]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: use css_tryget in memcg
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
7f4d454d 54static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 55
d52aa412
KH
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60 /*
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 */
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
67
68 MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
c8dad2bb 76 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
addb9efe 82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
83 enum mem_cgroup_stat_index idx, int val)
84{
addb9efe 85 stat->count[idx] += val;
d52aa412
KH
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
96}
97
6d12e2d8
KH
98/*
99 * per-zone information in memory controller.
100 */
6d12e2d8 101struct mem_cgroup_per_zone {
072c56c1
KH
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
b69408e8
CL
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
107
108 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
109};
110/* Macro for accessing counter */
111#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
112
113struct mem_cgroup_per_node {
114 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115};
116
117struct mem_cgroup_lru_info {
118 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119};
120
8cdea7c0
BS
121/*
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
126 *
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
8cdea7c0
BS
131 */
132struct mem_cgroup {
133 struct cgroup_subsys_state css;
134 /*
135 * the counter to account for memory usage
136 */
137 struct res_counter res;
8c7c6e34
KH
138 /*
139 * the counter to account for mem+swap usage.
140 */
141 struct res_counter memsw;
78fb7466
PE
142 /*
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
78fb7466 145 */
6d12e2d8 146 struct mem_cgroup_lru_info info;
072c56c1 147
2733c06a
KM
148 /*
149 protect against reclaim related member.
150 */
151 spinlock_t reclaim_param_lock;
152
6c48a1d0 153 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
154
155 /*
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by cgroup_lock()
158 */
159 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
160 /*
161 * Should the accounting and control be hierarchical, per subtree?
162 */
163 bool use_hierarchy;
a636b327 164 unsigned long last_oom_jiffies;
8c7c6e34 165 atomic_t refcnt;
14797e23 166
a7885eb8
KM
167 unsigned int swappiness;
168
d52aa412 169 /*
c8dad2bb 170 * statistics. This must be placed at the end of memcg.
d52aa412
KH
171 */
172 struct mem_cgroup_stat stat;
8cdea7c0
BS
173};
174
217bc319
KH
175enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
181 NR_CHARGE_TYPE,
182};
183
52d4b9ac
KH
184/* only for here (for easy reading.) */
185#define PCGF_CACHE (1UL << PCG_CACHE)
186#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 187#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
188static const unsigned long
189pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 193 0, /* FORCE */
217bc319
KH
194};
195
8c7c6e34
KH
196/* for encoding cft->private value on file */
197#define _MEM (0)
198#define _MEMSWAP (1)
199#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201#define MEMFILE_ATTR(val) ((val) & 0xffff)
202
203static void mem_cgroup_get(struct mem_cgroup *mem);
204static void mem_cgroup_put(struct mem_cgroup *mem);
205
c05555b5
KH
206static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
d52aa412
KH
209{
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 212 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 213 int cpu = get_cpu();
d52aa412 214
08e552c6 215 cpustat = &stat->cpustat[cpu];
c05555b5 216 if (PageCgroupCache(pc))
addb9efe 217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 218 else
addb9efe 219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
220
221 if (charge)
addb9efe 222 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
addb9efe 225 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 227 put_cpu();
6d12e2d8
KH
228}
229
d5b69e38 230static struct mem_cgroup_per_zone *
6d12e2d8
KH
231mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232{
6d12e2d8
KH
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234}
235
d5b69e38 236static struct mem_cgroup_per_zone *
6d12e2d8
KH
237page_cgroup_zoneinfo(struct page_cgroup *pc)
238{
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
d52aa412 242
54992762
KM
243 if (!mem)
244 return NULL;
245
6d12e2d8
KH
246 return mem_cgroup_zoneinfo(mem, nid, zid);
247}
248
249static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 250 enum lru_list idx)
6d12e2d8
KH
251{
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
255
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
260 }
261 return total;
d52aa412
KH
262}
263
d5b69e38 264static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
265{
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
269}
270
cf475ad2 271struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 272{
31a78f23
BS
273 /*
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
277 */
278 if (unlikely(!p))
279 return NULL;
280
78fb7466
PE
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
283}
284
54595fe2
KH
285static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
286{
287 struct mem_cgroup *mem = NULL;
288 /*
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
292 */
293 rcu_read_lock();
294 do {
295 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296 if (unlikely(!mem))
297 break;
298 } while (!css_tryget(&mem->css));
299 rcu_read_unlock();
300 return mem;
301}
302
303static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
304{
305 if (!mem)
306 return true;
307 return css_is_removed(&mem->css);
308}
309
08e552c6
KH
310/*
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
314 *
315 * Changes to pc->mem_cgroup happens when
316 * 1. charge
317 * 2. moving account
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
322 */
4f98a2fe 323
08e552c6
KH
324void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
325{
326 struct page_cgroup *pc;
327 struct mem_cgroup *mem;
328 struct mem_cgroup_per_zone *mz;
6d12e2d8 329
f8d66542 330 if (mem_cgroup_disabled())
08e552c6
KH
331 return;
332 pc = lookup_page_cgroup(page);
333 /* can happen while we handle swapcache. */
334 if (list_empty(&pc->lru))
335 return;
336 mz = page_cgroup_zoneinfo(pc);
337 mem = pc->mem_cgroup;
b69408e8 338 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
339 list_del_init(&pc->lru);
340 return;
6d12e2d8
KH
341}
342
08e552c6 343void mem_cgroup_del_lru(struct page *page)
6d12e2d8 344{
08e552c6
KH
345 mem_cgroup_del_lru_list(page, page_lru(page));
346}
b69408e8 347
08e552c6
KH
348void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
349{
350 struct mem_cgroup_per_zone *mz;
351 struct page_cgroup *pc;
b69408e8 352
f8d66542 353 if (mem_cgroup_disabled())
08e552c6 354 return;
6d12e2d8 355
08e552c6
KH
356 pc = lookup_page_cgroup(page);
357 smp_rmb();
358 /* unused page is not rotated. */
359 if (!PageCgroupUsed(pc))
360 return;
361 mz = page_cgroup_zoneinfo(pc);
362 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
363}
364
08e552c6 365void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 366{
08e552c6
KH
367 struct page_cgroup *pc;
368 struct mem_cgroup_per_zone *mz;
6d12e2d8 369
f8d66542 370 if (mem_cgroup_disabled())
08e552c6
KH
371 return;
372 pc = lookup_page_cgroup(page);
373 /* barrier to sync with "charge" */
374 smp_rmb();
375 if (!PageCgroupUsed(pc))
894bc310 376 return;
b69408e8 377
08e552c6 378 mz = page_cgroup_zoneinfo(pc);
b69408e8 379 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
380 list_add(&pc->lru, &mz->lists[lru]);
381}
382/*
383 * To add swapcache into LRU. Be careful to all this function.
384 * zone->lru_lock shouldn't be held and irq must not be disabled.
385 */
386static void mem_cgroup_lru_fixup(struct page *page)
387{
388 if (!isolate_lru_page(page))
389 putback_lru_page(page);
390}
391
392void mem_cgroup_move_lists(struct page *page,
393 enum lru_list from, enum lru_list to)
394{
f8d66542 395 if (mem_cgroup_disabled())
08e552c6
KH
396 return;
397 mem_cgroup_del_lru_list(page, from);
398 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
399}
400
4c4a2214
DR
401int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
402{
403 int ret;
404
405 task_lock(task);
bd845e38 406 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
407 task_unlock(task);
408 return ret;
409}
410
58ae83db
KH
411/*
412 * Calculate mapped_ratio under memory controller. This will be used in
413 * vmscan.c for deteremining we have to reclaim mapped pages.
414 */
415int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
416{
417 long total, rss;
418
419 /*
420 * usage is recorded in bytes. But, here, we assume the number of
421 * physical pages can be represented by "long" on any arch.
422 */
423 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
424 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
425 return (int)((rss * 100L) / total);
426}
8869b8f6 427
6c48a1d0
KH
428/*
429 * prev_priority control...this will be used in memory reclaim path.
430 */
431int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
432{
2733c06a
KM
433 int prev_priority;
434
435 spin_lock(&mem->reclaim_param_lock);
436 prev_priority = mem->prev_priority;
437 spin_unlock(&mem->reclaim_param_lock);
438
439 return prev_priority;
6c48a1d0
KH
440}
441
442void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
443{
2733c06a 444 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
445 if (priority < mem->prev_priority)
446 mem->prev_priority = priority;
2733c06a 447 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
448}
449
450void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
451{
2733c06a 452 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 453 mem->prev_priority = priority;
2733c06a 454 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
455}
456
c772be93 457static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
458{
459 unsigned long active;
460 unsigned long inactive;
c772be93
KM
461 unsigned long gb;
462 unsigned long inactive_ratio;
14797e23
KM
463
464 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
465 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
466
c772be93
KM
467 gb = (inactive + active) >> (30 - PAGE_SHIFT);
468 if (gb)
469 inactive_ratio = int_sqrt(10 * gb);
470 else
471 inactive_ratio = 1;
472
473 if (present_pages) {
474 present_pages[0] = inactive;
475 present_pages[1] = active;
476 }
477
478 return inactive_ratio;
479}
480
481int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
482{
483 unsigned long active;
484 unsigned long inactive;
485 unsigned long present_pages[2];
486 unsigned long inactive_ratio;
487
488 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
489
490 inactive = present_pages[0];
491 active = present_pages[1];
492
493 if (inactive * inactive_ratio < active)
14797e23
KM
494 return 1;
495
496 return 0;
497}
498
a3d8e054
KM
499unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
500 struct zone *zone,
501 enum lru_list lru)
502{
503 int nid = zone->zone_pgdat->node_id;
504 int zid = zone_idx(zone);
505 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
506
507 return MEM_CGROUP_ZSTAT(mz, lru);
508}
509
3e2f41f1
KM
510struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
511 struct zone *zone)
512{
513 int nid = zone->zone_pgdat->node_id;
514 int zid = zone_idx(zone);
515 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
516
517 return &mz->reclaim_stat;
518}
519
520struct zone_reclaim_stat *
521mem_cgroup_get_reclaim_stat_from_page(struct page *page)
522{
523 struct page_cgroup *pc;
524 struct mem_cgroup_per_zone *mz;
525
526 if (mem_cgroup_disabled())
527 return NULL;
528
529 pc = lookup_page_cgroup(page);
530 mz = page_cgroup_zoneinfo(pc);
531 if (!mz)
532 return NULL;
533
534 return &mz->reclaim_stat;
535}
536
66e1707b
BS
537unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
538 struct list_head *dst,
539 unsigned long *scanned, int order,
540 int mode, struct zone *z,
541 struct mem_cgroup *mem_cont,
4f98a2fe 542 int active, int file)
66e1707b
BS
543{
544 unsigned long nr_taken = 0;
545 struct page *page;
546 unsigned long scan;
547 LIST_HEAD(pc_list);
548 struct list_head *src;
ff7283fa 549 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
550 int nid = z->zone_pgdat->node_id;
551 int zid = zone_idx(z);
552 struct mem_cgroup_per_zone *mz;
4f98a2fe 553 int lru = LRU_FILE * !!file + !!active;
66e1707b 554
cf475ad2 555 BUG_ON(!mem_cont);
1ecaab2b 556 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 557 src = &mz->lists[lru];
66e1707b 558
ff7283fa
KH
559 scan = 0;
560 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 561 if (scan >= nr_to_scan)
ff7283fa 562 break;
08e552c6
KH
563
564 page = pc->page;
52d4b9ac
KH
565 if (unlikely(!PageCgroupUsed(pc)))
566 continue;
436c6541 567 if (unlikely(!PageLRU(page)))
ff7283fa 568 continue;
ff7283fa 569
436c6541 570 scan++;
4f98a2fe 571 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
572 list_move(&page->lru, dst);
573 nr_taken++;
574 }
575 }
576
66e1707b
BS
577 *scanned = scan;
578 return nr_taken;
579}
580
6d61ef40
BS
581#define mem_cgroup_from_res_counter(counter, member) \
582 container_of(counter, struct mem_cgroup, member)
583
584/*
585 * This routine finds the DFS walk successor. This routine should be
586 * called with cgroup_mutex held
587 */
588static struct mem_cgroup *
589mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
590{
591 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
592
593 curr_cgroup = curr->css.cgroup;
594 root_cgroup = root_mem->css.cgroup;
595
596 if (!list_empty(&curr_cgroup->children)) {
597 /*
598 * Walk down to children
599 */
600 mem_cgroup_put(curr);
601 cgroup = list_entry(curr_cgroup->children.next,
602 struct cgroup, sibling);
603 curr = mem_cgroup_from_cont(cgroup);
604 mem_cgroup_get(curr);
605 goto done;
606 }
607
608visit_parent:
609 if (curr_cgroup == root_cgroup) {
610 mem_cgroup_put(curr);
611 curr = root_mem;
612 mem_cgroup_get(curr);
613 goto done;
614 }
615
616 /*
617 * Goto next sibling
618 */
619 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
620 mem_cgroup_put(curr);
621 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
622 sibling);
623 curr = mem_cgroup_from_cont(cgroup);
624 mem_cgroup_get(curr);
625 goto done;
626 }
627
628 /*
629 * Go up to next parent and next parent's sibling if need be
630 */
631 curr_cgroup = curr_cgroup->parent;
632 goto visit_parent;
633
634done:
635 root_mem->last_scanned_child = curr;
636 return curr;
637}
638
639/*
640 * Visit the first child (need not be the first child as per the ordering
641 * of the cgroup list, since we track last_scanned_child) of @mem and use
642 * that to reclaim free pages from.
643 */
644static struct mem_cgroup *
645mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
646{
647 struct cgroup *cgroup;
648 struct mem_cgroup *ret;
54595fe2
KH
649 bool obsolete;
650
651 obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
6d61ef40
BS
652
653 /*
654 * Scan all children under the mem_cgroup mem
655 */
656 cgroup_lock();
657 if (list_empty(&root_mem->css.cgroup->children)) {
658 ret = root_mem;
659 goto done;
660 }
661
662 if (!root_mem->last_scanned_child || obsolete) {
663
54595fe2 664 if (obsolete && root_mem->last_scanned_child)
6d61ef40
BS
665 mem_cgroup_put(root_mem->last_scanned_child);
666
667 cgroup = list_first_entry(&root_mem->css.cgroup->children,
668 struct cgroup, sibling);
669 ret = mem_cgroup_from_cont(cgroup);
670 mem_cgroup_get(ret);
671 } else
672 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
673 root_mem);
674
675done:
676 root_mem->last_scanned_child = ret;
677 cgroup_unlock();
678 return ret;
679}
680
b85a96c0
DN
681static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
682{
683 if (do_swap_account) {
684 if (res_counter_check_under_limit(&mem->res) &&
685 res_counter_check_under_limit(&mem->memsw))
686 return true;
687 } else
688 if (res_counter_check_under_limit(&mem->res))
689 return true;
690 return false;
691}
692
a7885eb8
KM
693static unsigned int get_swappiness(struct mem_cgroup *memcg)
694{
695 struct cgroup *cgrp = memcg->css.cgroup;
696 unsigned int swappiness;
697
698 /* root ? */
699 if (cgrp->parent == NULL)
700 return vm_swappiness;
701
702 spin_lock(&memcg->reclaim_param_lock);
703 swappiness = memcg->swappiness;
704 spin_unlock(&memcg->reclaim_param_lock);
705
706 return swappiness;
707}
708
6d61ef40
BS
709/*
710 * Dance down the hierarchy if needed to reclaim memory. We remember the
711 * last child we reclaimed from, so that we don't end up penalizing
712 * one child extensively based on its position in the children list.
713 *
714 * root_mem is the original ancestor that we've been reclaim from.
715 */
716static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
717 gfp_t gfp_mask, bool noswap)
718{
719 struct mem_cgroup *next_mem;
720 int ret = 0;
721
722 /*
723 * Reclaim unconditionally and don't check for return value.
724 * We need to reclaim in the current group and down the tree.
725 * One might think about checking for children before reclaiming,
726 * but there might be left over accounting, even after children
727 * have left.
728 */
a7885eb8
KM
729 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
730 get_swappiness(root_mem));
b85a96c0 731 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40 732 return 0;
670ec2f1
DN
733 if (!root_mem->use_hierarchy)
734 return ret;
6d61ef40
BS
735
736 next_mem = mem_cgroup_get_first_node(root_mem);
737
738 while (next_mem != root_mem) {
54595fe2 739 if (mem_cgroup_is_obsolete(next_mem)) {
6d61ef40
BS
740 mem_cgroup_put(next_mem);
741 cgroup_lock();
742 next_mem = mem_cgroup_get_first_node(root_mem);
743 cgroup_unlock();
744 continue;
745 }
a7885eb8
KM
746 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
747 get_swappiness(next_mem));
b85a96c0 748 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
749 return 0;
750 cgroup_lock();
751 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
752 cgroup_unlock();
753 }
754 return ret;
755}
756
a636b327
KH
757bool mem_cgroup_oom_called(struct task_struct *task)
758{
759 bool ret = false;
760 struct mem_cgroup *mem;
761 struct mm_struct *mm;
762
763 rcu_read_lock();
764 mm = task->mm;
765 if (!mm)
766 mm = &init_mm;
767 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
768 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
769 ret = true;
770 rcu_read_unlock();
771 return ret;
772}
f817ed48
KH
773/*
774 * Unlike exported interface, "oom" parameter is added. if oom==true,
775 * oom-killer can be invoked.
8a9f3ccd 776 */
f817ed48 777static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
778 gfp_t gfp_mask, struct mem_cgroup **memcg,
779 bool oom)
8a9f3ccd 780{
6d61ef40 781 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 782 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 783 struct res_counter *fail_res;
a636b327
KH
784
785 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
786 /* Don't account this! */
787 *memcg = NULL;
788 return 0;
789 }
790
8a9f3ccd 791 /*
3be91277
HD
792 * We always charge the cgroup the mm_struct belongs to.
793 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
794 * thread group leader migrates. It's possible that mm is not
795 * set, if so charge the init_mm (happens for pagecache usage).
796 */
54595fe2
KH
797 mem = *memcg;
798 if (likely(!mem)) {
799 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 800 *memcg = mem;
e8589cc1 801 } else {
7a81b88c 802 css_get(&mem->css);
e8589cc1 803 }
54595fe2
KH
804 if (unlikely(!mem))
805 return 0;
806
807 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
8a9f3ccd 808
8c7c6e34
KH
809 while (1) {
810 int ret;
811 bool noswap = false;
7a81b88c 812
28dbc4b6 813 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
814 if (likely(!ret)) {
815 if (!do_swap_account)
816 break;
28dbc4b6
BS
817 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
818 &fail_res);
8c7c6e34
KH
819 if (likely(!ret))
820 break;
821 /* mem+swap counter fails */
822 res_counter_uncharge(&mem->res, PAGE_SIZE);
823 noswap = true;
6d61ef40
BS
824 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
825 memsw);
826 } else
827 /* mem counter fails */
828 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
829 res);
830
3be91277 831 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 832 goto nomem;
e1a1cd59 833
6d61ef40
BS
834 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
835 noswap);
66e1707b
BS
836
837 /*
8869b8f6
HD
838 * try_to_free_mem_cgroup_pages() might not give us a full
839 * picture of reclaim. Some pages are reclaimed and might be
840 * moved to swap cache or just unmapped from the cgroup.
841 * Check the limit again to see if the reclaim reduced the
842 * current usage of the cgroup before giving up
8c7c6e34 843 *
8869b8f6 844 */
b85a96c0
DN
845 if (mem_cgroup_check_under_limit(mem_over_limit))
846 continue;
3be91277
HD
847
848 if (!nr_retries--) {
a636b327 849 if (oom) {
7f4d454d 850 mutex_lock(&memcg_tasklist);
88700756 851 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 852 mutex_unlock(&memcg_tasklist);
88700756 853 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 854 }
7a81b88c 855 goto nomem;
66e1707b 856 }
8a9f3ccd 857 }
7a81b88c
KH
858 return 0;
859nomem:
860 css_put(&mem->css);
861 return -ENOMEM;
862}
8a9f3ccd 863
7a81b88c 864/*
a5e924f5 865 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
866 * USED state. If already USED, uncharge and return.
867 */
868
869static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
870 struct page_cgroup *pc,
871 enum charge_type ctype)
872{
7a81b88c
KH
873 /* try_charge() can return NULL to *memcg, taking care of it. */
874 if (!mem)
875 return;
52d4b9ac
KH
876
877 lock_page_cgroup(pc);
878 if (unlikely(PageCgroupUsed(pc))) {
879 unlock_page_cgroup(pc);
880 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
881 if (do_swap_account)
882 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 883 css_put(&mem->css);
7a81b88c 884 return;
52d4b9ac 885 }
8a9f3ccd 886 pc->mem_cgroup = mem;
08e552c6 887 smp_wmb();
c05555b5 888 pc->flags = pcg_default_flags[ctype];
3be91277 889
08e552c6 890 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 891
52d4b9ac 892 unlock_page_cgroup(pc);
7a81b88c 893}
66e1707b 894
f817ed48
KH
895/**
896 * mem_cgroup_move_account - move account of the page
897 * @pc: page_cgroup of the page.
898 * @from: mem_cgroup which the page is moved from.
899 * @to: mem_cgroup which the page is moved to. @from != @to.
900 *
901 * The caller must confirm following.
08e552c6 902 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
903 *
904 * returns 0 at success,
905 * returns -EBUSY when lock is busy or "pc" is unstable.
906 *
907 * This function does "uncharge" from old cgroup but doesn't do "charge" to
908 * new cgroup. It should be done by a caller.
909 */
910
911static int mem_cgroup_move_account(struct page_cgroup *pc,
912 struct mem_cgroup *from, struct mem_cgroup *to)
913{
914 struct mem_cgroup_per_zone *from_mz, *to_mz;
915 int nid, zid;
916 int ret = -EBUSY;
917
f817ed48 918 VM_BUG_ON(from == to);
08e552c6 919 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
920
921 nid = page_cgroup_nid(pc);
922 zid = page_cgroup_zid(pc);
923 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
924 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
925
f817ed48
KH
926 if (!trylock_page_cgroup(pc))
927 return ret;
928
929 if (!PageCgroupUsed(pc))
930 goto out;
931
932 if (pc->mem_cgroup != from)
933 goto out;
934
08e552c6
KH
935 css_put(&from->css);
936 res_counter_uncharge(&from->res, PAGE_SIZE);
937 mem_cgroup_charge_statistics(from, pc, false);
938 if (do_swap_account)
939 res_counter_uncharge(&from->memsw, PAGE_SIZE);
940 pc->mem_cgroup = to;
941 mem_cgroup_charge_statistics(to, pc, true);
942 css_get(&to->css);
943 ret = 0;
f817ed48
KH
944out:
945 unlock_page_cgroup(pc);
946 return ret;
947}
948
949/*
950 * move charges to its parent.
951 */
952
953static int mem_cgroup_move_parent(struct page_cgroup *pc,
954 struct mem_cgroup *child,
955 gfp_t gfp_mask)
956{
08e552c6 957 struct page *page = pc->page;
f817ed48
KH
958 struct cgroup *cg = child->css.cgroup;
959 struct cgroup *pcg = cg->parent;
960 struct mem_cgroup *parent;
f817ed48
KH
961 int ret;
962
963 /* Is ROOT ? */
964 if (!pcg)
965 return -EINVAL;
966
08e552c6 967
f817ed48
KH
968 parent = mem_cgroup_from_cont(pcg);
969
08e552c6 970
f817ed48 971 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 972 if (ret || !parent)
f817ed48
KH
973 return ret;
974
08e552c6
KH
975 if (!get_page_unless_zero(page))
976 return -EBUSY;
977
978 ret = isolate_lru_page(page);
979
980 if (ret)
981 goto cancel;
f817ed48 982
f817ed48 983 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 984
08e552c6 985 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 986 css_put(&parent->css);
08e552c6
KH
987 putback_lru_page(page);
988 if (!ret) {
989 put_page(page);
990 return 0;
8c7c6e34 991 }
08e552c6
KH
992 /* uncharge if move fails */
993cancel:
994 res_counter_uncharge(&parent->res, PAGE_SIZE);
995 if (do_swap_account)
996 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
997 put_page(page);
f817ed48
KH
998 return ret;
999}
1000
7a81b88c
KH
1001/*
1002 * Charge the memory controller for page usage.
1003 * Return
1004 * 0 if the charge was successful
1005 * < 0 if the cgroup is over its limit
1006 */
1007static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1008 gfp_t gfp_mask, enum charge_type ctype,
1009 struct mem_cgroup *memcg)
1010{
1011 struct mem_cgroup *mem;
1012 struct page_cgroup *pc;
1013 int ret;
1014
1015 pc = lookup_page_cgroup(page);
1016 /* can happen at boot */
1017 if (unlikely(!pc))
1018 return 0;
1019 prefetchw(pc);
1020
1021 mem = memcg;
f817ed48 1022 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1023 if (ret || !mem)
7a81b88c
KH
1024 return ret;
1025
1026 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1027 return 0;
8a9f3ccd
BS
1028}
1029
7a81b88c
KH
1030int mem_cgroup_newpage_charge(struct page *page,
1031 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1032{
f8d66542 1033 if (mem_cgroup_disabled())
cede86ac 1034 return 0;
52d4b9ac
KH
1035 if (PageCompound(page))
1036 return 0;
69029cd5
KH
1037 /*
1038 * If already mapped, we don't have to account.
1039 * If page cache, page->mapping has address_space.
1040 * But page->mapping may have out-of-use anon_vma pointer,
1041 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1042 * is NULL.
1043 */
1044 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1045 return 0;
1046 if (unlikely(!mm))
1047 mm = &init_mm;
217bc319 1048 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1049 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1050}
1051
e1a1cd59
BS
1052int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1053 gfp_t gfp_mask)
8697d331 1054{
f8d66542 1055 if (mem_cgroup_disabled())
cede86ac 1056 return 0;
52d4b9ac
KH
1057 if (PageCompound(page))
1058 return 0;
accf163e
KH
1059 /*
1060 * Corner case handling. This is called from add_to_page_cache()
1061 * in usual. But some FS (shmem) precharges this page before calling it
1062 * and call add_to_page_cache() with GFP_NOWAIT.
1063 *
1064 * For GFP_NOWAIT case, the page may be pre-charged before calling
1065 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1066 * charge twice. (It works but has to pay a bit larger cost.)
1067 */
1068 if (!(gfp_mask & __GFP_WAIT)) {
1069 struct page_cgroup *pc;
1070
52d4b9ac
KH
1071
1072 pc = lookup_page_cgroup(page);
1073 if (!pc)
1074 return 0;
1075 lock_page_cgroup(pc);
1076 if (PageCgroupUsed(pc)) {
1077 unlock_page_cgroup(pc);
accf163e
KH
1078 return 0;
1079 }
52d4b9ac 1080 unlock_page_cgroup(pc);
accf163e
KH
1081 }
1082
69029cd5 1083 if (unlikely(!mm))
8697d331 1084 mm = &init_mm;
accf163e 1085
c05555b5
KH
1086 if (page_is_file_cache(page))
1087 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1088 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
1089 else
1090 return mem_cgroup_charge_common(page, mm, gfp_mask,
1091 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
1092}
1093
54595fe2
KH
1094/*
1095 * While swap-in, try_charge -> commit or cancel, the page is locked.
1096 * And when try_charge() successfully returns, one refcnt to memcg without
1097 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1098 * "commit()" or removed by "cancel()"
1099 */
8c7c6e34
KH
1100int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1101 struct page *page,
1102 gfp_t mask, struct mem_cgroup **ptr)
1103{
1104 struct mem_cgroup *mem;
1105 swp_entry_t ent;
54595fe2 1106 int ret;
8c7c6e34 1107
f8d66542 1108 if (mem_cgroup_disabled())
8c7c6e34
KH
1109 return 0;
1110
1111 if (!do_swap_account)
1112 goto charge_cur_mm;
1113
1114 /*
1115 * A racing thread's fault, or swapoff, may have already updated
1116 * the pte, and even removed page from swap cache: return success
1117 * to go on to do_swap_page()'s pte_same() test, which should fail.
1118 */
1119 if (!PageSwapCache(page))
1120 return 0;
1121
1122 ent.val = page_private(page);
1123
1124 mem = lookup_swap_cgroup(ent);
54595fe2
KH
1125 if (!mem)
1126 goto charge_cur_mm;
1127 if (!css_tryget(&mem->css))
8c7c6e34
KH
1128 goto charge_cur_mm;
1129 *ptr = mem;
54595fe2
KH
1130 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1131 /* drop extra refcnt from tryget */
1132 css_put(&mem->css);
1133 return ret;
8c7c6e34
KH
1134charge_cur_mm:
1135 if (unlikely(!mm))
1136 mm = &init_mm;
1137 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1138}
1139
d13d1443 1140#ifdef CONFIG_SWAP
8c7c6e34 1141
d13d1443
KH
1142int mem_cgroup_cache_charge_swapin(struct page *page,
1143 struct mm_struct *mm, gfp_t mask, bool locked)
1144{
1145 int ret = 0;
1146
f8d66542 1147 if (mem_cgroup_disabled())
d13d1443
KH
1148 return 0;
1149 if (unlikely(!mm))
1150 mm = &init_mm;
1151 if (!locked)
1152 lock_page(page);
1153 /*
1154 * If not locked, the page can be dropped from SwapCache until
1155 * we reach here.
1156 */
1157 if (PageSwapCache(page)) {
8c7c6e34
KH
1158 struct mem_cgroup *mem = NULL;
1159 swp_entry_t ent;
1160
1161 ent.val = page_private(page);
1162 if (do_swap_account) {
1163 mem = lookup_swap_cgroup(ent);
54595fe2
KH
1164 if (mem) {
1165 if (css_tryget(&mem->css))
1166 mm = NULL; /* charge to recorded */
1167 else
1168 mem = NULL; /* charge to current */
1169 }
8c7c6e34 1170 }
d13d1443 1171 ret = mem_cgroup_charge_common(page, mm, mask,
8c7c6e34 1172 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
54595fe2
KH
1173 /* drop extra refcnt from tryget */
1174 if (mem)
1175 css_put(&mem->css);
8c7c6e34
KH
1176
1177 if (!ret && do_swap_account) {
1178 /* avoid double counting */
1179 mem = swap_cgroup_record(ent, NULL);
1180 if (mem) {
1181 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1182 mem_cgroup_put(mem);
1183 }
1184 }
d13d1443
KH
1185 }
1186 if (!locked)
1187 unlock_page(page);
08e552c6
KH
1188 /* add this page(page_cgroup) to the LRU we want. */
1189 mem_cgroup_lru_fixup(page);
d13d1443
KH
1190
1191 return ret;
1192}
1193#endif
1194
7a81b88c
KH
1195void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1196{
1197 struct page_cgroup *pc;
1198
f8d66542 1199 if (mem_cgroup_disabled())
7a81b88c
KH
1200 return;
1201 if (!ptr)
1202 return;
1203 pc = lookup_page_cgroup(page);
1204 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
8c7c6e34
KH
1205 /*
1206 * Now swap is on-memory. This means this page may be
1207 * counted both as mem and swap....double count.
03f3c433
KH
1208 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1209 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1210 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1211 */
03f3c433 1212 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34
KH
1213 swp_entry_t ent = {.val = page_private(page)};
1214 struct mem_cgroup *memcg;
1215 memcg = swap_cgroup_record(ent, NULL);
1216 if (memcg) {
8c7c6e34
KH
1217 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1218 mem_cgroup_put(memcg);
1219 }
1220
1221 }
08e552c6
KH
1222 /* add this page(page_cgroup) to the LRU we want. */
1223 mem_cgroup_lru_fixup(page);
7a81b88c
KH
1224}
1225
1226void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1227{
f8d66542 1228 if (mem_cgroup_disabled())
7a81b88c
KH
1229 return;
1230 if (!mem)
1231 return;
1232 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1233 if (do_swap_account)
1234 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1235 css_put(&mem->css);
1236}
1237
1238
8a9f3ccd 1239/*
69029cd5 1240 * uncharge if !page_mapped(page)
8a9f3ccd 1241 */
8c7c6e34 1242static struct mem_cgroup *
69029cd5 1243__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1244{
8289546e 1245 struct page_cgroup *pc;
8c7c6e34 1246 struct mem_cgroup *mem = NULL;
072c56c1 1247 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1248
f8d66542 1249 if (mem_cgroup_disabled())
8c7c6e34 1250 return NULL;
4077960e 1251
d13d1443 1252 if (PageSwapCache(page))
8c7c6e34 1253 return NULL;
d13d1443 1254
8697d331 1255 /*
3c541e14 1256 * Check if our page_cgroup is valid
8697d331 1257 */
52d4b9ac
KH
1258 pc = lookup_page_cgroup(page);
1259 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1260 return NULL;
b9c565d5 1261
52d4b9ac 1262 lock_page_cgroup(pc);
d13d1443 1263
8c7c6e34
KH
1264 mem = pc->mem_cgroup;
1265
d13d1443
KH
1266 if (!PageCgroupUsed(pc))
1267 goto unlock_out;
1268
1269 switch (ctype) {
1270 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1271 if (page_mapped(page))
1272 goto unlock_out;
1273 break;
1274 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1275 if (!PageAnon(page)) { /* Shared memory */
1276 if (page->mapping && !page_is_file_cache(page))
1277 goto unlock_out;
1278 } else if (page_mapped(page)) /* Anon */
1279 goto unlock_out;
1280 break;
1281 default:
1282 break;
52d4b9ac 1283 }
d13d1443 1284
8c7c6e34
KH
1285 res_counter_uncharge(&mem->res, PAGE_SIZE);
1286 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1287 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1288
08e552c6 1289 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1290 ClearPageCgroupUsed(pc);
b9c565d5 1291
69029cd5 1292 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1293 unlock_page_cgroup(pc);
fb59e9f1 1294
a7fe942e
KH
1295 /* at swapout, this memcg will be accessed to record to swap */
1296 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1297 css_put(&mem->css);
6d12e2d8 1298
8c7c6e34 1299 return mem;
d13d1443
KH
1300
1301unlock_out:
1302 unlock_page_cgroup(pc);
8c7c6e34 1303 return NULL;
3c541e14
BS
1304}
1305
69029cd5
KH
1306void mem_cgroup_uncharge_page(struct page *page)
1307{
52d4b9ac
KH
1308 /* early check. */
1309 if (page_mapped(page))
1310 return;
1311 if (page->mapping && !PageAnon(page))
1312 return;
69029cd5
KH
1313 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1314}
1315
1316void mem_cgroup_uncharge_cache_page(struct page *page)
1317{
1318 VM_BUG_ON(page_mapped(page));
b7abea96 1319 VM_BUG_ON(page->mapping);
69029cd5
KH
1320 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1321}
1322
8c7c6e34
KH
1323/*
1324 * called from __delete_from_swap_cache() and drop "page" account.
1325 * memcg information is recorded to swap_cgroup of "ent"
1326 */
1327void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1328{
1329 struct mem_cgroup *memcg;
1330
1331 memcg = __mem_cgroup_uncharge_common(page,
1332 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1333 /* record memcg information */
1334 if (do_swap_account && memcg) {
1335 swap_cgroup_record(ent, memcg);
1336 mem_cgroup_get(memcg);
1337 }
a7fe942e
KH
1338 if (memcg)
1339 css_put(&memcg->css);
8c7c6e34
KH
1340}
1341
1342#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1343/*
1344 * called from swap_entry_free(). remove record in swap_cgroup and
1345 * uncharge "memsw" account.
1346 */
1347void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1348{
8c7c6e34
KH
1349 struct mem_cgroup *memcg;
1350
1351 if (!do_swap_account)
1352 return;
1353
1354 memcg = swap_cgroup_record(ent, NULL);
1355 if (memcg) {
1356 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1357 mem_cgroup_put(memcg);
1358 }
d13d1443 1359}
8c7c6e34 1360#endif
d13d1443 1361
ae41be37 1362/*
01b1ae63
KH
1363 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1364 * page belongs to.
ae41be37 1365 */
01b1ae63 1366int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1367{
1368 struct page_cgroup *pc;
e8589cc1 1369 struct mem_cgroup *mem = NULL;
e8589cc1 1370 int ret = 0;
8869b8f6 1371
f8d66542 1372 if (mem_cgroup_disabled())
4077960e
BS
1373 return 0;
1374
52d4b9ac
KH
1375 pc = lookup_page_cgroup(page);
1376 lock_page_cgroup(pc);
1377 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1378 mem = pc->mem_cgroup;
1379 css_get(&mem->css);
e8589cc1 1380 }
52d4b9ac 1381 unlock_page_cgroup(pc);
01b1ae63 1382
e8589cc1 1383 if (mem) {
3bb4edf2 1384 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1385 css_put(&mem->css);
1386 }
01b1ae63 1387 *ptr = mem;
e8589cc1 1388 return ret;
ae41be37 1389}
8869b8f6 1390
69029cd5 1391/* remove redundant charge if migration failed*/
01b1ae63
KH
1392void mem_cgroup_end_migration(struct mem_cgroup *mem,
1393 struct page *oldpage, struct page *newpage)
ae41be37 1394{
01b1ae63
KH
1395 struct page *target, *unused;
1396 struct page_cgroup *pc;
1397 enum charge_type ctype;
1398
1399 if (!mem)
1400 return;
1401
1402 /* at migration success, oldpage->mapping is NULL. */
1403 if (oldpage->mapping) {
1404 target = oldpage;
1405 unused = NULL;
1406 } else {
1407 target = newpage;
1408 unused = oldpage;
1409 }
1410
1411 if (PageAnon(target))
1412 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1413 else if (page_is_file_cache(target))
1414 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1415 else
1416 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1417
1418 /* unused page is not on radix-tree now. */
d13d1443 1419 if (unused)
01b1ae63
KH
1420 __mem_cgroup_uncharge_common(unused, ctype);
1421
1422 pc = lookup_page_cgroup(target);
69029cd5 1423 /*
01b1ae63
KH
1424 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1425 * So, double-counting is effectively avoided.
1426 */
1427 __mem_cgroup_commit_charge(mem, pc, ctype);
1428
1429 /*
1430 * Both of oldpage and newpage are still under lock_page().
1431 * Then, we don't have to care about race in radix-tree.
1432 * But we have to be careful that this page is unmapped or not.
1433 *
1434 * There is a case for !page_mapped(). At the start of
1435 * migration, oldpage was mapped. But now, it's zapped.
1436 * But we know *target* page is not freed/reused under us.
1437 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1438 */
01b1ae63
KH
1439 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1440 mem_cgroup_uncharge_page(target);
ae41be37 1441}
78fb7466 1442
c9b0ed51
KH
1443/*
1444 * A call to try to shrink memory usage under specified resource controller.
1445 * This is typically used for page reclaiming for shmem for reducing side
1446 * effect of page allocation from shmem, which is used by some mem_cgroup.
1447 */
1448int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1449{
1450 struct mem_cgroup *mem;
1451 int progress = 0;
1452 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1453
f8d66542 1454 if (mem_cgroup_disabled())
cede86ac 1455 return 0;
9623e078
HD
1456 if (!mm)
1457 return 0;
cede86ac 1458
54595fe2
KH
1459 mem = try_get_mem_cgroup_from_mm(mm);
1460 if (unlikely(!mem))
31a78f23 1461 return 0;
c9b0ed51
KH
1462
1463 do {
42e9abb6 1464 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
b85a96c0 1465 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1466 } while (!progress && --retry);
1467
1468 css_put(&mem->css);
1469 if (!retry)
1470 return -ENOMEM;
1471 return 0;
1472}
1473
8c7c6e34
KH
1474static DEFINE_MUTEX(set_limit_mutex);
1475
d38d2a75 1476static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1477 unsigned long long val)
628f4235
KH
1478{
1479
1480 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1481 int progress;
8c7c6e34 1482 u64 memswlimit;
628f4235
KH
1483 int ret = 0;
1484
8c7c6e34 1485 while (retry_count) {
628f4235
KH
1486 if (signal_pending(current)) {
1487 ret = -EINTR;
1488 break;
1489 }
8c7c6e34
KH
1490 /*
1491 * Rather than hide all in some function, I do this in
1492 * open coded manner. You see what this really does.
1493 * We have to guarantee mem->res.limit < mem->memsw.limit.
1494 */
1495 mutex_lock(&set_limit_mutex);
1496 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1497 if (memswlimit < val) {
1498 ret = -EINVAL;
1499 mutex_unlock(&set_limit_mutex);
628f4235
KH
1500 break;
1501 }
8c7c6e34
KH
1502 ret = res_counter_set_limit(&memcg->res, val);
1503 mutex_unlock(&set_limit_mutex);
1504
1505 if (!ret)
1506 break;
1507
42e9abb6
DN
1508 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1509 false);
8c7c6e34
KH
1510 if (!progress) retry_count--;
1511 }
14797e23 1512
8c7c6e34
KH
1513 return ret;
1514}
1515
1516int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1517 unsigned long long val)
1518{
1519 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1520 u64 memlimit, oldusage, curusage;
1521 int ret;
1522
1523 if (!do_swap_account)
1524 return -EINVAL;
1525
1526 while (retry_count) {
1527 if (signal_pending(current)) {
1528 ret = -EINTR;
1529 break;
1530 }
1531 /*
1532 * Rather than hide all in some function, I do this in
1533 * open coded manner. You see what this really does.
1534 * We have to guarantee mem->res.limit < mem->memsw.limit.
1535 */
1536 mutex_lock(&set_limit_mutex);
1537 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1538 if (memlimit > val) {
1539 ret = -EINVAL;
1540 mutex_unlock(&set_limit_mutex);
1541 break;
1542 }
1543 ret = res_counter_set_limit(&memcg->memsw, val);
1544 mutex_unlock(&set_limit_mutex);
1545
1546 if (!ret)
1547 break;
1548
1549 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
42e9abb6 1550 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1551 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1552 if (curusage >= oldusage)
628f4235
KH
1553 retry_count--;
1554 }
1555 return ret;
1556}
1557
cc847582
KH
1558/*
1559 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1560 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1561 */
f817ed48 1562static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1563 int node, int zid, enum lru_list lru)
cc847582 1564{
08e552c6
KH
1565 struct zone *zone;
1566 struct mem_cgroup_per_zone *mz;
f817ed48 1567 struct page_cgroup *pc, *busy;
08e552c6 1568 unsigned long flags, loop;
072c56c1 1569 struct list_head *list;
f817ed48 1570 int ret = 0;
072c56c1 1571
08e552c6
KH
1572 zone = &NODE_DATA(node)->node_zones[zid];
1573 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1574 list = &mz->lists[lru];
cc847582 1575
f817ed48
KH
1576 loop = MEM_CGROUP_ZSTAT(mz, lru);
1577 /* give some margin against EBUSY etc...*/
1578 loop += 256;
1579 busy = NULL;
1580 while (loop--) {
1581 ret = 0;
08e552c6 1582 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1583 if (list_empty(list)) {
08e552c6 1584 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1585 break;
f817ed48
KH
1586 }
1587 pc = list_entry(list->prev, struct page_cgroup, lru);
1588 if (busy == pc) {
1589 list_move(&pc->lru, list);
1590 busy = 0;
08e552c6 1591 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1592 continue;
1593 }
08e552c6 1594 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1595
2c26fdd7 1596 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1597 if (ret == -ENOMEM)
52d4b9ac 1598 break;
f817ed48
KH
1599
1600 if (ret == -EBUSY || ret == -EINVAL) {
1601 /* found lock contention or "pc" is obsolete. */
1602 busy = pc;
1603 cond_resched();
1604 } else
1605 busy = NULL;
cc847582 1606 }
08e552c6 1607
f817ed48
KH
1608 if (!ret && !list_empty(list))
1609 return -EBUSY;
1610 return ret;
cc847582
KH
1611}
1612
1613/*
1614 * make mem_cgroup's charge to be 0 if there is no task.
1615 * This enables deleting this mem_cgroup.
1616 */
c1e862c1 1617static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1618{
f817ed48
KH
1619 int ret;
1620 int node, zid, shrink;
1621 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1622 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1623
cc847582 1624 css_get(&mem->css);
f817ed48
KH
1625
1626 shrink = 0;
c1e862c1
KH
1627 /* should free all ? */
1628 if (free_all)
1629 goto try_to_free;
f817ed48 1630move_account:
1ecaab2b 1631 while (mem->res.usage > 0) {
f817ed48 1632 ret = -EBUSY;
c1e862c1
KH
1633 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1634 goto out;
1635 ret = -EINTR;
1636 if (signal_pending(current))
cc847582 1637 goto out;
52d4b9ac
KH
1638 /* This is for making all *used* pages to be on LRU. */
1639 lru_add_drain_all();
f817ed48
KH
1640 ret = 0;
1641 for_each_node_state(node, N_POSSIBLE) {
1642 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1643 enum lru_list l;
f817ed48
KH
1644 for_each_lru(l) {
1645 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1646 node, zid, l);
f817ed48
KH
1647 if (ret)
1648 break;
1649 }
1ecaab2b 1650 }
f817ed48
KH
1651 if (ret)
1652 break;
1653 }
1654 /* it seems parent cgroup doesn't have enough mem */
1655 if (ret == -ENOMEM)
1656 goto try_to_free;
52d4b9ac 1657 cond_resched();
cc847582
KH
1658 }
1659 ret = 0;
1660out:
1661 css_put(&mem->css);
1662 return ret;
f817ed48
KH
1663
1664try_to_free:
c1e862c1
KH
1665 /* returns EBUSY if there is a task or if we come here twice. */
1666 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1667 ret = -EBUSY;
1668 goto out;
1669 }
c1e862c1
KH
1670 /* we call try-to-free pages for make this cgroup empty */
1671 lru_add_drain_all();
f817ed48
KH
1672 /* try to free all pages in this cgroup */
1673 shrink = 1;
1674 while (nr_retries && mem->res.usage > 0) {
1675 int progress;
c1e862c1
KH
1676
1677 if (signal_pending(current)) {
1678 ret = -EINTR;
1679 goto out;
1680 }
a7885eb8
KM
1681 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1682 false, get_swappiness(mem));
c1e862c1 1683 if (!progress) {
f817ed48 1684 nr_retries--;
c1e862c1
KH
1685 /* maybe some writeback is necessary */
1686 congestion_wait(WRITE, HZ/10);
1687 }
f817ed48
KH
1688
1689 }
08e552c6 1690 lru_add_drain();
f817ed48
KH
1691 /* try move_account...there may be some *locked* pages. */
1692 if (mem->res.usage)
1693 goto move_account;
1694 ret = 0;
1695 goto out;
cc847582
KH
1696}
1697
c1e862c1
KH
1698int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1699{
1700 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1701}
1702
1703
18f59ea7
BS
1704static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1705{
1706 return mem_cgroup_from_cont(cont)->use_hierarchy;
1707}
1708
1709static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1710 u64 val)
1711{
1712 int retval = 0;
1713 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1714 struct cgroup *parent = cont->parent;
1715 struct mem_cgroup *parent_mem = NULL;
1716
1717 if (parent)
1718 parent_mem = mem_cgroup_from_cont(parent);
1719
1720 cgroup_lock();
1721 /*
1722 * If parent's use_hiearchy is set, we can't make any modifications
1723 * in the child subtrees. If it is unset, then the change can
1724 * occur, provided the current cgroup has no children.
1725 *
1726 * For the root cgroup, parent_mem is NULL, we allow value to be
1727 * set if there are no children.
1728 */
1729 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1730 (val == 1 || val == 0)) {
1731 if (list_empty(&cont->children))
1732 mem->use_hierarchy = val;
1733 else
1734 retval = -EBUSY;
1735 } else
1736 retval = -EINVAL;
1737 cgroup_unlock();
1738
1739 return retval;
1740}
1741
2c3daa72 1742static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1743{
8c7c6e34
KH
1744 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1745 u64 val = 0;
1746 int type, name;
1747
1748 type = MEMFILE_TYPE(cft->private);
1749 name = MEMFILE_ATTR(cft->private);
1750 switch (type) {
1751 case _MEM:
1752 val = res_counter_read_u64(&mem->res, name);
1753 break;
1754 case _MEMSWAP:
1755 if (do_swap_account)
1756 val = res_counter_read_u64(&mem->memsw, name);
1757 break;
1758 default:
1759 BUG();
1760 break;
1761 }
1762 return val;
8cdea7c0 1763}
628f4235
KH
1764/*
1765 * The user of this function is...
1766 * RES_LIMIT.
1767 */
856c13aa
PM
1768static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1769 const char *buffer)
8cdea7c0 1770{
628f4235 1771 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1772 int type, name;
628f4235
KH
1773 unsigned long long val;
1774 int ret;
1775
8c7c6e34
KH
1776 type = MEMFILE_TYPE(cft->private);
1777 name = MEMFILE_ATTR(cft->private);
1778 switch (name) {
628f4235
KH
1779 case RES_LIMIT:
1780 /* This function does all necessary parse...reuse it */
1781 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1782 if (ret)
1783 break;
1784 if (type == _MEM)
628f4235 1785 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1786 else
1787 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1788 break;
1789 default:
1790 ret = -EINVAL; /* should be BUG() ? */
1791 break;
1792 }
1793 return ret;
8cdea7c0
BS
1794}
1795
fee7b548
KH
1796static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1797 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1798{
1799 struct cgroup *cgroup;
1800 unsigned long long min_limit, min_memsw_limit, tmp;
1801
1802 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1803 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1804 cgroup = memcg->css.cgroup;
1805 if (!memcg->use_hierarchy)
1806 goto out;
1807
1808 while (cgroup->parent) {
1809 cgroup = cgroup->parent;
1810 memcg = mem_cgroup_from_cont(cgroup);
1811 if (!memcg->use_hierarchy)
1812 break;
1813 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1814 min_limit = min(min_limit, tmp);
1815 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1816 min_memsw_limit = min(min_memsw_limit, tmp);
1817 }
1818out:
1819 *mem_limit = min_limit;
1820 *memsw_limit = min_memsw_limit;
1821 return;
1822}
1823
29f2a4da 1824static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1825{
1826 struct mem_cgroup *mem;
8c7c6e34 1827 int type, name;
c84872e1
PE
1828
1829 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1830 type = MEMFILE_TYPE(event);
1831 name = MEMFILE_ATTR(event);
1832 switch (name) {
29f2a4da 1833 case RES_MAX_USAGE:
8c7c6e34
KH
1834 if (type == _MEM)
1835 res_counter_reset_max(&mem->res);
1836 else
1837 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1838 break;
1839 case RES_FAILCNT:
8c7c6e34
KH
1840 if (type == _MEM)
1841 res_counter_reset_failcnt(&mem->res);
1842 else
1843 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1844 break;
1845 }
85cc59db 1846 return 0;
c84872e1
PE
1847}
1848
d2ceb9b7
KH
1849static const struct mem_cgroup_stat_desc {
1850 const char *msg;
1851 u64 unit;
1852} mem_cgroup_stat_desc[] = {
1853 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1854 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1855 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1856 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1857};
1858
c64745cf
PM
1859static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1860 struct cgroup_map_cb *cb)
d2ceb9b7 1861{
d2ceb9b7
KH
1862 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1863 struct mem_cgroup_stat *stat = &mem_cont->stat;
1864 int i;
1865
1866 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1867 s64 val;
1868
1869 val = mem_cgroup_read_stat(stat, i);
1870 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1871 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1872 }
6d12e2d8
KH
1873 /* showing # of active pages */
1874 {
4f98a2fe
RR
1875 unsigned long active_anon, inactive_anon;
1876 unsigned long active_file, inactive_file;
7b854121 1877 unsigned long unevictable;
4f98a2fe
RR
1878
1879 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1880 LRU_INACTIVE_ANON);
1881 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1882 LRU_ACTIVE_ANON);
1883 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1884 LRU_INACTIVE_FILE);
1885 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1886 LRU_ACTIVE_FILE);
7b854121
LS
1887 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1888 LRU_UNEVICTABLE);
1889
4f98a2fe
RR
1890 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1891 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1892 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1893 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1894 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1895
6d12e2d8 1896 }
fee7b548
KH
1897 {
1898 unsigned long long limit, memsw_limit;
1899 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1900 cb->fill(cb, "hierarchical_memory_limit", limit);
1901 if (do_swap_account)
1902 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1903 }
7f016ee8
KM
1904
1905#ifdef CONFIG_DEBUG_VM
c772be93 1906 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
1907
1908 {
1909 int nid, zid;
1910 struct mem_cgroup_per_zone *mz;
1911 unsigned long recent_rotated[2] = {0, 0};
1912 unsigned long recent_scanned[2] = {0, 0};
1913
1914 for_each_online_node(nid)
1915 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1916 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1917
1918 recent_rotated[0] +=
1919 mz->reclaim_stat.recent_rotated[0];
1920 recent_rotated[1] +=
1921 mz->reclaim_stat.recent_rotated[1];
1922 recent_scanned[0] +=
1923 mz->reclaim_stat.recent_scanned[0];
1924 recent_scanned[1] +=
1925 mz->reclaim_stat.recent_scanned[1];
1926 }
1927 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1928 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1929 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1930 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1931 }
1932#endif
1933
d2ceb9b7
KH
1934 return 0;
1935}
1936
a7885eb8
KM
1937static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1938{
1939 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1940
1941 return get_swappiness(memcg);
1942}
1943
1944static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1945 u64 val)
1946{
1947 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1948 struct mem_cgroup *parent;
1949 if (val > 100)
1950 return -EINVAL;
1951
1952 if (cgrp->parent == NULL)
1953 return -EINVAL;
1954
1955 parent = mem_cgroup_from_cont(cgrp->parent);
1956 /* If under hierarchy, only empty-root can set this value */
1957 if ((parent->use_hierarchy) ||
1958 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1959 return -EINVAL;
1960
1961 spin_lock(&memcg->reclaim_param_lock);
1962 memcg->swappiness = val;
1963 spin_unlock(&memcg->reclaim_param_lock);
1964
1965 return 0;
1966}
1967
c1e862c1 1968
8cdea7c0
BS
1969static struct cftype mem_cgroup_files[] = {
1970 {
0eea1030 1971 .name = "usage_in_bytes",
8c7c6e34 1972 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1973 .read_u64 = mem_cgroup_read,
8cdea7c0 1974 },
c84872e1
PE
1975 {
1976 .name = "max_usage_in_bytes",
8c7c6e34 1977 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 1978 .trigger = mem_cgroup_reset,
c84872e1
PE
1979 .read_u64 = mem_cgroup_read,
1980 },
8cdea7c0 1981 {
0eea1030 1982 .name = "limit_in_bytes",
8c7c6e34 1983 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 1984 .write_string = mem_cgroup_write,
2c3daa72 1985 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1986 },
1987 {
1988 .name = "failcnt",
8c7c6e34 1989 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 1990 .trigger = mem_cgroup_reset,
2c3daa72 1991 .read_u64 = mem_cgroup_read,
8cdea7c0 1992 },
d2ceb9b7
KH
1993 {
1994 .name = "stat",
c64745cf 1995 .read_map = mem_control_stat_show,
d2ceb9b7 1996 },
c1e862c1
KH
1997 {
1998 .name = "force_empty",
1999 .trigger = mem_cgroup_force_empty_write,
2000 },
18f59ea7
BS
2001 {
2002 .name = "use_hierarchy",
2003 .write_u64 = mem_cgroup_hierarchy_write,
2004 .read_u64 = mem_cgroup_hierarchy_read,
2005 },
a7885eb8
KM
2006 {
2007 .name = "swappiness",
2008 .read_u64 = mem_cgroup_swappiness_read,
2009 .write_u64 = mem_cgroup_swappiness_write,
2010 },
8cdea7c0
BS
2011};
2012
8c7c6e34
KH
2013#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2014static struct cftype memsw_cgroup_files[] = {
2015 {
2016 .name = "memsw.usage_in_bytes",
2017 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2018 .read_u64 = mem_cgroup_read,
2019 },
2020 {
2021 .name = "memsw.max_usage_in_bytes",
2022 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2023 .trigger = mem_cgroup_reset,
2024 .read_u64 = mem_cgroup_read,
2025 },
2026 {
2027 .name = "memsw.limit_in_bytes",
2028 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2029 .write_string = mem_cgroup_write,
2030 .read_u64 = mem_cgroup_read,
2031 },
2032 {
2033 .name = "memsw.failcnt",
2034 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2035 .trigger = mem_cgroup_reset,
2036 .read_u64 = mem_cgroup_read,
2037 },
2038};
2039
2040static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2041{
2042 if (!do_swap_account)
2043 return 0;
2044 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2045 ARRAY_SIZE(memsw_cgroup_files));
2046};
2047#else
2048static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2049{
2050 return 0;
2051}
2052#endif
2053
6d12e2d8
KH
2054static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2055{
2056 struct mem_cgroup_per_node *pn;
1ecaab2b 2057 struct mem_cgroup_per_zone *mz;
b69408e8 2058 enum lru_list l;
41e3355d 2059 int zone, tmp = node;
1ecaab2b
KH
2060 /*
2061 * This routine is called against possible nodes.
2062 * But it's BUG to call kmalloc() against offline node.
2063 *
2064 * TODO: this routine can waste much memory for nodes which will
2065 * never be onlined. It's better to use memory hotplug callback
2066 * function.
2067 */
41e3355d
KH
2068 if (!node_state(node, N_NORMAL_MEMORY))
2069 tmp = -1;
2070 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2071 if (!pn)
2072 return 1;
1ecaab2b 2073
6d12e2d8
KH
2074 mem->info.nodeinfo[node] = pn;
2075 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2076
2077 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2078 mz = &pn->zoneinfo[zone];
b69408e8
CL
2079 for_each_lru(l)
2080 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2081 }
6d12e2d8
KH
2082 return 0;
2083}
2084
1ecaab2b
KH
2085static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2086{
2087 kfree(mem->info.nodeinfo[node]);
2088}
2089
c8dad2bb
JB
2090static int mem_cgroup_size(void)
2091{
2092 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2093 return sizeof(struct mem_cgroup) + cpustat_size;
2094}
2095
33327948
KH
2096static struct mem_cgroup *mem_cgroup_alloc(void)
2097{
2098 struct mem_cgroup *mem;
c8dad2bb 2099 int size = mem_cgroup_size();
33327948 2100
c8dad2bb
JB
2101 if (size < PAGE_SIZE)
2102 mem = kmalloc(size, GFP_KERNEL);
33327948 2103 else
c8dad2bb 2104 mem = vmalloc(size);
33327948
KH
2105
2106 if (mem)
c8dad2bb 2107 memset(mem, 0, size);
33327948
KH
2108 return mem;
2109}
2110
8c7c6e34
KH
2111/*
2112 * At destroying mem_cgroup, references from swap_cgroup can remain.
2113 * (scanning all at force_empty is too costly...)
2114 *
2115 * Instead of clearing all references at force_empty, we remember
2116 * the number of reference from swap_cgroup and free mem_cgroup when
2117 * it goes down to 0.
2118 *
8c7c6e34
KH
2119 * Removal of cgroup itself succeeds regardless of refs from swap.
2120 */
2121
a7ba0eef 2122static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2123{
08e552c6
KH
2124 int node;
2125
08e552c6
KH
2126 for_each_node_state(node, N_POSSIBLE)
2127 free_mem_cgroup_per_zone_info(mem, node);
2128
c8dad2bb 2129 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2130 kfree(mem);
2131 else
2132 vfree(mem);
2133}
2134
8c7c6e34
KH
2135static void mem_cgroup_get(struct mem_cgroup *mem)
2136{
2137 atomic_inc(&mem->refcnt);
2138}
2139
2140static void mem_cgroup_put(struct mem_cgroup *mem)
2141{
a7ba0eef
KH
2142 if (atomic_dec_and_test(&mem->refcnt))
2143 __mem_cgroup_free(mem);
8c7c6e34
KH
2144}
2145
33327948 2146
c077719b
KH
2147#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2148static void __init enable_swap_cgroup(void)
2149{
f8d66542 2150 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2151 do_swap_account = 1;
2152}
2153#else
2154static void __init enable_swap_cgroup(void)
2155{
2156}
2157#endif
2158
8cdea7c0
BS
2159static struct cgroup_subsys_state *
2160mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2161{
28dbc4b6 2162 struct mem_cgroup *mem, *parent;
6d12e2d8 2163 int node;
8cdea7c0 2164
c8dad2bb
JB
2165 mem = mem_cgroup_alloc();
2166 if (!mem)
2167 return ERR_PTR(-ENOMEM);
78fb7466 2168
6d12e2d8
KH
2169 for_each_node_state(node, N_POSSIBLE)
2170 if (alloc_mem_cgroup_per_zone_info(mem, node))
2171 goto free_out;
c077719b 2172 /* root ? */
28dbc4b6 2173 if (cont->parent == NULL) {
c077719b 2174 enable_swap_cgroup();
28dbc4b6 2175 parent = NULL;
18f59ea7 2176 } else {
28dbc4b6 2177 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2178 mem->use_hierarchy = parent->use_hierarchy;
2179 }
28dbc4b6 2180
18f59ea7
BS
2181 if (parent && parent->use_hierarchy) {
2182 res_counter_init(&mem->res, &parent->res);
2183 res_counter_init(&mem->memsw, &parent->memsw);
2184 } else {
2185 res_counter_init(&mem->res, NULL);
2186 res_counter_init(&mem->memsw, NULL);
2187 }
6d61ef40 2188 mem->last_scanned_child = NULL;
2733c06a 2189 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2190
a7885eb8
KM
2191 if (parent)
2192 mem->swappiness = get_swappiness(parent);
a7ba0eef 2193 atomic_set(&mem->refcnt, 1);
8cdea7c0 2194 return &mem->css;
6d12e2d8 2195free_out:
a7ba0eef 2196 __mem_cgroup_free(mem);
2dda81ca 2197 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
2198}
2199
df878fb0
KH
2200static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2201 struct cgroup *cont)
2202{
2203 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c1e862c1 2204 mem_cgroup_force_empty(mem, false);
df878fb0
KH
2205}
2206
8cdea7c0
BS
2207static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2208 struct cgroup *cont)
2209{
a7ba0eef 2210 mem_cgroup_put(mem_cgroup_from_cont(cont));
8cdea7c0
BS
2211}
2212
2213static int mem_cgroup_populate(struct cgroup_subsys *ss,
2214 struct cgroup *cont)
2215{
8c7c6e34
KH
2216 int ret;
2217
2218 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2219 ARRAY_SIZE(mem_cgroup_files));
2220
2221 if (!ret)
2222 ret = register_memsw_files(cont, ss);
2223 return ret;
8cdea7c0
BS
2224}
2225
67e465a7
BS
2226static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2227 struct cgroup *cont,
2228 struct cgroup *old_cont,
2229 struct task_struct *p)
2230{
7f4d454d 2231 mutex_lock(&memcg_tasklist);
67e465a7 2232 /*
f9717d28
NK
2233 * FIXME: It's better to move charges of this process from old
2234 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2235 */
7f4d454d 2236 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2237}
2238
8cdea7c0
BS
2239struct cgroup_subsys mem_cgroup_subsys = {
2240 .name = "memory",
2241 .subsys_id = mem_cgroup_subsys_id,
2242 .create = mem_cgroup_create,
df878fb0 2243 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2244 .destroy = mem_cgroup_destroy,
2245 .populate = mem_cgroup_populate,
67e465a7 2246 .attach = mem_cgroup_move_task,
6d12e2d8 2247 .early_init = 0,
8cdea7c0 2248};
c077719b
KH
2249
2250#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2251
2252static int __init disable_swap_account(char *s)
2253{
2254 really_do_swap_account = 0;
2255 return 1;
2256}
2257__setup("noswapaccount", disable_swap_account);
2258#endif