]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: don't trigger oom at page migration
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54
d52aa412
KH
55/*
56 * Statistics for memory cgroup.
57 */
58enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
66
67 MEM_CGROUP_STAT_NSTATS,
68};
69
70struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72} ____cacheline_aligned_in_smp;
73
74struct mem_cgroup_stat {
c8dad2bb 75 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
76};
77
78/*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
addb9efe 81static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
82 enum mem_cgroup_stat_index idx, int val)
83{
addb9efe 84 stat->count[idx] += val;
d52aa412
KH
85}
86
87static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89{
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95}
96
6d12e2d8
KH
97/*
98 * per-zone information in memory controller.
99 */
6d12e2d8 100struct mem_cgroup_per_zone {
072c56c1
KH
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
b69408e8
CL
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
106
107 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
108};
109/* Macro for accessing counter */
110#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
111
112struct mem_cgroup_per_node {
113 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
114};
115
116struct mem_cgroup_lru_info {
117 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
118};
119
8cdea7c0
BS
120/*
121 * The memory controller data structure. The memory controller controls both
122 * page cache and RSS per cgroup. We would eventually like to provide
123 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
124 * to help the administrator determine what knobs to tune.
125 *
126 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
127 * we hit the water mark. May be even add a low water mark, such that
128 * no reclaim occurs from a cgroup at it's low water mark, this is
129 * a feature that will be implemented much later in the future.
8cdea7c0
BS
130 */
131struct mem_cgroup {
132 struct cgroup_subsys_state css;
133 /*
134 * the counter to account for memory usage
135 */
136 struct res_counter res;
8c7c6e34
KH
137 /*
138 * the counter to account for mem+swap usage.
139 */
140 struct res_counter memsw;
78fb7466
PE
141 /*
142 * Per cgroup active and inactive list, similar to the
143 * per zone LRU lists.
78fb7466 144 */
6d12e2d8 145 struct mem_cgroup_lru_info info;
072c56c1 146
2733c06a
KM
147 /*
148 protect against reclaim related member.
149 */
150 spinlock_t reclaim_param_lock;
151
6c48a1d0 152 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
153
154 /*
155 * While reclaiming in a hiearchy, we cache the last child we
156 * reclaimed from. Protected by cgroup_lock()
157 */
158 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
159 /*
160 * Should the accounting and control be hierarchical, per subtree?
161 */
162 bool use_hierarchy;
a636b327 163 unsigned long last_oom_jiffies;
8c7c6e34
KH
164 int obsolete;
165 atomic_t refcnt;
14797e23 166
a7885eb8
KM
167 unsigned int swappiness;
168
d52aa412 169 /*
c8dad2bb 170 * statistics. This must be placed at the end of memcg.
d52aa412
KH
171 */
172 struct mem_cgroup_stat stat;
8cdea7c0
BS
173};
174
217bc319
KH
175enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
181 NR_CHARGE_TYPE,
182};
183
52d4b9ac
KH
184/* only for here (for easy reading.) */
185#define PCGF_CACHE (1UL << PCG_CACHE)
186#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 187#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
188static const unsigned long
189pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 193 0, /* FORCE */
217bc319
KH
194};
195
8c7c6e34
KH
196/* for encoding cft->private value on file */
197#define _MEM (0)
198#define _MEMSWAP (1)
199#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201#define MEMFILE_ATTR(val) ((val) & 0xffff)
202
203static void mem_cgroup_get(struct mem_cgroup *mem);
204static void mem_cgroup_put(struct mem_cgroup *mem);
205
c05555b5
KH
206static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
d52aa412
KH
209{
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 212 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 213 int cpu = get_cpu();
d52aa412 214
08e552c6 215 cpustat = &stat->cpustat[cpu];
c05555b5 216 if (PageCgroupCache(pc))
addb9efe 217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 218 else
addb9efe 219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
220
221 if (charge)
addb9efe 222 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
addb9efe 225 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 227 put_cpu();
6d12e2d8
KH
228}
229
d5b69e38 230static struct mem_cgroup_per_zone *
6d12e2d8
KH
231mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232{
6d12e2d8
KH
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234}
235
d5b69e38 236static struct mem_cgroup_per_zone *
6d12e2d8
KH
237page_cgroup_zoneinfo(struct page_cgroup *pc)
238{
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
d52aa412 242
54992762
KM
243 if (!mem)
244 return NULL;
245
6d12e2d8
KH
246 return mem_cgroup_zoneinfo(mem, nid, zid);
247}
248
249static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 250 enum lru_list idx)
6d12e2d8
KH
251{
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
255
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
260 }
261 return total;
d52aa412
KH
262}
263
d5b69e38 264static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
265{
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
269}
270
cf475ad2 271struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 272{
31a78f23
BS
273 /*
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
277 */
278 if (unlikely(!p))
279 return NULL;
280
78fb7466
PE
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
283}
284
08e552c6
KH
285/*
286 * Following LRU functions are allowed to be used without PCG_LOCK.
287 * Operations are called by routine of global LRU independently from memcg.
288 * What we have to take care of here is validness of pc->mem_cgroup.
289 *
290 * Changes to pc->mem_cgroup happens when
291 * 1. charge
292 * 2. moving account
293 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
294 * It is added to LRU before charge.
295 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
296 * When moving account, the page is not on LRU. It's isolated.
297 */
4f98a2fe 298
08e552c6
KH
299void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
300{
301 struct page_cgroup *pc;
302 struct mem_cgroup *mem;
303 struct mem_cgroup_per_zone *mz;
6d12e2d8 304
f8d66542 305 if (mem_cgroup_disabled())
08e552c6
KH
306 return;
307 pc = lookup_page_cgroup(page);
308 /* can happen while we handle swapcache. */
309 if (list_empty(&pc->lru))
310 return;
311 mz = page_cgroup_zoneinfo(pc);
312 mem = pc->mem_cgroup;
b69408e8 313 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
314 list_del_init(&pc->lru);
315 return;
6d12e2d8
KH
316}
317
08e552c6 318void mem_cgroup_del_lru(struct page *page)
6d12e2d8 319{
08e552c6
KH
320 mem_cgroup_del_lru_list(page, page_lru(page));
321}
b69408e8 322
08e552c6
KH
323void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
324{
325 struct mem_cgroup_per_zone *mz;
326 struct page_cgroup *pc;
b69408e8 327
f8d66542 328 if (mem_cgroup_disabled())
08e552c6 329 return;
6d12e2d8 330
08e552c6
KH
331 pc = lookup_page_cgroup(page);
332 smp_rmb();
333 /* unused page is not rotated. */
334 if (!PageCgroupUsed(pc))
335 return;
336 mz = page_cgroup_zoneinfo(pc);
337 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
338}
339
08e552c6 340void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 341{
08e552c6
KH
342 struct page_cgroup *pc;
343 struct mem_cgroup_per_zone *mz;
6d12e2d8 344
f8d66542 345 if (mem_cgroup_disabled())
08e552c6
KH
346 return;
347 pc = lookup_page_cgroup(page);
348 /* barrier to sync with "charge" */
349 smp_rmb();
350 if (!PageCgroupUsed(pc))
894bc310 351 return;
b69408e8 352
08e552c6 353 mz = page_cgroup_zoneinfo(pc);
b69408e8 354 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
355 list_add(&pc->lru, &mz->lists[lru]);
356}
357/*
358 * To add swapcache into LRU. Be careful to all this function.
359 * zone->lru_lock shouldn't be held and irq must not be disabled.
360 */
361static void mem_cgroup_lru_fixup(struct page *page)
362{
363 if (!isolate_lru_page(page))
364 putback_lru_page(page);
365}
366
367void mem_cgroup_move_lists(struct page *page,
368 enum lru_list from, enum lru_list to)
369{
f8d66542 370 if (mem_cgroup_disabled())
08e552c6
KH
371 return;
372 mem_cgroup_del_lru_list(page, from);
373 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
374}
375
4c4a2214
DR
376int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
377{
378 int ret;
379
380 task_lock(task);
bd845e38 381 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
382 task_unlock(task);
383 return ret;
384}
385
58ae83db
KH
386/*
387 * Calculate mapped_ratio under memory controller. This will be used in
388 * vmscan.c for deteremining we have to reclaim mapped pages.
389 */
390int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
391{
392 long total, rss;
393
394 /*
395 * usage is recorded in bytes. But, here, we assume the number of
396 * physical pages can be represented by "long" on any arch.
397 */
398 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
399 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
400 return (int)((rss * 100L) / total);
401}
8869b8f6 402
6c48a1d0
KH
403/*
404 * prev_priority control...this will be used in memory reclaim path.
405 */
406int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
407{
2733c06a
KM
408 int prev_priority;
409
410 spin_lock(&mem->reclaim_param_lock);
411 prev_priority = mem->prev_priority;
412 spin_unlock(&mem->reclaim_param_lock);
413
414 return prev_priority;
6c48a1d0
KH
415}
416
417void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
418{
2733c06a 419 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
420 if (priority < mem->prev_priority)
421 mem->prev_priority = priority;
2733c06a 422 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
423}
424
425void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
426{
2733c06a 427 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 428 mem->prev_priority = priority;
2733c06a 429 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
430}
431
c772be93 432static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
433{
434 unsigned long active;
435 unsigned long inactive;
c772be93
KM
436 unsigned long gb;
437 unsigned long inactive_ratio;
14797e23
KM
438
439 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
440 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
441
c772be93
KM
442 gb = (inactive + active) >> (30 - PAGE_SHIFT);
443 if (gb)
444 inactive_ratio = int_sqrt(10 * gb);
445 else
446 inactive_ratio = 1;
447
448 if (present_pages) {
449 present_pages[0] = inactive;
450 present_pages[1] = active;
451 }
452
453 return inactive_ratio;
454}
455
456int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
457{
458 unsigned long active;
459 unsigned long inactive;
460 unsigned long present_pages[2];
461 unsigned long inactive_ratio;
462
463 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
464
465 inactive = present_pages[0];
466 active = present_pages[1];
467
468 if (inactive * inactive_ratio < active)
14797e23
KM
469 return 1;
470
471 return 0;
472}
473
a3d8e054
KM
474unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
475 struct zone *zone,
476 enum lru_list lru)
477{
478 int nid = zone->zone_pgdat->node_id;
479 int zid = zone_idx(zone);
480 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
481
482 return MEM_CGROUP_ZSTAT(mz, lru);
483}
484
3e2f41f1
KM
485struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
486 struct zone *zone)
487{
488 int nid = zone->zone_pgdat->node_id;
489 int zid = zone_idx(zone);
490 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
491
492 return &mz->reclaim_stat;
493}
494
495struct zone_reclaim_stat *
496mem_cgroup_get_reclaim_stat_from_page(struct page *page)
497{
498 struct page_cgroup *pc;
499 struct mem_cgroup_per_zone *mz;
500
501 if (mem_cgroup_disabled())
502 return NULL;
503
504 pc = lookup_page_cgroup(page);
505 mz = page_cgroup_zoneinfo(pc);
506 if (!mz)
507 return NULL;
508
509 return &mz->reclaim_stat;
510}
511
66e1707b
BS
512unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
513 struct list_head *dst,
514 unsigned long *scanned, int order,
515 int mode, struct zone *z,
516 struct mem_cgroup *mem_cont,
4f98a2fe 517 int active, int file)
66e1707b
BS
518{
519 unsigned long nr_taken = 0;
520 struct page *page;
521 unsigned long scan;
522 LIST_HEAD(pc_list);
523 struct list_head *src;
ff7283fa 524 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
525 int nid = z->zone_pgdat->node_id;
526 int zid = zone_idx(z);
527 struct mem_cgroup_per_zone *mz;
4f98a2fe 528 int lru = LRU_FILE * !!file + !!active;
66e1707b 529
cf475ad2 530 BUG_ON(!mem_cont);
1ecaab2b 531 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 532 src = &mz->lists[lru];
66e1707b 533
ff7283fa
KH
534 scan = 0;
535 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 536 if (scan >= nr_to_scan)
ff7283fa 537 break;
08e552c6
KH
538
539 page = pc->page;
52d4b9ac
KH
540 if (unlikely(!PageCgroupUsed(pc)))
541 continue;
436c6541 542 if (unlikely(!PageLRU(page)))
ff7283fa 543 continue;
ff7283fa 544
436c6541 545 scan++;
4f98a2fe 546 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
547 list_move(&page->lru, dst);
548 nr_taken++;
549 }
550 }
551
66e1707b
BS
552 *scanned = scan;
553 return nr_taken;
554}
555
6d61ef40
BS
556#define mem_cgroup_from_res_counter(counter, member) \
557 container_of(counter, struct mem_cgroup, member)
558
559/*
560 * This routine finds the DFS walk successor. This routine should be
561 * called with cgroup_mutex held
562 */
563static struct mem_cgroup *
564mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
565{
566 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
567
568 curr_cgroup = curr->css.cgroup;
569 root_cgroup = root_mem->css.cgroup;
570
571 if (!list_empty(&curr_cgroup->children)) {
572 /*
573 * Walk down to children
574 */
575 mem_cgroup_put(curr);
576 cgroup = list_entry(curr_cgroup->children.next,
577 struct cgroup, sibling);
578 curr = mem_cgroup_from_cont(cgroup);
579 mem_cgroup_get(curr);
580 goto done;
581 }
582
583visit_parent:
584 if (curr_cgroup == root_cgroup) {
585 mem_cgroup_put(curr);
586 curr = root_mem;
587 mem_cgroup_get(curr);
588 goto done;
589 }
590
591 /*
592 * Goto next sibling
593 */
594 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
595 mem_cgroup_put(curr);
596 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
597 sibling);
598 curr = mem_cgroup_from_cont(cgroup);
599 mem_cgroup_get(curr);
600 goto done;
601 }
602
603 /*
604 * Go up to next parent and next parent's sibling if need be
605 */
606 curr_cgroup = curr_cgroup->parent;
607 goto visit_parent;
608
609done:
610 root_mem->last_scanned_child = curr;
611 return curr;
612}
613
614/*
615 * Visit the first child (need not be the first child as per the ordering
616 * of the cgroup list, since we track last_scanned_child) of @mem and use
617 * that to reclaim free pages from.
618 */
619static struct mem_cgroup *
620mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
621{
622 struct cgroup *cgroup;
623 struct mem_cgroup *ret;
624 bool obsolete = (root_mem->last_scanned_child &&
625 root_mem->last_scanned_child->obsolete);
626
627 /*
628 * Scan all children under the mem_cgroup mem
629 */
630 cgroup_lock();
631 if (list_empty(&root_mem->css.cgroup->children)) {
632 ret = root_mem;
633 goto done;
634 }
635
636 if (!root_mem->last_scanned_child || obsolete) {
637
638 if (obsolete)
639 mem_cgroup_put(root_mem->last_scanned_child);
640
641 cgroup = list_first_entry(&root_mem->css.cgroup->children,
642 struct cgroup, sibling);
643 ret = mem_cgroup_from_cont(cgroup);
644 mem_cgroup_get(ret);
645 } else
646 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
647 root_mem);
648
649done:
650 root_mem->last_scanned_child = ret;
651 cgroup_unlock();
652 return ret;
653}
654
b85a96c0
DN
655static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
656{
657 if (do_swap_account) {
658 if (res_counter_check_under_limit(&mem->res) &&
659 res_counter_check_under_limit(&mem->memsw))
660 return true;
661 } else
662 if (res_counter_check_under_limit(&mem->res))
663 return true;
664 return false;
665}
666
a7885eb8
KM
667static unsigned int get_swappiness(struct mem_cgroup *memcg)
668{
669 struct cgroup *cgrp = memcg->css.cgroup;
670 unsigned int swappiness;
671
672 /* root ? */
673 if (cgrp->parent == NULL)
674 return vm_swappiness;
675
676 spin_lock(&memcg->reclaim_param_lock);
677 swappiness = memcg->swappiness;
678 spin_unlock(&memcg->reclaim_param_lock);
679
680 return swappiness;
681}
682
6d61ef40
BS
683/*
684 * Dance down the hierarchy if needed to reclaim memory. We remember the
685 * last child we reclaimed from, so that we don't end up penalizing
686 * one child extensively based on its position in the children list.
687 *
688 * root_mem is the original ancestor that we've been reclaim from.
689 */
690static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
691 gfp_t gfp_mask, bool noswap)
692{
693 struct mem_cgroup *next_mem;
694 int ret = 0;
695
696 /*
697 * Reclaim unconditionally and don't check for return value.
698 * We need to reclaim in the current group and down the tree.
699 * One might think about checking for children before reclaiming,
700 * but there might be left over accounting, even after children
701 * have left.
702 */
a7885eb8
KM
703 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
704 get_swappiness(root_mem));
b85a96c0 705 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40 706 return 0;
670ec2f1
DN
707 if (!root_mem->use_hierarchy)
708 return ret;
6d61ef40
BS
709
710 next_mem = mem_cgroup_get_first_node(root_mem);
711
712 while (next_mem != root_mem) {
713 if (next_mem->obsolete) {
714 mem_cgroup_put(next_mem);
715 cgroup_lock();
716 next_mem = mem_cgroup_get_first_node(root_mem);
717 cgroup_unlock();
718 continue;
719 }
a7885eb8
KM
720 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
721 get_swappiness(next_mem));
b85a96c0 722 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
723 return 0;
724 cgroup_lock();
725 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
726 cgroup_unlock();
727 }
728 return ret;
729}
730
a636b327
KH
731bool mem_cgroup_oom_called(struct task_struct *task)
732{
733 bool ret = false;
734 struct mem_cgroup *mem;
735 struct mm_struct *mm;
736
737 rcu_read_lock();
738 mm = task->mm;
739 if (!mm)
740 mm = &init_mm;
741 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
742 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
743 ret = true;
744 rcu_read_unlock();
745 return ret;
746}
f817ed48
KH
747/*
748 * Unlike exported interface, "oom" parameter is added. if oom==true,
749 * oom-killer can be invoked.
8a9f3ccd 750 */
f817ed48 751static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
752 gfp_t gfp_mask, struct mem_cgroup **memcg,
753 bool oom)
8a9f3ccd 754{
6d61ef40 755 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 756 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 757 struct res_counter *fail_res;
a636b327
KH
758
759 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
760 /* Don't account this! */
761 *memcg = NULL;
762 return 0;
763 }
764
8a9f3ccd 765 /*
3be91277
HD
766 * We always charge the cgroup the mm_struct belongs to.
767 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
768 * thread group leader migrates. It's possible that mm is not
769 * set, if so charge the init_mm (happens for pagecache usage).
770 */
7a81b88c 771 if (likely(!*memcg)) {
e8589cc1
KH
772 rcu_read_lock();
773 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
774 if (unlikely(!mem)) {
775 rcu_read_unlock();
31a78f23
BS
776 return 0;
777 }
e8589cc1
KH
778 /*
779 * For every charge from the cgroup, increment reference count
780 */
781 css_get(&mem->css);
7a81b88c 782 *memcg = mem;
e8589cc1
KH
783 rcu_read_unlock();
784 } else {
7a81b88c
KH
785 mem = *memcg;
786 css_get(&mem->css);
e8589cc1 787 }
8a9f3ccd 788
8c7c6e34
KH
789 while (1) {
790 int ret;
791 bool noswap = false;
7a81b88c 792
28dbc4b6 793 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
794 if (likely(!ret)) {
795 if (!do_swap_account)
796 break;
28dbc4b6
BS
797 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
798 &fail_res);
8c7c6e34
KH
799 if (likely(!ret))
800 break;
801 /* mem+swap counter fails */
802 res_counter_uncharge(&mem->res, PAGE_SIZE);
803 noswap = true;
6d61ef40
BS
804 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
805 memsw);
806 } else
807 /* mem counter fails */
808 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
809 res);
810
3be91277 811 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 812 goto nomem;
e1a1cd59 813
6d61ef40
BS
814 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
815 noswap);
66e1707b
BS
816
817 /*
8869b8f6
HD
818 * try_to_free_mem_cgroup_pages() might not give us a full
819 * picture of reclaim. Some pages are reclaimed and might be
820 * moved to swap cache or just unmapped from the cgroup.
821 * Check the limit again to see if the reclaim reduced the
822 * current usage of the cgroup before giving up
8c7c6e34 823 *
8869b8f6 824 */
b85a96c0
DN
825 if (mem_cgroup_check_under_limit(mem_over_limit))
826 continue;
3be91277
HD
827
828 if (!nr_retries--) {
a636b327 829 if (oom) {
88700756
KH
830 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
831 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 832 }
7a81b88c 833 goto nomem;
66e1707b 834 }
8a9f3ccd 835 }
7a81b88c
KH
836 return 0;
837nomem:
838 css_put(&mem->css);
839 return -ENOMEM;
840}
8a9f3ccd 841
f817ed48
KH
842/**
843 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
844 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
845 * @gfp_mask: gfp_mask for reclaim.
846 * @memcg: a pointer to memory cgroup which is charged against.
847 *
848 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
849 * memory cgroup from @mm is got and stored in *memcg.
850 *
851 * Returns 0 if success. -ENOMEM at failure.
852 * This call can invoke OOM-Killer.
853 */
854
855int mem_cgroup_try_charge(struct mm_struct *mm,
856 gfp_t mask, struct mem_cgroup **memcg)
857{
858 return __mem_cgroup_try_charge(mm, mask, memcg, true);
859}
860
7a81b88c
KH
861/*
862 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
863 * USED state. If already USED, uncharge and return.
864 */
865
866static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
867 struct page_cgroup *pc,
868 enum charge_type ctype)
869{
7a81b88c
KH
870 /* try_charge() can return NULL to *memcg, taking care of it. */
871 if (!mem)
872 return;
52d4b9ac
KH
873
874 lock_page_cgroup(pc);
875 if (unlikely(PageCgroupUsed(pc))) {
876 unlock_page_cgroup(pc);
877 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
878 if (do_swap_account)
879 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 880 css_put(&mem->css);
7a81b88c 881 return;
52d4b9ac 882 }
8a9f3ccd 883 pc->mem_cgroup = mem;
08e552c6 884 smp_wmb();
c05555b5 885 pc->flags = pcg_default_flags[ctype];
3be91277 886
08e552c6 887 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 888
52d4b9ac 889 unlock_page_cgroup(pc);
7a81b88c 890}
66e1707b 891
f817ed48
KH
892/**
893 * mem_cgroup_move_account - move account of the page
894 * @pc: page_cgroup of the page.
895 * @from: mem_cgroup which the page is moved from.
896 * @to: mem_cgroup which the page is moved to. @from != @to.
897 *
898 * The caller must confirm following.
08e552c6 899 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
900 *
901 * returns 0 at success,
902 * returns -EBUSY when lock is busy or "pc" is unstable.
903 *
904 * This function does "uncharge" from old cgroup but doesn't do "charge" to
905 * new cgroup. It should be done by a caller.
906 */
907
908static int mem_cgroup_move_account(struct page_cgroup *pc,
909 struct mem_cgroup *from, struct mem_cgroup *to)
910{
911 struct mem_cgroup_per_zone *from_mz, *to_mz;
912 int nid, zid;
913 int ret = -EBUSY;
914
f817ed48 915 VM_BUG_ON(from == to);
08e552c6 916 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
917
918 nid = page_cgroup_nid(pc);
919 zid = page_cgroup_zid(pc);
920 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
921 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
922
f817ed48
KH
923 if (!trylock_page_cgroup(pc))
924 return ret;
925
926 if (!PageCgroupUsed(pc))
927 goto out;
928
929 if (pc->mem_cgroup != from)
930 goto out;
931
08e552c6
KH
932 css_put(&from->css);
933 res_counter_uncharge(&from->res, PAGE_SIZE);
934 mem_cgroup_charge_statistics(from, pc, false);
935 if (do_swap_account)
936 res_counter_uncharge(&from->memsw, PAGE_SIZE);
937 pc->mem_cgroup = to;
938 mem_cgroup_charge_statistics(to, pc, true);
939 css_get(&to->css);
940 ret = 0;
f817ed48
KH
941out:
942 unlock_page_cgroup(pc);
943 return ret;
944}
945
946/*
947 * move charges to its parent.
948 */
949
950static int mem_cgroup_move_parent(struct page_cgroup *pc,
951 struct mem_cgroup *child,
952 gfp_t gfp_mask)
953{
08e552c6 954 struct page *page = pc->page;
f817ed48
KH
955 struct cgroup *cg = child->css.cgroup;
956 struct cgroup *pcg = cg->parent;
957 struct mem_cgroup *parent;
f817ed48
KH
958 int ret;
959
960 /* Is ROOT ? */
961 if (!pcg)
962 return -EINVAL;
963
08e552c6 964
f817ed48
KH
965 parent = mem_cgroup_from_cont(pcg);
966
08e552c6 967
f817ed48 968 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 969 if (ret || !parent)
f817ed48
KH
970 return ret;
971
08e552c6
KH
972 if (!get_page_unless_zero(page))
973 return -EBUSY;
974
975 ret = isolate_lru_page(page);
976
977 if (ret)
978 goto cancel;
f817ed48 979
f817ed48 980 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 981
08e552c6 982 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 983 css_put(&parent->css);
08e552c6
KH
984 putback_lru_page(page);
985 if (!ret) {
986 put_page(page);
987 return 0;
8c7c6e34 988 }
08e552c6
KH
989 /* uncharge if move fails */
990cancel:
991 res_counter_uncharge(&parent->res, PAGE_SIZE);
992 if (do_swap_account)
993 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
994 put_page(page);
f817ed48
KH
995 return ret;
996}
997
7a81b88c
KH
998/*
999 * Charge the memory controller for page usage.
1000 * Return
1001 * 0 if the charge was successful
1002 * < 0 if the cgroup is over its limit
1003 */
1004static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1005 gfp_t gfp_mask, enum charge_type ctype,
1006 struct mem_cgroup *memcg)
1007{
1008 struct mem_cgroup *mem;
1009 struct page_cgroup *pc;
1010 int ret;
1011
1012 pc = lookup_page_cgroup(page);
1013 /* can happen at boot */
1014 if (unlikely(!pc))
1015 return 0;
1016 prefetchw(pc);
1017
1018 mem = memcg;
f817ed48 1019 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1020 if (ret || !mem)
7a81b88c
KH
1021 return ret;
1022
1023 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1024 return 0;
8a9f3ccd
BS
1025}
1026
7a81b88c
KH
1027int mem_cgroup_newpage_charge(struct page *page,
1028 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1029{
f8d66542 1030 if (mem_cgroup_disabled())
cede86ac 1031 return 0;
52d4b9ac
KH
1032 if (PageCompound(page))
1033 return 0;
69029cd5
KH
1034 /*
1035 * If already mapped, we don't have to account.
1036 * If page cache, page->mapping has address_space.
1037 * But page->mapping may have out-of-use anon_vma pointer,
1038 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1039 * is NULL.
1040 */
1041 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1042 return 0;
1043 if (unlikely(!mm))
1044 mm = &init_mm;
217bc319 1045 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1046 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1047}
1048
e1a1cd59
BS
1049int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1050 gfp_t gfp_mask)
8697d331 1051{
f8d66542 1052 if (mem_cgroup_disabled())
cede86ac 1053 return 0;
52d4b9ac
KH
1054 if (PageCompound(page))
1055 return 0;
accf163e
KH
1056 /*
1057 * Corner case handling. This is called from add_to_page_cache()
1058 * in usual. But some FS (shmem) precharges this page before calling it
1059 * and call add_to_page_cache() with GFP_NOWAIT.
1060 *
1061 * For GFP_NOWAIT case, the page may be pre-charged before calling
1062 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1063 * charge twice. (It works but has to pay a bit larger cost.)
1064 */
1065 if (!(gfp_mask & __GFP_WAIT)) {
1066 struct page_cgroup *pc;
1067
52d4b9ac
KH
1068
1069 pc = lookup_page_cgroup(page);
1070 if (!pc)
1071 return 0;
1072 lock_page_cgroup(pc);
1073 if (PageCgroupUsed(pc)) {
1074 unlock_page_cgroup(pc);
accf163e
KH
1075 return 0;
1076 }
52d4b9ac 1077 unlock_page_cgroup(pc);
accf163e
KH
1078 }
1079
69029cd5 1080 if (unlikely(!mm))
8697d331 1081 mm = &init_mm;
accf163e 1082
c05555b5
KH
1083 if (page_is_file_cache(page))
1084 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1085 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
1086 else
1087 return mem_cgroup_charge_common(page, mm, gfp_mask,
1088 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
1089}
1090
8c7c6e34
KH
1091int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1092 struct page *page,
1093 gfp_t mask, struct mem_cgroup **ptr)
1094{
1095 struct mem_cgroup *mem;
1096 swp_entry_t ent;
1097
f8d66542 1098 if (mem_cgroup_disabled())
8c7c6e34
KH
1099 return 0;
1100
1101 if (!do_swap_account)
1102 goto charge_cur_mm;
1103
1104 /*
1105 * A racing thread's fault, or swapoff, may have already updated
1106 * the pte, and even removed page from swap cache: return success
1107 * to go on to do_swap_page()'s pte_same() test, which should fail.
1108 */
1109 if (!PageSwapCache(page))
1110 return 0;
1111
1112 ent.val = page_private(page);
1113
1114 mem = lookup_swap_cgroup(ent);
1115 if (!mem || mem->obsolete)
1116 goto charge_cur_mm;
1117 *ptr = mem;
1118 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1119charge_cur_mm:
1120 if (unlikely(!mm))
1121 mm = &init_mm;
1122 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1123}
1124
d13d1443 1125#ifdef CONFIG_SWAP
8c7c6e34 1126
d13d1443
KH
1127int mem_cgroup_cache_charge_swapin(struct page *page,
1128 struct mm_struct *mm, gfp_t mask, bool locked)
1129{
1130 int ret = 0;
1131
f8d66542 1132 if (mem_cgroup_disabled())
d13d1443
KH
1133 return 0;
1134 if (unlikely(!mm))
1135 mm = &init_mm;
1136 if (!locked)
1137 lock_page(page);
1138 /*
1139 * If not locked, the page can be dropped from SwapCache until
1140 * we reach here.
1141 */
1142 if (PageSwapCache(page)) {
8c7c6e34
KH
1143 struct mem_cgroup *mem = NULL;
1144 swp_entry_t ent;
1145
1146 ent.val = page_private(page);
1147 if (do_swap_account) {
1148 mem = lookup_swap_cgroup(ent);
1149 if (mem && mem->obsolete)
1150 mem = NULL;
1151 if (mem)
1152 mm = NULL;
1153 }
d13d1443 1154 ret = mem_cgroup_charge_common(page, mm, mask,
8c7c6e34
KH
1155 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1156
1157 if (!ret && do_swap_account) {
1158 /* avoid double counting */
1159 mem = swap_cgroup_record(ent, NULL);
1160 if (mem) {
1161 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1162 mem_cgroup_put(mem);
1163 }
1164 }
d13d1443
KH
1165 }
1166 if (!locked)
1167 unlock_page(page);
08e552c6
KH
1168 /* add this page(page_cgroup) to the LRU we want. */
1169 mem_cgroup_lru_fixup(page);
d13d1443
KH
1170
1171 return ret;
1172}
1173#endif
1174
7a81b88c
KH
1175void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1176{
1177 struct page_cgroup *pc;
1178
f8d66542 1179 if (mem_cgroup_disabled())
7a81b88c
KH
1180 return;
1181 if (!ptr)
1182 return;
1183 pc = lookup_page_cgroup(page);
1184 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
8c7c6e34
KH
1185 /*
1186 * Now swap is on-memory. This means this page may be
1187 * counted both as mem and swap....double count.
1188 * Fix it by uncharging from memsw. This SwapCache is stable
1189 * because we're still under lock_page().
1190 */
1191 if (do_swap_account) {
1192 swp_entry_t ent = {.val = page_private(page)};
1193 struct mem_cgroup *memcg;
1194 memcg = swap_cgroup_record(ent, NULL);
1195 if (memcg) {
1196 /* If memcg is obsolete, memcg can be != ptr */
1197 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1198 mem_cgroup_put(memcg);
1199 }
1200
1201 }
08e552c6
KH
1202 /* add this page(page_cgroup) to the LRU we want. */
1203 mem_cgroup_lru_fixup(page);
7a81b88c
KH
1204}
1205
1206void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1207{
f8d66542 1208 if (mem_cgroup_disabled())
7a81b88c
KH
1209 return;
1210 if (!mem)
1211 return;
1212 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1213 if (do_swap_account)
1214 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1215 css_put(&mem->css);
1216}
1217
1218
8a9f3ccd 1219/*
69029cd5 1220 * uncharge if !page_mapped(page)
8a9f3ccd 1221 */
8c7c6e34 1222static struct mem_cgroup *
69029cd5 1223__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1224{
8289546e 1225 struct page_cgroup *pc;
8c7c6e34 1226 struct mem_cgroup *mem = NULL;
072c56c1 1227 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1228
f8d66542 1229 if (mem_cgroup_disabled())
8c7c6e34 1230 return NULL;
4077960e 1231
d13d1443 1232 if (PageSwapCache(page))
8c7c6e34 1233 return NULL;
d13d1443 1234
8697d331 1235 /*
3c541e14 1236 * Check if our page_cgroup is valid
8697d331 1237 */
52d4b9ac
KH
1238 pc = lookup_page_cgroup(page);
1239 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1240 return NULL;
b9c565d5 1241
52d4b9ac 1242 lock_page_cgroup(pc);
d13d1443 1243
8c7c6e34
KH
1244 mem = pc->mem_cgroup;
1245
d13d1443
KH
1246 if (!PageCgroupUsed(pc))
1247 goto unlock_out;
1248
1249 switch (ctype) {
1250 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1251 if (page_mapped(page))
1252 goto unlock_out;
1253 break;
1254 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1255 if (!PageAnon(page)) { /* Shared memory */
1256 if (page->mapping && !page_is_file_cache(page))
1257 goto unlock_out;
1258 } else if (page_mapped(page)) /* Anon */
1259 goto unlock_out;
1260 break;
1261 default:
1262 break;
52d4b9ac 1263 }
d13d1443 1264
8c7c6e34
KH
1265 res_counter_uncharge(&mem->res, PAGE_SIZE);
1266 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1267 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1268
08e552c6 1269 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1270 ClearPageCgroupUsed(pc);
b9c565d5 1271
69029cd5 1272 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1273 unlock_page_cgroup(pc);
fb59e9f1 1274
a7fe942e
KH
1275 /* at swapout, this memcg will be accessed to record to swap */
1276 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1277 css_put(&mem->css);
6d12e2d8 1278
8c7c6e34 1279 return mem;
d13d1443
KH
1280
1281unlock_out:
1282 unlock_page_cgroup(pc);
8c7c6e34 1283 return NULL;
3c541e14
BS
1284}
1285
69029cd5
KH
1286void mem_cgroup_uncharge_page(struct page *page)
1287{
52d4b9ac
KH
1288 /* early check. */
1289 if (page_mapped(page))
1290 return;
1291 if (page->mapping && !PageAnon(page))
1292 return;
69029cd5
KH
1293 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1294}
1295
1296void mem_cgroup_uncharge_cache_page(struct page *page)
1297{
1298 VM_BUG_ON(page_mapped(page));
b7abea96 1299 VM_BUG_ON(page->mapping);
69029cd5
KH
1300 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1301}
1302
8c7c6e34
KH
1303/*
1304 * called from __delete_from_swap_cache() and drop "page" account.
1305 * memcg information is recorded to swap_cgroup of "ent"
1306 */
1307void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1308{
1309 struct mem_cgroup *memcg;
1310
1311 memcg = __mem_cgroup_uncharge_common(page,
1312 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1313 /* record memcg information */
1314 if (do_swap_account && memcg) {
1315 swap_cgroup_record(ent, memcg);
1316 mem_cgroup_get(memcg);
1317 }
a7fe942e
KH
1318 if (memcg)
1319 css_put(&memcg->css);
8c7c6e34
KH
1320}
1321
1322#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1323/*
1324 * called from swap_entry_free(). remove record in swap_cgroup and
1325 * uncharge "memsw" account.
1326 */
1327void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1328{
8c7c6e34
KH
1329 struct mem_cgroup *memcg;
1330
1331 if (!do_swap_account)
1332 return;
1333
1334 memcg = swap_cgroup_record(ent, NULL);
1335 if (memcg) {
1336 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1337 mem_cgroup_put(memcg);
1338 }
d13d1443 1339}
8c7c6e34 1340#endif
d13d1443 1341
ae41be37 1342/*
01b1ae63
KH
1343 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1344 * page belongs to.
ae41be37 1345 */
01b1ae63 1346int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1347{
1348 struct page_cgroup *pc;
e8589cc1 1349 struct mem_cgroup *mem = NULL;
e8589cc1 1350 int ret = 0;
8869b8f6 1351
f8d66542 1352 if (mem_cgroup_disabled())
4077960e
BS
1353 return 0;
1354
52d4b9ac
KH
1355 pc = lookup_page_cgroup(page);
1356 lock_page_cgroup(pc);
1357 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1358 mem = pc->mem_cgroup;
1359 css_get(&mem->css);
e8589cc1 1360 }
52d4b9ac 1361 unlock_page_cgroup(pc);
01b1ae63 1362
e8589cc1 1363 if (mem) {
3bb4edf2 1364 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1365 css_put(&mem->css);
1366 }
01b1ae63 1367 *ptr = mem;
e8589cc1 1368 return ret;
ae41be37 1369}
8869b8f6 1370
69029cd5 1371/* remove redundant charge if migration failed*/
01b1ae63
KH
1372void mem_cgroup_end_migration(struct mem_cgroup *mem,
1373 struct page *oldpage, struct page *newpage)
ae41be37 1374{
01b1ae63
KH
1375 struct page *target, *unused;
1376 struct page_cgroup *pc;
1377 enum charge_type ctype;
1378
1379 if (!mem)
1380 return;
1381
1382 /* at migration success, oldpage->mapping is NULL. */
1383 if (oldpage->mapping) {
1384 target = oldpage;
1385 unused = NULL;
1386 } else {
1387 target = newpage;
1388 unused = oldpage;
1389 }
1390
1391 if (PageAnon(target))
1392 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1393 else if (page_is_file_cache(target))
1394 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1395 else
1396 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1397
1398 /* unused page is not on radix-tree now. */
d13d1443 1399 if (unused)
01b1ae63
KH
1400 __mem_cgroup_uncharge_common(unused, ctype);
1401
1402 pc = lookup_page_cgroup(target);
69029cd5 1403 /*
01b1ae63
KH
1404 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1405 * So, double-counting is effectively avoided.
1406 */
1407 __mem_cgroup_commit_charge(mem, pc, ctype);
1408
1409 /*
1410 * Both of oldpage and newpage are still under lock_page().
1411 * Then, we don't have to care about race in radix-tree.
1412 * But we have to be careful that this page is unmapped or not.
1413 *
1414 * There is a case for !page_mapped(). At the start of
1415 * migration, oldpage was mapped. But now, it's zapped.
1416 * But we know *target* page is not freed/reused under us.
1417 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1418 */
01b1ae63
KH
1419 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1420 mem_cgroup_uncharge_page(target);
ae41be37 1421}
78fb7466 1422
c9b0ed51
KH
1423/*
1424 * A call to try to shrink memory usage under specified resource controller.
1425 * This is typically used for page reclaiming for shmem for reducing side
1426 * effect of page allocation from shmem, which is used by some mem_cgroup.
1427 */
1428int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1429{
1430 struct mem_cgroup *mem;
1431 int progress = 0;
1432 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1433
f8d66542 1434 if (mem_cgroup_disabled())
cede86ac 1435 return 0;
9623e078
HD
1436 if (!mm)
1437 return 0;
cede86ac 1438
c9b0ed51
KH
1439 rcu_read_lock();
1440 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
1441 if (unlikely(!mem)) {
1442 rcu_read_unlock();
1443 return 0;
1444 }
c9b0ed51
KH
1445 css_get(&mem->css);
1446 rcu_read_unlock();
1447
1448 do {
a7885eb8
KM
1449 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true,
1450 get_swappiness(mem));
b85a96c0 1451 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1452 } while (!progress && --retry);
1453
1454 css_put(&mem->css);
1455 if (!retry)
1456 return -ENOMEM;
1457 return 0;
1458}
1459
8c7c6e34
KH
1460static DEFINE_MUTEX(set_limit_mutex);
1461
d38d2a75 1462static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1463 unsigned long long val)
628f4235
KH
1464{
1465
1466 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1467 int progress;
8c7c6e34 1468 u64 memswlimit;
628f4235
KH
1469 int ret = 0;
1470
8c7c6e34 1471 while (retry_count) {
628f4235
KH
1472 if (signal_pending(current)) {
1473 ret = -EINTR;
1474 break;
1475 }
8c7c6e34
KH
1476 /*
1477 * Rather than hide all in some function, I do this in
1478 * open coded manner. You see what this really does.
1479 * We have to guarantee mem->res.limit < mem->memsw.limit.
1480 */
1481 mutex_lock(&set_limit_mutex);
1482 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1483 if (memswlimit < val) {
1484 ret = -EINVAL;
1485 mutex_unlock(&set_limit_mutex);
628f4235
KH
1486 break;
1487 }
8c7c6e34
KH
1488 ret = res_counter_set_limit(&memcg->res, val);
1489 mutex_unlock(&set_limit_mutex);
1490
1491 if (!ret)
1492 break;
1493
bced0520 1494 progress = try_to_free_mem_cgroup_pages(memcg,
a7885eb8
KM
1495 GFP_KERNEL,
1496 false,
1497 get_swappiness(memcg));
8c7c6e34
KH
1498 if (!progress) retry_count--;
1499 }
14797e23 1500
8c7c6e34
KH
1501 return ret;
1502}
1503
1504int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1505 unsigned long long val)
1506{
1507 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1508 u64 memlimit, oldusage, curusage;
1509 int ret;
1510
1511 if (!do_swap_account)
1512 return -EINVAL;
1513
1514 while (retry_count) {
1515 if (signal_pending(current)) {
1516 ret = -EINTR;
1517 break;
1518 }
1519 /*
1520 * Rather than hide all in some function, I do this in
1521 * open coded manner. You see what this really does.
1522 * We have to guarantee mem->res.limit < mem->memsw.limit.
1523 */
1524 mutex_lock(&set_limit_mutex);
1525 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1526 if (memlimit > val) {
1527 ret = -EINVAL;
1528 mutex_unlock(&set_limit_mutex);
1529 break;
1530 }
1531 ret = res_counter_set_limit(&memcg->memsw, val);
1532 mutex_unlock(&set_limit_mutex);
1533
1534 if (!ret)
1535 break;
1536
1537 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
a7885eb8
KM
1538 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true,
1539 get_swappiness(memcg));
8c7c6e34
KH
1540 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1541 if (curusage >= oldusage)
628f4235
KH
1542 retry_count--;
1543 }
1544 return ret;
1545}
1546
cc847582
KH
1547/*
1548 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1549 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1550 */
f817ed48 1551static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1552 int node, int zid, enum lru_list lru)
cc847582 1553{
08e552c6
KH
1554 struct zone *zone;
1555 struct mem_cgroup_per_zone *mz;
f817ed48 1556 struct page_cgroup *pc, *busy;
08e552c6 1557 unsigned long flags, loop;
072c56c1 1558 struct list_head *list;
f817ed48 1559 int ret = 0;
072c56c1 1560
08e552c6
KH
1561 zone = &NODE_DATA(node)->node_zones[zid];
1562 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1563 list = &mz->lists[lru];
cc847582 1564
f817ed48
KH
1565 loop = MEM_CGROUP_ZSTAT(mz, lru);
1566 /* give some margin against EBUSY etc...*/
1567 loop += 256;
1568 busy = NULL;
1569 while (loop--) {
1570 ret = 0;
08e552c6 1571 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1572 if (list_empty(list)) {
08e552c6 1573 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1574 break;
f817ed48
KH
1575 }
1576 pc = list_entry(list->prev, struct page_cgroup, lru);
1577 if (busy == pc) {
1578 list_move(&pc->lru, list);
1579 busy = 0;
08e552c6 1580 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1581 continue;
1582 }
08e552c6 1583 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1584
2c26fdd7 1585 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1586 if (ret == -ENOMEM)
52d4b9ac 1587 break;
f817ed48
KH
1588
1589 if (ret == -EBUSY || ret == -EINVAL) {
1590 /* found lock contention or "pc" is obsolete. */
1591 busy = pc;
1592 cond_resched();
1593 } else
1594 busy = NULL;
cc847582 1595 }
08e552c6 1596
f817ed48
KH
1597 if (!ret && !list_empty(list))
1598 return -EBUSY;
1599 return ret;
cc847582
KH
1600}
1601
1602/*
1603 * make mem_cgroup's charge to be 0 if there is no task.
1604 * This enables deleting this mem_cgroup.
1605 */
c1e862c1 1606static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1607{
f817ed48
KH
1608 int ret;
1609 int node, zid, shrink;
1610 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1611 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1612
cc847582 1613 css_get(&mem->css);
f817ed48
KH
1614
1615 shrink = 0;
c1e862c1
KH
1616 /* should free all ? */
1617 if (free_all)
1618 goto try_to_free;
f817ed48 1619move_account:
1ecaab2b 1620 while (mem->res.usage > 0) {
f817ed48 1621 ret = -EBUSY;
c1e862c1
KH
1622 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1623 goto out;
1624 ret = -EINTR;
1625 if (signal_pending(current))
cc847582 1626 goto out;
52d4b9ac
KH
1627 /* This is for making all *used* pages to be on LRU. */
1628 lru_add_drain_all();
f817ed48
KH
1629 ret = 0;
1630 for_each_node_state(node, N_POSSIBLE) {
1631 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1632 enum lru_list l;
f817ed48
KH
1633 for_each_lru(l) {
1634 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1635 node, zid, l);
f817ed48
KH
1636 if (ret)
1637 break;
1638 }
1ecaab2b 1639 }
f817ed48
KH
1640 if (ret)
1641 break;
1642 }
1643 /* it seems parent cgroup doesn't have enough mem */
1644 if (ret == -ENOMEM)
1645 goto try_to_free;
52d4b9ac 1646 cond_resched();
cc847582
KH
1647 }
1648 ret = 0;
1649out:
1650 css_put(&mem->css);
1651 return ret;
f817ed48
KH
1652
1653try_to_free:
c1e862c1
KH
1654 /* returns EBUSY if there is a task or if we come here twice. */
1655 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1656 ret = -EBUSY;
1657 goto out;
1658 }
c1e862c1
KH
1659 /* we call try-to-free pages for make this cgroup empty */
1660 lru_add_drain_all();
f817ed48
KH
1661 /* try to free all pages in this cgroup */
1662 shrink = 1;
1663 while (nr_retries && mem->res.usage > 0) {
1664 int progress;
c1e862c1
KH
1665
1666 if (signal_pending(current)) {
1667 ret = -EINTR;
1668 goto out;
1669 }
a7885eb8
KM
1670 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1671 false, get_swappiness(mem));
c1e862c1 1672 if (!progress) {
f817ed48 1673 nr_retries--;
c1e862c1
KH
1674 /* maybe some writeback is necessary */
1675 congestion_wait(WRITE, HZ/10);
1676 }
f817ed48
KH
1677
1678 }
08e552c6 1679 lru_add_drain();
f817ed48
KH
1680 /* try move_account...there may be some *locked* pages. */
1681 if (mem->res.usage)
1682 goto move_account;
1683 ret = 0;
1684 goto out;
cc847582
KH
1685}
1686
c1e862c1
KH
1687int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1688{
1689 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1690}
1691
1692
18f59ea7
BS
1693static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1694{
1695 return mem_cgroup_from_cont(cont)->use_hierarchy;
1696}
1697
1698static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1699 u64 val)
1700{
1701 int retval = 0;
1702 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1703 struct cgroup *parent = cont->parent;
1704 struct mem_cgroup *parent_mem = NULL;
1705
1706 if (parent)
1707 parent_mem = mem_cgroup_from_cont(parent);
1708
1709 cgroup_lock();
1710 /*
1711 * If parent's use_hiearchy is set, we can't make any modifications
1712 * in the child subtrees. If it is unset, then the change can
1713 * occur, provided the current cgroup has no children.
1714 *
1715 * For the root cgroup, parent_mem is NULL, we allow value to be
1716 * set if there are no children.
1717 */
1718 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1719 (val == 1 || val == 0)) {
1720 if (list_empty(&cont->children))
1721 mem->use_hierarchy = val;
1722 else
1723 retval = -EBUSY;
1724 } else
1725 retval = -EINVAL;
1726 cgroup_unlock();
1727
1728 return retval;
1729}
1730
2c3daa72 1731static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1732{
8c7c6e34
KH
1733 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1734 u64 val = 0;
1735 int type, name;
1736
1737 type = MEMFILE_TYPE(cft->private);
1738 name = MEMFILE_ATTR(cft->private);
1739 switch (type) {
1740 case _MEM:
1741 val = res_counter_read_u64(&mem->res, name);
1742 break;
1743 case _MEMSWAP:
1744 if (do_swap_account)
1745 val = res_counter_read_u64(&mem->memsw, name);
1746 break;
1747 default:
1748 BUG();
1749 break;
1750 }
1751 return val;
8cdea7c0 1752}
628f4235
KH
1753/*
1754 * The user of this function is...
1755 * RES_LIMIT.
1756 */
856c13aa
PM
1757static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1758 const char *buffer)
8cdea7c0 1759{
628f4235 1760 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1761 int type, name;
628f4235
KH
1762 unsigned long long val;
1763 int ret;
1764
8c7c6e34
KH
1765 type = MEMFILE_TYPE(cft->private);
1766 name = MEMFILE_ATTR(cft->private);
1767 switch (name) {
628f4235
KH
1768 case RES_LIMIT:
1769 /* This function does all necessary parse...reuse it */
1770 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1771 if (ret)
1772 break;
1773 if (type == _MEM)
628f4235 1774 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1775 else
1776 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1777 break;
1778 default:
1779 ret = -EINVAL; /* should be BUG() ? */
1780 break;
1781 }
1782 return ret;
8cdea7c0
BS
1783}
1784
fee7b548
KH
1785static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1786 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1787{
1788 struct cgroup *cgroup;
1789 unsigned long long min_limit, min_memsw_limit, tmp;
1790
1791 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1792 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1793 cgroup = memcg->css.cgroup;
1794 if (!memcg->use_hierarchy)
1795 goto out;
1796
1797 while (cgroup->parent) {
1798 cgroup = cgroup->parent;
1799 memcg = mem_cgroup_from_cont(cgroup);
1800 if (!memcg->use_hierarchy)
1801 break;
1802 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1803 min_limit = min(min_limit, tmp);
1804 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1805 min_memsw_limit = min(min_memsw_limit, tmp);
1806 }
1807out:
1808 *mem_limit = min_limit;
1809 *memsw_limit = min_memsw_limit;
1810 return;
1811}
1812
29f2a4da 1813static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1814{
1815 struct mem_cgroup *mem;
8c7c6e34 1816 int type, name;
c84872e1
PE
1817
1818 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1819 type = MEMFILE_TYPE(event);
1820 name = MEMFILE_ATTR(event);
1821 switch (name) {
29f2a4da 1822 case RES_MAX_USAGE:
8c7c6e34
KH
1823 if (type == _MEM)
1824 res_counter_reset_max(&mem->res);
1825 else
1826 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1827 break;
1828 case RES_FAILCNT:
8c7c6e34
KH
1829 if (type == _MEM)
1830 res_counter_reset_failcnt(&mem->res);
1831 else
1832 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1833 break;
1834 }
85cc59db 1835 return 0;
c84872e1
PE
1836}
1837
d2ceb9b7
KH
1838static const struct mem_cgroup_stat_desc {
1839 const char *msg;
1840 u64 unit;
1841} mem_cgroup_stat_desc[] = {
1842 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1843 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1844 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1845 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1846};
1847
c64745cf
PM
1848static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1849 struct cgroup_map_cb *cb)
d2ceb9b7 1850{
d2ceb9b7
KH
1851 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1852 struct mem_cgroup_stat *stat = &mem_cont->stat;
1853 int i;
1854
1855 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1856 s64 val;
1857
1858 val = mem_cgroup_read_stat(stat, i);
1859 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1860 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1861 }
6d12e2d8
KH
1862 /* showing # of active pages */
1863 {
4f98a2fe
RR
1864 unsigned long active_anon, inactive_anon;
1865 unsigned long active_file, inactive_file;
7b854121 1866 unsigned long unevictable;
4f98a2fe
RR
1867
1868 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1869 LRU_INACTIVE_ANON);
1870 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1871 LRU_ACTIVE_ANON);
1872 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1873 LRU_INACTIVE_FILE);
1874 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1875 LRU_ACTIVE_FILE);
7b854121
LS
1876 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1877 LRU_UNEVICTABLE);
1878
4f98a2fe
RR
1879 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1880 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1881 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1882 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1883 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1884
6d12e2d8 1885 }
fee7b548
KH
1886 {
1887 unsigned long long limit, memsw_limit;
1888 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1889 cb->fill(cb, "hierarchical_memory_limit", limit);
1890 if (do_swap_account)
1891 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1892 }
7f016ee8
KM
1893
1894#ifdef CONFIG_DEBUG_VM
c772be93 1895 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
1896
1897 {
1898 int nid, zid;
1899 struct mem_cgroup_per_zone *mz;
1900 unsigned long recent_rotated[2] = {0, 0};
1901 unsigned long recent_scanned[2] = {0, 0};
1902
1903 for_each_online_node(nid)
1904 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1905 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1906
1907 recent_rotated[0] +=
1908 mz->reclaim_stat.recent_rotated[0];
1909 recent_rotated[1] +=
1910 mz->reclaim_stat.recent_rotated[1];
1911 recent_scanned[0] +=
1912 mz->reclaim_stat.recent_scanned[0];
1913 recent_scanned[1] +=
1914 mz->reclaim_stat.recent_scanned[1];
1915 }
1916 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1917 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1918 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1919 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1920 }
1921#endif
1922
d2ceb9b7
KH
1923 return 0;
1924}
1925
a7885eb8
KM
1926static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1927{
1928 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1929
1930 return get_swappiness(memcg);
1931}
1932
1933static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1934 u64 val)
1935{
1936 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1937 struct mem_cgroup *parent;
1938 if (val > 100)
1939 return -EINVAL;
1940
1941 if (cgrp->parent == NULL)
1942 return -EINVAL;
1943
1944 parent = mem_cgroup_from_cont(cgrp->parent);
1945 /* If under hierarchy, only empty-root can set this value */
1946 if ((parent->use_hierarchy) ||
1947 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1948 return -EINVAL;
1949
1950 spin_lock(&memcg->reclaim_param_lock);
1951 memcg->swappiness = val;
1952 spin_unlock(&memcg->reclaim_param_lock);
1953
1954 return 0;
1955}
1956
c1e862c1 1957
8cdea7c0
BS
1958static struct cftype mem_cgroup_files[] = {
1959 {
0eea1030 1960 .name = "usage_in_bytes",
8c7c6e34 1961 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1962 .read_u64 = mem_cgroup_read,
8cdea7c0 1963 },
c84872e1
PE
1964 {
1965 .name = "max_usage_in_bytes",
8c7c6e34 1966 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 1967 .trigger = mem_cgroup_reset,
c84872e1
PE
1968 .read_u64 = mem_cgroup_read,
1969 },
8cdea7c0 1970 {
0eea1030 1971 .name = "limit_in_bytes",
8c7c6e34 1972 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 1973 .write_string = mem_cgroup_write,
2c3daa72 1974 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1975 },
1976 {
1977 .name = "failcnt",
8c7c6e34 1978 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 1979 .trigger = mem_cgroup_reset,
2c3daa72 1980 .read_u64 = mem_cgroup_read,
8cdea7c0 1981 },
d2ceb9b7
KH
1982 {
1983 .name = "stat",
c64745cf 1984 .read_map = mem_control_stat_show,
d2ceb9b7 1985 },
c1e862c1
KH
1986 {
1987 .name = "force_empty",
1988 .trigger = mem_cgroup_force_empty_write,
1989 },
18f59ea7
BS
1990 {
1991 .name = "use_hierarchy",
1992 .write_u64 = mem_cgroup_hierarchy_write,
1993 .read_u64 = mem_cgroup_hierarchy_read,
1994 },
a7885eb8
KM
1995 {
1996 .name = "swappiness",
1997 .read_u64 = mem_cgroup_swappiness_read,
1998 .write_u64 = mem_cgroup_swappiness_write,
1999 },
8cdea7c0
BS
2000};
2001
8c7c6e34
KH
2002#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2003static struct cftype memsw_cgroup_files[] = {
2004 {
2005 .name = "memsw.usage_in_bytes",
2006 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2007 .read_u64 = mem_cgroup_read,
2008 },
2009 {
2010 .name = "memsw.max_usage_in_bytes",
2011 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2012 .trigger = mem_cgroup_reset,
2013 .read_u64 = mem_cgroup_read,
2014 },
2015 {
2016 .name = "memsw.limit_in_bytes",
2017 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2018 .write_string = mem_cgroup_write,
2019 .read_u64 = mem_cgroup_read,
2020 },
2021 {
2022 .name = "memsw.failcnt",
2023 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2024 .trigger = mem_cgroup_reset,
2025 .read_u64 = mem_cgroup_read,
2026 },
2027};
2028
2029static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2030{
2031 if (!do_swap_account)
2032 return 0;
2033 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2034 ARRAY_SIZE(memsw_cgroup_files));
2035};
2036#else
2037static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2038{
2039 return 0;
2040}
2041#endif
2042
6d12e2d8
KH
2043static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2044{
2045 struct mem_cgroup_per_node *pn;
1ecaab2b 2046 struct mem_cgroup_per_zone *mz;
b69408e8 2047 enum lru_list l;
41e3355d 2048 int zone, tmp = node;
1ecaab2b
KH
2049 /*
2050 * This routine is called against possible nodes.
2051 * But it's BUG to call kmalloc() against offline node.
2052 *
2053 * TODO: this routine can waste much memory for nodes which will
2054 * never be onlined. It's better to use memory hotplug callback
2055 * function.
2056 */
41e3355d
KH
2057 if (!node_state(node, N_NORMAL_MEMORY))
2058 tmp = -1;
2059 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2060 if (!pn)
2061 return 1;
1ecaab2b 2062
6d12e2d8
KH
2063 mem->info.nodeinfo[node] = pn;
2064 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2065
2066 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2067 mz = &pn->zoneinfo[zone];
b69408e8
CL
2068 for_each_lru(l)
2069 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2070 }
6d12e2d8
KH
2071 return 0;
2072}
2073
1ecaab2b
KH
2074static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2075{
2076 kfree(mem->info.nodeinfo[node]);
2077}
2078
c8dad2bb
JB
2079static int mem_cgroup_size(void)
2080{
2081 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2082 return sizeof(struct mem_cgroup) + cpustat_size;
2083}
2084
33327948
KH
2085static struct mem_cgroup *mem_cgroup_alloc(void)
2086{
2087 struct mem_cgroup *mem;
c8dad2bb 2088 int size = mem_cgroup_size();
33327948 2089
c8dad2bb
JB
2090 if (size < PAGE_SIZE)
2091 mem = kmalloc(size, GFP_KERNEL);
33327948 2092 else
c8dad2bb 2093 mem = vmalloc(size);
33327948
KH
2094
2095 if (mem)
c8dad2bb 2096 memset(mem, 0, size);
33327948
KH
2097 return mem;
2098}
2099
8c7c6e34
KH
2100/*
2101 * At destroying mem_cgroup, references from swap_cgroup can remain.
2102 * (scanning all at force_empty is too costly...)
2103 *
2104 * Instead of clearing all references at force_empty, we remember
2105 * the number of reference from swap_cgroup and free mem_cgroup when
2106 * it goes down to 0.
2107 *
2108 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
2109 * entry which points to this memcg will be ignore at swapin.
2110 *
2111 * Removal of cgroup itself succeeds regardless of refs from swap.
2112 */
2113
33327948
KH
2114static void mem_cgroup_free(struct mem_cgroup *mem)
2115{
08e552c6
KH
2116 int node;
2117
8c7c6e34
KH
2118 if (atomic_read(&mem->refcnt) > 0)
2119 return;
08e552c6
KH
2120
2121
2122 for_each_node_state(node, N_POSSIBLE)
2123 free_mem_cgroup_per_zone_info(mem, node);
2124
c8dad2bb 2125 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2126 kfree(mem);
2127 else
2128 vfree(mem);
2129}
2130
8c7c6e34
KH
2131static void mem_cgroup_get(struct mem_cgroup *mem)
2132{
2133 atomic_inc(&mem->refcnt);
2134}
2135
2136static void mem_cgroup_put(struct mem_cgroup *mem)
2137{
2138 if (atomic_dec_and_test(&mem->refcnt)) {
2139 if (!mem->obsolete)
2140 return;
2141 mem_cgroup_free(mem);
2142 }
2143}
2144
33327948 2145
c077719b
KH
2146#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2147static void __init enable_swap_cgroup(void)
2148{
f8d66542 2149 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2150 do_swap_account = 1;
2151}
2152#else
2153static void __init enable_swap_cgroup(void)
2154{
2155}
2156#endif
2157
8cdea7c0
BS
2158static struct cgroup_subsys_state *
2159mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2160{
28dbc4b6 2161 struct mem_cgroup *mem, *parent;
6d12e2d8 2162 int node;
8cdea7c0 2163
c8dad2bb
JB
2164 mem = mem_cgroup_alloc();
2165 if (!mem)
2166 return ERR_PTR(-ENOMEM);
78fb7466 2167
6d12e2d8
KH
2168 for_each_node_state(node, N_POSSIBLE)
2169 if (alloc_mem_cgroup_per_zone_info(mem, node))
2170 goto free_out;
c077719b 2171 /* root ? */
28dbc4b6 2172 if (cont->parent == NULL) {
c077719b 2173 enable_swap_cgroup();
28dbc4b6 2174 parent = NULL;
18f59ea7 2175 } else {
28dbc4b6 2176 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2177 mem->use_hierarchy = parent->use_hierarchy;
2178 }
28dbc4b6 2179
18f59ea7
BS
2180 if (parent && parent->use_hierarchy) {
2181 res_counter_init(&mem->res, &parent->res);
2182 res_counter_init(&mem->memsw, &parent->memsw);
2183 } else {
2184 res_counter_init(&mem->res, NULL);
2185 res_counter_init(&mem->memsw, NULL);
2186 }
6d61ef40 2187 mem->last_scanned_child = NULL;
2733c06a 2188 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2189
a7885eb8
KM
2190 if (parent)
2191 mem->swappiness = get_swappiness(parent);
2192
8cdea7c0 2193 return &mem->css;
6d12e2d8
KH
2194free_out:
2195 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 2196 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 2197 mem_cgroup_free(mem);
2dda81ca 2198 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
2199}
2200
df878fb0
KH
2201static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2202 struct cgroup *cont)
2203{
2204 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8c7c6e34 2205 mem->obsolete = 1;
c1e862c1 2206 mem_cgroup_force_empty(mem, false);
df878fb0
KH
2207}
2208
8cdea7c0
BS
2209static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2210 struct cgroup *cont)
2211{
33327948 2212 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
2213}
2214
2215static int mem_cgroup_populate(struct cgroup_subsys *ss,
2216 struct cgroup *cont)
2217{
8c7c6e34
KH
2218 int ret;
2219
2220 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2221 ARRAY_SIZE(mem_cgroup_files));
2222
2223 if (!ret)
2224 ret = register_memsw_files(cont, ss);
2225 return ret;
8cdea7c0
BS
2226}
2227
67e465a7
BS
2228static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2229 struct cgroup *cont,
2230 struct cgroup *old_cont,
2231 struct task_struct *p)
2232{
67e465a7 2233 /*
f9717d28
NK
2234 * FIXME: It's better to move charges of this process from old
2235 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2236 */
67e465a7
BS
2237}
2238
8cdea7c0
BS
2239struct cgroup_subsys mem_cgroup_subsys = {
2240 .name = "memory",
2241 .subsys_id = mem_cgroup_subsys_id,
2242 .create = mem_cgroup_create,
df878fb0 2243 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2244 .destroy = mem_cgroup_destroy,
2245 .populate = mem_cgroup_populate,
67e465a7 2246 .attach = mem_cgroup_move_task,
6d12e2d8 2247 .early_init = 0,
8cdea7c0 2248};
c077719b
KH
2249
2250#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2251
2252static int __init disable_swap_account(char *s)
2253{
2254 really_do_swap_account = 0;
2255 return 1;
2256}
2257__setup("noswapaccount", disable_swap_account);
2258#endif