]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: rename scan global lru
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54
d52aa412
KH
55/*
56 * Statistics for memory cgroup.
57 */
58enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
66
67 MEM_CGROUP_STAT_NSTATS,
68};
69
70struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72} ____cacheline_aligned_in_smp;
73
74struct mem_cgroup_stat {
c8dad2bb 75 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
76};
77
78/*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
addb9efe 81static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
82 enum mem_cgroup_stat_index idx, int val)
83{
addb9efe 84 stat->count[idx] += val;
d52aa412
KH
85}
86
87static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89{
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95}
96
6d12e2d8
KH
97/*
98 * per-zone information in memory controller.
99 */
6d12e2d8 100struct mem_cgroup_per_zone {
072c56c1
KH
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
b69408e8
CL
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
106
107 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
108};
109/* Macro for accessing counter */
110#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
111
112struct mem_cgroup_per_node {
113 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
114};
115
116struct mem_cgroup_lru_info {
117 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
118};
119
8cdea7c0
BS
120/*
121 * The memory controller data structure. The memory controller controls both
122 * page cache and RSS per cgroup. We would eventually like to provide
123 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
124 * to help the administrator determine what knobs to tune.
125 *
126 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
127 * we hit the water mark. May be even add a low water mark, such that
128 * no reclaim occurs from a cgroup at it's low water mark, this is
129 * a feature that will be implemented much later in the future.
8cdea7c0
BS
130 */
131struct mem_cgroup {
132 struct cgroup_subsys_state css;
133 /*
134 * the counter to account for memory usage
135 */
136 struct res_counter res;
8c7c6e34
KH
137 /*
138 * the counter to account for mem+swap usage.
139 */
140 struct res_counter memsw;
78fb7466
PE
141 /*
142 * Per cgroup active and inactive list, similar to the
143 * per zone LRU lists.
78fb7466 144 */
6d12e2d8 145 struct mem_cgroup_lru_info info;
072c56c1 146
6c48a1d0 147 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
148
149 /*
150 * While reclaiming in a hiearchy, we cache the last child we
151 * reclaimed from. Protected by cgroup_lock()
152 */
153 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
154 /*
155 * Should the accounting and control be hierarchical, per subtree?
156 */
157 bool use_hierarchy;
a636b327 158 unsigned long last_oom_jiffies;
8c7c6e34
KH
159 int obsolete;
160 atomic_t refcnt;
14797e23
KM
161
162 unsigned int inactive_ratio;
163
d52aa412 164 /*
c8dad2bb 165 * statistics. This must be placed at the end of memcg.
d52aa412
KH
166 */
167 struct mem_cgroup_stat stat;
8cdea7c0
BS
168};
169
217bc319
KH
170enum charge_type {
171 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
172 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 173 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 174 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 175 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
176 NR_CHARGE_TYPE,
177};
178
52d4b9ac
KH
179/* only for here (for easy reading.) */
180#define PCGF_CACHE (1UL << PCG_CACHE)
181#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 182#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
183static const unsigned long
184pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
185 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
186 PCGF_USED | PCGF_LOCK, /* Anon */
187 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 188 0, /* FORCE */
217bc319
KH
189};
190
8c7c6e34
KH
191/* for encoding cft->private value on file */
192#define _MEM (0)
193#define _MEMSWAP (1)
194#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
195#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
196#define MEMFILE_ATTR(val) ((val) & 0xffff)
197
198static void mem_cgroup_get(struct mem_cgroup *mem);
199static void mem_cgroup_put(struct mem_cgroup *mem);
200
c05555b5
KH
201static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
202 struct page_cgroup *pc,
203 bool charge)
d52aa412
KH
204{
205 int val = (charge)? 1 : -1;
206 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 207 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 208 int cpu = get_cpu();
d52aa412 209
08e552c6 210 cpustat = &stat->cpustat[cpu];
c05555b5 211 if (PageCgroupCache(pc))
addb9efe 212 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 213 else
addb9efe 214 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
215
216 if (charge)
addb9efe 217 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
218 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
219 else
addb9efe 220 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 221 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 222 put_cpu();
6d12e2d8
KH
223}
224
d5b69e38 225static struct mem_cgroup_per_zone *
6d12e2d8
KH
226mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
227{
6d12e2d8
KH
228 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
229}
230
d5b69e38 231static struct mem_cgroup_per_zone *
6d12e2d8
KH
232page_cgroup_zoneinfo(struct page_cgroup *pc)
233{
234 struct mem_cgroup *mem = pc->mem_cgroup;
235 int nid = page_cgroup_nid(pc);
236 int zid = page_cgroup_zid(pc);
d52aa412 237
54992762
KM
238 if (!mem)
239 return NULL;
240
6d12e2d8
KH
241 return mem_cgroup_zoneinfo(mem, nid, zid);
242}
243
244static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 245 enum lru_list idx)
6d12e2d8
KH
246{
247 int nid, zid;
248 struct mem_cgroup_per_zone *mz;
249 u64 total = 0;
250
251 for_each_online_node(nid)
252 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
253 mz = mem_cgroup_zoneinfo(mem, nid, zid);
254 total += MEM_CGROUP_ZSTAT(mz, idx);
255 }
256 return total;
d52aa412
KH
257}
258
d5b69e38 259static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
260{
261 return container_of(cgroup_subsys_state(cont,
262 mem_cgroup_subsys_id), struct mem_cgroup,
263 css);
264}
265
cf475ad2 266struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 267{
31a78f23
BS
268 /*
269 * mm_update_next_owner() may clear mm->owner to NULL
270 * if it races with swapoff, page migration, etc.
271 * So this can be called with p == NULL.
272 */
273 if (unlikely(!p))
274 return NULL;
275
78fb7466
PE
276 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
277 struct mem_cgroup, css);
278}
279
08e552c6
KH
280/*
281 * Following LRU functions are allowed to be used without PCG_LOCK.
282 * Operations are called by routine of global LRU independently from memcg.
283 * What we have to take care of here is validness of pc->mem_cgroup.
284 *
285 * Changes to pc->mem_cgroup happens when
286 * 1. charge
287 * 2. moving account
288 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
289 * It is added to LRU before charge.
290 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
291 * When moving account, the page is not on LRU. It's isolated.
292 */
4f98a2fe 293
08e552c6
KH
294void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
295{
296 struct page_cgroup *pc;
297 struct mem_cgroup *mem;
298 struct mem_cgroup_per_zone *mz;
6d12e2d8 299
f8d66542 300 if (mem_cgroup_disabled())
08e552c6
KH
301 return;
302 pc = lookup_page_cgroup(page);
303 /* can happen while we handle swapcache. */
304 if (list_empty(&pc->lru))
305 return;
306 mz = page_cgroup_zoneinfo(pc);
307 mem = pc->mem_cgroup;
b69408e8 308 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
309 list_del_init(&pc->lru);
310 return;
6d12e2d8
KH
311}
312
08e552c6 313void mem_cgroup_del_lru(struct page *page)
6d12e2d8 314{
08e552c6
KH
315 mem_cgroup_del_lru_list(page, page_lru(page));
316}
b69408e8 317
08e552c6
KH
318void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
319{
320 struct mem_cgroup_per_zone *mz;
321 struct page_cgroup *pc;
b69408e8 322
f8d66542 323 if (mem_cgroup_disabled())
08e552c6 324 return;
6d12e2d8 325
08e552c6
KH
326 pc = lookup_page_cgroup(page);
327 smp_rmb();
328 /* unused page is not rotated. */
329 if (!PageCgroupUsed(pc))
330 return;
331 mz = page_cgroup_zoneinfo(pc);
332 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
333}
334
08e552c6 335void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 336{
08e552c6
KH
337 struct page_cgroup *pc;
338 struct mem_cgroup_per_zone *mz;
6d12e2d8 339
f8d66542 340 if (mem_cgroup_disabled())
08e552c6
KH
341 return;
342 pc = lookup_page_cgroup(page);
343 /* barrier to sync with "charge" */
344 smp_rmb();
345 if (!PageCgroupUsed(pc))
894bc310 346 return;
b69408e8 347
08e552c6 348 mz = page_cgroup_zoneinfo(pc);
b69408e8 349 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
350 list_add(&pc->lru, &mz->lists[lru]);
351}
352/*
353 * To add swapcache into LRU. Be careful to all this function.
354 * zone->lru_lock shouldn't be held and irq must not be disabled.
355 */
356static void mem_cgroup_lru_fixup(struct page *page)
357{
358 if (!isolate_lru_page(page))
359 putback_lru_page(page);
360}
361
362void mem_cgroup_move_lists(struct page *page,
363 enum lru_list from, enum lru_list to)
364{
f8d66542 365 if (mem_cgroup_disabled())
08e552c6
KH
366 return;
367 mem_cgroup_del_lru_list(page, from);
368 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
369}
370
4c4a2214
DR
371int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
372{
373 int ret;
374
375 task_lock(task);
bd845e38 376 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
377 task_unlock(task);
378 return ret;
379}
380
58ae83db
KH
381/*
382 * Calculate mapped_ratio under memory controller. This will be used in
383 * vmscan.c for deteremining we have to reclaim mapped pages.
384 */
385int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
386{
387 long total, rss;
388
389 /*
390 * usage is recorded in bytes. But, here, we assume the number of
391 * physical pages can be represented by "long" on any arch.
392 */
393 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
394 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
395 return (int)((rss * 100L) / total);
396}
8869b8f6 397
6c48a1d0
KH
398/*
399 * prev_priority control...this will be used in memory reclaim path.
400 */
401int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
402{
403 return mem->prev_priority;
404}
405
406void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
407{
408 if (priority < mem->prev_priority)
409 mem->prev_priority = priority;
410}
411
412void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
413{
414 mem->prev_priority = priority;
415}
416
14797e23
KM
417int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
418{
419 unsigned long active;
420 unsigned long inactive;
421
422 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
423 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
424
425 if (inactive * memcg->inactive_ratio < active)
426 return 1;
427
428 return 0;
429}
430
a3d8e054
KM
431unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
432 struct zone *zone,
433 enum lru_list lru)
434{
435 int nid = zone->zone_pgdat->node_id;
436 int zid = zone_idx(zone);
437 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
438
439 return MEM_CGROUP_ZSTAT(mz, lru);
440}
441
3e2f41f1
KM
442struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
443 struct zone *zone)
444{
445 int nid = zone->zone_pgdat->node_id;
446 int zid = zone_idx(zone);
447 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
448
449 return &mz->reclaim_stat;
450}
451
452struct zone_reclaim_stat *
453mem_cgroup_get_reclaim_stat_from_page(struct page *page)
454{
455 struct page_cgroup *pc;
456 struct mem_cgroup_per_zone *mz;
457
458 if (mem_cgroup_disabled())
459 return NULL;
460
461 pc = lookup_page_cgroup(page);
462 mz = page_cgroup_zoneinfo(pc);
463 if (!mz)
464 return NULL;
465
466 return &mz->reclaim_stat;
467}
468
66e1707b
BS
469unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
470 struct list_head *dst,
471 unsigned long *scanned, int order,
472 int mode, struct zone *z,
473 struct mem_cgroup *mem_cont,
4f98a2fe 474 int active, int file)
66e1707b
BS
475{
476 unsigned long nr_taken = 0;
477 struct page *page;
478 unsigned long scan;
479 LIST_HEAD(pc_list);
480 struct list_head *src;
ff7283fa 481 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
482 int nid = z->zone_pgdat->node_id;
483 int zid = zone_idx(z);
484 struct mem_cgroup_per_zone *mz;
4f98a2fe 485 int lru = LRU_FILE * !!file + !!active;
66e1707b 486
cf475ad2 487 BUG_ON(!mem_cont);
1ecaab2b 488 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 489 src = &mz->lists[lru];
66e1707b 490
ff7283fa
KH
491 scan = 0;
492 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 493 if (scan >= nr_to_scan)
ff7283fa 494 break;
08e552c6
KH
495
496 page = pc->page;
52d4b9ac
KH
497 if (unlikely(!PageCgroupUsed(pc)))
498 continue;
436c6541 499 if (unlikely(!PageLRU(page)))
ff7283fa 500 continue;
ff7283fa 501
436c6541 502 scan++;
4f98a2fe 503 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
504 list_move(&page->lru, dst);
505 nr_taken++;
506 }
507 }
508
66e1707b
BS
509 *scanned = scan;
510 return nr_taken;
511}
512
6d61ef40
BS
513#define mem_cgroup_from_res_counter(counter, member) \
514 container_of(counter, struct mem_cgroup, member)
515
516/*
517 * This routine finds the DFS walk successor. This routine should be
518 * called with cgroup_mutex held
519 */
520static struct mem_cgroup *
521mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
522{
523 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
524
525 curr_cgroup = curr->css.cgroup;
526 root_cgroup = root_mem->css.cgroup;
527
528 if (!list_empty(&curr_cgroup->children)) {
529 /*
530 * Walk down to children
531 */
532 mem_cgroup_put(curr);
533 cgroup = list_entry(curr_cgroup->children.next,
534 struct cgroup, sibling);
535 curr = mem_cgroup_from_cont(cgroup);
536 mem_cgroup_get(curr);
537 goto done;
538 }
539
540visit_parent:
541 if (curr_cgroup == root_cgroup) {
542 mem_cgroup_put(curr);
543 curr = root_mem;
544 mem_cgroup_get(curr);
545 goto done;
546 }
547
548 /*
549 * Goto next sibling
550 */
551 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
552 mem_cgroup_put(curr);
553 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
554 sibling);
555 curr = mem_cgroup_from_cont(cgroup);
556 mem_cgroup_get(curr);
557 goto done;
558 }
559
560 /*
561 * Go up to next parent and next parent's sibling if need be
562 */
563 curr_cgroup = curr_cgroup->parent;
564 goto visit_parent;
565
566done:
567 root_mem->last_scanned_child = curr;
568 return curr;
569}
570
571/*
572 * Visit the first child (need not be the first child as per the ordering
573 * of the cgroup list, since we track last_scanned_child) of @mem and use
574 * that to reclaim free pages from.
575 */
576static struct mem_cgroup *
577mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
578{
579 struct cgroup *cgroup;
580 struct mem_cgroup *ret;
581 bool obsolete = (root_mem->last_scanned_child &&
582 root_mem->last_scanned_child->obsolete);
583
584 /*
585 * Scan all children under the mem_cgroup mem
586 */
587 cgroup_lock();
588 if (list_empty(&root_mem->css.cgroup->children)) {
589 ret = root_mem;
590 goto done;
591 }
592
593 if (!root_mem->last_scanned_child || obsolete) {
594
595 if (obsolete)
596 mem_cgroup_put(root_mem->last_scanned_child);
597
598 cgroup = list_first_entry(&root_mem->css.cgroup->children,
599 struct cgroup, sibling);
600 ret = mem_cgroup_from_cont(cgroup);
601 mem_cgroup_get(ret);
602 } else
603 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
604 root_mem);
605
606done:
607 root_mem->last_scanned_child = ret;
608 cgroup_unlock();
609 return ret;
610}
611
b85a96c0
DN
612static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
613{
614 if (do_swap_account) {
615 if (res_counter_check_under_limit(&mem->res) &&
616 res_counter_check_under_limit(&mem->memsw))
617 return true;
618 } else
619 if (res_counter_check_under_limit(&mem->res))
620 return true;
621 return false;
622}
623
6d61ef40
BS
624/*
625 * Dance down the hierarchy if needed to reclaim memory. We remember the
626 * last child we reclaimed from, so that we don't end up penalizing
627 * one child extensively based on its position in the children list.
628 *
629 * root_mem is the original ancestor that we've been reclaim from.
630 */
631static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
632 gfp_t gfp_mask, bool noswap)
633{
634 struct mem_cgroup *next_mem;
635 int ret = 0;
636
637 /*
638 * Reclaim unconditionally and don't check for return value.
639 * We need to reclaim in the current group and down the tree.
640 * One might think about checking for children before reclaiming,
641 * but there might be left over accounting, even after children
642 * have left.
643 */
644 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
b85a96c0 645 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40 646 return 0;
670ec2f1
DN
647 if (!root_mem->use_hierarchy)
648 return ret;
6d61ef40
BS
649
650 next_mem = mem_cgroup_get_first_node(root_mem);
651
652 while (next_mem != root_mem) {
653 if (next_mem->obsolete) {
654 mem_cgroup_put(next_mem);
655 cgroup_lock();
656 next_mem = mem_cgroup_get_first_node(root_mem);
657 cgroup_unlock();
658 continue;
659 }
660 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
b85a96c0 661 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
662 return 0;
663 cgroup_lock();
664 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
665 cgroup_unlock();
666 }
667 return ret;
668}
669
a636b327
KH
670bool mem_cgroup_oom_called(struct task_struct *task)
671{
672 bool ret = false;
673 struct mem_cgroup *mem;
674 struct mm_struct *mm;
675
676 rcu_read_lock();
677 mm = task->mm;
678 if (!mm)
679 mm = &init_mm;
680 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
681 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
682 ret = true;
683 rcu_read_unlock();
684 return ret;
685}
f817ed48
KH
686/*
687 * Unlike exported interface, "oom" parameter is added. if oom==true,
688 * oom-killer can be invoked.
8a9f3ccd 689 */
f817ed48 690static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
691 gfp_t gfp_mask, struct mem_cgroup **memcg,
692 bool oom)
8a9f3ccd 693{
6d61ef40 694 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 695 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 696 struct res_counter *fail_res;
a636b327
KH
697
698 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
699 /* Don't account this! */
700 *memcg = NULL;
701 return 0;
702 }
703
8a9f3ccd 704 /*
3be91277
HD
705 * We always charge the cgroup the mm_struct belongs to.
706 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
707 * thread group leader migrates. It's possible that mm is not
708 * set, if so charge the init_mm (happens for pagecache usage).
709 */
7a81b88c 710 if (likely(!*memcg)) {
e8589cc1
KH
711 rcu_read_lock();
712 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
713 if (unlikely(!mem)) {
714 rcu_read_unlock();
31a78f23
BS
715 return 0;
716 }
e8589cc1
KH
717 /*
718 * For every charge from the cgroup, increment reference count
719 */
720 css_get(&mem->css);
7a81b88c 721 *memcg = mem;
e8589cc1
KH
722 rcu_read_unlock();
723 } else {
7a81b88c
KH
724 mem = *memcg;
725 css_get(&mem->css);
e8589cc1 726 }
8a9f3ccd 727
8c7c6e34
KH
728 while (1) {
729 int ret;
730 bool noswap = false;
7a81b88c 731
28dbc4b6 732 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
733 if (likely(!ret)) {
734 if (!do_swap_account)
735 break;
28dbc4b6
BS
736 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
737 &fail_res);
8c7c6e34
KH
738 if (likely(!ret))
739 break;
740 /* mem+swap counter fails */
741 res_counter_uncharge(&mem->res, PAGE_SIZE);
742 noswap = true;
6d61ef40
BS
743 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
744 memsw);
745 } else
746 /* mem counter fails */
747 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
748 res);
749
3be91277 750 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 751 goto nomem;
e1a1cd59 752
6d61ef40
BS
753 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
754 noswap);
66e1707b
BS
755
756 /*
8869b8f6
HD
757 * try_to_free_mem_cgroup_pages() might not give us a full
758 * picture of reclaim. Some pages are reclaimed and might be
759 * moved to swap cache or just unmapped from the cgroup.
760 * Check the limit again to see if the reclaim reduced the
761 * current usage of the cgroup before giving up
8c7c6e34 762 *
8869b8f6 763 */
b85a96c0
DN
764 if (mem_cgroup_check_under_limit(mem_over_limit))
765 continue;
3be91277
HD
766
767 if (!nr_retries--) {
a636b327 768 if (oom) {
88700756
KH
769 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
770 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 771 }
7a81b88c 772 goto nomem;
66e1707b 773 }
8a9f3ccd 774 }
7a81b88c
KH
775 return 0;
776nomem:
777 css_put(&mem->css);
778 return -ENOMEM;
779}
8a9f3ccd 780
f817ed48
KH
781/**
782 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
783 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
784 * @gfp_mask: gfp_mask for reclaim.
785 * @memcg: a pointer to memory cgroup which is charged against.
786 *
787 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
788 * memory cgroup from @mm is got and stored in *memcg.
789 *
790 * Returns 0 if success. -ENOMEM at failure.
791 * This call can invoke OOM-Killer.
792 */
793
794int mem_cgroup_try_charge(struct mm_struct *mm,
795 gfp_t mask, struct mem_cgroup **memcg)
796{
797 return __mem_cgroup_try_charge(mm, mask, memcg, true);
798}
799
7a81b88c
KH
800/*
801 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
802 * USED state. If already USED, uncharge and return.
803 */
804
805static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
806 struct page_cgroup *pc,
807 enum charge_type ctype)
808{
7a81b88c
KH
809 /* try_charge() can return NULL to *memcg, taking care of it. */
810 if (!mem)
811 return;
52d4b9ac
KH
812
813 lock_page_cgroup(pc);
814 if (unlikely(PageCgroupUsed(pc))) {
815 unlock_page_cgroup(pc);
816 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
817 if (do_swap_account)
818 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 819 css_put(&mem->css);
7a81b88c 820 return;
52d4b9ac 821 }
8a9f3ccd 822 pc->mem_cgroup = mem;
08e552c6 823 smp_wmb();
c05555b5 824 pc->flags = pcg_default_flags[ctype];
3be91277 825
08e552c6 826 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 827
52d4b9ac 828 unlock_page_cgroup(pc);
7a81b88c 829}
66e1707b 830
f817ed48
KH
831/**
832 * mem_cgroup_move_account - move account of the page
833 * @pc: page_cgroup of the page.
834 * @from: mem_cgroup which the page is moved from.
835 * @to: mem_cgroup which the page is moved to. @from != @to.
836 *
837 * The caller must confirm following.
08e552c6 838 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
839 *
840 * returns 0 at success,
841 * returns -EBUSY when lock is busy or "pc" is unstable.
842 *
843 * This function does "uncharge" from old cgroup but doesn't do "charge" to
844 * new cgroup. It should be done by a caller.
845 */
846
847static int mem_cgroup_move_account(struct page_cgroup *pc,
848 struct mem_cgroup *from, struct mem_cgroup *to)
849{
850 struct mem_cgroup_per_zone *from_mz, *to_mz;
851 int nid, zid;
852 int ret = -EBUSY;
853
f817ed48 854 VM_BUG_ON(from == to);
08e552c6 855 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
856
857 nid = page_cgroup_nid(pc);
858 zid = page_cgroup_zid(pc);
859 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
860 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
861
f817ed48
KH
862 if (!trylock_page_cgroup(pc))
863 return ret;
864
865 if (!PageCgroupUsed(pc))
866 goto out;
867
868 if (pc->mem_cgroup != from)
869 goto out;
870
08e552c6
KH
871 css_put(&from->css);
872 res_counter_uncharge(&from->res, PAGE_SIZE);
873 mem_cgroup_charge_statistics(from, pc, false);
874 if (do_swap_account)
875 res_counter_uncharge(&from->memsw, PAGE_SIZE);
876 pc->mem_cgroup = to;
877 mem_cgroup_charge_statistics(to, pc, true);
878 css_get(&to->css);
879 ret = 0;
f817ed48
KH
880out:
881 unlock_page_cgroup(pc);
882 return ret;
883}
884
885/*
886 * move charges to its parent.
887 */
888
889static int mem_cgroup_move_parent(struct page_cgroup *pc,
890 struct mem_cgroup *child,
891 gfp_t gfp_mask)
892{
08e552c6 893 struct page *page = pc->page;
f817ed48
KH
894 struct cgroup *cg = child->css.cgroup;
895 struct cgroup *pcg = cg->parent;
896 struct mem_cgroup *parent;
f817ed48
KH
897 int ret;
898
899 /* Is ROOT ? */
900 if (!pcg)
901 return -EINVAL;
902
08e552c6 903
f817ed48
KH
904 parent = mem_cgroup_from_cont(pcg);
905
08e552c6 906
f817ed48 907 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 908 if (ret || !parent)
f817ed48
KH
909 return ret;
910
08e552c6
KH
911 if (!get_page_unless_zero(page))
912 return -EBUSY;
913
914 ret = isolate_lru_page(page);
915
916 if (ret)
917 goto cancel;
f817ed48 918
f817ed48 919 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 920
08e552c6 921 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 922 css_put(&parent->css);
08e552c6
KH
923 putback_lru_page(page);
924 if (!ret) {
925 put_page(page);
926 return 0;
8c7c6e34 927 }
08e552c6
KH
928 /* uncharge if move fails */
929cancel:
930 res_counter_uncharge(&parent->res, PAGE_SIZE);
931 if (do_swap_account)
932 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
933 put_page(page);
f817ed48
KH
934 return ret;
935}
936
7a81b88c
KH
937/*
938 * Charge the memory controller for page usage.
939 * Return
940 * 0 if the charge was successful
941 * < 0 if the cgroup is over its limit
942 */
943static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
944 gfp_t gfp_mask, enum charge_type ctype,
945 struct mem_cgroup *memcg)
946{
947 struct mem_cgroup *mem;
948 struct page_cgroup *pc;
949 int ret;
950
951 pc = lookup_page_cgroup(page);
952 /* can happen at boot */
953 if (unlikely(!pc))
954 return 0;
955 prefetchw(pc);
956
957 mem = memcg;
f817ed48 958 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 959 if (ret || !mem)
7a81b88c
KH
960 return ret;
961
962 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 963 return 0;
8a9f3ccd
BS
964}
965
7a81b88c
KH
966int mem_cgroup_newpage_charge(struct page *page,
967 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 968{
f8d66542 969 if (mem_cgroup_disabled())
cede86ac 970 return 0;
52d4b9ac
KH
971 if (PageCompound(page))
972 return 0;
69029cd5
KH
973 /*
974 * If already mapped, we don't have to account.
975 * If page cache, page->mapping has address_space.
976 * But page->mapping may have out-of-use anon_vma pointer,
977 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
978 * is NULL.
979 */
980 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
981 return 0;
982 if (unlikely(!mm))
983 mm = &init_mm;
217bc319 984 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 985 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
986}
987
e1a1cd59
BS
988int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
989 gfp_t gfp_mask)
8697d331 990{
f8d66542 991 if (mem_cgroup_disabled())
cede86ac 992 return 0;
52d4b9ac
KH
993 if (PageCompound(page))
994 return 0;
accf163e
KH
995 /*
996 * Corner case handling. This is called from add_to_page_cache()
997 * in usual. But some FS (shmem) precharges this page before calling it
998 * and call add_to_page_cache() with GFP_NOWAIT.
999 *
1000 * For GFP_NOWAIT case, the page may be pre-charged before calling
1001 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1002 * charge twice. (It works but has to pay a bit larger cost.)
1003 */
1004 if (!(gfp_mask & __GFP_WAIT)) {
1005 struct page_cgroup *pc;
1006
52d4b9ac
KH
1007
1008 pc = lookup_page_cgroup(page);
1009 if (!pc)
1010 return 0;
1011 lock_page_cgroup(pc);
1012 if (PageCgroupUsed(pc)) {
1013 unlock_page_cgroup(pc);
accf163e
KH
1014 return 0;
1015 }
52d4b9ac 1016 unlock_page_cgroup(pc);
accf163e
KH
1017 }
1018
69029cd5 1019 if (unlikely(!mm))
8697d331 1020 mm = &init_mm;
accf163e 1021
c05555b5
KH
1022 if (page_is_file_cache(page))
1023 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1024 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
1025 else
1026 return mem_cgroup_charge_common(page, mm, gfp_mask,
1027 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
1028}
1029
8c7c6e34
KH
1030int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1031 struct page *page,
1032 gfp_t mask, struct mem_cgroup **ptr)
1033{
1034 struct mem_cgroup *mem;
1035 swp_entry_t ent;
1036
f8d66542 1037 if (mem_cgroup_disabled())
8c7c6e34
KH
1038 return 0;
1039
1040 if (!do_swap_account)
1041 goto charge_cur_mm;
1042
1043 /*
1044 * A racing thread's fault, or swapoff, may have already updated
1045 * the pte, and even removed page from swap cache: return success
1046 * to go on to do_swap_page()'s pte_same() test, which should fail.
1047 */
1048 if (!PageSwapCache(page))
1049 return 0;
1050
1051 ent.val = page_private(page);
1052
1053 mem = lookup_swap_cgroup(ent);
1054 if (!mem || mem->obsolete)
1055 goto charge_cur_mm;
1056 *ptr = mem;
1057 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1058charge_cur_mm:
1059 if (unlikely(!mm))
1060 mm = &init_mm;
1061 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1062}
1063
d13d1443 1064#ifdef CONFIG_SWAP
8c7c6e34 1065
d13d1443
KH
1066int mem_cgroup_cache_charge_swapin(struct page *page,
1067 struct mm_struct *mm, gfp_t mask, bool locked)
1068{
1069 int ret = 0;
1070
f8d66542 1071 if (mem_cgroup_disabled())
d13d1443
KH
1072 return 0;
1073 if (unlikely(!mm))
1074 mm = &init_mm;
1075 if (!locked)
1076 lock_page(page);
1077 /*
1078 * If not locked, the page can be dropped from SwapCache until
1079 * we reach here.
1080 */
1081 if (PageSwapCache(page)) {
8c7c6e34
KH
1082 struct mem_cgroup *mem = NULL;
1083 swp_entry_t ent;
1084
1085 ent.val = page_private(page);
1086 if (do_swap_account) {
1087 mem = lookup_swap_cgroup(ent);
1088 if (mem && mem->obsolete)
1089 mem = NULL;
1090 if (mem)
1091 mm = NULL;
1092 }
d13d1443 1093 ret = mem_cgroup_charge_common(page, mm, mask,
8c7c6e34
KH
1094 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1095
1096 if (!ret && do_swap_account) {
1097 /* avoid double counting */
1098 mem = swap_cgroup_record(ent, NULL);
1099 if (mem) {
1100 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1101 mem_cgroup_put(mem);
1102 }
1103 }
d13d1443
KH
1104 }
1105 if (!locked)
1106 unlock_page(page);
08e552c6
KH
1107 /* add this page(page_cgroup) to the LRU we want. */
1108 mem_cgroup_lru_fixup(page);
d13d1443
KH
1109
1110 return ret;
1111}
1112#endif
1113
7a81b88c
KH
1114void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1115{
1116 struct page_cgroup *pc;
1117
f8d66542 1118 if (mem_cgroup_disabled())
7a81b88c
KH
1119 return;
1120 if (!ptr)
1121 return;
1122 pc = lookup_page_cgroup(page);
1123 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
8c7c6e34
KH
1124 /*
1125 * Now swap is on-memory. This means this page may be
1126 * counted both as mem and swap....double count.
1127 * Fix it by uncharging from memsw. This SwapCache is stable
1128 * because we're still under lock_page().
1129 */
1130 if (do_swap_account) {
1131 swp_entry_t ent = {.val = page_private(page)};
1132 struct mem_cgroup *memcg;
1133 memcg = swap_cgroup_record(ent, NULL);
1134 if (memcg) {
1135 /* If memcg is obsolete, memcg can be != ptr */
1136 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1137 mem_cgroup_put(memcg);
1138 }
1139
1140 }
08e552c6
KH
1141 /* add this page(page_cgroup) to the LRU we want. */
1142 mem_cgroup_lru_fixup(page);
7a81b88c
KH
1143}
1144
1145void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1146{
f8d66542 1147 if (mem_cgroup_disabled())
7a81b88c
KH
1148 return;
1149 if (!mem)
1150 return;
1151 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1152 if (do_swap_account)
1153 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1154 css_put(&mem->css);
1155}
1156
1157
8a9f3ccd 1158/*
69029cd5 1159 * uncharge if !page_mapped(page)
8a9f3ccd 1160 */
8c7c6e34 1161static struct mem_cgroup *
69029cd5 1162__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1163{
8289546e 1164 struct page_cgroup *pc;
8c7c6e34 1165 struct mem_cgroup *mem = NULL;
072c56c1 1166 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1167
f8d66542 1168 if (mem_cgroup_disabled())
8c7c6e34 1169 return NULL;
4077960e 1170
d13d1443 1171 if (PageSwapCache(page))
8c7c6e34 1172 return NULL;
d13d1443 1173
8697d331 1174 /*
3c541e14 1175 * Check if our page_cgroup is valid
8697d331 1176 */
52d4b9ac
KH
1177 pc = lookup_page_cgroup(page);
1178 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1179 return NULL;
b9c565d5 1180
52d4b9ac 1181 lock_page_cgroup(pc);
d13d1443 1182
8c7c6e34
KH
1183 mem = pc->mem_cgroup;
1184
d13d1443
KH
1185 if (!PageCgroupUsed(pc))
1186 goto unlock_out;
1187
1188 switch (ctype) {
1189 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1190 if (page_mapped(page))
1191 goto unlock_out;
1192 break;
1193 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1194 if (!PageAnon(page)) { /* Shared memory */
1195 if (page->mapping && !page_is_file_cache(page))
1196 goto unlock_out;
1197 } else if (page_mapped(page)) /* Anon */
1198 goto unlock_out;
1199 break;
1200 default:
1201 break;
52d4b9ac 1202 }
d13d1443 1203
8c7c6e34
KH
1204 res_counter_uncharge(&mem->res, PAGE_SIZE);
1205 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1206 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1207
08e552c6 1208 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1209 ClearPageCgroupUsed(pc);
b9c565d5 1210
69029cd5 1211 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1212 unlock_page_cgroup(pc);
fb59e9f1 1213
a7fe942e
KH
1214 /* at swapout, this memcg will be accessed to record to swap */
1215 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1216 css_put(&mem->css);
6d12e2d8 1217
8c7c6e34 1218 return mem;
d13d1443
KH
1219
1220unlock_out:
1221 unlock_page_cgroup(pc);
8c7c6e34 1222 return NULL;
3c541e14
BS
1223}
1224
69029cd5
KH
1225void mem_cgroup_uncharge_page(struct page *page)
1226{
52d4b9ac
KH
1227 /* early check. */
1228 if (page_mapped(page))
1229 return;
1230 if (page->mapping && !PageAnon(page))
1231 return;
69029cd5
KH
1232 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1233}
1234
1235void mem_cgroup_uncharge_cache_page(struct page *page)
1236{
1237 VM_BUG_ON(page_mapped(page));
b7abea96 1238 VM_BUG_ON(page->mapping);
69029cd5
KH
1239 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1240}
1241
8c7c6e34
KH
1242/*
1243 * called from __delete_from_swap_cache() and drop "page" account.
1244 * memcg information is recorded to swap_cgroup of "ent"
1245 */
1246void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1247{
1248 struct mem_cgroup *memcg;
1249
1250 memcg = __mem_cgroup_uncharge_common(page,
1251 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1252 /* record memcg information */
1253 if (do_swap_account && memcg) {
1254 swap_cgroup_record(ent, memcg);
1255 mem_cgroup_get(memcg);
1256 }
a7fe942e
KH
1257 if (memcg)
1258 css_put(&memcg->css);
8c7c6e34
KH
1259}
1260
1261#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1262/*
1263 * called from swap_entry_free(). remove record in swap_cgroup and
1264 * uncharge "memsw" account.
1265 */
1266void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1267{
8c7c6e34
KH
1268 struct mem_cgroup *memcg;
1269
1270 if (!do_swap_account)
1271 return;
1272
1273 memcg = swap_cgroup_record(ent, NULL);
1274 if (memcg) {
1275 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1276 mem_cgroup_put(memcg);
1277 }
d13d1443 1278}
8c7c6e34 1279#endif
d13d1443 1280
ae41be37 1281/*
01b1ae63
KH
1282 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1283 * page belongs to.
ae41be37 1284 */
01b1ae63 1285int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1286{
1287 struct page_cgroup *pc;
e8589cc1 1288 struct mem_cgroup *mem = NULL;
e8589cc1 1289 int ret = 0;
8869b8f6 1290
f8d66542 1291 if (mem_cgroup_disabled())
4077960e
BS
1292 return 0;
1293
52d4b9ac
KH
1294 pc = lookup_page_cgroup(page);
1295 lock_page_cgroup(pc);
1296 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1297 mem = pc->mem_cgroup;
1298 css_get(&mem->css);
e8589cc1 1299 }
52d4b9ac 1300 unlock_page_cgroup(pc);
01b1ae63 1301
e8589cc1 1302 if (mem) {
2c26fdd7 1303 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
e8589cc1
KH
1304 css_put(&mem->css);
1305 }
01b1ae63 1306 *ptr = mem;
e8589cc1 1307 return ret;
ae41be37 1308}
8869b8f6 1309
69029cd5 1310/* remove redundant charge if migration failed*/
01b1ae63
KH
1311void mem_cgroup_end_migration(struct mem_cgroup *mem,
1312 struct page *oldpage, struct page *newpage)
ae41be37 1313{
01b1ae63
KH
1314 struct page *target, *unused;
1315 struct page_cgroup *pc;
1316 enum charge_type ctype;
1317
1318 if (!mem)
1319 return;
1320
1321 /* at migration success, oldpage->mapping is NULL. */
1322 if (oldpage->mapping) {
1323 target = oldpage;
1324 unused = NULL;
1325 } else {
1326 target = newpage;
1327 unused = oldpage;
1328 }
1329
1330 if (PageAnon(target))
1331 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1332 else if (page_is_file_cache(target))
1333 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1334 else
1335 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1336
1337 /* unused page is not on radix-tree now. */
d13d1443 1338 if (unused)
01b1ae63
KH
1339 __mem_cgroup_uncharge_common(unused, ctype);
1340
1341 pc = lookup_page_cgroup(target);
69029cd5 1342 /*
01b1ae63
KH
1343 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1344 * So, double-counting is effectively avoided.
1345 */
1346 __mem_cgroup_commit_charge(mem, pc, ctype);
1347
1348 /*
1349 * Both of oldpage and newpage are still under lock_page().
1350 * Then, we don't have to care about race in radix-tree.
1351 * But we have to be careful that this page is unmapped or not.
1352 *
1353 * There is a case for !page_mapped(). At the start of
1354 * migration, oldpage was mapped. But now, it's zapped.
1355 * But we know *target* page is not freed/reused under us.
1356 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1357 */
01b1ae63
KH
1358 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1359 mem_cgroup_uncharge_page(target);
ae41be37 1360}
78fb7466 1361
c9b0ed51
KH
1362/*
1363 * A call to try to shrink memory usage under specified resource controller.
1364 * This is typically used for page reclaiming for shmem for reducing side
1365 * effect of page allocation from shmem, which is used by some mem_cgroup.
1366 */
1367int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1368{
1369 struct mem_cgroup *mem;
1370 int progress = 0;
1371 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1372
f8d66542 1373 if (mem_cgroup_disabled())
cede86ac 1374 return 0;
9623e078
HD
1375 if (!mm)
1376 return 0;
cede86ac 1377
c9b0ed51
KH
1378 rcu_read_lock();
1379 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
1380 if (unlikely(!mem)) {
1381 rcu_read_unlock();
1382 return 0;
1383 }
c9b0ed51
KH
1384 css_get(&mem->css);
1385 rcu_read_unlock();
1386
1387 do {
8c7c6e34 1388 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
b85a96c0 1389 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1390 } while (!progress && --retry);
1391
1392 css_put(&mem->css);
1393 if (!retry)
1394 return -ENOMEM;
1395 return 0;
1396}
1397
14797e23
KM
1398/*
1399 * The inactive anon list should be small enough that the VM never has to
1400 * do too much work, but large enough that each inactive page has a chance
1401 * to be referenced again before it is swapped out.
1402 *
1403 * this calculation is straightforward porting from
1404 * page_alloc.c::setup_per_zone_inactive_ratio().
1405 * it describe more detail.
1406 */
1407static void mem_cgroup_set_inactive_ratio(struct mem_cgroup *memcg)
1408{
1409 unsigned int gb, ratio;
1410
1411 gb = res_counter_read_u64(&memcg->res, RES_LIMIT) >> 30;
1412 if (gb)
1413 ratio = int_sqrt(10 * gb);
1414 else
1415 ratio = 1;
1416
1417 memcg->inactive_ratio = ratio;
1418
1419}
1420
8c7c6e34
KH
1421static DEFINE_MUTEX(set_limit_mutex);
1422
d38d2a75 1423static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1424 unsigned long long val)
628f4235
KH
1425{
1426
1427 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1428 int progress;
8c7c6e34 1429 u64 memswlimit;
628f4235
KH
1430 int ret = 0;
1431
8c7c6e34 1432 while (retry_count) {
628f4235
KH
1433 if (signal_pending(current)) {
1434 ret = -EINTR;
1435 break;
1436 }
8c7c6e34
KH
1437 /*
1438 * Rather than hide all in some function, I do this in
1439 * open coded manner. You see what this really does.
1440 * We have to guarantee mem->res.limit < mem->memsw.limit.
1441 */
1442 mutex_lock(&set_limit_mutex);
1443 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1444 if (memswlimit < val) {
1445 ret = -EINVAL;
1446 mutex_unlock(&set_limit_mutex);
628f4235
KH
1447 break;
1448 }
8c7c6e34
KH
1449 ret = res_counter_set_limit(&memcg->res, val);
1450 mutex_unlock(&set_limit_mutex);
1451
1452 if (!ret)
1453 break;
1454
bced0520 1455 progress = try_to_free_mem_cgroup_pages(memcg,
2c26fdd7 1456 GFP_KERNEL, false);
8c7c6e34
KH
1457 if (!progress) retry_count--;
1458 }
14797e23
KM
1459
1460 if (!ret)
1461 mem_cgroup_set_inactive_ratio(memcg);
1462
8c7c6e34
KH
1463 return ret;
1464}
1465
1466int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1467 unsigned long long val)
1468{
1469 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1470 u64 memlimit, oldusage, curusage;
1471 int ret;
1472
1473 if (!do_swap_account)
1474 return -EINVAL;
1475
1476 while (retry_count) {
1477 if (signal_pending(current)) {
1478 ret = -EINTR;
1479 break;
1480 }
1481 /*
1482 * Rather than hide all in some function, I do this in
1483 * open coded manner. You see what this really does.
1484 * We have to guarantee mem->res.limit < mem->memsw.limit.
1485 */
1486 mutex_lock(&set_limit_mutex);
1487 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1488 if (memlimit > val) {
1489 ret = -EINVAL;
1490 mutex_unlock(&set_limit_mutex);
1491 break;
1492 }
1493 ret = res_counter_set_limit(&memcg->memsw, val);
1494 mutex_unlock(&set_limit_mutex);
1495
1496 if (!ret)
1497 break;
1498
1499 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2c26fdd7 1500 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1501 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1502 if (curusage >= oldusage)
628f4235
KH
1503 retry_count--;
1504 }
1505 return ret;
1506}
1507
cc847582
KH
1508/*
1509 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1510 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1511 */
f817ed48 1512static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1513 int node, int zid, enum lru_list lru)
cc847582 1514{
08e552c6
KH
1515 struct zone *zone;
1516 struct mem_cgroup_per_zone *mz;
f817ed48 1517 struct page_cgroup *pc, *busy;
08e552c6 1518 unsigned long flags, loop;
072c56c1 1519 struct list_head *list;
f817ed48 1520 int ret = 0;
072c56c1 1521
08e552c6
KH
1522 zone = &NODE_DATA(node)->node_zones[zid];
1523 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1524 list = &mz->lists[lru];
cc847582 1525
f817ed48
KH
1526 loop = MEM_CGROUP_ZSTAT(mz, lru);
1527 /* give some margin against EBUSY etc...*/
1528 loop += 256;
1529 busy = NULL;
1530 while (loop--) {
1531 ret = 0;
08e552c6 1532 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1533 if (list_empty(list)) {
08e552c6 1534 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1535 break;
f817ed48
KH
1536 }
1537 pc = list_entry(list->prev, struct page_cgroup, lru);
1538 if (busy == pc) {
1539 list_move(&pc->lru, list);
1540 busy = 0;
08e552c6 1541 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1542 continue;
1543 }
08e552c6 1544 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1545
2c26fdd7 1546 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1547 if (ret == -ENOMEM)
52d4b9ac 1548 break;
f817ed48
KH
1549
1550 if (ret == -EBUSY || ret == -EINVAL) {
1551 /* found lock contention or "pc" is obsolete. */
1552 busy = pc;
1553 cond_resched();
1554 } else
1555 busy = NULL;
cc847582 1556 }
08e552c6 1557
f817ed48
KH
1558 if (!ret && !list_empty(list))
1559 return -EBUSY;
1560 return ret;
cc847582
KH
1561}
1562
1563/*
1564 * make mem_cgroup's charge to be 0 if there is no task.
1565 * This enables deleting this mem_cgroup.
1566 */
c1e862c1 1567static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1568{
f817ed48
KH
1569 int ret;
1570 int node, zid, shrink;
1571 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1572 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1573
cc847582 1574 css_get(&mem->css);
f817ed48
KH
1575
1576 shrink = 0;
c1e862c1
KH
1577 /* should free all ? */
1578 if (free_all)
1579 goto try_to_free;
f817ed48 1580move_account:
1ecaab2b 1581 while (mem->res.usage > 0) {
f817ed48 1582 ret = -EBUSY;
c1e862c1
KH
1583 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1584 goto out;
1585 ret = -EINTR;
1586 if (signal_pending(current))
cc847582 1587 goto out;
52d4b9ac
KH
1588 /* This is for making all *used* pages to be on LRU. */
1589 lru_add_drain_all();
f817ed48
KH
1590 ret = 0;
1591 for_each_node_state(node, N_POSSIBLE) {
1592 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1593 enum lru_list l;
f817ed48
KH
1594 for_each_lru(l) {
1595 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1596 node, zid, l);
f817ed48
KH
1597 if (ret)
1598 break;
1599 }
1ecaab2b 1600 }
f817ed48
KH
1601 if (ret)
1602 break;
1603 }
1604 /* it seems parent cgroup doesn't have enough mem */
1605 if (ret == -ENOMEM)
1606 goto try_to_free;
52d4b9ac 1607 cond_resched();
cc847582
KH
1608 }
1609 ret = 0;
1610out:
1611 css_put(&mem->css);
1612 return ret;
f817ed48
KH
1613
1614try_to_free:
c1e862c1
KH
1615 /* returns EBUSY if there is a task or if we come here twice. */
1616 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1617 ret = -EBUSY;
1618 goto out;
1619 }
c1e862c1
KH
1620 /* we call try-to-free pages for make this cgroup empty */
1621 lru_add_drain_all();
f817ed48
KH
1622 /* try to free all pages in this cgroup */
1623 shrink = 1;
1624 while (nr_retries && mem->res.usage > 0) {
1625 int progress;
c1e862c1
KH
1626
1627 if (signal_pending(current)) {
1628 ret = -EINTR;
1629 goto out;
1630 }
f817ed48 1631 progress = try_to_free_mem_cgroup_pages(mem,
2c26fdd7 1632 GFP_KERNEL, false);
c1e862c1 1633 if (!progress) {
f817ed48 1634 nr_retries--;
c1e862c1
KH
1635 /* maybe some writeback is necessary */
1636 congestion_wait(WRITE, HZ/10);
1637 }
f817ed48
KH
1638
1639 }
08e552c6 1640 lru_add_drain();
f817ed48
KH
1641 /* try move_account...there may be some *locked* pages. */
1642 if (mem->res.usage)
1643 goto move_account;
1644 ret = 0;
1645 goto out;
cc847582
KH
1646}
1647
c1e862c1
KH
1648int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1649{
1650 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1651}
1652
1653
18f59ea7
BS
1654static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1655{
1656 return mem_cgroup_from_cont(cont)->use_hierarchy;
1657}
1658
1659static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1660 u64 val)
1661{
1662 int retval = 0;
1663 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1664 struct cgroup *parent = cont->parent;
1665 struct mem_cgroup *parent_mem = NULL;
1666
1667 if (parent)
1668 parent_mem = mem_cgroup_from_cont(parent);
1669
1670 cgroup_lock();
1671 /*
1672 * If parent's use_hiearchy is set, we can't make any modifications
1673 * in the child subtrees. If it is unset, then the change can
1674 * occur, provided the current cgroup has no children.
1675 *
1676 * For the root cgroup, parent_mem is NULL, we allow value to be
1677 * set if there are no children.
1678 */
1679 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1680 (val == 1 || val == 0)) {
1681 if (list_empty(&cont->children))
1682 mem->use_hierarchy = val;
1683 else
1684 retval = -EBUSY;
1685 } else
1686 retval = -EINVAL;
1687 cgroup_unlock();
1688
1689 return retval;
1690}
1691
2c3daa72 1692static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1693{
8c7c6e34
KH
1694 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1695 u64 val = 0;
1696 int type, name;
1697
1698 type = MEMFILE_TYPE(cft->private);
1699 name = MEMFILE_ATTR(cft->private);
1700 switch (type) {
1701 case _MEM:
1702 val = res_counter_read_u64(&mem->res, name);
1703 break;
1704 case _MEMSWAP:
1705 if (do_swap_account)
1706 val = res_counter_read_u64(&mem->memsw, name);
1707 break;
1708 default:
1709 BUG();
1710 break;
1711 }
1712 return val;
8cdea7c0 1713}
628f4235
KH
1714/*
1715 * The user of this function is...
1716 * RES_LIMIT.
1717 */
856c13aa
PM
1718static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1719 const char *buffer)
8cdea7c0 1720{
628f4235 1721 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1722 int type, name;
628f4235
KH
1723 unsigned long long val;
1724 int ret;
1725
8c7c6e34
KH
1726 type = MEMFILE_TYPE(cft->private);
1727 name = MEMFILE_ATTR(cft->private);
1728 switch (name) {
628f4235
KH
1729 case RES_LIMIT:
1730 /* This function does all necessary parse...reuse it */
1731 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1732 if (ret)
1733 break;
1734 if (type == _MEM)
628f4235 1735 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1736 else
1737 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1738 break;
1739 default:
1740 ret = -EINVAL; /* should be BUG() ? */
1741 break;
1742 }
1743 return ret;
8cdea7c0
BS
1744}
1745
29f2a4da 1746static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1747{
1748 struct mem_cgroup *mem;
8c7c6e34 1749 int type, name;
c84872e1
PE
1750
1751 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1752 type = MEMFILE_TYPE(event);
1753 name = MEMFILE_ATTR(event);
1754 switch (name) {
29f2a4da 1755 case RES_MAX_USAGE:
8c7c6e34
KH
1756 if (type == _MEM)
1757 res_counter_reset_max(&mem->res);
1758 else
1759 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1760 break;
1761 case RES_FAILCNT:
8c7c6e34
KH
1762 if (type == _MEM)
1763 res_counter_reset_failcnt(&mem->res);
1764 else
1765 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1766 break;
1767 }
85cc59db 1768 return 0;
c84872e1
PE
1769}
1770
d2ceb9b7
KH
1771static const struct mem_cgroup_stat_desc {
1772 const char *msg;
1773 u64 unit;
1774} mem_cgroup_stat_desc[] = {
1775 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1776 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1777 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1778 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1779};
1780
c64745cf
PM
1781static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1782 struct cgroup_map_cb *cb)
d2ceb9b7 1783{
d2ceb9b7
KH
1784 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1785 struct mem_cgroup_stat *stat = &mem_cont->stat;
1786 int i;
1787
1788 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1789 s64 val;
1790
1791 val = mem_cgroup_read_stat(stat, i);
1792 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1793 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1794 }
6d12e2d8
KH
1795 /* showing # of active pages */
1796 {
4f98a2fe
RR
1797 unsigned long active_anon, inactive_anon;
1798 unsigned long active_file, inactive_file;
7b854121 1799 unsigned long unevictable;
4f98a2fe
RR
1800
1801 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1802 LRU_INACTIVE_ANON);
1803 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1804 LRU_ACTIVE_ANON);
1805 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1806 LRU_INACTIVE_FILE);
1807 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1808 LRU_ACTIVE_FILE);
7b854121
LS
1809 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1810 LRU_UNEVICTABLE);
1811
4f98a2fe
RR
1812 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1813 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1814 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1815 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1816 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1817
6d12e2d8 1818 }
7f016ee8
KM
1819
1820#ifdef CONFIG_DEBUG_VM
1821 cb->fill(cb, "inactive_ratio", mem_cont->inactive_ratio);
1822
1823 {
1824 int nid, zid;
1825 struct mem_cgroup_per_zone *mz;
1826 unsigned long recent_rotated[2] = {0, 0};
1827 unsigned long recent_scanned[2] = {0, 0};
1828
1829 for_each_online_node(nid)
1830 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1831 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1832
1833 recent_rotated[0] +=
1834 mz->reclaim_stat.recent_rotated[0];
1835 recent_rotated[1] +=
1836 mz->reclaim_stat.recent_rotated[1];
1837 recent_scanned[0] +=
1838 mz->reclaim_stat.recent_scanned[0];
1839 recent_scanned[1] +=
1840 mz->reclaim_stat.recent_scanned[1];
1841 }
1842 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1843 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1844 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1845 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1846 }
1847#endif
1848
d2ceb9b7
KH
1849 return 0;
1850}
1851
c1e862c1 1852
8cdea7c0
BS
1853static struct cftype mem_cgroup_files[] = {
1854 {
0eea1030 1855 .name = "usage_in_bytes",
8c7c6e34 1856 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1857 .read_u64 = mem_cgroup_read,
8cdea7c0 1858 },
c84872e1
PE
1859 {
1860 .name = "max_usage_in_bytes",
8c7c6e34 1861 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 1862 .trigger = mem_cgroup_reset,
c84872e1
PE
1863 .read_u64 = mem_cgroup_read,
1864 },
8cdea7c0 1865 {
0eea1030 1866 .name = "limit_in_bytes",
8c7c6e34 1867 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 1868 .write_string = mem_cgroup_write,
2c3daa72 1869 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1870 },
1871 {
1872 .name = "failcnt",
8c7c6e34 1873 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 1874 .trigger = mem_cgroup_reset,
2c3daa72 1875 .read_u64 = mem_cgroup_read,
8cdea7c0 1876 },
d2ceb9b7
KH
1877 {
1878 .name = "stat",
c64745cf 1879 .read_map = mem_control_stat_show,
d2ceb9b7 1880 },
c1e862c1
KH
1881 {
1882 .name = "force_empty",
1883 .trigger = mem_cgroup_force_empty_write,
1884 },
18f59ea7
BS
1885 {
1886 .name = "use_hierarchy",
1887 .write_u64 = mem_cgroup_hierarchy_write,
1888 .read_u64 = mem_cgroup_hierarchy_read,
1889 },
8cdea7c0
BS
1890};
1891
8c7c6e34
KH
1892#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1893static struct cftype memsw_cgroup_files[] = {
1894 {
1895 .name = "memsw.usage_in_bytes",
1896 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1897 .read_u64 = mem_cgroup_read,
1898 },
1899 {
1900 .name = "memsw.max_usage_in_bytes",
1901 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1902 .trigger = mem_cgroup_reset,
1903 .read_u64 = mem_cgroup_read,
1904 },
1905 {
1906 .name = "memsw.limit_in_bytes",
1907 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1908 .write_string = mem_cgroup_write,
1909 .read_u64 = mem_cgroup_read,
1910 },
1911 {
1912 .name = "memsw.failcnt",
1913 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1914 .trigger = mem_cgroup_reset,
1915 .read_u64 = mem_cgroup_read,
1916 },
1917};
1918
1919static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1920{
1921 if (!do_swap_account)
1922 return 0;
1923 return cgroup_add_files(cont, ss, memsw_cgroup_files,
1924 ARRAY_SIZE(memsw_cgroup_files));
1925};
1926#else
1927static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1928{
1929 return 0;
1930}
1931#endif
1932
6d12e2d8
KH
1933static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1934{
1935 struct mem_cgroup_per_node *pn;
1ecaab2b 1936 struct mem_cgroup_per_zone *mz;
b69408e8 1937 enum lru_list l;
41e3355d 1938 int zone, tmp = node;
1ecaab2b
KH
1939 /*
1940 * This routine is called against possible nodes.
1941 * But it's BUG to call kmalloc() against offline node.
1942 *
1943 * TODO: this routine can waste much memory for nodes which will
1944 * never be onlined. It's better to use memory hotplug callback
1945 * function.
1946 */
41e3355d
KH
1947 if (!node_state(node, N_NORMAL_MEMORY))
1948 tmp = -1;
1949 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1950 if (!pn)
1951 return 1;
1ecaab2b 1952
6d12e2d8
KH
1953 mem->info.nodeinfo[node] = pn;
1954 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1955
1956 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1957 mz = &pn->zoneinfo[zone];
b69408e8
CL
1958 for_each_lru(l)
1959 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1960 }
6d12e2d8
KH
1961 return 0;
1962}
1963
1ecaab2b
KH
1964static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1965{
1966 kfree(mem->info.nodeinfo[node]);
1967}
1968
c8dad2bb
JB
1969static int mem_cgroup_size(void)
1970{
1971 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1972 return sizeof(struct mem_cgroup) + cpustat_size;
1973}
1974
33327948
KH
1975static struct mem_cgroup *mem_cgroup_alloc(void)
1976{
1977 struct mem_cgroup *mem;
c8dad2bb 1978 int size = mem_cgroup_size();
33327948 1979
c8dad2bb
JB
1980 if (size < PAGE_SIZE)
1981 mem = kmalloc(size, GFP_KERNEL);
33327948 1982 else
c8dad2bb 1983 mem = vmalloc(size);
33327948
KH
1984
1985 if (mem)
c8dad2bb 1986 memset(mem, 0, size);
33327948
KH
1987 return mem;
1988}
1989
8c7c6e34
KH
1990/*
1991 * At destroying mem_cgroup, references from swap_cgroup can remain.
1992 * (scanning all at force_empty is too costly...)
1993 *
1994 * Instead of clearing all references at force_empty, we remember
1995 * the number of reference from swap_cgroup and free mem_cgroup when
1996 * it goes down to 0.
1997 *
1998 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
1999 * entry which points to this memcg will be ignore at swapin.
2000 *
2001 * Removal of cgroup itself succeeds regardless of refs from swap.
2002 */
2003
33327948
KH
2004static void mem_cgroup_free(struct mem_cgroup *mem)
2005{
08e552c6
KH
2006 int node;
2007
8c7c6e34
KH
2008 if (atomic_read(&mem->refcnt) > 0)
2009 return;
08e552c6
KH
2010
2011
2012 for_each_node_state(node, N_POSSIBLE)
2013 free_mem_cgroup_per_zone_info(mem, node);
2014
c8dad2bb 2015 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2016 kfree(mem);
2017 else
2018 vfree(mem);
2019}
2020
8c7c6e34
KH
2021static void mem_cgroup_get(struct mem_cgroup *mem)
2022{
2023 atomic_inc(&mem->refcnt);
2024}
2025
2026static void mem_cgroup_put(struct mem_cgroup *mem)
2027{
2028 if (atomic_dec_and_test(&mem->refcnt)) {
2029 if (!mem->obsolete)
2030 return;
2031 mem_cgroup_free(mem);
2032 }
2033}
2034
33327948 2035
c077719b
KH
2036#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2037static void __init enable_swap_cgroup(void)
2038{
f8d66542 2039 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2040 do_swap_account = 1;
2041}
2042#else
2043static void __init enable_swap_cgroup(void)
2044{
2045}
2046#endif
2047
8cdea7c0
BS
2048static struct cgroup_subsys_state *
2049mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2050{
28dbc4b6 2051 struct mem_cgroup *mem, *parent;
6d12e2d8 2052 int node;
8cdea7c0 2053
c8dad2bb
JB
2054 mem = mem_cgroup_alloc();
2055 if (!mem)
2056 return ERR_PTR(-ENOMEM);
78fb7466 2057
6d12e2d8
KH
2058 for_each_node_state(node, N_POSSIBLE)
2059 if (alloc_mem_cgroup_per_zone_info(mem, node))
2060 goto free_out;
c077719b 2061 /* root ? */
28dbc4b6 2062 if (cont->parent == NULL) {
c077719b 2063 enable_swap_cgroup();
28dbc4b6 2064 parent = NULL;
18f59ea7 2065 } else {
28dbc4b6 2066 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2067 mem->use_hierarchy = parent->use_hierarchy;
2068 }
28dbc4b6 2069
18f59ea7
BS
2070 if (parent && parent->use_hierarchy) {
2071 res_counter_init(&mem->res, &parent->res);
2072 res_counter_init(&mem->memsw, &parent->memsw);
2073 } else {
2074 res_counter_init(&mem->res, NULL);
2075 res_counter_init(&mem->memsw, NULL);
2076 }
14797e23 2077 mem_cgroup_set_inactive_ratio(mem);
6d61ef40
BS
2078 mem->last_scanned_child = NULL;
2079
8cdea7c0 2080 return &mem->css;
6d12e2d8
KH
2081free_out:
2082 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 2083 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 2084 mem_cgroup_free(mem);
2dda81ca 2085 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
2086}
2087
df878fb0
KH
2088static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2089 struct cgroup *cont)
2090{
2091 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8c7c6e34 2092 mem->obsolete = 1;
c1e862c1 2093 mem_cgroup_force_empty(mem, false);
df878fb0
KH
2094}
2095
8cdea7c0
BS
2096static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2097 struct cgroup *cont)
2098{
33327948 2099 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
2100}
2101
2102static int mem_cgroup_populate(struct cgroup_subsys *ss,
2103 struct cgroup *cont)
2104{
8c7c6e34
KH
2105 int ret;
2106
2107 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2108 ARRAY_SIZE(mem_cgroup_files));
2109
2110 if (!ret)
2111 ret = register_memsw_files(cont, ss);
2112 return ret;
8cdea7c0
BS
2113}
2114
67e465a7
BS
2115static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2116 struct cgroup *cont,
2117 struct cgroup *old_cont,
2118 struct task_struct *p)
2119{
67e465a7 2120 /*
f9717d28
NK
2121 * FIXME: It's better to move charges of this process from old
2122 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2123 */
67e465a7
BS
2124}
2125
8cdea7c0
BS
2126struct cgroup_subsys mem_cgroup_subsys = {
2127 .name = "memory",
2128 .subsys_id = mem_cgroup_subsys_id,
2129 .create = mem_cgroup_create,
df878fb0 2130 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2131 .destroy = mem_cgroup_destroy,
2132 .populate = mem_cgroup_populate,
67e465a7 2133 .attach = mem_cgroup_move_task,
6d12e2d8 2134 .early_init = 0,
8cdea7c0 2135};
c077719b
KH
2136
2137#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2138
2139static int __init disable_swap_account(char *s)
2140{
2141 really_do_swap_account = 0;
2142 return 1;
2143}
2144__setup("noswapaccount", disable_swap_account);
2145#endif