]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
define page_file_cache() function
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
b6ac57d5 29#include <linux/slab.h>
66e1707b
BS
30#include <linux/swap.h>
31#include <linux/spinlock.h>
32#include <linux/fs.h>
d2ceb9b7 33#include <linux/seq_file.h>
33327948 34#include <linux/vmalloc.h>
b69408e8 35#include <linux/mm_inline.h>
8cdea7c0 36
8697d331
BS
37#include <asm/uaccess.h>
38
a181b0e8
KH
39struct cgroup_subsys mem_cgroup_subsys __read_mostly;
40static struct kmem_cache *page_cgroup_cache __read_mostly;
41#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 42
d52aa412
KH
43/*
44 * Statistics for memory cgroup.
45 */
46enum mem_cgroup_stat_index {
47 /*
48 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49 */
50 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
51 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
52 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
53 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
54
55 MEM_CGROUP_STAT_NSTATS,
56};
57
58struct mem_cgroup_stat_cpu {
59 s64 count[MEM_CGROUP_STAT_NSTATS];
60} ____cacheline_aligned_in_smp;
61
62struct mem_cgroup_stat {
63 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
64};
65
66/*
67 * For accounting under irq disable, no need for increment preempt count.
68 */
69static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
70 enum mem_cgroup_stat_index idx, int val)
71{
72 int cpu = smp_processor_id();
73 stat->cpustat[cpu].count[idx] += val;
74}
75
76static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
77 enum mem_cgroup_stat_index idx)
78{
79 int cpu;
80 s64 ret = 0;
81 for_each_possible_cpu(cpu)
82 ret += stat->cpustat[cpu].count[idx];
83 return ret;
84}
85
6d12e2d8
KH
86/*
87 * per-zone information in memory controller.
88 */
6d12e2d8 89struct mem_cgroup_per_zone {
072c56c1
KH
90 /*
91 * spin_lock to protect the per cgroup LRU
92 */
93 spinlock_t lru_lock;
b69408e8
CL
94 struct list_head lists[NR_LRU_LISTS];
95 unsigned long count[NR_LRU_LISTS];
6d12e2d8
KH
96};
97/* Macro for accessing counter */
98#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
99
100struct mem_cgroup_per_node {
101 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
102};
103
104struct mem_cgroup_lru_info {
105 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
106};
107
8cdea7c0
BS
108/*
109 * The memory controller data structure. The memory controller controls both
110 * page cache and RSS per cgroup. We would eventually like to provide
111 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
112 * to help the administrator determine what knobs to tune.
113 *
114 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
115 * we hit the water mark. May be even add a low water mark, such that
116 * no reclaim occurs from a cgroup at it's low water mark, this is
117 * a feature that will be implemented much later in the future.
8cdea7c0
BS
118 */
119struct mem_cgroup {
120 struct cgroup_subsys_state css;
121 /*
122 * the counter to account for memory usage
123 */
124 struct res_counter res;
78fb7466
PE
125 /*
126 * Per cgroup active and inactive list, similar to the
127 * per zone LRU lists.
78fb7466 128 */
6d12e2d8 129 struct mem_cgroup_lru_info info;
072c56c1 130
6c48a1d0 131 int prev_priority; /* for recording reclaim priority */
d52aa412
KH
132 /*
133 * statistics.
134 */
135 struct mem_cgroup_stat stat;
8cdea7c0 136};
8869b8f6 137static struct mem_cgroup init_mem_cgroup;
8cdea7c0 138
8a9f3ccd
BS
139/*
140 * We use the lower bit of the page->page_cgroup pointer as a bit spin
9442ec9d
HD
141 * lock. We need to ensure that page->page_cgroup is at least two
142 * byte aligned (based on comments from Nick Piggin). But since
143 * bit_spin_lock doesn't actually set that lock bit in a non-debug
144 * uniprocessor kernel, we should avoid setting it here too.
8a9f3ccd
BS
145 */
146#define PAGE_CGROUP_LOCK_BIT 0x0
9442ec9d
HD
147#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
148#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
149#else
150#define PAGE_CGROUP_LOCK 0x0
151#endif
8a9f3ccd 152
8cdea7c0
BS
153/*
154 * A page_cgroup page is associated with every page descriptor. The
155 * page_cgroup helps us identify information about the cgroup
156 */
157struct page_cgroup {
158 struct list_head lru; /* per cgroup LRU list */
159 struct page *page;
160 struct mem_cgroup *mem_cgroup;
8869b8f6 161 int flags;
8cdea7c0 162};
217bc319 163#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
3564c7c4 164#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
8cdea7c0 165
d5b69e38 166static int page_cgroup_nid(struct page_cgroup *pc)
c0149530
KH
167{
168 return page_to_nid(pc->page);
169}
170
d5b69e38 171static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
c0149530
KH
172{
173 return page_zonenum(pc->page);
174}
175
217bc319
KH
176enum charge_type {
177 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
178 MEM_CGROUP_CHARGE_TYPE_MAPPED,
69029cd5 179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
217bc319
KH
180};
181
d52aa412
KH
182/*
183 * Always modified under lru lock. Then, not necessary to preempt_disable()
184 */
185static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
186 bool charge)
187{
188 int val = (charge)? 1 : -1;
189 struct mem_cgroup_stat *stat = &mem->stat;
d52aa412 190
8869b8f6 191 VM_BUG_ON(!irqs_disabled());
d52aa412 192 if (flags & PAGE_CGROUP_FLAG_CACHE)
8869b8f6 193 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
d52aa412
KH
194 else
195 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
196
197 if (charge)
198 __mem_cgroup_stat_add_safe(stat,
199 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
200 else
201 __mem_cgroup_stat_add_safe(stat,
202 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
6d12e2d8
KH
203}
204
d5b69e38 205static struct mem_cgroup_per_zone *
6d12e2d8
KH
206mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
207{
6d12e2d8
KH
208 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
209}
210
d5b69e38 211static struct mem_cgroup_per_zone *
6d12e2d8
KH
212page_cgroup_zoneinfo(struct page_cgroup *pc)
213{
214 struct mem_cgroup *mem = pc->mem_cgroup;
215 int nid = page_cgroup_nid(pc);
216 int zid = page_cgroup_zid(pc);
d52aa412 217
6d12e2d8
KH
218 return mem_cgroup_zoneinfo(mem, nid, zid);
219}
220
221static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 222 enum lru_list idx)
6d12e2d8
KH
223{
224 int nid, zid;
225 struct mem_cgroup_per_zone *mz;
226 u64 total = 0;
227
228 for_each_online_node(nid)
229 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
230 mz = mem_cgroup_zoneinfo(mem, nid, zid);
231 total += MEM_CGROUP_ZSTAT(mz, idx);
232 }
233 return total;
d52aa412
KH
234}
235
d5b69e38 236static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
237{
238 return container_of(cgroup_subsys_state(cont,
239 mem_cgroup_subsys_id), struct mem_cgroup,
240 css);
241}
242
cf475ad2 243struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 244{
31a78f23
BS
245 /*
246 * mm_update_next_owner() may clear mm->owner to NULL
247 * if it races with swapoff, page migration, etc.
248 * So this can be called with p == NULL.
249 */
250 if (unlikely(!p))
251 return NULL;
252
78fb7466
PE
253 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
254 struct mem_cgroup, css);
255}
256
8a9f3ccd
BS
257static inline int page_cgroup_locked(struct page *page)
258{
8869b8f6 259 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
8a9f3ccd
BS
260}
261
9442ec9d 262static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
78fb7466 263{
9442ec9d
HD
264 VM_BUG_ON(!page_cgroup_locked(page));
265 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
78fb7466
PE
266}
267
268struct page_cgroup *page_get_page_cgroup(struct page *page)
269{
8869b8f6 270 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
8a9f3ccd
BS
271}
272
d5b69e38 273static void lock_page_cgroup(struct page *page)
8a9f3ccd
BS
274{
275 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
8a9f3ccd
BS
276}
277
2680eed7
HD
278static int try_lock_page_cgroup(struct page *page)
279{
280 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
281}
282
d5b69e38 283static void unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
284{
285 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
286}
287
3eae90c3
KH
288static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
289 struct page_cgroup *pc)
6d12e2d8
KH
290{
291 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
b69408e8 292 int lru = !!from;
6d12e2d8 293
b69408e8 294 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
6d12e2d8
KH
295
296 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
508b7be0 297 list_del(&pc->lru);
6d12e2d8
KH
298}
299
3eae90c3
KH
300static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
301 struct page_cgroup *pc)
6d12e2d8 302{
b69408e8
CL
303 int lru = LRU_INACTIVE;
304
305 if (pc->flags & PAGE_CGROUP_FLAG_ACTIVE)
306 lru += LRU_ACTIVE;
307
308 MEM_CGROUP_ZSTAT(mz, lru) += 1;
309 list_add(&pc->lru, &mz->lists[lru]);
6d12e2d8 310
6d12e2d8
KH
311 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
312}
313
8697d331 314static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b 315{
6d12e2d8 316 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
b69408e8 317 int lru = LRU_INACTIVE;
6d12e2d8 318
b69408e8
CL
319 if (pc->flags & PAGE_CGROUP_FLAG_ACTIVE)
320 lru += LRU_ACTIVE;
6d12e2d8 321
b69408e8
CL
322 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
323
324 if (active)
3564c7c4 325 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
b69408e8 326 else
3564c7c4 327 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
b69408e8
CL
328
329 lru = !!active;
330 MEM_CGROUP_ZSTAT(mz, lru) += 1;
331 list_move(&pc->lru, &mz->lists[lru]);
66e1707b
BS
332}
333
4c4a2214
DR
334int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
335{
336 int ret;
337
338 task_lock(task);
bd845e38 339 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
340 task_unlock(task);
341 return ret;
342}
343
66e1707b
BS
344/*
345 * This routine assumes that the appropriate zone's lru lock is already held
346 */
427d5416 347void mem_cgroup_move_lists(struct page *page, bool active)
66e1707b 348{
427d5416 349 struct page_cgroup *pc;
072c56c1
KH
350 struct mem_cgroup_per_zone *mz;
351 unsigned long flags;
352
cede86ac
LZ
353 if (mem_cgroup_subsys.disabled)
354 return;
355
2680eed7
HD
356 /*
357 * We cannot lock_page_cgroup while holding zone's lru_lock,
358 * because other holders of lock_page_cgroup can be interrupted
359 * with an attempt to rotate_reclaimable_page. But we cannot
360 * safely get to page_cgroup without it, so just try_lock it:
361 * mem_cgroup_isolate_pages allows for page left on wrong list.
362 */
363 if (!try_lock_page_cgroup(page))
66e1707b
BS
364 return;
365
2680eed7
HD
366 pc = page_get_page_cgroup(page);
367 if (pc) {
2680eed7 368 mz = page_cgroup_zoneinfo(pc);
2680eed7 369 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 370 __mem_cgroup_move_lists(pc, active);
2680eed7 371 spin_unlock_irqrestore(&mz->lru_lock, flags);
9b3c0a07
HT
372 }
373 unlock_page_cgroup(page);
66e1707b
BS
374}
375
58ae83db
KH
376/*
377 * Calculate mapped_ratio under memory controller. This will be used in
378 * vmscan.c for deteremining we have to reclaim mapped pages.
379 */
380int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
381{
382 long total, rss;
383
384 /*
385 * usage is recorded in bytes. But, here, we assume the number of
386 * physical pages can be represented by "long" on any arch.
387 */
388 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
389 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
390 return (int)((rss * 100L) / total);
391}
8869b8f6 392
5932f367
KH
393/*
394 * This function is called from vmscan.c. In page reclaiming loop. balance
395 * between active and inactive list is calculated. For memory controller
396 * page reclaiming, we should use using mem_cgroup's imbalance rather than
397 * zone's global lru imbalance.
398 */
399long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
400{
401 unsigned long active, inactive;
402 /* active and inactive are the number of pages. 'long' is ok.*/
b69408e8
CL
403 active = mem_cgroup_get_all_zonestat(mem, LRU_ACTIVE);
404 inactive = mem_cgroup_get_all_zonestat(mem, LRU_INACTIVE);
5932f367
KH
405 return (long) (active / (inactive + 1));
406}
58ae83db 407
6c48a1d0
KH
408/*
409 * prev_priority control...this will be used in memory reclaim path.
410 */
411int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
412{
413 return mem->prev_priority;
414}
415
416void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
417{
418 if (priority < mem->prev_priority)
419 mem->prev_priority = priority;
420}
421
422void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
423{
424 mem->prev_priority = priority;
425}
426
cc38108e
KH
427/*
428 * Calculate # of pages to be scanned in this priority/zone.
429 * See also vmscan.c
430 *
431 * priority starts from "DEF_PRIORITY" and decremented in each loop.
432 * (see include/linux/mmzone.h)
433 */
434
b69408e8
CL
435long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
436 int priority, enum lru_list lru)
cc38108e 437{
b69408e8 438 long nr_pages;
cc38108e
KH
439 int nid = zone->zone_pgdat->node_id;
440 int zid = zone_idx(zone);
441 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
442
b69408e8 443 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 444
b69408e8 445 return (nr_pages >> priority);
cc38108e
KH
446}
447
66e1707b
BS
448unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
449 struct list_head *dst,
450 unsigned long *scanned, int order,
451 int mode, struct zone *z,
452 struct mem_cgroup *mem_cont,
453 int active)
454{
455 unsigned long nr_taken = 0;
456 struct page *page;
457 unsigned long scan;
458 LIST_HEAD(pc_list);
459 struct list_head *src;
ff7283fa 460 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
461 int nid = z->zone_pgdat->node_id;
462 int zid = zone_idx(z);
463 struct mem_cgroup_per_zone *mz;
b69408e8 464 int lru = !!active;
66e1707b 465
cf475ad2 466 BUG_ON(!mem_cont);
1ecaab2b 467 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 468 src = &mz->lists[lru];
66e1707b 469
072c56c1 470 spin_lock(&mz->lru_lock);
ff7283fa
KH
471 scan = 0;
472 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 473 if (scan >= nr_to_scan)
ff7283fa 474 break;
66e1707b 475 page = pc->page;
66e1707b 476
436c6541 477 if (unlikely(!PageLRU(page)))
ff7283fa 478 continue;
ff7283fa 479
66e1707b
BS
480 if (PageActive(page) && !active) {
481 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
482 continue;
483 }
484 if (!PageActive(page) && active) {
485 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
486 continue;
487 }
488
436c6541
HD
489 scan++;
490 list_move(&pc->lru, &pc_list);
66e1707b
BS
491
492 if (__isolate_lru_page(page, mode) == 0) {
493 list_move(&page->lru, dst);
494 nr_taken++;
495 }
496 }
497
498 list_splice(&pc_list, src);
072c56c1 499 spin_unlock(&mz->lru_lock);
66e1707b
BS
500
501 *scanned = scan;
502 return nr_taken;
503}
504
8a9f3ccd
BS
505/*
506 * Charge the memory controller for page usage.
507 * Return
508 * 0 if the charge was successful
509 * < 0 if the cgroup is over its limit
510 */
217bc319 511static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
e8589cc1
KH
512 gfp_t gfp_mask, enum charge_type ctype,
513 struct mem_cgroup *memcg)
8a9f3ccd
BS
514{
515 struct mem_cgroup *mem;
9175e031 516 struct page_cgroup *pc;
66e1707b
BS
517 unsigned long flags;
518 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
072c56c1 519 struct mem_cgroup_per_zone *mz;
8a9f3ccd 520
508b7be0 521 pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
b76734e5 522 if (unlikely(pc == NULL))
8a9f3ccd
BS
523 goto err;
524
8a9f3ccd 525 /*
3be91277
HD
526 * We always charge the cgroup the mm_struct belongs to.
527 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
528 * thread group leader migrates. It's possible that mm is not
529 * set, if so charge the init_mm (happens for pagecache usage).
530 */
69029cd5 531 if (likely(!memcg)) {
e8589cc1
KH
532 rcu_read_lock();
533 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
534 if (unlikely(!mem)) {
535 rcu_read_unlock();
536 kmem_cache_free(page_cgroup_cache, pc);
537 return 0;
538 }
e8589cc1
KH
539 /*
540 * For every charge from the cgroup, increment reference count
541 */
542 css_get(&mem->css);
543 rcu_read_unlock();
544 } else {
545 mem = memcg;
546 css_get(&memcg->css);
547 }
8a9f3ccd 548
0eea1030 549 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
550 if (!(gfp_mask & __GFP_WAIT))
551 goto out;
e1a1cd59
BS
552
553 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
554 continue;
555
556 /*
8869b8f6
HD
557 * try_to_free_mem_cgroup_pages() might not give us a full
558 * picture of reclaim. Some pages are reclaimed and might be
559 * moved to swap cache or just unmapped from the cgroup.
560 * Check the limit again to see if the reclaim reduced the
561 * current usage of the cgroup before giving up
562 */
66e1707b
BS
563 if (res_counter_check_under_limit(&mem->res))
564 continue;
3be91277
HD
565
566 if (!nr_retries--) {
567 mem_cgroup_out_of_memory(mem, gfp_mask);
568 goto out;
66e1707b 569 }
8a9f3ccd
BS
570 }
571
8a9f3ccd
BS
572 pc->mem_cgroup = mem;
573 pc->page = page;
508b7be0
KH
574 /*
575 * If a page is accounted as a page cache, insert to inactive list.
576 * If anon, insert to active list.
577 */
217bc319 578 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
4a56d02e 579 pc->flags = PAGE_CGROUP_FLAG_CACHE;
508b7be0
KH
580 else
581 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
3be91277 582
7e924aaf 583 lock_page_cgroup(page);
b76734e5 584 if (unlikely(page_get_page_cgroup(page))) {
7e924aaf 585 unlock_page_cgroup(page);
9175e031
KH
586 res_counter_uncharge(&mem->res, PAGE_SIZE);
587 css_put(&mem->css);
b6ac57d5 588 kmem_cache_free(page_cgroup_cache, pc);
accf163e 589 goto done;
9175e031 590 }
7e924aaf 591 page_assign_page_cgroup(page, pc);
8a9f3ccd 592
072c56c1
KH
593 mz = page_cgroup_zoneinfo(pc);
594 spin_lock_irqsave(&mz->lru_lock, flags);
3eae90c3 595 __mem_cgroup_add_list(mz, pc);
072c56c1 596 spin_unlock_irqrestore(&mz->lru_lock, flags);
66e1707b 597
fb59e9f1 598 unlock_page_cgroup(page);
8a9f3ccd 599done:
8a9f3ccd 600 return 0;
3be91277
HD
601out:
602 css_put(&mem->css);
b6ac57d5 603 kmem_cache_free(page_cgroup_cache, pc);
8a9f3ccd 604err:
8a9f3ccd
BS
605 return -ENOMEM;
606}
607
8869b8f6 608int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
217bc319 609{
cede86ac
LZ
610 if (mem_cgroup_subsys.disabled)
611 return 0;
612
69029cd5
KH
613 /*
614 * If already mapped, we don't have to account.
615 * If page cache, page->mapping has address_space.
616 * But page->mapping may have out-of-use anon_vma pointer,
617 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
618 * is NULL.
619 */
620 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
621 return 0;
622 if (unlikely(!mm))
623 mm = &init_mm;
217bc319 624 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 625 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
626}
627
e1a1cd59
BS
628int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
629 gfp_t gfp_mask)
8697d331 630{
cede86ac
LZ
631 if (mem_cgroup_subsys.disabled)
632 return 0;
633
accf163e
KH
634 /*
635 * Corner case handling. This is called from add_to_page_cache()
636 * in usual. But some FS (shmem) precharges this page before calling it
637 * and call add_to_page_cache() with GFP_NOWAIT.
638 *
639 * For GFP_NOWAIT case, the page may be pre-charged before calling
640 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
641 * charge twice. (It works but has to pay a bit larger cost.)
642 */
643 if (!(gfp_mask & __GFP_WAIT)) {
644 struct page_cgroup *pc;
645
646 lock_page_cgroup(page);
647 pc = page_get_page_cgroup(page);
648 if (pc) {
649 VM_BUG_ON(pc->page != page);
650 VM_BUG_ON(!pc->mem_cgroup);
651 unlock_page_cgroup(page);
652 return 0;
653 }
654 unlock_page_cgroup(page);
655 }
656
69029cd5 657 if (unlikely(!mm))
8697d331 658 mm = &init_mm;
accf163e 659
8869b8f6 660 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1
KH
661 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
662}
663
8a9f3ccd 664/*
69029cd5 665 * uncharge if !page_mapped(page)
8a9f3ccd 666 */
69029cd5
KH
667static void
668__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 669{
8289546e 670 struct page_cgroup *pc;
8a9f3ccd 671 struct mem_cgroup *mem;
072c56c1 672 struct mem_cgroup_per_zone *mz;
66e1707b 673 unsigned long flags;
8a9f3ccd 674
4077960e
BS
675 if (mem_cgroup_subsys.disabled)
676 return;
677
8697d331 678 /*
3c541e14 679 * Check if our page_cgroup is valid
8697d331 680 */
8289546e
HD
681 lock_page_cgroup(page);
682 pc = page_get_page_cgroup(page);
b76734e5 683 if (unlikely(!pc))
8289546e 684 goto unlock;
8a9f3ccd 685
b9c565d5 686 VM_BUG_ON(pc->page != page);
b9c565d5 687
69029cd5
KH
688 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
689 && ((pc->flags & PAGE_CGROUP_FLAG_CACHE)
690 || page_mapped(page)))
691 goto unlock;
b9c565d5 692
69029cd5
KH
693 mz = page_cgroup_zoneinfo(pc);
694 spin_lock_irqsave(&mz->lru_lock, flags);
695 __mem_cgroup_remove_list(mz, pc);
696 spin_unlock_irqrestore(&mz->lru_lock, flags);
fb59e9f1 697
69029cd5
KH
698 page_assign_page_cgroup(page, NULL);
699 unlock_page_cgroup(page);
6d48ff8b 700
69029cd5
KH
701 mem = pc->mem_cgroup;
702 res_counter_uncharge(&mem->res, PAGE_SIZE);
703 css_put(&mem->css);
6d12e2d8 704
69029cd5
KH
705 kmem_cache_free(page_cgroup_cache, pc);
706 return;
8289546e 707unlock:
3c541e14
BS
708 unlock_page_cgroup(page);
709}
710
69029cd5
KH
711void mem_cgroup_uncharge_page(struct page *page)
712{
713 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
714}
715
716void mem_cgroup_uncharge_cache_page(struct page *page)
717{
718 VM_BUG_ON(page_mapped(page));
719 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
720}
721
ae41be37 722/*
e8589cc1 723 * Before starting migration, account against new page.
ae41be37 724 */
e8589cc1 725int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
ae41be37
KH
726{
727 struct page_cgroup *pc;
e8589cc1
KH
728 struct mem_cgroup *mem = NULL;
729 enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
730 int ret = 0;
8869b8f6 731
4077960e
BS
732 if (mem_cgroup_subsys.disabled)
733 return 0;
734
ae41be37
KH
735 lock_page_cgroup(page);
736 pc = page_get_page_cgroup(page);
e8589cc1
KH
737 if (pc) {
738 mem = pc->mem_cgroup;
739 css_get(&mem->css);
740 if (pc->flags & PAGE_CGROUP_FLAG_CACHE)
741 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
742 }
ae41be37 743 unlock_page_cgroup(page);
e8589cc1
KH
744 if (mem) {
745 ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
746 ctype, mem);
747 css_put(&mem->css);
748 }
749 return ret;
ae41be37 750}
8869b8f6 751
69029cd5 752/* remove redundant charge if migration failed*/
e8589cc1 753void mem_cgroup_end_migration(struct page *newpage)
ae41be37 754{
69029cd5
KH
755 /*
756 * At success, page->mapping is not NULL.
757 * special rollback care is necessary when
758 * 1. at migration failure. (newpage->mapping is cleared in this case)
759 * 2. the newpage was moved but not remapped again because the task
760 * exits and the newpage is obsolete. In this case, the new page
761 * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
762 * always for avoiding mess. The page_cgroup will be removed if
763 * unnecessary. File cache pages is still on radix-tree. Don't
764 * care it.
765 */
766 if (!newpage->mapping)
767 __mem_cgroup_uncharge_common(newpage,
768 MEM_CGROUP_CHARGE_TYPE_FORCE);
769 else if (PageAnon(newpage))
770 mem_cgroup_uncharge_page(newpage);
ae41be37 771}
78fb7466 772
c9b0ed51
KH
773/*
774 * A call to try to shrink memory usage under specified resource controller.
775 * This is typically used for page reclaiming for shmem for reducing side
776 * effect of page allocation from shmem, which is used by some mem_cgroup.
777 */
778int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
779{
780 struct mem_cgroup *mem;
781 int progress = 0;
782 int retry = MEM_CGROUP_RECLAIM_RETRIES;
783
cede86ac
LZ
784 if (mem_cgroup_subsys.disabled)
785 return 0;
9623e078
HD
786 if (!mm)
787 return 0;
cede86ac 788
c9b0ed51
KH
789 rcu_read_lock();
790 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
791 if (unlikely(!mem)) {
792 rcu_read_unlock();
793 return 0;
794 }
c9b0ed51
KH
795 css_get(&mem->css);
796 rcu_read_unlock();
797
798 do {
799 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
a10cebf5 800 progress += res_counter_check_under_limit(&mem->res);
c9b0ed51
KH
801 } while (!progress && --retry);
802
803 css_put(&mem->css);
804 if (!retry)
805 return -ENOMEM;
806 return 0;
807}
808
628f4235
KH
809int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val)
810{
811
812 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
813 int progress;
814 int ret = 0;
815
816 while (res_counter_set_limit(&memcg->res, val)) {
817 if (signal_pending(current)) {
818 ret = -EINTR;
819 break;
820 }
821 if (!retry_count) {
822 ret = -EBUSY;
823 break;
824 }
825 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL);
826 if (!progress)
827 retry_count--;
828 }
829 return ret;
830}
831
832
cc847582
KH
833/*
834 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
835 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
836 */
837#define FORCE_UNCHARGE_BATCH (128)
8869b8f6 838static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
072c56c1 839 struct mem_cgroup_per_zone *mz,
b69408e8 840 enum lru_list lru)
cc847582
KH
841{
842 struct page_cgroup *pc;
843 struct page *page;
9b3c0a07 844 int count = FORCE_UNCHARGE_BATCH;
cc847582 845 unsigned long flags;
072c56c1
KH
846 struct list_head *list;
847
b69408e8 848 list = &mz->lists[lru];
cc847582 849
072c56c1 850 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 851 while (!list_empty(list)) {
cc847582
KH
852 pc = list_entry(list->prev, struct page_cgroup, lru);
853 page = pc->page;
9b3c0a07
HT
854 get_page(page);
855 spin_unlock_irqrestore(&mz->lru_lock, flags);
e8589cc1
KH
856 /*
857 * Check if this page is on LRU. !LRU page can be found
858 * if it's under page migration.
859 */
860 if (PageLRU(page)) {
69029cd5
KH
861 __mem_cgroup_uncharge_common(page,
862 MEM_CGROUP_CHARGE_TYPE_FORCE);
e8589cc1
KH
863 put_page(page);
864 if (--count <= 0) {
865 count = FORCE_UNCHARGE_BATCH;
866 cond_resched();
867 }
868 } else
9b3c0a07 869 cond_resched();
9b3c0a07 870 spin_lock_irqsave(&mz->lru_lock, flags);
cc847582 871 }
072c56c1 872 spin_unlock_irqrestore(&mz->lru_lock, flags);
cc847582
KH
873}
874
875/*
876 * make mem_cgroup's charge to be 0 if there is no task.
877 * This enables deleting this mem_cgroup.
878 */
d5b69e38 879static int mem_cgroup_force_empty(struct mem_cgroup *mem)
cc847582
KH
880{
881 int ret = -EBUSY;
1ecaab2b 882 int node, zid;
8869b8f6 883
cc847582
KH
884 css_get(&mem->css);
885 /*
886 * page reclaim code (kswapd etc..) will move pages between
8869b8f6 887 * active_list <-> inactive_list while we don't take a lock.
cc847582
KH
888 * So, we have to do loop here until all lists are empty.
889 */
1ecaab2b 890 while (mem->res.usage > 0) {
cc847582
KH
891 if (atomic_read(&mem->css.cgroup->count) > 0)
892 goto out;
1ecaab2b
KH
893 for_each_node_state(node, N_POSSIBLE)
894 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
895 struct mem_cgroup_per_zone *mz;
b69408e8 896 enum lru_list l;
1ecaab2b 897 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8
CL
898 for_each_lru(l)
899 mem_cgroup_force_empty_list(mem, mz, l);
1ecaab2b 900 }
cc847582
KH
901 }
902 ret = 0;
903out:
904 css_put(&mem->css);
905 return ret;
906}
907
2c3daa72 908static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 909{
2c3daa72
PM
910 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
911 cft->private);
8cdea7c0 912}
628f4235
KH
913/*
914 * The user of this function is...
915 * RES_LIMIT.
916 */
856c13aa
PM
917static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
918 const char *buffer)
8cdea7c0 919{
628f4235
KH
920 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
921 unsigned long long val;
922 int ret;
923
924 switch (cft->private) {
925 case RES_LIMIT:
926 /* This function does all necessary parse...reuse it */
927 ret = res_counter_memparse_write_strategy(buffer, &val);
928 if (!ret)
929 ret = mem_cgroup_resize_limit(memcg, val);
930 break;
931 default:
932 ret = -EINVAL; /* should be BUG() ? */
933 break;
934 }
935 return ret;
8cdea7c0
BS
936}
937
29f2a4da 938static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
939{
940 struct mem_cgroup *mem;
941
942 mem = mem_cgroup_from_cont(cont);
29f2a4da
PE
943 switch (event) {
944 case RES_MAX_USAGE:
945 res_counter_reset_max(&mem->res);
946 break;
947 case RES_FAILCNT:
948 res_counter_reset_failcnt(&mem->res);
949 break;
950 }
85cc59db 951 return 0;
c84872e1
PE
952}
953
85cc59db 954static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
cc847582 955{
85cc59db 956 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
cc847582
KH
957}
958
d2ceb9b7
KH
959static const struct mem_cgroup_stat_desc {
960 const char *msg;
961 u64 unit;
962} mem_cgroup_stat_desc[] = {
963 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
964 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
965 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
966 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
967};
968
c64745cf
PM
969static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
970 struct cgroup_map_cb *cb)
d2ceb9b7 971{
d2ceb9b7
KH
972 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
973 struct mem_cgroup_stat *stat = &mem_cont->stat;
974 int i;
975
976 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
977 s64 val;
978
979 val = mem_cgroup_read_stat(stat, i);
980 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 981 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 982 }
6d12e2d8
KH
983 /* showing # of active pages */
984 {
985 unsigned long active, inactive;
986
987 inactive = mem_cgroup_get_all_zonestat(mem_cont,
b69408e8 988 LRU_INACTIVE);
6d12e2d8 989 active = mem_cgroup_get_all_zonestat(mem_cont,
b69408e8 990 LRU_ACTIVE);
c64745cf
PM
991 cb->fill(cb, "active", (active) * PAGE_SIZE);
992 cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
6d12e2d8 993 }
d2ceb9b7
KH
994 return 0;
995}
996
8cdea7c0
BS
997static struct cftype mem_cgroup_files[] = {
998 {
0eea1030 999 .name = "usage_in_bytes",
8cdea7c0 1000 .private = RES_USAGE,
2c3daa72 1001 .read_u64 = mem_cgroup_read,
8cdea7c0 1002 },
c84872e1
PE
1003 {
1004 .name = "max_usage_in_bytes",
1005 .private = RES_MAX_USAGE,
29f2a4da 1006 .trigger = mem_cgroup_reset,
c84872e1
PE
1007 .read_u64 = mem_cgroup_read,
1008 },
8cdea7c0 1009 {
0eea1030 1010 .name = "limit_in_bytes",
8cdea7c0 1011 .private = RES_LIMIT,
856c13aa 1012 .write_string = mem_cgroup_write,
2c3daa72 1013 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1014 },
1015 {
1016 .name = "failcnt",
1017 .private = RES_FAILCNT,
29f2a4da 1018 .trigger = mem_cgroup_reset,
2c3daa72 1019 .read_u64 = mem_cgroup_read,
8cdea7c0 1020 },
cc847582
KH
1021 {
1022 .name = "force_empty",
85cc59db 1023 .trigger = mem_force_empty_write,
cc847582 1024 },
d2ceb9b7
KH
1025 {
1026 .name = "stat",
c64745cf 1027 .read_map = mem_control_stat_show,
d2ceb9b7 1028 },
8cdea7c0
BS
1029};
1030
6d12e2d8
KH
1031static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1032{
1033 struct mem_cgroup_per_node *pn;
1ecaab2b 1034 struct mem_cgroup_per_zone *mz;
b69408e8 1035 enum lru_list l;
41e3355d 1036 int zone, tmp = node;
1ecaab2b
KH
1037 /*
1038 * This routine is called against possible nodes.
1039 * But it's BUG to call kmalloc() against offline node.
1040 *
1041 * TODO: this routine can waste much memory for nodes which will
1042 * never be onlined. It's better to use memory hotplug callback
1043 * function.
1044 */
41e3355d
KH
1045 if (!node_state(node, N_NORMAL_MEMORY))
1046 tmp = -1;
1047 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1048 if (!pn)
1049 return 1;
1ecaab2b 1050
6d12e2d8
KH
1051 mem->info.nodeinfo[node] = pn;
1052 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1053
1054 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1055 mz = &pn->zoneinfo[zone];
072c56c1 1056 spin_lock_init(&mz->lru_lock);
b69408e8
CL
1057 for_each_lru(l)
1058 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1059 }
6d12e2d8
KH
1060 return 0;
1061}
1062
1ecaab2b
KH
1063static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1064{
1065 kfree(mem->info.nodeinfo[node]);
1066}
1067
33327948
KH
1068static struct mem_cgroup *mem_cgroup_alloc(void)
1069{
1070 struct mem_cgroup *mem;
1071
1072 if (sizeof(*mem) < PAGE_SIZE)
1073 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1074 else
1075 mem = vmalloc(sizeof(*mem));
1076
1077 if (mem)
1078 memset(mem, 0, sizeof(*mem));
1079 return mem;
1080}
1081
1082static void mem_cgroup_free(struct mem_cgroup *mem)
1083{
1084 if (sizeof(*mem) < PAGE_SIZE)
1085 kfree(mem);
1086 else
1087 vfree(mem);
1088}
1089
1090
8cdea7c0
BS
1091static struct cgroup_subsys_state *
1092mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1093{
1094 struct mem_cgroup *mem;
6d12e2d8 1095 int node;
8cdea7c0 1096
b6ac57d5 1097 if (unlikely((cont->parent) == NULL)) {
78fb7466 1098 mem = &init_mem_cgroup;
b6ac57d5
BS
1099 page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1100 } else {
33327948
KH
1101 mem = mem_cgroup_alloc();
1102 if (!mem)
1103 return ERR_PTR(-ENOMEM);
b6ac57d5 1104 }
78fb7466 1105
8cdea7c0 1106 res_counter_init(&mem->res);
1ecaab2b 1107
6d12e2d8
KH
1108 for_each_node_state(node, N_POSSIBLE)
1109 if (alloc_mem_cgroup_per_zone_info(mem, node))
1110 goto free_out;
1111
8cdea7c0 1112 return &mem->css;
6d12e2d8
KH
1113free_out:
1114 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1115 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1116 if (cont->parent != NULL)
33327948 1117 mem_cgroup_free(mem);
2dda81ca 1118 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1119}
1120
df878fb0
KH
1121static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1122 struct cgroup *cont)
1123{
1124 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1125 mem_cgroup_force_empty(mem);
1126}
1127
8cdea7c0
BS
1128static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1129 struct cgroup *cont)
1130{
6d12e2d8
KH
1131 int node;
1132 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1133
1134 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1135 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1136
33327948 1137 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
1138}
1139
1140static int mem_cgroup_populate(struct cgroup_subsys *ss,
1141 struct cgroup *cont)
1142{
1143 return cgroup_add_files(cont, ss, mem_cgroup_files,
1144 ARRAY_SIZE(mem_cgroup_files));
1145}
1146
67e465a7
BS
1147static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1148 struct cgroup *cont,
1149 struct cgroup *old_cont,
1150 struct task_struct *p)
1151{
1152 struct mm_struct *mm;
1153 struct mem_cgroup *mem, *old_mem;
1154
1155 mm = get_task_mm(p);
1156 if (mm == NULL)
1157 return;
1158
1159 mem = mem_cgroup_from_cont(cont);
1160 old_mem = mem_cgroup_from_cont(old_cont);
1161
67e465a7
BS
1162 /*
1163 * Only thread group leaders are allowed to migrate, the mm_struct is
1164 * in effect owned by the leader
1165 */
52ea27eb 1166 if (!thread_group_leader(p))
67e465a7
BS
1167 goto out;
1168
67e465a7
BS
1169out:
1170 mmput(mm);
67e465a7
BS
1171}
1172
8cdea7c0
BS
1173struct cgroup_subsys mem_cgroup_subsys = {
1174 .name = "memory",
1175 .subsys_id = mem_cgroup_subsys_id,
1176 .create = mem_cgroup_create,
df878fb0 1177 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1178 .destroy = mem_cgroup_destroy,
1179 .populate = mem_cgroup_populate,
67e465a7 1180 .attach = mem_cgroup_move_task,
6d12e2d8 1181 .early_init = 0,
8cdea7c0 1182};