]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: move all acccounting to parent at rmdir()
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
b6ac57d5 29#include <linux/slab.h>
66e1707b
BS
30#include <linux/swap.h>
31#include <linux/spinlock.h>
32#include <linux/fs.h>
d2ceb9b7 33#include <linux/seq_file.h>
33327948 34#include <linux/vmalloc.h>
b69408e8 35#include <linux/mm_inline.h>
52d4b9ac 36#include <linux/page_cgroup.h>
8cdea7c0 37
8697d331
BS
38#include <asm/uaccess.h>
39
a181b0e8 40struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 41#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 42
d52aa412
KH
43/*
44 * Statistics for memory cgroup.
45 */
46enum mem_cgroup_stat_index {
47 /*
48 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49 */
50 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
51 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
52 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
53 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
54
55 MEM_CGROUP_STAT_NSTATS,
56};
57
58struct mem_cgroup_stat_cpu {
59 s64 count[MEM_CGROUP_STAT_NSTATS];
60} ____cacheline_aligned_in_smp;
61
62struct mem_cgroup_stat {
63 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
64};
65
66/*
67 * For accounting under irq disable, no need for increment preempt count.
68 */
addb9efe 69static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
70 enum mem_cgroup_stat_index idx, int val)
71{
addb9efe 72 stat->count[idx] += val;
d52aa412
KH
73}
74
75static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 enum mem_cgroup_stat_index idx)
77{
78 int cpu;
79 s64 ret = 0;
80 for_each_possible_cpu(cpu)
81 ret += stat->cpustat[cpu].count[idx];
82 return ret;
83}
84
6d12e2d8
KH
85/*
86 * per-zone information in memory controller.
87 */
6d12e2d8 88struct mem_cgroup_per_zone {
072c56c1
KH
89 /*
90 * spin_lock to protect the per cgroup LRU
91 */
92 spinlock_t lru_lock;
b69408e8
CL
93 struct list_head lists[NR_LRU_LISTS];
94 unsigned long count[NR_LRU_LISTS];
6d12e2d8
KH
95};
96/* Macro for accessing counter */
97#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
98
99struct mem_cgroup_per_node {
100 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
101};
102
103struct mem_cgroup_lru_info {
104 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
105};
106
8cdea7c0
BS
107/*
108 * The memory controller data structure. The memory controller controls both
109 * page cache and RSS per cgroup. We would eventually like to provide
110 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
111 * to help the administrator determine what knobs to tune.
112 *
113 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
114 * we hit the water mark. May be even add a low water mark, such that
115 * no reclaim occurs from a cgroup at it's low water mark, this is
116 * a feature that will be implemented much later in the future.
8cdea7c0
BS
117 */
118struct mem_cgroup {
119 struct cgroup_subsys_state css;
120 /*
121 * the counter to account for memory usage
122 */
123 struct res_counter res;
78fb7466
PE
124 /*
125 * Per cgroup active and inactive list, similar to the
126 * per zone LRU lists.
78fb7466 127 */
6d12e2d8 128 struct mem_cgroup_lru_info info;
072c56c1 129
6c48a1d0 130 int prev_priority; /* for recording reclaim priority */
d52aa412
KH
131 /*
132 * statistics.
133 */
134 struct mem_cgroup_stat stat;
8cdea7c0 135};
8869b8f6 136static struct mem_cgroup init_mem_cgroup;
8cdea7c0 137
217bc319
KH
138enum charge_type {
139 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
140 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 141 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5
KH
142 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
143 NR_CHARGE_TYPE,
144};
145
52d4b9ac
KH
146/* only for here (for easy reading.) */
147#define PCGF_CACHE (1UL << PCG_CACHE)
148#define PCGF_USED (1UL << PCG_USED)
149#define PCGF_ACTIVE (1UL << PCG_ACTIVE)
150#define PCGF_LOCK (1UL << PCG_LOCK)
151#define PCGF_FILE (1UL << PCG_FILE)
c05555b5
KH
152static const unsigned long
153pcg_default_flags[NR_CHARGE_TYPE] = {
52d4b9ac
KH
154 PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
155 PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
156 PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
157 0, /* FORCE */
217bc319
KH
158};
159
d52aa412
KH
160/*
161 * Always modified under lru lock. Then, not necessary to preempt_disable()
162 */
c05555b5
KH
163static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
164 struct page_cgroup *pc,
165 bool charge)
d52aa412
KH
166{
167 int val = (charge)? 1 : -1;
168 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 169 struct mem_cgroup_stat_cpu *cpustat;
d52aa412 170
8869b8f6 171 VM_BUG_ON(!irqs_disabled());
addb9efe
KH
172
173 cpustat = &stat->cpustat[smp_processor_id()];
c05555b5 174 if (PageCgroupCache(pc))
addb9efe 175 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 176 else
addb9efe 177 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
178
179 if (charge)
addb9efe 180 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
181 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
182 else
addb9efe 183 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 184 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
6d12e2d8
KH
185}
186
d5b69e38 187static struct mem_cgroup_per_zone *
6d12e2d8
KH
188mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
189{
6d12e2d8
KH
190 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
191}
192
d5b69e38 193static struct mem_cgroup_per_zone *
6d12e2d8
KH
194page_cgroup_zoneinfo(struct page_cgroup *pc)
195{
196 struct mem_cgroup *mem = pc->mem_cgroup;
197 int nid = page_cgroup_nid(pc);
198 int zid = page_cgroup_zid(pc);
d52aa412 199
6d12e2d8
KH
200 return mem_cgroup_zoneinfo(mem, nid, zid);
201}
202
203static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 204 enum lru_list idx)
6d12e2d8
KH
205{
206 int nid, zid;
207 struct mem_cgroup_per_zone *mz;
208 u64 total = 0;
209
210 for_each_online_node(nid)
211 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
212 mz = mem_cgroup_zoneinfo(mem, nid, zid);
213 total += MEM_CGROUP_ZSTAT(mz, idx);
214 }
215 return total;
d52aa412
KH
216}
217
d5b69e38 218static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
219{
220 return container_of(cgroup_subsys_state(cont,
221 mem_cgroup_subsys_id), struct mem_cgroup,
222 css);
223}
224
cf475ad2 225struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 226{
31a78f23
BS
227 /*
228 * mm_update_next_owner() may clear mm->owner to NULL
229 * if it races with swapoff, page migration, etc.
230 * So this can be called with p == NULL.
231 */
232 if (unlikely(!p))
233 return NULL;
234
78fb7466
PE
235 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
236 struct mem_cgroup, css);
237}
238
3eae90c3
KH
239static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
240 struct page_cgroup *pc)
6d12e2d8 241{
4f98a2fe
RR
242 int lru = LRU_BASE;
243
c05555b5 244 if (PageCgroupUnevictable(pc))
894bc310
LS
245 lru = LRU_UNEVICTABLE;
246 else {
c05555b5 247 if (PageCgroupActive(pc))
894bc310 248 lru += LRU_ACTIVE;
c05555b5 249 if (PageCgroupFile(pc))
894bc310
LS
250 lru += LRU_FILE;
251 }
6d12e2d8 252
b69408e8 253 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
6d12e2d8 254
c05555b5 255 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
508b7be0 256 list_del(&pc->lru);
6d12e2d8
KH
257}
258
3eae90c3 259static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
f817ed48 260 struct page_cgroup *pc, bool hot)
6d12e2d8 261{
4f98a2fe 262 int lru = LRU_BASE;
b69408e8 263
c05555b5 264 if (PageCgroupUnevictable(pc))
894bc310
LS
265 lru = LRU_UNEVICTABLE;
266 else {
c05555b5 267 if (PageCgroupActive(pc))
894bc310 268 lru += LRU_ACTIVE;
c05555b5 269 if (PageCgroupFile(pc))
894bc310
LS
270 lru += LRU_FILE;
271 }
b69408e8
CL
272
273 MEM_CGROUP_ZSTAT(mz, lru) += 1;
f817ed48
KH
274 if (hot)
275 list_add(&pc->lru, &mz->lists[lru]);
276 else
277 list_add_tail(&pc->lru, &mz->lists[lru]);
6d12e2d8 278
c05555b5 279 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
6d12e2d8
KH
280}
281
894bc310 282static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
66e1707b 283{
6d12e2d8 284 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
c05555b5
KH
285 int active = PageCgroupActive(pc);
286 int file = PageCgroupFile(pc);
287 int unevictable = PageCgroupUnevictable(pc);
894bc310
LS
288 enum lru_list from = unevictable ? LRU_UNEVICTABLE :
289 (LRU_FILE * !!file + !!active);
6d12e2d8 290
894bc310
LS
291 if (lru == from)
292 return;
b69408e8 293
894bc310 294 MEM_CGROUP_ZSTAT(mz, from) -= 1;
c05555b5
KH
295 /*
296 * However this is done under mz->lru_lock, another flags, which
297 * are not related to LRU, will be modified from out-of-lock.
298 * We have to use atomic set/clear flags.
299 */
894bc310 300 if (is_unevictable_lru(lru)) {
c05555b5
KH
301 ClearPageCgroupActive(pc);
302 SetPageCgroupUnevictable(pc);
894bc310
LS
303 } else {
304 if (is_active_lru(lru))
c05555b5 305 SetPageCgroupActive(pc);
894bc310 306 else
c05555b5
KH
307 ClearPageCgroupActive(pc);
308 ClearPageCgroupUnevictable(pc);
894bc310 309 }
b69408e8 310
b69408e8
CL
311 MEM_CGROUP_ZSTAT(mz, lru) += 1;
312 list_move(&pc->lru, &mz->lists[lru]);
66e1707b
BS
313}
314
4c4a2214
DR
315int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
316{
317 int ret;
318
319 task_lock(task);
bd845e38 320 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
321 task_unlock(task);
322 return ret;
323}
324
66e1707b
BS
325/*
326 * This routine assumes that the appropriate zone's lru lock is already held
327 */
894bc310 328void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
66e1707b 329{
427d5416 330 struct page_cgroup *pc;
072c56c1
KH
331 struct mem_cgroup_per_zone *mz;
332 unsigned long flags;
333
cede86ac
LZ
334 if (mem_cgroup_subsys.disabled)
335 return;
336
2680eed7
HD
337 /*
338 * We cannot lock_page_cgroup while holding zone's lru_lock,
339 * because other holders of lock_page_cgroup can be interrupted
340 * with an attempt to rotate_reclaimable_page. But we cannot
341 * safely get to page_cgroup without it, so just try_lock it:
342 * mem_cgroup_isolate_pages allows for page left on wrong list.
343 */
52d4b9ac
KH
344 pc = lookup_page_cgroup(page);
345 if (!trylock_page_cgroup(pc))
66e1707b 346 return;
52d4b9ac 347 if (pc && PageCgroupUsed(pc)) {
2680eed7 348 mz = page_cgroup_zoneinfo(pc);
2680eed7 349 spin_lock_irqsave(&mz->lru_lock, flags);
894bc310 350 __mem_cgroup_move_lists(pc, lru);
2680eed7 351 spin_unlock_irqrestore(&mz->lru_lock, flags);
9b3c0a07 352 }
52d4b9ac 353 unlock_page_cgroup(pc);
66e1707b
BS
354}
355
58ae83db
KH
356/*
357 * Calculate mapped_ratio under memory controller. This will be used in
358 * vmscan.c for deteremining we have to reclaim mapped pages.
359 */
360int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
361{
362 long total, rss;
363
364 /*
365 * usage is recorded in bytes. But, here, we assume the number of
366 * physical pages can be represented by "long" on any arch.
367 */
368 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
369 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
370 return (int)((rss * 100L) / total);
371}
8869b8f6 372
6c48a1d0
KH
373/*
374 * prev_priority control...this will be used in memory reclaim path.
375 */
376int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
377{
378 return mem->prev_priority;
379}
380
381void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
382{
383 if (priority < mem->prev_priority)
384 mem->prev_priority = priority;
385}
386
387void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
388{
389 mem->prev_priority = priority;
390}
391
cc38108e
KH
392/*
393 * Calculate # of pages to be scanned in this priority/zone.
394 * See also vmscan.c
395 *
396 * priority starts from "DEF_PRIORITY" and decremented in each loop.
397 * (see include/linux/mmzone.h)
398 */
399
b69408e8
CL
400long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
401 int priority, enum lru_list lru)
cc38108e 402{
b69408e8 403 long nr_pages;
cc38108e
KH
404 int nid = zone->zone_pgdat->node_id;
405 int zid = zone_idx(zone);
406 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
407
b69408e8 408 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 409
b69408e8 410 return (nr_pages >> priority);
cc38108e
KH
411}
412
66e1707b
BS
413unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
414 struct list_head *dst,
415 unsigned long *scanned, int order,
416 int mode, struct zone *z,
417 struct mem_cgroup *mem_cont,
4f98a2fe 418 int active, int file)
66e1707b
BS
419{
420 unsigned long nr_taken = 0;
421 struct page *page;
422 unsigned long scan;
423 LIST_HEAD(pc_list);
424 struct list_head *src;
ff7283fa 425 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
426 int nid = z->zone_pgdat->node_id;
427 int zid = zone_idx(z);
428 struct mem_cgroup_per_zone *mz;
4f98a2fe 429 int lru = LRU_FILE * !!file + !!active;
66e1707b 430
cf475ad2 431 BUG_ON(!mem_cont);
1ecaab2b 432 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 433 src = &mz->lists[lru];
66e1707b 434
072c56c1 435 spin_lock(&mz->lru_lock);
ff7283fa
KH
436 scan = 0;
437 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 438 if (scan >= nr_to_scan)
ff7283fa 439 break;
52d4b9ac
KH
440 if (unlikely(!PageCgroupUsed(pc)))
441 continue;
66e1707b 442 page = pc->page;
66e1707b 443
436c6541 444 if (unlikely(!PageLRU(page)))
ff7283fa 445 continue;
ff7283fa 446
4f98a2fe
RR
447 /*
448 * TODO: play better with lumpy reclaim, grabbing anything.
449 */
894bc310
LS
450 if (PageUnevictable(page) ||
451 (PageActive(page) && !active) ||
452 (!PageActive(page) && active)) {
453 __mem_cgroup_move_lists(pc, page_lru(page));
66e1707b
BS
454 continue;
455 }
456
436c6541
HD
457 scan++;
458 list_move(&pc->lru, &pc_list);
66e1707b 459
4f98a2fe 460 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
461 list_move(&page->lru, dst);
462 nr_taken++;
463 }
464 }
465
466 list_splice(&pc_list, src);
072c56c1 467 spin_unlock(&mz->lru_lock);
66e1707b
BS
468
469 *scanned = scan;
470 return nr_taken;
471}
472
f817ed48
KH
473/*
474 * Unlike exported interface, "oom" parameter is added. if oom==true,
475 * oom-killer can be invoked.
8a9f3ccd 476 */
f817ed48
KH
477static int __mem_cgroup_try_charge(struct mm_struct *mm,
478 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
8a9f3ccd
BS
479{
480 struct mem_cgroup *mem;
7a81b88c 481 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8a9f3ccd 482 /*
3be91277
HD
483 * We always charge the cgroup the mm_struct belongs to.
484 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
485 * thread group leader migrates. It's possible that mm is not
486 * set, if so charge the init_mm (happens for pagecache usage).
487 */
7a81b88c 488 if (likely(!*memcg)) {
e8589cc1
KH
489 rcu_read_lock();
490 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
491 if (unlikely(!mem)) {
492 rcu_read_unlock();
31a78f23
BS
493 return 0;
494 }
e8589cc1
KH
495 /*
496 * For every charge from the cgroup, increment reference count
497 */
498 css_get(&mem->css);
7a81b88c 499 *memcg = mem;
e8589cc1
KH
500 rcu_read_unlock();
501 } else {
7a81b88c
KH
502 mem = *memcg;
503 css_get(&mem->css);
e8589cc1 504 }
8a9f3ccd 505
7a81b88c 506
addb9efe 507 while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
3be91277 508 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 509 goto nomem;
e1a1cd59
BS
510
511 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
512 continue;
513
514 /*
8869b8f6
HD
515 * try_to_free_mem_cgroup_pages() might not give us a full
516 * picture of reclaim. Some pages are reclaimed and might be
517 * moved to swap cache or just unmapped from the cgroup.
518 * Check the limit again to see if the reclaim reduced the
519 * current usage of the cgroup before giving up
520 */
66e1707b
BS
521 if (res_counter_check_under_limit(&mem->res))
522 continue;
3be91277
HD
523
524 if (!nr_retries--) {
f817ed48
KH
525 if (oom)
526 mem_cgroup_out_of_memory(mem, gfp_mask);
7a81b88c 527 goto nomem;
66e1707b 528 }
8a9f3ccd 529 }
7a81b88c
KH
530 return 0;
531nomem:
532 css_put(&mem->css);
533 return -ENOMEM;
534}
8a9f3ccd 535
f817ed48
KH
536/**
537 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
538 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
539 * @gfp_mask: gfp_mask for reclaim.
540 * @memcg: a pointer to memory cgroup which is charged against.
541 *
542 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
543 * memory cgroup from @mm is got and stored in *memcg.
544 *
545 * Returns 0 if success. -ENOMEM at failure.
546 * This call can invoke OOM-Killer.
547 */
548
549int mem_cgroup_try_charge(struct mm_struct *mm,
550 gfp_t mask, struct mem_cgroup **memcg)
551{
552 return __mem_cgroup_try_charge(mm, mask, memcg, true);
553}
554
7a81b88c
KH
555/*
556 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
557 * USED state. If already USED, uncharge and return.
558 */
559
560static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
561 struct page_cgroup *pc,
562 enum charge_type ctype)
563{
564 struct mem_cgroup_per_zone *mz;
565 unsigned long flags;
566
567 /* try_charge() can return NULL to *memcg, taking care of it. */
568 if (!mem)
569 return;
52d4b9ac
KH
570
571 lock_page_cgroup(pc);
572 if (unlikely(PageCgroupUsed(pc))) {
573 unlock_page_cgroup(pc);
574 res_counter_uncharge(&mem->res, PAGE_SIZE);
575 css_put(&mem->css);
7a81b88c 576 return;
52d4b9ac 577 }
8a9f3ccd 578 pc->mem_cgroup = mem;
508b7be0
KH
579 /*
580 * If a page is accounted as a page cache, insert to inactive list.
581 * If anon, insert to active list.
582 */
c05555b5 583 pc->flags = pcg_default_flags[ctype];
3be91277 584
072c56c1 585 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 586
072c56c1 587 spin_lock_irqsave(&mz->lru_lock, flags);
f817ed48 588 __mem_cgroup_add_list(mz, pc, true);
072c56c1 589 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 590 unlock_page_cgroup(pc);
7a81b88c 591}
66e1707b 592
f817ed48
KH
593/**
594 * mem_cgroup_move_account - move account of the page
595 * @pc: page_cgroup of the page.
596 * @from: mem_cgroup which the page is moved from.
597 * @to: mem_cgroup which the page is moved to. @from != @to.
598 *
599 * The caller must confirm following.
600 * 1. disable irq.
601 * 2. lru_lock of old mem_cgroup(@from) should be held.
602 *
603 * returns 0 at success,
604 * returns -EBUSY when lock is busy or "pc" is unstable.
605 *
606 * This function does "uncharge" from old cgroup but doesn't do "charge" to
607 * new cgroup. It should be done by a caller.
608 */
609
610static int mem_cgroup_move_account(struct page_cgroup *pc,
611 struct mem_cgroup *from, struct mem_cgroup *to)
612{
613 struct mem_cgroup_per_zone *from_mz, *to_mz;
614 int nid, zid;
615 int ret = -EBUSY;
616
617 VM_BUG_ON(!irqs_disabled());
618 VM_BUG_ON(from == to);
619
620 nid = page_cgroup_nid(pc);
621 zid = page_cgroup_zid(pc);
622 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
623 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
624
625
626 if (!trylock_page_cgroup(pc))
627 return ret;
628
629 if (!PageCgroupUsed(pc))
630 goto out;
631
632 if (pc->mem_cgroup != from)
633 goto out;
634
635 if (spin_trylock(&to_mz->lru_lock)) {
636 __mem_cgroup_remove_list(from_mz, pc);
637 css_put(&from->css);
638 res_counter_uncharge(&from->res, PAGE_SIZE);
639 pc->mem_cgroup = to;
640 css_get(&to->css);
641 __mem_cgroup_add_list(to_mz, pc, false);
642 ret = 0;
643 spin_unlock(&to_mz->lru_lock);
644 }
645out:
646 unlock_page_cgroup(pc);
647 return ret;
648}
649
650/*
651 * move charges to its parent.
652 */
653
654static int mem_cgroup_move_parent(struct page_cgroup *pc,
655 struct mem_cgroup *child,
656 gfp_t gfp_mask)
657{
658 struct cgroup *cg = child->css.cgroup;
659 struct cgroup *pcg = cg->parent;
660 struct mem_cgroup *parent;
661 struct mem_cgroup_per_zone *mz;
662 unsigned long flags;
663 int ret;
664
665 /* Is ROOT ? */
666 if (!pcg)
667 return -EINVAL;
668
669 parent = mem_cgroup_from_cont(pcg);
670
671 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
672 if (ret)
673 return ret;
674
675 mz = mem_cgroup_zoneinfo(child,
676 page_cgroup_nid(pc), page_cgroup_zid(pc));
677
678 spin_lock_irqsave(&mz->lru_lock, flags);
679 ret = mem_cgroup_move_account(pc, child, parent);
680 spin_unlock_irqrestore(&mz->lru_lock, flags);
681
682 /* drop extra refcnt */
683 css_put(&parent->css);
684 /* uncharge if move fails */
685 if (ret)
686 res_counter_uncharge(&parent->res, PAGE_SIZE);
687
688 return ret;
689}
690
7a81b88c
KH
691/*
692 * Charge the memory controller for page usage.
693 * Return
694 * 0 if the charge was successful
695 * < 0 if the cgroup is over its limit
696 */
697static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
698 gfp_t gfp_mask, enum charge_type ctype,
699 struct mem_cgroup *memcg)
700{
701 struct mem_cgroup *mem;
702 struct page_cgroup *pc;
703 int ret;
704
705 pc = lookup_page_cgroup(page);
706 /* can happen at boot */
707 if (unlikely(!pc))
708 return 0;
709 prefetchw(pc);
710
711 mem = memcg;
f817ed48 712 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
7a81b88c
KH
713 if (ret)
714 return ret;
715
716 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 717 return 0;
8a9f3ccd
BS
718}
719
7a81b88c
KH
720int mem_cgroup_newpage_charge(struct page *page,
721 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 722{
cede86ac
LZ
723 if (mem_cgroup_subsys.disabled)
724 return 0;
52d4b9ac
KH
725 if (PageCompound(page))
726 return 0;
69029cd5
KH
727 /*
728 * If already mapped, we don't have to account.
729 * If page cache, page->mapping has address_space.
730 * But page->mapping may have out-of-use anon_vma pointer,
731 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
732 * is NULL.
733 */
734 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
735 return 0;
736 if (unlikely(!mm))
737 mm = &init_mm;
217bc319 738 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 739 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
740}
741
e1a1cd59
BS
742int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
743 gfp_t gfp_mask)
8697d331 744{
cede86ac
LZ
745 if (mem_cgroup_subsys.disabled)
746 return 0;
52d4b9ac
KH
747 if (PageCompound(page))
748 return 0;
accf163e
KH
749 /*
750 * Corner case handling. This is called from add_to_page_cache()
751 * in usual. But some FS (shmem) precharges this page before calling it
752 * and call add_to_page_cache() with GFP_NOWAIT.
753 *
754 * For GFP_NOWAIT case, the page may be pre-charged before calling
755 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
756 * charge twice. (It works but has to pay a bit larger cost.)
757 */
758 if (!(gfp_mask & __GFP_WAIT)) {
759 struct page_cgroup *pc;
760
52d4b9ac
KH
761
762 pc = lookup_page_cgroup(page);
763 if (!pc)
764 return 0;
765 lock_page_cgroup(pc);
766 if (PageCgroupUsed(pc)) {
767 unlock_page_cgroup(pc);
accf163e
KH
768 return 0;
769 }
52d4b9ac 770 unlock_page_cgroup(pc);
accf163e
KH
771 }
772
69029cd5 773 if (unlikely(!mm))
8697d331 774 mm = &init_mm;
accf163e 775
c05555b5
KH
776 if (page_is_file_cache(page))
777 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 778 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
779 else
780 return mem_cgroup_charge_common(page, mm, gfp_mask,
781 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
782}
783
7a81b88c
KH
784void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
785{
786 struct page_cgroup *pc;
787
788 if (mem_cgroup_subsys.disabled)
789 return;
790 if (!ptr)
791 return;
792 pc = lookup_page_cgroup(page);
793 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
794}
795
796void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
797{
798 if (mem_cgroup_subsys.disabled)
799 return;
800 if (!mem)
801 return;
802 res_counter_uncharge(&mem->res, PAGE_SIZE);
803 css_put(&mem->css);
804}
805
806
8a9f3ccd 807/*
69029cd5 808 * uncharge if !page_mapped(page)
8a9f3ccd 809 */
69029cd5
KH
810static void
811__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 812{
8289546e 813 struct page_cgroup *pc;
8a9f3ccd 814 struct mem_cgroup *mem;
072c56c1 815 struct mem_cgroup_per_zone *mz;
66e1707b 816 unsigned long flags;
8a9f3ccd 817
4077960e
BS
818 if (mem_cgroup_subsys.disabled)
819 return;
820
8697d331 821 /*
3c541e14 822 * Check if our page_cgroup is valid
8697d331 823 */
52d4b9ac
KH
824 pc = lookup_page_cgroup(page);
825 if (unlikely(!pc || !PageCgroupUsed(pc)))
826 return;
b9c565d5 827
52d4b9ac
KH
828 lock_page_cgroup(pc);
829 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page))
830 || !PageCgroupUsed(pc)) {
831 /* This happens at race in zap_pte_range() and do_swap_page()*/
832 unlock_page_cgroup(pc);
833 return;
834 }
835 ClearPageCgroupUsed(pc);
836 mem = pc->mem_cgroup;
b9c565d5 837
69029cd5
KH
838 mz = page_cgroup_zoneinfo(pc);
839 spin_lock_irqsave(&mz->lru_lock, flags);
840 __mem_cgroup_remove_list(mz, pc);
841 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 842 unlock_page_cgroup(pc);
fb59e9f1 843
69029cd5
KH
844 res_counter_uncharge(&mem->res, PAGE_SIZE);
845 css_put(&mem->css);
6d12e2d8 846
69029cd5 847 return;
3c541e14
BS
848}
849
69029cd5
KH
850void mem_cgroup_uncharge_page(struct page *page)
851{
52d4b9ac
KH
852 /* early check. */
853 if (page_mapped(page))
854 return;
855 if (page->mapping && !PageAnon(page))
856 return;
69029cd5
KH
857 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
858}
859
860void mem_cgroup_uncharge_cache_page(struct page *page)
861{
862 VM_BUG_ON(page_mapped(page));
b7abea96 863 VM_BUG_ON(page->mapping);
69029cd5
KH
864 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
865}
866
ae41be37 867/*
01b1ae63
KH
868 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
869 * page belongs to.
ae41be37 870 */
01b1ae63 871int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
872{
873 struct page_cgroup *pc;
e8589cc1 874 struct mem_cgroup *mem = NULL;
e8589cc1 875 int ret = 0;
8869b8f6 876
4077960e
BS
877 if (mem_cgroup_subsys.disabled)
878 return 0;
879
52d4b9ac
KH
880 pc = lookup_page_cgroup(page);
881 lock_page_cgroup(pc);
882 if (PageCgroupUsed(pc)) {
e8589cc1
KH
883 mem = pc->mem_cgroup;
884 css_get(&mem->css);
e8589cc1 885 }
52d4b9ac 886 unlock_page_cgroup(pc);
01b1ae63 887
e8589cc1 888 if (mem) {
01b1ae63 889 ret = mem_cgroup_try_charge(NULL, GFP_HIGHUSER_MOVABLE, &mem);
e8589cc1
KH
890 css_put(&mem->css);
891 }
01b1ae63 892 *ptr = mem;
e8589cc1 893 return ret;
ae41be37 894}
8869b8f6 895
69029cd5 896/* remove redundant charge if migration failed*/
01b1ae63
KH
897void mem_cgroup_end_migration(struct mem_cgroup *mem,
898 struct page *oldpage, struct page *newpage)
ae41be37 899{
01b1ae63
KH
900 struct page *target, *unused;
901 struct page_cgroup *pc;
902 enum charge_type ctype;
903
904 if (!mem)
905 return;
906
907 /* at migration success, oldpage->mapping is NULL. */
908 if (oldpage->mapping) {
909 target = oldpage;
910 unused = NULL;
911 } else {
912 target = newpage;
913 unused = oldpage;
914 }
915
916 if (PageAnon(target))
917 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
918 else if (page_is_file_cache(target))
919 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
920 else
921 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
922
923 /* unused page is not on radix-tree now. */
924 if (unused && ctype != MEM_CGROUP_CHARGE_TYPE_MAPPED)
925 __mem_cgroup_uncharge_common(unused, ctype);
926
927 pc = lookup_page_cgroup(target);
69029cd5 928 /*
01b1ae63
KH
929 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
930 * So, double-counting is effectively avoided.
931 */
932 __mem_cgroup_commit_charge(mem, pc, ctype);
933
934 /*
935 * Both of oldpage and newpage are still under lock_page().
936 * Then, we don't have to care about race in radix-tree.
937 * But we have to be careful that this page is unmapped or not.
938 *
939 * There is a case for !page_mapped(). At the start of
940 * migration, oldpage was mapped. But now, it's zapped.
941 * But we know *target* page is not freed/reused under us.
942 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 943 */
01b1ae63
KH
944 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
945 mem_cgroup_uncharge_page(target);
ae41be37 946}
78fb7466 947
c9b0ed51
KH
948/*
949 * A call to try to shrink memory usage under specified resource controller.
950 * This is typically used for page reclaiming for shmem for reducing side
951 * effect of page allocation from shmem, which is used by some mem_cgroup.
952 */
953int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
954{
955 struct mem_cgroup *mem;
956 int progress = 0;
957 int retry = MEM_CGROUP_RECLAIM_RETRIES;
958
cede86ac
LZ
959 if (mem_cgroup_subsys.disabled)
960 return 0;
9623e078
HD
961 if (!mm)
962 return 0;
cede86ac 963
c9b0ed51
KH
964 rcu_read_lock();
965 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
966 if (unlikely(!mem)) {
967 rcu_read_unlock();
968 return 0;
969 }
c9b0ed51
KH
970 css_get(&mem->css);
971 rcu_read_unlock();
972
973 do {
974 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
a10cebf5 975 progress += res_counter_check_under_limit(&mem->res);
c9b0ed51
KH
976 } while (!progress && --retry);
977
978 css_put(&mem->css);
979 if (!retry)
980 return -ENOMEM;
981 return 0;
982}
983
d38d2a75
KM
984static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
985 unsigned long long val)
628f4235
KH
986{
987
988 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
989 int progress;
990 int ret = 0;
991
992 while (res_counter_set_limit(&memcg->res, val)) {
993 if (signal_pending(current)) {
994 ret = -EINTR;
995 break;
996 }
997 if (!retry_count) {
998 ret = -EBUSY;
999 break;
1000 }
bced0520
KH
1001 progress = try_to_free_mem_cgroup_pages(memcg,
1002 GFP_HIGHUSER_MOVABLE);
628f4235
KH
1003 if (!progress)
1004 retry_count--;
1005 }
1006 return ret;
1007}
1008
1009
cc847582
KH
1010/*
1011 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1012 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1013 */
f817ed48 1014static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
072c56c1 1015 struct mem_cgroup_per_zone *mz,
b69408e8 1016 enum lru_list lru)
cc847582 1017{
f817ed48 1018 struct page_cgroup *pc, *busy;
cc847582 1019 unsigned long flags;
f817ed48 1020 unsigned long loop;
072c56c1 1021 struct list_head *list;
f817ed48 1022 int ret = 0;
072c56c1 1023
b69408e8 1024 list = &mz->lists[lru];
cc847582 1025
f817ed48
KH
1026 loop = MEM_CGROUP_ZSTAT(mz, lru);
1027 /* give some margin against EBUSY etc...*/
1028 loop += 256;
1029 busy = NULL;
1030 while (loop--) {
1031 ret = 0;
1032 spin_lock_irqsave(&mz->lru_lock, flags);
1033 if (list_empty(list)) {
1034 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 1035 break;
f817ed48
KH
1036 }
1037 pc = list_entry(list->prev, struct page_cgroup, lru);
1038 if (busy == pc) {
1039 list_move(&pc->lru, list);
1040 busy = 0;
1041 spin_unlock_irqrestore(&mz->lru_lock, flags);
1042 continue;
1043 }
9b3c0a07 1044 spin_unlock_irqrestore(&mz->lru_lock, flags);
f817ed48
KH
1045
1046 ret = mem_cgroup_move_parent(pc, mem, GFP_HIGHUSER_MOVABLE);
1047 if (ret == -ENOMEM)
52d4b9ac 1048 break;
f817ed48
KH
1049
1050 if (ret == -EBUSY || ret == -EINVAL) {
1051 /* found lock contention or "pc" is obsolete. */
1052 busy = pc;
1053 cond_resched();
1054 } else
1055 busy = NULL;
cc847582 1056 }
f817ed48
KH
1057 if (!ret && !list_empty(list))
1058 return -EBUSY;
1059 return ret;
cc847582
KH
1060}
1061
1062/*
1063 * make mem_cgroup's charge to be 0 if there is no task.
1064 * This enables deleting this mem_cgroup.
1065 */
d5b69e38 1066static int mem_cgroup_force_empty(struct mem_cgroup *mem)
cc847582 1067{
f817ed48
KH
1068 int ret;
1069 int node, zid, shrink;
1070 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8869b8f6 1071
cc847582 1072 css_get(&mem->css);
f817ed48
KH
1073
1074 shrink = 0;
1075move_account:
1ecaab2b 1076 while (mem->res.usage > 0) {
f817ed48 1077 ret = -EBUSY;
cc847582
KH
1078 if (atomic_read(&mem->css.cgroup->count) > 0)
1079 goto out;
f817ed48 1080
52d4b9ac
KH
1081 /* This is for making all *used* pages to be on LRU. */
1082 lru_add_drain_all();
f817ed48
KH
1083 ret = 0;
1084 for_each_node_state(node, N_POSSIBLE) {
1085 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1ecaab2b 1086 struct mem_cgroup_per_zone *mz;
b69408e8 1087 enum lru_list l;
1ecaab2b 1088 mz = mem_cgroup_zoneinfo(mem, node, zid);
f817ed48
KH
1089 for_each_lru(l) {
1090 ret = mem_cgroup_force_empty_list(mem,
1091 mz, l);
1092 if (ret)
1093 break;
1094 }
1ecaab2b 1095 }
f817ed48
KH
1096 if (ret)
1097 break;
1098 }
1099 /* it seems parent cgroup doesn't have enough mem */
1100 if (ret == -ENOMEM)
1101 goto try_to_free;
52d4b9ac 1102 cond_resched();
cc847582
KH
1103 }
1104 ret = 0;
1105out:
1106 css_put(&mem->css);
1107 return ret;
f817ed48
KH
1108
1109try_to_free:
1110 /* returns EBUSY if we come here twice. */
1111 if (shrink) {
1112 ret = -EBUSY;
1113 goto out;
1114 }
1115 /* try to free all pages in this cgroup */
1116 shrink = 1;
1117 while (nr_retries && mem->res.usage > 0) {
1118 int progress;
1119 progress = try_to_free_mem_cgroup_pages(mem,
1120 GFP_HIGHUSER_MOVABLE);
1121 if (!progress)
1122 nr_retries--;
1123
1124 }
1125 /* try move_account...there may be some *locked* pages. */
1126 if (mem->res.usage)
1127 goto move_account;
1128 ret = 0;
1129 goto out;
cc847582
KH
1130}
1131
2c3daa72 1132static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1133{
2c3daa72
PM
1134 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
1135 cft->private);
8cdea7c0 1136}
628f4235
KH
1137/*
1138 * The user of this function is...
1139 * RES_LIMIT.
1140 */
856c13aa
PM
1141static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1142 const char *buffer)
8cdea7c0 1143{
628f4235
KH
1144 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1145 unsigned long long val;
1146 int ret;
1147
1148 switch (cft->private) {
1149 case RES_LIMIT:
1150 /* This function does all necessary parse...reuse it */
1151 ret = res_counter_memparse_write_strategy(buffer, &val);
1152 if (!ret)
1153 ret = mem_cgroup_resize_limit(memcg, val);
1154 break;
1155 default:
1156 ret = -EINVAL; /* should be BUG() ? */
1157 break;
1158 }
1159 return ret;
8cdea7c0
BS
1160}
1161
29f2a4da 1162static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1163{
1164 struct mem_cgroup *mem;
1165
1166 mem = mem_cgroup_from_cont(cont);
29f2a4da
PE
1167 switch (event) {
1168 case RES_MAX_USAGE:
1169 res_counter_reset_max(&mem->res);
1170 break;
1171 case RES_FAILCNT:
1172 res_counter_reset_failcnt(&mem->res);
1173 break;
1174 }
85cc59db 1175 return 0;
c84872e1
PE
1176}
1177
d2ceb9b7
KH
1178static const struct mem_cgroup_stat_desc {
1179 const char *msg;
1180 u64 unit;
1181} mem_cgroup_stat_desc[] = {
1182 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1183 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1184 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1185 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1186};
1187
c64745cf
PM
1188static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1189 struct cgroup_map_cb *cb)
d2ceb9b7 1190{
d2ceb9b7
KH
1191 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1192 struct mem_cgroup_stat *stat = &mem_cont->stat;
1193 int i;
1194
1195 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1196 s64 val;
1197
1198 val = mem_cgroup_read_stat(stat, i);
1199 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1200 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1201 }
6d12e2d8
KH
1202 /* showing # of active pages */
1203 {
4f98a2fe
RR
1204 unsigned long active_anon, inactive_anon;
1205 unsigned long active_file, inactive_file;
7b854121 1206 unsigned long unevictable;
4f98a2fe
RR
1207
1208 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1209 LRU_INACTIVE_ANON);
1210 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1211 LRU_ACTIVE_ANON);
1212 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1213 LRU_INACTIVE_FILE);
1214 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1215 LRU_ACTIVE_FILE);
7b854121
LS
1216 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1217 LRU_UNEVICTABLE);
1218
4f98a2fe
RR
1219 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1220 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1221 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1222 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1223 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1224
6d12e2d8 1225 }
d2ceb9b7
KH
1226 return 0;
1227}
1228
8cdea7c0
BS
1229static struct cftype mem_cgroup_files[] = {
1230 {
0eea1030 1231 .name = "usage_in_bytes",
8cdea7c0 1232 .private = RES_USAGE,
2c3daa72 1233 .read_u64 = mem_cgroup_read,
8cdea7c0 1234 },
c84872e1
PE
1235 {
1236 .name = "max_usage_in_bytes",
1237 .private = RES_MAX_USAGE,
29f2a4da 1238 .trigger = mem_cgroup_reset,
c84872e1
PE
1239 .read_u64 = mem_cgroup_read,
1240 },
8cdea7c0 1241 {
0eea1030 1242 .name = "limit_in_bytes",
8cdea7c0 1243 .private = RES_LIMIT,
856c13aa 1244 .write_string = mem_cgroup_write,
2c3daa72 1245 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1246 },
1247 {
1248 .name = "failcnt",
1249 .private = RES_FAILCNT,
29f2a4da 1250 .trigger = mem_cgroup_reset,
2c3daa72 1251 .read_u64 = mem_cgroup_read,
8cdea7c0 1252 },
d2ceb9b7
KH
1253 {
1254 .name = "stat",
c64745cf 1255 .read_map = mem_control_stat_show,
d2ceb9b7 1256 },
8cdea7c0
BS
1257};
1258
6d12e2d8
KH
1259static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1260{
1261 struct mem_cgroup_per_node *pn;
1ecaab2b 1262 struct mem_cgroup_per_zone *mz;
b69408e8 1263 enum lru_list l;
41e3355d 1264 int zone, tmp = node;
1ecaab2b
KH
1265 /*
1266 * This routine is called against possible nodes.
1267 * But it's BUG to call kmalloc() against offline node.
1268 *
1269 * TODO: this routine can waste much memory for nodes which will
1270 * never be onlined. It's better to use memory hotplug callback
1271 * function.
1272 */
41e3355d
KH
1273 if (!node_state(node, N_NORMAL_MEMORY))
1274 tmp = -1;
1275 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1276 if (!pn)
1277 return 1;
1ecaab2b 1278
6d12e2d8
KH
1279 mem->info.nodeinfo[node] = pn;
1280 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1281
1282 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1283 mz = &pn->zoneinfo[zone];
072c56c1 1284 spin_lock_init(&mz->lru_lock);
b69408e8
CL
1285 for_each_lru(l)
1286 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1287 }
6d12e2d8
KH
1288 return 0;
1289}
1290
1ecaab2b
KH
1291static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1292{
1293 kfree(mem->info.nodeinfo[node]);
1294}
1295
33327948
KH
1296static struct mem_cgroup *mem_cgroup_alloc(void)
1297{
1298 struct mem_cgroup *mem;
1299
1300 if (sizeof(*mem) < PAGE_SIZE)
1301 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1302 else
1303 mem = vmalloc(sizeof(*mem));
1304
1305 if (mem)
1306 memset(mem, 0, sizeof(*mem));
1307 return mem;
1308}
1309
1310static void mem_cgroup_free(struct mem_cgroup *mem)
1311{
1312 if (sizeof(*mem) < PAGE_SIZE)
1313 kfree(mem);
1314 else
1315 vfree(mem);
1316}
1317
1318
8cdea7c0
BS
1319static struct cgroup_subsys_state *
1320mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1321{
1322 struct mem_cgroup *mem;
6d12e2d8 1323 int node;
8cdea7c0 1324
b6ac57d5 1325 if (unlikely((cont->parent) == NULL)) {
78fb7466 1326 mem = &init_mem_cgroup;
b6ac57d5 1327 } else {
33327948
KH
1328 mem = mem_cgroup_alloc();
1329 if (!mem)
1330 return ERR_PTR(-ENOMEM);
b6ac57d5 1331 }
78fb7466 1332
8cdea7c0 1333 res_counter_init(&mem->res);
1ecaab2b 1334
6d12e2d8
KH
1335 for_each_node_state(node, N_POSSIBLE)
1336 if (alloc_mem_cgroup_per_zone_info(mem, node))
1337 goto free_out;
1338
8cdea7c0 1339 return &mem->css;
6d12e2d8
KH
1340free_out:
1341 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1342 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1343 if (cont->parent != NULL)
33327948 1344 mem_cgroup_free(mem);
2dda81ca 1345 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1346}
1347
df878fb0
KH
1348static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1349 struct cgroup *cont)
1350{
1351 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1352 mem_cgroup_force_empty(mem);
1353}
1354
8cdea7c0
BS
1355static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1356 struct cgroup *cont)
1357{
6d12e2d8
KH
1358 int node;
1359 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1360
1361 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1362 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1363
33327948 1364 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
1365}
1366
1367static int mem_cgroup_populate(struct cgroup_subsys *ss,
1368 struct cgroup *cont)
1369{
1370 return cgroup_add_files(cont, ss, mem_cgroup_files,
1371 ARRAY_SIZE(mem_cgroup_files));
1372}
1373
67e465a7
BS
1374static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1375 struct cgroup *cont,
1376 struct cgroup *old_cont,
1377 struct task_struct *p)
1378{
1379 struct mm_struct *mm;
1380 struct mem_cgroup *mem, *old_mem;
1381
1382 mm = get_task_mm(p);
1383 if (mm == NULL)
1384 return;
1385
1386 mem = mem_cgroup_from_cont(cont);
1387 old_mem = mem_cgroup_from_cont(old_cont);
1388
67e465a7
BS
1389 /*
1390 * Only thread group leaders are allowed to migrate, the mm_struct is
1391 * in effect owned by the leader
1392 */
52ea27eb 1393 if (!thread_group_leader(p))
67e465a7
BS
1394 goto out;
1395
67e465a7
BS
1396out:
1397 mmput(mm);
67e465a7
BS
1398}
1399
8cdea7c0
BS
1400struct cgroup_subsys mem_cgroup_subsys = {
1401 .name = "memory",
1402 .subsys_id = mem_cgroup_subsys_id,
1403 .create = mem_cgroup_create,
df878fb0 1404 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1405 .destroy = mem_cgroup_destroy,
1406 .populate = mem_cgroup_populate,
67e465a7 1407 .attach = mem_cgroup_move_task,
6d12e2d8 1408 .early_init = 0,
8cdea7c0 1409};