]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: do not recalculate section unnecessarily in init_section_page_cgroup
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
b6ac57d5 29#include <linux/slab.h>
66e1707b
BS
30#include <linux/swap.h>
31#include <linux/spinlock.h>
32#include <linux/fs.h>
d2ceb9b7 33#include <linux/seq_file.h>
33327948 34#include <linux/vmalloc.h>
b69408e8 35#include <linux/mm_inline.h>
52d4b9ac 36#include <linux/page_cgroup.h>
8cdea7c0 37
8697d331
BS
38#include <asm/uaccess.h>
39
a181b0e8 40struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 41#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 42
d52aa412
KH
43/*
44 * Statistics for memory cgroup.
45 */
46enum mem_cgroup_stat_index {
47 /*
48 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49 */
50 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
51 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
52 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
53 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
54
55 MEM_CGROUP_STAT_NSTATS,
56};
57
58struct mem_cgroup_stat_cpu {
59 s64 count[MEM_CGROUP_STAT_NSTATS];
60} ____cacheline_aligned_in_smp;
61
62struct mem_cgroup_stat {
63 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
64};
65
66/*
67 * For accounting under irq disable, no need for increment preempt count.
68 */
addb9efe 69static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
70 enum mem_cgroup_stat_index idx, int val)
71{
addb9efe 72 stat->count[idx] += val;
d52aa412
KH
73}
74
75static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 enum mem_cgroup_stat_index idx)
77{
78 int cpu;
79 s64 ret = 0;
80 for_each_possible_cpu(cpu)
81 ret += stat->cpustat[cpu].count[idx];
82 return ret;
83}
84
6d12e2d8
KH
85/*
86 * per-zone information in memory controller.
87 */
6d12e2d8 88struct mem_cgroup_per_zone {
072c56c1
KH
89 /*
90 * spin_lock to protect the per cgroup LRU
91 */
92 spinlock_t lru_lock;
b69408e8
CL
93 struct list_head lists[NR_LRU_LISTS];
94 unsigned long count[NR_LRU_LISTS];
6d12e2d8
KH
95};
96/* Macro for accessing counter */
97#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
98
99struct mem_cgroup_per_node {
100 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
101};
102
103struct mem_cgroup_lru_info {
104 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
105};
106
8cdea7c0
BS
107/*
108 * The memory controller data structure. The memory controller controls both
109 * page cache and RSS per cgroup. We would eventually like to provide
110 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
111 * to help the administrator determine what knobs to tune.
112 *
113 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
114 * we hit the water mark. May be even add a low water mark, such that
115 * no reclaim occurs from a cgroup at it's low water mark, this is
116 * a feature that will be implemented much later in the future.
8cdea7c0
BS
117 */
118struct mem_cgroup {
119 struct cgroup_subsys_state css;
120 /*
121 * the counter to account for memory usage
122 */
123 struct res_counter res;
78fb7466
PE
124 /*
125 * Per cgroup active and inactive list, similar to the
126 * per zone LRU lists.
78fb7466 127 */
6d12e2d8 128 struct mem_cgroup_lru_info info;
072c56c1 129
6c48a1d0 130 int prev_priority; /* for recording reclaim priority */
d52aa412
KH
131 /*
132 * statistics.
133 */
134 struct mem_cgroup_stat stat;
8cdea7c0 135};
8869b8f6 136static struct mem_cgroup init_mem_cgroup;
8cdea7c0 137
217bc319
KH
138enum charge_type {
139 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
140 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 141 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5
KH
142 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
143 NR_CHARGE_TYPE,
144};
145
52d4b9ac
KH
146/* only for here (for easy reading.) */
147#define PCGF_CACHE (1UL << PCG_CACHE)
148#define PCGF_USED (1UL << PCG_USED)
149#define PCGF_ACTIVE (1UL << PCG_ACTIVE)
150#define PCGF_LOCK (1UL << PCG_LOCK)
151#define PCGF_FILE (1UL << PCG_FILE)
c05555b5
KH
152static const unsigned long
153pcg_default_flags[NR_CHARGE_TYPE] = {
52d4b9ac
KH
154 PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
155 PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
156 PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
157 0, /* FORCE */
217bc319
KH
158};
159
d52aa412
KH
160/*
161 * Always modified under lru lock. Then, not necessary to preempt_disable()
162 */
c05555b5
KH
163static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
164 struct page_cgroup *pc,
165 bool charge)
d52aa412
KH
166{
167 int val = (charge)? 1 : -1;
168 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 169 struct mem_cgroup_stat_cpu *cpustat;
d52aa412 170
8869b8f6 171 VM_BUG_ON(!irqs_disabled());
addb9efe
KH
172
173 cpustat = &stat->cpustat[smp_processor_id()];
c05555b5 174 if (PageCgroupCache(pc))
addb9efe 175 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 176 else
addb9efe 177 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
178
179 if (charge)
addb9efe 180 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
181 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
182 else
addb9efe 183 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 184 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
6d12e2d8
KH
185}
186
d5b69e38 187static struct mem_cgroup_per_zone *
6d12e2d8
KH
188mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
189{
6d12e2d8
KH
190 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
191}
192
d5b69e38 193static struct mem_cgroup_per_zone *
6d12e2d8
KH
194page_cgroup_zoneinfo(struct page_cgroup *pc)
195{
196 struct mem_cgroup *mem = pc->mem_cgroup;
197 int nid = page_cgroup_nid(pc);
198 int zid = page_cgroup_zid(pc);
d52aa412 199
6d12e2d8
KH
200 return mem_cgroup_zoneinfo(mem, nid, zid);
201}
202
203static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 204 enum lru_list idx)
6d12e2d8
KH
205{
206 int nid, zid;
207 struct mem_cgroup_per_zone *mz;
208 u64 total = 0;
209
210 for_each_online_node(nid)
211 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
212 mz = mem_cgroup_zoneinfo(mem, nid, zid);
213 total += MEM_CGROUP_ZSTAT(mz, idx);
214 }
215 return total;
d52aa412
KH
216}
217
d5b69e38 218static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
219{
220 return container_of(cgroup_subsys_state(cont,
221 mem_cgroup_subsys_id), struct mem_cgroup,
222 css);
223}
224
cf475ad2 225struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 226{
31a78f23
BS
227 /*
228 * mm_update_next_owner() may clear mm->owner to NULL
229 * if it races with swapoff, page migration, etc.
230 * So this can be called with p == NULL.
231 */
232 if (unlikely(!p))
233 return NULL;
234
78fb7466
PE
235 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
236 struct mem_cgroup, css);
237}
238
3eae90c3
KH
239static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
240 struct page_cgroup *pc)
6d12e2d8 241{
4f98a2fe
RR
242 int lru = LRU_BASE;
243
c05555b5 244 if (PageCgroupUnevictable(pc))
894bc310
LS
245 lru = LRU_UNEVICTABLE;
246 else {
c05555b5 247 if (PageCgroupActive(pc))
894bc310 248 lru += LRU_ACTIVE;
c05555b5 249 if (PageCgroupFile(pc))
894bc310
LS
250 lru += LRU_FILE;
251 }
6d12e2d8 252
b69408e8 253 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
6d12e2d8 254
c05555b5 255 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
508b7be0 256 list_del(&pc->lru);
6d12e2d8
KH
257}
258
3eae90c3
KH
259static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
260 struct page_cgroup *pc)
6d12e2d8 261{
4f98a2fe 262 int lru = LRU_BASE;
b69408e8 263
c05555b5 264 if (PageCgroupUnevictable(pc))
894bc310
LS
265 lru = LRU_UNEVICTABLE;
266 else {
c05555b5 267 if (PageCgroupActive(pc))
894bc310 268 lru += LRU_ACTIVE;
c05555b5 269 if (PageCgroupFile(pc))
894bc310
LS
270 lru += LRU_FILE;
271 }
b69408e8
CL
272
273 MEM_CGROUP_ZSTAT(mz, lru) += 1;
274 list_add(&pc->lru, &mz->lists[lru]);
6d12e2d8 275
c05555b5 276 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
6d12e2d8
KH
277}
278
894bc310 279static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
66e1707b 280{
6d12e2d8 281 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
c05555b5
KH
282 int active = PageCgroupActive(pc);
283 int file = PageCgroupFile(pc);
284 int unevictable = PageCgroupUnevictable(pc);
894bc310
LS
285 enum lru_list from = unevictable ? LRU_UNEVICTABLE :
286 (LRU_FILE * !!file + !!active);
6d12e2d8 287
894bc310
LS
288 if (lru == from)
289 return;
b69408e8 290
894bc310 291 MEM_CGROUP_ZSTAT(mz, from) -= 1;
c05555b5
KH
292 /*
293 * However this is done under mz->lru_lock, another flags, which
294 * are not related to LRU, will be modified from out-of-lock.
295 * We have to use atomic set/clear flags.
296 */
894bc310 297 if (is_unevictable_lru(lru)) {
c05555b5
KH
298 ClearPageCgroupActive(pc);
299 SetPageCgroupUnevictable(pc);
894bc310
LS
300 } else {
301 if (is_active_lru(lru))
c05555b5 302 SetPageCgroupActive(pc);
894bc310 303 else
c05555b5
KH
304 ClearPageCgroupActive(pc);
305 ClearPageCgroupUnevictable(pc);
894bc310 306 }
b69408e8 307
b69408e8
CL
308 MEM_CGROUP_ZSTAT(mz, lru) += 1;
309 list_move(&pc->lru, &mz->lists[lru]);
66e1707b
BS
310}
311
4c4a2214
DR
312int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
313{
314 int ret;
315
316 task_lock(task);
bd845e38 317 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
318 task_unlock(task);
319 return ret;
320}
321
66e1707b
BS
322/*
323 * This routine assumes that the appropriate zone's lru lock is already held
324 */
894bc310 325void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
66e1707b 326{
427d5416 327 struct page_cgroup *pc;
072c56c1
KH
328 struct mem_cgroup_per_zone *mz;
329 unsigned long flags;
330
cede86ac
LZ
331 if (mem_cgroup_subsys.disabled)
332 return;
333
2680eed7
HD
334 /*
335 * We cannot lock_page_cgroup while holding zone's lru_lock,
336 * because other holders of lock_page_cgroup can be interrupted
337 * with an attempt to rotate_reclaimable_page. But we cannot
338 * safely get to page_cgroup without it, so just try_lock it:
339 * mem_cgroup_isolate_pages allows for page left on wrong list.
340 */
52d4b9ac
KH
341 pc = lookup_page_cgroup(page);
342 if (!trylock_page_cgroup(pc))
66e1707b 343 return;
52d4b9ac 344 if (pc && PageCgroupUsed(pc)) {
2680eed7 345 mz = page_cgroup_zoneinfo(pc);
2680eed7 346 spin_lock_irqsave(&mz->lru_lock, flags);
894bc310 347 __mem_cgroup_move_lists(pc, lru);
2680eed7 348 spin_unlock_irqrestore(&mz->lru_lock, flags);
9b3c0a07 349 }
52d4b9ac 350 unlock_page_cgroup(pc);
66e1707b
BS
351}
352
58ae83db
KH
353/*
354 * Calculate mapped_ratio under memory controller. This will be used in
355 * vmscan.c for deteremining we have to reclaim mapped pages.
356 */
357int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
358{
359 long total, rss;
360
361 /*
362 * usage is recorded in bytes. But, here, we assume the number of
363 * physical pages can be represented by "long" on any arch.
364 */
365 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
366 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
367 return (int)((rss * 100L) / total);
368}
8869b8f6 369
6c48a1d0
KH
370/*
371 * prev_priority control...this will be used in memory reclaim path.
372 */
373int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
374{
375 return mem->prev_priority;
376}
377
378void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
379{
380 if (priority < mem->prev_priority)
381 mem->prev_priority = priority;
382}
383
384void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
385{
386 mem->prev_priority = priority;
387}
388
cc38108e
KH
389/*
390 * Calculate # of pages to be scanned in this priority/zone.
391 * See also vmscan.c
392 *
393 * priority starts from "DEF_PRIORITY" and decremented in each loop.
394 * (see include/linux/mmzone.h)
395 */
396
b69408e8
CL
397long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
398 int priority, enum lru_list lru)
cc38108e 399{
b69408e8 400 long nr_pages;
cc38108e
KH
401 int nid = zone->zone_pgdat->node_id;
402 int zid = zone_idx(zone);
403 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
404
b69408e8 405 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 406
b69408e8 407 return (nr_pages >> priority);
cc38108e
KH
408}
409
66e1707b
BS
410unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
411 struct list_head *dst,
412 unsigned long *scanned, int order,
413 int mode, struct zone *z,
414 struct mem_cgroup *mem_cont,
4f98a2fe 415 int active, int file)
66e1707b
BS
416{
417 unsigned long nr_taken = 0;
418 struct page *page;
419 unsigned long scan;
420 LIST_HEAD(pc_list);
421 struct list_head *src;
ff7283fa 422 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
423 int nid = z->zone_pgdat->node_id;
424 int zid = zone_idx(z);
425 struct mem_cgroup_per_zone *mz;
4f98a2fe 426 int lru = LRU_FILE * !!file + !!active;
66e1707b 427
cf475ad2 428 BUG_ON(!mem_cont);
1ecaab2b 429 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 430 src = &mz->lists[lru];
66e1707b 431
072c56c1 432 spin_lock(&mz->lru_lock);
ff7283fa
KH
433 scan = 0;
434 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 435 if (scan >= nr_to_scan)
ff7283fa 436 break;
52d4b9ac
KH
437 if (unlikely(!PageCgroupUsed(pc)))
438 continue;
66e1707b 439 page = pc->page;
66e1707b 440
436c6541 441 if (unlikely(!PageLRU(page)))
ff7283fa 442 continue;
ff7283fa 443
4f98a2fe
RR
444 /*
445 * TODO: play better with lumpy reclaim, grabbing anything.
446 */
894bc310
LS
447 if (PageUnevictable(page) ||
448 (PageActive(page) && !active) ||
449 (!PageActive(page) && active)) {
450 __mem_cgroup_move_lists(pc, page_lru(page));
66e1707b
BS
451 continue;
452 }
453
436c6541
HD
454 scan++;
455 list_move(&pc->lru, &pc_list);
66e1707b 456
4f98a2fe 457 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
458 list_move(&page->lru, dst);
459 nr_taken++;
460 }
461 }
462
463 list_splice(&pc_list, src);
072c56c1 464 spin_unlock(&mz->lru_lock);
66e1707b
BS
465
466 *scanned = scan;
467 return nr_taken;
468}
469
7a81b88c
KH
470
471/**
472 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
473 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
474 * @gfp_mask: gfp_mask for reclaim.
475 * @memcg: a pointer to memory cgroup which is charged against.
476 *
477 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
478 * memory cgroup from @mm is got and stored in *memcg.
479 *
480 * Returns 0 if success. -ENOMEM at failure.
8a9f3ccd 481 */
7a81b88c
KH
482
483int mem_cgroup_try_charge(struct mm_struct *mm,
484 gfp_t gfp_mask, struct mem_cgroup **memcg)
8a9f3ccd
BS
485{
486 struct mem_cgroup *mem;
7a81b88c 487 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8a9f3ccd 488 /*
3be91277
HD
489 * We always charge the cgroup the mm_struct belongs to.
490 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
491 * thread group leader migrates. It's possible that mm is not
492 * set, if so charge the init_mm (happens for pagecache usage).
493 */
7a81b88c 494 if (likely(!*memcg)) {
e8589cc1
KH
495 rcu_read_lock();
496 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
497 if (unlikely(!mem)) {
498 rcu_read_unlock();
31a78f23
BS
499 return 0;
500 }
e8589cc1
KH
501 /*
502 * For every charge from the cgroup, increment reference count
503 */
504 css_get(&mem->css);
7a81b88c 505 *memcg = mem;
e8589cc1
KH
506 rcu_read_unlock();
507 } else {
7a81b88c
KH
508 mem = *memcg;
509 css_get(&mem->css);
e8589cc1 510 }
8a9f3ccd 511
7a81b88c 512
addb9efe 513 while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
3be91277 514 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 515 goto nomem;
e1a1cd59
BS
516
517 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
518 continue;
519
520 /*
8869b8f6
HD
521 * try_to_free_mem_cgroup_pages() might not give us a full
522 * picture of reclaim. Some pages are reclaimed and might be
523 * moved to swap cache or just unmapped from the cgroup.
524 * Check the limit again to see if the reclaim reduced the
525 * current usage of the cgroup before giving up
526 */
66e1707b
BS
527 if (res_counter_check_under_limit(&mem->res))
528 continue;
3be91277
HD
529
530 if (!nr_retries--) {
531 mem_cgroup_out_of_memory(mem, gfp_mask);
7a81b88c 532 goto nomem;
66e1707b 533 }
8a9f3ccd 534 }
7a81b88c
KH
535 return 0;
536nomem:
537 css_put(&mem->css);
538 return -ENOMEM;
539}
8a9f3ccd 540
7a81b88c
KH
541/*
542 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
543 * USED state. If already USED, uncharge and return.
544 */
545
546static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
547 struct page_cgroup *pc,
548 enum charge_type ctype)
549{
550 struct mem_cgroup_per_zone *mz;
551 unsigned long flags;
552
553 /* try_charge() can return NULL to *memcg, taking care of it. */
554 if (!mem)
555 return;
52d4b9ac
KH
556
557 lock_page_cgroup(pc);
558 if (unlikely(PageCgroupUsed(pc))) {
559 unlock_page_cgroup(pc);
560 res_counter_uncharge(&mem->res, PAGE_SIZE);
561 css_put(&mem->css);
7a81b88c 562 return;
52d4b9ac 563 }
8a9f3ccd 564 pc->mem_cgroup = mem;
508b7be0
KH
565 /*
566 * If a page is accounted as a page cache, insert to inactive list.
567 * If anon, insert to active list.
568 */
c05555b5 569 pc->flags = pcg_default_flags[ctype];
3be91277 570
072c56c1 571 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 572
072c56c1 573 spin_lock_irqsave(&mz->lru_lock, flags);
3eae90c3 574 __mem_cgroup_add_list(mz, pc);
072c56c1 575 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 576 unlock_page_cgroup(pc);
7a81b88c 577}
66e1707b 578
7a81b88c
KH
579/*
580 * Charge the memory controller for page usage.
581 * Return
582 * 0 if the charge was successful
583 * < 0 if the cgroup is over its limit
584 */
585static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
586 gfp_t gfp_mask, enum charge_type ctype,
587 struct mem_cgroup *memcg)
588{
589 struct mem_cgroup *mem;
590 struct page_cgroup *pc;
591 int ret;
592
593 pc = lookup_page_cgroup(page);
594 /* can happen at boot */
595 if (unlikely(!pc))
596 return 0;
597 prefetchw(pc);
598
599 mem = memcg;
600 ret = mem_cgroup_try_charge(mm, gfp_mask, &mem);
601 if (ret)
602 return ret;
603
604 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 605 return 0;
8a9f3ccd
BS
606}
607
7a81b88c
KH
608int mem_cgroup_newpage_charge(struct page *page,
609 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 610{
cede86ac
LZ
611 if (mem_cgroup_subsys.disabled)
612 return 0;
52d4b9ac
KH
613 if (PageCompound(page))
614 return 0;
69029cd5
KH
615 /*
616 * If already mapped, we don't have to account.
617 * If page cache, page->mapping has address_space.
618 * But page->mapping may have out-of-use anon_vma pointer,
619 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
620 * is NULL.
621 */
622 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
623 return 0;
624 if (unlikely(!mm))
625 mm = &init_mm;
217bc319 626 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 627 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
628}
629
e1a1cd59
BS
630int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
631 gfp_t gfp_mask)
8697d331 632{
cede86ac
LZ
633 if (mem_cgroup_subsys.disabled)
634 return 0;
52d4b9ac
KH
635 if (PageCompound(page))
636 return 0;
accf163e
KH
637 /*
638 * Corner case handling. This is called from add_to_page_cache()
639 * in usual. But some FS (shmem) precharges this page before calling it
640 * and call add_to_page_cache() with GFP_NOWAIT.
641 *
642 * For GFP_NOWAIT case, the page may be pre-charged before calling
643 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
644 * charge twice. (It works but has to pay a bit larger cost.)
645 */
646 if (!(gfp_mask & __GFP_WAIT)) {
647 struct page_cgroup *pc;
648
52d4b9ac
KH
649
650 pc = lookup_page_cgroup(page);
651 if (!pc)
652 return 0;
653 lock_page_cgroup(pc);
654 if (PageCgroupUsed(pc)) {
655 unlock_page_cgroup(pc);
accf163e
KH
656 return 0;
657 }
52d4b9ac 658 unlock_page_cgroup(pc);
accf163e
KH
659 }
660
69029cd5 661 if (unlikely(!mm))
8697d331 662 mm = &init_mm;
accf163e 663
c05555b5
KH
664 if (page_is_file_cache(page))
665 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 666 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
667 else
668 return mem_cgroup_charge_common(page, mm, gfp_mask,
669 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
670}
671
7a81b88c
KH
672void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
673{
674 struct page_cgroup *pc;
675
676 if (mem_cgroup_subsys.disabled)
677 return;
678 if (!ptr)
679 return;
680 pc = lookup_page_cgroup(page);
681 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
682}
683
684void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
685{
686 if (mem_cgroup_subsys.disabled)
687 return;
688 if (!mem)
689 return;
690 res_counter_uncharge(&mem->res, PAGE_SIZE);
691 css_put(&mem->css);
692}
693
694
8a9f3ccd 695/*
69029cd5 696 * uncharge if !page_mapped(page)
8a9f3ccd 697 */
69029cd5
KH
698static void
699__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 700{
8289546e 701 struct page_cgroup *pc;
8a9f3ccd 702 struct mem_cgroup *mem;
072c56c1 703 struct mem_cgroup_per_zone *mz;
66e1707b 704 unsigned long flags;
8a9f3ccd 705
4077960e
BS
706 if (mem_cgroup_subsys.disabled)
707 return;
708
8697d331 709 /*
3c541e14 710 * Check if our page_cgroup is valid
8697d331 711 */
52d4b9ac
KH
712 pc = lookup_page_cgroup(page);
713 if (unlikely(!pc || !PageCgroupUsed(pc)))
714 return;
b9c565d5 715
52d4b9ac
KH
716 lock_page_cgroup(pc);
717 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page))
718 || !PageCgroupUsed(pc)) {
719 /* This happens at race in zap_pte_range() and do_swap_page()*/
720 unlock_page_cgroup(pc);
721 return;
722 }
723 ClearPageCgroupUsed(pc);
724 mem = pc->mem_cgroup;
b9c565d5 725
69029cd5
KH
726 mz = page_cgroup_zoneinfo(pc);
727 spin_lock_irqsave(&mz->lru_lock, flags);
728 __mem_cgroup_remove_list(mz, pc);
729 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 730 unlock_page_cgroup(pc);
fb59e9f1 731
69029cd5
KH
732 res_counter_uncharge(&mem->res, PAGE_SIZE);
733 css_put(&mem->css);
6d12e2d8 734
69029cd5 735 return;
3c541e14
BS
736}
737
69029cd5
KH
738void mem_cgroup_uncharge_page(struct page *page)
739{
52d4b9ac
KH
740 /* early check. */
741 if (page_mapped(page))
742 return;
743 if (page->mapping && !PageAnon(page))
744 return;
69029cd5
KH
745 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
746}
747
748void mem_cgroup_uncharge_cache_page(struct page *page)
749{
750 VM_BUG_ON(page_mapped(page));
b7abea96 751 VM_BUG_ON(page->mapping);
69029cd5
KH
752 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
753}
754
ae41be37 755/*
01b1ae63
KH
756 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
757 * page belongs to.
ae41be37 758 */
01b1ae63 759int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
760{
761 struct page_cgroup *pc;
e8589cc1 762 struct mem_cgroup *mem = NULL;
e8589cc1 763 int ret = 0;
8869b8f6 764
4077960e
BS
765 if (mem_cgroup_subsys.disabled)
766 return 0;
767
52d4b9ac
KH
768 pc = lookup_page_cgroup(page);
769 lock_page_cgroup(pc);
770 if (PageCgroupUsed(pc)) {
e8589cc1
KH
771 mem = pc->mem_cgroup;
772 css_get(&mem->css);
e8589cc1 773 }
52d4b9ac 774 unlock_page_cgroup(pc);
01b1ae63 775
e8589cc1 776 if (mem) {
01b1ae63 777 ret = mem_cgroup_try_charge(NULL, GFP_HIGHUSER_MOVABLE, &mem);
e8589cc1
KH
778 css_put(&mem->css);
779 }
01b1ae63 780 *ptr = mem;
e8589cc1 781 return ret;
ae41be37 782}
8869b8f6 783
69029cd5 784/* remove redundant charge if migration failed*/
01b1ae63
KH
785void mem_cgroup_end_migration(struct mem_cgroup *mem,
786 struct page *oldpage, struct page *newpage)
ae41be37 787{
01b1ae63
KH
788 struct page *target, *unused;
789 struct page_cgroup *pc;
790 enum charge_type ctype;
791
792 if (!mem)
793 return;
794
795 /* at migration success, oldpage->mapping is NULL. */
796 if (oldpage->mapping) {
797 target = oldpage;
798 unused = NULL;
799 } else {
800 target = newpage;
801 unused = oldpage;
802 }
803
804 if (PageAnon(target))
805 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
806 else if (page_is_file_cache(target))
807 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
808 else
809 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
810
811 /* unused page is not on radix-tree now. */
812 if (unused && ctype != MEM_CGROUP_CHARGE_TYPE_MAPPED)
813 __mem_cgroup_uncharge_common(unused, ctype);
814
815 pc = lookup_page_cgroup(target);
69029cd5 816 /*
01b1ae63
KH
817 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
818 * So, double-counting is effectively avoided.
819 */
820 __mem_cgroup_commit_charge(mem, pc, ctype);
821
822 /*
823 * Both of oldpage and newpage are still under lock_page().
824 * Then, we don't have to care about race in radix-tree.
825 * But we have to be careful that this page is unmapped or not.
826 *
827 * There is a case for !page_mapped(). At the start of
828 * migration, oldpage was mapped. But now, it's zapped.
829 * But we know *target* page is not freed/reused under us.
830 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 831 */
01b1ae63
KH
832 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
833 mem_cgroup_uncharge_page(target);
ae41be37 834}
78fb7466 835
c9b0ed51
KH
836/*
837 * A call to try to shrink memory usage under specified resource controller.
838 * This is typically used for page reclaiming for shmem for reducing side
839 * effect of page allocation from shmem, which is used by some mem_cgroup.
840 */
841int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
842{
843 struct mem_cgroup *mem;
844 int progress = 0;
845 int retry = MEM_CGROUP_RECLAIM_RETRIES;
846
cede86ac
LZ
847 if (mem_cgroup_subsys.disabled)
848 return 0;
9623e078
HD
849 if (!mm)
850 return 0;
cede86ac 851
c9b0ed51
KH
852 rcu_read_lock();
853 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
854 if (unlikely(!mem)) {
855 rcu_read_unlock();
856 return 0;
857 }
c9b0ed51
KH
858 css_get(&mem->css);
859 rcu_read_unlock();
860
861 do {
862 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
a10cebf5 863 progress += res_counter_check_under_limit(&mem->res);
c9b0ed51
KH
864 } while (!progress && --retry);
865
866 css_put(&mem->css);
867 if (!retry)
868 return -ENOMEM;
869 return 0;
870}
871
d38d2a75
KM
872static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
873 unsigned long long val)
628f4235
KH
874{
875
876 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
877 int progress;
878 int ret = 0;
879
880 while (res_counter_set_limit(&memcg->res, val)) {
881 if (signal_pending(current)) {
882 ret = -EINTR;
883 break;
884 }
885 if (!retry_count) {
886 ret = -EBUSY;
887 break;
888 }
bced0520
KH
889 progress = try_to_free_mem_cgroup_pages(memcg,
890 GFP_HIGHUSER_MOVABLE);
628f4235
KH
891 if (!progress)
892 retry_count--;
893 }
894 return ret;
895}
896
897
cc847582
KH
898/*
899 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
900 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
901 */
902#define FORCE_UNCHARGE_BATCH (128)
8869b8f6 903static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
072c56c1 904 struct mem_cgroup_per_zone *mz,
b69408e8 905 enum lru_list lru)
cc847582
KH
906{
907 struct page_cgroup *pc;
908 struct page *page;
9b3c0a07 909 int count = FORCE_UNCHARGE_BATCH;
cc847582 910 unsigned long flags;
072c56c1
KH
911 struct list_head *list;
912
b69408e8 913 list = &mz->lists[lru];
cc847582 914
072c56c1 915 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 916 while (!list_empty(list)) {
cc847582
KH
917 pc = list_entry(list->prev, struct page_cgroup, lru);
918 page = pc->page;
52d4b9ac
KH
919 if (!PageCgroupUsed(pc))
920 break;
9b3c0a07
HT
921 get_page(page);
922 spin_unlock_irqrestore(&mz->lru_lock, flags);
e8589cc1
KH
923 /*
924 * Check if this page is on LRU. !LRU page can be found
925 * if it's under page migration.
926 */
927 if (PageLRU(page)) {
69029cd5
KH
928 __mem_cgroup_uncharge_common(page,
929 MEM_CGROUP_CHARGE_TYPE_FORCE);
e8589cc1
KH
930 put_page(page);
931 if (--count <= 0) {
932 count = FORCE_UNCHARGE_BATCH;
933 cond_resched();
934 }
52d4b9ac
KH
935 } else {
936 spin_lock_irqsave(&mz->lru_lock, flags);
937 break;
938 }
9b3c0a07 939 spin_lock_irqsave(&mz->lru_lock, flags);
cc847582 940 }
072c56c1 941 spin_unlock_irqrestore(&mz->lru_lock, flags);
cc847582
KH
942}
943
944/*
945 * make mem_cgroup's charge to be 0 if there is no task.
946 * This enables deleting this mem_cgroup.
947 */
d5b69e38 948static int mem_cgroup_force_empty(struct mem_cgroup *mem)
cc847582
KH
949{
950 int ret = -EBUSY;
1ecaab2b 951 int node, zid;
8869b8f6 952
cc847582
KH
953 css_get(&mem->css);
954 /*
955 * page reclaim code (kswapd etc..) will move pages between
8869b8f6 956 * active_list <-> inactive_list while we don't take a lock.
cc847582
KH
957 * So, we have to do loop here until all lists are empty.
958 */
1ecaab2b 959 while (mem->res.usage > 0) {
cc847582
KH
960 if (atomic_read(&mem->css.cgroup->count) > 0)
961 goto out;
52d4b9ac
KH
962 /* This is for making all *used* pages to be on LRU. */
963 lru_add_drain_all();
1ecaab2b
KH
964 for_each_node_state(node, N_POSSIBLE)
965 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
966 struct mem_cgroup_per_zone *mz;
b69408e8 967 enum lru_list l;
1ecaab2b 968 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8
CL
969 for_each_lru(l)
970 mem_cgroup_force_empty_list(mem, mz, l);
1ecaab2b 971 }
52d4b9ac 972 cond_resched();
cc847582
KH
973 }
974 ret = 0;
975out:
976 css_put(&mem->css);
977 return ret;
978}
979
2c3daa72 980static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 981{
2c3daa72
PM
982 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
983 cft->private);
8cdea7c0 984}
628f4235
KH
985/*
986 * The user of this function is...
987 * RES_LIMIT.
988 */
856c13aa
PM
989static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
990 const char *buffer)
8cdea7c0 991{
628f4235
KH
992 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
993 unsigned long long val;
994 int ret;
995
996 switch (cft->private) {
997 case RES_LIMIT:
998 /* This function does all necessary parse...reuse it */
999 ret = res_counter_memparse_write_strategy(buffer, &val);
1000 if (!ret)
1001 ret = mem_cgroup_resize_limit(memcg, val);
1002 break;
1003 default:
1004 ret = -EINVAL; /* should be BUG() ? */
1005 break;
1006 }
1007 return ret;
8cdea7c0
BS
1008}
1009
29f2a4da 1010static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1011{
1012 struct mem_cgroup *mem;
1013
1014 mem = mem_cgroup_from_cont(cont);
29f2a4da
PE
1015 switch (event) {
1016 case RES_MAX_USAGE:
1017 res_counter_reset_max(&mem->res);
1018 break;
1019 case RES_FAILCNT:
1020 res_counter_reset_failcnt(&mem->res);
1021 break;
1022 }
85cc59db 1023 return 0;
c84872e1
PE
1024}
1025
85cc59db 1026static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
cc847582 1027{
85cc59db 1028 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
cc847582
KH
1029}
1030
d2ceb9b7
KH
1031static const struct mem_cgroup_stat_desc {
1032 const char *msg;
1033 u64 unit;
1034} mem_cgroup_stat_desc[] = {
1035 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1036 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1037 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1038 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1039};
1040
c64745cf
PM
1041static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1042 struct cgroup_map_cb *cb)
d2ceb9b7 1043{
d2ceb9b7
KH
1044 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1045 struct mem_cgroup_stat *stat = &mem_cont->stat;
1046 int i;
1047
1048 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1049 s64 val;
1050
1051 val = mem_cgroup_read_stat(stat, i);
1052 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1053 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1054 }
6d12e2d8
KH
1055 /* showing # of active pages */
1056 {
4f98a2fe
RR
1057 unsigned long active_anon, inactive_anon;
1058 unsigned long active_file, inactive_file;
7b854121 1059 unsigned long unevictable;
4f98a2fe
RR
1060
1061 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1062 LRU_INACTIVE_ANON);
1063 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1064 LRU_ACTIVE_ANON);
1065 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1066 LRU_INACTIVE_FILE);
1067 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1068 LRU_ACTIVE_FILE);
7b854121
LS
1069 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1070 LRU_UNEVICTABLE);
1071
4f98a2fe
RR
1072 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1073 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1074 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1075 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1076 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1077
6d12e2d8 1078 }
d2ceb9b7
KH
1079 return 0;
1080}
1081
8cdea7c0
BS
1082static struct cftype mem_cgroup_files[] = {
1083 {
0eea1030 1084 .name = "usage_in_bytes",
8cdea7c0 1085 .private = RES_USAGE,
2c3daa72 1086 .read_u64 = mem_cgroup_read,
8cdea7c0 1087 },
c84872e1
PE
1088 {
1089 .name = "max_usage_in_bytes",
1090 .private = RES_MAX_USAGE,
29f2a4da 1091 .trigger = mem_cgroup_reset,
c84872e1
PE
1092 .read_u64 = mem_cgroup_read,
1093 },
8cdea7c0 1094 {
0eea1030 1095 .name = "limit_in_bytes",
8cdea7c0 1096 .private = RES_LIMIT,
856c13aa 1097 .write_string = mem_cgroup_write,
2c3daa72 1098 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1099 },
1100 {
1101 .name = "failcnt",
1102 .private = RES_FAILCNT,
29f2a4da 1103 .trigger = mem_cgroup_reset,
2c3daa72 1104 .read_u64 = mem_cgroup_read,
8cdea7c0 1105 },
cc847582
KH
1106 {
1107 .name = "force_empty",
85cc59db 1108 .trigger = mem_force_empty_write,
cc847582 1109 },
d2ceb9b7
KH
1110 {
1111 .name = "stat",
c64745cf 1112 .read_map = mem_control_stat_show,
d2ceb9b7 1113 },
8cdea7c0
BS
1114};
1115
6d12e2d8
KH
1116static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1117{
1118 struct mem_cgroup_per_node *pn;
1ecaab2b 1119 struct mem_cgroup_per_zone *mz;
b69408e8 1120 enum lru_list l;
41e3355d 1121 int zone, tmp = node;
1ecaab2b
KH
1122 /*
1123 * This routine is called against possible nodes.
1124 * But it's BUG to call kmalloc() against offline node.
1125 *
1126 * TODO: this routine can waste much memory for nodes which will
1127 * never be onlined. It's better to use memory hotplug callback
1128 * function.
1129 */
41e3355d
KH
1130 if (!node_state(node, N_NORMAL_MEMORY))
1131 tmp = -1;
1132 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1133 if (!pn)
1134 return 1;
1ecaab2b 1135
6d12e2d8
KH
1136 mem->info.nodeinfo[node] = pn;
1137 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1138
1139 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1140 mz = &pn->zoneinfo[zone];
072c56c1 1141 spin_lock_init(&mz->lru_lock);
b69408e8
CL
1142 for_each_lru(l)
1143 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1144 }
6d12e2d8
KH
1145 return 0;
1146}
1147
1ecaab2b
KH
1148static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1149{
1150 kfree(mem->info.nodeinfo[node]);
1151}
1152
33327948
KH
1153static struct mem_cgroup *mem_cgroup_alloc(void)
1154{
1155 struct mem_cgroup *mem;
1156
1157 if (sizeof(*mem) < PAGE_SIZE)
1158 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1159 else
1160 mem = vmalloc(sizeof(*mem));
1161
1162 if (mem)
1163 memset(mem, 0, sizeof(*mem));
1164 return mem;
1165}
1166
1167static void mem_cgroup_free(struct mem_cgroup *mem)
1168{
1169 if (sizeof(*mem) < PAGE_SIZE)
1170 kfree(mem);
1171 else
1172 vfree(mem);
1173}
1174
1175
8cdea7c0
BS
1176static struct cgroup_subsys_state *
1177mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1178{
1179 struct mem_cgroup *mem;
6d12e2d8 1180 int node;
8cdea7c0 1181
b6ac57d5 1182 if (unlikely((cont->parent) == NULL)) {
78fb7466 1183 mem = &init_mem_cgroup;
b6ac57d5 1184 } else {
33327948
KH
1185 mem = mem_cgroup_alloc();
1186 if (!mem)
1187 return ERR_PTR(-ENOMEM);
b6ac57d5 1188 }
78fb7466 1189
8cdea7c0 1190 res_counter_init(&mem->res);
1ecaab2b 1191
6d12e2d8
KH
1192 for_each_node_state(node, N_POSSIBLE)
1193 if (alloc_mem_cgroup_per_zone_info(mem, node))
1194 goto free_out;
1195
8cdea7c0 1196 return &mem->css;
6d12e2d8
KH
1197free_out:
1198 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1199 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1200 if (cont->parent != NULL)
33327948 1201 mem_cgroup_free(mem);
2dda81ca 1202 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1203}
1204
df878fb0
KH
1205static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1206 struct cgroup *cont)
1207{
1208 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1209 mem_cgroup_force_empty(mem);
1210}
1211
8cdea7c0
BS
1212static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1213 struct cgroup *cont)
1214{
6d12e2d8
KH
1215 int node;
1216 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1217
1218 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1219 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1220
33327948 1221 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
1222}
1223
1224static int mem_cgroup_populate(struct cgroup_subsys *ss,
1225 struct cgroup *cont)
1226{
1227 return cgroup_add_files(cont, ss, mem_cgroup_files,
1228 ARRAY_SIZE(mem_cgroup_files));
1229}
1230
67e465a7
BS
1231static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1232 struct cgroup *cont,
1233 struct cgroup *old_cont,
1234 struct task_struct *p)
1235{
1236 struct mm_struct *mm;
1237 struct mem_cgroup *mem, *old_mem;
1238
1239 mm = get_task_mm(p);
1240 if (mm == NULL)
1241 return;
1242
1243 mem = mem_cgroup_from_cont(cont);
1244 old_mem = mem_cgroup_from_cont(old_cont);
1245
67e465a7
BS
1246 /*
1247 * Only thread group leaders are allowed to migrate, the mm_struct is
1248 * in effect owned by the leader
1249 */
52ea27eb 1250 if (!thread_group_leader(p))
67e465a7
BS
1251 goto out;
1252
67e465a7
BS
1253out:
1254 mmput(mm);
67e465a7
BS
1255}
1256
8cdea7c0
BS
1257struct cgroup_subsys mem_cgroup_subsys = {
1258 .name = "memory",
1259 .subsys_id = mem_cgroup_subsys_id,
1260 .create = mem_cgroup_create,
df878fb0 1261 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1262 .destroy = mem_cgroup_destroy,
1263 .populate = mem_cgroup_populate,
67e465a7 1264 .attach = mem_cgroup_move_task,
6d12e2d8 1265 .early_init = 0,
8cdea7c0 1266};