]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
hwmon: applesmc: fix light sensor readings on newer MacBooks
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
7f4d454d 54static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 55
d52aa412
KH
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60 /*
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 */
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
67
68 MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
c8dad2bb 76 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
addb9efe 82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
83 enum mem_cgroup_stat_index idx, int val)
84{
addb9efe 85 stat->count[idx] += val;
d52aa412
KH
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
96}
97
6d12e2d8
KH
98/*
99 * per-zone information in memory controller.
100 */
6d12e2d8 101struct mem_cgroup_per_zone {
072c56c1
KH
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
b69408e8
CL
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
107
108 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
109};
110/* Macro for accessing counter */
111#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
112
113struct mem_cgroup_per_node {
114 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115};
116
117struct mem_cgroup_lru_info {
118 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119};
120
8cdea7c0
BS
121/*
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
126 *
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
8cdea7c0
BS
131 */
132struct mem_cgroup {
133 struct cgroup_subsys_state css;
134 /*
135 * the counter to account for memory usage
136 */
137 struct res_counter res;
8c7c6e34
KH
138 /*
139 * the counter to account for mem+swap usage.
140 */
141 struct res_counter memsw;
78fb7466
PE
142 /*
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
78fb7466 145 */
6d12e2d8 146 struct mem_cgroup_lru_info info;
072c56c1 147
2733c06a
KM
148 /*
149 protect against reclaim related member.
150 */
151 spinlock_t reclaim_param_lock;
152
6c48a1d0 153 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
154
155 /*
156 * While reclaiming in a hiearchy, we cache the last child we
2cb378c8 157 * reclaimed from. Protected by hierarchy_mutex
6d61ef40
BS
158 */
159 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
160 /*
161 * Should the accounting and control be hierarchical, per subtree?
162 */
163 bool use_hierarchy;
a636b327 164 unsigned long last_oom_jiffies;
8c7c6e34 165 atomic_t refcnt;
14797e23 166
a7885eb8
KM
167 unsigned int swappiness;
168
d52aa412 169 /*
c8dad2bb 170 * statistics. This must be placed at the end of memcg.
d52aa412
KH
171 */
172 struct mem_cgroup_stat stat;
8cdea7c0
BS
173};
174
217bc319
KH
175enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
181 NR_CHARGE_TYPE,
182};
183
52d4b9ac
KH
184/* only for here (for easy reading.) */
185#define PCGF_CACHE (1UL << PCG_CACHE)
186#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 187#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
188static const unsigned long
189pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 193 0, /* FORCE */
217bc319
KH
194};
195
8c7c6e34
KH
196/* for encoding cft->private value on file */
197#define _MEM (0)
198#define _MEMSWAP (1)
199#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201#define MEMFILE_ATTR(val) ((val) & 0xffff)
202
203static void mem_cgroup_get(struct mem_cgroup *mem);
204static void mem_cgroup_put(struct mem_cgroup *mem);
205
c05555b5
KH
206static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
d52aa412
KH
209{
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 212 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 213 int cpu = get_cpu();
d52aa412 214
08e552c6 215 cpustat = &stat->cpustat[cpu];
c05555b5 216 if (PageCgroupCache(pc))
addb9efe 217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 218 else
addb9efe 219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
220
221 if (charge)
addb9efe 222 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
addb9efe 225 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 227 put_cpu();
6d12e2d8
KH
228}
229
d5b69e38 230static struct mem_cgroup_per_zone *
6d12e2d8
KH
231mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232{
6d12e2d8
KH
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234}
235
d5b69e38 236static struct mem_cgroup_per_zone *
6d12e2d8
KH
237page_cgroup_zoneinfo(struct page_cgroup *pc)
238{
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
d52aa412 242
54992762
KM
243 if (!mem)
244 return NULL;
245
6d12e2d8
KH
246 return mem_cgroup_zoneinfo(mem, nid, zid);
247}
248
249static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 250 enum lru_list idx)
6d12e2d8
KH
251{
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
255
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
260 }
261 return total;
d52aa412
KH
262}
263
d5b69e38 264static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
265{
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
269}
270
cf475ad2 271struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 272{
31a78f23
BS
273 /*
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
277 */
278 if (unlikely(!p))
279 return NULL;
280
78fb7466
PE
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
283}
284
54595fe2
KH
285static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
286{
287 struct mem_cgroup *mem = NULL;
288 /*
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
292 */
293 rcu_read_lock();
294 do {
295 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296 if (unlikely(!mem))
297 break;
298 } while (!css_tryget(&mem->css));
299 rcu_read_unlock();
300 return mem;
301}
302
303static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
304{
305 if (!mem)
306 return true;
307 return css_is_removed(&mem->css);
308}
309
08e552c6
KH
310/*
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
314 *
315 * Changes to pc->mem_cgroup happens when
316 * 1. charge
317 * 2. moving account
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
322 */
4f98a2fe 323
08e552c6
KH
324void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
325{
326 struct page_cgroup *pc;
327 struct mem_cgroup *mem;
328 struct mem_cgroup_per_zone *mz;
6d12e2d8 329
f8d66542 330 if (mem_cgroup_disabled())
08e552c6
KH
331 return;
332 pc = lookup_page_cgroup(page);
333 /* can happen while we handle swapcache. */
544122e5 334 if (list_empty(&pc->lru) || !pc->mem_cgroup)
08e552c6 335 return;
544122e5
KH
336 /*
337 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338 * removed from global LRU.
339 */
08e552c6
KH
340 mz = page_cgroup_zoneinfo(pc);
341 mem = pc->mem_cgroup;
b69408e8 342 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
343 list_del_init(&pc->lru);
344 return;
6d12e2d8
KH
345}
346
08e552c6 347void mem_cgroup_del_lru(struct page *page)
6d12e2d8 348{
08e552c6
KH
349 mem_cgroup_del_lru_list(page, page_lru(page));
350}
b69408e8 351
08e552c6
KH
352void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
353{
354 struct mem_cgroup_per_zone *mz;
355 struct page_cgroup *pc;
b69408e8 356
f8d66542 357 if (mem_cgroup_disabled())
08e552c6 358 return;
6d12e2d8 359
08e552c6
KH
360 pc = lookup_page_cgroup(page);
361 smp_rmb();
362 /* unused page is not rotated. */
363 if (!PageCgroupUsed(pc))
364 return;
365 mz = page_cgroup_zoneinfo(pc);
366 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
367}
368
08e552c6 369void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 370{
08e552c6
KH
371 struct page_cgroup *pc;
372 struct mem_cgroup_per_zone *mz;
6d12e2d8 373
f8d66542 374 if (mem_cgroup_disabled())
08e552c6
KH
375 return;
376 pc = lookup_page_cgroup(page);
377 /* barrier to sync with "charge" */
378 smp_rmb();
379 if (!PageCgroupUsed(pc))
894bc310 380 return;
b69408e8 381
08e552c6 382 mz = page_cgroup_zoneinfo(pc);
b69408e8 383 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
384 list_add(&pc->lru, &mz->lists[lru]);
385}
544122e5 386
08e552c6 387/*
544122e5
KH
388 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
389 * lru because the page may.be reused after it's fully uncharged (because of
390 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
391 * it again. This function is only used to charge SwapCache. It's done under
392 * lock_page and expected that zone->lru_lock is never held.
08e552c6 393 */
544122e5 394static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 395{
544122e5
KH
396 unsigned long flags;
397 struct zone *zone = page_zone(page);
398 struct page_cgroup *pc = lookup_page_cgroup(page);
399
400 spin_lock_irqsave(&zone->lru_lock, flags);
401 /*
402 * Forget old LRU when this page_cgroup is *not* used. This Used bit
403 * is guarded by lock_page() because the page is SwapCache.
404 */
405 if (!PageCgroupUsed(pc))
406 mem_cgroup_del_lru_list(page, page_lru(page));
407 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
408}
409
544122e5
KH
410static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
411{
412 unsigned long flags;
413 struct zone *zone = page_zone(page);
414 struct page_cgroup *pc = lookup_page_cgroup(page);
415
416 spin_lock_irqsave(&zone->lru_lock, flags);
417 /* link when the page is linked to LRU but page_cgroup isn't */
418 if (PageLRU(page) && list_empty(&pc->lru))
419 mem_cgroup_add_lru_list(page, page_lru(page));
420 spin_unlock_irqrestore(&zone->lru_lock, flags);
421}
422
423
08e552c6
KH
424void mem_cgroup_move_lists(struct page *page,
425 enum lru_list from, enum lru_list to)
426{
f8d66542 427 if (mem_cgroup_disabled())
08e552c6
KH
428 return;
429 mem_cgroup_del_lru_list(page, from);
430 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
431}
432
4c4a2214
DR
433int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
434{
435 int ret;
436
437 task_lock(task);
bd845e38 438 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
439 task_unlock(task);
440 return ret;
441}
442
58ae83db
KH
443/*
444 * Calculate mapped_ratio under memory controller. This will be used in
445 * vmscan.c for deteremining we have to reclaim mapped pages.
446 */
447int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
448{
449 long total, rss;
450
451 /*
452 * usage is recorded in bytes. But, here, we assume the number of
453 * physical pages can be represented by "long" on any arch.
454 */
455 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
456 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
457 return (int)((rss * 100L) / total);
458}
8869b8f6 459
6c48a1d0
KH
460/*
461 * prev_priority control...this will be used in memory reclaim path.
462 */
463int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
464{
2733c06a
KM
465 int prev_priority;
466
467 spin_lock(&mem->reclaim_param_lock);
468 prev_priority = mem->prev_priority;
469 spin_unlock(&mem->reclaim_param_lock);
470
471 return prev_priority;
6c48a1d0
KH
472}
473
474void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
475{
2733c06a 476 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
477 if (priority < mem->prev_priority)
478 mem->prev_priority = priority;
2733c06a 479 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
480}
481
482void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
483{
2733c06a 484 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 485 mem->prev_priority = priority;
2733c06a 486 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
487}
488
c772be93 489static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
490{
491 unsigned long active;
492 unsigned long inactive;
c772be93
KM
493 unsigned long gb;
494 unsigned long inactive_ratio;
14797e23
KM
495
496 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
497 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
498
c772be93
KM
499 gb = (inactive + active) >> (30 - PAGE_SHIFT);
500 if (gb)
501 inactive_ratio = int_sqrt(10 * gb);
502 else
503 inactive_ratio = 1;
504
505 if (present_pages) {
506 present_pages[0] = inactive;
507 present_pages[1] = active;
508 }
509
510 return inactive_ratio;
511}
512
513int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
514{
515 unsigned long active;
516 unsigned long inactive;
517 unsigned long present_pages[2];
518 unsigned long inactive_ratio;
519
520 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
521
522 inactive = present_pages[0];
523 active = present_pages[1];
524
525 if (inactive * inactive_ratio < active)
14797e23
KM
526 return 1;
527
528 return 0;
529}
530
a3d8e054
KM
531unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
532 struct zone *zone,
533 enum lru_list lru)
534{
535 int nid = zone->zone_pgdat->node_id;
536 int zid = zone_idx(zone);
537 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
538
539 return MEM_CGROUP_ZSTAT(mz, lru);
540}
541
3e2f41f1
KM
542struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
543 struct zone *zone)
544{
545 int nid = zone->zone_pgdat->node_id;
546 int zid = zone_idx(zone);
547 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
548
549 return &mz->reclaim_stat;
550}
551
552struct zone_reclaim_stat *
553mem_cgroup_get_reclaim_stat_from_page(struct page *page)
554{
555 struct page_cgroup *pc;
556 struct mem_cgroup_per_zone *mz;
557
558 if (mem_cgroup_disabled())
559 return NULL;
560
561 pc = lookup_page_cgroup(page);
562 mz = page_cgroup_zoneinfo(pc);
563 if (!mz)
564 return NULL;
565
566 return &mz->reclaim_stat;
567}
568
66e1707b
BS
569unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
570 struct list_head *dst,
571 unsigned long *scanned, int order,
572 int mode, struct zone *z,
573 struct mem_cgroup *mem_cont,
4f98a2fe 574 int active, int file)
66e1707b
BS
575{
576 unsigned long nr_taken = 0;
577 struct page *page;
578 unsigned long scan;
579 LIST_HEAD(pc_list);
580 struct list_head *src;
ff7283fa 581 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
582 int nid = z->zone_pgdat->node_id;
583 int zid = zone_idx(z);
584 struct mem_cgroup_per_zone *mz;
4f98a2fe 585 int lru = LRU_FILE * !!file + !!active;
66e1707b 586
cf475ad2 587 BUG_ON(!mem_cont);
1ecaab2b 588 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 589 src = &mz->lists[lru];
66e1707b 590
ff7283fa
KH
591 scan = 0;
592 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 593 if (scan >= nr_to_scan)
ff7283fa 594 break;
08e552c6
KH
595
596 page = pc->page;
52d4b9ac
KH
597 if (unlikely(!PageCgroupUsed(pc)))
598 continue;
436c6541 599 if (unlikely(!PageLRU(page)))
ff7283fa 600 continue;
ff7283fa 601
436c6541 602 scan++;
4f98a2fe 603 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
604 list_move(&page->lru, dst);
605 nr_taken++;
606 }
607 }
608
66e1707b
BS
609 *scanned = scan;
610 return nr_taken;
611}
612
6d61ef40
BS
613#define mem_cgroup_from_res_counter(counter, member) \
614 container_of(counter, struct mem_cgroup, member)
615
616/*
617 * This routine finds the DFS walk successor. This routine should be
2cb378c8 618 * called with hierarchy_mutex held
6d61ef40
BS
619 */
620static struct mem_cgroup *
621mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
622{
623 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
624
625 curr_cgroup = curr->css.cgroup;
626 root_cgroup = root_mem->css.cgroup;
627
628 if (!list_empty(&curr_cgroup->children)) {
629 /*
630 * Walk down to children
631 */
632 mem_cgroup_put(curr);
633 cgroup = list_entry(curr_cgroup->children.next,
634 struct cgroup, sibling);
635 curr = mem_cgroup_from_cont(cgroup);
636 mem_cgroup_get(curr);
637 goto done;
638 }
639
640visit_parent:
641 if (curr_cgroup == root_cgroup) {
642 mem_cgroup_put(curr);
643 curr = root_mem;
644 mem_cgroup_get(curr);
645 goto done;
646 }
647
648 /*
649 * Goto next sibling
650 */
651 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
652 mem_cgroup_put(curr);
653 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
654 sibling);
655 curr = mem_cgroup_from_cont(cgroup);
656 mem_cgroup_get(curr);
657 goto done;
658 }
659
660 /*
661 * Go up to next parent and next parent's sibling if need be
662 */
663 curr_cgroup = curr_cgroup->parent;
664 goto visit_parent;
665
666done:
667 root_mem->last_scanned_child = curr;
668 return curr;
669}
670
671/*
672 * Visit the first child (need not be the first child as per the ordering
673 * of the cgroup list, since we track last_scanned_child) of @mem and use
674 * that to reclaim free pages from.
675 */
676static struct mem_cgroup *
677mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
678{
679 struct cgroup *cgroup;
680 struct mem_cgroup *ret;
54595fe2
KH
681 bool obsolete;
682
683 obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
6d61ef40
BS
684
685 /*
686 * Scan all children under the mem_cgroup mem
687 */
2cb378c8 688 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
6d61ef40
BS
689 if (list_empty(&root_mem->css.cgroup->children)) {
690 ret = root_mem;
691 goto done;
692 }
693
694 if (!root_mem->last_scanned_child || obsolete) {
695
54595fe2 696 if (obsolete && root_mem->last_scanned_child)
6d61ef40
BS
697 mem_cgroup_put(root_mem->last_scanned_child);
698
699 cgroup = list_first_entry(&root_mem->css.cgroup->children,
700 struct cgroup, sibling);
701 ret = mem_cgroup_from_cont(cgroup);
702 mem_cgroup_get(ret);
703 } else
704 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
705 root_mem);
706
707done:
708 root_mem->last_scanned_child = ret;
2cb378c8 709 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
6d61ef40
BS
710 return ret;
711}
712
b85a96c0
DN
713static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
714{
715 if (do_swap_account) {
716 if (res_counter_check_under_limit(&mem->res) &&
717 res_counter_check_under_limit(&mem->memsw))
718 return true;
719 } else
720 if (res_counter_check_under_limit(&mem->res))
721 return true;
722 return false;
723}
724
a7885eb8
KM
725static unsigned int get_swappiness(struct mem_cgroup *memcg)
726{
727 struct cgroup *cgrp = memcg->css.cgroup;
728 unsigned int swappiness;
729
730 /* root ? */
731 if (cgrp->parent == NULL)
732 return vm_swappiness;
733
734 spin_lock(&memcg->reclaim_param_lock);
735 swappiness = memcg->swappiness;
736 spin_unlock(&memcg->reclaim_param_lock);
737
738 return swappiness;
739}
740
6d61ef40
BS
741/*
742 * Dance down the hierarchy if needed to reclaim memory. We remember the
743 * last child we reclaimed from, so that we don't end up penalizing
744 * one child extensively based on its position in the children list.
745 *
746 * root_mem is the original ancestor that we've been reclaim from.
747 */
748static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
749 gfp_t gfp_mask, bool noswap)
750{
751 struct mem_cgroup *next_mem;
752 int ret = 0;
753
754 /*
755 * Reclaim unconditionally and don't check for return value.
756 * We need to reclaim in the current group and down the tree.
757 * One might think about checking for children before reclaiming,
758 * but there might be left over accounting, even after children
759 * have left.
760 */
a7885eb8
KM
761 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
762 get_swappiness(root_mem));
b85a96c0 763 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40 764 return 0;
670ec2f1
DN
765 if (!root_mem->use_hierarchy)
766 return ret;
6d61ef40
BS
767
768 next_mem = mem_cgroup_get_first_node(root_mem);
769
770 while (next_mem != root_mem) {
54595fe2 771 if (mem_cgroup_is_obsolete(next_mem)) {
6d61ef40 772 mem_cgroup_put(next_mem);
6d61ef40 773 next_mem = mem_cgroup_get_first_node(root_mem);
6d61ef40
BS
774 continue;
775 }
a7885eb8
KM
776 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
777 get_swappiness(next_mem));
b85a96c0 778 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40 779 return 0;
2cb378c8 780 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
6d61ef40 781 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
2cb378c8 782 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
6d61ef40
BS
783 }
784 return ret;
785}
786
a636b327
KH
787bool mem_cgroup_oom_called(struct task_struct *task)
788{
789 bool ret = false;
790 struct mem_cgroup *mem;
791 struct mm_struct *mm;
792
793 rcu_read_lock();
794 mm = task->mm;
795 if (!mm)
796 mm = &init_mm;
797 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
798 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
799 ret = true;
800 rcu_read_unlock();
801 return ret;
802}
f817ed48
KH
803/*
804 * Unlike exported interface, "oom" parameter is added. if oom==true,
805 * oom-killer can be invoked.
8a9f3ccd 806 */
f817ed48 807static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
808 gfp_t gfp_mask, struct mem_cgroup **memcg,
809 bool oom)
8a9f3ccd 810{
6d61ef40 811 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 812 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 813 struct res_counter *fail_res;
a636b327
KH
814
815 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
816 /* Don't account this! */
817 *memcg = NULL;
818 return 0;
819 }
820
8a9f3ccd 821 /*
3be91277
HD
822 * We always charge the cgroup the mm_struct belongs to.
823 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
824 * thread group leader migrates. It's possible that mm is not
825 * set, if so charge the init_mm (happens for pagecache usage).
826 */
54595fe2
KH
827 mem = *memcg;
828 if (likely(!mem)) {
829 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 830 *memcg = mem;
e8589cc1 831 } else {
7a81b88c 832 css_get(&mem->css);
e8589cc1 833 }
54595fe2
KH
834 if (unlikely(!mem))
835 return 0;
836
837 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
8a9f3ccd 838
8c7c6e34
KH
839 while (1) {
840 int ret;
841 bool noswap = false;
7a81b88c 842
28dbc4b6 843 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
844 if (likely(!ret)) {
845 if (!do_swap_account)
846 break;
28dbc4b6
BS
847 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
848 &fail_res);
8c7c6e34
KH
849 if (likely(!ret))
850 break;
851 /* mem+swap counter fails */
852 res_counter_uncharge(&mem->res, PAGE_SIZE);
853 noswap = true;
6d61ef40
BS
854 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
855 memsw);
856 } else
857 /* mem counter fails */
858 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
859 res);
860
3be91277 861 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 862 goto nomem;
e1a1cd59 863
6d61ef40
BS
864 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
865 noswap);
66e1707b
BS
866
867 /*
8869b8f6
HD
868 * try_to_free_mem_cgroup_pages() might not give us a full
869 * picture of reclaim. Some pages are reclaimed and might be
870 * moved to swap cache or just unmapped from the cgroup.
871 * Check the limit again to see if the reclaim reduced the
872 * current usage of the cgroup before giving up
8c7c6e34 873 *
8869b8f6 874 */
b85a96c0
DN
875 if (mem_cgroup_check_under_limit(mem_over_limit))
876 continue;
3be91277
HD
877
878 if (!nr_retries--) {
a636b327 879 if (oom) {
7f4d454d 880 mutex_lock(&memcg_tasklist);
88700756 881 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 882 mutex_unlock(&memcg_tasklist);
88700756 883 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 884 }
7a81b88c 885 goto nomem;
66e1707b 886 }
8a9f3ccd 887 }
7a81b88c
KH
888 return 0;
889nomem:
890 css_put(&mem->css);
891 return -ENOMEM;
892}
8a9f3ccd 893
b5a84319
KH
894static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
895{
896 struct mem_cgroup *mem;
897 swp_entry_t ent;
898
899 if (!PageSwapCache(page))
900 return NULL;
901
902 ent.val = page_private(page);
903 mem = lookup_swap_cgroup(ent);
904 if (!mem)
905 return NULL;
906 if (!css_tryget(&mem->css))
907 return NULL;
908 return mem;
909}
910
7a81b88c 911/*
a5e924f5 912 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
913 * USED state. If already USED, uncharge and return.
914 */
915
916static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
917 struct page_cgroup *pc,
918 enum charge_type ctype)
919{
7a81b88c
KH
920 /* try_charge() can return NULL to *memcg, taking care of it. */
921 if (!mem)
922 return;
52d4b9ac
KH
923
924 lock_page_cgroup(pc);
925 if (unlikely(PageCgroupUsed(pc))) {
926 unlock_page_cgroup(pc);
927 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
928 if (do_swap_account)
929 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 930 css_put(&mem->css);
7a81b88c 931 return;
52d4b9ac 932 }
8a9f3ccd 933 pc->mem_cgroup = mem;
08e552c6 934 smp_wmb();
c05555b5 935 pc->flags = pcg_default_flags[ctype];
3be91277 936
08e552c6 937 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 938
52d4b9ac 939 unlock_page_cgroup(pc);
7a81b88c 940}
66e1707b 941
f817ed48
KH
942/**
943 * mem_cgroup_move_account - move account of the page
944 * @pc: page_cgroup of the page.
945 * @from: mem_cgroup which the page is moved from.
946 * @to: mem_cgroup which the page is moved to. @from != @to.
947 *
948 * The caller must confirm following.
08e552c6 949 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
950 *
951 * returns 0 at success,
952 * returns -EBUSY when lock is busy or "pc" is unstable.
953 *
954 * This function does "uncharge" from old cgroup but doesn't do "charge" to
955 * new cgroup. It should be done by a caller.
956 */
957
958static int mem_cgroup_move_account(struct page_cgroup *pc,
959 struct mem_cgroup *from, struct mem_cgroup *to)
960{
961 struct mem_cgroup_per_zone *from_mz, *to_mz;
962 int nid, zid;
963 int ret = -EBUSY;
964
f817ed48 965 VM_BUG_ON(from == to);
08e552c6 966 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
967
968 nid = page_cgroup_nid(pc);
969 zid = page_cgroup_zid(pc);
970 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
971 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
972
f817ed48
KH
973 if (!trylock_page_cgroup(pc))
974 return ret;
975
976 if (!PageCgroupUsed(pc))
977 goto out;
978
979 if (pc->mem_cgroup != from)
980 goto out;
981
08e552c6
KH
982 css_put(&from->css);
983 res_counter_uncharge(&from->res, PAGE_SIZE);
984 mem_cgroup_charge_statistics(from, pc, false);
985 if (do_swap_account)
986 res_counter_uncharge(&from->memsw, PAGE_SIZE);
987 pc->mem_cgroup = to;
988 mem_cgroup_charge_statistics(to, pc, true);
989 css_get(&to->css);
990 ret = 0;
f817ed48
KH
991out:
992 unlock_page_cgroup(pc);
993 return ret;
994}
995
996/*
997 * move charges to its parent.
998 */
999
1000static int mem_cgroup_move_parent(struct page_cgroup *pc,
1001 struct mem_cgroup *child,
1002 gfp_t gfp_mask)
1003{
08e552c6 1004 struct page *page = pc->page;
f817ed48
KH
1005 struct cgroup *cg = child->css.cgroup;
1006 struct cgroup *pcg = cg->parent;
1007 struct mem_cgroup *parent;
f817ed48
KH
1008 int ret;
1009
1010 /* Is ROOT ? */
1011 if (!pcg)
1012 return -EINVAL;
1013
08e552c6 1014
f817ed48
KH
1015 parent = mem_cgroup_from_cont(pcg);
1016
08e552c6 1017
f817ed48 1018 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1019 if (ret || !parent)
f817ed48
KH
1020 return ret;
1021
08e552c6
KH
1022 if (!get_page_unless_zero(page))
1023 return -EBUSY;
1024
1025 ret = isolate_lru_page(page);
1026
1027 if (ret)
1028 goto cancel;
f817ed48 1029
f817ed48 1030 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1031
08e552c6 1032 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 1033 css_put(&parent->css);
08e552c6
KH
1034 putback_lru_page(page);
1035 if (!ret) {
1036 put_page(page);
1037 return 0;
8c7c6e34 1038 }
08e552c6
KH
1039 /* uncharge if move fails */
1040cancel:
1041 res_counter_uncharge(&parent->res, PAGE_SIZE);
1042 if (do_swap_account)
1043 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1044 put_page(page);
f817ed48
KH
1045 return ret;
1046}
1047
7a81b88c
KH
1048/*
1049 * Charge the memory controller for page usage.
1050 * Return
1051 * 0 if the charge was successful
1052 * < 0 if the cgroup is over its limit
1053 */
1054static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1055 gfp_t gfp_mask, enum charge_type ctype,
1056 struct mem_cgroup *memcg)
1057{
1058 struct mem_cgroup *mem;
1059 struct page_cgroup *pc;
1060 int ret;
1061
1062 pc = lookup_page_cgroup(page);
1063 /* can happen at boot */
1064 if (unlikely(!pc))
1065 return 0;
1066 prefetchw(pc);
1067
1068 mem = memcg;
f817ed48 1069 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1070 if (ret || !mem)
7a81b88c
KH
1071 return ret;
1072
1073 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1074 return 0;
8a9f3ccd
BS
1075}
1076
7a81b88c
KH
1077int mem_cgroup_newpage_charge(struct page *page,
1078 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1079{
f8d66542 1080 if (mem_cgroup_disabled())
cede86ac 1081 return 0;
52d4b9ac
KH
1082 if (PageCompound(page))
1083 return 0;
69029cd5
KH
1084 /*
1085 * If already mapped, we don't have to account.
1086 * If page cache, page->mapping has address_space.
1087 * But page->mapping may have out-of-use anon_vma pointer,
1088 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1089 * is NULL.
1090 */
1091 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1092 return 0;
1093 if (unlikely(!mm))
1094 mm = &init_mm;
217bc319 1095 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1096 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1097}
1098
e1a1cd59
BS
1099int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1100 gfp_t gfp_mask)
8697d331 1101{
b5a84319
KH
1102 struct mem_cgroup *mem = NULL;
1103 int ret;
1104
f8d66542 1105 if (mem_cgroup_disabled())
cede86ac 1106 return 0;
52d4b9ac
KH
1107 if (PageCompound(page))
1108 return 0;
accf163e
KH
1109 /*
1110 * Corner case handling. This is called from add_to_page_cache()
1111 * in usual. But some FS (shmem) precharges this page before calling it
1112 * and call add_to_page_cache() with GFP_NOWAIT.
1113 *
1114 * For GFP_NOWAIT case, the page may be pre-charged before calling
1115 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1116 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1117 * And when the page is SwapCache, it should take swap information
1118 * into account. This is under lock_page() now.
accf163e
KH
1119 */
1120 if (!(gfp_mask & __GFP_WAIT)) {
1121 struct page_cgroup *pc;
1122
52d4b9ac
KH
1123
1124 pc = lookup_page_cgroup(page);
1125 if (!pc)
1126 return 0;
1127 lock_page_cgroup(pc);
1128 if (PageCgroupUsed(pc)) {
1129 unlock_page_cgroup(pc);
accf163e
KH
1130 return 0;
1131 }
52d4b9ac 1132 unlock_page_cgroup(pc);
accf163e
KH
1133 }
1134
b5a84319
KH
1135 if (do_swap_account && PageSwapCache(page)) {
1136 mem = try_get_mem_cgroup_from_swapcache(page);
1137 if (mem)
1138 mm = NULL;
1139 else
1140 mem = NULL;
1141 /* SwapCache may be still linked to LRU now. */
1142 mem_cgroup_lru_del_before_commit_swapcache(page);
1143 }
1144
1145 if (unlikely(!mm && !mem))
8697d331 1146 mm = &init_mm;
accf163e 1147
c05555b5
KH
1148 if (page_is_file_cache(page))
1149 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1150 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319
KH
1151
1152 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1153 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1154 if (mem)
1155 css_put(&mem->css);
1156 if (PageSwapCache(page))
1157 mem_cgroup_lru_add_after_commit_swapcache(page);
1158
1159 if (do_swap_account && !ret && PageSwapCache(page)) {
1160 swp_entry_t ent = {.val = page_private(page)};
1161 /* avoid double counting */
1162 mem = swap_cgroup_record(ent, NULL);
1163 if (mem) {
1164 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1165 mem_cgroup_put(mem);
1166 }
1167 }
1168 return ret;
e8589cc1
KH
1169}
1170
54595fe2
KH
1171/*
1172 * While swap-in, try_charge -> commit or cancel, the page is locked.
1173 * And when try_charge() successfully returns, one refcnt to memcg without
1174 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1175 * "commit()" or removed by "cancel()"
1176 */
8c7c6e34
KH
1177int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1178 struct page *page,
1179 gfp_t mask, struct mem_cgroup **ptr)
1180{
1181 struct mem_cgroup *mem;
54595fe2 1182 int ret;
8c7c6e34 1183
f8d66542 1184 if (mem_cgroup_disabled())
8c7c6e34
KH
1185 return 0;
1186
1187 if (!do_swap_account)
1188 goto charge_cur_mm;
8c7c6e34
KH
1189 /*
1190 * A racing thread's fault, or swapoff, may have already updated
1191 * the pte, and even removed page from swap cache: return success
1192 * to go on to do_swap_page()'s pte_same() test, which should fail.
1193 */
1194 if (!PageSwapCache(page))
1195 return 0;
b5a84319 1196 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1197 if (!mem)
1198 goto charge_cur_mm;
8c7c6e34 1199 *ptr = mem;
54595fe2
KH
1200 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1201 /* drop extra refcnt from tryget */
1202 css_put(&mem->css);
1203 return ret;
8c7c6e34
KH
1204charge_cur_mm:
1205 if (unlikely(!mm))
1206 mm = &init_mm;
1207 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1208}
1209
7a81b88c
KH
1210void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1211{
1212 struct page_cgroup *pc;
1213
f8d66542 1214 if (mem_cgroup_disabled())
7a81b88c
KH
1215 return;
1216 if (!ptr)
1217 return;
1218 pc = lookup_page_cgroup(page);
544122e5 1219 mem_cgroup_lru_del_before_commit_swapcache(page);
7a81b88c 1220 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
544122e5 1221 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1222 /*
1223 * Now swap is on-memory. This means this page may be
1224 * counted both as mem and swap....double count.
03f3c433
KH
1225 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1226 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1227 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1228 */
03f3c433 1229 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34
KH
1230 swp_entry_t ent = {.val = page_private(page)};
1231 struct mem_cgroup *memcg;
1232 memcg = swap_cgroup_record(ent, NULL);
1233 if (memcg) {
8c7c6e34
KH
1234 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1235 mem_cgroup_put(memcg);
1236 }
1237
1238 }
08e552c6 1239 /* add this page(page_cgroup) to the LRU we want. */
544122e5 1240
7a81b88c
KH
1241}
1242
1243void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1244{
f8d66542 1245 if (mem_cgroup_disabled())
7a81b88c
KH
1246 return;
1247 if (!mem)
1248 return;
1249 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1250 if (do_swap_account)
1251 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1252 css_put(&mem->css);
1253}
1254
1255
8a9f3ccd 1256/*
69029cd5 1257 * uncharge if !page_mapped(page)
8a9f3ccd 1258 */
8c7c6e34 1259static struct mem_cgroup *
69029cd5 1260__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1261{
8289546e 1262 struct page_cgroup *pc;
8c7c6e34 1263 struct mem_cgroup *mem = NULL;
072c56c1 1264 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1265
f8d66542 1266 if (mem_cgroup_disabled())
8c7c6e34 1267 return NULL;
4077960e 1268
d13d1443 1269 if (PageSwapCache(page))
8c7c6e34 1270 return NULL;
d13d1443 1271
8697d331 1272 /*
3c541e14 1273 * Check if our page_cgroup is valid
8697d331 1274 */
52d4b9ac
KH
1275 pc = lookup_page_cgroup(page);
1276 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1277 return NULL;
b9c565d5 1278
52d4b9ac 1279 lock_page_cgroup(pc);
d13d1443 1280
8c7c6e34
KH
1281 mem = pc->mem_cgroup;
1282
d13d1443
KH
1283 if (!PageCgroupUsed(pc))
1284 goto unlock_out;
1285
1286 switch (ctype) {
1287 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1288 if (page_mapped(page))
1289 goto unlock_out;
1290 break;
1291 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1292 if (!PageAnon(page)) { /* Shared memory */
1293 if (page->mapping && !page_is_file_cache(page))
1294 goto unlock_out;
1295 } else if (page_mapped(page)) /* Anon */
1296 goto unlock_out;
1297 break;
1298 default:
1299 break;
52d4b9ac 1300 }
d13d1443 1301
8c7c6e34
KH
1302 res_counter_uncharge(&mem->res, PAGE_SIZE);
1303 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1304 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1305
08e552c6 1306 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1307 ClearPageCgroupUsed(pc);
544122e5
KH
1308 /*
1309 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1310 * freed from LRU. This is safe because uncharged page is expected not
1311 * to be reused (freed soon). Exception is SwapCache, it's handled by
1312 * special functions.
1313 */
b9c565d5 1314
69029cd5 1315 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1316 unlock_page_cgroup(pc);
fb59e9f1 1317
a7fe942e
KH
1318 /* at swapout, this memcg will be accessed to record to swap */
1319 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1320 css_put(&mem->css);
6d12e2d8 1321
8c7c6e34 1322 return mem;
d13d1443
KH
1323
1324unlock_out:
1325 unlock_page_cgroup(pc);
8c7c6e34 1326 return NULL;
3c541e14
BS
1327}
1328
69029cd5
KH
1329void mem_cgroup_uncharge_page(struct page *page)
1330{
52d4b9ac
KH
1331 /* early check. */
1332 if (page_mapped(page))
1333 return;
1334 if (page->mapping && !PageAnon(page))
1335 return;
69029cd5
KH
1336 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1337}
1338
1339void mem_cgroup_uncharge_cache_page(struct page *page)
1340{
1341 VM_BUG_ON(page_mapped(page));
b7abea96 1342 VM_BUG_ON(page->mapping);
69029cd5
KH
1343 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1344}
1345
8c7c6e34
KH
1346/*
1347 * called from __delete_from_swap_cache() and drop "page" account.
1348 * memcg information is recorded to swap_cgroup of "ent"
1349 */
1350void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1351{
1352 struct mem_cgroup *memcg;
1353
1354 memcg = __mem_cgroup_uncharge_common(page,
1355 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1356 /* record memcg information */
1357 if (do_swap_account && memcg) {
1358 swap_cgroup_record(ent, memcg);
1359 mem_cgroup_get(memcg);
1360 }
a7fe942e
KH
1361 if (memcg)
1362 css_put(&memcg->css);
8c7c6e34
KH
1363}
1364
1365#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1366/*
1367 * called from swap_entry_free(). remove record in swap_cgroup and
1368 * uncharge "memsw" account.
1369 */
1370void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1371{
8c7c6e34
KH
1372 struct mem_cgroup *memcg;
1373
1374 if (!do_swap_account)
1375 return;
1376
1377 memcg = swap_cgroup_record(ent, NULL);
1378 if (memcg) {
1379 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1380 mem_cgroup_put(memcg);
1381 }
d13d1443 1382}
8c7c6e34 1383#endif
d13d1443 1384
ae41be37 1385/*
01b1ae63
KH
1386 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1387 * page belongs to.
ae41be37 1388 */
01b1ae63 1389int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1390{
1391 struct page_cgroup *pc;
e8589cc1 1392 struct mem_cgroup *mem = NULL;
e8589cc1 1393 int ret = 0;
8869b8f6 1394
f8d66542 1395 if (mem_cgroup_disabled())
4077960e
BS
1396 return 0;
1397
52d4b9ac
KH
1398 pc = lookup_page_cgroup(page);
1399 lock_page_cgroup(pc);
1400 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1401 mem = pc->mem_cgroup;
1402 css_get(&mem->css);
e8589cc1 1403 }
52d4b9ac 1404 unlock_page_cgroup(pc);
01b1ae63 1405
e8589cc1 1406 if (mem) {
3bb4edf2 1407 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1408 css_put(&mem->css);
1409 }
01b1ae63 1410 *ptr = mem;
e8589cc1 1411 return ret;
ae41be37 1412}
8869b8f6 1413
69029cd5 1414/* remove redundant charge if migration failed*/
01b1ae63
KH
1415void mem_cgroup_end_migration(struct mem_cgroup *mem,
1416 struct page *oldpage, struct page *newpage)
ae41be37 1417{
01b1ae63
KH
1418 struct page *target, *unused;
1419 struct page_cgroup *pc;
1420 enum charge_type ctype;
1421
1422 if (!mem)
1423 return;
1424
1425 /* at migration success, oldpage->mapping is NULL. */
1426 if (oldpage->mapping) {
1427 target = oldpage;
1428 unused = NULL;
1429 } else {
1430 target = newpage;
1431 unused = oldpage;
1432 }
1433
1434 if (PageAnon(target))
1435 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1436 else if (page_is_file_cache(target))
1437 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1438 else
1439 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1440
1441 /* unused page is not on radix-tree now. */
d13d1443 1442 if (unused)
01b1ae63
KH
1443 __mem_cgroup_uncharge_common(unused, ctype);
1444
1445 pc = lookup_page_cgroup(target);
69029cd5 1446 /*
01b1ae63
KH
1447 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1448 * So, double-counting is effectively avoided.
1449 */
1450 __mem_cgroup_commit_charge(mem, pc, ctype);
1451
1452 /*
1453 * Both of oldpage and newpage are still under lock_page().
1454 * Then, we don't have to care about race in radix-tree.
1455 * But we have to be careful that this page is unmapped or not.
1456 *
1457 * There is a case for !page_mapped(). At the start of
1458 * migration, oldpage was mapped. But now, it's zapped.
1459 * But we know *target* page is not freed/reused under us.
1460 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1461 */
01b1ae63
KH
1462 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1463 mem_cgroup_uncharge_page(target);
ae41be37 1464}
78fb7466 1465
c9b0ed51
KH
1466/*
1467 * A call to try to shrink memory usage under specified resource controller.
1468 * This is typically used for page reclaiming for shmem for reducing side
1469 * effect of page allocation from shmem, which is used by some mem_cgroup.
1470 */
b5a84319
KH
1471int mem_cgroup_shrink_usage(struct page *page,
1472 struct mm_struct *mm,
1473 gfp_t gfp_mask)
c9b0ed51 1474{
b5a84319 1475 struct mem_cgroup *mem = NULL;
c9b0ed51
KH
1476 int progress = 0;
1477 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1478
f8d66542 1479 if (mem_cgroup_disabled())
cede86ac 1480 return 0;
b5a84319
KH
1481 if (page)
1482 mem = try_get_mem_cgroup_from_swapcache(page);
1483 if (!mem && mm)
1484 mem = try_get_mem_cgroup_from_mm(mm);
54595fe2 1485 if (unlikely(!mem))
31a78f23 1486 return 0;
c9b0ed51
KH
1487
1488 do {
42e9abb6 1489 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
b85a96c0 1490 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1491 } while (!progress && --retry);
1492
1493 css_put(&mem->css);
1494 if (!retry)
1495 return -ENOMEM;
1496 return 0;
1497}
1498
8c7c6e34
KH
1499static DEFINE_MUTEX(set_limit_mutex);
1500
d38d2a75 1501static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1502 unsigned long long val)
628f4235
KH
1503{
1504
1505 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1506 int progress;
8c7c6e34 1507 u64 memswlimit;
628f4235
KH
1508 int ret = 0;
1509
8c7c6e34 1510 while (retry_count) {
628f4235
KH
1511 if (signal_pending(current)) {
1512 ret = -EINTR;
1513 break;
1514 }
8c7c6e34
KH
1515 /*
1516 * Rather than hide all in some function, I do this in
1517 * open coded manner. You see what this really does.
1518 * We have to guarantee mem->res.limit < mem->memsw.limit.
1519 */
1520 mutex_lock(&set_limit_mutex);
1521 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1522 if (memswlimit < val) {
1523 ret = -EINVAL;
1524 mutex_unlock(&set_limit_mutex);
628f4235
KH
1525 break;
1526 }
8c7c6e34
KH
1527 ret = res_counter_set_limit(&memcg->res, val);
1528 mutex_unlock(&set_limit_mutex);
1529
1530 if (!ret)
1531 break;
1532
42e9abb6
DN
1533 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1534 false);
8c7c6e34
KH
1535 if (!progress) retry_count--;
1536 }
14797e23 1537
8c7c6e34
KH
1538 return ret;
1539}
1540
1541int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1542 unsigned long long val)
1543{
1544 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1545 u64 memlimit, oldusage, curusage;
1546 int ret;
1547
1548 if (!do_swap_account)
1549 return -EINVAL;
1550
1551 while (retry_count) {
1552 if (signal_pending(current)) {
1553 ret = -EINTR;
1554 break;
1555 }
1556 /*
1557 * Rather than hide all in some function, I do this in
1558 * open coded manner. You see what this really does.
1559 * We have to guarantee mem->res.limit < mem->memsw.limit.
1560 */
1561 mutex_lock(&set_limit_mutex);
1562 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1563 if (memlimit > val) {
1564 ret = -EINVAL;
1565 mutex_unlock(&set_limit_mutex);
1566 break;
1567 }
1568 ret = res_counter_set_limit(&memcg->memsw, val);
1569 mutex_unlock(&set_limit_mutex);
1570
1571 if (!ret)
1572 break;
1573
1574 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
42e9abb6 1575 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1576 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1577 if (curusage >= oldusage)
628f4235
KH
1578 retry_count--;
1579 }
1580 return ret;
1581}
1582
cc847582
KH
1583/*
1584 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1585 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1586 */
f817ed48 1587static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1588 int node, int zid, enum lru_list lru)
cc847582 1589{
08e552c6
KH
1590 struct zone *zone;
1591 struct mem_cgroup_per_zone *mz;
f817ed48 1592 struct page_cgroup *pc, *busy;
08e552c6 1593 unsigned long flags, loop;
072c56c1 1594 struct list_head *list;
f817ed48 1595 int ret = 0;
072c56c1 1596
08e552c6
KH
1597 zone = &NODE_DATA(node)->node_zones[zid];
1598 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1599 list = &mz->lists[lru];
cc847582 1600
f817ed48
KH
1601 loop = MEM_CGROUP_ZSTAT(mz, lru);
1602 /* give some margin against EBUSY etc...*/
1603 loop += 256;
1604 busy = NULL;
1605 while (loop--) {
1606 ret = 0;
08e552c6 1607 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1608 if (list_empty(list)) {
08e552c6 1609 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1610 break;
f817ed48
KH
1611 }
1612 pc = list_entry(list->prev, struct page_cgroup, lru);
1613 if (busy == pc) {
1614 list_move(&pc->lru, list);
1615 busy = 0;
08e552c6 1616 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1617 continue;
1618 }
08e552c6 1619 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1620
2c26fdd7 1621 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1622 if (ret == -ENOMEM)
52d4b9ac 1623 break;
f817ed48
KH
1624
1625 if (ret == -EBUSY || ret == -EINVAL) {
1626 /* found lock contention or "pc" is obsolete. */
1627 busy = pc;
1628 cond_resched();
1629 } else
1630 busy = NULL;
cc847582 1631 }
08e552c6 1632
f817ed48
KH
1633 if (!ret && !list_empty(list))
1634 return -EBUSY;
1635 return ret;
cc847582
KH
1636}
1637
1638/*
1639 * make mem_cgroup's charge to be 0 if there is no task.
1640 * This enables deleting this mem_cgroup.
1641 */
c1e862c1 1642static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1643{
f817ed48
KH
1644 int ret;
1645 int node, zid, shrink;
1646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1647 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1648
cc847582 1649 css_get(&mem->css);
f817ed48
KH
1650
1651 shrink = 0;
c1e862c1
KH
1652 /* should free all ? */
1653 if (free_all)
1654 goto try_to_free;
f817ed48 1655move_account:
1ecaab2b 1656 while (mem->res.usage > 0) {
f817ed48 1657 ret = -EBUSY;
c1e862c1
KH
1658 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1659 goto out;
1660 ret = -EINTR;
1661 if (signal_pending(current))
cc847582 1662 goto out;
52d4b9ac
KH
1663 /* This is for making all *used* pages to be on LRU. */
1664 lru_add_drain_all();
f817ed48
KH
1665 ret = 0;
1666 for_each_node_state(node, N_POSSIBLE) {
1667 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1668 enum lru_list l;
f817ed48
KH
1669 for_each_lru(l) {
1670 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1671 node, zid, l);
f817ed48
KH
1672 if (ret)
1673 break;
1674 }
1ecaab2b 1675 }
f817ed48
KH
1676 if (ret)
1677 break;
1678 }
1679 /* it seems parent cgroup doesn't have enough mem */
1680 if (ret == -ENOMEM)
1681 goto try_to_free;
52d4b9ac 1682 cond_resched();
cc847582
KH
1683 }
1684 ret = 0;
1685out:
1686 css_put(&mem->css);
1687 return ret;
f817ed48
KH
1688
1689try_to_free:
c1e862c1
KH
1690 /* returns EBUSY if there is a task or if we come here twice. */
1691 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1692 ret = -EBUSY;
1693 goto out;
1694 }
c1e862c1
KH
1695 /* we call try-to-free pages for make this cgroup empty */
1696 lru_add_drain_all();
f817ed48
KH
1697 /* try to free all pages in this cgroup */
1698 shrink = 1;
1699 while (nr_retries && mem->res.usage > 0) {
1700 int progress;
c1e862c1
KH
1701
1702 if (signal_pending(current)) {
1703 ret = -EINTR;
1704 goto out;
1705 }
a7885eb8
KM
1706 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1707 false, get_swappiness(mem));
c1e862c1 1708 if (!progress) {
f817ed48 1709 nr_retries--;
c1e862c1
KH
1710 /* maybe some writeback is necessary */
1711 congestion_wait(WRITE, HZ/10);
1712 }
f817ed48
KH
1713
1714 }
08e552c6 1715 lru_add_drain();
f817ed48
KH
1716 /* try move_account...there may be some *locked* pages. */
1717 if (mem->res.usage)
1718 goto move_account;
1719 ret = 0;
1720 goto out;
cc847582
KH
1721}
1722
c1e862c1
KH
1723int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1724{
1725 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1726}
1727
1728
18f59ea7
BS
1729static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1730{
1731 return mem_cgroup_from_cont(cont)->use_hierarchy;
1732}
1733
1734static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1735 u64 val)
1736{
1737 int retval = 0;
1738 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1739 struct cgroup *parent = cont->parent;
1740 struct mem_cgroup *parent_mem = NULL;
1741
1742 if (parent)
1743 parent_mem = mem_cgroup_from_cont(parent);
1744
1745 cgroup_lock();
1746 /*
1747 * If parent's use_hiearchy is set, we can't make any modifications
1748 * in the child subtrees. If it is unset, then the change can
1749 * occur, provided the current cgroup has no children.
1750 *
1751 * For the root cgroup, parent_mem is NULL, we allow value to be
1752 * set if there are no children.
1753 */
1754 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1755 (val == 1 || val == 0)) {
1756 if (list_empty(&cont->children))
1757 mem->use_hierarchy = val;
1758 else
1759 retval = -EBUSY;
1760 } else
1761 retval = -EINVAL;
1762 cgroup_unlock();
1763
1764 return retval;
1765}
1766
2c3daa72 1767static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1768{
8c7c6e34
KH
1769 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1770 u64 val = 0;
1771 int type, name;
1772
1773 type = MEMFILE_TYPE(cft->private);
1774 name = MEMFILE_ATTR(cft->private);
1775 switch (type) {
1776 case _MEM:
1777 val = res_counter_read_u64(&mem->res, name);
1778 break;
1779 case _MEMSWAP:
1780 if (do_swap_account)
1781 val = res_counter_read_u64(&mem->memsw, name);
1782 break;
1783 default:
1784 BUG();
1785 break;
1786 }
1787 return val;
8cdea7c0 1788}
628f4235
KH
1789/*
1790 * The user of this function is...
1791 * RES_LIMIT.
1792 */
856c13aa
PM
1793static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1794 const char *buffer)
8cdea7c0 1795{
628f4235 1796 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1797 int type, name;
628f4235
KH
1798 unsigned long long val;
1799 int ret;
1800
8c7c6e34
KH
1801 type = MEMFILE_TYPE(cft->private);
1802 name = MEMFILE_ATTR(cft->private);
1803 switch (name) {
628f4235
KH
1804 case RES_LIMIT:
1805 /* This function does all necessary parse...reuse it */
1806 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1807 if (ret)
1808 break;
1809 if (type == _MEM)
628f4235 1810 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1811 else
1812 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1813 break;
1814 default:
1815 ret = -EINVAL; /* should be BUG() ? */
1816 break;
1817 }
1818 return ret;
8cdea7c0
BS
1819}
1820
fee7b548
KH
1821static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1822 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1823{
1824 struct cgroup *cgroup;
1825 unsigned long long min_limit, min_memsw_limit, tmp;
1826
1827 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1828 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1829 cgroup = memcg->css.cgroup;
1830 if (!memcg->use_hierarchy)
1831 goto out;
1832
1833 while (cgroup->parent) {
1834 cgroup = cgroup->parent;
1835 memcg = mem_cgroup_from_cont(cgroup);
1836 if (!memcg->use_hierarchy)
1837 break;
1838 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1839 min_limit = min(min_limit, tmp);
1840 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1841 min_memsw_limit = min(min_memsw_limit, tmp);
1842 }
1843out:
1844 *mem_limit = min_limit;
1845 *memsw_limit = min_memsw_limit;
1846 return;
1847}
1848
29f2a4da 1849static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1850{
1851 struct mem_cgroup *mem;
8c7c6e34 1852 int type, name;
c84872e1
PE
1853
1854 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1855 type = MEMFILE_TYPE(event);
1856 name = MEMFILE_ATTR(event);
1857 switch (name) {
29f2a4da 1858 case RES_MAX_USAGE:
8c7c6e34
KH
1859 if (type == _MEM)
1860 res_counter_reset_max(&mem->res);
1861 else
1862 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1863 break;
1864 case RES_FAILCNT:
8c7c6e34
KH
1865 if (type == _MEM)
1866 res_counter_reset_failcnt(&mem->res);
1867 else
1868 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1869 break;
1870 }
85cc59db 1871 return 0;
c84872e1
PE
1872}
1873
d2ceb9b7
KH
1874static const struct mem_cgroup_stat_desc {
1875 const char *msg;
1876 u64 unit;
1877} mem_cgroup_stat_desc[] = {
1878 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1879 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1880 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1881 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1882};
1883
c64745cf
PM
1884static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1885 struct cgroup_map_cb *cb)
d2ceb9b7 1886{
d2ceb9b7
KH
1887 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1888 struct mem_cgroup_stat *stat = &mem_cont->stat;
1889 int i;
1890
1891 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1892 s64 val;
1893
1894 val = mem_cgroup_read_stat(stat, i);
1895 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1896 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1897 }
6d12e2d8
KH
1898 /* showing # of active pages */
1899 {
4f98a2fe
RR
1900 unsigned long active_anon, inactive_anon;
1901 unsigned long active_file, inactive_file;
7b854121 1902 unsigned long unevictable;
4f98a2fe
RR
1903
1904 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1905 LRU_INACTIVE_ANON);
1906 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1907 LRU_ACTIVE_ANON);
1908 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1909 LRU_INACTIVE_FILE);
1910 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1911 LRU_ACTIVE_FILE);
7b854121
LS
1912 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1913 LRU_UNEVICTABLE);
1914
4f98a2fe
RR
1915 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1916 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1917 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1918 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1919 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1920
6d12e2d8 1921 }
fee7b548
KH
1922 {
1923 unsigned long long limit, memsw_limit;
1924 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1925 cb->fill(cb, "hierarchical_memory_limit", limit);
1926 if (do_swap_account)
1927 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1928 }
7f016ee8
KM
1929
1930#ifdef CONFIG_DEBUG_VM
c772be93 1931 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
1932
1933 {
1934 int nid, zid;
1935 struct mem_cgroup_per_zone *mz;
1936 unsigned long recent_rotated[2] = {0, 0};
1937 unsigned long recent_scanned[2] = {0, 0};
1938
1939 for_each_online_node(nid)
1940 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1941 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1942
1943 recent_rotated[0] +=
1944 mz->reclaim_stat.recent_rotated[0];
1945 recent_rotated[1] +=
1946 mz->reclaim_stat.recent_rotated[1];
1947 recent_scanned[0] +=
1948 mz->reclaim_stat.recent_scanned[0];
1949 recent_scanned[1] +=
1950 mz->reclaim_stat.recent_scanned[1];
1951 }
1952 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1953 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1954 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1955 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1956 }
1957#endif
1958
d2ceb9b7
KH
1959 return 0;
1960}
1961
a7885eb8
KM
1962static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1963{
1964 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1965
1966 return get_swappiness(memcg);
1967}
1968
1969static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1970 u64 val)
1971{
1972 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1973 struct mem_cgroup *parent;
1974 if (val > 100)
1975 return -EINVAL;
1976
1977 if (cgrp->parent == NULL)
1978 return -EINVAL;
1979
1980 parent = mem_cgroup_from_cont(cgrp->parent);
1981 /* If under hierarchy, only empty-root can set this value */
1982 if ((parent->use_hierarchy) ||
1983 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1984 return -EINVAL;
1985
1986 spin_lock(&memcg->reclaim_param_lock);
1987 memcg->swappiness = val;
1988 spin_unlock(&memcg->reclaim_param_lock);
1989
1990 return 0;
1991}
1992
c1e862c1 1993
8cdea7c0
BS
1994static struct cftype mem_cgroup_files[] = {
1995 {
0eea1030 1996 .name = "usage_in_bytes",
8c7c6e34 1997 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1998 .read_u64 = mem_cgroup_read,
8cdea7c0 1999 },
c84872e1
PE
2000 {
2001 .name = "max_usage_in_bytes",
8c7c6e34 2002 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2003 .trigger = mem_cgroup_reset,
c84872e1
PE
2004 .read_u64 = mem_cgroup_read,
2005 },
8cdea7c0 2006 {
0eea1030 2007 .name = "limit_in_bytes",
8c7c6e34 2008 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2009 .write_string = mem_cgroup_write,
2c3daa72 2010 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
2011 },
2012 {
2013 .name = "failcnt",
8c7c6e34 2014 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2015 .trigger = mem_cgroup_reset,
2c3daa72 2016 .read_u64 = mem_cgroup_read,
8cdea7c0 2017 },
d2ceb9b7
KH
2018 {
2019 .name = "stat",
c64745cf 2020 .read_map = mem_control_stat_show,
d2ceb9b7 2021 },
c1e862c1
KH
2022 {
2023 .name = "force_empty",
2024 .trigger = mem_cgroup_force_empty_write,
2025 },
18f59ea7
BS
2026 {
2027 .name = "use_hierarchy",
2028 .write_u64 = mem_cgroup_hierarchy_write,
2029 .read_u64 = mem_cgroup_hierarchy_read,
2030 },
a7885eb8
KM
2031 {
2032 .name = "swappiness",
2033 .read_u64 = mem_cgroup_swappiness_read,
2034 .write_u64 = mem_cgroup_swappiness_write,
2035 },
8cdea7c0
BS
2036};
2037
8c7c6e34
KH
2038#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2039static struct cftype memsw_cgroup_files[] = {
2040 {
2041 .name = "memsw.usage_in_bytes",
2042 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2043 .read_u64 = mem_cgroup_read,
2044 },
2045 {
2046 .name = "memsw.max_usage_in_bytes",
2047 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2048 .trigger = mem_cgroup_reset,
2049 .read_u64 = mem_cgroup_read,
2050 },
2051 {
2052 .name = "memsw.limit_in_bytes",
2053 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2054 .write_string = mem_cgroup_write,
2055 .read_u64 = mem_cgroup_read,
2056 },
2057 {
2058 .name = "memsw.failcnt",
2059 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2060 .trigger = mem_cgroup_reset,
2061 .read_u64 = mem_cgroup_read,
2062 },
2063};
2064
2065static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2066{
2067 if (!do_swap_account)
2068 return 0;
2069 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2070 ARRAY_SIZE(memsw_cgroup_files));
2071};
2072#else
2073static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2074{
2075 return 0;
2076}
2077#endif
2078
6d12e2d8
KH
2079static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2080{
2081 struct mem_cgroup_per_node *pn;
1ecaab2b 2082 struct mem_cgroup_per_zone *mz;
b69408e8 2083 enum lru_list l;
41e3355d 2084 int zone, tmp = node;
1ecaab2b
KH
2085 /*
2086 * This routine is called against possible nodes.
2087 * But it's BUG to call kmalloc() against offline node.
2088 *
2089 * TODO: this routine can waste much memory for nodes which will
2090 * never be onlined. It's better to use memory hotplug callback
2091 * function.
2092 */
41e3355d
KH
2093 if (!node_state(node, N_NORMAL_MEMORY))
2094 tmp = -1;
2095 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2096 if (!pn)
2097 return 1;
1ecaab2b 2098
6d12e2d8
KH
2099 mem->info.nodeinfo[node] = pn;
2100 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2101
2102 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2103 mz = &pn->zoneinfo[zone];
b69408e8
CL
2104 for_each_lru(l)
2105 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2106 }
6d12e2d8
KH
2107 return 0;
2108}
2109
1ecaab2b
KH
2110static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2111{
2112 kfree(mem->info.nodeinfo[node]);
2113}
2114
c8dad2bb
JB
2115static int mem_cgroup_size(void)
2116{
2117 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2118 return sizeof(struct mem_cgroup) + cpustat_size;
2119}
2120
33327948
KH
2121static struct mem_cgroup *mem_cgroup_alloc(void)
2122{
2123 struct mem_cgroup *mem;
c8dad2bb 2124 int size = mem_cgroup_size();
33327948 2125
c8dad2bb
JB
2126 if (size < PAGE_SIZE)
2127 mem = kmalloc(size, GFP_KERNEL);
33327948 2128 else
c8dad2bb 2129 mem = vmalloc(size);
33327948
KH
2130
2131 if (mem)
c8dad2bb 2132 memset(mem, 0, size);
33327948
KH
2133 return mem;
2134}
2135
8c7c6e34
KH
2136/*
2137 * At destroying mem_cgroup, references from swap_cgroup can remain.
2138 * (scanning all at force_empty is too costly...)
2139 *
2140 * Instead of clearing all references at force_empty, we remember
2141 * the number of reference from swap_cgroup and free mem_cgroup when
2142 * it goes down to 0.
2143 *
8c7c6e34
KH
2144 * Removal of cgroup itself succeeds regardless of refs from swap.
2145 */
2146
a7ba0eef 2147static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2148{
08e552c6
KH
2149 int node;
2150
08e552c6
KH
2151 for_each_node_state(node, N_POSSIBLE)
2152 free_mem_cgroup_per_zone_info(mem, node);
2153
c8dad2bb 2154 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2155 kfree(mem);
2156 else
2157 vfree(mem);
2158}
2159
8c7c6e34
KH
2160static void mem_cgroup_get(struct mem_cgroup *mem)
2161{
2162 atomic_inc(&mem->refcnt);
2163}
2164
2165static void mem_cgroup_put(struct mem_cgroup *mem)
2166{
a7ba0eef
KH
2167 if (atomic_dec_and_test(&mem->refcnt))
2168 __mem_cgroup_free(mem);
8c7c6e34
KH
2169}
2170
33327948 2171
c077719b
KH
2172#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2173static void __init enable_swap_cgroup(void)
2174{
f8d66542 2175 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2176 do_swap_account = 1;
2177}
2178#else
2179static void __init enable_swap_cgroup(void)
2180{
2181}
2182#endif
2183
8cdea7c0
BS
2184static struct cgroup_subsys_state *
2185mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2186{
28dbc4b6 2187 struct mem_cgroup *mem, *parent;
6d12e2d8 2188 int node;
8cdea7c0 2189
c8dad2bb
JB
2190 mem = mem_cgroup_alloc();
2191 if (!mem)
2192 return ERR_PTR(-ENOMEM);
78fb7466 2193
6d12e2d8
KH
2194 for_each_node_state(node, N_POSSIBLE)
2195 if (alloc_mem_cgroup_per_zone_info(mem, node))
2196 goto free_out;
c077719b 2197 /* root ? */
28dbc4b6 2198 if (cont->parent == NULL) {
c077719b 2199 enable_swap_cgroup();
28dbc4b6 2200 parent = NULL;
18f59ea7 2201 } else {
28dbc4b6 2202 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2203 mem->use_hierarchy = parent->use_hierarchy;
2204 }
28dbc4b6 2205
18f59ea7
BS
2206 if (parent && parent->use_hierarchy) {
2207 res_counter_init(&mem->res, &parent->res);
2208 res_counter_init(&mem->memsw, &parent->memsw);
2209 } else {
2210 res_counter_init(&mem->res, NULL);
2211 res_counter_init(&mem->memsw, NULL);
2212 }
6d61ef40 2213 mem->last_scanned_child = NULL;
2733c06a 2214 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2215
a7885eb8
KM
2216 if (parent)
2217 mem->swappiness = get_swappiness(parent);
a7ba0eef 2218 atomic_set(&mem->refcnt, 1);
8cdea7c0 2219 return &mem->css;
6d12e2d8 2220free_out:
a7ba0eef 2221 __mem_cgroup_free(mem);
2dda81ca 2222 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
2223}
2224
df878fb0
KH
2225static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2226 struct cgroup *cont)
2227{
2228 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c1e862c1 2229 mem_cgroup_force_empty(mem, false);
df878fb0
KH
2230}
2231
8cdea7c0
BS
2232static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2233 struct cgroup *cont)
2234{
a7ba0eef 2235 mem_cgroup_put(mem_cgroup_from_cont(cont));
8cdea7c0
BS
2236}
2237
2238static int mem_cgroup_populate(struct cgroup_subsys *ss,
2239 struct cgroup *cont)
2240{
8c7c6e34
KH
2241 int ret;
2242
2243 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2244 ARRAY_SIZE(mem_cgroup_files));
2245
2246 if (!ret)
2247 ret = register_memsw_files(cont, ss);
2248 return ret;
8cdea7c0
BS
2249}
2250
67e465a7
BS
2251static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2252 struct cgroup *cont,
2253 struct cgroup *old_cont,
2254 struct task_struct *p)
2255{
7f4d454d 2256 mutex_lock(&memcg_tasklist);
67e465a7 2257 /*
f9717d28
NK
2258 * FIXME: It's better to move charges of this process from old
2259 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2260 */
7f4d454d 2261 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2262}
2263
8cdea7c0
BS
2264struct cgroup_subsys mem_cgroup_subsys = {
2265 .name = "memory",
2266 .subsys_id = mem_cgroup_subsys_id,
2267 .create = mem_cgroup_create,
df878fb0 2268 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2269 .destroy = mem_cgroup_destroy,
2270 .populate = mem_cgroup_populate,
67e465a7 2271 .attach = mem_cgroup_move_task,
6d12e2d8 2272 .early_init = 0,
8cdea7c0 2273};
c077719b
KH
2274
2275#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2276
2277static int __init disable_swap_account(char *s)
2278{
2279 really_do_swap_account = 0;
2280 return 1;
2281}
2282__setup("noswapaccount", disable_swap_account);
2283#endif