]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: fix section mismatch
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
7f4d454d 54static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 55
d52aa412
KH
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60 /*
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 */
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
67
68 MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
c8dad2bb 76 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
addb9efe 82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
83 enum mem_cgroup_stat_index idx, int val)
84{
addb9efe 85 stat->count[idx] += val;
d52aa412
KH
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
96}
97
6d12e2d8
KH
98/*
99 * per-zone information in memory controller.
100 */
6d12e2d8 101struct mem_cgroup_per_zone {
072c56c1
KH
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
b69408e8
CL
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
107
108 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
109};
110/* Macro for accessing counter */
111#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
112
113struct mem_cgroup_per_node {
114 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115};
116
117struct mem_cgroup_lru_info {
118 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119};
120
8cdea7c0
BS
121/*
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
126 *
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
8cdea7c0
BS
131 */
132struct mem_cgroup {
133 struct cgroup_subsys_state css;
134 /*
135 * the counter to account for memory usage
136 */
137 struct res_counter res;
8c7c6e34
KH
138 /*
139 * the counter to account for mem+swap usage.
140 */
141 struct res_counter memsw;
78fb7466
PE
142 /*
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
78fb7466 145 */
6d12e2d8 146 struct mem_cgroup_lru_info info;
072c56c1 147
2733c06a
KM
148 /*
149 protect against reclaim related member.
150 */
151 spinlock_t reclaim_param_lock;
152
6c48a1d0 153 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
154
155 /*
156 * While reclaiming in a hiearchy, we cache the last child we
2cb378c8 157 * reclaimed from. Protected by hierarchy_mutex
6d61ef40
BS
158 */
159 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
160 /*
161 * Should the accounting and control be hierarchical, per subtree?
162 */
163 bool use_hierarchy;
a636b327 164 unsigned long last_oom_jiffies;
8c7c6e34 165 atomic_t refcnt;
14797e23 166
a7885eb8
KM
167 unsigned int swappiness;
168
d52aa412 169 /*
c8dad2bb 170 * statistics. This must be placed at the end of memcg.
d52aa412
KH
171 */
172 struct mem_cgroup_stat stat;
8cdea7c0
BS
173};
174
217bc319
KH
175enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
181 NR_CHARGE_TYPE,
182};
183
52d4b9ac
KH
184/* only for here (for easy reading.) */
185#define PCGF_CACHE (1UL << PCG_CACHE)
186#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 187#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
188static const unsigned long
189pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 193 0, /* FORCE */
217bc319
KH
194};
195
8c7c6e34
KH
196/* for encoding cft->private value on file */
197#define _MEM (0)
198#define _MEMSWAP (1)
199#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201#define MEMFILE_ATTR(val) ((val) & 0xffff)
202
203static void mem_cgroup_get(struct mem_cgroup *mem);
204static void mem_cgroup_put(struct mem_cgroup *mem);
205
c05555b5
KH
206static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
d52aa412
KH
209{
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 212 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 213 int cpu = get_cpu();
d52aa412 214
08e552c6 215 cpustat = &stat->cpustat[cpu];
c05555b5 216 if (PageCgroupCache(pc))
addb9efe 217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 218 else
addb9efe 219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
220
221 if (charge)
addb9efe 222 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
addb9efe 225 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 227 put_cpu();
6d12e2d8
KH
228}
229
d5b69e38 230static struct mem_cgroup_per_zone *
6d12e2d8
KH
231mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232{
6d12e2d8
KH
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234}
235
d5b69e38 236static struct mem_cgroup_per_zone *
6d12e2d8
KH
237page_cgroup_zoneinfo(struct page_cgroup *pc)
238{
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
d52aa412 242
54992762
KM
243 if (!mem)
244 return NULL;
245
6d12e2d8
KH
246 return mem_cgroup_zoneinfo(mem, nid, zid);
247}
248
249static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 250 enum lru_list idx)
6d12e2d8
KH
251{
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
255
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
260 }
261 return total;
d52aa412
KH
262}
263
d5b69e38 264static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
265{
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
269}
270
cf475ad2 271struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 272{
31a78f23
BS
273 /*
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
277 */
278 if (unlikely(!p))
279 return NULL;
280
78fb7466
PE
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
283}
284
54595fe2
KH
285static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
286{
287 struct mem_cgroup *mem = NULL;
288 /*
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
292 */
293 rcu_read_lock();
294 do {
295 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296 if (unlikely(!mem))
297 break;
298 } while (!css_tryget(&mem->css));
299 rcu_read_unlock();
300 return mem;
301}
302
303static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
304{
305 if (!mem)
306 return true;
307 return css_is_removed(&mem->css);
308}
309
08e552c6
KH
310/*
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
314 *
315 * Changes to pc->mem_cgroup happens when
316 * 1. charge
317 * 2. moving account
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
322 */
4f98a2fe 323
08e552c6
KH
324void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
325{
326 struct page_cgroup *pc;
327 struct mem_cgroup *mem;
328 struct mem_cgroup_per_zone *mz;
6d12e2d8 329
f8d66542 330 if (mem_cgroup_disabled())
08e552c6
KH
331 return;
332 pc = lookup_page_cgroup(page);
333 /* can happen while we handle swapcache. */
544122e5 334 if (list_empty(&pc->lru) || !pc->mem_cgroup)
08e552c6 335 return;
544122e5
KH
336 /*
337 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338 * removed from global LRU.
339 */
08e552c6
KH
340 mz = page_cgroup_zoneinfo(pc);
341 mem = pc->mem_cgroup;
b69408e8 342 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
343 list_del_init(&pc->lru);
344 return;
6d12e2d8
KH
345}
346
08e552c6 347void mem_cgroup_del_lru(struct page *page)
6d12e2d8 348{
08e552c6
KH
349 mem_cgroup_del_lru_list(page, page_lru(page));
350}
b69408e8 351
08e552c6
KH
352void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
353{
354 struct mem_cgroup_per_zone *mz;
355 struct page_cgroup *pc;
b69408e8 356
f8d66542 357 if (mem_cgroup_disabled())
08e552c6 358 return;
6d12e2d8 359
08e552c6 360 pc = lookup_page_cgroup(page);
bd112db8
DN
361 /*
362 * Used bit is set without atomic ops but after smp_wmb().
363 * For making pc->mem_cgroup visible, insert smp_rmb() here.
364 */
08e552c6
KH
365 smp_rmb();
366 /* unused page is not rotated. */
367 if (!PageCgroupUsed(pc))
368 return;
369 mz = page_cgroup_zoneinfo(pc);
370 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
371}
372
08e552c6 373void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 374{
08e552c6
KH
375 struct page_cgroup *pc;
376 struct mem_cgroup_per_zone *mz;
6d12e2d8 377
f8d66542 378 if (mem_cgroup_disabled())
08e552c6
KH
379 return;
380 pc = lookup_page_cgroup(page);
bd112db8
DN
381 /*
382 * Used bit is set without atomic ops but after smp_wmb().
383 * For making pc->mem_cgroup visible, insert smp_rmb() here.
384 */
08e552c6
KH
385 smp_rmb();
386 if (!PageCgroupUsed(pc))
894bc310 387 return;
b69408e8 388
08e552c6 389 mz = page_cgroup_zoneinfo(pc);
b69408e8 390 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
391 list_add(&pc->lru, &mz->lists[lru]);
392}
544122e5 393
08e552c6 394/*
544122e5
KH
395 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
396 * lru because the page may.be reused after it's fully uncharged (because of
397 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
398 * it again. This function is only used to charge SwapCache. It's done under
399 * lock_page and expected that zone->lru_lock is never held.
08e552c6 400 */
544122e5 401static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 402{
544122e5
KH
403 unsigned long flags;
404 struct zone *zone = page_zone(page);
405 struct page_cgroup *pc = lookup_page_cgroup(page);
406
407 spin_lock_irqsave(&zone->lru_lock, flags);
408 /*
409 * Forget old LRU when this page_cgroup is *not* used. This Used bit
410 * is guarded by lock_page() because the page is SwapCache.
411 */
412 if (!PageCgroupUsed(pc))
413 mem_cgroup_del_lru_list(page, page_lru(page));
414 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
415}
416
544122e5
KH
417static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
418{
419 unsigned long flags;
420 struct zone *zone = page_zone(page);
421 struct page_cgroup *pc = lookup_page_cgroup(page);
422
423 spin_lock_irqsave(&zone->lru_lock, flags);
424 /* link when the page is linked to LRU but page_cgroup isn't */
425 if (PageLRU(page) && list_empty(&pc->lru))
426 mem_cgroup_add_lru_list(page, page_lru(page));
427 spin_unlock_irqrestore(&zone->lru_lock, flags);
428}
429
430
08e552c6
KH
431void mem_cgroup_move_lists(struct page *page,
432 enum lru_list from, enum lru_list to)
433{
f8d66542 434 if (mem_cgroup_disabled())
08e552c6
KH
435 return;
436 mem_cgroup_del_lru_list(page, from);
437 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
438}
439
4c4a2214
DR
440int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
441{
442 int ret;
443
444 task_lock(task);
bd845e38 445 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
446 task_unlock(task);
447 return ret;
448}
449
58ae83db
KH
450/*
451 * Calculate mapped_ratio under memory controller. This will be used in
452 * vmscan.c for deteremining we have to reclaim mapped pages.
453 */
454int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
455{
456 long total, rss;
457
458 /*
459 * usage is recorded in bytes. But, here, we assume the number of
460 * physical pages can be represented by "long" on any arch.
461 */
462 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
463 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
464 return (int)((rss * 100L) / total);
465}
8869b8f6 466
6c48a1d0
KH
467/*
468 * prev_priority control...this will be used in memory reclaim path.
469 */
470int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
471{
2733c06a
KM
472 int prev_priority;
473
474 spin_lock(&mem->reclaim_param_lock);
475 prev_priority = mem->prev_priority;
476 spin_unlock(&mem->reclaim_param_lock);
477
478 return prev_priority;
6c48a1d0
KH
479}
480
481void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
482{
2733c06a 483 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
484 if (priority < mem->prev_priority)
485 mem->prev_priority = priority;
2733c06a 486 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
487}
488
489void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
490{
2733c06a 491 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 492 mem->prev_priority = priority;
2733c06a 493 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
494}
495
c772be93 496static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
497{
498 unsigned long active;
499 unsigned long inactive;
c772be93
KM
500 unsigned long gb;
501 unsigned long inactive_ratio;
14797e23
KM
502
503 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
504 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
505
c772be93
KM
506 gb = (inactive + active) >> (30 - PAGE_SHIFT);
507 if (gb)
508 inactive_ratio = int_sqrt(10 * gb);
509 else
510 inactive_ratio = 1;
511
512 if (present_pages) {
513 present_pages[0] = inactive;
514 present_pages[1] = active;
515 }
516
517 return inactive_ratio;
518}
519
520int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
521{
522 unsigned long active;
523 unsigned long inactive;
524 unsigned long present_pages[2];
525 unsigned long inactive_ratio;
526
527 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
528
529 inactive = present_pages[0];
530 active = present_pages[1];
531
532 if (inactive * inactive_ratio < active)
14797e23
KM
533 return 1;
534
535 return 0;
536}
537
a3d8e054
KM
538unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
539 struct zone *zone,
540 enum lru_list lru)
541{
542 int nid = zone->zone_pgdat->node_id;
543 int zid = zone_idx(zone);
544 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
545
546 return MEM_CGROUP_ZSTAT(mz, lru);
547}
548
3e2f41f1
KM
549struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
550 struct zone *zone)
551{
552 int nid = zone->zone_pgdat->node_id;
553 int zid = zone_idx(zone);
554 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
555
556 return &mz->reclaim_stat;
557}
558
559struct zone_reclaim_stat *
560mem_cgroup_get_reclaim_stat_from_page(struct page *page)
561{
562 struct page_cgroup *pc;
563 struct mem_cgroup_per_zone *mz;
564
565 if (mem_cgroup_disabled())
566 return NULL;
567
568 pc = lookup_page_cgroup(page);
bd112db8
DN
569 /*
570 * Used bit is set without atomic ops but after smp_wmb().
571 * For making pc->mem_cgroup visible, insert smp_rmb() here.
572 */
573 smp_rmb();
574 if (!PageCgroupUsed(pc))
575 return NULL;
576
3e2f41f1
KM
577 mz = page_cgroup_zoneinfo(pc);
578 if (!mz)
579 return NULL;
580
581 return &mz->reclaim_stat;
582}
583
66e1707b
BS
584unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
585 struct list_head *dst,
586 unsigned long *scanned, int order,
587 int mode, struct zone *z,
588 struct mem_cgroup *mem_cont,
4f98a2fe 589 int active, int file)
66e1707b
BS
590{
591 unsigned long nr_taken = 0;
592 struct page *page;
593 unsigned long scan;
594 LIST_HEAD(pc_list);
595 struct list_head *src;
ff7283fa 596 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
597 int nid = z->zone_pgdat->node_id;
598 int zid = zone_idx(z);
599 struct mem_cgroup_per_zone *mz;
4f98a2fe 600 int lru = LRU_FILE * !!file + !!active;
66e1707b 601
cf475ad2 602 BUG_ON(!mem_cont);
1ecaab2b 603 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 604 src = &mz->lists[lru];
66e1707b 605
ff7283fa
KH
606 scan = 0;
607 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 608 if (scan >= nr_to_scan)
ff7283fa 609 break;
08e552c6
KH
610
611 page = pc->page;
52d4b9ac
KH
612 if (unlikely(!PageCgroupUsed(pc)))
613 continue;
436c6541 614 if (unlikely(!PageLRU(page)))
ff7283fa 615 continue;
ff7283fa 616
436c6541 617 scan++;
4f98a2fe 618 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
619 list_move(&page->lru, dst);
620 nr_taken++;
621 }
622 }
623
66e1707b
BS
624 *scanned = scan;
625 return nr_taken;
626}
627
6d61ef40
BS
628#define mem_cgroup_from_res_counter(counter, member) \
629 container_of(counter, struct mem_cgroup, member)
630
631/*
632 * This routine finds the DFS walk successor. This routine should be
2cb378c8 633 * called with hierarchy_mutex held
6d61ef40
BS
634 */
635static struct mem_cgroup *
c268e994 636__mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
6d61ef40
BS
637{
638 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
639
640 curr_cgroup = curr->css.cgroup;
641 root_cgroup = root_mem->css.cgroup;
642
643 if (!list_empty(&curr_cgroup->children)) {
644 /*
645 * Walk down to children
646 */
6d61ef40
BS
647 cgroup = list_entry(curr_cgroup->children.next,
648 struct cgroup, sibling);
649 curr = mem_cgroup_from_cont(cgroup);
6d61ef40
BS
650 goto done;
651 }
652
653visit_parent:
654 if (curr_cgroup == root_cgroup) {
c268e994
DN
655 /* caller handles NULL case */
656 curr = NULL;
6d61ef40
BS
657 goto done;
658 }
659
660 /*
661 * Goto next sibling
662 */
663 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
6d61ef40
BS
664 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
665 sibling);
666 curr = mem_cgroup_from_cont(cgroup);
6d61ef40
BS
667 goto done;
668 }
669
670 /*
671 * Go up to next parent and next parent's sibling if need be
672 */
673 curr_cgroup = curr_cgroup->parent;
674 goto visit_parent;
675
676done:
6d61ef40
BS
677 return curr;
678}
679
680/*
681 * Visit the first child (need not be the first child as per the ordering
682 * of the cgroup list, since we track last_scanned_child) of @mem and use
683 * that to reclaim free pages from.
684 */
685static struct mem_cgroup *
c268e994 686mem_cgroup_get_next_node(struct mem_cgroup *root_mem)
6d61ef40
BS
687{
688 struct cgroup *cgroup;
c268e994 689 struct mem_cgroup *orig, *next;
54595fe2
KH
690 bool obsolete;
691
6d61ef40
BS
692 /*
693 * Scan all children under the mem_cgroup mem
694 */
2cb378c8 695 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
c268e994
DN
696
697 orig = root_mem->last_scanned_child;
698 obsolete = mem_cgroup_is_obsolete(orig);
699
6d61ef40 700 if (list_empty(&root_mem->css.cgroup->children)) {
c268e994
DN
701 /*
702 * root_mem might have children before and last_scanned_child
703 * may point to one of them. We put it later.
704 */
705 if (orig)
706 VM_BUG_ON(!obsolete);
707 next = NULL;
6d61ef40
BS
708 goto done;
709 }
710
c268e994 711 if (!orig || obsolete) {
6d61ef40
BS
712 cgroup = list_first_entry(&root_mem->css.cgroup->children,
713 struct cgroup, sibling);
c268e994 714 next = mem_cgroup_from_cont(cgroup);
6d61ef40 715 } else
c268e994 716 next = __mem_cgroup_get_next_node(orig, root_mem);
6d61ef40
BS
717
718done:
c268e994
DN
719 if (next)
720 mem_cgroup_get(next);
721 root_mem->last_scanned_child = next;
722 if (orig)
723 mem_cgroup_put(orig);
2cb378c8 724 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
c268e994 725 return (next) ? next : root_mem;
6d61ef40
BS
726}
727
b85a96c0
DN
728static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
729{
730 if (do_swap_account) {
731 if (res_counter_check_under_limit(&mem->res) &&
732 res_counter_check_under_limit(&mem->memsw))
733 return true;
734 } else
735 if (res_counter_check_under_limit(&mem->res))
736 return true;
737 return false;
738}
739
a7885eb8
KM
740static unsigned int get_swappiness(struct mem_cgroup *memcg)
741{
742 struct cgroup *cgrp = memcg->css.cgroup;
743 unsigned int swappiness;
744
745 /* root ? */
746 if (cgrp->parent == NULL)
747 return vm_swappiness;
748
749 spin_lock(&memcg->reclaim_param_lock);
750 swappiness = memcg->swappiness;
751 spin_unlock(&memcg->reclaim_param_lock);
752
753 return swappiness;
754}
755
6d61ef40
BS
756/*
757 * Dance down the hierarchy if needed to reclaim memory. We remember the
758 * last child we reclaimed from, so that we don't end up penalizing
759 * one child extensively based on its position in the children list.
760 *
761 * root_mem is the original ancestor that we've been reclaim from.
762 */
763static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
764 gfp_t gfp_mask, bool noswap)
765{
766 struct mem_cgroup *next_mem;
767 int ret = 0;
768
769 /*
770 * Reclaim unconditionally and don't check for return value.
771 * We need to reclaim in the current group and down the tree.
772 * One might think about checking for children before reclaiming,
773 * but there might be left over accounting, even after children
774 * have left.
775 */
4d1c6273 776 ret += try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
a7885eb8 777 get_swappiness(root_mem));
b85a96c0 778 if (mem_cgroup_check_under_limit(root_mem))
4d1c6273 779 return 1; /* indicate reclaim has succeeded */
670ec2f1
DN
780 if (!root_mem->use_hierarchy)
781 return ret;
6d61ef40 782
c268e994 783 next_mem = mem_cgroup_get_next_node(root_mem);
6d61ef40
BS
784
785 while (next_mem != root_mem) {
54595fe2 786 if (mem_cgroup_is_obsolete(next_mem)) {
c268e994 787 next_mem = mem_cgroup_get_next_node(root_mem);
6d61ef40
BS
788 continue;
789 }
4d1c6273 790 ret += try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
a7885eb8 791 get_swappiness(next_mem));
b85a96c0 792 if (mem_cgroup_check_under_limit(root_mem))
4d1c6273 793 return 1; /* indicate reclaim has succeeded */
c268e994 794 next_mem = mem_cgroup_get_next_node(root_mem);
6d61ef40
BS
795 }
796 return ret;
797}
798
a636b327
KH
799bool mem_cgroup_oom_called(struct task_struct *task)
800{
801 bool ret = false;
802 struct mem_cgroup *mem;
803 struct mm_struct *mm;
804
805 rcu_read_lock();
806 mm = task->mm;
807 if (!mm)
808 mm = &init_mm;
809 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
810 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
811 ret = true;
812 rcu_read_unlock();
813 return ret;
814}
f817ed48
KH
815/*
816 * Unlike exported interface, "oom" parameter is added. if oom==true,
817 * oom-killer can be invoked.
8a9f3ccd 818 */
f817ed48 819static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
820 gfp_t gfp_mask, struct mem_cgroup **memcg,
821 bool oom)
8a9f3ccd 822{
6d61ef40 823 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 824 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 825 struct res_counter *fail_res;
a636b327
KH
826
827 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
828 /* Don't account this! */
829 *memcg = NULL;
830 return 0;
831 }
832
8a9f3ccd 833 /*
3be91277
HD
834 * We always charge the cgroup the mm_struct belongs to.
835 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
836 * thread group leader migrates. It's possible that mm is not
837 * set, if so charge the init_mm (happens for pagecache usage).
838 */
54595fe2
KH
839 mem = *memcg;
840 if (likely(!mem)) {
841 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 842 *memcg = mem;
e8589cc1 843 } else {
7a81b88c 844 css_get(&mem->css);
e8589cc1 845 }
54595fe2
KH
846 if (unlikely(!mem))
847 return 0;
848
849 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
8a9f3ccd 850
8c7c6e34
KH
851 while (1) {
852 int ret;
853 bool noswap = false;
7a81b88c 854
28dbc4b6 855 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
856 if (likely(!ret)) {
857 if (!do_swap_account)
858 break;
28dbc4b6
BS
859 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
860 &fail_res);
8c7c6e34
KH
861 if (likely(!ret))
862 break;
863 /* mem+swap counter fails */
864 res_counter_uncharge(&mem->res, PAGE_SIZE);
865 noswap = true;
6d61ef40
BS
866 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
867 memsw);
868 } else
869 /* mem counter fails */
870 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
871 res);
872
3be91277 873 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 874 goto nomem;
e1a1cd59 875
6d61ef40
BS
876 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
877 noswap);
4d1c6273
DN
878 if (ret)
879 continue;
66e1707b
BS
880
881 /*
8869b8f6
HD
882 * try_to_free_mem_cgroup_pages() might not give us a full
883 * picture of reclaim. Some pages are reclaimed and might be
884 * moved to swap cache or just unmapped from the cgroup.
885 * Check the limit again to see if the reclaim reduced the
886 * current usage of the cgroup before giving up
8c7c6e34 887 *
8869b8f6 888 */
b85a96c0
DN
889 if (mem_cgroup_check_under_limit(mem_over_limit))
890 continue;
3be91277
HD
891
892 if (!nr_retries--) {
a636b327 893 if (oom) {
7f4d454d 894 mutex_lock(&memcg_tasklist);
88700756 895 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 896 mutex_unlock(&memcg_tasklist);
88700756 897 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 898 }
7a81b88c 899 goto nomem;
66e1707b 900 }
8a9f3ccd 901 }
7a81b88c
KH
902 return 0;
903nomem:
904 css_put(&mem->css);
905 return -ENOMEM;
906}
8a9f3ccd 907
b5a84319
KH
908static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
909{
910 struct mem_cgroup *mem;
911 swp_entry_t ent;
912
913 if (!PageSwapCache(page))
914 return NULL;
915
916 ent.val = page_private(page);
917 mem = lookup_swap_cgroup(ent);
918 if (!mem)
919 return NULL;
920 if (!css_tryget(&mem->css))
921 return NULL;
922 return mem;
923}
924
7a81b88c 925/*
a5e924f5 926 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
927 * USED state. If already USED, uncharge and return.
928 */
929
930static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
931 struct page_cgroup *pc,
932 enum charge_type ctype)
933{
7a81b88c
KH
934 /* try_charge() can return NULL to *memcg, taking care of it. */
935 if (!mem)
936 return;
52d4b9ac
KH
937
938 lock_page_cgroup(pc);
939 if (unlikely(PageCgroupUsed(pc))) {
940 unlock_page_cgroup(pc);
941 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
942 if (do_swap_account)
943 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 944 css_put(&mem->css);
7a81b88c 945 return;
52d4b9ac 946 }
8a9f3ccd 947 pc->mem_cgroup = mem;
08e552c6 948 smp_wmb();
c05555b5 949 pc->flags = pcg_default_flags[ctype];
3be91277 950
08e552c6 951 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 952
52d4b9ac 953 unlock_page_cgroup(pc);
7a81b88c 954}
66e1707b 955
f817ed48
KH
956/**
957 * mem_cgroup_move_account - move account of the page
958 * @pc: page_cgroup of the page.
959 * @from: mem_cgroup which the page is moved from.
960 * @to: mem_cgroup which the page is moved to. @from != @to.
961 *
962 * The caller must confirm following.
08e552c6 963 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
964 *
965 * returns 0 at success,
966 * returns -EBUSY when lock is busy or "pc" is unstable.
967 *
968 * This function does "uncharge" from old cgroup but doesn't do "charge" to
969 * new cgroup. It should be done by a caller.
970 */
971
972static int mem_cgroup_move_account(struct page_cgroup *pc,
973 struct mem_cgroup *from, struct mem_cgroup *to)
974{
975 struct mem_cgroup_per_zone *from_mz, *to_mz;
976 int nid, zid;
977 int ret = -EBUSY;
978
f817ed48 979 VM_BUG_ON(from == to);
08e552c6 980 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
981
982 nid = page_cgroup_nid(pc);
983 zid = page_cgroup_zid(pc);
984 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
985 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
986
f817ed48
KH
987 if (!trylock_page_cgroup(pc))
988 return ret;
989
990 if (!PageCgroupUsed(pc))
991 goto out;
992
993 if (pc->mem_cgroup != from)
994 goto out;
995
08e552c6
KH
996 res_counter_uncharge(&from->res, PAGE_SIZE);
997 mem_cgroup_charge_statistics(from, pc, false);
998 if (do_swap_account)
999 res_counter_uncharge(&from->memsw, PAGE_SIZE);
40d58138
DN
1000 css_put(&from->css);
1001
1002 css_get(&to->css);
08e552c6
KH
1003 pc->mem_cgroup = to;
1004 mem_cgroup_charge_statistics(to, pc, true);
08e552c6 1005 ret = 0;
f817ed48
KH
1006out:
1007 unlock_page_cgroup(pc);
1008 return ret;
1009}
1010
1011/*
1012 * move charges to its parent.
1013 */
1014
1015static int mem_cgroup_move_parent(struct page_cgroup *pc,
1016 struct mem_cgroup *child,
1017 gfp_t gfp_mask)
1018{
08e552c6 1019 struct page *page = pc->page;
f817ed48
KH
1020 struct cgroup *cg = child->css.cgroup;
1021 struct cgroup *pcg = cg->parent;
1022 struct mem_cgroup *parent;
f817ed48
KH
1023 int ret;
1024
1025 /* Is ROOT ? */
1026 if (!pcg)
1027 return -EINVAL;
1028
08e552c6 1029
f817ed48
KH
1030 parent = mem_cgroup_from_cont(pcg);
1031
08e552c6 1032
f817ed48 1033 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1034 if (ret || !parent)
f817ed48
KH
1035 return ret;
1036
40d58138
DN
1037 if (!get_page_unless_zero(page)) {
1038 ret = -EBUSY;
1039 goto uncharge;
1040 }
08e552c6
KH
1041
1042 ret = isolate_lru_page(page);
1043
1044 if (ret)
1045 goto cancel;
f817ed48 1046
f817ed48 1047 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1048
08e552c6
KH
1049 putback_lru_page(page);
1050 if (!ret) {
1051 put_page(page);
40d58138
DN
1052 /* drop extra refcnt by try_charge() */
1053 css_put(&parent->css);
08e552c6 1054 return 0;
8c7c6e34 1055 }
40d58138 1056
08e552c6 1057cancel:
40d58138
DN
1058 put_page(page);
1059uncharge:
1060 /* drop extra refcnt by try_charge() */
1061 css_put(&parent->css);
1062 /* uncharge if move fails */
08e552c6
KH
1063 res_counter_uncharge(&parent->res, PAGE_SIZE);
1064 if (do_swap_account)
1065 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
f817ed48
KH
1066 return ret;
1067}
1068
7a81b88c
KH
1069/*
1070 * Charge the memory controller for page usage.
1071 * Return
1072 * 0 if the charge was successful
1073 * < 0 if the cgroup is over its limit
1074 */
1075static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1076 gfp_t gfp_mask, enum charge_type ctype,
1077 struct mem_cgroup *memcg)
1078{
1079 struct mem_cgroup *mem;
1080 struct page_cgroup *pc;
1081 int ret;
1082
1083 pc = lookup_page_cgroup(page);
1084 /* can happen at boot */
1085 if (unlikely(!pc))
1086 return 0;
1087 prefetchw(pc);
1088
1089 mem = memcg;
f817ed48 1090 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1091 if (ret || !mem)
7a81b88c
KH
1092 return ret;
1093
1094 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1095 return 0;
8a9f3ccd
BS
1096}
1097
7a81b88c
KH
1098int mem_cgroup_newpage_charge(struct page *page,
1099 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1100{
f8d66542 1101 if (mem_cgroup_disabled())
cede86ac 1102 return 0;
52d4b9ac
KH
1103 if (PageCompound(page))
1104 return 0;
69029cd5
KH
1105 /*
1106 * If already mapped, we don't have to account.
1107 * If page cache, page->mapping has address_space.
1108 * But page->mapping may have out-of-use anon_vma pointer,
1109 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1110 * is NULL.
1111 */
1112 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1113 return 0;
1114 if (unlikely(!mm))
1115 mm = &init_mm;
217bc319 1116 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1117 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1118}
1119
e1a1cd59
BS
1120int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1121 gfp_t gfp_mask)
8697d331 1122{
b5a84319
KH
1123 struct mem_cgroup *mem = NULL;
1124 int ret;
1125
f8d66542 1126 if (mem_cgroup_disabled())
cede86ac 1127 return 0;
52d4b9ac
KH
1128 if (PageCompound(page))
1129 return 0;
accf163e
KH
1130 /*
1131 * Corner case handling. This is called from add_to_page_cache()
1132 * in usual. But some FS (shmem) precharges this page before calling it
1133 * and call add_to_page_cache() with GFP_NOWAIT.
1134 *
1135 * For GFP_NOWAIT case, the page may be pre-charged before calling
1136 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1137 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1138 * And when the page is SwapCache, it should take swap information
1139 * into account. This is under lock_page() now.
accf163e
KH
1140 */
1141 if (!(gfp_mask & __GFP_WAIT)) {
1142 struct page_cgroup *pc;
1143
52d4b9ac
KH
1144
1145 pc = lookup_page_cgroup(page);
1146 if (!pc)
1147 return 0;
1148 lock_page_cgroup(pc);
1149 if (PageCgroupUsed(pc)) {
1150 unlock_page_cgroup(pc);
accf163e
KH
1151 return 0;
1152 }
52d4b9ac 1153 unlock_page_cgroup(pc);
accf163e
KH
1154 }
1155
b5a84319
KH
1156 if (do_swap_account && PageSwapCache(page)) {
1157 mem = try_get_mem_cgroup_from_swapcache(page);
1158 if (mem)
1159 mm = NULL;
1160 else
1161 mem = NULL;
1162 /* SwapCache may be still linked to LRU now. */
1163 mem_cgroup_lru_del_before_commit_swapcache(page);
1164 }
1165
1166 if (unlikely(!mm && !mem))
8697d331 1167 mm = &init_mm;
accf163e 1168
c05555b5
KH
1169 if (page_is_file_cache(page))
1170 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1171 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319
KH
1172
1173 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1174 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1175 if (mem)
1176 css_put(&mem->css);
1177 if (PageSwapCache(page))
1178 mem_cgroup_lru_add_after_commit_swapcache(page);
1179
1180 if (do_swap_account && !ret && PageSwapCache(page)) {
1181 swp_entry_t ent = {.val = page_private(page)};
1182 /* avoid double counting */
1183 mem = swap_cgroup_record(ent, NULL);
1184 if (mem) {
1185 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1186 mem_cgroup_put(mem);
1187 }
1188 }
1189 return ret;
e8589cc1
KH
1190}
1191
54595fe2
KH
1192/*
1193 * While swap-in, try_charge -> commit or cancel, the page is locked.
1194 * And when try_charge() successfully returns, one refcnt to memcg without
1195 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1196 * "commit()" or removed by "cancel()"
1197 */
8c7c6e34
KH
1198int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1199 struct page *page,
1200 gfp_t mask, struct mem_cgroup **ptr)
1201{
1202 struct mem_cgroup *mem;
54595fe2 1203 int ret;
8c7c6e34 1204
f8d66542 1205 if (mem_cgroup_disabled())
8c7c6e34
KH
1206 return 0;
1207
1208 if (!do_swap_account)
1209 goto charge_cur_mm;
8c7c6e34
KH
1210 /*
1211 * A racing thread's fault, or swapoff, may have already updated
1212 * the pte, and even removed page from swap cache: return success
1213 * to go on to do_swap_page()'s pte_same() test, which should fail.
1214 */
1215 if (!PageSwapCache(page))
1216 return 0;
b5a84319 1217 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1218 if (!mem)
1219 goto charge_cur_mm;
8c7c6e34 1220 *ptr = mem;
54595fe2
KH
1221 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1222 /* drop extra refcnt from tryget */
1223 css_put(&mem->css);
1224 return ret;
8c7c6e34
KH
1225charge_cur_mm:
1226 if (unlikely(!mm))
1227 mm = &init_mm;
1228 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1229}
1230
7a81b88c
KH
1231void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1232{
1233 struct page_cgroup *pc;
1234
f8d66542 1235 if (mem_cgroup_disabled())
7a81b88c
KH
1236 return;
1237 if (!ptr)
1238 return;
1239 pc = lookup_page_cgroup(page);
544122e5 1240 mem_cgroup_lru_del_before_commit_swapcache(page);
7a81b88c 1241 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
544122e5 1242 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1243 /*
1244 * Now swap is on-memory. This means this page may be
1245 * counted both as mem and swap....double count.
03f3c433
KH
1246 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1247 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1248 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1249 */
03f3c433 1250 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34
KH
1251 swp_entry_t ent = {.val = page_private(page)};
1252 struct mem_cgroup *memcg;
1253 memcg = swap_cgroup_record(ent, NULL);
1254 if (memcg) {
8c7c6e34
KH
1255 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1256 mem_cgroup_put(memcg);
1257 }
1258
1259 }
08e552c6 1260 /* add this page(page_cgroup) to the LRU we want. */
544122e5 1261
7a81b88c
KH
1262}
1263
1264void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1265{
f8d66542 1266 if (mem_cgroup_disabled())
7a81b88c
KH
1267 return;
1268 if (!mem)
1269 return;
1270 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1271 if (do_swap_account)
1272 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1273 css_put(&mem->css);
1274}
1275
1276
8a9f3ccd 1277/*
69029cd5 1278 * uncharge if !page_mapped(page)
8a9f3ccd 1279 */
8c7c6e34 1280static struct mem_cgroup *
69029cd5 1281__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1282{
8289546e 1283 struct page_cgroup *pc;
8c7c6e34 1284 struct mem_cgroup *mem = NULL;
072c56c1 1285 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1286
f8d66542 1287 if (mem_cgroup_disabled())
8c7c6e34 1288 return NULL;
4077960e 1289
d13d1443 1290 if (PageSwapCache(page))
8c7c6e34 1291 return NULL;
d13d1443 1292
8697d331 1293 /*
3c541e14 1294 * Check if our page_cgroup is valid
8697d331 1295 */
52d4b9ac
KH
1296 pc = lookup_page_cgroup(page);
1297 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1298 return NULL;
b9c565d5 1299
52d4b9ac 1300 lock_page_cgroup(pc);
d13d1443 1301
8c7c6e34
KH
1302 mem = pc->mem_cgroup;
1303
d13d1443
KH
1304 if (!PageCgroupUsed(pc))
1305 goto unlock_out;
1306
1307 switch (ctype) {
1308 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1309 if (page_mapped(page))
1310 goto unlock_out;
1311 break;
1312 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1313 if (!PageAnon(page)) { /* Shared memory */
1314 if (page->mapping && !page_is_file_cache(page))
1315 goto unlock_out;
1316 } else if (page_mapped(page)) /* Anon */
1317 goto unlock_out;
1318 break;
1319 default:
1320 break;
52d4b9ac 1321 }
d13d1443 1322
8c7c6e34
KH
1323 res_counter_uncharge(&mem->res, PAGE_SIZE);
1324 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1325 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1326
08e552c6 1327 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1328 ClearPageCgroupUsed(pc);
544122e5
KH
1329 /*
1330 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1331 * freed from LRU. This is safe because uncharged page is expected not
1332 * to be reused (freed soon). Exception is SwapCache, it's handled by
1333 * special functions.
1334 */
b9c565d5 1335
69029cd5 1336 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1337 unlock_page_cgroup(pc);
fb59e9f1 1338
a7fe942e
KH
1339 /* at swapout, this memcg will be accessed to record to swap */
1340 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1341 css_put(&mem->css);
6d12e2d8 1342
8c7c6e34 1343 return mem;
d13d1443
KH
1344
1345unlock_out:
1346 unlock_page_cgroup(pc);
8c7c6e34 1347 return NULL;
3c541e14
BS
1348}
1349
69029cd5
KH
1350void mem_cgroup_uncharge_page(struct page *page)
1351{
52d4b9ac
KH
1352 /* early check. */
1353 if (page_mapped(page))
1354 return;
1355 if (page->mapping && !PageAnon(page))
1356 return;
69029cd5
KH
1357 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1358}
1359
1360void mem_cgroup_uncharge_cache_page(struct page *page)
1361{
1362 VM_BUG_ON(page_mapped(page));
b7abea96 1363 VM_BUG_ON(page->mapping);
69029cd5
KH
1364 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1365}
1366
8c7c6e34
KH
1367/*
1368 * called from __delete_from_swap_cache() and drop "page" account.
1369 * memcg information is recorded to swap_cgroup of "ent"
1370 */
1371void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1372{
1373 struct mem_cgroup *memcg;
1374
1375 memcg = __mem_cgroup_uncharge_common(page,
1376 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1377 /* record memcg information */
1378 if (do_swap_account && memcg) {
1379 swap_cgroup_record(ent, memcg);
1380 mem_cgroup_get(memcg);
1381 }
a7fe942e
KH
1382 if (memcg)
1383 css_put(&memcg->css);
8c7c6e34
KH
1384}
1385
1386#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1387/*
1388 * called from swap_entry_free(). remove record in swap_cgroup and
1389 * uncharge "memsw" account.
1390 */
1391void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1392{
8c7c6e34
KH
1393 struct mem_cgroup *memcg;
1394
1395 if (!do_swap_account)
1396 return;
1397
1398 memcg = swap_cgroup_record(ent, NULL);
1399 if (memcg) {
1400 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1401 mem_cgroup_put(memcg);
1402 }
d13d1443 1403}
8c7c6e34 1404#endif
d13d1443 1405
ae41be37 1406/*
01b1ae63
KH
1407 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1408 * page belongs to.
ae41be37 1409 */
01b1ae63 1410int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1411{
1412 struct page_cgroup *pc;
e8589cc1 1413 struct mem_cgroup *mem = NULL;
e8589cc1 1414 int ret = 0;
8869b8f6 1415
f8d66542 1416 if (mem_cgroup_disabled())
4077960e
BS
1417 return 0;
1418
52d4b9ac
KH
1419 pc = lookup_page_cgroup(page);
1420 lock_page_cgroup(pc);
1421 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1422 mem = pc->mem_cgroup;
1423 css_get(&mem->css);
e8589cc1 1424 }
52d4b9ac 1425 unlock_page_cgroup(pc);
01b1ae63 1426
e8589cc1 1427 if (mem) {
3bb4edf2 1428 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1429 css_put(&mem->css);
1430 }
01b1ae63 1431 *ptr = mem;
e8589cc1 1432 return ret;
ae41be37 1433}
8869b8f6 1434
69029cd5 1435/* remove redundant charge if migration failed*/
01b1ae63
KH
1436void mem_cgroup_end_migration(struct mem_cgroup *mem,
1437 struct page *oldpage, struct page *newpage)
ae41be37 1438{
01b1ae63
KH
1439 struct page *target, *unused;
1440 struct page_cgroup *pc;
1441 enum charge_type ctype;
1442
1443 if (!mem)
1444 return;
1445
1446 /* at migration success, oldpage->mapping is NULL. */
1447 if (oldpage->mapping) {
1448 target = oldpage;
1449 unused = NULL;
1450 } else {
1451 target = newpage;
1452 unused = oldpage;
1453 }
1454
1455 if (PageAnon(target))
1456 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1457 else if (page_is_file_cache(target))
1458 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1459 else
1460 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1461
1462 /* unused page is not on radix-tree now. */
d13d1443 1463 if (unused)
01b1ae63
KH
1464 __mem_cgroup_uncharge_common(unused, ctype);
1465
1466 pc = lookup_page_cgroup(target);
69029cd5 1467 /*
01b1ae63
KH
1468 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1469 * So, double-counting is effectively avoided.
1470 */
1471 __mem_cgroup_commit_charge(mem, pc, ctype);
1472
1473 /*
1474 * Both of oldpage and newpage are still under lock_page().
1475 * Then, we don't have to care about race in radix-tree.
1476 * But we have to be careful that this page is unmapped or not.
1477 *
1478 * There is a case for !page_mapped(). At the start of
1479 * migration, oldpage was mapped. But now, it's zapped.
1480 * But we know *target* page is not freed/reused under us.
1481 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1482 */
01b1ae63
KH
1483 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1484 mem_cgroup_uncharge_page(target);
ae41be37 1485}
78fb7466 1486
c9b0ed51
KH
1487/*
1488 * A call to try to shrink memory usage under specified resource controller.
1489 * This is typically used for page reclaiming for shmem for reducing side
1490 * effect of page allocation from shmem, which is used by some mem_cgroup.
1491 */
b5a84319
KH
1492int mem_cgroup_shrink_usage(struct page *page,
1493 struct mm_struct *mm,
1494 gfp_t gfp_mask)
c9b0ed51 1495{
b5a84319 1496 struct mem_cgroup *mem = NULL;
c9b0ed51
KH
1497 int progress = 0;
1498 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1499
f8d66542 1500 if (mem_cgroup_disabled())
cede86ac 1501 return 0;
b5a84319
KH
1502 if (page)
1503 mem = try_get_mem_cgroup_from_swapcache(page);
1504 if (!mem && mm)
1505 mem = try_get_mem_cgroup_from_mm(mm);
54595fe2 1506 if (unlikely(!mem))
31a78f23 1507 return 0;
c9b0ed51
KH
1508
1509 do {
42e9abb6 1510 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
b85a96c0 1511 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1512 } while (!progress && --retry);
1513
1514 css_put(&mem->css);
1515 if (!retry)
1516 return -ENOMEM;
1517 return 0;
1518}
1519
8c7c6e34
KH
1520static DEFINE_MUTEX(set_limit_mutex);
1521
d38d2a75 1522static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1523 unsigned long long val)
628f4235
KH
1524{
1525
1526 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1527 int progress;
8c7c6e34 1528 u64 memswlimit;
628f4235
KH
1529 int ret = 0;
1530
8c7c6e34 1531 while (retry_count) {
628f4235
KH
1532 if (signal_pending(current)) {
1533 ret = -EINTR;
1534 break;
1535 }
8c7c6e34
KH
1536 /*
1537 * Rather than hide all in some function, I do this in
1538 * open coded manner. You see what this really does.
1539 * We have to guarantee mem->res.limit < mem->memsw.limit.
1540 */
1541 mutex_lock(&set_limit_mutex);
1542 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1543 if (memswlimit < val) {
1544 ret = -EINVAL;
1545 mutex_unlock(&set_limit_mutex);
628f4235
KH
1546 break;
1547 }
8c7c6e34
KH
1548 ret = res_counter_set_limit(&memcg->res, val);
1549 mutex_unlock(&set_limit_mutex);
1550
1551 if (!ret)
1552 break;
1553
42e9abb6
DN
1554 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1555 false);
8c7c6e34
KH
1556 if (!progress) retry_count--;
1557 }
14797e23 1558
8c7c6e34
KH
1559 return ret;
1560}
1561
1562int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1563 unsigned long long val)
1564{
1565 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1566 u64 memlimit, oldusage, curusage;
1567 int ret;
1568
1569 if (!do_swap_account)
1570 return -EINVAL;
1571
1572 while (retry_count) {
1573 if (signal_pending(current)) {
1574 ret = -EINTR;
1575 break;
1576 }
1577 /*
1578 * Rather than hide all in some function, I do this in
1579 * open coded manner. You see what this really does.
1580 * We have to guarantee mem->res.limit < mem->memsw.limit.
1581 */
1582 mutex_lock(&set_limit_mutex);
1583 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1584 if (memlimit > val) {
1585 ret = -EINVAL;
1586 mutex_unlock(&set_limit_mutex);
1587 break;
1588 }
1589 ret = res_counter_set_limit(&memcg->memsw, val);
1590 mutex_unlock(&set_limit_mutex);
1591
1592 if (!ret)
1593 break;
1594
1595 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
42e9abb6 1596 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1597 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1598 if (curusage >= oldusage)
628f4235
KH
1599 retry_count--;
1600 }
1601 return ret;
1602}
1603
cc847582
KH
1604/*
1605 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1606 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1607 */
f817ed48 1608static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1609 int node, int zid, enum lru_list lru)
cc847582 1610{
08e552c6
KH
1611 struct zone *zone;
1612 struct mem_cgroup_per_zone *mz;
f817ed48 1613 struct page_cgroup *pc, *busy;
08e552c6 1614 unsigned long flags, loop;
072c56c1 1615 struct list_head *list;
f817ed48 1616 int ret = 0;
072c56c1 1617
08e552c6
KH
1618 zone = &NODE_DATA(node)->node_zones[zid];
1619 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1620 list = &mz->lists[lru];
cc847582 1621
f817ed48
KH
1622 loop = MEM_CGROUP_ZSTAT(mz, lru);
1623 /* give some margin against EBUSY etc...*/
1624 loop += 256;
1625 busy = NULL;
1626 while (loop--) {
1627 ret = 0;
08e552c6 1628 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1629 if (list_empty(list)) {
08e552c6 1630 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1631 break;
f817ed48
KH
1632 }
1633 pc = list_entry(list->prev, struct page_cgroup, lru);
1634 if (busy == pc) {
1635 list_move(&pc->lru, list);
1636 busy = 0;
08e552c6 1637 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1638 continue;
1639 }
08e552c6 1640 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1641
2c26fdd7 1642 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1643 if (ret == -ENOMEM)
52d4b9ac 1644 break;
f817ed48
KH
1645
1646 if (ret == -EBUSY || ret == -EINVAL) {
1647 /* found lock contention or "pc" is obsolete. */
1648 busy = pc;
1649 cond_resched();
1650 } else
1651 busy = NULL;
cc847582 1652 }
08e552c6 1653
f817ed48
KH
1654 if (!ret && !list_empty(list))
1655 return -EBUSY;
1656 return ret;
cc847582
KH
1657}
1658
1659/*
1660 * make mem_cgroup's charge to be 0 if there is no task.
1661 * This enables deleting this mem_cgroup.
1662 */
c1e862c1 1663static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1664{
f817ed48
KH
1665 int ret;
1666 int node, zid, shrink;
1667 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1668 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1669
cc847582 1670 css_get(&mem->css);
f817ed48
KH
1671
1672 shrink = 0;
c1e862c1
KH
1673 /* should free all ? */
1674 if (free_all)
1675 goto try_to_free;
f817ed48 1676move_account:
1ecaab2b 1677 while (mem->res.usage > 0) {
f817ed48 1678 ret = -EBUSY;
c1e862c1
KH
1679 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1680 goto out;
1681 ret = -EINTR;
1682 if (signal_pending(current))
cc847582 1683 goto out;
52d4b9ac
KH
1684 /* This is for making all *used* pages to be on LRU. */
1685 lru_add_drain_all();
f817ed48
KH
1686 ret = 0;
1687 for_each_node_state(node, N_POSSIBLE) {
1688 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1689 enum lru_list l;
f817ed48
KH
1690 for_each_lru(l) {
1691 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1692 node, zid, l);
f817ed48
KH
1693 if (ret)
1694 break;
1695 }
1ecaab2b 1696 }
f817ed48
KH
1697 if (ret)
1698 break;
1699 }
1700 /* it seems parent cgroup doesn't have enough mem */
1701 if (ret == -ENOMEM)
1702 goto try_to_free;
52d4b9ac 1703 cond_resched();
cc847582
KH
1704 }
1705 ret = 0;
1706out:
1707 css_put(&mem->css);
1708 return ret;
f817ed48
KH
1709
1710try_to_free:
c1e862c1
KH
1711 /* returns EBUSY if there is a task or if we come here twice. */
1712 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1713 ret = -EBUSY;
1714 goto out;
1715 }
c1e862c1
KH
1716 /* we call try-to-free pages for make this cgroup empty */
1717 lru_add_drain_all();
f817ed48
KH
1718 /* try to free all pages in this cgroup */
1719 shrink = 1;
1720 while (nr_retries && mem->res.usage > 0) {
1721 int progress;
c1e862c1
KH
1722
1723 if (signal_pending(current)) {
1724 ret = -EINTR;
1725 goto out;
1726 }
a7885eb8
KM
1727 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1728 false, get_swappiness(mem));
c1e862c1 1729 if (!progress) {
f817ed48 1730 nr_retries--;
c1e862c1
KH
1731 /* maybe some writeback is necessary */
1732 congestion_wait(WRITE, HZ/10);
1733 }
f817ed48
KH
1734
1735 }
08e552c6 1736 lru_add_drain();
f817ed48
KH
1737 /* try move_account...there may be some *locked* pages. */
1738 if (mem->res.usage)
1739 goto move_account;
1740 ret = 0;
1741 goto out;
cc847582
KH
1742}
1743
c1e862c1
KH
1744int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1745{
1746 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1747}
1748
1749
18f59ea7
BS
1750static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1751{
1752 return mem_cgroup_from_cont(cont)->use_hierarchy;
1753}
1754
1755static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1756 u64 val)
1757{
1758 int retval = 0;
1759 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1760 struct cgroup *parent = cont->parent;
1761 struct mem_cgroup *parent_mem = NULL;
1762
1763 if (parent)
1764 parent_mem = mem_cgroup_from_cont(parent);
1765
1766 cgroup_lock();
1767 /*
1768 * If parent's use_hiearchy is set, we can't make any modifications
1769 * in the child subtrees. If it is unset, then the change can
1770 * occur, provided the current cgroup has no children.
1771 *
1772 * For the root cgroup, parent_mem is NULL, we allow value to be
1773 * set if there are no children.
1774 */
1775 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1776 (val == 1 || val == 0)) {
1777 if (list_empty(&cont->children))
1778 mem->use_hierarchy = val;
1779 else
1780 retval = -EBUSY;
1781 } else
1782 retval = -EINVAL;
1783 cgroup_unlock();
1784
1785 return retval;
1786}
1787
2c3daa72 1788static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1789{
8c7c6e34
KH
1790 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1791 u64 val = 0;
1792 int type, name;
1793
1794 type = MEMFILE_TYPE(cft->private);
1795 name = MEMFILE_ATTR(cft->private);
1796 switch (type) {
1797 case _MEM:
1798 val = res_counter_read_u64(&mem->res, name);
1799 break;
1800 case _MEMSWAP:
1801 if (do_swap_account)
1802 val = res_counter_read_u64(&mem->memsw, name);
1803 break;
1804 default:
1805 BUG();
1806 break;
1807 }
1808 return val;
8cdea7c0 1809}
628f4235
KH
1810/*
1811 * The user of this function is...
1812 * RES_LIMIT.
1813 */
856c13aa
PM
1814static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1815 const char *buffer)
8cdea7c0 1816{
628f4235 1817 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1818 int type, name;
628f4235
KH
1819 unsigned long long val;
1820 int ret;
1821
8c7c6e34
KH
1822 type = MEMFILE_TYPE(cft->private);
1823 name = MEMFILE_ATTR(cft->private);
1824 switch (name) {
628f4235
KH
1825 case RES_LIMIT:
1826 /* This function does all necessary parse...reuse it */
1827 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1828 if (ret)
1829 break;
1830 if (type == _MEM)
628f4235 1831 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1832 else
1833 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1834 break;
1835 default:
1836 ret = -EINVAL; /* should be BUG() ? */
1837 break;
1838 }
1839 return ret;
8cdea7c0
BS
1840}
1841
fee7b548
KH
1842static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1843 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1844{
1845 struct cgroup *cgroup;
1846 unsigned long long min_limit, min_memsw_limit, tmp;
1847
1848 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1849 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1850 cgroup = memcg->css.cgroup;
1851 if (!memcg->use_hierarchy)
1852 goto out;
1853
1854 while (cgroup->parent) {
1855 cgroup = cgroup->parent;
1856 memcg = mem_cgroup_from_cont(cgroup);
1857 if (!memcg->use_hierarchy)
1858 break;
1859 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1860 min_limit = min(min_limit, tmp);
1861 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1862 min_memsw_limit = min(min_memsw_limit, tmp);
1863 }
1864out:
1865 *mem_limit = min_limit;
1866 *memsw_limit = min_memsw_limit;
1867 return;
1868}
1869
29f2a4da 1870static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1871{
1872 struct mem_cgroup *mem;
8c7c6e34 1873 int type, name;
c84872e1
PE
1874
1875 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1876 type = MEMFILE_TYPE(event);
1877 name = MEMFILE_ATTR(event);
1878 switch (name) {
29f2a4da 1879 case RES_MAX_USAGE:
8c7c6e34
KH
1880 if (type == _MEM)
1881 res_counter_reset_max(&mem->res);
1882 else
1883 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1884 break;
1885 case RES_FAILCNT:
8c7c6e34
KH
1886 if (type == _MEM)
1887 res_counter_reset_failcnt(&mem->res);
1888 else
1889 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1890 break;
1891 }
85cc59db 1892 return 0;
c84872e1
PE
1893}
1894
d2ceb9b7
KH
1895static const struct mem_cgroup_stat_desc {
1896 const char *msg;
1897 u64 unit;
1898} mem_cgroup_stat_desc[] = {
1899 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1900 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1901 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1902 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1903};
1904
c64745cf
PM
1905static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1906 struct cgroup_map_cb *cb)
d2ceb9b7 1907{
d2ceb9b7
KH
1908 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1909 struct mem_cgroup_stat *stat = &mem_cont->stat;
1910 int i;
1911
1912 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1913 s64 val;
1914
1915 val = mem_cgroup_read_stat(stat, i);
1916 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1917 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1918 }
6d12e2d8
KH
1919 /* showing # of active pages */
1920 {
4f98a2fe
RR
1921 unsigned long active_anon, inactive_anon;
1922 unsigned long active_file, inactive_file;
7b854121 1923 unsigned long unevictable;
4f98a2fe
RR
1924
1925 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1926 LRU_INACTIVE_ANON);
1927 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1928 LRU_ACTIVE_ANON);
1929 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1930 LRU_INACTIVE_FILE);
1931 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1932 LRU_ACTIVE_FILE);
7b854121
LS
1933 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1934 LRU_UNEVICTABLE);
1935
4f98a2fe
RR
1936 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1937 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1938 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1939 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1940 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1941
6d12e2d8 1942 }
fee7b548
KH
1943 {
1944 unsigned long long limit, memsw_limit;
1945 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1946 cb->fill(cb, "hierarchical_memory_limit", limit);
1947 if (do_swap_account)
1948 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1949 }
7f016ee8
KM
1950
1951#ifdef CONFIG_DEBUG_VM
c772be93 1952 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
1953
1954 {
1955 int nid, zid;
1956 struct mem_cgroup_per_zone *mz;
1957 unsigned long recent_rotated[2] = {0, 0};
1958 unsigned long recent_scanned[2] = {0, 0};
1959
1960 for_each_online_node(nid)
1961 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1962 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1963
1964 recent_rotated[0] +=
1965 mz->reclaim_stat.recent_rotated[0];
1966 recent_rotated[1] +=
1967 mz->reclaim_stat.recent_rotated[1];
1968 recent_scanned[0] +=
1969 mz->reclaim_stat.recent_scanned[0];
1970 recent_scanned[1] +=
1971 mz->reclaim_stat.recent_scanned[1];
1972 }
1973 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1974 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1975 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1976 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1977 }
1978#endif
1979
d2ceb9b7
KH
1980 return 0;
1981}
1982
a7885eb8
KM
1983static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1984{
1985 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1986
1987 return get_swappiness(memcg);
1988}
1989
1990static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1991 u64 val)
1992{
1993 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1994 struct mem_cgroup *parent;
1995 if (val > 100)
1996 return -EINVAL;
1997
1998 if (cgrp->parent == NULL)
1999 return -EINVAL;
2000
2001 parent = mem_cgroup_from_cont(cgrp->parent);
2002 /* If under hierarchy, only empty-root can set this value */
2003 if ((parent->use_hierarchy) ||
2004 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
2005 return -EINVAL;
2006
2007 spin_lock(&memcg->reclaim_param_lock);
2008 memcg->swappiness = val;
2009 spin_unlock(&memcg->reclaim_param_lock);
2010
2011 return 0;
2012}
2013
c1e862c1 2014
8cdea7c0
BS
2015static struct cftype mem_cgroup_files[] = {
2016 {
0eea1030 2017 .name = "usage_in_bytes",
8c7c6e34 2018 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 2019 .read_u64 = mem_cgroup_read,
8cdea7c0 2020 },
c84872e1
PE
2021 {
2022 .name = "max_usage_in_bytes",
8c7c6e34 2023 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2024 .trigger = mem_cgroup_reset,
c84872e1
PE
2025 .read_u64 = mem_cgroup_read,
2026 },
8cdea7c0 2027 {
0eea1030 2028 .name = "limit_in_bytes",
8c7c6e34 2029 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2030 .write_string = mem_cgroup_write,
2c3daa72 2031 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
2032 },
2033 {
2034 .name = "failcnt",
8c7c6e34 2035 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2036 .trigger = mem_cgroup_reset,
2c3daa72 2037 .read_u64 = mem_cgroup_read,
8cdea7c0 2038 },
d2ceb9b7
KH
2039 {
2040 .name = "stat",
c64745cf 2041 .read_map = mem_control_stat_show,
d2ceb9b7 2042 },
c1e862c1
KH
2043 {
2044 .name = "force_empty",
2045 .trigger = mem_cgroup_force_empty_write,
2046 },
18f59ea7
BS
2047 {
2048 .name = "use_hierarchy",
2049 .write_u64 = mem_cgroup_hierarchy_write,
2050 .read_u64 = mem_cgroup_hierarchy_read,
2051 },
a7885eb8
KM
2052 {
2053 .name = "swappiness",
2054 .read_u64 = mem_cgroup_swappiness_read,
2055 .write_u64 = mem_cgroup_swappiness_write,
2056 },
8cdea7c0
BS
2057};
2058
8c7c6e34
KH
2059#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2060static struct cftype memsw_cgroup_files[] = {
2061 {
2062 .name = "memsw.usage_in_bytes",
2063 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2064 .read_u64 = mem_cgroup_read,
2065 },
2066 {
2067 .name = "memsw.max_usage_in_bytes",
2068 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2069 .trigger = mem_cgroup_reset,
2070 .read_u64 = mem_cgroup_read,
2071 },
2072 {
2073 .name = "memsw.limit_in_bytes",
2074 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2075 .write_string = mem_cgroup_write,
2076 .read_u64 = mem_cgroup_read,
2077 },
2078 {
2079 .name = "memsw.failcnt",
2080 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2081 .trigger = mem_cgroup_reset,
2082 .read_u64 = mem_cgroup_read,
2083 },
2084};
2085
2086static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2087{
2088 if (!do_swap_account)
2089 return 0;
2090 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2091 ARRAY_SIZE(memsw_cgroup_files));
2092};
2093#else
2094static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2095{
2096 return 0;
2097}
2098#endif
2099
6d12e2d8
KH
2100static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2101{
2102 struct mem_cgroup_per_node *pn;
1ecaab2b 2103 struct mem_cgroup_per_zone *mz;
b69408e8 2104 enum lru_list l;
41e3355d 2105 int zone, tmp = node;
1ecaab2b
KH
2106 /*
2107 * This routine is called against possible nodes.
2108 * But it's BUG to call kmalloc() against offline node.
2109 *
2110 * TODO: this routine can waste much memory for nodes which will
2111 * never be onlined. It's better to use memory hotplug callback
2112 * function.
2113 */
41e3355d
KH
2114 if (!node_state(node, N_NORMAL_MEMORY))
2115 tmp = -1;
2116 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2117 if (!pn)
2118 return 1;
1ecaab2b 2119
6d12e2d8
KH
2120 mem->info.nodeinfo[node] = pn;
2121 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2122
2123 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2124 mz = &pn->zoneinfo[zone];
b69408e8
CL
2125 for_each_lru(l)
2126 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2127 }
6d12e2d8
KH
2128 return 0;
2129}
2130
1ecaab2b
KH
2131static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2132{
2133 kfree(mem->info.nodeinfo[node]);
2134}
2135
c8dad2bb
JB
2136static int mem_cgroup_size(void)
2137{
2138 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2139 return sizeof(struct mem_cgroup) + cpustat_size;
2140}
2141
33327948
KH
2142static struct mem_cgroup *mem_cgroup_alloc(void)
2143{
2144 struct mem_cgroup *mem;
c8dad2bb 2145 int size = mem_cgroup_size();
33327948 2146
c8dad2bb
JB
2147 if (size < PAGE_SIZE)
2148 mem = kmalloc(size, GFP_KERNEL);
33327948 2149 else
c8dad2bb 2150 mem = vmalloc(size);
33327948
KH
2151
2152 if (mem)
c8dad2bb 2153 memset(mem, 0, size);
33327948
KH
2154 return mem;
2155}
2156
8c7c6e34
KH
2157/*
2158 * At destroying mem_cgroup, references from swap_cgroup can remain.
2159 * (scanning all at force_empty is too costly...)
2160 *
2161 * Instead of clearing all references at force_empty, we remember
2162 * the number of reference from swap_cgroup and free mem_cgroup when
2163 * it goes down to 0.
2164 *
8c7c6e34
KH
2165 * Removal of cgroup itself succeeds regardless of refs from swap.
2166 */
2167
a7ba0eef 2168static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2169{
08e552c6
KH
2170 int node;
2171
08e552c6
KH
2172 for_each_node_state(node, N_POSSIBLE)
2173 free_mem_cgroup_per_zone_info(mem, node);
2174
c8dad2bb 2175 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2176 kfree(mem);
2177 else
2178 vfree(mem);
2179}
2180
8c7c6e34
KH
2181static void mem_cgroup_get(struct mem_cgroup *mem)
2182{
2183 atomic_inc(&mem->refcnt);
2184}
2185
2186static void mem_cgroup_put(struct mem_cgroup *mem)
2187{
a7ba0eef
KH
2188 if (atomic_dec_and_test(&mem->refcnt))
2189 __mem_cgroup_free(mem);
8c7c6e34
KH
2190}
2191
33327948 2192
c077719b
KH
2193#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2194static void __init enable_swap_cgroup(void)
2195{
f8d66542 2196 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2197 do_swap_account = 1;
2198}
2199#else
2200static void __init enable_swap_cgroup(void)
2201{
2202}
2203#endif
2204
0eb253e2 2205static struct cgroup_subsys_state * __ref
8cdea7c0
BS
2206mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2207{
28dbc4b6 2208 struct mem_cgroup *mem, *parent;
6d12e2d8 2209 int node;
8cdea7c0 2210
c8dad2bb
JB
2211 mem = mem_cgroup_alloc();
2212 if (!mem)
2213 return ERR_PTR(-ENOMEM);
78fb7466 2214
6d12e2d8
KH
2215 for_each_node_state(node, N_POSSIBLE)
2216 if (alloc_mem_cgroup_per_zone_info(mem, node))
2217 goto free_out;
c077719b 2218 /* root ? */
28dbc4b6 2219 if (cont->parent == NULL) {
c077719b 2220 enable_swap_cgroup();
28dbc4b6 2221 parent = NULL;
18f59ea7 2222 } else {
28dbc4b6 2223 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2224 mem->use_hierarchy = parent->use_hierarchy;
2225 }
28dbc4b6 2226
18f59ea7
BS
2227 if (parent && parent->use_hierarchy) {
2228 res_counter_init(&mem->res, &parent->res);
2229 res_counter_init(&mem->memsw, &parent->memsw);
2230 } else {
2231 res_counter_init(&mem->res, NULL);
2232 res_counter_init(&mem->memsw, NULL);
2233 }
6d61ef40 2234 mem->last_scanned_child = NULL;
2733c06a 2235 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2236
a7885eb8
KM
2237 if (parent)
2238 mem->swappiness = get_swappiness(parent);
a7ba0eef 2239 atomic_set(&mem->refcnt, 1);
8cdea7c0 2240 return &mem->css;
6d12e2d8 2241free_out:
a7ba0eef 2242 __mem_cgroup_free(mem);
2dda81ca 2243 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
2244}
2245
df878fb0
KH
2246static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2247 struct cgroup *cont)
2248{
2249 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c1e862c1 2250 mem_cgroup_force_empty(mem, false);
df878fb0
KH
2251}
2252
8cdea7c0
BS
2253static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2254 struct cgroup *cont)
2255{
c268e994
DN
2256 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2257 struct mem_cgroup *last_scanned_child = mem->last_scanned_child;
2258
2259 if (last_scanned_child) {
2260 VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child));
2261 mem_cgroup_put(last_scanned_child);
2262 }
2263 mem_cgroup_put(mem);
8cdea7c0
BS
2264}
2265
2266static int mem_cgroup_populate(struct cgroup_subsys *ss,
2267 struct cgroup *cont)
2268{
8c7c6e34
KH
2269 int ret;
2270
2271 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2272 ARRAY_SIZE(mem_cgroup_files));
2273
2274 if (!ret)
2275 ret = register_memsw_files(cont, ss);
2276 return ret;
8cdea7c0
BS
2277}
2278
67e465a7
BS
2279static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2280 struct cgroup *cont,
2281 struct cgroup *old_cont,
2282 struct task_struct *p)
2283{
7f4d454d 2284 mutex_lock(&memcg_tasklist);
67e465a7 2285 /*
f9717d28
NK
2286 * FIXME: It's better to move charges of this process from old
2287 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2288 */
7f4d454d 2289 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2290}
2291
8cdea7c0
BS
2292struct cgroup_subsys mem_cgroup_subsys = {
2293 .name = "memory",
2294 .subsys_id = mem_cgroup_subsys_id,
2295 .create = mem_cgroup_create,
df878fb0 2296 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2297 .destroy = mem_cgroup_destroy,
2298 .populate = mem_cgroup_populate,
67e465a7 2299 .attach = mem_cgroup_move_task,
6d12e2d8 2300 .early_init = 0,
8cdea7c0 2301};
c077719b
KH
2302
2303#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2304
2305static int __init disable_swap_account(char *s)
2306{
2307 really_do_swap_account = 0;
2308 return 1;
2309}
2310__setup("noswapaccount", disable_swap_account);
2311#endif