]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: new force_empty to free pages under group
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
b6ac57d5 29#include <linux/slab.h>
66e1707b
BS
30#include <linux/swap.h>
31#include <linux/spinlock.h>
32#include <linux/fs.h>
d2ceb9b7 33#include <linux/seq_file.h>
33327948 34#include <linux/vmalloc.h>
b69408e8 35#include <linux/mm_inline.h>
52d4b9ac 36#include <linux/page_cgroup.h>
8cdea7c0 37
8697d331
BS
38#include <asm/uaccess.h>
39
a181b0e8 40struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 41#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 42
d52aa412
KH
43/*
44 * Statistics for memory cgroup.
45 */
46enum mem_cgroup_stat_index {
47 /*
48 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49 */
50 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
51 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
52 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
53 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
54
55 MEM_CGROUP_STAT_NSTATS,
56};
57
58struct mem_cgroup_stat_cpu {
59 s64 count[MEM_CGROUP_STAT_NSTATS];
60} ____cacheline_aligned_in_smp;
61
62struct mem_cgroup_stat {
c8dad2bb 63 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
64};
65
66/*
67 * For accounting under irq disable, no need for increment preempt count.
68 */
addb9efe 69static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
70 enum mem_cgroup_stat_index idx, int val)
71{
addb9efe 72 stat->count[idx] += val;
d52aa412
KH
73}
74
75static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 enum mem_cgroup_stat_index idx)
77{
78 int cpu;
79 s64 ret = 0;
80 for_each_possible_cpu(cpu)
81 ret += stat->cpustat[cpu].count[idx];
82 return ret;
83}
84
6d12e2d8
KH
85/*
86 * per-zone information in memory controller.
87 */
6d12e2d8 88struct mem_cgroup_per_zone {
072c56c1
KH
89 /*
90 * spin_lock to protect the per cgroup LRU
91 */
92 spinlock_t lru_lock;
b69408e8
CL
93 struct list_head lists[NR_LRU_LISTS];
94 unsigned long count[NR_LRU_LISTS];
6d12e2d8
KH
95};
96/* Macro for accessing counter */
97#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
98
99struct mem_cgroup_per_node {
100 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
101};
102
103struct mem_cgroup_lru_info {
104 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
105};
106
8cdea7c0
BS
107/*
108 * The memory controller data structure. The memory controller controls both
109 * page cache and RSS per cgroup. We would eventually like to provide
110 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
111 * to help the administrator determine what knobs to tune.
112 *
113 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
114 * we hit the water mark. May be even add a low water mark, such that
115 * no reclaim occurs from a cgroup at it's low water mark, this is
116 * a feature that will be implemented much later in the future.
8cdea7c0
BS
117 */
118struct mem_cgroup {
119 struct cgroup_subsys_state css;
120 /*
121 * the counter to account for memory usage
122 */
123 struct res_counter res;
78fb7466
PE
124 /*
125 * Per cgroup active and inactive list, similar to the
126 * per zone LRU lists.
78fb7466 127 */
6d12e2d8 128 struct mem_cgroup_lru_info info;
072c56c1 129
6c48a1d0 130 int prev_priority; /* for recording reclaim priority */
d52aa412 131 /*
c8dad2bb 132 * statistics. This must be placed at the end of memcg.
d52aa412
KH
133 */
134 struct mem_cgroup_stat stat;
8cdea7c0
BS
135};
136
217bc319
KH
137enum charge_type {
138 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
139 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 140 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5
KH
141 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
142 NR_CHARGE_TYPE,
143};
144
52d4b9ac
KH
145/* only for here (for easy reading.) */
146#define PCGF_CACHE (1UL << PCG_CACHE)
147#define PCGF_USED (1UL << PCG_USED)
148#define PCGF_ACTIVE (1UL << PCG_ACTIVE)
149#define PCGF_LOCK (1UL << PCG_LOCK)
150#define PCGF_FILE (1UL << PCG_FILE)
c05555b5
KH
151static const unsigned long
152pcg_default_flags[NR_CHARGE_TYPE] = {
52d4b9ac
KH
153 PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
154 PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
155 PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
156 0, /* FORCE */
217bc319
KH
157};
158
d52aa412
KH
159/*
160 * Always modified under lru lock. Then, not necessary to preempt_disable()
161 */
c05555b5
KH
162static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
163 struct page_cgroup *pc,
164 bool charge)
d52aa412
KH
165{
166 int val = (charge)? 1 : -1;
167 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 168 struct mem_cgroup_stat_cpu *cpustat;
d52aa412 169
8869b8f6 170 VM_BUG_ON(!irqs_disabled());
addb9efe
KH
171
172 cpustat = &stat->cpustat[smp_processor_id()];
c05555b5 173 if (PageCgroupCache(pc))
addb9efe 174 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 175 else
addb9efe 176 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
177
178 if (charge)
addb9efe 179 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
180 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
181 else
addb9efe 182 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 183 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
6d12e2d8
KH
184}
185
d5b69e38 186static struct mem_cgroup_per_zone *
6d12e2d8
KH
187mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
188{
6d12e2d8
KH
189 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
190}
191
d5b69e38 192static struct mem_cgroup_per_zone *
6d12e2d8
KH
193page_cgroup_zoneinfo(struct page_cgroup *pc)
194{
195 struct mem_cgroup *mem = pc->mem_cgroup;
196 int nid = page_cgroup_nid(pc);
197 int zid = page_cgroup_zid(pc);
d52aa412 198
6d12e2d8
KH
199 return mem_cgroup_zoneinfo(mem, nid, zid);
200}
201
202static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 203 enum lru_list idx)
6d12e2d8
KH
204{
205 int nid, zid;
206 struct mem_cgroup_per_zone *mz;
207 u64 total = 0;
208
209 for_each_online_node(nid)
210 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
211 mz = mem_cgroup_zoneinfo(mem, nid, zid);
212 total += MEM_CGROUP_ZSTAT(mz, idx);
213 }
214 return total;
d52aa412
KH
215}
216
d5b69e38 217static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
218{
219 return container_of(cgroup_subsys_state(cont,
220 mem_cgroup_subsys_id), struct mem_cgroup,
221 css);
222}
223
cf475ad2 224struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 225{
31a78f23
BS
226 /*
227 * mm_update_next_owner() may clear mm->owner to NULL
228 * if it races with swapoff, page migration, etc.
229 * So this can be called with p == NULL.
230 */
231 if (unlikely(!p))
232 return NULL;
233
78fb7466
PE
234 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
235 struct mem_cgroup, css);
236}
237
3eae90c3
KH
238static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
239 struct page_cgroup *pc)
6d12e2d8 240{
4f98a2fe
RR
241 int lru = LRU_BASE;
242
c05555b5 243 if (PageCgroupUnevictable(pc))
894bc310
LS
244 lru = LRU_UNEVICTABLE;
245 else {
c05555b5 246 if (PageCgroupActive(pc))
894bc310 247 lru += LRU_ACTIVE;
c05555b5 248 if (PageCgroupFile(pc))
894bc310
LS
249 lru += LRU_FILE;
250 }
6d12e2d8 251
b69408e8 252 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
6d12e2d8 253
c05555b5 254 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
508b7be0 255 list_del(&pc->lru);
6d12e2d8
KH
256}
257
3eae90c3 258static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
f817ed48 259 struct page_cgroup *pc, bool hot)
6d12e2d8 260{
4f98a2fe 261 int lru = LRU_BASE;
b69408e8 262
c05555b5 263 if (PageCgroupUnevictable(pc))
894bc310
LS
264 lru = LRU_UNEVICTABLE;
265 else {
c05555b5 266 if (PageCgroupActive(pc))
894bc310 267 lru += LRU_ACTIVE;
c05555b5 268 if (PageCgroupFile(pc))
894bc310
LS
269 lru += LRU_FILE;
270 }
b69408e8
CL
271
272 MEM_CGROUP_ZSTAT(mz, lru) += 1;
f817ed48
KH
273 if (hot)
274 list_add(&pc->lru, &mz->lists[lru]);
275 else
276 list_add_tail(&pc->lru, &mz->lists[lru]);
6d12e2d8 277
c05555b5 278 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
6d12e2d8
KH
279}
280
894bc310 281static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
66e1707b 282{
6d12e2d8 283 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
c05555b5
KH
284 int active = PageCgroupActive(pc);
285 int file = PageCgroupFile(pc);
286 int unevictable = PageCgroupUnevictable(pc);
894bc310
LS
287 enum lru_list from = unevictable ? LRU_UNEVICTABLE :
288 (LRU_FILE * !!file + !!active);
6d12e2d8 289
894bc310
LS
290 if (lru == from)
291 return;
b69408e8 292
894bc310 293 MEM_CGROUP_ZSTAT(mz, from) -= 1;
c05555b5
KH
294 /*
295 * However this is done under mz->lru_lock, another flags, which
296 * are not related to LRU, will be modified from out-of-lock.
297 * We have to use atomic set/clear flags.
298 */
894bc310 299 if (is_unevictable_lru(lru)) {
c05555b5
KH
300 ClearPageCgroupActive(pc);
301 SetPageCgroupUnevictable(pc);
894bc310
LS
302 } else {
303 if (is_active_lru(lru))
c05555b5 304 SetPageCgroupActive(pc);
894bc310 305 else
c05555b5
KH
306 ClearPageCgroupActive(pc);
307 ClearPageCgroupUnevictable(pc);
894bc310 308 }
b69408e8 309
b69408e8
CL
310 MEM_CGROUP_ZSTAT(mz, lru) += 1;
311 list_move(&pc->lru, &mz->lists[lru]);
66e1707b
BS
312}
313
4c4a2214
DR
314int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
315{
316 int ret;
317
318 task_lock(task);
bd845e38 319 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
320 task_unlock(task);
321 return ret;
322}
323
66e1707b
BS
324/*
325 * This routine assumes that the appropriate zone's lru lock is already held
326 */
894bc310 327void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
66e1707b 328{
427d5416 329 struct page_cgroup *pc;
072c56c1
KH
330 struct mem_cgroup_per_zone *mz;
331 unsigned long flags;
332
cede86ac
LZ
333 if (mem_cgroup_subsys.disabled)
334 return;
335
2680eed7
HD
336 /*
337 * We cannot lock_page_cgroup while holding zone's lru_lock,
338 * because other holders of lock_page_cgroup can be interrupted
339 * with an attempt to rotate_reclaimable_page. But we cannot
340 * safely get to page_cgroup without it, so just try_lock it:
341 * mem_cgroup_isolate_pages allows for page left on wrong list.
342 */
52d4b9ac
KH
343 pc = lookup_page_cgroup(page);
344 if (!trylock_page_cgroup(pc))
66e1707b 345 return;
52d4b9ac 346 if (pc && PageCgroupUsed(pc)) {
2680eed7 347 mz = page_cgroup_zoneinfo(pc);
2680eed7 348 spin_lock_irqsave(&mz->lru_lock, flags);
894bc310 349 __mem_cgroup_move_lists(pc, lru);
2680eed7 350 spin_unlock_irqrestore(&mz->lru_lock, flags);
9b3c0a07 351 }
52d4b9ac 352 unlock_page_cgroup(pc);
66e1707b
BS
353}
354
58ae83db
KH
355/*
356 * Calculate mapped_ratio under memory controller. This will be used in
357 * vmscan.c for deteremining we have to reclaim mapped pages.
358 */
359int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
360{
361 long total, rss;
362
363 /*
364 * usage is recorded in bytes. But, here, we assume the number of
365 * physical pages can be represented by "long" on any arch.
366 */
367 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
368 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
369 return (int)((rss * 100L) / total);
370}
8869b8f6 371
6c48a1d0
KH
372/*
373 * prev_priority control...this will be used in memory reclaim path.
374 */
375int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
376{
377 return mem->prev_priority;
378}
379
380void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
381{
382 if (priority < mem->prev_priority)
383 mem->prev_priority = priority;
384}
385
386void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
387{
388 mem->prev_priority = priority;
389}
390
cc38108e
KH
391/*
392 * Calculate # of pages to be scanned in this priority/zone.
393 * See also vmscan.c
394 *
395 * priority starts from "DEF_PRIORITY" and decremented in each loop.
396 * (see include/linux/mmzone.h)
397 */
398
b69408e8
CL
399long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
400 int priority, enum lru_list lru)
cc38108e 401{
b69408e8 402 long nr_pages;
cc38108e
KH
403 int nid = zone->zone_pgdat->node_id;
404 int zid = zone_idx(zone);
405 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
406
b69408e8 407 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 408
b69408e8 409 return (nr_pages >> priority);
cc38108e
KH
410}
411
66e1707b
BS
412unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
413 struct list_head *dst,
414 unsigned long *scanned, int order,
415 int mode, struct zone *z,
416 struct mem_cgroup *mem_cont,
4f98a2fe 417 int active, int file)
66e1707b
BS
418{
419 unsigned long nr_taken = 0;
420 struct page *page;
421 unsigned long scan;
422 LIST_HEAD(pc_list);
423 struct list_head *src;
ff7283fa 424 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
425 int nid = z->zone_pgdat->node_id;
426 int zid = zone_idx(z);
427 struct mem_cgroup_per_zone *mz;
4f98a2fe 428 int lru = LRU_FILE * !!file + !!active;
66e1707b 429
cf475ad2 430 BUG_ON(!mem_cont);
1ecaab2b 431 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 432 src = &mz->lists[lru];
66e1707b 433
072c56c1 434 spin_lock(&mz->lru_lock);
ff7283fa
KH
435 scan = 0;
436 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 437 if (scan >= nr_to_scan)
ff7283fa 438 break;
52d4b9ac
KH
439 if (unlikely(!PageCgroupUsed(pc)))
440 continue;
66e1707b 441 page = pc->page;
66e1707b 442
436c6541 443 if (unlikely(!PageLRU(page)))
ff7283fa 444 continue;
ff7283fa 445
4f98a2fe
RR
446 /*
447 * TODO: play better with lumpy reclaim, grabbing anything.
448 */
894bc310
LS
449 if (PageUnevictable(page) ||
450 (PageActive(page) && !active) ||
451 (!PageActive(page) && active)) {
452 __mem_cgroup_move_lists(pc, page_lru(page));
66e1707b
BS
453 continue;
454 }
455
436c6541
HD
456 scan++;
457 list_move(&pc->lru, &pc_list);
66e1707b 458
4f98a2fe 459 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
460 list_move(&page->lru, dst);
461 nr_taken++;
462 }
463 }
464
465 list_splice(&pc_list, src);
072c56c1 466 spin_unlock(&mz->lru_lock);
66e1707b
BS
467
468 *scanned = scan;
469 return nr_taken;
470}
471
f817ed48
KH
472/*
473 * Unlike exported interface, "oom" parameter is added. if oom==true,
474 * oom-killer can be invoked.
8a9f3ccd 475 */
f817ed48
KH
476static int __mem_cgroup_try_charge(struct mm_struct *mm,
477 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
8a9f3ccd
BS
478{
479 struct mem_cgroup *mem;
7a81b88c 480 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8a9f3ccd 481 /*
3be91277
HD
482 * We always charge the cgroup the mm_struct belongs to.
483 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
484 * thread group leader migrates. It's possible that mm is not
485 * set, if so charge the init_mm (happens for pagecache usage).
486 */
7a81b88c 487 if (likely(!*memcg)) {
e8589cc1
KH
488 rcu_read_lock();
489 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
490 if (unlikely(!mem)) {
491 rcu_read_unlock();
31a78f23
BS
492 return 0;
493 }
e8589cc1
KH
494 /*
495 * For every charge from the cgroup, increment reference count
496 */
497 css_get(&mem->css);
7a81b88c 498 *memcg = mem;
e8589cc1
KH
499 rcu_read_unlock();
500 } else {
7a81b88c
KH
501 mem = *memcg;
502 css_get(&mem->css);
e8589cc1 503 }
8a9f3ccd 504
7a81b88c 505
addb9efe 506 while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
3be91277 507 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 508 goto nomem;
e1a1cd59
BS
509
510 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
511 continue;
512
513 /*
8869b8f6
HD
514 * try_to_free_mem_cgroup_pages() might not give us a full
515 * picture of reclaim. Some pages are reclaimed and might be
516 * moved to swap cache or just unmapped from the cgroup.
517 * Check the limit again to see if the reclaim reduced the
518 * current usage of the cgroup before giving up
519 */
66e1707b
BS
520 if (res_counter_check_under_limit(&mem->res))
521 continue;
3be91277
HD
522
523 if (!nr_retries--) {
f817ed48
KH
524 if (oom)
525 mem_cgroup_out_of_memory(mem, gfp_mask);
7a81b88c 526 goto nomem;
66e1707b 527 }
8a9f3ccd 528 }
7a81b88c
KH
529 return 0;
530nomem:
531 css_put(&mem->css);
532 return -ENOMEM;
533}
8a9f3ccd 534
f817ed48
KH
535/**
536 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
537 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
538 * @gfp_mask: gfp_mask for reclaim.
539 * @memcg: a pointer to memory cgroup which is charged against.
540 *
541 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
542 * memory cgroup from @mm is got and stored in *memcg.
543 *
544 * Returns 0 if success. -ENOMEM at failure.
545 * This call can invoke OOM-Killer.
546 */
547
548int mem_cgroup_try_charge(struct mm_struct *mm,
549 gfp_t mask, struct mem_cgroup **memcg)
550{
551 return __mem_cgroup_try_charge(mm, mask, memcg, true);
552}
553
7a81b88c
KH
554/*
555 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
556 * USED state. If already USED, uncharge and return.
557 */
558
559static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
560 struct page_cgroup *pc,
561 enum charge_type ctype)
562{
563 struct mem_cgroup_per_zone *mz;
564 unsigned long flags;
565
566 /* try_charge() can return NULL to *memcg, taking care of it. */
567 if (!mem)
568 return;
52d4b9ac
KH
569
570 lock_page_cgroup(pc);
571 if (unlikely(PageCgroupUsed(pc))) {
572 unlock_page_cgroup(pc);
573 res_counter_uncharge(&mem->res, PAGE_SIZE);
574 css_put(&mem->css);
7a81b88c 575 return;
52d4b9ac 576 }
8a9f3ccd 577 pc->mem_cgroup = mem;
508b7be0
KH
578 /*
579 * If a page is accounted as a page cache, insert to inactive list.
580 * If anon, insert to active list.
581 */
c05555b5 582 pc->flags = pcg_default_flags[ctype];
3be91277 583
072c56c1 584 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 585
072c56c1 586 spin_lock_irqsave(&mz->lru_lock, flags);
f817ed48 587 __mem_cgroup_add_list(mz, pc, true);
072c56c1 588 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 589 unlock_page_cgroup(pc);
7a81b88c 590}
66e1707b 591
f817ed48
KH
592/**
593 * mem_cgroup_move_account - move account of the page
594 * @pc: page_cgroup of the page.
595 * @from: mem_cgroup which the page is moved from.
596 * @to: mem_cgroup which the page is moved to. @from != @to.
597 *
598 * The caller must confirm following.
599 * 1. disable irq.
600 * 2. lru_lock of old mem_cgroup(@from) should be held.
601 *
602 * returns 0 at success,
603 * returns -EBUSY when lock is busy or "pc" is unstable.
604 *
605 * This function does "uncharge" from old cgroup but doesn't do "charge" to
606 * new cgroup. It should be done by a caller.
607 */
608
609static int mem_cgroup_move_account(struct page_cgroup *pc,
610 struct mem_cgroup *from, struct mem_cgroup *to)
611{
612 struct mem_cgroup_per_zone *from_mz, *to_mz;
613 int nid, zid;
614 int ret = -EBUSY;
615
616 VM_BUG_ON(!irqs_disabled());
617 VM_BUG_ON(from == to);
618
619 nid = page_cgroup_nid(pc);
620 zid = page_cgroup_zid(pc);
621 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
622 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
623
624
625 if (!trylock_page_cgroup(pc))
626 return ret;
627
628 if (!PageCgroupUsed(pc))
629 goto out;
630
631 if (pc->mem_cgroup != from)
632 goto out;
633
634 if (spin_trylock(&to_mz->lru_lock)) {
635 __mem_cgroup_remove_list(from_mz, pc);
636 css_put(&from->css);
637 res_counter_uncharge(&from->res, PAGE_SIZE);
638 pc->mem_cgroup = to;
639 css_get(&to->css);
640 __mem_cgroup_add_list(to_mz, pc, false);
641 ret = 0;
642 spin_unlock(&to_mz->lru_lock);
643 }
644out:
645 unlock_page_cgroup(pc);
646 return ret;
647}
648
649/*
650 * move charges to its parent.
651 */
652
653static int mem_cgroup_move_parent(struct page_cgroup *pc,
654 struct mem_cgroup *child,
655 gfp_t gfp_mask)
656{
657 struct cgroup *cg = child->css.cgroup;
658 struct cgroup *pcg = cg->parent;
659 struct mem_cgroup *parent;
660 struct mem_cgroup_per_zone *mz;
661 unsigned long flags;
662 int ret;
663
664 /* Is ROOT ? */
665 if (!pcg)
666 return -EINVAL;
667
668 parent = mem_cgroup_from_cont(pcg);
669
670 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
671 if (ret)
672 return ret;
673
674 mz = mem_cgroup_zoneinfo(child,
675 page_cgroup_nid(pc), page_cgroup_zid(pc));
676
677 spin_lock_irqsave(&mz->lru_lock, flags);
678 ret = mem_cgroup_move_account(pc, child, parent);
679 spin_unlock_irqrestore(&mz->lru_lock, flags);
680
681 /* drop extra refcnt */
682 css_put(&parent->css);
683 /* uncharge if move fails */
684 if (ret)
685 res_counter_uncharge(&parent->res, PAGE_SIZE);
686
687 return ret;
688}
689
7a81b88c
KH
690/*
691 * Charge the memory controller for page usage.
692 * Return
693 * 0 if the charge was successful
694 * < 0 if the cgroup is over its limit
695 */
696static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
697 gfp_t gfp_mask, enum charge_type ctype,
698 struct mem_cgroup *memcg)
699{
700 struct mem_cgroup *mem;
701 struct page_cgroup *pc;
702 int ret;
703
704 pc = lookup_page_cgroup(page);
705 /* can happen at boot */
706 if (unlikely(!pc))
707 return 0;
708 prefetchw(pc);
709
710 mem = memcg;
f817ed48 711 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
7a81b88c
KH
712 if (ret)
713 return ret;
714
715 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 716 return 0;
8a9f3ccd
BS
717}
718
7a81b88c
KH
719int mem_cgroup_newpage_charge(struct page *page,
720 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 721{
cede86ac
LZ
722 if (mem_cgroup_subsys.disabled)
723 return 0;
52d4b9ac
KH
724 if (PageCompound(page))
725 return 0;
69029cd5
KH
726 /*
727 * If already mapped, we don't have to account.
728 * If page cache, page->mapping has address_space.
729 * But page->mapping may have out-of-use anon_vma pointer,
730 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
731 * is NULL.
732 */
733 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
734 return 0;
735 if (unlikely(!mm))
736 mm = &init_mm;
217bc319 737 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 738 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
739}
740
e1a1cd59
BS
741int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
742 gfp_t gfp_mask)
8697d331 743{
cede86ac
LZ
744 if (mem_cgroup_subsys.disabled)
745 return 0;
52d4b9ac
KH
746 if (PageCompound(page))
747 return 0;
accf163e
KH
748 /*
749 * Corner case handling. This is called from add_to_page_cache()
750 * in usual. But some FS (shmem) precharges this page before calling it
751 * and call add_to_page_cache() with GFP_NOWAIT.
752 *
753 * For GFP_NOWAIT case, the page may be pre-charged before calling
754 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
755 * charge twice. (It works but has to pay a bit larger cost.)
756 */
757 if (!(gfp_mask & __GFP_WAIT)) {
758 struct page_cgroup *pc;
759
52d4b9ac
KH
760
761 pc = lookup_page_cgroup(page);
762 if (!pc)
763 return 0;
764 lock_page_cgroup(pc);
765 if (PageCgroupUsed(pc)) {
766 unlock_page_cgroup(pc);
accf163e
KH
767 return 0;
768 }
52d4b9ac 769 unlock_page_cgroup(pc);
accf163e
KH
770 }
771
69029cd5 772 if (unlikely(!mm))
8697d331 773 mm = &init_mm;
accf163e 774
c05555b5
KH
775 if (page_is_file_cache(page))
776 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 777 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
778 else
779 return mem_cgroup_charge_common(page, mm, gfp_mask,
780 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
781}
782
7a81b88c
KH
783void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
784{
785 struct page_cgroup *pc;
786
787 if (mem_cgroup_subsys.disabled)
788 return;
789 if (!ptr)
790 return;
791 pc = lookup_page_cgroup(page);
792 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
793}
794
795void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
796{
797 if (mem_cgroup_subsys.disabled)
798 return;
799 if (!mem)
800 return;
801 res_counter_uncharge(&mem->res, PAGE_SIZE);
802 css_put(&mem->css);
803}
804
805
8a9f3ccd 806/*
69029cd5 807 * uncharge if !page_mapped(page)
8a9f3ccd 808 */
69029cd5
KH
809static void
810__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 811{
8289546e 812 struct page_cgroup *pc;
8a9f3ccd 813 struct mem_cgroup *mem;
072c56c1 814 struct mem_cgroup_per_zone *mz;
66e1707b 815 unsigned long flags;
8a9f3ccd 816
4077960e
BS
817 if (mem_cgroup_subsys.disabled)
818 return;
819
8697d331 820 /*
3c541e14 821 * Check if our page_cgroup is valid
8697d331 822 */
52d4b9ac
KH
823 pc = lookup_page_cgroup(page);
824 if (unlikely(!pc || !PageCgroupUsed(pc)))
825 return;
b9c565d5 826
52d4b9ac
KH
827 lock_page_cgroup(pc);
828 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page))
829 || !PageCgroupUsed(pc)) {
830 /* This happens at race in zap_pte_range() and do_swap_page()*/
831 unlock_page_cgroup(pc);
832 return;
833 }
834 ClearPageCgroupUsed(pc);
835 mem = pc->mem_cgroup;
b9c565d5 836
69029cd5
KH
837 mz = page_cgroup_zoneinfo(pc);
838 spin_lock_irqsave(&mz->lru_lock, flags);
839 __mem_cgroup_remove_list(mz, pc);
840 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 841 unlock_page_cgroup(pc);
fb59e9f1 842
69029cd5
KH
843 res_counter_uncharge(&mem->res, PAGE_SIZE);
844 css_put(&mem->css);
6d12e2d8 845
69029cd5 846 return;
3c541e14
BS
847}
848
69029cd5
KH
849void mem_cgroup_uncharge_page(struct page *page)
850{
52d4b9ac
KH
851 /* early check. */
852 if (page_mapped(page))
853 return;
854 if (page->mapping && !PageAnon(page))
855 return;
69029cd5
KH
856 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
857}
858
859void mem_cgroup_uncharge_cache_page(struct page *page)
860{
861 VM_BUG_ON(page_mapped(page));
b7abea96 862 VM_BUG_ON(page->mapping);
69029cd5
KH
863 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
864}
865
ae41be37 866/*
01b1ae63
KH
867 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
868 * page belongs to.
ae41be37 869 */
01b1ae63 870int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
871{
872 struct page_cgroup *pc;
e8589cc1 873 struct mem_cgroup *mem = NULL;
e8589cc1 874 int ret = 0;
8869b8f6 875
4077960e
BS
876 if (mem_cgroup_subsys.disabled)
877 return 0;
878
52d4b9ac
KH
879 pc = lookup_page_cgroup(page);
880 lock_page_cgroup(pc);
881 if (PageCgroupUsed(pc)) {
e8589cc1
KH
882 mem = pc->mem_cgroup;
883 css_get(&mem->css);
e8589cc1 884 }
52d4b9ac 885 unlock_page_cgroup(pc);
01b1ae63 886
e8589cc1 887 if (mem) {
01b1ae63 888 ret = mem_cgroup_try_charge(NULL, GFP_HIGHUSER_MOVABLE, &mem);
e8589cc1
KH
889 css_put(&mem->css);
890 }
01b1ae63 891 *ptr = mem;
e8589cc1 892 return ret;
ae41be37 893}
8869b8f6 894
69029cd5 895/* remove redundant charge if migration failed*/
01b1ae63
KH
896void mem_cgroup_end_migration(struct mem_cgroup *mem,
897 struct page *oldpage, struct page *newpage)
ae41be37 898{
01b1ae63
KH
899 struct page *target, *unused;
900 struct page_cgroup *pc;
901 enum charge_type ctype;
902
903 if (!mem)
904 return;
905
906 /* at migration success, oldpage->mapping is NULL. */
907 if (oldpage->mapping) {
908 target = oldpage;
909 unused = NULL;
910 } else {
911 target = newpage;
912 unused = oldpage;
913 }
914
915 if (PageAnon(target))
916 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
917 else if (page_is_file_cache(target))
918 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
919 else
920 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
921
922 /* unused page is not on radix-tree now. */
923 if (unused && ctype != MEM_CGROUP_CHARGE_TYPE_MAPPED)
924 __mem_cgroup_uncharge_common(unused, ctype);
925
926 pc = lookup_page_cgroup(target);
69029cd5 927 /*
01b1ae63
KH
928 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
929 * So, double-counting is effectively avoided.
930 */
931 __mem_cgroup_commit_charge(mem, pc, ctype);
932
933 /*
934 * Both of oldpage and newpage are still under lock_page().
935 * Then, we don't have to care about race in radix-tree.
936 * But we have to be careful that this page is unmapped or not.
937 *
938 * There is a case for !page_mapped(). At the start of
939 * migration, oldpage was mapped. But now, it's zapped.
940 * But we know *target* page is not freed/reused under us.
941 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 942 */
01b1ae63
KH
943 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
944 mem_cgroup_uncharge_page(target);
ae41be37 945}
78fb7466 946
c9b0ed51
KH
947/*
948 * A call to try to shrink memory usage under specified resource controller.
949 * This is typically used for page reclaiming for shmem for reducing side
950 * effect of page allocation from shmem, which is used by some mem_cgroup.
951 */
952int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
953{
954 struct mem_cgroup *mem;
955 int progress = 0;
956 int retry = MEM_CGROUP_RECLAIM_RETRIES;
957
cede86ac
LZ
958 if (mem_cgroup_subsys.disabled)
959 return 0;
9623e078
HD
960 if (!mm)
961 return 0;
cede86ac 962
c9b0ed51
KH
963 rcu_read_lock();
964 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
965 if (unlikely(!mem)) {
966 rcu_read_unlock();
967 return 0;
968 }
c9b0ed51
KH
969 css_get(&mem->css);
970 rcu_read_unlock();
971
972 do {
973 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
a10cebf5 974 progress += res_counter_check_under_limit(&mem->res);
c9b0ed51
KH
975 } while (!progress && --retry);
976
977 css_put(&mem->css);
978 if (!retry)
979 return -ENOMEM;
980 return 0;
981}
982
d38d2a75
KM
983static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
984 unsigned long long val)
628f4235
KH
985{
986
987 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
988 int progress;
989 int ret = 0;
990
991 while (res_counter_set_limit(&memcg->res, val)) {
992 if (signal_pending(current)) {
993 ret = -EINTR;
994 break;
995 }
996 if (!retry_count) {
997 ret = -EBUSY;
998 break;
999 }
bced0520
KH
1000 progress = try_to_free_mem_cgroup_pages(memcg,
1001 GFP_HIGHUSER_MOVABLE);
628f4235
KH
1002 if (!progress)
1003 retry_count--;
1004 }
1005 return ret;
1006}
1007
1008
cc847582
KH
1009/*
1010 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1011 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1012 */
f817ed48 1013static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
072c56c1 1014 struct mem_cgroup_per_zone *mz,
b69408e8 1015 enum lru_list lru)
cc847582 1016{
f817ed48 1017 struct page_cgroup *pc, *busy;
cc847582 1018 unsigned long flags;
f817ed48 1019 unsigned long loop;
072c56c1 1020 struct list_head *list;
f817ed48 1021 int ret = 0;
072c56c1 1022
b69408e8 1023 list = &mz->lists[lru];
cc847582 1024
f817ed48
KH
1025 loop = MEM_CGROUP_ZSTAT(mz, lru);
1026 /* give some margin against EBUSY etc...*/
1027 loop += 256;
1028 busy = NULL;
1029 while (loop--) {
1030 ret = 0;
1031 spin_lock_irqsave(&mz->lru_lock, flags);
1032 if (list_empty(list)) {
1033 spin_unlock_irqrestore(&mz->lru_lock, flags);
52d4b9ac 1034 break;
f817ed48
KH
1035 }
1036 pc = list_entry(list->prev, struct page_cgroup, lru);
1037 if (busy == pc) {
1038 list_move(&pc->lru, list);
1039 busy = 0;
1040 spin_unlock_irqrestore(&mz->lru_lock, flags);
1041 continue;
1042 }
9b3c0a07 1043 spin_unlock_irqrestore(&mz->lru_lock, flags);
f817ed48
KH
1044
1045 ret = mem_cgroup_move_parent(pc, mem, GFP_HIGHUSER_MOVABLE);
1046 if (ret == -ENOMEM)
52d4b9ac 1047 break;
f817ed48
KH
1048
1049 if (ret == -EBUSY || ret == -EINVAL) {
1050 /* found lock contention or "pc" is obsolete. */
1051 busy = pc;
1052 cond_resched();
1053 } else
1054 busy = NULL;
cc847582 1055 }
f817ed48
KH
1056 if (!ret && !list_empty(list))
1057 return -EBUSY;
1058 return ret;
cc847582
KH
1059}
1060
1061/*
1062 * make mem_cgroup's charge to be 0 if there is no task.
1063 * This enables deleting this mem_cgroup.
1064 */
c1e862c1 1065static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1066{
f817ed48
KH
1067 int ret;
1068 int node, zid, shrink;
1069 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1070 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1071
cc847582 1072 css_get(&mem->css);
f817ed48
KH
1073
1074 shrink = 0;
c1e862c1
KH
1075 /* should free all ? */
1076 if (free_all)
1077 goto try_to_free;
f817ed48 1078move_account:
1ecaab2b 1079 while (mem->res.usage > 0) {
f817ed48 1080 ret = -EBUSY;
c1e862c1
KH
1081 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1082 goto out;
1083 ret = -EINTR;
1084 if (signal_pending(current))
cc847582 1085 goto out;
52d4b9ac
KH
1086 /* This is for making all *used* pages to be on LRU. */
1087 lru_add_drain_all();
f817ed48
KH
1088 ret = 0;
1089 for_each_node_state(node, N_POSSIBLE) {
1090 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1ecaab2b 1091 struct mem_cgroup_per_zone *mz;
b69408e8 1092 enum lru_list l;
1ecaab2b 1093 mz = mem_cgroup_zoneinfo(mem, node, zid);
f817ed48
KH
1094 for_each_lru(l) {
1095 ret = mem_cgroup_force_empty_list(mem,
1096 mz, l);
1097 if (ret)
1098 break;
1099 }
1ecaab2b 1100 }
f817ed48
KH
1101 if (ret)
1102 break;
1103 }
1104 /* it seems parent cgroup doesn't have enough mem */
1105 if (ret == -ENOMEM)
1106 goto try_to_free;
52d4b9ac 1107 cond_resched();
cc847582
KH
1108 }
1109 ret = 0;
1110out:
1111 css_put(&mem->css);
1112 return ret;
f817ed48
KH
1113
1114try_to_free:
c1e862c1
KH
1115 /* returns EBUSY if there is a task or if we come here twice. */
1116 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1117 ret = -EBUSY;
1118 goto out;
1119 }
c1e862c1
KH
1120 /* we call try-to-free pages for make this cgroup empty */
1121 lru_add_drain_all();
f817ed48
KH
1122 /* try to free all pages in this cgroup */
1123 shrink = 1;
1124 while (nr_retries && mem->res.usage > 0) {
1125 int progress;
c1e862c1
KH
1126
1127 if (signal_pending(current)) {
1128 ret = -EINTR;
1129 goto out;
1130 }
f817ed48
KH
1131 progress = try_to_free_mem_cgroup_pages(mem,
1132 GFP_HIGHUSER_MOVABLE);
c1e862c1 1133 if (!progress) {
f817ed48 1134 nr_retries--;
c1e862c1
KH
1135 /* maybe some writeback is necessary */
1136 congestion_wait(WRITE, HZ/10);
1137 }
f817ed48
KH
1138
1139 }
1140 /* try move_account...there may be some *locked* pages. */
1141 if (mem->res.usage)
1142 goto move_account;
1143 ret = 0;
1144 goto out;
cc847582
KH
1145}
1146
c1e862c1
KH
1147int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1148{
1149 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1150}
1151
1152
2c3daa72 1153static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1154{
2c3daa72
PM
1155 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
1156 cft->private);
8cdea7c0 1157}
628f4235
KH
1158/*
1159 * The user of this function is...
1160 * RES_LIMIT.
1161 */
856c13aa
PM
1162static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1163 const char *buffer)
8cdea7c0 1164{
628f4235
KH
1165 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1166 unsigned long long val;
1167 int ret;
1168
1169 switch (cft->private) {
1170 case RES_LIMIT:
1171 /* This function does all necessary parse...reuse it */
1172 ret = res_counter_memparse_write_strategy(buffer, &val);
1173 if (!ret)
1174 ret = mem_cgroup_resize_limit(memcg, val);
1175 break;
1176 default:
1177 ret = -EINVAL; /* should be BUG() ? */
1178 break;
1179 }
1180 return ret;
8cdea7c0
BS
1181}
1182
29f2a4da 1183static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1184{
1185 struct mem_cgroup *mem;
1186
1187 mem = mem_cgroup_from_cont(cont);
29f2a4da
PE
1188 switch (event) {
1189 case RES_MAX_USAGE:
1190 res_counter_reset_max(&mem->res);
1191 break;
1192 case RES_FAILCNT:
1193 res_counter_reset_failcnt(&mem->res);
1194 break;
1195 }
85cc59db 1196 return 0;
c84872e1
PE
1197}
1198
d2ceb9b7
KH
1199static const struct mem_cgroup_stat_desc {
1200 const char *msg;
1201 u64 unit;
1202} mem_cgroup_stat_desc[] = {
1203 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1204 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1205 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1206 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1207};
1208
c64745cf
PM
1209static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1210 struct cgroup_map_cb *cb)
d2ceb9b7 1211{
d2ceb9b7
KH
1212 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1213 struct mem_cgroup_stat *stat = &mem_cont->stat;
1214 int i;
1215
1216 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1217 s64 val;
1218
1219 val = mem_cgroup_read_stat(stat, i);
1220 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1221 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1222 }
6d12e2d8
KH
1223 /* showing # of active pages */
1224 {
4f98a2fe
RR
1225 unsigned long active_anon, inactive_anon;
1226 unsigned long active_file, inactive_file;
7b854121 1227 unsigned long unevictable;
4f98a2fe
RR
1228
1229 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1230 LRU_INACTIVE_ANON);
1231 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1232 LRU_ACTIVE_ANON);
1233 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1234 LRU_INACTIVE_FILE);
1235 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1236 LRU_ACTIVE_FILE);
7b854121
LS
1237 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1238 LRU_UNEVICTABLE);
1239
4f98a2fe
RR
1240 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1241 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1242 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1243 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1244 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1245
6d12e2d8 1246 }
d2ceb9b7
KH
1247 return 0;
1248}
1249
c1e862c1 1250
8cdea7c0
BS
1251static struct cftype mem_cgroup_files[] = {
1252 {
0eea1030 1253 .name = "usage_in_bytes",
8cdea7c0 1254 .private = RES_USAGE,
2c3daa72 1255 .read_u64 = mem_cgroup_read,
8cdea7c0 1256 },
c84872e1
PE
1257 {
1258 .name = "max_usage_in_bytes",
1259 .private = RES_MAX_USAGE,
29f2a4da 1260 .trigger = mem_cgroup_reset,
c84872e1
PE
1261 .read_u64 = mem_cgroup_read,
1262 },
8cdea7c0 1263 {
0eea1030 1264 .name = "limit_in_bytes",
8cdea7c0 1265 .private = RES_LIMIT,
856c13aa 1266 .write_string = mem_cgroup_write,
2c3daa72 1267 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1268 },
1269 {
1270 .name = "failcnt",
1271 .private = RES_FAILCNT,
29f2a4da 1272 .trigger = mem_cgroup_reset,
2c3daa72 1273 .read_u64 = mem_cgroup_read,
8cdea7c0 1274 },
d2ceb9b7
KH
1275 {
1276 .name = "stat",
c64745cf 1277 .read_map = mem_control_stat_show,
d2ceb9b7 1278 },
c1e862c1
KH
1279 {
1280 .name = "force_empty",
1281 .trigger = mem_cgroup_force_empty_write,
1282 },
8cdea7c0
BS
1283};
1284
6d12e2d8
KH
1285static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1286{
1287 struct mem_cgroup_per_node *pn;
1ecaab2b 1288 struct mem_cgroup_per_zone *mz;
b69408e8 1289 enum lru_list l;
41e3355d 1290 int zone, tmp = node;
1ecaab2b
KH
1291 /*
1292 * This routine is called against possible nodes.
1293 * But it's BUG to call kmalloc() against offline node.
1294 *
1295 * TODO: this routine can waste much memory for nodes which will
1296 * never be onlined. It's better to use memory hotplug callback
1297 * function.
1298 */
41e3355d
KH
1299 if (!node_state(node, N_NORMAL_MEMORY))
1300 tmp = -1;
1301 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1302 if (!pn)
1303 return 1;
1ecaab2b 1304
6d12e2d8
KH
1305 mem->info.nodeinfo[node] = pn;
1306 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1307
1308 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1309 mz = &pn->zoneinfo[zone];
072c56c1 1310 spin_lock_init(&mz->lru_lock);
b69408e8
CL
1311 for_each_lru(l)
1312 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1313 }
6d12e2d8
KH
1314 return 0;
1315}
1316
1ecaab2b
KH
1317static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1318{
1319 kfree(mem->info.nodeinfo[node]);
1320}
1321
c8dad2bb
JB
1322static int mem_cgroup_size(void)
1323{
1324 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1325 return sizeof(struct mem_cgroup) + cpustat_size;
1326}
1327
33327948
KH
1328static struct mem_cgroup *mem_cgroup_alloc(void)
1329{
1330 struct mem_cgroup *mem;
c8dad2bb 1331 int size = mem_cgroup_size();
33327948 1332
c8dad2bb
JB
1333 if (size < PAGE_SIZE)
1334 mem = kmalloc(size, GFP_KERNEL);
33327948 1335 else
c8dad2bb 1336 mem = vmalloc(size);
33327948
KH
1337
1338 if (mem)
c8dad2bb 1339 memset(mem, 0, size);
33327948
KH
1340 return mem;
1341}
1342
1343static void mem_cgroup_free(struct mem_cgroup *mem)
1344{
c8dad2bb 1345 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
1346 kfree(mem);
1347 else
1348 vfree(mem);
1349}
1350
1351
8cdea7c0
BS
1352static struct cgroup_subsys_state *
1353mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1354{
1355 struct mem_cgroup *mem;
6d12e2d8 1356 int node;
8cdea7c0 1357
c8dad2bb
JB
1358 mem = mem_cgroup_alloc();
1359 if (!mem)
1360 return ERR_PTR(-ENOMEM);
78fb7466 1361
8cdea7c0 1362 res_counter_init(&mem->res);
1ecaab2b 1363
6d12e2d8
KH
1364 for_each_node_state(node, N_POSSIBLE)
1365 if (alloc_mem_cgroup_per_zone_info(mem, node))
1366 goto free_out;
1367
8cdea7c0 1368 return &mem->css;
6d12e2d8
KH
1369free_out:
1370 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1371 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 1372 mem_cgroup_free(mem);
2dda81ca 1373 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1374}
1375
df878fb0
KH
1376static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1377 struct cgroup *cont)
1378{
1379 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c1e862c1 1380 mem_cgroup_force_empty(mem, false);
df878fb0
KH
1381}
1382
8cdea7c0
BS
1383static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1384 struct cgroup *cont)
1385{
6d12e2d8
KH
1386 int node;
1387 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1388
1389 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1390 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1391
33327948 1392 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
1393}
1394
1395static int mem_cgroup_populate(struct cgroup_subsys *ss,
1396 struct cgroup *cont)
1397{
1398 return cgroup_add_files(cont, ss, mem_cgroup_files,
1399 ARRAY_SIZE(mem_cgroup_files));
1400}
1401
67e465a7
BS
1402static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1403 struct cgroup *cont,
1404 struct cgroup *old_cont,
1405 struct task_struct *p)
1406{
1407 struct mm_struct *mm;
1408 struct mem_cgroup *mem, *old_mem;
1409
1410 mm = get_task_mm(p);
1411 if (mm == NULL)
1412 return;
1413
1414 mem = mem_cgroup_from_cont(cont);
1415 old_mem = mem_cgroup_from_cont(old_cont);
1416
67e465a7
BS
1417 /*
1418 * Only thread group leaders are allowed to migrate, the mm_struct is
1419 * in effect owned by the leader
1420 */
52ea27eb 1421 if (!thread_group_leader(p))
67e465a7
BS
1422 goto out;
1423
67e465a7
BS
1424out:
1425 mmput(mm);
67e465a7
BS
1426}
1427
8cdea7c0
BS
1428struct cgroup_subsys mem_cgroup_subsys = {
1429 .name = "memory",
1430 .subsys_id = mem_cgroup_subsys_id,
1431 .create = mem_cgroup_create,
df878fb0 1432 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1433 .destroy = mem_cgroup_destroy,
1434 .populate = mem_cgroup_populate,
67e465a7 1435 .attach = mem_cgroup_move_task,
6d12e2d8 1436 .early_init = 0,
8cdea7c0 1437};