cgroup_stat {
c8dad2bb 73 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
74};
75
76/*
77 * For accounting under irq disable, no need for increment preempt count.
78 */
addb9efe 79static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
80 enum mem_cgroup_stat_index idx, int val)
81{
addb9efe 82 stat->count[idx] += val;
d52aa412
KH
83}
84
85static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
86 enum mem_cgroup_stat_index idx)
87{
88 int cpu;
89 s64 ret = 0;
90 for_each_possible_cpu(cpu)
91 ret += stat->cpustat[cpu].count[idx];
92 return ret;
93}
94
6d12e2d8
KH
95/*
96 * per-zone information in memory controller.
97 */
6d12e2d8 98struct mem_cgroup_per_zone {
072c56c1
KH
99 /*
100 * spin_lock to protect the per cgroup LRU
101 */
102 spinlock_t lru_lock;
b69408e8
CL
103 struct list_head lists[NR_LRU_LISTS];
104 unsigned long count[NR_LRU_LISTS];
6d12e2d8
KH
105};
106/* Macro for accessing counter */
107#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
108
109struct mem_cgroup_per_node {
110 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
111};
112
113struct mem_cgroup_lru_info {
114 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
115};
116
8cdea7c0
BS
117/*
118 * The memory controller data structure. The memory controller controls both
119 * page cache and RSS per cgroup. We would eventually like to provide
120 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
121 * to help the administrator determine what knobs to tune.
122 *
123 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
124 * we hit the water mark. May be even add a low water mark, such that
125 * no reclaim occurs from a cgroup at it's low water mark, this is
126 * a feature that will be implemented much later in the future.
8cdea7c0
BS
127 */
128struct mem_cgroup {
129 struct cgroup_subsys_state css;
130 /*
131 * the counter to account for memory usage
132 */
133 struct res_counter res;
78fb7466
PE
134 /*
135 * Per cgroup active and inactive list, similar to the
136 * per zone LRU lists.
78fb7466 137 */
6d12e2d8 138 struct mem_cgroup_lru_info info;
072c56c1 139
6c48a1d0 140 int prev_priority; /* for recording reclaim priority */
d52aa412 141 /*
c8dad2bb 142 * statistics. This must be placed at the end of memcg.
d52aa412
KH
143 */
144 struct mem_cgroup_stat stat;
8cdea7c0
BS
145};
146
217bc319
KH
147enum charge_type {
148 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
149 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 150 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 151 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 152 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
153 NR_CHARGE_TYPE,
154};
155
52d4b9ac
KH
156/* only for here (for easy reading.) */
157#define PCGF_CACHE (1UL << PCG_CACHE)
158#define PCGF_USED (1UL << PCG_USED)
159#define PCGF_ACTIVE (1UL << PCG_ACTIVE)
160#define PCGF_LOCK (1UL << PCG_LOCK)
161#define PCGF_FILE (1UL << PCG_FILE)
c05555b5
KH
162static const unsigned long
163pcg_default_flags[NR_CHARGE_TYPE] = {
52d4b9ac
KH
164 PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
165 PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
166 PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
167 0, /* FORCE */
217bc319
KH
168};
169
d52aa412
KH
170/*
171 * Always modified under lru lock. Then, not necessary to preempt_disable()
172 */
c05555b5
KH
173static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
174 struct page_cgroup *pc,
175 bool charge)
d52aa412
KH
176{
177 int val = (charge)? 1 : -1;
178 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 179 struct mem_cgroup_stat_cpu *cpustat;
d52aa412 180
8869b8f6 181 VM_BUG_ON(!irqs_disabled());
addb9efe
KH
182
183 cpustat = &stat->cpustat[smp_processor_id()];
c05555b5 184 if (PageCgroupCache(pc))
addb9efe 185 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 186 else
addb9efe 187 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
188
189 if (charge)
addb9efe 190 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
191 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
192 else
addb9efe 193 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 194 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
6d12e2d8
KH
195}
196
d5b69e38 197static struct mem_cgroup_per_zone *
6d12e2d8
KH
198mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
199{
6d12e2d8
KH
200 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
201}
202
d5b69e38 203static struct mem_cgroup_per_zone *
6d12e2d8
KH
204page_cgroup_zoneinfo(struct page_cgroup *pc)
205{
206 struct mem_cgroup *mem = pc->mem_cgroup;
207 int nid = page_cgroup_nid(pc);
208 int zid = page_cgroup_zid(pc);
d52aa412 209
6d12e2d8
KH
210 return mem_cgroup_zoneinfo(mem, nid, zid);
211}
212
213static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 214 enum lru_list idx)
6d12e2d8
KH
215{
216 int nid, zid;
217 struct mem_cgroup_per_zone *mz;
218 u64 total = 0;
219
220 for_each_online_node(nid)
221 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
222 mz = mem_cgroup_zoneinfo(mem, nid, zid);
223 total += MEM_CGROUP_ZSTAT(mz, idx);
224 }
225 return total;
d52aa412
KH
226}
227
d5b69e38 228static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
229{
230 return container_of(cgroup_subsys_state(cont,
231 mem_cgroup_subsys_id), struct mem_cgroup,
232 css);
233}
234
cf475ad2 235struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 236{
31a78f23
BS
237 /*
238 * mm_update_next_owner() may clear mm->owner to NULL
239 * if it races with swapoff, page migration, etc.
240 * So this can be called with p == NULL.
241 */
242 if (unlikely(!p))
243 return NULL;
244
78fb7466
PE
245 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
246 struct mem_cgroup, css);
247}
248
3eae90c3
KH
249static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
250 struct page_cgroup *pc)
6d12e2d8 251{
4f98a2fe
RR
252 int lru = LRU_BASE;
253
c05555b5 254 if (PageCgroupUnevictable(pc))
894bc310
LS
255 lru = LRU_UNEVICTABLE;
256 else {
c05555b5 257 if (PageCgroupActive(pc))
894bc310 258 lru += LRU_ACTIVE;
c05555b5 259 if (PageCgroupFile(pc))
894bc310
LS
260 lru += LRU_FILE;
261 }
6d12e2d8 262
b69408e8 263 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
6d12e2d8 264
c05555b5 265 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
508b7be0 266 list_del(&pc->lru);
6d12e2d8
KH
267}
268
3eae90c3 269static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
f817ed48 270 struct page_cgroup *pc, bool hot)
6d12e2d8 271{
4f98a2fe 272 int lru = LRU_BASE;
b69408e8 273
c05555b5 274 if (PageCgroupUnevictable(pc))
894bc310
LS
275 lru = LRU_UNEVICTABLE;
276 else {
c05555b5 277 if (PageCgroupActive(pc))
894bc310 278 lru += LRU_ACTIVE;
c05555b5 279 if (PageCgroupFile(pc))
894bc310
LS
280 lru += LRU_FILE;
281 }
b69408e8
CL
282
283 MEM_CGROUP_ZSTAT(mz, lru) += 1;
f817ed48
KH
284 if (hot)
285 list_add(&pc->lru, &mz->lists[lru]);
286 else
287 list_add_tail(&pc->lru, &mz->lists[lru]);
6d12e2d8 288
c05555b5 289 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
6d12e2d8
KH
290}
291
894bc310 292static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
66e1707b 293{
6d12e2d8 294 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
c05555b5
KH
295 int active = PageCgroupActive(pc);
296 int file = PageCgroupFile(pc);
297 int unevictable = PageCgroupUnevictable(pc);
894bc310
LS
298 enum lru_list from = unevictable ? LRU_UNEVICTABLE :
299 (LRU_FILE * !!file + !!active);
6d12e2d8 300
894bc310
LS
301 if (lru == from)
302 return;
b69408e8 303
894bc310 304 MEM_CGROUP_ZSTAT(mz, from) -= 1;
c05555b5
KH
305 /*
306 * However this is done under mz->lru_lock, another flags, which
307 * are not related to LRU, will be modified from out-of-lock.
308 * We have to use atomic set/clear flags.
309 */
894bc310 310 if (is_unevictable_lru(lru)) {
c05555b5
KH
311 ClearPageCgroupActive(pc);
312 SetPageCgroupUnevictable(pc);
894bc310
LS
313 } else {
314 if (is_active_lru(lru))
c05555b5 315 SetPageCgroupActive(pc);
894bc310 316 else
c05555b5
KH
317 ClearPageCgroupActive(pc);
318 ClearPageCgroupUnevictable(pc);
894bc310 319 }
b69408e8 320
b69408e8
CL
321 MEM_CGROUP_ZSTAT(mz, lru) += 1;
322 list_move(&pc->lru, &mz->lists[lru]);
66e1707b
BS
323}
324
4c4a2214
DR
325int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
326{
327 int ret;
328
329 task_lock(task);
bd845e38 330 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
331 task_unlock(task);
332 return ret;
333}
334
66e1707b
BS
335/*
336 * This routine assumes that the appropriate zone's lru lock is already held
337 */
894bc310 338void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
66e1707b 339{
427d5416 340 struct page_cgroup *pc;
072c56c1
KH
341 struct mem_cgroup_per_zone *mz;
342 unsigned long flags;
343
cede86ac
LZ
344 if (mem_cgroup_subsys.disabled)
345 return;
346
2680eed7
HD
347 /*
348 * We cannot lock_page_cgroup while holding zone's lru_lock,
349 * because other holders of lock_page_cgroup can be interrupted
350 * with an attempt to rotate_reclaimable_page. But we cannot
351 * safely get to page_cgroup without it, so just try_lock it:
352 * mem_cgroup_isolate_pages allows for page left on wrong list.
353 */
52d4b9ac
KH
354 pc = lookup_page_cgroup(page);
355 if (!trylock_page_cgroup(pc))
66e1707b 356 return;
52d4b9ac 357 if (pc && PageCgroupUsed(pc)) {
2680eed7 358 mz = page_cgroup_zoneinfo(pc);
2680eed7 359 spin_lock_irqsave(&mz->lru_lock, flags);
894bc310 360 __mem_cgroup_move_lists(pc, lru);
2680eed7 361 spin_unlock_irqrestore(&mz->lru_lock, flags);
9b3c0a07 362 }
52d4b9ac 363 unlock_page_cgroup(pc);
66e1707b
BS
364}
365
58ae83db
KH
366/*
367 * Calculate mapped_ratio under memory controller. This will be used in
368 * vmscan.c for deteremining we have to reclaim mapped pages.
369 */
370int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
371{
372 long total, rss;
373
374 /*
375 * usage is recorded in bytes. But, here, we assume the number of
376 * physical pages can be represented by "long" on any arch.
377 */
378 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
379 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
380 return (int)((rss * 100L) / total);
381}
8869b8f6 382
6c48a1d0
KH
383/*
384 * prev_priority control...this will be used in memory reclaim path.
385 */
386int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
387{
388 return mem->prev_priority;
389}
390
391void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
392{
393 if (priority < mem->prev_priority)
394 mem->prev_priority = priority;
395}
396
397void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
398{
399 mem->prev_priority = priority;
400}
401
cc38108e
KH
402/*
403 * Calculate # of pages to be scanned in this priority/zone.
404 * See also vmscan.c
405 *
406 * priority starts from "DEF_PRIORITY" and decremented in each loop.
407 * (see include/linux/mmzone.h)
408 */
409
b69408e8
CL
410long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
411 int priority, enum lru_list lru)
cc38108e 412{
b69408e8 413 long nr_pages;
cc38108e
KH
414 int nid = zone->zone_pgdat->node_id;
415 int zid = zone_idx(zone);
416 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
417
b69408e8 418 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 419
b69408e8 420 return (nr_pages >> priority);
cc38108e
KH
421}
422
66e1707b
BS
423unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
424 struct list_head *dst,
425 unsigned long *scanned, int order,
426 int mode, struct zone *z,
427 struct mem_cgroup *mem_cont,
4f98a2fe 428 int active, int file)
66e1707b
BS
429{
430 unsigned long nr_taken = 0;
431 struct page *page;
432 unsigned long scan;
433 LIST_HEAD(pc_list);
434 struct list_head *src;
ff7283fa 435 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
436 int nid = z->zone_pgdat->node_id;
437 int zid = zone_idx(z);
438 struct mem_cgroup_per_zone *mz;
4f98a2fe 439 int lru = LRU_FILE * !!file + !!active;
66e1707b 440
cf475ad2 441 BUG_ON(!mem_cont);
1ecaab2b 442 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 443 src = &mz->lists[lru];
66e1707b 444
072c56c1 445 spin_lock(&mz->lru_lock);
ff7283fa
KH
446 scan = 0;
447 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 448 if (scan >= nr_to_scan)
ff7283fa 449 break;
52d4b9ac
KH
450 if (unlikely(!PageCgroupUsed(pc)))
451 continue;
66e1707b 452 page = pc->page;
66e1707b 453
436c6541 454 if (unlikely(!PageLRU(page)))
ff7283fa 455 continue;
ff7283fa 456
4f98a2fe
RR
457 /*
458 * TODO: play better with lumpy reclaim, grabbing anything.
459 */
894bc310
LS
460 if (PageUnevictable(page) ||
461 (PageActive(page) && !active) ||
462 (!PageActive(page) && active)) {
463 __mem_cgroup_move_lists(pc, page_lru(page));
66e1707b
BS
464 continue;
465 }
466
436c6541
HD
467 scan++;
468 list_move(&pc->lru, &pc_list);
66e1707b 469
4f98a2fe 470 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
471 list_move(&page->lru, dst);
472 nr_taken++;
473 }
474 }
475
476 list_splice(&pc_list, src);
072c56c1 477 spin_unlock(&mz->lru_lock);
66e1707b
BS
478
479 *scanned = scan;
480 return nr_taken;
481}
482
f817ed48
KH
483/*
484 * Unlike exported interface, "oom" parameter is added. if oom==true,
485 * oom-killer can be invoked.
8a9f3ccd 486 */
f817ed48
KH
487static int __mem_cgroup_try_charge(struct mm_struct *mm,
488 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
8a9f3ccd
BS
489{
490 struct mem_cgroup *mem;
7a81b88c 491 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8a9f3ccd 492 /*
3be91277
HD
493 * We always charge the cgroup the mm_struct belongs to.
494 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
495 * thread group leader migrates. It's possible that mm is not
496 * set, if so charge the init_mm (happens for pagecache usage).
497 */
7a81b88c 498 if (likely(!*memcg)) {
e8589cc1
KH
499 rcu_read_lock();
500 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
501 if (unlikely(!mem)) {
502 rcu_read_unlock();
31a78f23
BS
503 return 0;
504 }
e8589cc1
KH
505 /*
506 * For every charge from the cgroup, increment reference count
507 */
508 css_get(&mem->css);
7a81b88c 509 *memcg = mem;
e8589cc1
KH
510 rcu_read_unlock();
511 } else {
7a81b88c
KH
512 mem = *memcg;
513 css_get(&mem->css);
e8589cc1 514 }
8a9f3ccd 515
7a81b88c 516
addb9efe 517 while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
3be91277 518 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 519 goto nomem;
e1a1cd59
BS
520
521 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
522 continue;
523
524 /*
8869b8f6
HD
525 * try_to_free_mem_cgroup_pages() might not give us a full
526 * picture of reclaim. Some pages are reclaimed and might be
527 * moved to swap cache or just unmapped from the cgroup.
528 * Check the limit again to see if the reclaim reduced the
529 * current usage of the cgroup before giving up
530 */
66e1707b
BS
531 if (res_counter_check_under_limit(&mem->res))
532 continue;
3be91277
HD
533
534 if (!nr_retries--) {
f817ed48
KH
535 if (oom)
536 mem_cgroup_out_of_memory(mem, gfp_mask);
7a81b88c 537 goto nomem;
66e1707b 538 }
8a9f3ccd 539 }
7a81b88c
KH
540 return 0;
541nomem:
542 css_put(&mem->css);
543 return -ENOMEM;
544}
8a9f3ccd 545
f817ed48
KH
546/**
547 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
548 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
549 * @gfp_mask: gfp_mask for reclaim.
550 * @memcg: a pointer to memory cgroup which is charged against.
551 *
552 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
553 * memory cgroup from @mm is got and stored in *memcg.
554 *
555 * Returns 0 if success. -ENOMEM at failure.
556 * This call can invoke OOM-Killer.
557 */
558
559int mem_cgroup_try_charge(struct mm_struct *mm,
560 gfp_t mask, struct mem_cgroup **memcg)
561{
562 return __mem_cgroup_try_charge(mm, mask, memcg, true);
563}
564
7a81b88c
KH
565/*
566 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
567 * USED state. If already USED, uncharge and return.
568 */
569
570static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
571 struct page_cgroup *pc,
572 enum charge_type ctype)
573{
574 struct mem_cgroup_per_zone *mz;
575 unsigned long flags;
576
577 /* try_charge() can return NULL to *memcg, taking care of it. */
578 if (!mem)
579 return;
52d4b9ac
KH
580
581 lock_page_cgroup(pc);
582 if (unlikely(PageCgroupUsed(pc))) {
583 unlock_page_cgroup(pc);
584 res_counter_uncharge(&mem->res, PAGE_SIZE);
585 css_put(&mem->css);
7a81b88c 586 return;
52d4b9ac 587 }
8a9f3ccd 588 pc->mem_cgroup = mem;
508b7be0
KH
589 /*
590 * If a page is accounted as a page cache, insert to inactive list.
591 * If anon, insert to active list.
592 */
c05555b5 593 pc->flags = pcg_default_flags[ctype];
3be91277 594
072c56c1 595 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 596
072c56c1 597 spin_lock_irqsave(&mz->lru_lock, flags);
f817ed48 598 __mem_cgroup_add_list(mz, pc, true);
072c56c1 599 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 600 unlock_page_cgroup(pc);
7a81b88c 601}
66e1707b 602
f817ed48
KH
603/**
604 * mem_cgroup_move_account - move account of the page
605 * @pc: page_cgroup of the page.
606 * @from: mem_cgroup which the page is moved from.
607 * @to: mem_cgroup which the page is moved to. @from != @to.
608 *
609 * The caller must confirm following.
610 * 1. disable irq.
611 * 2. lru_lock of old mem_cgroup(@from) should be held.
612 *
613 * returns 0 at success,
614 * returns -EBUSY when lock is busy or "pc" is unstable.
615 *
616 * This function does "uncharge" from old cgroup but doesn't do "charge" to
617 * new cgroup. It should be done by a caller.
618 */
619
620static int mem_cgroup_move_account(struct page_cgroup *pc,
621 struct mem_cgroup *from, struct mem_cgroup *to)
622{
623 struct mem_cgroup_per_zone *from_mz, *to_mz;
624 int nid, zid;
625 int ret = -EBUSY;
626
627 VM_BUG_ON(!irqs_disabled());
628 VM_BUG_ON(from == to);
629
630 nid = page_cgroup_nid(pc);
631 zid = page_cgroup_zid(pc);
632 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
633 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
634
635
636 if (!trylock_page_cgroup(pc))
637 return ret;
638
639 if (!PageCgroupUsed(pc))
640 goto out;
641
642 if (pc->mem_cgroup != from)
643 goto out;
644
645 if (spin_trylock(&to_mz->lru_lock)) {
646 __mem_cgroup_remove_list(from_mz, pc);
647 css_put(&from->css);
648 res_counter_uncharge(&from->res, PAGE_SIZE);
649 pc->mem_cgroup = to;
650 css_get(&to->css);
651 __mem_cgroup_add_list(to_mz, pc, false);
652 ret = 0;
653 spin_unlock(&to_mz->lru_lock);
654 }
655out:
656 unlock_page_cgroup(pc);
657 return ret;
658}
659
660/*
661 * move charges to its parent.
662 */
663
664static int mem_cgroup_move_parent(struct page_cgroup *pc,
665 struct mem_cgroup *child,
666 gfp_t gfp_mask)
667{
668 struct cgroup *cg = child->css.cgroup;
669 struct cgroup *pcg = cg->parent;
670 struct mem_cgroup *parent;
671 struct mem_cgroup_per_zone *mz;
672 unsigned long flags;
673 int ret;
674
675 /* Is ROOT ? */
676 if (!pcg)
677 return -EINVAL;
678
679 parent = mem_cgroup_from_cont(pcg);
680
681 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
682 if (ret)
683 return ret;
684
685 mz = mem_cgroup_zoneinfo(child,
686 page_cgroup_nid(pc), page_cgroup_zid(pc));
687
688 spin_lock_irqsave(&mz->lru_lock, flags);
689 ret = mem_cgroup_move_account(pc, child, parent);
690 spin_unlock_irqrestore(&mz->lru_lock, flags);
691
692 /* drop extra refcnt */
693 css_put(&parent->css);
694 /* uncharge if move fails */
695 if (ret)
696 res_counter_uncharge(&parent->res, PAGE_SIZE);
697
698 return ret;
699}
700
7a81b88c
KH
701/*
702 * Charge the memory controller for page usage.
703 * Return
704 * 0 if the charge was successful
705 * < 0 if the cgroup is over its limit
706 */
707static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
708 gfp_t gfp_mask, enum charge_type ctype,
709 struct mem_cgroup *memcg)
710{
711 struct mem_cgroup *mem;
712 struct page_cgroup *pc;
713 int ret;
714
715 pc = lookup_page_cgroup(page);
716 /* can happen at boot */
717 if (unlikely(!pc))
718 return 0;
719 prefetchw(pc);
720
721 mem = memcg;
f817ed48 722 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
7a81b88c
KH
723 if (ret)
724 return ret;
725
726 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 727 return 0;
8a9f3ccd
BS
728}
729
7a81b88c
KH
730int mem_cgroup_newpage_charge(struct page *page,
731 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 732{
cede86ac
LZ
733 if (mem_cgroup_subsys.disabled)
734 return 0;
52d4b9ac
KH
735 if (PageCompound(page))
736 return 0;
69029cd5
KH
737 /*
738 * If already mapped, we don't have to account.
739 * If page cache, page->mapping has address_space.
740 * But page->mapping may have out-of-use anon_vma pointer,
741 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
742 * is NULL.
743 */
744 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
745 return 0;
746 if (unlikely(!mm))
747 mm = &init_mm;
217bc319 748 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 749 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
750}
751
e1a1cd59
BS
752int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
753 gfp_t gfp_mask)
8697d331 754{
cede86ac
LZ
755 if (mem_cgroup_subsys.disabled)
756 return 0;
52d4b9ac
KH
757 if (PageCompound(page))
758 return 0;
accf163e
KH
759 /*
760 * Corner case handling. This is called from add_to_page_cache()
761 * in usual. But some FS (shmem) precharges this page before calling it
762 * and call add_to_page_cache() with GFP_NOWAIT.
763 *
764 * For GFP_NOWAIT case, the page may be pre-charged before calling
765 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
766 * charge twice. (It works but has to pay a bit larger cost.)
767 */
768 if (!(gfp_mask & __GFP_WAIT)) {
769 struct page_cgroup *pc;
770
52d4b9ac
KH
771
772 pc = lookup_page_cgroup(page);
773 if (!pc)
774 return 0;
775 lock_page_cgroup(pc);
776 if (PageCgroupUsed(pc)) {
777 unlock_page_cgroup(pc);
accf163e
KH
778 return 0;
779 }
52d4b9ac 780 unlock_page_cgroup(pc);
accf163e
KH
781 }
782
69029cd5 783 if (unlikely(!mm))
8697d331 784 mm = &init_mm;
accf163e 785
c05555b5
KH
786 if (page_is_file_cache(page))
787 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 788 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
789 else
790 return mem_cgroup_charge_common(page, mm, gfp_mask,
791 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
792}
793
d13d1443
KH
794#ifdef CONFIG_SWAP
795int mem_cgroup_cache_charge_swapin(struct page *page,
796 struct mm_struct *mm, gfp_t mask, bool locked)
797{
798 int ret = 0;
799
800 if (mem_cgroup_subsys.disabled)
801 return 0;
802 if (unlikely(!mm))
803 mm = &init_mm;
804 if (!locked)
805 lock_page(page);
806 /*
807 * If not locked, the page can be dropped from SwapCache until
808 * we reach here.
809 */
810 if (PageSwapCache(page)) {
811 ret = mem_cgroup_charge_common(page, mm, mask,
812 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
813 }
814 if (!locked)
815 unlock_page(page);
816
817 return ret;
818}
819#endif
820
7a81b88c
KH
821void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
822{
823 struct page_cgroup *pc;
824
825 if (mem_cgroup_subsys.disabled)
826 return;
827 if (!ptr)
828 return;
829 pc = lookup_page_cgroup(page);
830 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
831}
832
833void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
834{
835 if (mem_cgroup_subsys.disabled)
836 return;
837 if (!mem)
838 return;
839 res_counter_uncharge(&mem->res, PAGE_SIZE);
840 css_put(&mem->css);
841}
842
843
8a9f3ccd 844/*
69029cd5 845 * uncharge if !page_mapped(page)
8a9f3ccd 846 */
69029cd5
KH
847static void
848__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 849{
8289546e 850 struct page_cgroup *pc;
8a9f3ccd 851 struct mem_cgroup *mem;
072c56c1 852 struct mem_cgroup_per_zone *mz;
66e1707b 853 unsigned long flags;
8a9f3ccd 854
4077960e
BS
855 if (mem_cgroup_subsys.disabled)
856 return;
857
d13d1443
KH
858 if (PageSwapCache(page))
859 return;
860
8697d331 861 /*
3c541e14 862 * Check if our page_cgroup is valid
8697d331 863 */
52d4b9ac
KH
864 pc = lookup_page_cgroup(page);
865 if (unlikely(!pc || !PageCgroupUsed(pc)))
866 return;
b9c565d5 867
52d4b9ac 868 lock_page_cgroup(pc);
d13d1443
KH
869
870 if (!PageCgroupUsed(pc))
871 goto unlock_out;
872
873 switch (ctype) {
874 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
875 if (page_mapped(page))
876 goto unlock_out;
877 break;
878 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
879 if (!PageAnon(page)) { /* Shared memory */
880 if (page->mapping && !page_is_file_cache(page))
881 goto unlock_out;
882 } else if (page_mapped(page)) /* Anon */
883 goto unlock_out;
884 break;
885 default:
886 break;
52d4b9ac 887 }
d13d1443 888
52d4b9ac
KH
889 ClearPageCgroupUsed(pc);
890 mem = pc->mem_cgroup;
b9c565d5 891
69029cd5
KH
892 mz = page_cgroup_zoneinfo(pc);
893 spin_lock_irqsave(&mz->lru_lock, flags);
894 __mem_cgroup_remove_list(mz, pc);
895 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 896 unlock_page_cgroup(pc);
fb59e9f1 897
69029cd5
KH
898 res_counter_uncharge(&mem->res, PAGE_SIZE);
899 css_put(&mem->css);
6d12e2d8 900
69029cd5 901 return;
d13d1443
KH
902
903unlock_out:
904 unlock_page_cgroup(pc);
905 return;
3c541e14
BS
906}
907
69029cd5
KH
908void mem_cgroup_uncharge_page(struct page *page)
909{
52d4b9ac
KH
910 /* early check. */
911 if (page_mapped(page))
912 return;
913 if (page->mapping && !PageAnon(page))
914 return;
69029cd5
KH
915 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
916}
917
918void mem_cgroup_uncharge_cache_page(struct page *page)
919{
920 VM_BUG_ON(page_mapped(page));
b7abea96 921 VM_BUG_ON(page->mapping);
69029cd5
KH
922 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
923}
924
d13d1443
KH
925void mem_cgroup_uncharge_swapcache(struct page *page)
926{
927 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
928}
929
ae41be37 930/*
01b1ae63
KH
931 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
932 * page belongs to.
ae41be37 933 */
01b1ae63 934int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
935{
936 struct page_cgroup *pc;
e8589cc1 937 struct mem_cgroup *mem = NULL;
e8589cc1 938 int ret = 0;
8869b8f6 939
4077960e
BS
940 if (mem_cgroup_subsys.disabled)
941 return 0;
942
52d4b9ac
KH
943 pc = lookup_page_cgroup(page);
944 lock_page_cgroup(pc);
945 if (PageCgroupUsed(pc)) {
e8589cc1
KH
946 mem = pc->mem_cgroup;
947 css_get(&mem->css);
e8589cc1 948 }
52d4b9ac 949 unlock_page_cgroup(pc);
01b1ae63 950
e8589cc1 951 if (mem) {
01b1ae63 952 ret = mem_cgroup_try_charge(NULL, GFP_HIGHUSER_MOVABLE, &mem);
e8589cc1
KH
953 css_put(&mem->css);
954 }
01b1ae63 955 *ptr = mem;
e8589cc1 956 return ret;
ae41be37 957}
8869b8f6 958
69029cd5 959/* remove redundant charge if migration failed*/
01b1ae63
KH
960void mem_cgroup_end_migration(struct mem_cgroup *mem,
961 struct page *oldpage, struct page *newpage)
ae41be37 962{
01b1ae63
KH
963 struct page *target, *unused;
964 struct page_cgroup *pc;
965 enum charge_type ctype;
966
967 if (!mem)
968 return;
969
970 /* at migration success, oldpage->mapping is NULL. */
971 if (oldpage->mapping) {
972 target = oldpage;
973 unused = NULL;
974 } else {
975 target = newpage;
976 unused = oldpage;
977 }
978
979 if (PageAnon(target))
980 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
981 else if (page_is_file_cache(target))
982 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
983 else
984 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
985
986 /* unused page is not on radix-tree now. */
d13d1443 987 if (unused)
01b1ae63
KH
988 __mem_cgroup_uncharge_common(unused, ctype);
989
990 pc = lookup_page_cgroup(target);
69029cd5 991 /*
01b1ae63
KH
992 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
993 * So, double-counting is effectively avoided.
994 */
995 __mem_cgroup_commit_charge(mem, pc, ctype);
996
997 /*
998 * Both of oldpage and newpage are still under lock_page().
999 * Then, we don't have to care about race in radix-tree.
1000 * But we have to be careful that this page is unmapped or not.
1001 *
1002 * There is a case for !page_mapped(). At the start of
1003 * migration, oldpage was mapped. But now, it's zapped.
1004 * But we know *target* page is not freed/reused under us.
1005 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1006 */
01b1ae63
KH
1007 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1008 mem_cgroup_uncharge_page(target);
ae41be37 1009}
78fb7466 1010
c9b0ed51
KH
1011/*
1012 * A call to try to shrink memory usage under specified resource controller.
1013 * This is typically used for page reclaiming for shmem for reducing side
1014 * effect of page allocation from shmem, which is used by some mem_cgroup.
1015 */
1016int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1017{
1018 struct mem_cgroup *mem;
1019 int progress = 0;
1020 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1021
cede86ac
LZ
1022 if (mem_cgroup_subsys.disabled)
1023 return 0;
9623e078
HD
1024 if (!mm)
1025 return 0;
cede86ac 1026
c9b0ed51
KH
1027 rcu_read_lock();
1028 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
1029 if (unlikely(!mem)) {
1030 rcu_read_unlock();
1031 return 0;
1032 }
c9b0ed51
KH
1033 css_get(&mem->css);
1034 rcu_read_unlock();
1035
1036 do {
1037 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
a10cebf5 1038 progress += res_counter_check_under_limit(&mem->res);
c9b0ed51
KH
1039 } while (!progress && --retry);
1040
1041 css_put(&mem->css);
1042 if (!retry)
1043 return -ENOMEM;
1044 return 0;
1045}
1046
d38d2a75
KM
1047static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1048 unsigned long long val)
628f4235
KH
1049{
1050
1051 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1052 int progress;
1053 int ret = 0;
1054
1055 while (res_counter_set_limit(&memcg->res, val)) {
1056 if (signal_pending(current)) {
1057 ret = -EINTR;
1058 break;
1059 }
1060 if (!retry_count) {
1061 ret = -EBUSY;
1062 break;
1063 }
bced0520
KH
1064 progress = try_to_free_mem_cgroup_pages(memcg,
1065 GFP_HIGHUSER_MOVABLE);
628f4235
KH
1066 if (!progress)
1067 retry_count--;
1068 }
1069 return ret;
1070}
1071
1072
cc847582
KH
1073/*
1074 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1075 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1076 */
f817ed48 1077static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
072c56c1 1078 struct mem_cgroup_per_zone *mz,
b69408e8 1079 enum lru_list lru)
cc847582 1080{
f817ed48 1081 struct page_cgroup *pc, *busy;
cc847582 1082 unsigned long flags;
f817ed48 1083 unsigned long loop;
072c56c1 1084 struct list_head *list;
f817ed48 1085 int ret = 0;
072c56c1 1086
b69408e8 1087 list = &mz->lists[lru];
cc847582 1088
f817ed48
KH
1089 loop = MEM_CGROUP_ZSTAT(mz, lru);
1090 /* give some margin against EBUSY etc...*/
1091 loop += 256;
1092 busy = NULL;
1093 while (loop--) {
1094 ret = 0;
1095 spin_lock_irqsave(&mz->lru_lock, flags);
1096 if (list_empty(list)) {
1097 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 1098 break;
f817ed48
KH
1099 }
1100 pc = list_entry(list->prev, struct page_cgroup, lru);
1101 if (busy == pc) {
1102 list_move(&pc->lru, list);
1103 busy = 0;
1104 spin_unlock_irqrestore(&mz->lru_lock, flags);
1105 continue;
1106 }
9b3c0a07 1107 spin_unlock_irqrestore(&mz->lru_lock, flags);
f817ed48
KH
1108
1109 ret = mem_cgroup_move_parent(pc, mem, GFP_HIGHUSER_MOVABLE);
1110 if (ret == -ENOMEM)
52d4b9ac 1111 break;
f817ed48
KH
1112
1113 if (ret == -EBUSY || ret == -EINVAL) {
1114 /* found lock contention or "pc" is obsolete. */
1115 busy = pc;
1116 cond_resched();
1117 } else
1118 busy = NULL;
cc847582 1119 }
f817ed48
KH
1120 if (!ret && !list_empty(list))
1121 return -EBUSY;
1122 return ret;
cc847582
KH
1123}
1124
1125/*
1126 * make mem_cgroup's charge to be 0 if there is no task.
1127 * This enables deleting this mem_cgroup.
1128 */
c1e862c1 1129static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1130{
f817ed48
KH
1131 int ret;
1132 int node, zid, shrink;
1133 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1134 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1135
cc847582 1136 css_get(&mem->css);
f817ed48
KH
1137
1138 shrink = 0;
c1e862c1
KH
1139 /* should free all ? */
1140 if (free_all)
1141 goto try_to_free;
f817ed48 1142move_account:
1ecaab2b 1143 while (mem->res.usage > 0) {
f817ed48 1144 ret = -EBUSY;
c1e862c1
KH
1145 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1146 goto out;
1147 ret = -EINTR;
1148 if (signal_pending(current))
cc847582 1149 goto out;
52d4b9ac
KH
1150 /* This is for making all *used* pages to be on LRU. */
1151 lru_add_drain_all();
f817ed48
KH
1152 ret = 0;
1153 for_each_node_state(node, N_POSSIBLE) {
1154 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1ecaab2b 1155 struct mem_cgroup_per_zone *mz;
b69408e8 1156 enum lru_list l;
1ecaab2b 1157 mz = mem_cgroup_zoneinfo(mem, node, zid);
f817ed48
KH
1158 for_each_lru(l) {
1159 ret = mem_cgroup_force_empty_list(mem,
1160 mz, l);
1161 if (ret)
1162 break;
1163 }
1ecaab2b 1164 }
f817ed48
KH
1165 if (ret)
1166 break;
1167 }
1168 /* it seems parent cgroup doesn't have enough mem */
1169 if (ret == -ENOMEM)
1170 goto try_to_free;
52d4b9ac 1171 cond_resched();
cc847582
KH
1172 }
1173 ret = 0;
1174out:
1175 css_put(&mem->css);
1176 return ret;
f817ed48
KH
1177
1178try_to_free:
c1e862c1
KH
1179 /* returns EBUSY if there is a task or if we come here twice. */
1180 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1181 ret = -EBUSY;
1182 goto out;
1183 }
c1e862c1
KH
1184 /* we call try-to-free pages for make this cgroup empty */
1185 lru_add_drain_all();
f817ed48
KH
1186 /* try to free all pages in this cgroup */
1187 shrink = 1;
1188 while (nr_retries && mem->res.usage > 0) {
1189 int progress;
c1e862c1
KH
1190
1191 if (signal_pending(current)) {
1192 ret = -EINTR;
1193 goto out;
1194 }
f817ed48
KH
1195 progress = try_to_free_mem_cgroup_pages(mem,
1196 GFP_HIGHUSER_MOVABLE);
c1e862c1 1197 if (!progress) {
f817ed48 1198 nr_retries--;
c1e862c1
KH
1199 /* maybe some writeback is necessary */
1200 congestion_wait(WRITE, HZ/10);
1201 }
f817ed48
KH
1202
1203 }
1204 /* try move_account...there may be some *locked* pages. */
1205 if (mem->res.usage)
1206 goto move_account;
1207 ret = 0;
1208 goto out;
cc847582
KH
1209}
1210
c1e862c1
KH
1211int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1212{
1213 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1214}
1215
1216
2c3daa72 1217static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1218{
2c3daa72
PM
1219 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
1220 cft->private);
8cdea7c0 1221}
628f4235
KH
1222/*
1223 * The user of this function is...
1224 * RES_LIMIT.
1225 */
856c13aa
PM
1226static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1227 const char *buffer)
8cdea7c0 1228{
628f4235
KH
1229 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1230 unsigned long long val;
1231 int ret;
1232
1233 switch (cft->private) {
1234 case RES_LIMIT:
1235 /* This function does all necessary parse...reuse it */
1236 ret = res_counter_memparse_write_strategy(buffer, &val);
1237 if (!ret)
1238 ret = mem_cgroup_resize_limit(memcg, val);
1239 break;
1240 default:
1241 ret = -EINVAL; /* should be BUG() ? */
1242 break;
1243 }
1244 return ret;
8cdea7c0
BS
1245}
1246
29f2a4da 1247static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1248{
1249 struct mem_cgroup *mem;
1250
1251 mem = mem_cgroup_from_cont(cont);
29f2a4da
PE
1252 switch (event) {
1253 case RES_MAX_USAGE:
1254 res_counter_reset_max(&mem->res);
1255 break;
1256 case RES_FAILCNT:
1257 res_counter_reset_failcnt(&mem->res);
1258 break;
1259 }
85cc59db 1260 return 0;
c84872e1
PE
1261}
1262
d2ceb9b7
KH
1263static const struct mem_cgroup_stat_desc {
1264 const char *msg;
1265 u64 unit;
1266} mem_cgroup_stat_desc[] = {
1267 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1268 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1269 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1270 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1271};
1272
c64745cf
PM
1273static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1274 struct cgroup_map_cb *cb)
d2ceb9b7 1275{
d2ceb9b7
KH
1276 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1277 struct mem_cgroup_stat *stat = &mem_cont->stat;
1278 int i;
1279
1280 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1281 s64 val;
1282
1283 val = mem_cgroup_read_stat(stat, i);
1284 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1285 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1286 }
6d12e2d8
KH
1287 /* showing # of active pages */
1288 {
4f98a2fe
RR
1289 unsigned long active_anon, inactive_anon;
1290 unsigned long active_file, inactive_file;
7b854121 1291 unsigned long unevictable;
4f98a2fe
RR
1292
1293 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1294 LRU_INACTIVE_ANON);
1295 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1296 LRU_ACTIVE_ANON);
1297 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1298 LRU_INACTIVE_FILE);
1299 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1300 LRU_ACTIVE_FILE);
7b854121
LS
1301 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1302 LRU_UNEVICTABLE);
1303
4f98a2fe
RR
1304 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1305 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1306 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1307 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1308 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1309
6d12e2d8 1310 }
d2ceb9b7
KH
1311 return 0;
1312}
1313
c1e862c1 1314
8cdea7c0
BS
1315static struct cftype mem_cgroup_files[] = {
1316 {
0eea1030 1317 .name = "usage_in_bytes",
8cdea7c0 1318 .private = RES_USAGE,
2c3daa72 1319 .read_u64 = mem_cgroup_read,
8cdea7c0 1320 },
c84872e1
PE
1321 {
1322 .name = "max_usage_in_bytes",
1323 .private = RES_MAX_USAGE,
29f2a4da 1324 .trigger = mem_cgroup_reset,
c84872e1
PE
1325 .read_u64 = mem_cgroup_read,
1326 },
8cdea7c0 1327 {
0eea1030 1328 .name = "limit_in_bytes",
8cdea7c0 1329 .private = RES_LIMIT,
856c13aa 1330 .write_string = mem_cgroup_write,
2c3daa72 1331 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1332 },
1333 {
1334 .name = "failcnt",
1335 .private = RES_FAILCNT,
29f2a4da 1336 .trigger = mem_cgroup_reset,
2c3daa72 1337 .read_u64 = mem_cgroup_read,
8cdea7c0 1338 },
d2ceb9b7
KH
1339 {
1340 .name = "stat",
c64745cf 1341 .read_map = mem_control_stat_show,
d2ceb9b7 1342 },
c1e862c1
KH
1343 {
1344 .name = "force_empty",
1345 .trigger = mem_cgroup_force_empty_write,
1346 },
8cdea7c0
BS
1347};
1348
6d12e2d8
KH
1349static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1350{
1351 struct mem_cgroup_per_node *pn;
1ecaab2b 1352 struct mem_cgroup_per_zone *mz;
b69408e8 1353 enum lru_list l;
41e3355d 1354 int zone, tmp = node;
1ecaab2b
KH
1355 /*
1356 * This routine is called against possible nodes.
1357 * But it's BUG to call kmalloc() against offline node.
1358 *
1359 * TODO: this routine can waste much memory for nodes which will
1360 * never be onlined. It's better to use memory hotplug callback
1361 * function.
1362 */
41e3355d
KH
1363 if (!node_state(node, N_NORMAL_MEMORY))
1364 tmp = -1;
1365 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1366 if (!pn)
1367 return 1;
1ecaab2b 1368
6d12e2d8
KH
1369 mem->info.nodeinfo[node] = pn;
1370 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1371
1372 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1373 mz = &pn->zoneinfo[zone];
072c56c1 1374 spin_lock_init(&mz->lru_lock);
b69408e8
CL
1375 for_each_lru(l)
1376 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1377 }
6d12e2d8
KH
1378 return 0;
1379}
1380
1ecaab2b
KH
1381static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1382{
1383 kfree(mem->info.nodeinfo[node]);
1384}
1385
c8dad2bb
JB
1386static int mem_cgroup_size(void)
1387{
1388 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1389 return sizeof(struct mem_cgroup) + cpustat_size;
1390}
1391
33327948
KH
1392static struct mem_cgroup *mem_cgroup_alloc(void)
1393{
1394 struct mem_cgroup *mem;
c8dad2bb 1395 int size = mem_cgroup_size();
33327948 1396
c8dad2bb
JB
1397 if (size < PAGE_SIZE)
1398 mem = kmalloc(size, GFP_KERNEL);
33327948 1399 else
c8dad2bb 1400 mem = vmalloc(size);
33327948
KH
1401
1402 if (mem)
c8dad2bb 1403 memset(mem, 0, size);
33327948
KH
1404 return mem;
1405}
1406
1407static void mem_cgroup_free(struct mem_cgroup *mem)
1408{
c8dad2bb 1409 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
1410 kfree(mem);
1411 else
1412 vfree(mem);
1413}
1414
1415
c077719b
KH
1416#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1417static void __init enable_swap_cgroup(void)
1418{
1419 if (!mem_cgroup_subsys.disabled && really_do_swap_account)
1420 do_swap_account = 1;
1421}
1422#else
1423static void __init enable_swap_cgroup(void)
1424{
1425}
1426#endif
1427
8cdea7c0
BS
1428static struct cgroup_subsys_state *
1429mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1430{
1431 struct mem_cgroup *mem;
6d12e2d8 1432 int node;
8cdea7c0 1433
c8dad2bb
JB
1434 mem = mem_cgroup_alloc();
1435 if (!mem)
1436 return ERR_PTR(-ENOMEM);
78fb7466 1437
8cdea7c0 1438 res_counter_init(&mem->res);
1ecaab2b 1439
6d12e2d8
KH
1440 for_each_node_state(node, N_POSSIBLE)
1441 if (alloc_mem_cgroup_per_zone_info(mem, node))
1442 goto free_out;
c077719b
KH
1443 /* root ? */
1444 if (cont->parent == NULL)
1445 enable_swap_cgroup();
6d12e2d8 1446
8cdea7c0 1447 return &mem->css;
6d12e2d8
KH
1448free_out:
1449 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1450 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 1451 mem_cgroup_free(mem);
2dda81ca 1452 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1453}
1454
df878fb0
KH
1455static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1456 struct cgroup *cont)
1457{
1458 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c1e862c1 1459 mem_cgroup_force_empty(mem, false);
df878fb0
KH
1460}
1461
8cdea7c0
BS
1462static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1463 struct cgroup *cont)
1464{
6d12e2d8
KH
1465 int node;
1466 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1467
1468 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1469 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1470
33327948 1471 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
1472}
1473
1474static int mem_cgroup_populate(struct cgroup_subsys *ss,
1475 struct cgroup *cont)
1476{
1477 return cgroup_add_files(cont, ss, mem_cgroup_files,
1478 ARRAY_SIZE(mem_cgroup_files));
1479}
1480
67e465a7
BS
1481static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1482 struct cgroup *cont,
1483 struct cgroup *old_cont,
1484 struct task_struct *p)
1485{
1486 struct mm_struct *mm;
1487 struct mem_cgroup *mem, *old_mem;
1488
1489 mm = get_task_mm(p);
1490 if (mm == NULL)
1491 return;
1492
1493 mem = mem_cgroup_from_cont(cont);
1494 old_mem = mem_cgroup_from_cont(old_cont);
1495
67e465a7
BS
1496 /*
1497 * Only thread group leaders are allowed to migrate, the mm_struct is
1498 * in effect owned by the leader
1499 */
52ea27eb 1500 if (!thread_group_leader(p))
67e465a7
BS
1501 goto out;
1502
67e465a7
BS
1503out:
1504 mmput(mm);
67e465a7
BS
1505}
1506
8cdea7c0
BS
1507struct cgroup_subsys mem_cgroup_subsys = {
1508 .name = "memory",
1509 .subsys_id = mem_cgroup_subsys_id,
1510 .create = mem_cgroup_create,
df878fb0 1511 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1512 .destroy = mem_cgroup_destroy,
1513 .populate = mem_cgroup_populate,
67e465a7 1514 .attach = mem_cgroup_move_task,
6d12e2d8 1515 .early_init = 0,
8cdea7c0 1516};
c077719b
KH
1517
1518#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1519
1520static int __init disable_swap_account(char *s)
1521{
1522 really_do_swap_account = 0;
1523 return 1;
1524}
1525__setup("noswapaccount", disable_swap_account);
1526#endif