]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
pagemap: require aligned-length, non-null reads of /proc/pid/pagemap
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
e222432b 30#include <linux/limits.h>
8c7c6e34 31#include <linux/mutex.h>
b6ac57d5 32#include <linux/slab.h>
66e1707b
BS
33#include <linux/swap.h>
34#include <linux/spinlock.h>
35#include <linux/fs.h>
d2ceb9b7 36#include <linux/seq_file.h>
33327948 37#include <linux/vmalloc.h>
b69408e8 38#include <linux/mm_inline.h>
52d4b9ac 39#include <linux/page_cgroup.h>
08e552c6 40#include "internal.h"
8cdea7c0 41
8697d331
BS
42#include <asm/uaccess.h>
43
a181b0e8 44struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 45#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 46
c077719b
KH
47#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49int do_swap_account __read_mostly;
50static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51#else
52#define do_swap_account (0)
53#endif
54
7f4d454d 55static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 56
d52aa412
KH
57/*
58 * Statistics for memory cgroup.
59 */
60enum mem_cgroup_stat_index {
61 /*
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 */
64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
66 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
67 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
68
69 MEM_CGROUP_STAT_NSTATS,
70};
71
72struct mem_cgroup_stat_cpu {
73 s64 count[MEM_CGROUP_STAT_NSTATS];
74} ____cacheline_aligned_in_smp;
75
76struct mem_cgroup_stat {
c8dad2bb 77 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
78};
79
80/*
81 * For accounting under irq disable, no need for increment preempt count.
82 */
addb9efe 83static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
84 enum mem_cgroup_stat_index idx, int val)
85{
addb9efe 86 stat->count[idx] += val;
d52aa412
KH
87}
88
89static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
90 enum mem_cgroup_stat_index idx)
91{
92 int cpu;
93 s64 ret = 0;
94 for_each_possible_cpu(cpu)
95 ret += stat->cpustat[cpu].count[idx];
96 return ret;
97}
98
04046e1a
KH
99static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
100{
101 s64 ret;
102
103 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
105 return ret;
106}
107
6d12e2d8
KH
108/*
109 * per-zone information in memory controller.
110 */
6d12e2d8 111struct mem_cgroup_per_zone {
072c56c1
KH
112 /*
113 * spin_lock to protect the per cgroup LRU
114 */
b69408e8
CL
115 struct list_head lists[NR_LRU_LISTS];
116 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
117
118 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
119};
120/* Macro for accessing counter */
121#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
122
123struct mem_cgroup_per_node {
124 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
125};
126
127struct mem_cgroup_lru_info {
128 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
129};
130
8cdea7c0
BS
131/*
132 * The memory controller data structure. The memory controller controls both
133 * page cache and RSS per cgroup. We would eventually like to provide
134 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135 * to help the administrator determine what knobs to tune.
136 *
137 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
138 * we hit the water mark. May be even add a low water mark, such that
139 * no reclaim occurs from a cgroup at it's low water mark, this is
140 * a feature that will be implemented much later in the future.
8cdea7c0
BS
141 */
142struct mem_cgroup {
143 struct cgroup_subsys_state css;
144 /*
145 * the counter to account for memory usage
146 */
147 struct res_counter res;
8c7c6e34
KH
148 /*
149 * the counter to account for mem+swap usage.
150 */
151 struct res_counter memsw;
78fb7466
PE
152 /*
153 * Per cgroup active and inactive list, similar to the
154 * per zone LRU lists.
78fb7466 155 */
6d12e2d8 156 struct mem_cgroup_lru_info info;
072c56c1 157
2733c06a
KM
158 /*
159 protect against reclaim related member.
160 */
161 spinlock_t reclaim_param_lock;
162
6c48a1d0 163 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
164
165 /*
166 * While reclaiming in a hiearchy, we cache the last child we
04046e1a 167 * reclaimed from.
6d61ef40 168 */
04046e1a 169 int last_scanned_child;
18f59ea7
BS
170 /*
171 * Should the accounting and control be hierarchical, per subtree?
172 */
173 bool use_hierarchy;
a636b327 174 unsigned long last_oom_jiffies;
8c7c6e34 175 atomic_t refcnt;
14797e23 176
a7885eb8
KM
177 unsigned int swappiness;
178
d52aa412 179 /*
c8dad2bb 180 * statistics. This must be placed at the end of memcg.
d52aa412
KH
181 */
182 struct mem_cgroup_stat stat;
8cdea7c0
BS
183};
184
217bc319
KH
185enum charge_type {
186 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 188 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 189 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
191 NR_CHARGE_TYPE,
192};
193
52d4b9ac
KH
194/* only for here (for easy reading.) */
195#define PCGF_CACHE (1UL << PCG_CACHE)
196#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 197#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
198static const unsigned long
199pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
200 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
201 PCGF_USED | PCGF_LOCK, /* Anon */
202 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 203 0, /* FORCE */
217bc319
KH
204};
205
8c7c6e34
KH
206/* for encoding cft->private value on file */
207#define _MEM (0)
208#define _MEMSWAP (1)
209#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211#define MEMFILE_ATTR(val) ((val) & 0xffff)
212
213static void mem_cgroup_get(struct mem_cgroup *mem);
214static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 215static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
8c7c6e34 216
c05555b5
KH
217static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
218 struct page_cgroup *pc,
219 bool charge)
d52aa412
KH
220{
221 int val = (charge)? 1 : -1;
222 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 223 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 224 int cpu = get_cpu();
d52aa412 225
08e552c6 226 cpustat = &stat->cpustat[cpu];
c05555b5 227 if (PageCgroupCache(pc))
addb9efe 228 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 229 else
addb9efe 230 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
231
232 if (charge)
addb9efe 233 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
234 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
235 else
addb9efe 236 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 237 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 238 put_cpu();
6d12e2d8
KH
239}
240
d5b69e38 241static struct mem_cgroup_per_zone *
6d12e2d8
KH
242mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
243{
6d12e2d8
KH
244 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
245}
246
d5b69e38 247static struct mem_cgroup_per_zone *
6d12e2d8
KH
248page_cgroup_zoneinfo(struct page_cgroup *pc)
249{
250 struct mem_cgroup *mem = pc->mem_cgroup;
251 int nid = page_cgroup_nid(pc);
252 int zid = page_cgroup_zid(pc);
d52aa412 253
54992762
KM
254 if (!mem)
255 return NULL;
256
6d12e2d8
KH
257 return mem_cgroup_zoneinfo(mem, nid, zid);
258}
259
14067bb3 260static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 261 enum lru_list idx)
6d12e2d8
KH
262{
263 int nid, zid;
264 struct mem_cgroup_per_zone *mz;
265 u64 total = 0;
266
267 for_each_online_node(nid)
268 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
269 mz = mem_cgroup_zoneinfo(mem, nid, zid);
270 total += MEM_CGROUP_ZSTAT(mz, idx);
271 }
272 return total;
d52aa412
KH
273}
274
d5b69e38 275static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
276{
277 return container_of(cgroup_subsys_state(cont,
278 mem_cgroup_subsys_id), struct mem_cgroup,
279 css);
280}
281
cf475ad2 282struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 283{
31a78f23
BS
284 /*
285 * mm_update_next_owner() may clear mm->owner to NULL
286 * if it races with swapoff, page migration, etc.
287 * So this can be called with p == NULL.
288 */
289 if (unlikely(!p))
290 return NULL;
291
78fb7466
PE
292 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
293 struct mem_cgroup, css);
294}
295
54595fe2
KH
296static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
297{
298 struct mem_cgroup *mem = NULL;
0b7f569e
KH
299
300 if (!mm)
301 return NULL;
54595fe2
KH
302 /*
303 * Because we have no locks, mm->owner's may be being moved to other
304 * cgroup. We use css_tryget() here even if this looks
305 * pessimistic (rather than adding locks here).
306 */
307 rcu_read_lock();
308 do {
309 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
310 if (unlikely(!mem))
311 break;
312 } while (!css_tryget(&mem->css));
313 rcu_read_unlock();
314 return mem;
315}
316
317static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
318{
319 if (!mem)
320 return true;
321 return css_is_removed(&mem->css);
322}
323
14067bb3
KH
324
325/*
326 * Call callback function against all cgroup under hierarchy tree.
327 */
328static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
329 int (*func)(struct mem_cgroup *, void *))
330{
331 int found, ret, nextid;
332 struct cgroup_subsys_state *css;
333 struct mem_cgroup *mem;
334
335 if (!root->use_hierarchy)
336 return (*func)(root, data);
337
338 nextid = 1;
339 do {
340 ret = 0;
341 mem = NULL;
342
343 rcu_read_lock();
344 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
345 &found);
346 if (css && css_tryget(css))
347 mem = container_of(css, struct mem_cgroup, css);
348 rcu_read_unlock();
349
350 if (mem) {
351 ret = (*func)(mem, data);
352 css_put(&mem->css);
353 }
354 nextid = found + 1;
355 } while (!ret && css);
356
357 return ret;
358}
359
08e552c6
KH
360/*
361 * Following LRU functions are allowed to be used without PCG_LOCK.
362 * Operations are called by routine of global LRU independently from memcg.
363 * What we have to take care of here is validness of pc->mem_cgroup.
364 *
365 * Changes to pc->mem_cgroup happens when
366 * 1. charge
367 * 2. moving account
368 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
369 * It is added to LRU before charge.
370 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
371 * When moving account, the page is not on LRU. It's isolated.
372 */
4f98a2fe 373
08e552c6
KH
374void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
375{
376 struct page_cgroup *pc;
377 struct mem_cgroup *mem;
378 struct mem_cgroup_per_zone *mz;
6d12e2d8 379
f8d66542 380 if (mem_cgroup_disabled())
08e552c6
KH
381 return;
382 pc = lookup_page_cgroup(page);
383 /* can happen while we handle swapcache. */
544122e5 384 if (list_empty(&pc->lru) || !pc->mem_cgroup)
08e552c6 385 return;
544122e5
KH
386 /*
387 * We don't check PCG_USED bit. It's cleared when the "page" is finally
388 * removed from global LRU.
389 */
08e552c6
KH
390 mz = page_cgroup_zoneinfo(pc);
391 mem = pc->mem_cgroup;
b69408e8 392 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
393 list_del_init(&pc->lru);
394 return;
6d12e2d8
KH
395}
396
08e552c6 397void mem_cgroup_del_lru(struct page *page)
6d12e2d8 398{
08e552c6
KH
399 mem_cgroup_del_lru_list(page, page_lru(page));
400}
b69408e8 401
08e552c6
KH
402void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
403{
404 struct mem_cgroup_per_zone *mz;
405 struct page_cgroup *pc;
b69408e8 406
f8d66542 407 if (mem_cgroup_disabled())
08e552c6 408 return;
6d12e2d8 409
08e552c6 410 pc = lookup_page_cgroup(page);
bd112db8
DN
411 /*
412 * Used bit is set without atomic ops but after smp_wmb().
413 * For making pc->mem_cgroup visible, insert smp_rmb() here.
414 */
08e552c6
KH
415 smp_rmb();
416 /* unused page is not rotated. */
417 if (!PageCgroupUsed(pc))
418 return;
419 mz = page_cgroup_zoneinfo(pc);
420 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
421}
422
08e552c6 423void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 424{
08e552c6
KH
425 struct page_cgroup *pc;
426 struct mem_cgroup_per_zone *mz;
6d12e2d8 427
f8d66542 428 if (mem_cgroup_disabled())
08e552c6
KH
429 return;
430 pc = lookup_page_cgroup(page);
bd112db8
DN
431 /*
432 * Used bit is set without atomic ops but after smp_wmb().
433 * For making pc->mem_cgroup visible, insert smp_rmb() here.
434 */
08e552c6
KH
435 smp_rmb();
436 if (!PageCgroupUsed(pc))
894bc310 437 return;
b69408e8 438
08e552c6 439 mz = page_cgroup_zoneinfo(pc);
b69408e8 440 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
441 list_add(&pc->lru, &mz->lists[lru]);
442}
544122e5 443
08e552c6 444/*
544122e5
KH
445 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
446 * lru because the page may.be reused after it's fully uncharged (because of
447 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
448 * it again. This function is only used to charge SwapCache. It's done under
449 * lock_page and expected that zone->lru_lock is never held.
08e552c6 450 */
544122e5 451static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 452{
544122e5
KH
453 unsigned long flags;
454 struct zone *zone = page_zone(page);
455 struct page_cgroup *pc = lookup_page_cgroup(page);
456
457 spin_lock_irqsave(&zone->lru_lock, flags);
458 /*
459 * Forget old LRU when this page_cgroup is *not* used. This Used bit
460 * is guarded by lock_page() because the page is SwapCache.
461 */
462 if (!PageCgroupUsed(pc))
463 mem_cgroup_del_lru_list(page, page_lru(page));
464 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
465}
466
544122e5
KH
467static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
468{
469 unsigned long flags;
470 struct zone *zone = page_zone(page);
471 struct page_cgroup *pc = lookup_page_cgroup(page);
472
473 spin_lock_irqsave(&zone->lru_lock, flags);
474 /* link when the page is linked to LRU but page_cgroup isn't */
475 if (PageLRU(page) && list_empty(&pc->lru))
476 mem_cgroup_add_lru_list(page, page_lru(page));
477 spin_unlock_irqrestore(&zone->lru_lock, flags);
478}
479
480
08e552c6
KH
481void mem_cgroup_move_lists(struct page *page,
482 enum lru_list from, enum lru_list to)
483{
f8d66542 484 if (mem_cgroup_disabled())
08e552c6
KH
485 return;
486 mem_cgroup_del_lru_list(page, from);
487 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
488}
489
4c4a2214
DR
490int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
491{
492 int ret;
0b7f569e 493 struct mem_cgroup *curr = NULL;
4c4a2214
DR
494
495 task_lock(task);
0b7f569e
KH
496 rcu_read_lock();
497 curr = try_get_mem_cgroup_from_mm(task->mm);
498 rcu_read_unlock();
4c4a2214 499 task_unlock(task);
0b7f569e
KH
500 if (!curr)
501 return 0;
502 if (curr->use_hierarchy)
503 ret = css_is_ancestor(&curr->css, &mem->css);
504 else
505 ret = (curr == mem);
506 css_put(&curr->css);
4c4a2214
DR
507 return ret;
508}
509
6c48a1d0
KH
510/*
511 * prev_priority control...this will be used in memory reclaim path.
512 */
513int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
514{
2733c06a
KM
515 int prev_priority;
516
517 spin_lock(&mem->reclaim_param_lock);
518 prev_priority = mem->prev_priority;
519 spin_unlock(&mem->reclaim_param_lock);
520
521 return prev_priority;
6c48a1d0
KH
522}
523
524void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
525{
2733c06a 526 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
527 if (priority < mem->prev_priority)
528 mem->prev_priority = priority;
2733c06a 529 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
530}
531
532void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
533{
2733c06a 534 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 535 mem->prev_priority = priority;
2733c06a 536 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
537}
538
c772be93 539static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
540{
541 unsigned long active;
542 unsigned long inactive;
c772be93
KM
543 unsigned long gb;
544 unsigned long inactive_ratio;
14797e23 545
14067bb3
KH
546 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
547 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 548
c772be93
KM
549 gb = (inactive + active) >> (30 - PAGE_SHIFT);
550 if (gb)
551 inactive_ratio = int_sqrt(10 * gb);
552 else
553 inactive_ratio = 1;
554
555 if (present_pages) {
556 present_pages[0] = inactive;
557 present_pages[1] = active;
558 }
559
560 return inactive_ratio;
561}
562
563int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
564{
565 unsigned long active;
566 unsigned long inactive;
567 unsigned long present_pages[2];
568 unsigned long inactive_ratio;
569
570 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
571
572 inactive = present_pages[0];
573 active = present_pages[1];
574
575 if (inactive * inactive_ratio < active)
14797e23
KM
576 return 1;
577
578 return 0;
579}
580
a3d8e054
KM
581unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
582 struct zone *zone,
583 enum lru_list lru)
584{
585 int nid = zone->zone_pgdat->node_id;
586 int zid = zone_idx(zone);
587 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
588
589 return MEM_CGROUP_ZSTAT(mz, lru);
590}
591
3e2f41f1
KM
592struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
593 struct zone *zone)
594{
595 int nid = zone->zone_pgdat->node_id;
596 int zid = zone_idx(zone);
597 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
598
599 return &mz->reclaim_stat;
600}
601
602struct zone_reclaim_stat *
603mem_cgroup_get_reclaim_stat_from_page(struct page *page)
604{
605 struct page_cgroup *pc;
606 struct mem_cgroup_per_zone *mz;
607
608 if (mem_cgroup_disabled())
609 return NULL;
610
611 pc = lookup_page_cgroup(page);
bd112db8
DN
612 /*
613 * Used bit is set without atomic ops but after smp_wmb().
614 * For making pc->mem_cgroup visible, insert smp_rmb() here.
615 */
616 smp_rmb();
617 if (!PageCgroupUsed(pc))
618 return NULL;
619
3e2f41f1
KM
620 mz = page_cgroup_zoneinfo(pc);
621 if (!mz)
622 return NULL;
623
624 return &mz->reclaim_stat;
625}
626
66e1707b
BS
627unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
628 struct list_head *dst,
629 unsigned long *scanned, int order,
630 int mode, struct zone *z,
631 struct mem_cgroup *mem_cont,
4f98a2fe 632 int active, int file)
66e1707b
BS
633{
634 unsigned long nr_taken = 0;
635 struct page *page;
636 unsigned long scan;
637 LIST_HEAD(pc_list);
638 struct list_head *src;
ff7283fa 639 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
640 int nid = z->zone_pgdat->node_id;
641 int zid = zone_idx(z);
642 struct mem_cgroup_per_zone *mz;
4f98a2fe 643 int lru = LRU_FILE * !!file + !!active;
66e1707b 644
cf475ad2 645 BUG_ON(!mem_cont);
1ecaab2b 646 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 647 src = &mz->lists[lru];
66e1707b 648
ff7283fa
KH
649 scan = 0;
650 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 651 if (scan >= nr_to_scan)
ff7283fa 652 break;
08e552c6
KH
653
654 page = pc->page;
52d4b9ac
KH
655 if (unlikely(!PageCgroupUsed(pc)))
656 continue;
436c6541 657 if (unlikely(!PageLRU(page)))
ff7283fa 658 continue;
ff7283fa 659
436c6541 660 scan++;
4f98a2fe 661 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
662 list_move(&page->lru, dst);
663 nr_taken++;
664 }
665 }
666
66e1707b
BS
667 *scanned = scan;
668 return nr_taken;
669}
670
6d61ef40
BS
671#define mem_cgroup_from_res_counter(counter, member) \
672 container_of(counter, struct mem_cgroup, member)
673
b85a96c0
DN
674static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
675{
676 if (do_swap_account) {
677 if (res_counter_check_under_limit(&mem->res) &&
678 res_counter_check_under_limit(&mem->memsw))
679 return true;
680 } else
681 if (res_counter_check_under_limit(&mem->res))
682 return true;
683 return false;
684}
685
a7885eb8
KM
686static unsigned int get_swappiness(struct mem_cgroup *memcg)
687{
688 struct cgroup *cgrp = memcg->css.cgroup;
689 unsigned int swappiness;
690
691 /* root ? */
692 if (cgrp->parent == NULL)
693 return vm_swappiness;
694
695 spin_lock(&memcg->reclaim_param_lock);
696 swappiness = memcg->swappiness;
697 spin_unlock(&memcg->reclaim_param_lock);
698
699 return swappiness;
700}
701
81d39c20
KH
702static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
703{
704 int *val = data;
705 (*val)++;
706 return 0;
707}
e222432b
BS
708
709/**
710 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
711 * @memcg: The memory cgroup that went over limit
712 * @p: Task that is going to be killed
713 *
714 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
715 * enabled
716 */
717void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
718{
719 struct cgroup *task_cgrp;
720 struct cgroup *mem_cgrp;
721 /*
722 * Need a buffer in BSS, can't rely on allocations. The code relies
723 * on the assumption that OOM is serialized for memory controller.
724 * If this assumption is broken, revisit this code.
725 */
726 static char memcg_name[PATH_MAX];
727 int ret;
728
729 if (!memcg)
730 return;
731
732
733 rcu_read_lock();
734
735 mem_cgrp = memcg->css.cgroup;
736 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
737
738 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
739 if (ret < 0) {
740 /*
741 * Unfortunately, we are unable to convert to a useful name
742 * But we'll still print out the usage information
743 */
744 rcu_read_unlock();
745 goto done;
746 }
747 rcu_read_unlock();
748
749 printk(KERN_INFO "Task in %s killed", memcg_name);
750
751 rcu_read_lock();
752 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
753 if (ret < 0) {
754 rcu_read_unlock();
755 goto done;
756 }
757 rcu_read_unlock();
758
759 /*
760 * Continues from above, so we don't need an KERN_ level
761 */
762 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
763done:
764
765 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
766 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
767 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
768 res_counter_read_u64(&memcg->res, RES_FAILCNT));
769 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
770 "failcnt %llu\n",
771 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
772 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
773 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
774}
775
81d39c20
KH
776/*
777 * This function returns the number of memcg under hierarchy tree. Returns
778 * 1(self count) if no children.
779 */
780static int mem_cgroup_count_children(struct mem_cgroup *mem)
781{
782 int num = 0;
783 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
784 return num;
785}
786
6d61ef40 787/*
04046e1a
KH
788 * Visit the first child (need not be the first child as per the ordering
789 * of the cgroup list, since we track last_scanned_child) of @mem and use
790 * that to reclaim free pages from.
791 */
792static struct mem_cgroup *
793mem_cgroup_select_victim(struct mem_cgroup *root_mem)
794{
795 struct mem_cgroup *ret = NULL;
796 struct cgroup_subsys_state *css;
797 int nextid, found;
798
799 if (!root_mem->use_hierarchy) {
800 css_get(&root_mem->css);
801 ret = root_mem;
802 }
803
804 while (!ret) {
805 rcu_read_lock();
806 nextid = root_mem->last_scanned_child + 1;
807 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
808 &found);
809 if (css && css_tryget(css))
810 ret = container_of(css, struct mem_cgroup, css);
811
812 rcu_read_unlock();
813 /* Updates scanning parameter */
814 spin_lock(&root_mem->reclaim_param_lock);
815 if (!css) {
816 /* this means start scan from ID:1 */
817 root_mem->last_scanned_child = 0;
818 } else
819 root_mem->last_scanned_child = found;
820 spin_unlock(&root_mem->reclaim_param_lock);
821 }
822
823 return ret;
824}
825
826/*
827 * Scan the hierarchy if needed to reclaim memory. We remember the last child
828 * we reclaimed from, so that we don't end up penalizing one child extensively
829 * based on its position in the children list.
6d61ef40
BS
830 *
831 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
832 *
833 * We give up and return to the caller when we visit root_mem twice.
834 * (other groups can be removed while we're walking....)
81d39c20
KH
835 *
836 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
837 */
838static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
81d39c20 839 gfp_t gfp_mask, bool noswap, bool shrink)
6d61ef40 840{
04046e1a
KH
841 struct mem_cgroup *victim;
842 int ret, total = 0;
843 int loop = 0;
844
845 while (loop < 2) {
846 victim = mem_cgroup_select_victim(root_mem);
847 if (victim == root_mem)
848 loop++;
849 if (!mem_cgroup_local_usage(&victim->stat)) {
850 /* this cgroup's local usage == 0 */
851 css_put(&victim->css);
6d61ef40
BS
852 continue;
853 }
04046e1a
KH
854 /* we use swappiness of local cgroup */
855 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
856 get_swappiness(victim));
857 css_put(&victim->css);
81d39c20
KH
858 /*
859 * At shrinking usage, we can't check we should stop here or
860 * reclaim more. It's depends on callers. last_scanned_child
861 * will work enough for keeping fairness under tree.
862 */
863 if (shrink)
864 return ret;
04046e1a 865 total += ret;
b85a96c0 866 if (mem_cgroup_check_under_limit(root_mem))
04046e1a 867 return 1 + total;
6d61ef40 868 }
04046e1a 869 return total;
6d61ef40
BS
870}
871
a636b327
KH
872bool mem_cgroup_oom_called(struct task_struct *task)
873{
874 bool ret = false;
875 struct mem_cgroup *mem;
876 struct mm_struct *mm;
877
878 rcu_read_lock();
879 mm = task->mm;
880 if (!mm)
881 mm = &init_mm;
882 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
883 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
884 ret = true;
885 rcu_read_unlock();
886 return ret;
887}
0b7f569e
KH
888
889static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
890{
891 mem->last_oom_jiffies = jiffies;
892 return 0;
893}
894
895static void record_last_oom(struct mem_cgroup *mem)
896{
897 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
898}
899
900
f817ed48
KH
901/*
902 * Unlike exported interface, "oom" parameter is added. if oom==true,
903 * oom-killer can be invoked.
8a9f3ccd 904 */
f817ed48 905static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
906 gfp_t gfp_mask, struct mem_cgroup **memcg,
907 bool oom)
8a9f3ccd 908{
6d61ef40 909 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 910 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 911 struct res_counter *fail_res;
a636b327
KH
912
913 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
914 /* Don't account this! */
915 *memcg = NULL;
916 return 0;
917 }
918
8a9f3ccd 919 /*
3be91277
HD
920 * We always charge the cgroup the mm_struct belongs to.
921 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
922 * thread group leader migrates. It's possible that mm is not
923 * set, if so charge the init_mm (happens for pagecache usage).
924 */
54595fe2
KH
925 mem = *memcg;
926 if (likely(!mem)) {
927 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 928 *memcg = mem;
e8589cc1 929 } else {
7a81b88c 930 css_get(&mem->css);
e8589cc1 931 }
54595fe2
KH
932 if (unlikely(!mem))
933 return 0;
934
a8031cb0 935 VM_BUG_ON(!mem || mem_cgroup_is_obsolete(mem));
8a9f3ccd 936
8c7c6e34
KH
937 while (1) {
938 int ret;
939 bool noswap = false;
7a81b88c 940
28dbc4b6 941 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
942 if (likely(!ret)) {
943 if (!do_swap_account)
944 break;
28dbc4b6
BS
945 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
946 &fail_res);
8c7c6e34
KH
947 if (likely(!ret))
948 break;
949 /* mem+swap counter fails */
950 res_counter_uncharge(&mem->res, PAGE_SIZE);
951 noswap = true;
6d61ef40
BS
952 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
953 memsw);
954 } else
955 /* mem counter fails */
956 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
957 res);
958
3be91277 959 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 960 goto nomem;
e1a1cd59 961
6d61ef40 962 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
81d39c20 963 noswap, false);
4d1c6273
DN
964 if (ret)
965 continue;
66e1707b
BS
966
967 /*
8869b8f6
HD
968 * try_to_free_mem_cgroup_pages() might not give us a full
969 * picture of reclaim. Some pages are reclaimed and might be
970 * moved to swap cache or just unmapped from the cgroup.
971 * Check the limit again to see if the reclaim reduced the
972 * current usage of the cgroup before giving up
8c7c6e34 973 *
8869b8f6 974 */
b85a96c0
DN
975 if (mem_cgroup_check_under_limit(mem_over_limit))
976 continue;
3be91277
HD
977
978 if (!nr_retries--) {
a636b327 979 if (oom) {
7f4d454d 980 mutex_lock(&memcg_tasklist);
88700756 981 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 982 mutex_unlock(&memcg_tasklist);
0b7f569e 983 record_last_oom(mem_over_limit);
a636b327 984 }
7a81b88c 985 goto nomem;
66e1707b 986 }
8a9f3ccd 987 }
7a81b88c
KH
988 return 0;
989nomem:
990 css_put(&mem->css);
991 return -ENOMEM;
992}
8a9f3ccd 993
a3b2d692
KH
994
995/*
996 * A helper function to get mem_cgroup from ID. must be called under
997 * rcu_read_lock(). The caller must check css_is_removed() or some if
998 * it's concern. (dropping refcnt from swap can be called against removed
999 * memcg.)
1000 */
1001static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1002{
1003 struct cgroup_subsys_state *css;
1004
1005 /* ID 0 is unused ID */
1006 if (!id)
1007 return NULL;
1008 css = css_lookup(&mem_cgroup_subsys, id);
1009 if (!css)
1010 return NULL;
1011 return container_of(css, struct mem_cgroup, css);
1012}
1013
b5a84319
KH
1014static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1015{
1016 struct mem_cgroup *mem;
3c776e64 1017 struct page_cgroup *pc;
a3b2d692 1018 unsigned short id;
b5a84319
KH
1019 swp_entry_t ent;
1020
3c776e64
DN
1021 VM_BUG_ON(!PageLocked(page));
1022
b5a84319
KH
1023 if (!PageSwapCache(page))
1024 return NULL;
1025
3c776e64 1026 pc = lookup_page_cgroup(page);
c0bd3f63 1027 lock_page_cgroup(pc);
a3b2d692 1028 if (PageCgroupUsed(pc)) {
3c776e64 1029 mem = pc->mem_cgroup;
a3b2d692
KH
1030 if (mem && !css_tryget(&mem->css))
1031 mem = NULL;
1032 } else {
3c776e64 1033 ent.val = page_private(page);
a3b2d692
KH
1034 id = lookup_swap_cgroup(ent);
1035 rcu_read_lock();
1036 mem = mem_cgroup_lookup(id);
1037 if (mem && !css_tryget(&mem->css))
1038 mem = NULL;
1039 rcu_read_unlock();
3c776e64 1040 }
c0bd3f63 1041 unlock_page_cgroup(pc);
b5a84319
KH
1042 return mem;
1043}
1044
7a81b88c 1045/*
a5e924f5 1046 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1047 * USED state. If already USED, uncharge and return.
1048 */
1049
1050static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1051 struct page_cgroup *pc,
1052 enum charge_type ctype)
1053{
7a81b88c
KH
1054 /* try_charge() can return NULL to *memcg, taking care of it. */
1055 if (!mem)
1056 return;
52d4b9ac
KH
1057
1058 lock_page_cgroup(pc);
1059 if (unlikely(PageCgroupUsed(pc))) {
1060 unlock_page_cgroup(pc);
1061 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1062 if (do_swap_account)
1063 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 1064 css_put(&mem->css);
7a81b88c 1065 return;
52d4b9ac 1066 }
8a9f3ccd 1067 pc->mem_cgroup = mem;
08e552c6 1068 smp_wmb();
c05555b5 1069 pc->flags = pcg_default_flags[ctype];
3be91277 1070
08e552c6 1071 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1072
52d4b9ac 1073 unlock_page_cgroup(pc);
7a81b88c 1074}
66e1707b 1075
f817ed48
KH
1076/**
1077 * mem_cgroup_move_account - move account of the page
1078 * @pc: page_cgroup of the page.
1079 * @from: mem_cgroup which the page is moved from.
1080 * @to: mem_cgroup which the page is moved to. @from != @to.
1081 *
1082 * The caller must confirm following.
08e552c6 1083 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
1084 *
1085 * returns 0 at success,
1086 * returns -EBUSY when lock is busy or "pc" is unstable.
1087 *
1088 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1089 * new cgroup. It should be done by a caller.
1090 */
1091
1092static int mem_cgroup_move_account(struct page_cgroup *pc,
1093 struct mem_cgroup *from, struct mem_cgroup *to)
1094{
1095 struct mem_cgroup_per_zone *from_mz, *to_mz;
1096 int nid, zid;
1097 int ret = -EBUSY;
1098
f817ed48 1099 VM_BUG_ON(from == to);
08e552c6 1100 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
1101
1102 nid = page_cgroup_nid(pc);
1103 zid = page_cgroup_zid(pc);
1104 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1105 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1106
f817ed48
KH
1107 if (!trylock_page_cgroup(pc))
1108 return ret;
1109
1110 if (!PageCgroupUsed(pc))
1111 goto out;
1112
1113 if (pc->mem_cgroup != from)
1114 goto out;
1115
08e552c6
KH
1116 res_counter_uncharge(&from->res, PAGE_SIZE);
1117 mem_cgroup_charge_statistics(from, pc, false);
1118 if (do_swap_account)
1119 res_counter_uncharge(&from->memsw, PAGE_SIZE);
40d58138
DN
1120 css_put(&from->css);
1121
1122 css_get(&to->css);
08e552c6
KH
1123 pc->mem_cgroup = to;
1124 mem_cgroup_charge_statistics(to, pc, true);
08e552c6 1125 ret = 0;
f817ed48
KH
1126out:
1127 unlock_page_cgroup(pc);
1128 return ret;
1129}
1130
1131/*
1132 * move charges to its parent.
1133 */
1134
1135static int mem_cgroup_move_parent(struct page_cgroup *pc,
1136 struct mem_cgroup *child,
1137 gfp_t gfp_mask)
1138{
08e552c6 1139 struct page *page = pc->page;
f817ed48
KH
1140 struct cgroup *cg = child->css.cgroup;
1141 struct cgroup *pcg = cg->parent;
1142 struct mem_cgroup *parent;
f817ed48
KH
1143 int ret;
1144
1145 /* Is ROOT ? */
1146 if (!pcg)
1147 return -EINVAL;
1148
08e552c6 1149
f817ed48
KH
1150 parent = mem_cgroup_from_cont(pcg);
1151
08e552c6 1152
f817ed48 1153 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1154 if (ret || !parent)
f817ed48
KH
1155 return ret;
1156
40d58138
DN
1157 if (!get_page_unless_zero(page)) {
1158 ret = -EBUSY;
1159 goto uncharge;
1160 }
08e552c6
KH
1161
1162 ret = isolate_lru_page(page);
1163
1164 if (ret)
1165 goto cancel;
f817ed48 1166
f817ed48 1167 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1168
08e552c6
KH
1169 putback_lru_page(page);
1170 if (!ret) {
1171 put_page(page);
40d58138
DN
1172 /* drop extra refcnt by try_charge() */
1173 css_put(&parent->css);
08e552c6 1174 return 0;
8c7c6e34 1175 }
40d58138 1176
08e552c6 1177cancel:
40d58138
DN
1178 put_page(page);
1179uncharge:
1180 /* drop extra refcnt by try_charge() */
1181 css_put(&parent->css);
1182 /* uncharge if move fails */
08e552c6
KH
1183 res_counter_uncharge(&parent->res, PAGE_SIZE);
1184 if (do_swap_account)
1185 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
f817ed48
KH
1186 return ret;
1187}
1188
7a81b88c
KH
1189/*
1190 * Charge the memory controller for page usage.
1191 * Return
1192 * 0 if the charge was successful
1193 * < 0 if the cgroup is over its limit
1194 */
1195static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1196 gfp_t gfp_mask, enum charge_type ctype,
1197 struct mem_cgroup *memcg)
1198{
1199 struct mem_cgroup *mem;
1200 struct page_cgroup *pc;
1201 int ret;
1202
1203 pc = lookup_page_cgroup(page);
1204 /* can happen at boot */
1205 if (unlikely(!pc))
1206 return 0;
1207 prefetchw(pc);
1208
1209 mem = memcg;
f817ed48 1210 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1211 if (ret || !mem)
7a81b88c
KH
1212 return ret;
1213
1214 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1215 return 0;
8a9f3ccd
BS
1216}
1217
7a81b88c
KH
1218int mem_cgroup_newpage_charge(struct page *page,
1219 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1220{
f8d66542 1221 if (mem_cgroup_disabled())
cede86ac 1222 return 0;
52d4b9ac
KH
1223 if (PageCompound(page))
1224 return 0;
69029cd5
KH
1225 /*
1226 * If already mapped, we don't have to account.
1227 * If page cache, page->mapping has address_space.
1228 * But page->mapping may have out-of-use anon_vma pointer,
1229 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1230 * is NULL.
1231 */
1232 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1233 return 0;
1234 if (unlikely(!mm))
1235 mm = &init_mm;
217bc319 1236 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1237 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1238}
1239
83aae4c7
DN
1240static void
1241__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1242 enum charge_type ctype);
1243
e1a1cd59
BS
1244int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1245 gfp_t gfp_mask)
8697d331 1246{
b5a84319
KH
1247 struct mem_cgroup *mem = NULL;
1248 int ret;
1249
f8d66542 1250 if (mem_cgroup_disabled())
cede86ac 1251 return 0;
52d4b9ac
KH
1252 if (PageCompound(page))
1253 return 0;
accf163e
KH
1254 /*
1255 * Corner case handling. This is called from add_to_page_cache()
1256 * in usual. But some FS (shmem) precharges this page before calling it
1257 * and call add_to_page_cache() with GFP_NOWAIT.
1258 *
1259 * For GFP_NOWAIT case, the page may be pre-charged before calling
1260 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1261 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1262 * And when the page is SwapCache, it should take swap information
1263 * into account. This is under lock_page() now.
accf163e
KH
1264 */
1265 if (!(gfp_mask & __GFP_WAIT)) {
1266 struct page_cgroup *pc;
1267
52d4b9ac
KH
1268
1269 pc = lookup_page_cgroup(page);
1270 if (!pc)
1271 return 0;
1272 lock_page_cgroup(pc);
1273 if (PageCgroupUsed(pc)) {
1274 unlock_page_cgroup(pc);
accf163e
KH
1275 return 0;
1276 }
52d4b9ac 1277 unlock_page_cgroup(pc);
accf163e
KH
1278 }
1279
b5a84319 1280 if (unlikely(!mm && !mem))
8697d331 1281 mm = &init_mm;
accf163e 1282
c05555b5
KH
1283 if (page_is_file_cache(page))
1284 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1285 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1286
83aae4c7
DN
1287 /* shmem */
1288 if (PageSwapCache(page)) {
1289 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1290 if (!ret)
1291 __mem_cgroup_commit_charge_swapin(page, mem,
1292 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1293 } else
1294 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1295 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1296
b5a84319 1297 return ret;
e8589cc1
KH
1298}
1299
54595fe2
KH
1300/*
1301 * While swap-in, try_charge -> commit or cancel, the page is locked.
1302 * And when try_charge() successfully returns, one refcnt to memcg without
1303 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1304 * "commit()" or removed by "cancel()"
1305 */
8c7c6e34
KH
1306int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1307 struct page *page,
1308 gfp_t mask, struct mem_cgroup **ptr)
1309{
1310 struct mem_cgroup *mem;
54595fe2 1311 int ret;
8c7c6e34 1312
f8d66542 1313 if (mem_cgroup_disabled())
8c7c6e34
KH
1314 return 0;
1315
1316 if (!do_swap_account)
1317 goto charge_cur_mm;
8c7c6e34
KH
1318 /*
1319 * A racing thread's fault, or swapoff, may have already updated
1320 * the pte, and even removed page from swap cache: return success
1321 * to go on to do_swap_page()'s pte_same() test, which should fail.
1322 */
1323 if (!PageSwapCache(page))
1324 return 0;
b5a84319 1325 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1326 if (!mem)
1327 goto charge_cur_mm;
8c7c6e34 1328 *ptr = mem;
54595fe2
KH
1329 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1330 /* drop extra refcnt from tryget */
1331 css_put(&mem->css);
1332 return ret;
8c7c6e34
KH
1333charge_cur_mm:
1334 if (unlikely(!mm))
1335 mm = &init_mm;
1336 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1337}
1338
83aae4c7
DN
1339static void
1340__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1341 enum charge_type ctype)
7a81b88c
KH
1342{
1343 struct page_cgroup *pc;
1344
f8d66542 1345 if (mem_cgroup_disabled())
7a81b88c
KH
1346 return;
1347 if (!ptr)
1348 return;
1349 pc = lookup_page_cgroup(page);
544122e5 1350 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1351 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1352 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1353 /*
1354 * Now swap is on-memory. This means this page may be
1355 * counted both as mem and swap....double count.
03f3c433
KH
1356 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1357 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1358 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1359 */
03f3c433 1360 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1361 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1362 unsigned short id;
8c7c6e34 1363 struct mem_cgroup *memcg;
a3b2d692
KH
1364
1365 id = swap_cgroup_record(ent, 0);
1366 rcu_read_lock();
1367 memcg = mem_cgroup_lookup(id);
8c7c6e34 1368 if (memcg) {
a3b2d692
KH
1369 /*
1370 * This recorded memcg can be obsolete one. So, avoid
1371 * calling css_tryget
1372 */
8c7c6e34
KH
1373 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1374 mem_cgroup_put(memcg);
1375 }
a3b2d692 1376 rcu_read_unlock();
8c7c6e34 1377 }
08e552c6 1378 /* add this page(page_cgroup) to the LRU we want. */
544122e5 1379
7a81b88c
KH
1380}
1381
83aae4c7
DN
1382void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1383{
1384 __mem_cgroup_commit_charge_swapin(page, ptr,
1385 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1386}
1387
7a81b88c
KH
1388void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1389{
f8d66542 1390 if (mem_cgroup_disabled())
7a81b88c
KH
1391 return;
1392 if (!mem)
1393 return;
1394 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1395 if (do_swap_account)
1396 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1397 css_put(&mem->css);
1398}
1399
1400
8a9f3ccd 1401/*
69029cd5 1402 * uncharge if !page_mapped(page)
8a9f3ccd 1403 */
8c7c6e34 1404static struct mem_cgroup *
69029cd5 1405__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1406{
8289546e 1407 struct page_cgroup *pc;
8c7c6e34 1408 struct mem_cgroup *mem = NULL;
072c56c1 1409 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1410
f8d66542 1411 if (mem_cgroup_disabled())
8c7c6e34 1412 return NULL;
4077960e 1413
d13d1443 1414 if (PageSwapCache(page))
8c7c6e34 1415 return NULL;
d13d1443 1416
8697d331 1417 /*
3c541e14 1418 * Check if our page_cgroup is valid
8697d331 1419 */
52d4b9ac
KH
1420 pc = lookup_page_cgroup(page);
1421 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1422 return NULL;
b9c565d5 1423
52d4b9ac 1424 lock_page_cgroup(pc);
d13d1443 1425
8c7c6e34
KH
1426 mem = pc->mem_cgroup;
1427
d13d1443
KH
1428 if (!PageCgroupUsed(pc))
1429 goto unlock_out;
1430
1431 switch (ctype) {
1432 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1433 if (page_mapped(page))
1434 goto unlock_out;
1435 break;
1436 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1437 if (!PageAnon(page)) { /* Shared memory */
1438 if (page->mapping && !page_is_file_cache(page))
1439 goto unlock_out;
1440 } else if (page_mapped(page)) /* Anon */
1441 goto unlock_out;
1442 break;
1443 default:
1444 break;
52d4b9ac 1445 }
d13d1443 1446
8c7c6e34
KH
1447 res_counter_uncharge(&mem->res, PAGE_SIZE);
1448 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1449 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
08e552c6 1450 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 1451
52d4b9ac 1452 ClearPageCgroupUsed(pc);
544122e5
KH
1453 /*
1454 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1455 * freed from LRU. This is safe because uncharged page is expected not
1456 * to be reused (freed soon). Exception is SwapCache, it's handled by
1457 * special functions.
1458 */
b9c565d5 1459
69029cd5 1460 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1461 unlock_page_cgroup(pc);
fb59e9f1 1462
a7fe942e
KH
1463 /* at swapout, this memcg will be accessed to record to swap */
1464 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1465 css_put(&mem->css);
6d12e2d8 1466
8c7c6e34 1467 return mem;
d13d1443
KH
1468
1469unlock_out:
1470 unlock_page_cgroup(pc);
8c7c6e34 1471 return NULL;
3c541e14
BS
1472}
1473
69029cd5
KH
1474void mem_cgroup_uncharge_page(struct page *page)
1475{
52d4b9ac
KH
1476 /* early check. */
1477 if (page_mapped(page))
1478 return;
1479 if (page->mapping && !PageAnon(page))
1480 return;
69029cd5
KH
1481 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1482}
1483
1484void mem_cgroup_uncharge_cache_page(struct page *page)
1485{
1486 VM_BUG_ON(page_mapped(page));
b7abea96 1487 VM_BUG_ON(page->mapping);
69029cd5
KH
1488 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1489}
1490
8c7c6e34
KH
1491/*
1492 * called from __delete_from_swap_cache() and drop "page" account.
1493 * memcg information is recorded to swap_cgroup of "ent"
1494 */
1495void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1496{
1497 struct mem_cgroup *memcg;
1498
1499 memcg = __mem_cgroup_uncharge_common(page,
1500 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1501 /* record memcg information */
1502 if (do_swap_account && memcg) {
a3b2d692 1503 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
1504 mem_cgroup_get(memcg);
1505 }
a7fe942e
KH
1506 if (memcg)
1507 css_put(&memcg->css);
8c7c6e34
KH
1508}
1509
1510#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1511/*
1512 * called from swap_entry_free(). remove record in swap_cgroup and
1513 * uncharge "memsw" account.
1514 */
1515void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1516{
8c7c6e34 1517 struct mem_cgroup *memcg;
a3b2d692 1518 unsigned short id;
8c7c6e34
KH
1519
1520 if (!do_swap_account)
1521 return;
1522
a3b2d692
KH
1523 id = swap_cgroup_record(ent, 0);
1524 rcu_read_lock();
1525 memcg = mem_cgroup_lookup(id);
8c7c6e34 1526 if (memcg) {
a3b2d692
KH
1527 /*
1528 * We uncharge this because swap is freed.
1529 * This memcg can be obsolete one. We avoid calling css_tryget
1530 */
8c7c6e34
KH
1531 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1532 mem_cgroup_put(memcg);
1533 }
a3b2d692 1534 rcu_read_unlock();
d13d1443 1535}
8c7c6e34 1536#endif
d13d1443 1537
ae41be37 1538/*
01b1ae63
KH
1539 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1540 * page belongs to.
ae41be37 1541 */
01b1ae63 1542int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1543{
1544 struct page_cgroup *pc;
e8589cc1 1545 struct mem_cgroup *mem = NULL;
e8589cc1 1546 int ret = 0;
8869b8f6 1547
f8d66542 1548 if (mem_cgroup_disabled())
4077960e
BS
1549 return 0;
1550
52d4b9ac
KH
1551 pc = lookup_page_cgroup(page);
1552 lock_page_cgroup(pc);
1553 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1554 mem = pc->mem_cgroup;
1555 css_get(&mem->css);
e8589cc1 1556 }
52d4b9ac 1557 unlock_page_cgroup(pc);
01b1ae63 1558
e8589cc1 1559 if (mem) {
3bb4edf2 1560 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1561 css_put(&mem->css);
1562 }
01b1ae63 1563 *ptr = mem;
e8589cc1 1564 return ret;
ae41be37 1565}
8869b8f6 1566
69029cd5 1567/* remove redundant charge if migration failed*/
01b1ae63
KH
1568void mem_cgroup_end_migration(struct mem_cgroup *mem,
1569 struct page *oldpage, struct page *newpage)
ae41be37 1570{
01b1ae63
KH
1571 struct page *target, *unused;
1572 struct page_cgroup *pc;
1573 enum charge_type ctype;
1574
1575 if (!mem)
1576 return;
1577
1578 /* at migration success, oldpage->mapping is NULL. */
1579 if (oldpage->mapping) {
1580 target = oldpage;
1581 unused = NULL;
1582 } else {
1583 target = newpage;
1584 unused = oldpage;
1585 }
1586
1587 if (PageAnon(target))
1588 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1589 else if (page_is_file_cache(target))
1590 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1591 else
1592 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1593
1594 /* unused page is not on radix-tree now. */
d13d1443 1595 if (unused)
01b1ae63
KH
1596 __mem_cgroup_uncharge_common(unused, ctype);
1597
1598 pc = lookup_page_cgroup(target);
69029cd5 1599 /*
01b1ae63
KH
1600 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1601 * So, double-counting is effectively avoided.
1602 */
1603 __mem_cgroup_commit_charge(mem, pc, ctype);
1604
1605 /*
1606 * Both of oldpage and newpage are still under lock_page().
1607 * Then, we don't have to care about race in radix-tree.
1608 * But we have to be careful that this page is unmapped or not.
1609 *
1610 * There is a case for !page_mapped(). At the start of
1611 * migration, oldpage was mapped. But now, it's zapped.
1612 * But we know *target* page is not freed/reused under us.
1613 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1614 */
01b1ae63
KH
1615 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1616 mem_cgroup_uncharge_page(target);
ae41be37 1617}
78fb7466 1618
c9b0ed51
KH
1619/*
1620 * A call to try to shrink memory usage under specified resource controller.
1621 * This is typically used for page reclaiming for shmem for reducing side
1622 * effect of page allocation from shmem, which is used by some mem_cgroup.
1623 */
b5a84319
KH
1624int mem_cgroup_shrink_usage(struct page *page,
1625 struct mm_struct *mm,
1626 gfp_t gfp_mask)
c9b0ed51 1627{
b5a84319 1628 struct mem_cgroup *mem = NULL;
c9b0ed51
KH
1629 int progress = 0;
1630 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1631
f8d66542 1632 if (mem_cgroup_disabled())
cede86ac 1633 return 0;
b5a84319
KH
1634 if (page)
1635 mem = try_get_mem_cgroup_from_swapcache(page);
1636 if (!mem && mm)
1637 mem = try_get_mem_cgroup_from_mm(mm);
54595fe2 1638 if (unlikely(!mem))
31a78f23 1639 return 0;
c9b0ed51
KH
1640
1641 do {
81d39c20
KH
1642 progress = mem_cgroup_hierarchical_reclaim(mem,
1643 gfp_mask, true, false);
b85a96c0 1644 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1645 } while (!progress && --retry);
1646
1647 css_put(&mem->css);
1648 if (!retry)
1649 return -ENOMEM;
1650 return 0;
1651}
1652
8c7c6e34
KH
1653static DEFINE_MUTEX(set_limit_mutex);
1654
d38d2a75 1655static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1656 unsigned long long val)
628f4235 1657{
81d39c20 1658 int retry_count;
628f4235 1659 int progress;
8c7c6e34 1660 u64 memswlimit;
628f4235 1661 int ret = 0;
81d39c20
KH
1662 int children = mem_cgroup_count_children(memcg);
1663 u64 curusage, oldusage;
1664
1665 /*
1666 * For keeping hierarchical_reclaim simple, how long we should retry
1667 * is depends on callers. We set our retry-count to be function
1668 * of # of children which we should visit in this loop.
1669 */
1670 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1671
1672 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 1673
8c7c6e34 1674 while (retry_count) {
628f4235
KH
1675 if (signal_pending(current)) {
1676 ret = -EINTR;
1677 break;
1678 }
8c7c6e34
KH
1679 /*
1680 * Rather than hide all in some function, I do this in
1681 * open coded manner. You see what this really does.
1682 * We have to guarantee mem->res.limit < mem->memsw.limit.
1683 */
1684 mutex_lock(&set_limit_mutex);
1685 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1686 if (memswlimit < val) {
1687 ret = -EINVAL;
1688 mutex_unlock(&set_limit_mutex);
628f4235
KH
1689 break;
1690 }
8c7c6e34
KH
1691 ret = res_counter_set_limit(&memcg->res, val);
1692 mutex_unlock(&set_limit_mutex);
1693
1694 if (!ret)
1695 break;
1696
42e9abb6 1697 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
81d39c20
KH
1698 false, true);
1699 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1700 /* Usage is reduced ? */
1701 if (curusage >= oldusage)
1702 retry_count--;
1703 else
1704 oldusage = curusage;
8c7c6e34 1705 }
14797e23 1706
8c7c6e34
KH
1707 return ret;
1708}
1709
1710int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1711 unsigned long long val)
1712{
81d39c20 1713 int retry_count;
8c7c6e34 1714 u64 memlimit, oldusage, curusage;
81d39c20
KH
1715 int children = mem_cgroup_count_children(memcg);
1716 int ret = -EBUSY;
8c7c6e34
KH
1717
1718 if (!do_swap_account)
1719 return -EINVAL;
81d39c20
KH
1720 /* see mem_cgroup_resize_res_limit */
1721 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1722 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
1723 while (retry_count) {
1724 if (signal_pending(current)) {
1725 ret = -EINTR;
1726 break;
1727 }
1728 /*
1729 * Rather than hide all in some function, I do this in
1730 * open coded manner. You see what this really does.
1731 * We have to guarantee mem->res.limit < mem->memsw.limit.
1732 */
1733 mutex_lock(&set_limit_mutex);
1734 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1735 if (memlimit > val) {
1736 ret = -EINVAL;
1737 mutex_unlock(&set_limit_mutex);
1738 break;
1739 }
1740 ret = res_counter_set_limit(&memcg->memsw, val);
1741 mutex_unlock(&set_limit_mutex);
1742
1743 if (!ret)
1744 break;
1745
81d39c20 1746 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
8c7c6e34 1747 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 1748 /* Usage is reduced ? */
8c7c6e34 1749 if (curusage >= oldusage)
628f4235 1750 retry_count--;
81d39c20
KH
1751 else
1752 oldusage = curusage;
628f4235
KH
1753 }
1754 return ret;
1755}
1756
cc847582
KH
1757/*
1758 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1759 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1760 */
f817ed48 1761static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1762 int node, int zid, enum lru_list lru)
cc847582 1763{
08e552c6
KH
1764 struct zone *zone;
1765 struct mem_cgroup_per_zone *mz;
f817ed48 1766 struct page_cgroup *pc, *busy;
08e552c6 1767 unsigned long flags, loop;
072c56c1 1768 struct list_head *list;
f817ed48 1769 int ret = 0;
072c56c1 1770
08e552c6
KH
1771 zone = &NODE_DATA(node)->node_zones[zid];
1772 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1773 list = &mz->lists[lru];
cc847582 1774
f817ed48
KH
1775 loop = MEM_CGROUP_ZSTAT(mz, lru);
1776 /* give some margin against EBUSY etc...*/
1777 loop += 256;
1778 busy = NULL;
1779 while (loop--) {
1780 ret = 0;
08e552c6 1781 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1782 if (list_empty(list)) {
08e552c6 1783 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1784 break;
f817ed48
KH
1785 }
1786 pc = list_entry(list->prev, struct page_cgroup, lru);
1787 if (busy == pc) {
1788 list_move(&pc->lru, list);
1789 busy = 0;
08e552c6 1790 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1791 continue;
1792 }
08e552c6 1793 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1794
2c26fdd7 1795 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1796 if (ret == -ENOMEM)
52d4b9ac 1797 break;
f817ed48
KH
1798
1799 if (ret == -EBUSY || ret == -EINVAL) {
1800 /* found lock contention or "pc" is obsolete. */
1801 busy = pc;
1802 cond_resched();
1803 } else
1804 busy = NULL;
cc847582 1805 }
08e552c6 1806
f817ed48
KH
1807 if (!ret && !list_empty(list))
1808 return -EBUSY;
1809 return ret;
cc847582
KH
1810}
1811
1812/*
1813 * make mem_cgroup's charge to be 0 if there is no task.
1814 * This enables deleting this mem_cgroup.
1815 */
c1e862c1 1816static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1817{
f817ed48
KH
1818 int ret;
1819 int node, zid, shrink;
1820 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1821 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1822
cc847582 1823 css_get(&mem->css);
f817ed48
KH
1824
1825 shrink = 0;
c1e862c1
KH
1826 /* should free all ? */
1827 if (free_all)
1828 goto try_to_free;
f817ed48 1829move_account:
1ecaab2b 1830 while (mem->res.usage > 0) {
f817ed48 1831 ret = -EBUSY;
c1e862c1
KH
1832 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1833 goto out;
1834 ret = -EINTR;
1835 if (signal_pending(current))
cc847582 1836 goto out;
52d4b9ac
KH
1837 /* This is for making all *used* pages to be on LRU. */
1838 lru_add_drain_all();
f817ed48 1839 ret = 0;
299b4eaa 1840 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 1841 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1842 enum lru_list l;
f817ed48
KH
1843 for_each_lru(l) {
1844 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1845 node, zid, l);
f817ed48
KH
1846 if (ret)
1847 break;
1848 }
1ecaab2b 1849 }
f817ed48
KH
1850 if (ret)
1851 break;
1852 }
1853 /* it seems parent cgroup doesn't have enough mem */
1854 if (ret == -ENOMEM)
1855 goto try_to_free;
52d4b9ac 1856 cond_resched();
cc847582
KH
1857 }
1858 ret = 0;
1859out:
1860 css_put(&mem->css);
1861 return ret;
f817ed48
KH
1862
1863try_to_free:
c1e862c1
KH
1864 /* returns EBUSY if there is a task or if we come here twice. */
1865 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1866 ret = -EBUSY;
1867 goto out;
1868 }
c1e862c1
KH
1869 /* we call try-to-free pages for make this cgroup empty */
1870 lru_add_drain_all();
f817ed48
KH
1871 /* try to free all pages in this cgroup */
1872 shrink = 1;
1873 while (nr_retries && mem->res.usage > 0) {
1874 int progress;
c1e862c1
KH
1875
1876 if (signal_pending(current)) {
1877 ret = -EINTR;
1878 goto out;
1879 }
a7885eb8
KM
1880 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1881 false, get_swappiness(mem));
c1e862c1 1882 if (!progress) {
f817ed48 1883 nr_retries--;
c1e862c1
KH
1884 /* maybe some writeback is necessary */
1885 congestion_wait(WRITE, HZ/10);
1886 }
f817ed48
KH
1887
1888 }
08e552c6 1889 lru_add_drain();
f817ed48
KH
1890 /* try move_account...there may be some *locked* pages. */
1891 if (mem->res.usage)
1892 goto move_account;
1893 ret = 0;
1894 goto out;
cc847582
KH
1895}
1896
c1e862c1
KH
1897int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1898{
1899 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1900}
1901
1902
18f59ea7
BS
1903static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1904{
1905 return mem_cgroup_from_cont(cont)->use_hierarchy;
1906}
1907
1908static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1909 u64 val)
1910{
1911 int retval = 0;
1912 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1913 struct cgroup *parent = cont->parent;
1914 struct mem_cgroup *parent_mem = NULL;
1915
1916 if (parent)
1917 parent_mem = mem_cgroup_from_cont(parent);
1918
1919 cgroup_lock();
1920 /*
1921 * If parent's use_hiearchy is set, we can't make any modifications
1922 * in the child subtrees. If it is unset, then the change can
1923 * occur, provided the current cgroup has no children.
1924 *
1925 * For the root cgroup, parent_mem is NULL, we allow value to be
1926 * set if there are no children.
1927 */
1928 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1929 (val == 1 || val == 0)) {
1930 if (list_empty(&cont->children))
1931 mem->use_hierarchy = val;
1932 else
1933 retval = -EBUSY;
1934 } else
1935 retval = -EINVAL;
1936 cgroup_unlock();
1937
1938 return retval;
1939}
1940
2c3daa72 1941static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1942{
8c7c6e34
KH
1943 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1944 u64 val = 0;
1945 int type, name;
1946
1947 type = MEMFILE_TYPE(cft->private);
1948 name = MEMFILE_ATTR(cft->private);
1949 switch (type) {
1950 case _MEM:
1951 val = res_counter_read_u64(&mem->res, name);
1952 break;
1953 case _MEMSWAP:
1954 if (do_swap_account)
1955 val = res_counter_read_u64(&mem->memsw, name);
1956 break;
1957 default:
1958 BUG();
1959 break;
1960 }
1961 return val;
8cdea7c0 1962}
628f4235
KH
1963/*
1964 * The user of this function is...
1965 * RES_LIMIT.
1966 */
856c13aa
PM
1967static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1968 const char *buffer)
8cdea7c0 1969{
628f4235 1970 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1971 int type, name;
628f4235
KH
1972 unsigned long long val;
1973 int ret;
1974
8c7c6e34
KH
1975 type = MEMFILE_TYPE(cft->private);
1976 name = MEMFILE_ATTR(cft->private);
1977 switch (name) {
628f4235
KH
1978 case RES_LIMIT:
1979 /* This function does all necessary parse...reuse it */
1980 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1981 if (ret)
1982 break;
1983 if (type == _MEM)
628f4235 1984 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1985 else
1986 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1987 break;
1988 default:
1989 ret = -EINVAL; /* should be BUG() ? */
1990 break;
1991 }
1992 return ret;
8cdea7c0
BS
1993}
1994
fee7b548
KH
1995static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1996 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1997{
1998 struct cgroup *cgroup;
1999 unsigned long long min_limit, min_memsw_limit, tmp;
2000
2001 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2002 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2003 cgroup = memcg->css.cgroup;
2004 if (!memcg->use_hierarchy)
2005 goto out;
2006
2007 while (cgroup->parent) {
2008 cgroup = cgroup->parent;
2009 memcg = mem_cgroup_from_cont(cgroup);
2010 if (!memcg->use_hierarchy)
2011 break;
2012 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2013 min_limit = min(min_limit, tmp);
2014 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2015 min_memsw_limit = min(min_memsw_limit, tmp);
2016 }
2017out:
2018 *mem_limit = min_limit;
2019 *memsw_limit = min_memsw_limit;
2020 return;
2021}
2022
29f2a4da 2023static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2024{
2025 struct mem_cgroup *mem;
8c7c6e34 2026 int type, name;
c84872e1
PE
2027
2028 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2029 type = MEMFILE_TYPE(event);
2030 name = MEMFILE_ATTR(event);
2031 switch (name) {
29f2a4da 2032 case RES_MAX_USAGE:
8c7c6e34
KH
2033 if (type == _MEM)
2034 res_counter_reset_max(&mem->res);
2035 else
2036 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2037 break;
2038 case RES_FAILCNT:
8c7c6e34
KH
2039 if (type == _MEM)
2040 res_counter_reset_failcnt(&mem->res);
2041 else
2042 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2043 break;
2044 }
85cc59db 2045 return 0;
c84872e1
PE
2046}
2047
14067bb3
KH
2048
2049/* For read statistics */
2050enum {
2051 MCS_CACHE,
2052 MCS_RSS,
2053 MCS_PGPGIN,
2054 MCS_PGPGOUT,
2055 MCS_INACTIVE_ANON,
2056 MCS_ACTIVE_ANON,
2057 MCS_INACTIVE_FILE,
2058 MCS_ACTIVE_FILE,
2059 MCS_UNEVICTABLE,
2060 NR_MCS_STAT,
2061};
2062
2063struct mcs_total_stat {
2064 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
2065};
2066
14067bb3
KH
2067struct {
2068 char *local_name;
2069 char *total_name;
2070} memcg_stat_strings[NR_MCS_STAT] = {
2071 {"cache", "total_cache"},
2072 {"rss", "total_rss"},
2073 {"pgpgin", "total_pgpgin"},
2074 {"pgpgout", "total_pgpgout"},
2075 {"inactive_anon", "total_inactive_anon"},
2076 {"active_anon", "total_active_anon"},
2077 {"inactive_file", "total_inactive_file"},
2078 {"active_file", "total_active_file"},
2079 {"unevictable", "total_unevictable"}
2080};
2081
2082
2083static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2084{
2085 struct mcs_total_stat *s = data;
2086 s64 val;
2087
2088 /* per cpu stat */
2089 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2090 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2091 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2092 s->stat[MCS_RSS] += val * PAGE_SIZE;
2093 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2094 s->stat[MCS_PGPGIN] += val;
2095 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2096 s->stat[MCS_PGPGOUT] += val;
2097
2098 /* per zone stat */
2099 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2100 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2101 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2102 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2103 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2104 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2105 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2106 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2107 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2108 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2109 return 0;
2110}
2111
2112static void
2113mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2114{
2115 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2116}
2117
c64745cf
PM
2118static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2119 struct cgroup_map_cb *cb)
d2ceb9b7 2120{
d2ceb9b7 2121 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 2122 struct mcs_total_stat mystat;
d2ceb9b7
KH
2123 int i;
2124
14067bb3
KH
2125 memset(&mystat, 0, sizeof(mystat));
2126 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 2127
14067bb3
KH
2128 for (i = 0; i < NR_MCS_STAT; i++)
2129 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
7b854121 2130
14067bb3 2131 /* Hierarchical information */
fee7b548
KH
2132 {
2133 unsigned long long limit, memsw_limit;
2134 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2135 cb->fill(cb, "hierarchical_memory_limit", limit);
2136 if (do_swap_account)
2137 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2138 }
7f016ee8 2139
14067bb3
KH
2140 memset(&mystat, 0, sizeof(mystat));
2141 mem_cgroup_get_total_stat(mem_cont, &mystat);
2142 for (i = 0; i < NR_MCS_STAT; i++)
2143 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2144
2145
7f016ee8 2146#ifdef CONFIG_DEBUG_VM
c772be93 2147 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
2148
2149 {
2150 int nid, zid;
2151 struct mem_cgroup_per_zone *mz;
2152 unsigned long recent_rotated[2] = {0, 0};
2153 unsigned long recent_scanned[2] = {0, 0};
2154
2155 for_each_online_node(nid)
2156 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2157 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2158
2159 recent_rotated[0] +=
2160 mz->reclaim_stat.recent_rotated[0];
2161 recent_rotated[1] +=
2162 mz->reclaim_stat.recent_rotated[1];
2163 recent_scanned[0] +=
2164 mz->reclaim_stat.recent_scanned[0];
2165 recent_scanned[1] +=
2166 mz->reclaim_stat.recent_scanned[1];
2167 }
2168 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2169 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2170 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2171 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2172 }
2173#endif
2174
d2ceb9b7
KH
2175 return 0;
2176}
2177
a7885eb8
KM
2178static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2179{
2180 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2181
2182 return get_swappiness(memcg);
2183}
2184
2185static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2186 u64 val)
2187{
2188 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2189 struct mem_cgroup *parent;
068b38c1 2190
a7885eb8
KM
2191 if (val > 100)
2192 return -EINVAL;
2193
2194 if (cgrp->parent == NULL)
2195 return -EINVAL;
2196
2197 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
2198
2199 cgroup_lock();
2200
a7885eb8
KM
2201 /* If under hierarchy, only empty-root can set this value */
2202 if ((parent->use_hierarchy) ||
068b38c1
LZ
2203 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2204 cgroup_unlock();
a7885eb8 2205 return -EINVAL;
068b38c1 2206 }
a7885eb8
KM
2207
2208 spin_lock(&memcg->reclaim_param_lock);
2209 memcg->swappiness = val;
2210 spin_unlock(&memcg->reclaim_param_lock);
2211
068b38c1
LZ
2212 cgroup_unlock();
2213
a7885eb8
KM
2214 return 0;
2215}
2216
c1e862c1 2217
8cdea7c0
BS
2218static struct cftype mem_cgroup_files[] = {
2219 {
0eea1030 2220 .name = "usage_in_bytes",
8c7c6e34 2221 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 2222 .read_u64 = mem_cgroup_read,
8cdea7c0 2223 },
c84872e1
PE
2224 {
2225 .name = "max_usage_in_bytes",
8c7c6e34 2226 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2227 .trigger = mem_cgroup_reset,
c84872e1
PE
2228 .read_u64 = mem_cgroup_read,
2229 },
8cdea7c0 2230 {
0eea1030 2231 .name = "limit_in_bytes",
8c7c6e34 2232 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2233 .write_string = mem_cgroup_write,
2c3daa72 2234 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
2235 },
2236 {
2237 .name = "failcnt",
8c7c6e34 2238 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2239 .trigger = mem_cgroup_reset,
2c3daa72 2240 .read_u64 = mem_cgroup_read,
8cdea7c0 2241 },
d2ceb9b7
KH
2242 {
2243 .name = "stat",
c64745cf 2244 .read_map = mem_control_stat_show,
d2ceb9b7 2245 },
c1e862c1
KH
2246 {
2247 .name = "force_empty",
2248 .trigger = mem_cgroup_force_empty_write,
2249 },
18f59ea7
BS
2250 {
2251 .name = "use_hierarchy",
2252 .write_u64 = mem_cgroup_hierarchy_write,
2253 .read_u64 = mem_cgroup_hierarchy_read,
2254 },
a7885eb8
KM
2255 {
2256 .name = "swappiness",
2257 .read_u64 = mem_cgroup_swappiness_read,
2258 .write_u64 = mem_cgroup_swappiness_write,
2259 },
8cdea7c0
BS
2260};
2261
8c7c6e34
KH
2262#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2263static struct cftype memsw_cgroup_files[] = {
2264 {
2265 .name = "memsw.usage_in_bytes",
2266 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2267 .read_u64 = mem_cgroup_read,
2268 },
2269 {
2270 .name = "memsw.max_usage_in_bytes",
2271 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2272 .trigger = mem_cgroup_reset,
2273 .read_u64 = mem_cgroup_read,
2274 },
2275 {
2276 .name = "memsw.limit_in_bytes",
2277 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2278 .write_string = mem_cgroup_write,
2279 .read_u64 = mem_cgroup_read,
2280 },
2281 {
2282 .name = "memsw.failcnt",
2283 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2284 .trigger = mem_cgroup_reset,
2285 .read_u64 = mem_cgroup_read,
2286 },
2287};
2288
2289static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2290{
2291 if (!do_swap_account)
2292 return 0;
2293 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2294 ARRAY_SIZE(memsw_cgroup_files));
2295};
2296#else
2297static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2298{
2299 return 0;
2300}
2301#endif
2302
6d12e2d8
KH
2303static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2304{
2305 struct mem_cgroup_per_node *pn;
1ecaab2b 2306 struct mem_cgroup_per_zone *mz;
b69408e8 2307 enum lru_list l;
41e3355d 2308 int zone, tmp = node;
1ecaab2b
KH
2309 /*
2310 * This routine is called against possible nodes.
2311 * But it's BUG to call kmalloc() against offline node.
2312 *
2313 * TODO: this routine can waste much memory for nodes which will
2314 * never be onlined. It's better to use memory hotplug callback
2315 * function.
2316 */
41e3355d
KH
2317 if (!node_state(node, N_NORMAL_MEMORY))
2318 tmp = -1;
2319 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2320 if (!pn)
2321 return 1;
1ecaab2b 2322
6d12e2d8
KH
2323 mem->info.nodeinfo[node] = pn;
2324 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2325
2326 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2327 mz = &pn->zoneinfo[zone];
b69408e8
CL
2328 for_each_lru(l)
2329 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2330 }
6d12e2d8
KH
2331 return 0;
2332}
2333
1ecaab2b
KH
2334static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2335{
2336 kfree(mem->info.nodeinfo[node]);
2337}
2338
c8dad2bb
JB
2339static int mem_cgroup_size(void)
2340{
2341 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2342 return sizeof(struct mem_cgroup) + cpustat_size;
2343}
2344
33327948
KH
2345static struct mem_cgroup *mem_cgroup_alloc(void)
2346{
2347 struct mem_cgroup *mem;
c8dad2bb 2348 int size = mem_cgroup_size();
33327948 2349
c8dad2bb
JB
2350 if (size < PAGE_SIZE)
2351 mem = kmalloc(size, GFP_KERNEL);
33327948 2352 else
c8dad2bb 2353 mem = vmalloc(size);
33327948
KH
2354
2355 if (mem)
c8dad2bb 2356 memset(mem, 0, size);
33327948
KH
2357 return mem;
2358}
2359
8c7c6e34
KH
2360/*
2361 * At destroying mem_cgroup, references from swap_cgroup can remain.
2362 * (scanning all at force_empty is too costly...)
2363 *
2364 * Instead of clearing all references at force_empty, we remember
2365 * the number of reference from swap_cgroup and free mem_cgroup when
2366 * it goes down to 0.
2367 *
8c7c6e34
KH
2368 * Removal of cgroup itself succeeds regardless of refs from swap.
2369 */
2370
a7ba0eef 2371static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2372{
08e552c6
KH
2373 int node;
2374
04046e1a
KH
2375 free_css_id(&mem_cgroup_subsys, &mem->css);
2376
08e552c6
KH
2377 for_each_node_state(node, N_POSSIBLE)
2378 free_mem_cgroup_per_zone_info(mem, node);
2379
c8dad2bb 2380 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2381 kfree(mem);
2382 else
2383 vfree(mem);
2384}
2385
8c7c6e34
KH
2386static void mem_cgroup_get(struct mem_cgroup *mem)
2387{
2388 atomic_inc(&mem->refcnt);
2389}
2390
2391static void mem_cgroup_put(struct mem_cgroup *mem)
2392{
7bcc1bb1
DN
2393 if (atomic_dec_and_test(&mem->refcnt)) {
2394 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 2395 __mem_cgroup_free(mem);
7bcc1bb1
DN
2396 if (parent)
2397 mem_cgroup_put(parent);
2398 }
8c7c6e34
KH
2399}
2400
7bcc1bb1
DN
2401/*
2402 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2403 */
2404static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2405{
2406 if (!mem->res.parent)
2407 return NULL;
2408 return mem_cgroup_from_res_counter(mem->res.parent, res);
2409}
33327948 2410
c077719b
KH
2411#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2412static void __init enable_swap_cgroup(void)
2413{
f8d66542 2414 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2415 do_swap_account = 1;
2416}
2417#else
2418static void __init enable_swap_cgroup(void)
2419{
2420}
2421#endif
2422
0eb253e2 2423static struct cgroup_subsys_state * __ref
8cdea7c0
BS
2424mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2425{
28dbc4b6 2426 struct mem_cgroup *mem, *parent;
04046e1a 2427 long error = -ENOMEM;
6d12e2d8 2428 int node;
8cdea7c0 2429
c8dad2bb
JB
2430 mem = mem_cgroup_alloc();
2431 if (!mem)
04046e1a 2432 return ERR_PTR(error);
78fb7466 2433
6d12e2d8
KH
2434 for_each_node_state(node, N_POSSIBLE)
2435 if (alloc_mem_cgroup_per_zone_info(mem, node))
2436 goto free_out;
c077719b 2437 /* root ? */
28dbc4b6 2438 if (cont->parent == NULL) {
c077719b 2439 enable_swap_cgroup();
28dbc4b6 2440 parent = NULL;
18f59ea7 2441 } else {
28dbc4b6 2442 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2443 mem->use_hierarchy = parent->use_hierarchy;
2444 }
28dbc4b6 2445
18f59ea7
BS
2446 if (parent && parent->use_hierarchy) {
2447 res_counter_init(&mem->res, &parent->res);
2448 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
2449 /*
2450 * We increment refcnt of the parent to ensure that we can
2451 * safely access it on res_counter_charge/uncharge.
2452 * This refcnt will be decremented when freeing this
2453 * mem_cgroup(see mem_cgroup_put).
2454 */
2455 mem_cgroup_get(parent);
18f59ea7
BS
2456 } else {
2457 res_counter_init(&mem->res, NULL);
2458 res_counter_init(&mem->memsw, NULL);
2459 }
04046e1a 2460 mem->last_scanned_child = 0;
2733c06a 2461 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2462
a7885eb8
KM
2463 if (parent)
2464 mem->swappiness = get_swappiness(parent);
a7ba0eef 2465 atomic_set(&mem->refcnt, 1);
8cdea7c0 2466 return &mem->css;
6d12e2d8 2467free_out:
a7ba0eef 2468 __mem_cgroup_free(mem);
04046e1a 2469 return ERR_PTR(error);
8cdea7c0
BS
2470}
2471
ec64f515 2472static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
2473 struct cgroup *cont)
2474{
2475 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
2476
2477 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
2478}
2479
8cdea7c0
BS
2480static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2481 struct cgroup *cont)
2482{
c268e994 2483 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 2484
c268e994 2485 mem_cgroup_put(mem);
8cdea7c0
BS
2486}
2487
2488static int mem_cgroup_populate(struct cgroup_subsys *ss,
2489 struct cgroup *cont)
2490{
8c7c6e34
KH
2491 int ret;
2492
2493 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2494 ARRAY_SIZE(mem_cgroup_files));
2495
2496 if (!ret)
2497 ret = register_memsw_files(cont, ss);
2498 return ret;
8cdea7c0
BS
2499}
2500
67e465a7
BS
2501static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2502 struct cgroup *cont,
2503 struct cgroup *old_cont,
2504 struct task_struct *p)
2505{
7f4d454d 2506 mutex_lock(&memcg_tasklist);
67e465a7 2507 /*
f9717d28
NK
2508 * FIXME: It's better to move charges of this process from old
2509 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2510 */
7f4d454d 2511 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2512}
2513
8cdea7c0
BS
2514struct cgroup_subsys mem_cgroup_subsys = {
2515 .name = "memory",
2516 .subsys_id = mem_cgroup_subsys_id,
2517 .create = mem_cgroup_create,
df878fb0 2518 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2519 .destroy = mem_cgroup_destroy,
2520 .populate = mem_cgroup_populate,
67e465a7 2521 .attach = mem_cgroup_move_task,
6d12e2d8 2522 .early_init = 0,
04046e1a 2523 .use_id = 1,
8cdea7c0 2524};
c077719b
KH
2525
2526#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2527
2528static int __init disable_swap_account(char *s)
2529{
2530 really_do_swap_account = 0;
2531 return 1;
2532}
2533__setup("noswapaccount", disable_swap_account);
2534#endif