]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: charge swapcache to proper memcg
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
e222432b 30#include <linux/limits.h>
8c7c6e34 31#include <linux/mutex.h>
b6ac57d5 32#include <linux/slab.h>
66e1707b
BS
33#include <linux/swap.h>
34#include <linux/spinlock.h>
35#include <linux/fs.h>
d2ceb9b7 36#include <linux/seq_file.h>
33327948 37#include <linux/vmalloc.h>
b69408e8 38#include <linux/mm_inline.h>
52d4b9ac 39#include <linux/page_cgroup.h>
08e552c6 40#include "internal.h"
8cdea7c0 41
8697d331
BS
42#include <asm/uaccess.h>
43
a181b0e8 44struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 45#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 46
c077719b
KH
47#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49int do_swap_account __read_mostly;
50static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51#else
52#define do_swap_account (0)
53#endif
54
7f4d454d 55static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 56
d52aa412
KH
57/*
58 * Statistics for memory cgroup.
59 */
60enum mem_cgroup_stat_index {
61 /*
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 */
64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
66 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
67 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
68
69 MEM_CGROUP_STAT_NSTATS,
70};
71
72struct mem_cgroup_stat_cpu {
73 s64 count[MEM_CGROUP_STAT_NSTATS];
74} ____cacheline_aligned_in_smp;
75
76struct mem_cgroup_stat {
c8dad2bb 77 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
78};
79
80/*
81 * For accounting under irq disable, no need for increment preempt count.
82 */
addb9efe 83static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
84 enum mem_cgroup_stat_index idx, int val)
85{
addb9efe 86 stat->count[idx] += val;
d52aa412
KH
87}
88
89static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
90 enum mem_cgroup_stat_index idx)
91{
92 int cpu;
93 s64 ret = 0;
94 for_each_possible_cpu(cpu)
95 ret += stat->cpustat[cpu].count[idx];
96 return ret;
97}
98
04046e1a
KH
99static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
100{
101 s64 ret;
102
103 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
105 return ret;
106}
107
6d12e2d8
KH
108/*
109 * per-zone information in memory controller.
110 */
6d12e2d8 111struct mem_cgroup_per_zone {
072c56c1
KH
112 /*
113 * spin_lock to protect the per cgroup LRU
114 */
b69408e8
CL
115 struct list_head lists[NR_LRU_LISTS];
116 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
117
118 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
119};
120/* Macro for accessing counter */
121#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
122
123struct mem_cgroup_per_node {
124 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
125};
126
127struct mem_cgroup_lru_info {
128 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
129};
130
8cdea7c0
BS
131/*
132 * The memory controller data structure. The memory controller controls both
133 * page cache and RSS per cgroup. We would eventually like to provide
134 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135 * to help the administrator determine what knobs to tune.
136 *
137 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
138 * we hit the water mark. May be even add a low water mark, such that
139 * no reclaim occurs from a cgroup at it's low water mark, this is
140 * a feature that will be implemented much later in the future.
8cdea7c0
BS
141 */
142struct mem_cgroup {
143 struct cgroup_subsys_state css;
144 /*
145 * the counter to account for memory usage
146 */
147 struct res_counter res;
8c7c6e34
KH
148 /*
149 * the counter to account for mem+swap usage.
150 */
151 struct res_counter memsw;
78fb7466
PE
152 /*
153 * Per cgroup active and inactive list, similar to the
154 * per zone LRU lists.
78fb7466 155 */
6d12e2d8 156 struct mem_cgroup_lru_info info;
072c56c1 157
2733c06a
KM
158 /*
159 protect against reclaim related member.
160 */
161 spinlock_t reclaim_param_lock;
162
6c48a1d0 163 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
164
165 /*
166 * While reclaiming in a hiearchy, we cache the last child we
04046e1a 167 * reclaimed from.
6d61ef40 168 */
04046e1a 169 int last_scanned_child;
18f59ea7
BS
170 /*
171 * Should the accounting and control be hierarchical, per subtree?
172 */
173 bool use_hierarchy;
a636b327 174 unsigned long last_oom_jiffies;
8c7c6e34 175 atomic_t refcnt;
14797e23 176
a7885eb8
KM
177 unsigned int swappiness;
178
d52aa412 179 /*
c8dad2bb 180 * statistics. This must be placed at the end of memcg.
d52aa412
KH
181 */
182 struct mem_cgroup_stat stat;
8cdea7c0
BS
183};
184
217bc319
KH
185enum charge_type {
186 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 188 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 189 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
191 NR_CHARGE_TYPE,
192};
193
52d4b9ac
KH
194/* only for here (for easy reading.) */
195#define PCGF_CACHE (1UL << PCG_CACHE)
196#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 197#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
198static const unsigned long
199pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
200 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
201 PCGF_USED | PCGF_LOCK, /* Anon */
202 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 203 0, /* FORCE */
217bc319
KH
204};
205
8c7c6e34
KH
206/* for encoding cft->private value on file */
207#define _MEM (0)
208#define _MEMSWAP (1)
209#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211#define MEMFILE_ATTR(val) ((val) & 0xffff)
212
213static void mem_cgroup_get(struct mem_cgroup *mem);
214static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 215static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
8c7c6e34 216
c05555b5
KH
217static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
218 struct page_cgroup *pc,
219 bool charge)
d52aa412
KH
220{
221 int val = (charge)? 1 : -1;
222 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 223 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 224 int cpu = get_cpu();
d52aa412 225
08e552c6 226 cpustat = &stat->cpustat[cpu];
c05555b5 227 if (PageCgroupCache(pc))
addb9efe 228 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 229 else
addb9efe 230 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
231
232 if (charge)
addb9efe 233 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
234 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
235 else
addb9efe 236 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 237 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 238 put_cpu();
6d12e2d8
KH
239}
240
d5b69e38 241static struct mem_cgroup_per_zone *
6d12e2d8
KH
242mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
243{
6d12e2d8
KH
244 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
245}
246
d5b69e38 247static struct mem_cgroup_per_zone *
6d12e2d8
KH
248page_cgroup_zoneinfo(struct page_cgroup *pc)
249{
250 struct mem_cgroup *mem = pc->mem_cgroup;
251 int nid = page_cgroup_nid(pc);
252 int zid = page_cgroup_zid(pc);
d52aa412 253
54992762
KM
254 if (!mem)
255 return NULL;
256
6d12e2d8
KH
257 return mem_cgroup_zoneinfo(mem, nid, zid);
258}
259
14067bb3 260static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 261 enum lru_list idx)
6d12e2d8
KH
262{
263 int nid, zid;
264 struct mem_cgroup_per_zone *mz;
265 u64 total = 0;
266
267 for_each_online_node(nid)
268 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
269 mz = mem_cgroup_zoneinfo(mem, nid, zid);
270 total += MEM_CGROUP_ZSTAT(mz, idx);
271 }
272 return total;
d52aa412
KH
273}
274
d5b69e38 275static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
276{
277 return container_of(cgroup_subsys_state(cont,
278 mem_cgroup_subsys_id), struct mem_cgroup,
279 css);
280}
281
cf475ad2 282struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 283{
31a78f23
BS
284 /*
285 * mm_update_next_owner() may clear mm->owner to NULL
286 * if it races with swapoff, page migration, etc.
287 * So this can be called with p == NULL.
288 */
289 if (unlikely(!p))
290 return NULL;
291
78fb7466
PE
292 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
293 struct mem_cgroup, css);
294}
295
54595fe2
KH
296static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
297{
298 struct mem_cgroup *mem = NULL;
0b7f569e
KH
299
300 if (!mm)
301 return NULL;
54595fe2
KH
302 /*
303 * Because we have no locks, mm->owner's may be being moved to other
304 * cgroup. We use css_tryget() here even if this looks
305 * pessimistic (rather than adding locks here).
306 */
307 rcu_read_lock();
308 do {
309 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
310 if (unlikely(!mem))
311 break;
312 } while (!css_tryget(&mem->css));
313 rcu_read_unlock();
314 return mem;
315}
316
317static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
318{
319 if (!mem)
320 return true;
321 return css_is_removed(&mem->css);
322}
323
14067bb3
KH
324
325/*
326 * Call callback function against all cgroup under hierarchy tree.
327 */
328static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
329 int (*func)(struct mem_cgroup *, void *))
330{
331 int found, ret, nextid;
332 struct cgroup_subsys_state *css;
333 struct mem_cgroup *mem;
334
335 if (!root->use_hierarchy)
336 return (*func)(root, data);
337
338 nextid = 1;
339 do {
340 ret = 0;
341 mem = NULL;
342
343 rcu_read_lock();
344 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
345 &found);
346 if (css && css_tryget(css))
347 mem = container_of(css, struct mem_cgroup, css);
348 rcu_read_unlock();
349
350 if (mem) {
351 ret = (*func)(mem, data);
352 css_put(&mem->css);
353 }
354 nextid = found + 1;
355 } while (!ret && css);
356
357 return ret;
358}
359
08e552c6
KH
360/*
361 * Following LRU functions are allowed to be used without PCG_LOCK.
362 * Operations are called by routine of global LRU independently from memcg.
363 * What we have to take care of here is validness of pc->mem_cgroup.
364 *
365 * Changes to pc->mem_cgroup happens when
366 * 1. charge
367 * 2. moving account
368 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
369 * It is added to LRU before charge.
370 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
371 * When moving account, the page is not on LRU. It's isolated.
372 */
4f98a2fe 373
08e552c6
KH
374void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
375{
376 struct page_cgroup *pc;
377 struct mem_cgroup *mem;
378 struct mem_cgroup_per_zone *mz;
6d12e2d8 379
f8d66542 380 if (mem_cgroup_disabled())
08e552c6
KH
381 return;
382 pc = lookup_page_cgroup(page);
383 /* can happen while we handle swapcache. */
544122e5 384 if (list_empty(&pc->lru) || !pc->mem_cgroup)
08e552c6 385 return;
544122e5
KH
386 /*
387 * We don't check PCG_USED bit. It's cleared when the "page" is finally
388 * removed from global LRU.
389 */
08e552c6
KH
390 mz = page_cgroup_zoneinfo(pc);
391 mem = pc->mem_cgroup;
b69408e8 392 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
393 list_del_init(&pc->lru);
394 return;
6d12e2d8
KH
395}
396
08e552c6 397void mem_cgroup_del_lru(struct page *page)
6d12e2d8 398{
08e552c6
KH
399 mem_cgroup_del_lru_list(page, page_lru(page));
400}
b69408e8 401
08e552c6
KH
402void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
403{
404 struct mem_cgroup_per_zone *mz;
405 struct page_cgroup *pc;
b69408e8 406
f8d66542 407 if (mem_cgroup_disabled())
08e552c6 408 return;
6d12e2d8 409
08e552c6 410 pc = lookup_page_cgroup(page);
bd112db8
DN
411 /*
412 * Used bit is set without atomic ops but after smp_wmb().
413 * For making pc->mem_cgroup visible, insert smp_rmb() here.
414 */
08e552c6
KH
415 smp_rmb();
416 /* unused page is not rotated. */
417 if (!PageCgroupUsed(pc))
418 return;
419 mz = page_cgroup_zoneinfo(pc);
420 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
421}
422
08e552c6 423void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 424{
08e552c6
KH
425 struct page_cgroup *pc;
426 struct mem_cgroup_per_zone *mz;
6d12e2d8 427
f8d66542 428 if (mem_cgroup_disabled())
08e552c6
KH
429 return;
430 pc = lookup_page_cgroup(page);
bd112db8
DN
431 /*
432 * Used bit is set without atomic ops but after smp_wmb().
433 * For making pc->mem_cgroup visible, insert smp_rmb() here.
434 */
08e552c6
KH
435 smp_rmb();
436 if (!PageCgroupUsed(pc))
894bc310 437 return;
b69408e8 438
08e552c6 439 mz = page_cgroup_zoneinfo(pc);
b69408e8 440 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
441 list_add(&pc->lru, &mz->lists[lru]);
442}
544122e5 443
08e552c6 444/*
544122e5
KH
445 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
446 * lru because the page may.be reused after it's fully uncharged (because of
447 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
448 * it again. This function is only used to charge SwapCache. It's done under
449 * lock_page and expected that zone->lru_lock is never held.
08e552c6 450 */
544122e5 451static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 452{
544122e5
KH
453 unsigned long flags;
454 struct zone *zone = page_zone(page);
455 struct page_cgroup *pc = lookup_page_cgroup(page);
456
457 spin_lock_irqsave(&zone->lru_lock, flags);
458 /*
459 * Forget old LRU when this page_cgroup is *not* used. This Used bit
460 * is guarded by lock_page() because the page is SwapCache.
461 */
462 if (!PageCgroupUsed(pc))
463 mem_cgroup_del_lru_list(page, page_lru(page));
464 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
465}
466
544122e5
KH
467static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
468{
469 unsigned long flags;
470 struct zone *zone = page_zone(page);
471 struct page_cgroup *pc = lookup_page_cgroup(page);
472
473 spin_lock_irqsave(&zone->lru_lock, flags);
474 /* link when the page is linked to LRU but page_cgroup isn't */
475 if (PageLRU(page) && list_empty(&pc->lru))
476 mem_cgroup_add_lru_list(page, page_lru(page));
477 spin_unlock_irqrestore(&zone->lru_lock, flags);
478}
479
480
08e552c6
KH
481void mem_cgroup_move_lists(struct page *page,
482 enum lru_list from, enum lru_list to)
483{
f8d66542 484 if (mem_cgroup_disabled())
08e552c6
KH
485 return;
486 mem_cgroup_del_lru_list(page, from);
487 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
488}
489
4c4a2214
DR
490int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
491{
492 int ret;
0b7f569e 493 struct mem_cgroup *curr = NULL;
4c4a2214
DR
494
495 task_lock(task);
0b7f569e
KH
496 rcu_read_lock();
497 curr = try_get_mem_cgroup_from_mm(task->mm);
498 rcu_read_unlock();
4c4a2214 499 task_unlock(task);
0b7f569e
KH
500 if (!curr)
501 return 0;
502 if (curr->use_hierarchy)
503 ret = css_is_ancestor(&curr->css, &mem->css);
504 else
505 ret = (curr == mem);
506 css_put(&curr->css);
4c4a2214
DR
507 return ret;
508}
509
6c48a1d0
KH
510/*
511 * prev_priority control...this will be used in memory reclaim path.
512 */
513int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
514{
2733c06a
KM
515 int prev_priority;
516
517 spin_lock(&mem->reclaim_param_lock);
518 prev_priority = mem->prev_priority;
519 spin_unlock(&mem->reclaim_param_lock);
520
521 return prev_priority;
6c48a1d0
KH
522}
523
524void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
525{
2733c06a 526 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
527 if (priority < mem->prev_priority)
528 mem->prev_priority = priority;
2733c06a 529 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
530}
531
532void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
533{
2733c06a 534 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 535 mem->prev_priority = priority;
2733c06a 536 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
537}
538
c772be93 539static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
540{
541 unsigned long active;
542 unsigned long inactive;
c772be93
KM
543 unsigned long gb;
544 unsigned long inactive_ratio;
14797e23 545
14067bb3
KH
546 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
547 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 548
c772be93
KM
549 gb = (inactive + active) >> (30 - PAGE_SHIFT);
550 if (gb)
551 inactive_ratio = int_sqrt(10 * gb);
552 else
553 inactive_ratio = 1;
554
555 if (present_pages) {
556 present_pages[0] = inactive;
557 present_pages[1] = active;
558 }
559
560 return inactive_ratio;
561}
562
563int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
564{
565 unsigned long active;
566 unsigned long inactive;
567 unsigned long present_pages[2];
568 unsigned long inactive_ratio;
569
570 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
571
572 inactive = present_pages[0];
573 active = present_pages[1];
574
575 if (inactive * inactive_ratio < active)
14797e23
KM
576 return 1;
577
578 return 0;
579}
580
a3d8e054
KM
581unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
582 struct zone *zone,
583 enum lru_list lru)
584{
585 int nid = zone->zone_pgdat->node_id;
586 int zid = zone_idx(zone);
587 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
588
589 return MEM_CGROUP_ZSTAT(mz, lru);
590}
591
3e2f41f1
KM
592struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
593 struct zone *zone)
594{
595 int nid = zone->zone_pgdat->node_id;
596 int zid = zone_idx(zone);
597 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
598
599 return &mz->reclaim_stat;
600}
601
602struct zone_reclaim_stat *
603mem_cgroup_get_reclaim_stat_from_page(struct page *page)
604{
605 struct page_cgroup *pc;
606 struct mem_cgroup_per_zone *mz;
607
608 if (mem_cgroup_disabled())
609 return NULL;
610
611 pc = lookup_page_cgroup(page);
bd112db8
DN
612 /*
613 * Used bit is set without atomic ops but after smp_wmb().
614 * For making pc->mem_cgroup visible, insert smp_rmb() here.
615 */
616 smp_rmb();
617 if (!PageCgroupUsed(pc))
618 return NULL;
619
3e2f41f1
KM
620 mz = page_cgroup_zoneinfo(pc);
621 if (!mz)
622 return NULL;
623
624 return &mz->reclaim_stat;
625}
626
66e1707b
BS
627unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
628 struct list_head *dst,
629 unsigned long *scanned, int order,
630 int mode, struct zone *z,
631 struct mem_cgroup *mem_cont,
4f98a2fe 632 int active, int file)
66e1707b
BS
633{
634 unsigned long nr_taken = 0;
635 struct page *page;
636 unsigned long scan;
637 LIST_HEAD(pc_list);
638 struct list_head *src;
ff7283fa 639 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
640 int nid = z->zone_pgdat->node_id;
641 int zid = zone_idx(z);
642 struct mem_cgroup_per_zone *mz;
4f98a2fe 643 int lru = LRU_FILE * !!file + !!active;
66e1707b 644
cf475ad2 645 BUG_ON(!mem_cont);
1ecaab2b 646 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 647 src = &mz->lists[lru];
66e1707b 648
ff7283fa
KH
649 scan = 0;
650 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 651 if (scan >= nr_to_scan)
ff7283fa 652 break;
08e552c6
KH
653
654 page = pc->page;
52d4b9ac
KH
655 if (unlikely(!PageCgroupUsed(pc)))
656 continue;
436c6541 657 if (unlikely(!PageLRU(page)))
ff7283fa 658 continue;
ff7283fa 659
436c6541 660 scan++;
4f98a2fe 661 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
662 list_move(&page->lru, dst);
663 nr_taken++;
664 }
665 }
666
66e1707b
BS
667 *scanned = scan;
668 return nr_taken;
669}
670
6d61ef40
BS
671#define mem_cgroup_from_res_counter(counter, member) \
672 container_of(counter, struct mem_cgroup, member)
673
b85a96c0
DN
674static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
675{
676 if (do_swap_account) {
677 if (res_counter_check_under_limit(&mem->res) &&
678 res_counter_check_under_limit(&mem->memsw))
679 return true;
680 } else
681 if (res_counter_check_under_limit(&mem->res))
682 return true;
683 return false;
684}
685
a7885eb8
KM
686static unsigned int get_swappiness(struct mem_cgroup *memcg)
687{
688 struct cgroup *cgrp = memcg->css.cgroup;
689 unsigned int swappiness;
690
691 /* root ? */
692 if (cgrp->parent == NULL)
693 return vm_swappiness;
694
695 spin_lock(&memcg->reclaim_param_lock);
696 swappiness = memcg->swappiness;
697 spin_unlock(&memcg->reclaim_param_lock);
698
699 return swappiness;
700}
701
81d39c20
KH
702static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
703{
704 int *val = data;
705 (*val)++;
706 return 0;
707}
e222432b
BS
708
709/**
710 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
711 * @memcg: The memory cgroup that went over limit
712 * @p: Task that is going to be killed
713 *
714 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
715 * enabled
716 */
717void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
718{
719 struct cgroup *task_cgrp;
720 struct cgroup *mem_cgrp;
721 /*
722 * Need a buffer in BSS, can't rely on allocations. The code relies
723 * on the assumption that OOM is serialized for memory controller.
724 * If this assumption is broken, revisit this code.
725 */
726 static char memcg_name[PATH_MAX];
727 int ret;
728
729 if (!memcg)
730 return;
731
732
733 rcu_read_lock();
734
735 mem_cgrp = memcg->css.cgroup;
736 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
737
738 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
739 if (ret < 0) {
740 /*
741 * Unfortunately, we are unable to convert to a useful name
742 * But we'll still print out the usage information
743 */
744 rcu_read_unlock();
745 goto done;
746 }
747 rcu_read_unlock();
748
749 printk(KERN_INFO "Task in %s killed", memcg_name);
750
751 rcu_read_lock();
752 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
753 if (ret < 0) {
754 rcu_read_unlock();
755 goto done;
756 }
757 rcu_read_unlock();
758
759 /*
760 * Continues from above, so we don't need an KERN_ level
761 */
762 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
763done:
764
765 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
766 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
767 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
768 res_counter_read_u64(&memcg->res, RES_FAILCNT));
769 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
770 "failcnt %llu\n",
771 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
772 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
773 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
774}
775
81d39c20
KH
776/*
777 * This function returns the number of memcg under hierarchy tree. Returns
778 * 1(self count) if no children.
779 */
780static int mem_cgroup_count_children(struct mem_cgroup *mem)
781{
782 int num = 0;
783 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
784 return num;
785}
786
6d61ef40 787/*
04046e1a
KH
788 * Visit the first child (need not be the first child as per the ordering
789 * of the cgroup list, since we track last_scanned_child) of @mem and use
790 * that to reclaim free pages from.
791 */
792static struct mem_cgroup *
793mem_cgroup_select_victim(struct mem_cgroup *root_mem)
794{
795 struct mem_cgroup *ret = NULL;
796 struct cgroup_subsys_state *css;
797 int nextid, found;
798
799 if (!root_mem->use_hierarchy) {
800 css_get(&root_mem->css);
801 ret = root_mem;
802 }
803
804 while (!ret) {
805 rcu_read_lock();
806 nextid = root_mem->last_scanned_child + 1;
807 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
808 &found);
809 if (css && css_tryget(css))
810 ret = container_of(css, struct mem_cgroup, css);
811
812 rcu_read_unlock();
813 /* Updates scanning parameter */
814 spin_lock(&root_mem->reclaim_param_lock);
815 if (!css) {
816 /* this means start scan from ID:1 */
817 root_mem->last_scanned_child = 0;
818 } else
819 root_mem->last_scanned_child = found;
820 spin_unlock(&root_mem->reclaim_param_lock);
821 }
822
823 return ret;
824}
825
826/*
827 * Scan the hierarchy if needed to reclaim memory. We remember the last child
828 * we reclaimed from, so that we don't end up penalizing one child extensively
829 * based on its position in the children list.
6d61ef40
BS
830 *
831 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
832 *
833 * We give up and return to the caller when we visit root_mem twice.
834 * (other groups can be removed while we're walking....)
81d39c20
KH
835 *
836 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
837 */
838static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
81d39c20 839 gfp_t gfp_mask, bool noswap, bool shrink)
6d61ef40 840{
04046e1a
KH
841 struct mem_cgroup *victim;
842 int ret, total = 0;
843 int loop = 0;
844
845 while (loop < 2) {
846 victim = mem_cgroup_select_victim(root_mem);
847 if (victim == root_mem)
848 loop++;
849 if (!mem_cgroup_local_usage(&victim->stat)) {
850 /* this cgroup's local usage == 0 */
851 css_put(&victim->css);
6d61ef40
BS
852 continue;
853 }
04046e1a
KH
854 /* we use swappiness of local cgroup */
855 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
856 get_swappiness(victim));
857 css_put(&victim->css);
81d39c20
KH
858 /*
859 * At shrinking usage, we can't check we should stop here or
860 * reclaim more. It's depends on callers. last_scanned_child
861 * will work enough for keeping fairness under tree.
862 */
863 if (shrink)
864 return ret;
04046e1a 865 total += ret;
b85a96c0 866 if (mem_cgroup_check_under_limit(root_mem))
04046e1a 867 return 1 + total;
6d61ef40 868 }
04046e1a 869 return total;
6d61ef40
BS
870}
871
a636b327
KH
872bool mem_cgroup_oom_called(struct task_struct *task)
873{
874 bool ret = false;
875 struct mem_cgroup *mem;
876 struct mm_struct *mm;
877
878 rcu_read_lock();
879 mm = task->mm;
880 if (!mm)
881 mm = &init_mm;
882 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
883 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
884 ret = true;
885 rcu_read_unlock();
886 return ret;
887}
0b7f569e
KH
888
889static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
890{
891 mem->last_oom_jiffies = jiffies;
892 return 0;
893}
894
895static void record_last_oom(struct mem_cgroup *mem)
896{
897 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
898}
899
900
f817ed48
KH
901/*
902 * Unlike exported interface, "oom" parameter is added. if oom==true,
903 * oom-killer can be invoked.
8a9f3ccd 904 */
f817ed48 905static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
906 gfp_t gfp_mask, struct mem_cgroup **memcg,
907 bool oom)
8a9f3ccd 908{
6d61ef40 909 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 910 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 911 struct res_counter *fail_res;
a636b327
KH
912
913 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
914 /* Don't account this! */
915 *memcg = NULL;
916 return 0;
917 }
918
8a9f3ccd 919 /*
3be91277
HD
920 * We always charge the cgroup the mm_struct belongs to.
921 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
922 * thread group leader migrates. It's possible that mm is not
923 * set, if so charge the init_mm (happens for pagecache usage).
924 */
54595fe2
KH
925 mem = *memcg;
926 if (likely(!mem)) {
927 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 928 *memcg = mem;
e8589cc1 929 } else {
7a81b88c 930 css_get(&mem->css);
e8589cc1 931 }
54595fe2
KH
932 if (unlikely(!mem))
933 return 0;
934
935 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
8a9f3ccd 936
8c7c6e34
KH
937 while (1) {
938 int ret;
939 bool noswap = false;
7a81b88c 940
28dbc4b6 941 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
942 if (likely(!ret)) {
943 if (!do_swap_account)
944 break;
28dbc4b6
BS
945 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
946 &fail_res);
8c7c6e34
KH
947 if (likely(!ret))
948 break;
949 /* mem+swap counter fails */
950 res_counter_uncharge(&mem->res, PAGE_SIZE);
951 noswap = true;
6d61ef40
BS
952 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
953 memsw);
954 } else
955 /* mem counter fails */
956 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
957 res);
958
3be91277 959 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 960 goto nomem;
e1a1cd59 961
6d61ef40 962 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
81d39c20 963 noswap, false);
4d1c6273
DN
964 if (ret)
965 continue;
66e1707b
BS
966
967 /*
8869b8f6
HD
968 * try_to_free_mem_cgroup_pages() might not give us a full
969 * picture of reclaim. Some pages are reclaimed and might be
970 * moved to swap cache or just unmapped from the cgroup.
971 * Check the limit again to see if the reclaim reduced the
972 * current usage of the cgroup before giving up
8c7c6e34 973 *
8869b8f6 974 */
b85a96c0
DN
975 if (mem_cgroup_check_under_limit(mem_over_limit))
976 continue;
3be91277
HD
977
978 if (!nr_retries--) {
a636b327 979 if (oom) {
7f4d454d 980 mutex_lock(&memcg_tasklist);
88700756 981 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 982 mutex_unlock(&memcg_tasklist);
0b7f569e 983 record_last_oom(mem_over_limit);
a636b327 984 }
7a81b88c 985 goto nomem;
66e1707b 986 }
8a9f3ccd 987 }
7a81b88c
KH
988 return 0;
989nomem:
990 css_put(&mem->css);
991 return -ENOMEM;
992}
8a9f3ccd 993
b5a84319
KH
994static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
995{
996 struct mem_cgroup *mem;
3c776e64 997 struct page_cgroup *pc;
b5a84319
KH
998 swp_entry_t ent;
999
3c776e64
DN
1000 VM_BUG_ON(!PageLocked(page));
1001
b5a84319
KH
1002 if (!PageSwapCache(page))
1003 return NULL;
1004
3c776e64
DN
1005 pc = lookup_page_cgroup(page);
1006 /*
1007 * Used bit of swapcache is solid under page lock.
1008 */
1009 if (PageCgroupUsed(pc))
1010 mem = pc->mem_cgroup;
1011 else {
1012 ent.val = page_private(page);
1013 mem = lookup_swap_cgroup(ent);
1014 }
b5a84319
KH
1015 if (!mem)
1016 return NULL;
1017 if (!css_tryget(&mem->css))
1018 return NULL;
1019 return mem;
1020}
1021
7a81b88c 1022/*
a5e924f5 1023 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1024 * USED state. If already USED, uncharge and return.
1025 */
1026
1027static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1028 struct page_cgroup *pc,
1029 enum charge_type ctype)
1030{
7a81b88c
KH
1031 /* try_charge() can return NULL to *memcg, taking care of it. */
1032 if (!mem)
1033 return;
52d4b9ac
KH
1034
1035 lock_page_cgroup(pc);
1036 if (unlikely(PageCgroupUsed(pc))) {
1037 unlock_page_cgroup(pc);
1038 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1039 if (do_swap_account)
1040 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 1041 css_put(&mem->css);
7a81b88c 1042 return;
52d4b9ac 1043 }
8a9f3ccd 1044 pc->mem_cgroup = mem;
08e552c6 1045 smp_wmb();
c05555b5 1046 pc->flags = pcg_default_flags[ctype];
3be91277 1047
08e552c6 1048 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1049
52d4b9ac 1050 unlock_page_cgroup(pc);
7a81b88c 1051}
66e1707b 1052
f817ed48
KH
1053/**
1054 * mem_cgroup_move_account - move account of the page
1055 * @pc: page_cgroup of the page.
1056 * @from: mem_cgroup which the page is moved from.
1057 * @to: mem_cgroup which the page is moved to. @from != @to.
1058 *
1059 * The caller must confirm following.
08e552c6 1060 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
1061 *
1062 * returns 0 at success,
1063 * returns -EBUSY when lock is busy or "pc" is unstable.
1064 *
1065 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1066 * new cgroup. It should be done by a caller.
1067 */
1068
1069static int mem_cgroup_move_account(struct page_cgroup *pc,
1070 struct mem_cgroup *from, struct mem_cgroup *to)
1071{
1072 struct mem_cgroup_per_zone *from_mz, *to_mz;
1073 int nid, zid;
1074 int ret = -EBUSY;
1075
f817ed48 1076 VM_BUG_ON(from == to);
08e552c6 1077 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
1078
1079 nid = page_cgroup_nid(pc);
1080 zid = page_cgroup_zid(pc);
1081 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1082 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1083
f817ed48
KH
1084 if (!trylock_page_cgroup(pc))
1085 return ret;
1086
1087 if (!PageCgroupUsed(pc))
1088 goto out;
1089
1090 if (pc->mem_cgroup != from)
1091 goto out;
1092
08e552c6
KH
1093 res_counter_uncharge(&from->res, PAGE_SIZE);
1094 mem_cgroup_charge_statistics(from, pc, false);
1095 if (do_swap_account)
1096 res_counter_uncharge(&from->memsw, PAGE_SIZE);
40d58138
DN
1097 css_put(&from->css);
1098
1099 css_get(&to->css);
08e552c6
KH
1100 pc->mem_cgroup = to;
1101 mem_cgroup_charge_statistics(to, pc, true);
08e552c6 1102 ret = 0;
f817ed48
KH
1103out:
1104 unlock_page_cgroup(pc);
1105 return ret;
1106}
1107
1108/*
1109 * move charges to its parent.
1110 */
1111
1112static int mem_cgroup_move_parent(struct page_cgroup *pc,
1113 struct mem_cgroup *child,
1114 gfp_t gfp_mask)
1115{
08e552c6 1116 struct page *page = pc->page;
f817ed48
KH
1117 struct cgroup *cg = child->css.cgroup;
1118 struct cgroup *pcg = cg->parent;
1119 struct mem_cgroup *parent;
f817ed48
KH
1120 int ret;
1121
1122 /* Is ROOT ? */
1123 if (!pcg)
1124 return -EINVAL;
1125
08e552c6 1126
f817ed48
KH
1127 parent = mem_cgroup_from_cont(pcg);
1128
08e552c6 1129
f817ed48 1130 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1131 if (ret || !parent)
f817ed48
KH
1132 return ret;
1133
40d58138
DN
1134 if (!get_page_unless_zero(page)) {
1135 ret = -EBUSY;
1136 goto uncharge;
1137 }
08e552c6
KH
1138
1139 ret = isolate_lru_page(page);
1140
1141 if (ret)
1142 goto cancel;
f817ed48 1143
f817ed48 1144 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1145
08e552c6
KH
1146 putback_lru_page(page);
1147 if (!ret) {
1148 put_page(page);
40d58138
DN
1149 /* drop extra refcnt by try_charge() */
1150 css_put(&parent->css);
08e552c6 1151 return 0;
8c7c6e34 1152 }
40d58138 1153
08e552c6 1154cancel:
40d58138
DN
1155 put_page(page);
1156uncharge:
1157 /* drop extra refcnt by try_charge() */
1158 css_put(&parent->css);
1159 /* uncharge if move fails */
08e552c6
KH
1160 res_counter_uncharge(&parent->res, PAGE_SIZE);
1161 if (do_swap_account)
1162 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
f817ed48
KH
1163 return ret;
1164}
1165
7a81b88c
KH
1166/*
1167 * Charge the memory controller for page usage.
1168 * Return
1169 * 0 if the charge was successful
1170 * < 0 if the cgroup is over its limit
1171 */
1172static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1173 gfp_t gfp_mask, enum charge_type ctype,
1174 struct mem_cgroup *memcg)
1175{
1176 struct mem_cgroup *mem;
1177 struct page_cgroup *pc;
1178 int ret;
1179
1180 pc = lookup_page_cgroup(page);
1181 /* can happen at boot */
1182 if (unlikely(!pc))
1183 return 0;
1184 prefetchw(pc);
1185
1186 mem = memcg;
f817ed48 1187 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1188 if (ret || !mem)
7a81b88c
KH
1189 return ret;
1190
1191 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1192 return 0;
8a9f3ccd
BS
1193}
1194
7a81b88c
KH
1195int mem_cgroup_newpage_charge(struct page *page,
1196 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1197{
f8d66542 1198 if (mem_cgroup_disabled())
cede86ac 1199 return 0;
52d4b9ac
KH
1200 if (PageCompound(page))
1201 return 0;
69029cd5
KH
1202 /*
1203 * If already mapped, we don't have to account.
1204 * If page cache, page->mapping has address_space.
1205 * But page->mapping may have out-of-use anon_vma pointer,
1206 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1207 * is NULL.
1208 */
1209 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1210 return 0;
1211 if (unlikely(!mm))
1212 mm = &init_mm;
217bc319 1213 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1214 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1215}
1216
e1a1cd59
BS
1217int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1218 gfp_t gfp_mask)
8697d331 1219{
b5a84319
KH
1220 struct mem_cgroup *mem = NULL;
1221 int ret;
1222
f8d66542 1223 if (mem_cgroup_disabled())
cede86ac 1224 return 0;
52d4b9ac
KH
1225 if (PageCompound(page))
1226 return 0;
accf163e
KH
1227 /*
1228 * Corner case handling. This is called from add_to_page_cache()
1229 * in usual. But some FS (shmem) precharges this page before calling it
1230 * and call add_to_page_cache() with GFP_NOWAIT.
1231 *
1232 * For GFP_NOWAIT case, the page may be pre-charged before calling
1233 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1234 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1235 * And when the page is SwapCache, it should take swap information
1236 * into account. This is under lock_page() now.
accf163e
KH
1237 */
1238 if (!(gfp_mask & __GFP_WAIT)) {
1239 struct page_cgroup *pc;
1240
52d4b9ac
KH
1241
1242 pc = lookup_page_cgroup(page);
1243 if (!pc)
1244 return 0;
1245 lock_page_cgroup(pc);
1246 if (PageCgroupUsed(pc)) {
1247 unlock_page_cgroup(pc);
accf163e
KH
1248 return 0;
1249 }
52d4b9ac 1250 unlock_page_cgroup(pc);
accf163e
KH
1251 }
1252
b5a84319
KH
1253 if (do_swap_account && PageSwapCache(page)) {
1254 mem = try_get_mem_cgroup_from_swapcache(page);
1255 if (mem)
1256 mm = NULL;
1257 else
1258 mem = NULL;
1259 /* SwapCache may be still linked to LRU now. */
1260 mem_cgroup_lru_del_before_commit_swapcache(page);
1261 }
1262
1263 if (unlikely(!mm && !mem))
8697d331 1264 mm = &init_mm;
accf163e 1265
c05555b5
KH
1266 if (page_is_file_cache(page))
1267 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1268 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319
KH
1269
1270 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1271 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1272 if (mem)
1273 css_put(&mem->css);
1274 if (PageSwapCache(page))
1275 mem_cgroup_lru_add_after_commit_swapcache(page);
1276
1277 if (do_swap_account && !ret && PageSwapCache(page)) {
1278 swp_entry_t ent = {.val = page_private(page)};
1279 /* avoid double counting */
1280 mem = swap_cgroup_record(ent, NULL);
1281 if (mem) {
1282 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1283 mem_cgroup_put(mem);
1284 }
1285 }
1286 return ret;
e8589cc1
KH
1287}
1288
54595fe2
KH
1289/*
1290 * While swap-in, try_charge -> commit or cancel, the page is locked.
1291 * And when try_charge() successfully returns, one refcnt to memcg without
1292 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1293 * "commit()" or removed by "cancel()"
1294 */
8c7c6e34
KH
1295int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1296 struct page *page,
1297 gfp_t mask, struct mem_cgroup **ptr)
1298{
1299 struct mem_cgroup *mem;
54595fe2 1300 int ret;
8c7c6e34 1301
f8d66542 1302 if (mem_cgroup_disabled())
8c7c6e34
KH
1303 return 0;
1304
1305 if (!do_swap_account)
1306 goto charge_cur_mm;
8c7c6e34
KH
1307 /*
1308 * A racing thread's fault, or swapoff, may have already updated
1309 * the pte, and even removed page from swap cache: return success
1310 * to go on to do_swap_page()'s pte_same() test, which should fail.
1311 */
1312 if (!PageSwapCache(page))
1313 return 0;
b5a84319 1314 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1315 if (!mem)
1316 goto charge_cur_mm;
8c7c6e34 1317 *ptr = mem;
54595fe2
KH
1318 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1319 /* drop extra refcnt from tryget */
1320 css_put(&mem->css);
1321 return ret;
8c7c6e34
KH
1322charge_cur_mm:
1323 if (unlikely(!mm))
1324 mm = &init_mm;
1325 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1326}
1327
7a81b88c
KH
1328void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1329{
1330 struct page_cgroup *pc;
1331
f8d66542 1332 if (mem_cgroup_disabled())
7a81b88c
KH
1333 return;
1334 if (!ptr)
1335 return;
1336 pc = lookup_page_cgroup(page);
544122e5 1337 mem_cgroup_lru_del_before_commit_swapcache(page);
7a81b88c 1338 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
544122e5 1339 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1340 /*
1341 * Now swap is on-memory. This means this page may be
1342 * counted both as mem and swap....double count.
03f3c433
KH
1343 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1344 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1345 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1346 */
03f3c433 1347 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34
KH
1348 swp_entry_t ent = {.val = page_private(page)};
1349 struct mem_cgroup *memcg;
1350 memcg = swap_cgroup_record(ent, NULL);
1351 if (memcg) {
8c7c6e34
KH
1352 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1353 mem_cgroup_put(memcg);
1354 }
1355
1356 }
08e552c6 1357 /* add this page(page_cgroup) to the LRU we want. */
544122e5 1358
7a81b88c
KH
1359}
1360
1361void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1362{
f8d66542 1363 if (mem_cgroup_disabled())
7a81b88c
KH
1364 return;
1365 if (!mem)
1366 return;
1367 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1368 if (do_swap_account)
1369 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1370 css_put(&mem->css);
1371}
1372
1373
8a9f3ccd 1374/*
69029cd5 1375 * uncharge if !page_mapped(page)
8a9f3ccd 1376 */
8c7c6e34 1377static struct mem_cgroup *
69029cd5 1378__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1379{
8289546e 1380 struct page_cgroup *pc;
8c7c6e34 1381 struct mem_cgroup *mem = NULL;
072c56c1 1382 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1383
f8d66542 1384 if (mem_cgroup_disabled())
8c7c6e34 1385 return NULL;
4077960e 1386
d13d1443 1387 if (PageSwapCache(page))
8c7c6e34 1388 return NULL;
d13d1443 1389
8697d331 1390 /*
3c541e14 1391 * Check if our page_cgroup is valid
8697d331 1392 */
52d4b9ac
KH
1393 pc = lookup_page_cgroup(page);
1394 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1395 return NULL;
b9c565d5 1396
52d4b9ac 1397 lock_page_cgroup(pc);
d13d1443 1398
8c7c6e34
KH
1399 mem = pc->mem_cgroup;
1400
d13d1443
KH
1401 if (!PageCgroupUsed(pc))
1402 goto unlock_out;
1403
1404 switch (ctype) {
1405 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1406 if (page_mapped(page))
1407 goto unlock_out;
1408 break;
1409 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1410 if (!PageAnon(page)) { /* Shared memory */
1411 if (page->mapping && !page_is_file_cache(page))
1412 goto unlock_out;
1413 } else if (page_mapped(page)) /* Anon */
1414 goto unlock_out;
1415 break;
1416 default:
1417 break;
52d4b9ac 1418 }
d13d1443 1419
8c7c6e34
KH
1420 res_counter_uncharge(&mem->res, PAGE_SIZE);
1421 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1422 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
08e552c6 1423 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 1424
52d4b9ac 1425 ClearPageCgroupUsed(pc);
544122e5
KH
1426 /*
1427 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1428 * freed from LRU. This is safe because uncharged page is expected not
1429 * to be reused (freed soon). Exception is SwapCache, it's handled by
1430 * special functions.
1431 */
b9c565d5 1432
69029cd5 1433 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1434 unlock_page_cgroup(pc);
fb59e9f1 1435
a7fe942e
KH
1436 /* at swapout, this memcg will be accessed to record to swap */
1437 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1438 css_put(&mem->css);
6d12e2d8 1439
8c7c6e34 1440 return mem;
d13d1443
KH
1441
1442unlock_out:
1443 unlock_page_cgroup(pc);
8c7c6e34 1444 return NULL;
3c541e14
BS
1445}
1446
69029cd5
KH
1447void mem_cgroup_uncharge_page(struct page *page)
1448{
52d4b9ac
KH
1449 /* early check. */
1450 if (page_mapped(page))
1451 return;
1452 if (page->mapping && !PageAnon(page))
1453 return;
69029cd5
KH
1454 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1455}
1456
1457void mem_cgroup_uncharge_cache_page(struct page *page)
1458{
1459 VM_BUG_ON(page_mapped(page));
b7abea96 1460 VM_BUG_ON(page->mapping);
69029cd5
KH
1461 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1462}
1463
8c7c6e34
KH
1464/*
1465 * called from __delete_from_swap_cache() and drop "page" account.
1466 * memcg information is recorded to swap_cgroup of "ent"
1467 */
1468void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1469{
1470 struct mem_cgroup *memcg;
1471
1472 memcg = __mem_cgroup_uncharge_common(page,
1473 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1474 /* record memcg information */
1475 if (do_swap_account && memcg) {
1476 swap_cgroup_record(ent, memcg);
1477 mem_cgroup_get(memcg);
1478 }
a7fe942e
KH
1479 if (memcg)
1480 css_put(&memcg->css);
8c7c6e34
KH
1481}
1482
1483#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1484/*
1485 * called from swap_entry_free(). remove record in swap_cgroup and
1486 * uncharge "memsw" account.
1487 */
1488void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1489{
8c7c6e34
KH
1490 struct mem_cgroup *memcg;
1491
1492 if (!do_swap_account)
1493 return;
1494
1495 memcg = swap_cgroup_record(ent, NULL);
1496 if (memcg) {
1497 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1498 mem_cgroup_put(memcg);
1499 }
d13d1443 1500}
8c7c6e34 1501#endif
d13d1443 1502
ae41be37 1503/*
01b1ae63
KH
1504 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1505 * page belongs to.
ae41be37 1506 */
01b1ae63 1507int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1508{
1509 struct page_cgroup *pc;
e8589cc1 1510 struct mem_cgroup *mem = NULL;
e8589cc1 1511 int ret = 0;
8869b8f6 1512
f8d66542 1513 if (mem_cgroup_disabled())
4077960e
BS
1514 return 0;
1515
52d4b9ac
KH
1516 pc = lookup_page_cgroup(page);
1517 lock_page_cgroup(pc);
1518 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1519 mem = pc->mem_cgroup;
1520 css_get(&mem->css);
e8589cc1 1521 }
52d4b9ac 1522 unlock_page_cgroup(pc);
01b1ae63 1523
e8589cc1 1524 if (mem) {
3bb4edf2 1525 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1526 css_put(&mem->css);
1527 }
01b1ae63 1528 *ptr = mem;
e8589cc1 1529 return ret;
ae41be37 1530}
8869b8f6 1531
69029cd5 1532/* remove redundant charge if migration failed*/
01b1ae63
KH
1533void mem_cgroup_end_migration(struct mem_cgroup *mem,
1534 struct page *oldpage, struct page *newpage)
ae41be37 1535{
01b1ae63
KH
1536 struct page *target, *unused;
1537 struct page_cgroup *pc;
1538 enum charge_type ctype;
1539
1540 if (!mem)
1541 return;
1542
1543 /* at migration success, oldpage->mapping is NULL. */
1544 if (oldpage->mapping) {
1545 target = oldpage;
1546 unused = NULL;
1547 } else {
1548 target = newpage;
1549 unused = oldpage;
1550 }
1551
1552 if (PageAnon(target))
1553 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1554 else if (page_is_file_cache(target))
1555 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1556 else
1557 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1558
1559 /* unused page is not on radix-tree now. */
d13d1443 1560 if (unused)
01b1ae63
KH
1561 __mem_cgroup_uncharge_common(unused, ctype);
1562
1563 pc = lookup_page_cgroup(target);
69029cd5 1564 /*
01b1ae63
KH
1565 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1566 * So, double-counting is effectively avoided.
1567 */
1568 __mem_cgroup_commit_charge(mem, pc, ctype);
1569
1570 /*
1571 * Both of oldpage and newpage are still under lock_page().
1572 * Then, we don't have to care about race in radix-tree.
1573 * But we have to be careful that this page is unmapped or not.
1574 *
1575 * There is a case for !page_mapped(). At the start of
1576 * migration, oldpage was mapped. But now, it's zapped.
1577 * But we know *target* page is not freed/reused under us.
1578 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1579 */
01b1ae63
KH
1580 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1581 mem_cgroup_uncharge_page(target);
ae41be37 1582}
78fb7466 1583
c9b0ed51
KH
1584/*
1585 * A call to try to shrink memory usage under specified resource controller.
1586 * This is typically used for page reclaiming for shmem for reducing side
1587 * effect of page allocation from shmem, which is used by some mem_cgroup.
1588 */
b5a84319
KH
1589int mem_cgroup_shrink_usage(struct page *page,
1590 struct mm_struct *mm,
1591 gfp_t gfp_mask)
c9b0ed51 1592{
b5a84319 1593 struct mem_cgroup *mem = NULL;
c9b0ed51
KH
1594 int progress = 0;
1595 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1596
f8d66542 1597 if (mem_cgroup_disabled())
cede86ac 1598 return 0;
b5a84319
KH
1599 if (page)
1600 mem = try_get_mem_cgroup_from_swapcache(page);
1601 if (!mem && mm)
1602 mem = try_get_mem_cgroup_from_mm(mm);
54595fe2 1603 if (unlikely(!mem))
31a78f23 1604 return 0;
c9b0ed51
KH
1605
1606 do {
81d39c20
KH
1607 progress = mem_cgroup_hierarchical_reclaim(mem,
1608 gfp_mask, true, false);
b85a96c0 1609 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1610 } while (!progress && --retry);
1611
1612 css_put(&mem->css);
1613 if (!retry)
1614 return -ENOMEM;
1615 return 0;
1616}
1617
8c7c6e34
KH
1618static DEFINE_MUTEX(set_limit_mutex);
1619
d38d2a75 1620static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1621 unsigned long long val)
628f4235 1622{
81d39c20 1623 int retry_count;
628f4235 1624 int progress;
8c7c6e34 1625 u64 memswlimit;
628f4235 1626 int ret = 0;
81d39c20
KH
1627 int children = mem_cgroup_count_children(memcg);
1628 u64 curusage, oldusage;
1629
1630 /*
1631 * For keeping hierarchical_reclaim simple, how long we should retry
1632 * is depends on callers. We set our retry-count to be function
1633 * of # of children which we should visit in this loop.
1634 */
1635 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1636
1637 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 1638
8c7c6e34 1639 while (retry_count) {
628f4235
KH
1640 if (signal_pending(current)) {
1641 ret = -EINTR;
1642 break;
1643 }
8c7c6e34
KH
1644 /*
1645 * Rather than hide all in some function, I do this in
1646 * open coded manner. You see what this really does.
1647 * We have to guarantee mem->res.limit < mem->memsw.limit.
1648 */
1649 mutex_lock(&set_limit_mutex);
1650 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1651 if (memswlimit < val) {
1652 ret = -EINVAL;
1653 mutex_unlock(&set_limit_mutex);
628f4235
KH
1654 break;
1655 }
8c7c6e34
KH
1656 ret = res_counter_set_limit(&memcg->res, val);
1657 mutex_unlock(&set_limit_mutex);
1658
1659 if (!ret)
1660 break;
1661
42e9abb6 1662 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
81d39c20
KH
1663 false, true);
1664 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1665 /* Usage is reduced ? */
1666 if (curusage >= oldusage)
1667 retry_count--;
1668 else
1669 oldusage = curusage;
8c7c6e34 1670 }
14797e23 1671
8c7c6e34
KH
1672 return ret;
1673}
1674
1675int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1676 unsigned long long val)
1677{
81d39c20 1678 int retry_count;
8c7c6e34 1679 u64 memlimit, oldusage, curusage;
81d39c20
KH
1680 int children = mem_cgroup_count_children(memcg);
1681 int ret = -EBUSY;
8c7c6e34
KH
1682
1683 if (!do_swap_account)
1684 return -EINVAL;
81d39c20
KH
1685 /* see mem_cgroup_resize_res_limit */
1686 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1687 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
1688 while (retry_count) {
1689 if (signal_pending(current)) {
1690 ret = -EINTR;
1691 break;
1692 }
1693 /*
1694 * Rather than hide all in some function, I do this in
1695 * open coded manner. You see what this really does.
1696 * We have to guarantee mem->res.limit < mem->memsw.limit.
1697 */
1698 mutex_lock(&set_limit_mutex);
1699 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1700 if (memlimit > val) {
1701 ret = -EINVAL;
1702 mutex_unlock(&set_limit_mutex);
1703 break;
1704 }
1705 ret = res_counter_set_limit(&memcg->memsw, val);
1706 mutex_unlock(&set_limit_mutex);
1707
1708 if (!ret)
1709 break;
1710
81d39c20 1711 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
8c7c6e34 1712 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 1713 /* Usage is reduced ? */
8c7c6e34 1714 if (curusage >= oldusage)
628f4235 1715 retry_count--;
81d39c20
KH
1716 else
1717 oldusage = curusage;
628f4235
KH
1718 }
1719 return ret;
1720}
1721
cc847582
KH
1722/*
1723 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1724 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1725 */
f817ed48 1726static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1727 int node, int zid, enum lru_list lru)
cc847582 1728{
08e552c6
KH
1729 struct zone *zone;
1730 struct mem_cgroup_per_zone *mz;
f817ed48 1731 struct page_cgroup *pc, *busy;
08e552c6 1732 unsigned long flags, loop;
072c56c1 1733 struct list_head *list;
f817ed48 1734 int ret = 0;
072c56c1 1735
08e552c6
KH
1736 zone = &NODE_DATA(node)->node_zones[zid];
1737 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1738 list = &mz->lists[lru];
cc847582 1739
f817ed48
KH
1740 loop = MEM_CGROUP_ZSTAT(mz, lru);
1741 /* give some margin against EBUSY etc...*/
1742 loop += 256;
1743 busy = NULL;
1744 while (loop--) {
1745 ret = 0;
08e552c6 1746 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1747 if (list_empty(list)) {
08e552c6 1748 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1749 break;
f817ed48
KH
1750 }
1751 pc = list_entry(list->prev, struct page_cgroup, lru);
1752 if (busy == pc) {
1753 list_move(&pc->lru, list);
1754 busy = 0;
08e552c6 1755 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1756 continue;
1757 }
08e552c6 1758 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1759
2c26fdd7 1760 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1761 if (ret == -ENOMEM)
52d4b9ac 1762 break;
f817ed48
KH
1763
1764 if (ret == -EBUSY || ret == -EINVAL) {
1765 /* found lock contention or "pc" is obsolete. */
1766 busy = pc;
1767 cond_resched();
1768 } else
1769 busy = NULL;
cc847582 1770 }
08e552c6 1771
f817ed48
KH
1772 if (!ret && !list_empty(list))
1773 return -EBUSY;
1774 return ret;
cc847582
KH
1775}
1776
1777/*
1778 * make mem_cgroup's charge to be 0 if there is no task.
1779 * This enables deleting this mem_cgroup.
1780 */
c1e862c1 1781static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1782{
f817ed48
KH
1783 int ret;
1784 int node, zid, shrink;
1785 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1786 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1787
cc847582 1788 css_get(&mem->css);
f817ed48
KH
1789
1790 shrink = 0;
c1e862c1
KH
1791 /* should free all ? */
1792 if (free_all)
1793 goto try_to_free;
f817ed48 1794move_account:
1ecaab2b 1795 while (mem->res.usage > 0) {
f817ed48 1796 ret = -EBUSY;
c1e862c1
KH
1797 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1798 goto out;
1799 ret = -EINTR;
1800 if (signal_pending(current))
cc847582 1801 goto out;
52d4b9ac
KH
1802 /* This is for making all *used* pages to be on LRU. */
1803 lru_add_drain_all();
f817ed48 1804 ret = 0;
299b4eaa 1805 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 1806 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1807 enum lru_list l;
f817ed48
KH
1808 for_each_lru(l) {
1809 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1810 node, zid, l);
f817ed48
KH
1811 if (ret)
1812 break;
1813 }
1ecaab2b 1814 }
f817ed48
KH
1815 if (ret)
1816 break;
1817 }
1818 /* it seems parent cgroup doesn't have enough mem */
1819 if (ret == -ENOMEM)
1820 goto try_to_free;
52d4b9ac 1821 cond_resched();
cc847582
KH
1822 }
1823 ret = 0;
1824out:
1825 css_put(&mem->css);
1826 return ret;
f817ed48
KH
1827
1828try_to_free:
c1e862c1
KH
1829 /* returns EBUSY if there is a task or if we come here twice. */
1830 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1831 ret = -EBUSY;
1832 goto out;
1833 }
c1e862c1
KH
1834 /* we call try-to-free pages for make this cgroup empty */
1835 lru_add_drain_all();
f817ed48
KH
1836 /* try to free all pages in this cgroup */
1837 shrink = 1;
1838 while (nr_retries && mem->res.usage > 0) {
1839 int progress;
c1e862c1
KH
1840
1841 if (signal_pending(current)) {
1842 ret = -EINTR;
1843 goto out;
1844 }
a7885eb8
KM
1845 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1846 false, get_swappiness(mem));
c1e862c1 1847 if (!progress) {
f817ed48 1848 nr_retries--;
c1e862c1
KH
1849 /* maybe some writeback is necessary */
1850 congestion_wait(WRITE, HZ/10);
1851 }
f817ed48
KH
1852
1853 }
08e552c6 1854 lru_add_drain();
f817ed48
KH
1855 /* try move_account...there may be some *locked* pages. */
1856 if (mem->res.usage)
1857 goto move_account;
1858 ret = 0;
1859 goto out;
cc847582
KH
1860}
1861
c1e862c1
KH
1862int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1863{
1864 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1865}
1866
1867
18f59ea7
BS
1868static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1869{
1870 return mem_cgroup_from_cont(cont)->use_hierarchy;
1871}
1872
1873static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1874 u64 val)
1875{
1876 int retval = 0;
1877 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1878 struct cgroup *parent = cont->parent;
1879 struct mem_cgroup *parent_mem = NULL;
1880
1881 if (parent)
1882 parent_mem = mem_cgroup_from_cont(parent);
1883
1884 cgroup_lock();
1885 /*
1886 * If parent's use_hiearchy is set, we can't make any modifications
1887 * in the child subtrees. If it is unset, then the change can
1888 * occur, provided the current cgroup has no children.
1889 *
1890 * For the root cgroup, parent_mem is NULL, we allow value to be
1891 * set if there are no children.
1892 */
1893 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1894 (val == 1 || val == 0)) {
1895 if (list_empty(&cont->children))
1896 mem->use_hierarchy = val;
1897 else
1898 retval = -EBUSY;
1899 } else
1900 retval = -EINVAL;
1901 cgroup_unlock();
1902
1903 return retval;
1904}
1905
2c3daa72 1906static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1907{
8c7c6e34
KH
1908 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1909 u64 val = 0;
1910 int type, name;
1911
1912 type = MEMFILE_TYPE(cft->private);
1913 name = MEMFILE_ATTR(cft->private);
1914 switch (type) {
1915 case _MEM:
1916 val = res_counter_read_u64(&mem->res, name);
1917 break;
1918 case _MEMSWAP:
1919 if (do_swap_account)
1920 val = res_counter_read_u64(&mem->memsw, name);
1921 break;
1922 default:
1923 BUG();
1924 break;
1925 }
1926 return val;
8cdea7c0 1927}
628f4235
KH
1928/*
1929 * The user of this function is...
1930 * RES_LIMIT.
1931 */
856c13aa
PM
1932static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1933 const char *buffer)
8cdea7c0 1934{
628f4235 1935 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1936 int type, name;
628f4235
KH
1937 unsigned long long val;
1938 int ret;
1939
8c7c6e34
KH
1940 type = MEMFILE_TYPE(cft->private);
1941 name = MEMFILE_ATTR(cft->private);
1942 switch (name) {
628f4235
KH
1943 case RES_LIMIT:
1944 /* This function does all necessary parse...reuse it */
1945 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1946 if (ret)
1947 break;
1948 if (type == _MEM)
628f4235 1949 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1950 else
1951 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1952 break;
1953 default:
1954 ret = -EINVAL; /* should be BUG() ? */
1955 break;
1956 }
1957 return ret;
8cdea7c0
BS
1958}
1959
fee7b548
KH
1960static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1961 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1962{
1963 struct cgroup *cgroup;
1964 unsigned long long min_limit, min_memsw_limit, tmp;
1965
1966 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1967 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1968 cgroup = memcg->css.cgroup;
1969 if (!memcg->use_hierarchy)
1970 goto out;
1971
1972 while (cgroup->parent) {
1973 cgroup = cgroup->parent;
1974 memcg = mem_cgroup_from_cont(cgroup);
1975 if (!memcg->use_hierarchy)
1976 break;
1977 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1978 min_limit = min(min_limit, tmp);
1979 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1980 min_memsw_limit = min(min_memsw_limit, tmp);
1981 }
1982out:
1983 *mem_limit = min_limit;
1984 *memsw_limit = min_memsw_limit;
1985 return;
1986}
1987
29f2a4da 1988static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1989{
1990 struct mem_cgroup *mem;
8c7c6e34 1991 int type, name;
c84872e1
PE
1992
1993 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1994 type = MEMFILE_TYPE(event);
1995 name = MEMFILE_ATTR(event);
1996 switch (name) {
29f2a4da 1997 case RES_MAX_USAGE:
8c7c6e34
KH
1998 if (type == _MEM)
1999 res_counter_reset_max(&mem->res);
2000 else
2001 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2002 break;
2003 case RES_FAILCNT:
8c7c6e34
KH
2004 if (type == _MEM)
2005 res_counter_reset_failcnt(&mem->res);
2006 else
2007 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2008 break;
2009 }
85cc59db 2010 return 0;
c84872e1
PE
2011}
2012
14067bb3
KH
2013
2014/* For read statistics */
2015enum {
2016 MCS_CACHE,
2017 MCS_RSS,
2018 MCS_PGPGIN,
2019 MCS_PGPGOUT,
2020 MCS_INACTIVE_ANON,
2021 MCS_ACTIVE_ANON,
2022 MCS_INACTIVE_FILE,
2023 MCS_ACTIVE_FILE,
2024 MCS_UNEVICTABLE,
2025 NR_MCS_STAT,
2026};
2027
2028struct mcs_total_stat {
2029 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
2030};
2031
14067bb3
KH
2032struct {
2033 char *local_name;
2034 char *total_name;
2035} memcg_stat_strings[NR_MCS_STAT] = {
2036 {"cache", "total_cache"},
2037 {"rss", "total_rss"},
2038 {"pgpgin", "total_pgpgin"},
2039 {"pgpgout", "total_pgpgout"},
2040 {"inactive_anon", "total_inactive_anon"},
2041 {"active_anon", "total_active_anon"},
2042 {"inactive_file", "total_inactive_file"},
2043 {"active_file", "total_active_file"},
2044 {"unevictable", "total_unevictable"}
2045};
2046
2047
2048static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2049{
2050 struct mcs_total_stat *s = data;
2051 s64 val;
2052
2053 /* per cpu stat */
2054 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2055 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2056 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2057 s->stat[MCS_RSS] += val * PAGE_SIZE;
2058 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2059 s->stat[MCS_PGPGIN] += val;
2060 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2061 s->stat[MCS_PGPGOUT] += val;
2062
2063 /* per zone stat */
2064 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2065 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2066 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2067 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2068 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2069 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2070 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2071 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2072 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2073 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2074 return 0;
2075}
2076
2077static void
2078mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2079{
2080 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2081}
2082
c64745cf
PM
2083static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2084 struct cgroup_map_cb *cb)
d2ceb9b7 2085{
d2ceb9b7 2086 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 2087 struct mcs_total_stat mystat;
d2ceb9b7
KH
2088 int i;
2089
14067bb3
KH
2090 memset(&mystat, 0, sizeof(mystat));
2091 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 2092
14067bb3
KH
2093 for (i = 0; i < NR_MCS_STAT; i++)
2094 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
7b854121 2095
14067bb3 2096 /* Hierarchical information */
fee7b548
KH
2097 {
2098 unsigned long long limit, memsw_limit;
2099 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2100 cb->fill(cb, "hierarchical_memory_limit", limit);
2101 if (do_swap_account)
2102 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2103 }
7f016ee8 2104
14067bb3
KH
2105 memset(&mystat, 0, sizeof(mystat));
2106 mem_cgroup_get_total_stat(mem_cont, &mystat);
2107 for (i = 0; i < NR_MCS_STAT; i++)
2108 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2109
2110
7f016ee8 2111#ifdef CONFIG_DEBUG_VM
c772be93 2112 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
2113
2114 {
2115 int nid, zid;
2116 struct mem_cgroup_per_zone *mz;
2117 unsigned long recent_rotated[2] = {0, 0};
2118 unsigned long recent_scanned[2] = {0, 0};
2119
2120 for_each_online_node(nid)
2121 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2122 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2123
2124 recent_rotated[0] +=
2125 mz->reclaim_stat.recent_rotated[0];
2126 recent_rotated[1] +=
2127 mz->reclaim_stat.recent_rotated[1];
2128 recent_scanned[0] +=
2129 mz->reclaim_stat.recent_scanned[0];
2130 recent_scanned[1] +=
2131 mz->reclaim_stat.recent_scanned[1];
2132 }
2133 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2134 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2135 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2136 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2137 }
2138#endif
2139
d2ceb9b7
KH
2140 return 0;
2141}
2142
a7885eb8
KM
2143static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2144{
2145 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2146
2147 return get_swappiness(memcg);
2148}
2149
2150static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2151 u64 val)
2152{
2153 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2154 struct mem_cgroup *parent;
068b38c1 2155
a7885eb8
KM
2156 if (val > 100)
2157 return -EINVAL;
2158
2159 if (cgrp->parent == NULL)
2160 return -EINVAL;
2161
2162 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
2163
2164 cgroup_lock();
2165
a7885eb8
KM
2166 /* If under hierarchy, only empty-root can set this value */
2167 if ((parent->use_hierarchy) ||
068b38c1
LZ
2168 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2169 cgroup_unlock();
a7885eb8 2170 return -EINVAL;
068b38c1 2171 }
a7885eb8
KM
2172
2173 spin_lock(&memcg->reclaim_param_lock);
2174 memcg->swappiness = val;
2175 spin_unlock(&memcg->reclaim_param_lock);
2176
068b38c1
LZ
2177 cgroup_unlock();
2178
a7885eb8
KM
2179 return 0;
2180}
2181
c1e862c1 2182
8cdea7c0
BS
2183static struct cftype mem_cgroup_files[] = {
2184 {
0eea1030 2185 .name = "usage_in_bytes",
8c7c6e34 2186 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 2187 .read_u64 = mem_cgroup_read,
8cdea7c0 2188 },
c84872e1
PE
2189 {
2190 .name = "max_usage_in_bytes",
8c7c6e34 2191 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2192 .trigger = mem_cgroup_reset,
c84872e1
PE
2193 .read_u64 = mem_cgroup_read,
2194 },
8cdea7c0 2195 {
0eea1030 2196 .name = "limit_in_bytes",
8c7c6e34 2197 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2198 .write_string = mem_cgroup_write,
2c3daa72 2199 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
2200 },
2201 {
2202 .name = "failcnt",
8c7c6e34 2203 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2204 .trigger = mem_cgroup_reset,
2c3daa72 2205 .read_u64 = mem_cgroup_read,
8cdea7c0 2206 },
d2ceb9b7
KH
2207 {
2208 .name = "stat",
c64745cf 2209 .read_map = mem_control_stat_show,
d2ceb9b7 2210 },
c1e862c1
KH
2211 {
2212 .name = "force_empty",
2213 .trigger = mem_cgroup_force_empty_write,
2214 },
18f59ea7
BS
2215 {
2216 .name = "use_hierarchy",
2217 .write_u64 = mem_cgroup_hierarchy_write,
2218 .read_u64 = mem_cgroup_hierarchy_read,
2219 },
a7885eb8
KM
2220 {
2221 .name = "swappiness",
2222 .read_u64 = mem_cgroup_swappiness_read,
2223 .write_u64 = mem_cgroup_swappiness_write,
2224 },
8cdea7c0
BS
2225};
2226
8c7c6e34
KH
2227#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2228static struct cftype memsw_cgroup_files[] = {
2229 {
2230 .name = "memsw.usage_in_bytes",
2231 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2232 .read_u64 = mem_cgroup_read,
2233 },
2234 {
2235 .name = "memsw.max_usage_in_bytes",
2236 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2237 .trigger = mem_cgroup_reset,
2238 .read_u64 = mem_cgroup_read,
2239 },
2240 {
2241 .name = "memsw.limit_in_bytes",
2242 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2243 .write_string = mem_cgroup_write,
2244 .read_u64 = mem_cgroup_read,
2245 },
2246 {
2247 .name = "memsw.failcnt",
2248 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2249 .trigger = mem_cgroup_reset,
2250 .read_u64 = mem_cgroup_read,
2251 },
2252};
2253
2254static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2255{
2256 if (!do_swap_account)
2257 return 0;
2258 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2259 ARRAY_SIZE(memsw_cgroup_files));
2260};
2261#else
2262static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2263{
2264 return 0;
2265}
2266#endif
2267
6d12e2d8
KH
2268static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2269{
2270 struct mem_cgroup_per_node *pn;
1ecaab2b 2271 struct mem_cgroup_per_zone *mz;
b69408e8 2272 enum lru_list l;
41e3355d 2273 int zone, tmp = node;
1ecaab2b
KH
2274 /*
2275 * This routine is called against possible nodes.
2276 * But it's BUG to call kmalloc() against offline node.
2277 *
2278 * TODO: this routine can waste much memory for nodes which will
2279 * never be onlined. It's better to use memory hotplug callback
2280 * function.
2281 */
41e3355d
KH
2282 if (!node_state(node, N_NORMAL_MEMORY))
2283 tmp = -1;
2284 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2285 if (!pn)
2286 return 1;
1ecaab2b 2287
6d12e2d8
KH
2288 mem->info.nodeinfo[node] = pn;
2289 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2290
2291 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2292 mz = &pn->zoneinfo[zone];
b69408e8
CL
2293 for_each_lru(l)
2294 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2295 }
6d12e2d8
KH
2296 return 0;
2297}
2298
1ecaab2b
KH
2299static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2300{
2301 kfree(mem->info.nodeinfo[node]);
2302}
2303
c8dad2bb
JB
2304static int mem_cgroup_size(void)
2305{
2306 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2307 return sizeof(struct mem_cgroup) + cpustat_size;
2308}
2309
33327948
KH
2310static struct mem_cgroup *mem_cgroup_alloc(void)
2311{
2312 struct mem_cgroup *mem;
c8dad2bb 2313 int size = mem_cgroup_size();
33327948 2314
c8dad2bb
JB
2315 if (size < PAGE_SIZE)
2316 mem = kmalloc(size, GFP_KERNEL);
33327948 2317 else
c8dad2bb 2318 mem = vmalloc(size);
33327948
KH
2319
2320 if (mem)
c8dad2bb 2321 memset(mem, 0, size);
33327948
KH
2322 return mem;
2323}
2324
8c7c6e34
KH
2325/*
2326 * At destroying mem_cgroup, references from swap_cgroup can remain.
2327 * (scanning all at force_empty is too costly...)
2328 *
2329 * Instead of clearing all references at force_empty, we remember
2330 * the number of reference from swap_cgroup and free mem_cgroup when
2331 * it goes down to 0.
2332 *
8c7c6e34
KH
2333 * Removal of cgroup itself succeeds regardless of refs from swap.
2334 */
2335
a7ba0eef 2336static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2337{
08e552c6
KH
2338 int node;
2339
04046e1a
KH
2340 free_css_id(&mem_cgroup_subsys, &mem->css);
2341
08e552c6
KH
2342 for_each_node_state(node, N_POSSIBLE)
2343 free_mem_cgroup_per_zone_info(mem, node);
2344
c8dad2bb 2345 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2346 kfree(mem);
2347 else
2348 vfree(mem);
2349}
2350
8c7c6e34
KH
2351static void mem_cgroup_get(struct mem_cgroup *mem)
2352{
2353 atomic_inc(&mem->refcnt);
2354}
2355
2356static void mem_cgroup_put(struct mem_cgroup *mem)
2357{
7bcc1bb1
DN
2358 if (atomic_dec_and_test(&mem->refcnt)) {
2359 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 2360 __mem_cgroup_free(mem);
7bcc1bb1
DN
2361 if (parent)
2362 mem_cgroup_put(parent);
2363 }
8c7c6e34
KH
2364}
2365
7bcc1bb1
DN
2366/*
2367 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2368 */
2369static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2370{
2371 if (!mem->res.parent)
2372 return NULL;
2373 return mem_cgroup_from_res_counter(mem->res.parent, res);
2374}
33327948 2375
c077719b
KH
2376#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2377static void __init enable_swap_cgroup(void)
2378{
f8d66542 2379 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2380 do_swap_account = 1;
2381}
2382#else
2383static void __init enable_swap_cgroup(void)
2384{
2385}
2386#endif
2387
0eb253e2 2388static struct cgroup_subsys_state * __ref
8cdea7c0
BS
2389mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2390{
28dbc4b6 2391 struct mem_cgroup *mem, *parent;
04046e1a 2392 long error = -ENOMEM;
6d12e2d8 2393 int node;
8cdea7c0 2394
c8dad2bb
JB
2395 mem = mem_cgroup_alloc();
2396 if (!mem)
04046e1a 2397 return ERR_PTR(error);
78fb7466 2398
6d12e2d8
KH
2399 for_each_node_state(node, N_POSSIBLE)
2400 if (alloc_mem_cgroup_per_zone_info(mem, node))
2401 goto free_out;
c077719b 2402 /* root ? */
28dbc4b6 2403 if (cont->parent == NULL) {
c077719b 2404 enable_swap_cgroup();
28dbc4b6 2405 parent = NULL;
18f59ea7 2406 } else {
28dbc4b6 2407 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2408 mem->use_hierarchy = parent->use_hierarchy;
2409 }
28dbc4b6 2410
18f59ea7
BS
2411 if (parent && parent->use_hierarchy) {
2412 res_counter_init(&mem->res, &parent->res);
2413 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
2414 /*
2415 * We increment refcnt of the parent to ensure that we can
2416 * safely access it on res_counter_charge/uncharge.
2417 * This refcnt will be decremented when freeing this
2418 * mem_cgroup(see mem_cgroup_put).
2419 */
2420 mem_cgroup_get(parent);
18f59ea7
BS
2421 } else {
2422 res_counter_init(&mem->res, NULL);
2423 res_counter_init(&mem->memsw, NULL);
2424 }
04046e1a 2425 mem->last_scanned_child = 0;
2733c06a 2426 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2427
a7885eb8
KM
2428 if (parent)
2429 mem->swappiness = get_swappiness(parent);
a7ba0eef 2430 atomic_set(&mem->refcnt, 1);
8cdea7c0 2431 return &mem->css;
6d12e2d8 2432free_out:
a7ba0eef 2433 __mem_cgroup_free(mem);
04046e1a 2434 return ERR_PTR(error);
8cdea7c0
BS
2435}
2436
ec64f515 2437static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
2438 struct cgroup *cont)
2439{
2440 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
2441
2442 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
2443}
2444
8cdea7c0
BS
2445static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2446 struct cgroup *cont)
2447{
c268e994 2448 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 2449
c268e994 2450 mem_cgroup_put(mem);
8cdea7c0
BS
2451}
2452
2453static int mem_cgroup_populate(struct cgroup_subsys *ss,
2454 struct cgroup *cont)
2455{
8c7c6e34
KH
2456 int ret;
2457
2458 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2459 ARRAY_SIZE(mem_cgroup_files));
2460
2461 if (!ret)
2462 ret = register_memsw_files(cont, ss);
2463 return ret;
8cdea7c0
BS
2464}
2465
67e465a7
BS
2466static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2467 struct cgroup *cont,
2468 struct cgroup *old_cont,
2469 struct task_struct *p)
2470{
7f4d454d 2471 mutex_lock(&memcg_tasklist);
67e465a7 2472 /*
f9717d28
NK
2473 * FIXME: It's better to move charges of this process from old
2474 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2475 */
7f4d454d 2476 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2477}
2478
8cdea7c0
BS
2479struct cgroup_subsys mem_cgroup_subsys = {
2480 .name = "memory",
2481 .subsys_id = mem_cgroup_subsys_id,
2482 .create = mem_cgroup_create,
df878fb0 2483 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2484 .destroy = mem_cgroup_destroy,
2485 .populate = mem_cgroup_populate,
67e465a7 2486 .attach = mem_cgroup_move_task,
6d12e2d8 2487 .early_init = 0,
04046e1a 2488 .use_id = 1,
8cdea7c0 2489};
c077719b
KH
2490
2491#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2492
2493static int __init disable_swap_account(char *s)
2494{
2495 really_do_swap_account = 0;
2496 return 1;
2497}
2498__setup("noswapaccount", disable_swap_account);
2499#endif