]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: make memcg's file mapped consistent with global VM
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
e222432b 30#include <linux/limits.h>
8c7c6e34 31#include <linux/mutex.h>
f64c3f54 32#include <linux/rbtree.h>
b6ac57d5 33#include <linux/slab.h>
66e1707b
BS
34#include <linux/swap.h>
35#include <linux/spinlock.h>
36#include <linux/fs.h>
d2ceb9b7 37#include <linux/seq_file.h>
33327948 38#include <linux/vmalloc.h>
b69408e8 39#include <linux/mm_inline.h>
52d4b9ac 40#include <linux/page_cgroup.h>
cdec2e42 41#include <linux/cpu.h>
08e552c6 42#include "internal.h"
8cdea7c0 43
8697d331
BS
44#include <asm/uaccess.h>
45
a181b0e8 46struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 47#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 48struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 49
c077719b 50#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 51/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
52int do_swap_account __read_mostly;
53static int really_do_swap_account __initdata = 1; /* for remember boot option*/
54#else
55#define do_swap_account (0)
56#endif
57
7f4d454d 58static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
f64c3f54 59#define SOFTLIMIT_EVENTS_THRESH (1000)
c077719b 60
d52aa412
KH
61/*
62 * Statistics for memory cgroup.
63 */
64enum mem_cgroup_stat_index {
65 /*
66 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
67 */
68 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 69 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 70 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
71 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
72 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
f64c3f54 73 MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
0c3e73e8 74 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
d52aa412
KH
75
76 MEM_CGROUP_STAT_NSTATS,
77};
78
79struct mem_cgroup_stat_cpu {
80 s64 count[MEM_CGROUP_STAT_NSTATS];
81} ____cacheline_aligned_in_smp;
82
83struct mem_cgroup_stat {
c8dad2bb 84 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
85};
86
f64c3f54
BS
87static inline void
88__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 stat->count[idx] = 0;
92}
93
94static inline s64
95__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
96 enum mem_cgroup_stat_index idx)
97{
98 return stat->count[idx];
99}
100
d52aa412
KH
101/*
102 * For accounting under irq disable, no need for increment preempt count.
103 */
addb9efe 104static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
105 enum mem_cgroup_stat_index idx, int val)
106{
addb9efe 107 stat->count[idx] += val;
d52aa412
KH
108}
109
110static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
111 enum mem_cgroup_stat_index idx)
112{
113 int cpu;
114 s64 ret = 0;
115 for_each_possible_cpu(cpu)
116 ret += stat->cpustat[cpu].count[idx];
117 return ret;
118}
119
04046e1a
KH
120static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
121{
122 s64 ret;
123
124 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
125 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
126 return ret;
127}
128
6d12e2d8
KH
129/*
130 * per-zone information in memory controller.
131 */
6d12e2d8 132struct mem_cgroup_per_zone {
072c56c1
KH
133 /*
134 * spin_lock to protect the per cgroup LRU
135 */
b69408e8
CL
136 struct list_head lists[NR_LRU_LISTS];
137 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
138
139 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
140 struct rb_node tree_node; /* RB tree node */
141 unsigned long long usage_in_excess;/* Set to the value by which */
142 /* the soft limit is exceeded*/
143 bool on_tree;
4e416953
BS
144 struct mem_cgroup *mem; /* Back pointer, we cannot */
145 /* use container_of */
6d12e2d8
KH
146};
147/* Macro for accessing counter */
148#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
149
150struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156};
157
f64c3f54
BS
158/*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166};
167
168struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170};
171
172struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174};
175
176static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
8cdea7c0
BS
178/*
179 * The memory controller data structure. The memory controller controls both
180 * page cache and RSS per cgroup. We would eventually like to provide
181 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
182 * to help the administrator determine what knobs to tune.
183 *
184 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
185 * we hit the water mark. May be even add a low water mark, such that
186 * no reclaim occurs from a cgroup at it's low water mark, this is
187 * a feature that will be implemented much later in the future.
8cdea7c0
BS
188 */
189struct mem_cgroup {
190 struct cgroup_subsys_state css;
191 /*
192 * the counter to account for memory usage
193 */
194 struct res_counter res;
8c7c6e34
KH
195 /*
196 * the counter to account for mem+swap usage.
197 */
198 struct res_counter memsw;
78fb7466
PE
199 /*
200 * Per cgroup active and inactive list, similar to the
201 * per zone LRU lists.
78fb7466 202 */
6d12e2d8 203 struct mem_cgroup_lru_info info;
072c56c1 204
2733c06a
KM
205 /*
206 protect against reclaim related member.
207 */
208 spinlock_t reclaim_param_lock;
209
6c48a1d0 210 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
211
212 /*
af901ca1 213 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 214 * reclaimed from.
6d61ef40 215 */
04046e1a 216 int last_scanned_child;
18f59ea7
BS
217 /*
218 * Should the accounting and control be hierarchical, per subtree?
219 */
220 bool use_hierarchy;
a636b327 221 unsigned long last_oom_jiffies;
8c7c6e34 222 atomic_t refcnt;
14797e23 223
a7885eb8
KM
224 unsigned int swappiness;
225
22a668d7
KH
226 /* set when res.limit == memsw.limit */
227 bool memsw_is_minimum;
228
d52aa412 229 /*
c8dad2bb 230 * statistics. This must be placed at the end of memcg.
d52aa412
KH
231 */
232 struct mem_cgroup_stat stat;
8cdea7c0
BS
233};
234
4e416953
BS
235/*
236 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
237 * limit reclaim to prevent infinite loops, if they ever occur.
238 */
239#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
240#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
241
217bc319
KH
242enum charge_type {
243 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
244 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 245 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 246 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 247 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 248 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
249 NR_CHARGE_TYPE,
250};
251
52d4b9ac
KH
252/* only for here (for easy reading.) */
253#define PCGF_CACHE (1UL << PCG_CACHE)
254#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 255#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
256/* Not used, but added here for completeness */
257#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 258
8c7c6e34
KH
259/* for encoding cft->private value on file */
260#define _MEM (0)
261#define _MEMSWAP (1)
262#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
263#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
264#define MEMFILE_ATTR(val) ((val) & 0xffff)
265
75822b44
BS
266/*
267 * Reclaim flags for mem_cgroup_hierarchical_reclaim
268 */
269#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
270#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
271#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
272#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
273#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
274#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 275
8c7c6e34
KH
276static void mem_cgroup_get(struct mem_cgroup *mem);
277static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 278static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 279static void drain_all_stock_async(void);
8c7c6e34 280
f64c3f54
BS
281static struct mem_cgroup_per_zone *
282mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
283{
284 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
285}
286
287static struct mem_cgroup_per_zone *
288page_cgroup_zoneinfo(struct page_cgroup *pc)
289{
290 struct mem_cgroup *mem = pc->mem_cgroup;
291 int nid = page_cgroup_nid(pc);
292 int zid = page_cgroup_zid(pc);
293
294 if (!mem)
295 return NULL;
296
297 return mem_cgroup_zoneinfo(mem, nid, zid);
298}
299
300static struct mem_cgroup_tree_per_zone *
301soft_limit_tree_node_zone(int nid, int zid)
302{
303 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
304}
305
306static struct mem_cgroup_tree_per_zone *
307soft_limit_tree_from_page(struct page *page)
308{
309 int nid = page_to_nid(page);
310 int zid = page_zonenum(page);
311
312 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
313}
314
315static void
4e416953 316__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 317 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
318 struct mem_cgroup_tree_per_zone *mctz,
319 unsigned long long new_usage_in_excess)
f64c3f54
BS
320{
321 struct rb_node **p = &mctz->rb_root.rb_node;
322 struct rb_node *parent = NULL;
323 struct mem_cgroup_per_zone *mz_node;
324
325 if (mz->on_tree)
326 return;
327
ef8745c1
KH
328 mz->usage_in_excess = new_usage_in_excess;
329 if (!mz->usage_in_excess)
330 return;
f64c3f54
BS
331 while (*p) {
332 parent = *p;
333 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
334 tree_node);
335 if (mz->usage_in_excess < mz_node->usage_in_excess)
336 p = &(*p)->rb_left;
337 /*
338 * We can't avoid mem cgroups that are over their soft
339 * limit by the same amount
340 */
341 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
342 p = &(*p)->rb_right;
343 }
344 rb_link_node(&mz->tree_node, parent, p);
345 rb_insert_color(&mz->tree_node, &mctz->rb_root);
346 mz->on_tree = true;
4e416953
BS
347}
348
349static void
350__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
351 struct mem_cgroup_per_zone *mz,
352 struct mem_cgroup_tree_per_zone *mctz)
353{
354 if (!mz->on_tree)
355 return;
356 rb_erase(&mz->tree_node, &mctz->rb_root);
357 mz->on_tree = false;
358}
359
f64c3f54
BS
360static void
361mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
362 struct mem_cgroup_per_zone *mz,
363 struct mem_cgroup_tree_per_zone *mctz)
364{
365 spin_lock(&mctz->lock);
4e416953 366 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
367 spin_unlock(&mctz->lock);
368}
369
370static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
371{
372 bool ret = false;
373 int cpu;
374 s64 val;
375 struct mem_cgroup_stat_cpu *cpustat;
376
377 cpu = get_cpu();
378 cpustat = &mem->stat.cpustat[cpu];
379 val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
380 if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
381 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
382 ret = true;
383 }
384 put_cpu();
385 return ret;
386}
387
388static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
389{
ef8745c1 390 unsigned long long excess;
f64c3f54
BS
391 struct mem_cgroup_per_zone *mz;
392 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
393 int nid = page_to_nid(page);
394 int zid = page_zonenum(page);
f64c3f54
BS
395 mctz = soft_limit_tree_from_page(page);
396
397 /*
4e649152
KH
398 * Necessary to update all ancestors when hierarchy is used.
399 * because their event counter is not touched.
f64c3f54 400 */
4e649152
KH
401 for (; mem; mem = parent_mem_cgroup(mem)) {
402 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 403 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
404 /*
405 * We have to update the tree if mz is on RB-tree or
406 * mem is over its softlimit.
407 */
ef8745c1 408 if (excess || mz->on_tree) {
4e649152
KH
409 spin_lock(&mctz->lock);
410 /* if on-tree, remove it */
411 if (mz->on_tree)
412 __mem_cgroup_remove_exceeded(mem, mz, mctz);
413 /*
ef8745c1
KH
414 * Insert again. mz->usage_in_excess will be updated.
415 * If excess is 0, no tree ops.
4e649152 416 */
ef8745c1 417 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
418 spin_unlock(&mctz->lock);
419 }
f64c3f54
BS
420 }
421}
422
423static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
424{
425 int node, zone;
426 struct mem_cgroup_per_zone *mz;
427 struct mem_cgroup_tree_per_zone *mctz;
428
429 for_each_node_state(node, N_POSSIBLE) {
430 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
431 mz = mem_cgroup_zoneinfo(mem, node, zone);
432 mctz = soft_limit_tree_node_zone(node, zone);
433 mem_cgroup_remove_exceeded(mem, mz, mctz);
434 }
435 }
436}
437
4e416953
BS
438static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
439{
440 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
441}
442
443static struct mem_cgroup_per_zone *
444__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
445{
446 struct rb_node *rightmost = NULL;
26251eaf 447 struct mem_cgroup_per_zone *mz;
4e416953
BS
448
449retry:
26251eaf 450 mz = NULL;
4e416953
BS
451 rightmost = rb_last(&mctz->rb_root);
452 if (!rightmost)
453 goto done; /* Nothing to reclaim from */
454
455 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
456 /*
457 * Remove the node now but someone else can add it back,
458 * we will to add it back at the end of reclaim to its correct
459 * position in the tree.
460 */
461 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
462 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
463 !css_tryget(&mz->mem->css))
464 goto retry;
465done:
466 return mz;
467}
468
469static struct mem_cgroup_per_zone *
470mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
471{
472 struct mem_cgroup_per_zone *mz;
473
474 spin_lock(&mctz->lock);
475 mz = __mem_cgroup_largest_soft_limit_node(mctz);
476 spin_unlock(&mctz->lock);
477 return mz;
478}
479
0c3e73e8
BS
480static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
481 bool charge)
482{
483 int val = (charge) ? 1 : -1;
484 struct mem_cgroup_stat *stat = &mem->stat;
485 struct mem_cgroup_stat_cpu *cpustat;
486 int cpu = get_cpu();
487
488 cpustat = &stat->cpustat[cpu];
489 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
490 put_cpu();
491}
492
c05555b5
KH
493static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
494 struct page_cgroup *pc,
495 bool charge)
d52aa412 496{
0c3e73e8 497 int val = (charge) ? 1 : -1;
d52aa412 498 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 499 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 500 int cpu = get_cpu();
d52aa412 501
08e552c6 502 cpustat = &stat->cpustat[cpu];
c05555b5 503 if (PageCgroupCache(pc))
addb9efe 504 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 505 else
addb9efe 506 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
507
508 if (charge)
addb9efe 509 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
510 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
511 else
addb9efe 512 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 513 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
f64c3f54 514 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
08e552c6 515 put_cpu();
6d12e2d8
KH
516}
517
14067bb3 518static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 519 enum lru_list idx)
6d12e2d8
KH
520{
521 int nid, zid;
522 struct mem_cgroup_per_zone *mz;
523 u64 total = 0;
524
525 for_each_online_node(nid)
526 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
527 mz = mem_cgroup_zoneinfo(mem, nid, zid);
528 total += MEM_CGROUP_ZSTAT(mz, idx);
529 }
530 return total;
d52aa412
KH
531}
532
d5b69e38 533static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
534{
535 return container_of(cgroup_subsys_state(cont,
536 mem_cgroup_subsys_id), struct mem_cgroup,
537 css);
538}
539
cf475ad2 540struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 541{
31a78f23
BS
542 /*
543 * mm_update_next_owner() may clear mm->owner to NULL
544 * if it races with swapoff, page migration, etc.
545 * So this can be called with p == NULL.
546 */
547 if (unlikely(!p))
548 return NULL;
549
78fb7466
PE
550 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
551 struct mem_cgroup, css);
552}
553
54595fe2
KH
554static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
555{
556 struct mem_cgroup *mem = NULL;
0b7f569e
KH
557
558 if (!mm)
559 return NULL;
54595fe2
KH
560 /*
561 * Because we have no locks, mm->owner's may be being moved to other
562 * cgroup. We use css_tryget() here even if this looks
563 * pessimistic (rather than adding locks here).
564 */
565 rcu_read_lock();
566 do {
567 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
568 if (unlikely(!mem))
569 break;
570 } while (!css_tryget(&mem->css));
571 rcu_read_unlock();
572 return mem;
573}
574
14067bb3
KH
575/*
576 * Call callback function against all cgroup under hierarchy tree.
577 */
578static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
579 int (*func)(struct mem_cgroup *, void *))
580{
581 int found, ret, nextid;
582 struct cgroup_subsys_state *css;
583 struct mem_cgroup *mem;
584
585 if (!root->use_hierarchy)
586 return (*func)(root, data);
587
588 nextid = 1;
589 do {
590 ret = 0;
591 mem = NULL;
592
593 rcu_read_lock();
594 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
595 &found);
596 if (css && css_tryget(css))
597 mem = container_of(css, struct mem_cgroup, css);
598 rcu_read_unlock();
599
600 if (mem) {
601 ret = (*func)(mem, data);
602 css_put(&mem->css);
603 }
604 nextid = found + 1;
605 } while (!ret && css);
606
607 return ret;
608}
609
4b3bde4c
BS
610static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
611{
612 return (mem == root_mem_cgroup);
613}
614
08e552c6
KH
615/*
616 * Following LRU functions are allowed to be used without PCG_LOCK.
617 * Operations are called by routine of global LRU independently from memcg.
618 * What we have to take care of here is validness of pc->mem_cgroup.
619 *
620 * Changes to pc->mem_cgroup happens when
621 * 1. charge
622 * 2. moving account
623 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
624 * It is added to LRU before charge.
625 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
626 * When moving account, the page is not on LRU. It's isolated.
627 */
4f98a2fe 628
08e552c6
KH
629void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
630{
631 struct page_cgroup *pc;
08e552c6 632 struct mem_cgroup_per_zone *mz;
6d12e2d8 633
f8d66542 634 if (mem_cgroup_disabled())
08e552c6
KH
635 return;
636 pc = lookup_page_cgroup(page);
637 /* can happen while we handle swapcache. */
4b3bde4c 638 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 639 return;
4b3bde4c 640 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
641 /*
642 * We don't check PCG_USED bit. It's cleared when the "page" is finally
643 * removed from global LRU.
644 */
08e552c6 645 mz = page_cgroup_zoneinfo(pc);
b69408e8 646 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
647 if (mem_cgroup_is_root(pc->mem_cgroup))
648 return;
649 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
650 list_del_init(&pc->lru);
651 return;
6d12e2d8
KH
652}
653
08e552c6 654void mem_cgroup_del_lru(struct page *page)
6d12e2d8 655{
08e552c6
KH
656 mem_cgroup_del_lru_list(page, page_lru(page));
657}
b69408e8 658
08e552c6
KH
659void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
660{
661 struct mem_cgroup_per_zone *mz;
662 struct page_cgroup *pc;
b69408e8 663
f8d66542 664 if (mem_cgroup_disabled())
08e552c6 665 return;
6d12e2d8 666
08e552c6 667 pc = lookup_page_cgroup(page);
bd112db8
DN
668 /*
669 * Used bit is set without atomic ops but after smp_wmb().
670 * For making pc->mem_cgroup visible, insert smp_rmb() here.
671 */
08e552c6 672 smp_rmb();
4b3bde4c
BS
673 /* unused or root page is not rotated. */
674 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
675 return;
676 mz = page_cgroup_zoneinfo(pc);
677 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
678}
679
08e552c6 680void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 681{
08e552c6
KH
682 struct page_cgroup *pc;
683 struct mem_cgroup_per_zone *mz;
6d12e2d8 684
f8d66542 685 if (mem_cgroup_disabled())
08e552c6
KH
686 return;
687 pc = lookup_page_cgroup(page);
4b3bde4c 688 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
689 /*
690 * Used bit is set without atomic ops but after smp_wmb().
691 * For making pc->mem_cgroup visible, insert smp_rmb() here.
692 */
08e552c6
KH
693 smp_rmb();
694 if (!PageCgroupUsed(pc))
894bc310 695 return;
b69408e8 696
08e552c6 697 mz = page_cgroup_zoneinfo(pc);
b69408e8 698 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
699 SetPageCgroupAcctLRU(pc);
700 if (mem_cgroup_is_root(pc->mem_cgroup))
701 return;
08e552c6
KH
702 list_add(&pc->lru, &mz->lists[lru]);
703}
544122e5 704
08e552c6 705/*
544122e5
KH
706 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
707 * lru because the page may.be reused after it's fully uncharged (because of
708 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
709 * it again. This function is only used to charge SwapCache. It's done under
710 * lock_page and expected that zone->lru_lock is never held.
08e552c6 711 */
544122e5 712static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 713{
544122e5
KH
714 unsigned long flags;
715 struct zone *zone = page_zone(page);
716 struct page_cgroup *pc = lookup_page_cgroup(page);
717
718 spin_lock_irqsave(&zone->lru_lock, flags);
719 /*
720 * Forget old LRU when this page_cgroup is *not* used. This Used bit
721 * is guarded by lock_page() because the page is SwapCache.
722 */
723 if (!PageCgroupUsed(pc))
724 mem_cgroup_del_lru_list(page, page_lru(page));
725 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
726}
727
544122e5
KH
728static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
729{
730 unsigned long flags;
731 struct zone *zone = page_zone(page);
732 struct page_cgroup *pc = lookup_page_cgroup(page);
733
734 spin_lock_irqsave(&zone->lru_lock, flags);
735 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 736 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
737 mem_cgroup_add_lru_list(page, page_lru(page));
738 spin_unlock_irqrestore(&zone->lru_lock, flags);
739}
740
741
08e552c6
KH
742void mem_cgroup_move_lists(struct page *page,
743 enum lru_list from, enum lru_list to)
744{
f8d66542 745 if (mem_cgroup_disabled())
08e552c6
KH
746 return;
747 mem_cgroup_del_lru_list(page, from);
748 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
749}
750
4c4a2214
DR
751int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
752{
753 int ret;
0b7f569e 754 struct mem_cgroup *curr = NULL;
4c4a2214
DR
755
756 task_lock(task);
0b7f569e
KH
757 rcu_read_lock();
758 curr = try_get_mem_cgroup_from_mm(task->mm);
759 rcu_read_unlock();
4c4a2214 760 task_unlock(task);
0b7f569e
KH
761 if (!curr)
762 return 0;
763 if (curr->use_hierarchy)
764 ret = css_is_ancestor(&curr->css, &mem->css);
765 else
766 ret = (curr == mem);
767 css_put(&curr->css);
4c4a2214
DR
768 return ret;
769}
770
6c48a1d0
KH
771/*
772 * prev_priority control...this will be used in memory reclaim path.
773 */
774int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
775{
2733c06a
KM
776 int prev_priority;
777
778 spin_lock(&mem->reclaim_param_lock);
779 prev_priority = mem->prev_priority;
780 spin_unlock(&mem->reclaim_param_lock);
781
782 return prev_priority;
6c48a1d0
KH
783}
784
785void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
786{
2733c06a 787 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
788 if (priority < mem->prev_priority)
789 mem->prev_priority = priority;
2733c06a 790 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
791}
792
793void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
794{
2733c06a 795 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 796 mem->prev_priority = priority;
2733c06a 797 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
798}
799
c772be93 800static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
801{
802 unsigned long active;
803 unsigned long inactive;
c772be93
KM
804 unsigned long gb;
805 unsigned long inactive_ratio;
14797e23 806
14067bb3
KH
807 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
808 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 809
c772be93
KM
810 gb = (inactive + active) >> (30 - PAGE_SHIFT);
811 if (gb)
812 inactive_ratio = int_sqrt(10 * gb);
813 else
814 inactive_ratio = 1;
815
816 if (present_pages) {
817 present_pages[0] = inactive;
818 present_pages[1] = active;
819 }
820
821 return inactive_ratio;
822}
823
824int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
825{
826 unsigned long active;
827 unsigned long inactive;
828 unsigned long present_pages[2];
829 unsigned long inactive_ratio;
830
831 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
832
833 inactive = present_pages[0];
834 active = present_pages[1];
835
836 if (inactive * inactive_ratio < active)
14797e23
KM
837 return 1;
838
839 return 0;
840}
841
56e49d21
RR
842int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
843{
844 unsigned long active;
845 unsigned long inactive;
846
847 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
848 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
849
850 return (active > inactive);
851}
852
a3d8e054
KM
853unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
854 struct zone *zone,
855 enum lru_list lru)
856{
857 int nid = zone->zone_pgdat->node_id;
858 int zid = zone_idx(zone);
859 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
860
861 return MEM_CGROUP_ZSTAT(mz, lru);
862}
863
3e2f41f1
KM
864struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
865 struct zone *zone)
866{
867 int nid = zone->zone_pgdat->node_id;
868 int zid = zone_idx(zone);
869 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
870
871 return &mz->reclaim_stat;
872}
873
874struct zone_reclaim_stat *
875mem_cgroup_get_reclaim_stat_from_page(struct page *page)
876{
877 struct page_cgroup *pc;
878 struct mem_cgroup_per_zone *mz;
879
880 if (mem_cgroup_disabled())
881 return NULL;
882
883 pc = lookup_page_cgroup(page);
bd112db8
DN
884 /*
885 * Used bit is set without atomic ops but after smp_wmb().
886 * For making pc->mem_cgroup visible, insert smp_rmb() here.
887 */
888 smp_rmb();
889 if (!PageCgroupUsed(pc))
890 return NULL;
891
3e2f41f1
KM
892 mz = page_cgroup_zoneinfo(pc);
893 if (!mz)
894 return NULL;
895
896 return &mz->reclaim_stat;
897}
898
66e1707b
BS
899unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
900 struct list_head *dst,
901 unsigned long *scanned, int order,
902 int mode, struct zone *z,
903 struct mem_cgroup *mem_cont,
4f98a2fe 904 int active, int file)
66e1707b
BS
905{
906 unsigned long nr_taken = 0;
907 struct page *page;
908 unsigned long scan;
909 LIST_HEAD(pc_list);
910 struct list_head *src;
ff7283fa 911 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
912 int nid = z->zone_pgdat->node_id;
913 int zid = zone_idx(z);
914 struct mem_cgroup_per_zone *mz;
b7c46d15 915 int lru = LRU_FILE * file + active;
2ffebca6 916 int ret;
66e1707b 917
cf475ad2 918 BUG_ON(!mem_cont);
1ecaab2b 919 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 920 src = &mz->lists[lru];
66e1707b 921
ff7283fa
KH
922 scan = 0;
923 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 924 if (scan >= nr_to_scan)
ff7283fa 925 break;
08e552c6
KH
926
927 page = pc->page;
52d4b9ac
KH
928 if (unlikely(!PageCgroupUsed(pc)))
929 continue;
436c6541 930 if (unlikely(!PageLRU(page)))
ff7283fa 931 continue;
ff7283fa 932
436c6541 933 scan++;
2ffebca6
KH
934 ret = __isolate_lru_page(page, mode, file);
935 switch (ret) {
936 case 0:
66e1707b 937 list_move(&page->lru, dst);
2ffebca6 938 mem_cgroup_del_lru(page);
66e1707b 939 nr_taken++;
2ffebca6
KH
940 break;
941 case -EBUSY:
942 /* we don't affect global LRU but rotate in our LRU */
943 mem_cgroup_rotate_lru_list(page, page_lru(page));
944 break;
945 default:
946 break;
66e1707b
BS
947 }
948 }
949
66e1707b
BS
950 *scanned = scan;
951 return nr_taken;
952}
953
6d61ef40
BS
954#define mem_cgroup_from_res_counter(counter, member) \
955 container_of(counter, struct mem_cgroup, member)
956
b85a96c0
DN
957static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
958{
959 if (do_swap_account) {
960 if (res_counter_check_under_limit(&mem->res) &&
961 res_counter_check_under_limit(&mem->memsw))
962 return true;
963 } else
964 if (res_counter_check_under_limit(&mem->res))
965 return true;
966 return false;
967}
968
a7885eb8
KM
969static unsigned int get_swappiness(struct mem_cgroup *memcg)
970{
971 struct cgroup *cgrp = memcg->css.cgroup;
972 unsigned int swappiness;
973
974 /* root ? */
975 if (cgrp->parent == NULL)
976 return vm_swappiness;
977
978 spin_lock(&memcg->reclaim_param_lock);
979 swappiness = memcg->swappiness;
980 spin_unlock(&memcg->reclaim_param_lock);
981
982 return swappiness;
983}
984
81d39c20
KH
985static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
986{
987 int *val = data;
988 (*val)++;
989 return 0;
990}
e222432b
BS
991
992/**
993 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
994 * @memcg: The memory cgroup that went over limit
995 * @p: Task that is going to be killed
996 *
997 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
998 * enabled
999 */
1000void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1001{
1002 struct cgroup *task_cgrp;
1003 struct cgroup *mem_cgrp;
1004 /*
1005 * Need a buffer in BSS, can't rely on allocations. The code relies
1006 * on the assumption that OOM is serialized for memory controller.
1007 * If this assumption is broken, revisit this code.
1008 */
1009 static char memcg_name[PATH_MAX];
1010 int ret;
1011
1012 if (!memcg)
1013 return;
1014
1015
1016 rcu_read_lock();
1017
1018 mem_cgrp = memcg->css.cgroup;
1019 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1020
1021 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1022 if (ret < 0) {
1023 /*
1024 * Unfortunately, we are unable to convert to a useful name
1025 * But we'll still print out the usage information
1026 */
1027 rcu_read_unlock();
1028 goto done;
1029 }
1030 rcu_read_unlock();
1031
1032 printk(KERN_INFO "Task in %s killed", memcg_name);
1033
1034 rcu_read_lock();
1035 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1036 if (ret < 0) {
1037 rcu_read_unlock();
1038 goto done;
1039 }
1040 rcu_read_unlock();
1041
1042 /*
1043 * Continues from above, so we don't need an KERN_ level
1044 */
1045 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1046done:
1047
1048 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1049 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1050 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1051 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1052 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1053 "failcnt %llu\n",
1054 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1055 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1056 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1057}
1058
81d39c20
KH
1059/*
1060 * This function returns the number of memcg under hierarchy tree. Returns
1061 * 1(self count) if no children.
1062 */
1063static int mem_cgroup_count_children(struct mem_cgroup *mem)
1064{
1065 int num = 0;
1066 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1067 return num;
1068}
1069
6d61ef40 1070/*
04046e1a
KH
1071 * Visit the first child (need not be the first child as per the ordering
1072 * of the cgroup list, since we track last_scanned_child) of @mem and use
1073 * that to reclaim free pages from.
1074 */
1075static struct mem_cgroup *
1076mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1077{
1078 struct mem_cgroup *ret = NULL;
1079 struct cgroup_subsys_state *css;
1080 int nextid, found;
1081
1082 if (!root_mem->use_hierarchy) {
1083 css_get(&root_mem->css);
1084 ret = root_mem;
1085 }
1086
1087 while (!ret) {
1088 rcu_read_lock();
1089 nextid = root_mem->last_scanned_child + 1;
1090 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1091 &found);
1092 if (css && css_tryget(css))
1093 ret = container_of(css, struct mem_cgroup, css);
1094
1095 rcu_read_unlock();
1096 /* Updates scanning parameter */
1097 spin_lock(&root_mem->reclaim_param_lock);
1098 if (!css) {
1099 /* this means start scan from ID:1 */
1100 root_mem->last_scanned_child = 0;
1101 } else
1102 root_mem->last_scanned_child = found;
1103 spin_unlock(&root_mem->reclaim_param_lock);
1104 }
1105
1106 return ret;
1107}
1108
1109/*
1110 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1111 * we reclaimed from, so that we don't end up penalizing one child extensively
1112 * based on its position in the children list.
6d61ef40
BS
1113 *
1114 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1115 *
1116 * We give up and return to the caller when we visit root_mem twice.
1117 * (other groups can be removed while we're walking....)
81d39c20
KH
1118 *
1119 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1120 */
1121static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1122 struct zone *zone,
75822b44
BS
1123 gfp_t gfp_mask,
1124 unsigned long reclaim_options)
6d61ef40 1125{
04046e1a
KH
1126 struct mem_cgroup *victim;
1127 int ret, total = 0;
1128 int loop = 0;
75822b44
BS
1129 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1130 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1131 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1132 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1133
22a668d7
KH
1134 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1135 if (root_mem->memsw_is_minimum)
1136 noswap = true;
1137
4e416953 1138 while (1) {
04046e1a 1139 victim = mem_cgroup_select_victim(root_mem);
4e416953 1140 if (victim == root_mem) {
04046e1a 1141 loop++;
cdec2e42
KH
1142 if (loop >= 1)
1143 drain_all_stock_async();
4e416953
BS
1144 if (loop >= 2) {
1145 /*
1146 * If we have not been able to reclaim
1147 * anything, it might because there are
1148 * no reclaimable pages under this hierarchy
1149 */
1150 if (!check_soft || !total) {
1151 css_put(&victim->css);
1152 break;
1153 }
1154 /*
1155 * We want to do more targetted reclaim.
1156 * excess >> 2 is not to excessive so as to
1157 * reclaim too much, nor too less that we keep
1158 * coming back to reclaim from this cgroup
1159 */
1160 if (total >= (excess >> 2) ||
1161 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1162 css_put(&victim->css);
1163 break;
1164 }
1165 }
1166 }
04046e1a
KH
1167 if (!mem_cgroup_local_usage(&victim->stat)) {
1168 /* this cgroup's local usage == 0 */
1169 css_put(&victim->css);
6d61ef40
BS
1170 continue;
1171 }
04046e1a 1172 /* we use swappiness of local cgroup */
4e416953
BS
1173 if (check_soft)
1174 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1175 noswap, get_swappiness(victim), zone,
1176 zone->zone_pgdat->node_id);
1177 else
1178 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1179 noswap, get_swappiness(victim));
04046e1a 1180 css_put(&victim->css);
81d39c20
KH
1181 /*
1182 * At shrinking usage, we can't check we should stop here or
1183 * reclaim more. It's depends on callers. last_scanned_child
1184 * will work enough for keeping fairness under tree.
1185 */
1186 if (shrink)
1187 return ret;
04046e1a 1188 total += ret;
4e416953
BS
1189 if (check_soft) {
1190 if (res_counter_check_under_soft_limit(&root_mem->res))
1191 return total;
1192 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1193 return 1 + total;
6d61ef40 1194 }
04046e1a 1195 return total;
6d61ef40
BS
1196}
1197
a636b327
KH
1198bool mem_cgroup_oom_called(struct task_struct *task)
1199{
1200 bool ret = false;
1201 struct mem_cgroup *mem;
1202 struct mm_struct *mm;
1203
1204 rcu_read_lock();
1205 mm = task->mm;
1206 if (!mm)
1207 mm = &init_mm;
1208 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1209 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1210 ret = true;
1211 rcu_read_unlock();
1212 return ret;
1213}
0b7f569e
KH
1214
1215static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1216{
1217 mem->last_oom_jiffies = jiffies;
1218 return 0;
1219}
1220
1221static void record_last_oom(struct mem_cgroup *mem)
1222{
1223 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1224}
1225
d69b042f
BS
1226/*
1227 * Currently used to update mapped file statistics, but the routine can be
1228 * generalized to update other statistics as well.
1229 */
d8046582 1230void mem_cgroup_update_file_mapped(struct page *page, int val)
d69b042f
BS
1231{
1232 struct mem_cgroup *mem;
1233 struct mem_cgroup_stat *stat;
1234 struct mem_cgroup_stat_cpu *cpustat;
1235 int cpu;
1236 struct page_cgroup *pc;
1237
d69b042f
BS
1238 pc = lookup_page_cgroup(page);
1239 if (unlikely(!pc))
1240 return;
1241
1242 lock_page_cgroup(pc);
1243 mem = pc->mem_cgroup;
1244 if (!mem)
1245 goto done;
1246
1247 if (!PageCgroupUsed(pc))
1248 goto done;
1249
1250 /*
1251 * Preemption is already disabled, we don't need get_cpu()
1252 */
1253 cpu = smp_processor_id();
1254 stat = &mem->stat;
1255 cpustat = &stat->cpustat[cpu];
1256
d8046582 1257 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
d69b042f
BS
1258done:
1259 unlock_page_cgroup(pc);
1260}
0b7f569e 1261
cdec2e42
KH
1262/*
1263 * size of first charge trial. "32" comes from vmscan.c's magic value.
1264 * TODO: maybe necessary to use big numbers in big irons.
1265 */
1266#define CHARGE_SIZE (32 * PAGE_SIZE)
1267struct memcg_stock_pcp {
1268 struct mem_cgroup *cached; /* this never be root cgroup */
1269 int charge;
1270 struct work_struct work;
1271};
1272static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1273static atomic_t memcg_drain_count;
1274
1275/*
1276 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1277 * from local stock and true is returned. If the stock is 0 or charges from a
1278 * cgroup which is not current target, returns false. This stock will be
1279 * refilled.
1280 */
1281static bool consume_stock(struct mem_cgroup *mem)
1282{
1283 struct memcg_stock_pcp *stock;
1284 bool ret = true;
1285
1286 stock = &get_cpu_var(memcg_stock);
1287 if (mem == stock->cached && stock->charge)
1288 stock->charge -= PAGE_SIZE;
1289 else /* need to call res_counter_charge */
1290 ret = false;
1291 put_cpu_var(memcg_stock);
1292 return ret;
1293}
1294
1295/*
1296 * Returns stocks cached in percpu to res_counter and reset cached information.
1297 */
1298static void drain_stock(struct memcg_stock_pcp *stock)
1299{
1300 struct mem_cgroup *old = stock->cached;
1301
1302 if (stock->charge) {
1303 res_counter_uncharge(&old->res, stock->charge);
1304 if (do_swap_account)
1305 res_counter_uncharge(&old->memsw, stock->charge);
1306 }
1307 stock->cached = NULL;
1308 stock->charge = 0;
1309}
1310
1311/*
1312 * This must be called under preempt disabled or must be called by
1313 * a thread which is pinned to local cpu.
1314 */
1315static void drain_local_stock(struct work_struct *dummy)
1316{
1317 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1318 drain_stock(stock);
1319}
1320
1321/*
1322 * Cache charges(val) which is from res_counter, to local per_cpu area.
1323 * This will be consumed by consumt_stock() function, later.
1324 */
1325static void refill_stock(struct mem_cgroup *mem, int val)
1326{
1327 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1328
1329 if (stock->cached != mem) { /* reset if necessary */
1330 drain_stock(stock);
1331 stock->cached = mem;
1332 }
1333 stock->charge += val;
1334 put_cpu_var(memcg_stock);
1335}
1336
1337/*
1338 * Tries to drain stocked charges in other cpus. This function is asynchronous
1339 * and just put a work per cpu for draining localy on each cpu. Caller can
1340 * expects some charges will be back to res_counter later but cannot wait for
1341 * it.
1342 */
1343static void drain_all_stock_async(void)
1344{
1345 int cpu;
1346 /* This function is for scheduling "drain" in asynchronous way.
1347 * The result of "drain" is not directly handled by callers. Then,
1348 * if someone is calling drain, we don't have to call drain more.
1349 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1350 * there is a race. We just do loose check here.
1351 */
1352 if (atomic_read(&memcg_drain_count))
1353 return;
1354 /* Notify other cpus that system-wide "drain" is running */
1355 atomic_inc(&memcg_drain_count);
1356 get_online_cpus();
1357 for_each_online_cpu(cpu) {
1358 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1359 schedule_work_on(cpu, &stock->work);
1360 }
1361 put_online_cpus();
1362 atomic_dec(&memcg_drain_count);
1363 /* We don't wait for flush_work */
1364}
1365
1366/* This is a synchronous drain interface. */
1367static void drain_all_stock_sync(void)
1368{
1369 /* called when force_empty is called */
1370 atomic_inc(&memcg_drain_count);
1371 schedule_on_each_cpu(drain_local_stock);
1372 atomic_dec(&memcg_drain_count);
1373}
1374
1375static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1376 unsigned long action,
1377 void *hcpu)
1378{
1379 int cpu = (unsigned long)hcpu;
1380 struct memcg_stock_pcp *stock;
1381
1382 if (action != CPU_DEAD)
1383 return NOTIFY_OK;
1384 stock = &per_cpu(memcg_stock, cpu);
1385 drain_stock(stock);
1386 return NOTIFY_OK;
1387}
1388
f817ed48
KH
1389/*
1390 * Unlike exported interface, "oom" parameter is added. if oom==true,
1391 * oom-killer can be invoked.
8a9f3ccd 1392 */
f817ed48 1393static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34 1394 gfp_t gfp_mask, struct mem_cgroup **memcg,
f64c3f54 1395 bool oom, struct page *page)
8a9f3ccd 1396{
4e649152 1397 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 1398 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4e649152 1399 struct res_counter *fail_res;
cdec2e42 1400 int csize = CHARGE_SIZE;
a636b327
KH
1401
1402 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1403 /* Don't account this! */
1404 *memcg = NULL;
1405 return 0;
1406 }
1407
8a9f3ccd 1408 /*
3be91277
HD
1409 * We always charge the cgroup the mm_struct belongs to.
1410 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1411 * thread group leader migrates. It's possible that mm is not
1412 * set, if so charge the init_mm (happens for pagecache usage).
1413 */
54595fe2
KH
1414 mem = *memcg;
1415 if (likely(!mem)) {
1416 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 1417 *memcg = mem;
e8589cc1 1418 } else {
7a81b88c 1419 css_get(&mem->css);
e8589cc1 1420 }
54595fe2
KH
1421 if (unlikely(!mem))
1422 return 0;
1423
46f7e602 1424 VM_BUG_ON(css_is_removed(&mem->css));
cdec2e42
KH
1425 if (mem_cgroup_is_root(mem))
1426 goto done;
8a9f3ccd 1427
8c7c6e34 1428 while (1) {
0c3e73e8 1429 int ret = 0;
75822b44 1430 unsigned long flags = 0;
7a81b88c 1431
cdec2e42
KH
1432 if (consume_stock(mem))
1433 goto charged;
1434
1435 ret = res_counter_charge(&mem->res, csize, &fail_res);
8c7c6e34
KH
1436 if (likely(!ret)) {
1437 if (!do_swap_account)
1438 break;
cdec2e42 1439 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
8c7c6e34
KH
1440 if (likely(!ret))
1441 break;
1442 /* mem+swap counter fails */
cdec2e42 1443 res_counter_uncharge(&mem->res, csize);
75822b44 1444 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
6d61ef40
BS
1445 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1446 memsw);
1447 } else
1448 /* mem counter fails */
1449 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1450 res);
1451
cdec2e42
KH
1452 /* reduce request size and retry */
1453 if (csize > PAGE_SIZE) {
1454 csize = PAGE_SIZE;
1455 continue;
1456 }
3be91277 1457 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1458 goto nomem;
e1a1cd59 1459
4e416953
BS
1460 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1461 gfp_mask, flags);
4d1c6273
DN
1462 if (ret)
1463 continue;
66e1707b
BS
1464
1465 /*
8869b8f6
HD
1466 * try_to_free_mem_cgroup_pages() might not give us a full
1467 * picture of reclaim. Some pages are reclaimed and might be
1468 * moved to swap cache or just unmapped from the cgroup.
1469 * Check the limit again to see if the reclaim reduced the
1470 * current usage of the cgroup before giving up
8c7c6e34 1471 *
8869b8f6 1472 */
b85a96c0
DN
1473 if (mem_cgroup_check_under_limit(mem_over_limit))
1474 continue;
3be91277
HD
1475
1476 if (!nr_retries--) {
a636b327 1477 if (oom) {
7f4d454d 1478 mutex_lock(&memcg_tasklist);
88700756 1479 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 1480 mutex_unlock(&memcg_tasklist);
0b7f569e 1481 record_last_oom(mem_over_limit);
a636b327 1482 }
7a81b88c 1483 goto nomem;
66e1707b 1484 }
8a9f3ccd 1485 }
cdec2e42
KH
1486 if (csize > PAGE_SIZE)
1487 refill_stock(mem, csize - PAGE_SIZE);
1488charged:
f64c3f54 1489 /*
4e649152
KH
1490 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1491 * if they exceeds softlimit.
f64c3f54 1492 */
4e649152
KH
1493 if (mem_cgroup_soft_limit_check(mem))
1494 mem_cgroup_update_tree(mem, page);
0c3e73e8 1495done:
7a81b88c
KH
1496 return 0;
1497nomem:
1498 css_put(&mem->css);
1499 return -ENOMEM;
1500}
8a9f3ccd 1501
a3b2d692
KH
1502/*
1503 * A helper function to get mem_cgroup from ID. must be called under
1504 * rcu_read_lock(). The caller must check css_is_removed() or some if
1505 * it's concern. (dropping refcnt from swap can be called against removed
1506 * memcg.)
1507 */
1508static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1509{
1510 struct cgroup_subsys_state *css;
1511
1512 /* ID 0 is unused ID */
1513 if (!id)
1514 return NULL;
1515 css = css_lookup(&mem_cgroup_subsys, id);
1516 if (!css)
1517 return NULL;
1518 return container_of(css, struct mem_cgroup, css);
1519}
1520
b5a84319
KH
1521static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1522{
1523 struct mem_cgroup *mem;
3c776e64 1524 struct page_cgroup *pc;
a3b2d692 1525 unsigned short id;
b5a84319
KH
1526 swp_entry_t ent;
1527
3c776e64
DN
1528 VM_BUG_ON(!PageLocked(page));
1529
b5a84319
KH
1530 if (!PageSwapCache(page))
1531 return NULL;
1532
3c776e64 1533 pc = lookup_page_cgroup(page);
c0bd3f63 1534 lock_page_cgroup(pc);
a3b2d692 1535 if (PageCgroupUsed(pc)) {
3c776e64 1536 mem = pc->mem_cgroup;
a3b2d692
KH
1537 if (mem && !css_tryget(&mem->css))
1538 mem = NULL;
1539 } else {
3c776e64 1540 ent.val = page_private(page);
a3b2d692
KH
1541 id = lookup_swap_cgroup(ent);
1542 rcu_read_lock();
1543 mem = mem_cgroup_lookup(id);
1544 if (mem && !css_tryget(&mem->css))
1545 mem = NULL;
1546 rcu_read_unlock();
3c776e64 1547 }
c0bd3f63 1548 unlock_page_cgroup(pc);
b5a84319
KH
1549 return mem;
1550}
1551
7a81b88c 1552/*
a5e924f5 1553 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1554 * USED state. If already USED, uncharge and return.
1555 */
1556
1557static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1558 struct page_cgroup *pc,
1559 enum charge_type ctype)
1560{
7a81b88c
KH
1561 /* try_charge() can return NULL to *memcg, taking care of it. */
1562 if (!mem)
1563 return;
52d4b9ac
KH
1564
1565 lock_page_cgroup(pc);
1566 if (unlikely(PageCgroupUsed(pc))) {
1567 unlock_page_cgroup(pc);
0c3e73e8 1568 if (!mem_cgroup_is_root(mem)) {
4e649152 1569 res_counter_uncharge(&mem->res, PAGE_SIZE);
0c3e73e8 1570 if (do_swap_account)
4e649152 1571 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
0c3e73e8 1572 }
52d4b9ac 1573 css_put(&mem->css);
7a81b88c 1574 return;
52d4b9ac 1575 }
4b3bde4c 1576
8a9f3ccd 1577 pc->mem_cgroup = mem;
261fb61a
KH
1578 /*
1579 * We access a page_cgroup asynchronously without lock_page_cgroup().
1580 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1581 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1582 * before USED bit, we need memory barrier here.
1583 * See mem_cgroup_add_lru_list(), etc.
1584 */
08e552c6 1585 smp_wmb();
4b3bde4c
BS
1586 switch (ctype) {
1587 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1588 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1589 SetPageCgroupCache(pc);
1590 SetPageCgroupUsed(pc);
1591 break;
1592 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1593 ClearPageCgroupCache(pc);
1594 SetPageCgroupUsed(pc);
1595 break;
1596 default:
1597 break;
1598 }
3be91277 1599
08e552c6 1600 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1601
52d4b9ac 1602 unlock_page_cgroup(pc);
7a81b88c 1603}
66e1707b 1604
f817ed48
KH
1605/**
1606 * mem_cgroup_move_account - move account of the page
1607 * @pc: page_cgroup of the page.
1608 * @from: mem_cgroup which the page is moved from.
1609 * @to: mem_cgroup which the page is moved to. @from != @to.
1610 *
1611 * The caller must confirm following.
08e552c6 1612 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
1613 *
1614 * returns 0 at success,
1615 * returns -EBUSY when lock is busy or "pc" is unstable.
1616 *
1617 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1618 * new cgroup. It should be done by a caller.
1619 */
1620
1621static int mem_cgroup_move_account(struct page_cgroup *pc,
1622 struct mem_cgroup *from, struct mem_cgroup *to)
1623{
1624 struct mem_cgroup_per_zone *from_mz, *to_mz;
1625 int nid, zid;
1626 int ret = -EBUSY;
d69b042f
BS
1627 struct page *page;
1628 int cpu;
1629 struct mem_cgroup_stat *stat;
1630 struct mem_cgroup_stat_cpu *cpustat;
f817ed48 1631
f817ed48 1632 VM_BUG_ON(from == to);
08e552c6 1633 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
1634
1635 nid = page_cgroup_nid(pc);
1636 zid = page_cgroup_zid(pc);
1637 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1638 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1639
f817ed48
KH
1640 if (!trylock_page_cgroup(pc))
1641 return ret;
1642
1643 if (!PageCgroupUsed(pc))
1644 goto out;
1645
1646 if (pc->mem_cgroup != from)
1647 goto out;
1648
0c3e73e8 1649 if (!mem_cgroup_is_root(from))
4e649152 1650 res_counter_uncharge(&from->res, PAGE_SIZE);
08e552c6 1651 mem_cgroup_charge_statistics(from, pc, false);
d69b042f
BS
1652
1653 page = pc->page;
d8046582 1654 if (page_mapped(page) && !PageAnon(page)) {
d69b042f
BS
1655 cpu = smp_processor_id();
1656 /* Update mapped_file data for mem_cgroup "from" */
1657 stat = &from->stat;
1658 cpustat = &stat->cpustat[cpu];
d8046582 1659 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
d69b042f
BS
1660 -1);
1661
1662 /* Update mapped_file data for mem_cgroup "to" */
1663 stat = &to->stat;
1664 cpustat = &stat->cpustat[cpu];
d8046582 1665 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
d69b042f
BS
1666 1);
1667 }
1668
0c3e73e8 1669 if (do_swap_account && !mem_cgroup_is_root(from))
4e649152 1670 res_counter_uncharge(&from->memsw, PAGE_SIZE);
40d58138
DN
1671 css_put(&from->css);
1672
1673 css_get(&to->css);
08e552c6
KH
1674 pc->mem_cgroup = to;
1675 mem_cgroup_charge_statistics(to, pc, true);
08e552c6 1676 ret = 0;
f817ed48
KH
1677out:
1678 unlock_page_cgroup(pc);
88703267
KH
1679 /*
1680 * We charges against "to" which may not have any tasks. Then, "to"
1681 * can be under rmdir(). But in current implementation, caller of
1682 * this function is just force_empty() and it's garanteed that
1683 * "to" is never removed. So, we don't check rmdir status here.
1684 */
f817ed48
KH
1685 return ret;
1686}
1687
1688/*
1689 * move charges to its parent.
1690 */
1691
1692static int mem_cgroup_move_parent(struct page_cgroup *pc,
1693 struct mem_cgroup *child,
1694 gfp_t gfp_mask)
1695{
08e552c6 1696 struct page *page = pc->page;
f817ed48
KH
1697 struct cgroup *cg = child->css.cgroup;
1698 struct cgroup *pcg = cg->parent;
1699 struct mem_cgroup *parent;
f817ed48
KH
1700 int ret;
1701
1702 /* Is ROOT ? */
1703 if (!pcg)
1704 return -EINVAL;
1705
08e552c6 1706
f817ed48
KH
1707 parent = mem_cgroup_from_cont(pcg);
1708
08e552c6 1709
f64c3f54 1710 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
a636b327 1711 if (ret || !parent)
f817ed48
KH
1712 return ret;
1713
40d58138
DN
1714 if (!get_page_unless_zero(page)) {
1715 ret = -EBUSY;
1716 goto uncharge;
1717 }
08e552c6
KH
1718
1719 ret = isolate_lru_page(page);
1720
1721 if (ret)
1722 goto cancel;
f817ed48 1723
f817ed48 1724 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1725
08e552c6
KH
1726 putback_lru_page(page);
1727 if (!ret) {
1728 put_page(page);
40d58138
DN
1729 /* drop extra refcnt by try_charge() */
1730 css_put(&parent->css);
08e552c6 1731 return 0;
8c7c6e34 1732 }
40d58138 1733
08e552c6 1734cancel:
40d58138
DN
1735 put_page(page);
1736uncharge:
1737 /* drop extra refcnt by try_charge() */
1738 css_put(&parent->css);
1739 /* uncharge if move fails */
0c3e73e8 1740 if (!mem_cgroup_is_root(parent)) {
4e649152 1741 res_counter_uncharge(&parent->res, PAGE_SIZE);
0c3e73e8 1742 if (do_swap_account)
4e649152 1743 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
0c3e73e8 1744 }
f817ed48
KH
1745 return ret;
1746}
1747
7a81b88c
KH
1748/*
1749 * Charge the memory controller for page usage.
1750 * Return
1751 * 0 if the charge was successful
1752 * < 0 if the cgroup is over its limit
1753 */
1754static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1755 gfp_t gfp_mask, enum charge_type ctype,
1756 struct mem_cgroup *memcg)
1757{
1758 struct mem_cgroup *mem;
1759 struct page_cgroup *pc;
1760 int ret;
1761
1762 pc = lookup_page_cgroup(page);
1763 /* can happen at boot */
1764 if (unlikely(!pc))
1765 return 0;
1766 prefetchw(pc);
1767
1768 mem = memcg;
f64c3f54 1769 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
a636b327 1770 if (ret || !mem)
7a81b88c
KH
1771 return ret;
1772
1773 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1774 return 0;
8a9f3ccd
BS
1775}
1776
7a81b88c
KH
1777int mem_cgroup_newpage_charge(struct page *page,
1778 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1779{
f8d66542 1780 if (mem_cgroup_disabled())
cede86ac 1781 return 0;
52d4b9ac
KH
1782 if (PageCompound(page))
1783 return 0;
69029cd5
KH
1784 /*
1785 * If already mapped, we don't have to account.
1786 * If page cache, page->mapping has address_space.
1787 * But page->mapping may have out-of-use anon_vma pointer,
1788 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1789 * is NULL.
1790 */
1791 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1792 return 0;
1793 if (unlikely(!mm))
1794 mm = &init_mm;
217bc319 1795 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1796 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1797}
1798
83aae4c7
DN
1799static void
1800__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1801 enum charge_type ctype);
1802
e1a1cd59
BS
1803int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1804 gfp_t gfp_mask)
8697d331 1805{
b5a84319
KH
1806 struct mem_cgroup *mem = NULL;
1807 int ret;
1808
f8d66542 1809 if (mem_cgroup_disabled())
cede86ac 1810 return 0;
52d4b9ac
KH
1811 if (PageCompound(page))
1812 return 0;
accf163e
KH
1813 /*
1814 * Corner case handling. This is called from add_to_page_cache()
1815 * in usual. But some FS (shmem) precharges this page before calling it
1816 * and call add_to_page_cache() with GFP_NOWAIT.
1817 *
1818 * For GFP_NOWAIT case, the page may be pre-charged before calling
1819 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1820 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1821 * And when the page is SwapCache, it should take swap information
1822 * into account. This is under lock_page() now.
accf163e
KH
1823 */
1824 if (!(gfp_mask & __GFP_WAIT)) {
1825 struct page_cgroup *pc;
1826
52d4b9ac
KH
1827
1828 pc = lookup_page_cgroup(page);
1829 if (!pc)
1830 return 0;
1831 lock_page_cgroup(pc);
1832 if (PageCgroupUsed(pc)) {
1833 unlock_page_cgroup(pc);
accf163e
KH
1834 return 0;
1835 }
52d4b9ac 1836 unlock_page_cgroup(pc);
accf163e
KH
1837 }
1838
b5a84319 1839 if (unlikely(!mm && !mem))
8697d331 1840 mm = &init_mm;
accf163e 1841
c05555b5
KH
1842 if (page_is_file_cache(page))
1843 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1844 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1845
83aae4c7
DN
1846 /* shmem */
1847 if (PageSwapCache(page)) {
1848 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1849 if (!ret)
1850 __mem_cgroup_commit_charge_swapin(page, mem,
1851 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1852 } else
1853 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1854 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1855
b5a84319 1856 return ret;
e8589cc1
KH
1857}
1858
54595fe2
KH
1859/*
1860 * While swap-in, try_charge -> commit or cancel, the page is locked.
1861 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 1862 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
1863 * "commit()" or removed by "cancel()"
1864 */
8c7c6e34
KH
1865int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1866 struct page *page,
1867 gfp_t mask, struct mem_cgroup **ptr)
1868{
1869 struct mem_cgroup *mem;
54595fe2 1870 int ret;
8c7c6e34 1871
f8d66542 1872 if (mem_cgroup_disabled())
8c7c6e34
KH
1873 return 0;
1874
1875 if (!do_swap_account)
1876 goto charge_cur_mm;
8c7c6e34
KH
1877 /*
1878 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
1879 * the pte, and even removed page from swap cache: in those cases
1880 * do_swap_page()'s pte_same() test will fail; but there's also a
1881 * KSM case which does need to charge the page.
8c7c6e34
KH
1882 */
1883 if (!PageSwapCache(page))
407f9c8b 1884 goto charge_cur_mm;
b5a84319 1885 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1886 if (!mem)
1887 goto charge_cur_mm;
8c7c6e34 1888 *ptr = mem;
f64c3f54 1889 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
54595fe2
KH
1890 /* drop extra refcnt from tryget */
1891 css_put(&mem->css);
1892 return ret;
8c7c6e34
KH
1893charge_cur_mm:
1894 if (unlikely(!mm))
1895 mm = &init_mm;
f64c3f54 1896 return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
8c7c6e34
KH
1897}
1898
83aae4c7
DN
1899static void
1900__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1901 enum charge_type ctype)
7a81b88c
KH
1902{
1903 struct page_cgroup *pc;
1904
f8d66542 1905 if (mem_cgroup_disabled())
7a81b88c
KH
1906 return;
1907 if (!ptr)
1908 return;
88703267 1909 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 1910 pc = lookup_page_cgroup(page);
544122e5 1911 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1912 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1913 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1914 /*
1915 * Now swap is on-memory. This means this page may be
1916 * counted both as mem and swap....double count.
03f3c433
KH
1917 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1918 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1919 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1920 */
03f3c433 1921 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1922 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1923 unsigned short id;
8c7c6e34 1924 struct mem_cgroup *memcg;
a3b2d692
KH
1925
1926 id = swap_cgroup_record(ent, 0);
1927 rcu_read_lock();
1928 memcg = mem_cgroup_lookup(id);
8c7c6e34 1929 if (memcg) {
a3b2d692
KH
1930 /*
1931 * This recorded memcg can be obsolete one. So, avoid
1932 * calling css_tryget
1933 */
0c3e73e8 1934 if (!mem_cgroup_is_root(memcg))
4e649152 1935 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 1936 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
1937 mem_cgroup_put(memcg);
1938 }
a3b2d692 1939 rcu_read_unlock();
8c7c6e34 1940 }
88703267
KH
1941 /*
1942 * At swapin, we may charge account against cgroup which has no tasks.
1943 * So, rmdir()->pre_destroy() can be called while we do this charge.
1944 * In that case, we need to call pre_destroy() again. check it here.
1945 */
1946 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
1947}
1948
83aae4c7
DN
1949void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1950{
1951 __mem_cgroup_commit_charge_swapin(page, ptr,
1952 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1953}
1954
7a81b88c
KH
1955void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1956{
f8d66542 1957 if (mem_cgroup_disabled())
7a81b88c
KH
1958 return;
1959 if (!mem)
1960 return;
0c3e73e8 1961 if (!mem_cgroup_is_root(mem)) {
4e649152 1962 res_counter_uncharge(&mem->res, PAGE_SIZE);
0c3e73e8 1963 if (do_swap_account)
4e649152 1964 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
0c3e73e8 1965 }
7a81b88c
KH
1966 css_put(&mem->css);
1967}
1968
569b846d
KH
1969static void
1970__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
1971{
1972 struct memcg_batch_info *batch = NULL;
1973 bool uncharge_memsw = true;
1974 /* If swapout, usage of swap doesn't decrease */
1975 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1976 uncharge_memsw = false;
1977 /*
1978 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
1979 * In those cases, all pages freed continously can be expected to be in
1980 * the same cgroup and we have chance to coalesce uncharges.
1981 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
1982 * because we want to do uncharge as soon as possible.
1983 */
1984 if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
1985 goto direct_uncharge;
1986
1987 batch = &current->memcg_batch;
1988 /*
1989 * In usual, we do css_get() when we remember memcg pointer.
1990 * But in this case, we keep res->usage until end of a series of
1991 * uncharges. Then, it's ok to ignore memcg's refcnt.
1992 */
1993 if (!batch->memcg)
1994 batch->memcg = mem;
1995 /*
1996 * In typical case, batch->memcg == mem. This means we can
1997 * merge a series of uncharges to an uncharge of res_counter.
1998 * If not, we uncharge res_counter ony by one.
1999 */
2000 if (batch->memcg != mem)
2001 goto direct_uncharge;
2002 /* remember freed charge and uncharge it later */
2003 batch->bytes += PAGE_SIZE;
2004 if (uncharge_memsw)
2005 batch->memsw_bytes += PAGE_SIZE;
2006 return;
2007direct_uncharge:
2008 res_counter_uncharge(&mem->res, PAGE_SIZE);
2009 if (uncharge_memsw)
2010 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2011 return;
2012}
7a81b88c 2013
8a9f3ccd 2014/*
69029cd5 2015 * uncharge if !page_mapped(page)
8a9f3ccd 2016 */
8c7c6e34 2017static struct mem_cgroup *
69029cd5 2018__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2019{
8289546e 2020 struct page_cgroup *pc;
8c7c6e34 2021 struct mem_cgroup *mem = NULL;
072c56c1 2022 struct mem_cgroup_per_zone *mz;
8a9f3ccd 2023
f8d66542 2024 if (mem_cgroup_disabled())
8c7c6e34 2025 return NULL;
4077960e 2026
d13d1443 2027 if (PageSwapCache(page))
8c7c6e34 2028 return NULL;
d13d1443 2029
8697d331 2030 /*
3c541e14 2031 * Check if our page_cgroup is valid
8697d331 2032 */
52d4b9ac
KH
2033 pc = lookup_page_cgroup(page);
2034 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2035 return NULL;
b9c565d5 2036
52d4b9ac 2037 lock_page_cgroup(pc);
d13d1443 2038
8c7c6e34
KH
2039 mem = pc->mem_cgroup;
2040
d13d1443
KH
2041 if (!PageCgroupUsed(pc))
2042 goto unlock_out;
2043
2044 switch (ctype) {
2045 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2046 case MEM_CGROUP_CHARGE_TYPE_DROP:
d13d1443
KH
2047 if (page_mapped(page))
2048 goto unlock_out;
2049 break;
2050 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2051 if (!PageAnon(page)) { /* Shared memory */
2052 if (page->mapping && !page_is_file_cache(page))
2053 goto unlock_out;
2054 } else if (page_mapped(page)) /* Anon */
2055 goto unlock_out;
2056 break;
2057 default:
2058 break;
52d4b9ac 2059 }
d13d1443 2060
569b846d
KH
2061 if (!mem_cgroup_is_root(mem))
2062 __do_uncharge(mem, ctype);
0c3e73e8
BS
2063 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2064 mem_cgroup_swap_statistics(mem, true);
08e552c6 2065 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 2066
52d4b9ac 2067 ClearPageCgroupUsed(pc);
544122e5
KH
2068 /*
2069 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2070 * freed from LRU. This is safe because uncharged page is expected not
2071 * to be reused (freed soon). Exception is SwapCache, it's handled by
2072 * special functions.
2073 */
b9c565d5 2074
69029cd5 2075 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 2076 unlock_page_cgroup(pc);
fb59e9f1 2077
4e649152 2078 if (mem_cgroup_soft_limit_check(mem))
f64c3f54 2079 mem_cgroup_update_tree(mem, page);
a7fe942e
KH
2080 /* at swapout, this memcg will be accessed to record to swap */
2081 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2082 css_put(&mem->css);
6d12e2d8 2083
8c7c6e34 2084 return mem;
d13d1443
KH
2085
2086unlock_out:
2087 unlock_page_cgroup(pc);
8c7c6e34 2088 return NULL;
3c541e14
BS
2089}
2090
69029cd5
KH
2091void mem_cgroup_uncharge_page(struct page *page)
2092{
52d4b9ac
KH
2093 /* early check. */
2094 if (page_mapped(page))
2095 return;
2096 if (page->mapping && !PageAnon(page))
2097 return;
69029cd5
KH
2098 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2099}
2100
2101void mem_cgroup_uncharge_cache_page(struct page *page)
2102{
2103 VM_BUG_ON(page_mapped(page));
b7abea96 2104 VM_BUG_ON(page->mapping);
69029cd5
KH
2105 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2106}
2107
569b846d
KH
2108/*
2109 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2110 * In that cases, pages are freed continuously and we can expect pages
2111 * are in the same memcg. All these calls itself limits the number of
2112 * pages freed at once, then uncharge_start/end() is called properly.
2113 * This may be called prural(2) times in a context,
2114 */
2115
2116void mem_cgroup_uncharge_start(void)
2117{
2118 current->memcg_batch.do_batch++;
2119 /* We can do nest. */
2120 if (current->memcg_batch.do_batch == 1) {
2121 current->memcg_batch.memcg = NULL;
2122 current->memcg_batch.bytes = 0;
2123 current->memcg_batch.memsw_bytes = 0;
2124 }
2125}
2126
2127void mem_cgroup_uncharge_end(void)
2128{
2129 struct memcg_batch_info *batch = &current->memcg_batch;
2130
2131 if (!batch->do_batch)
2132 return;
2133
2134 batch->do_batch--;
2135 if (batch->do_batch) /* If stacked, do nothing. */
2136 return;
2137
2138 if (!batch->memcg)
2139 return;
2140 /*
2141 * This "batch->memcg" is valid without any css_get/put etc...
2142 * bacause we hide charges behind us.
2143 */
2144 if (batch->bytes)
2145 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2146 if (batch->memsw_bytes)
2147 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2148 /* forget this pointer (for sanity check) */
2149 batch->memcg = NULL;
2150}
2151
e767e056 2152#ifdef CONFIG_SWAP
8c7c6e34 2153/*
e767e056 2154 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2155 * memcg information is recorded to swap_cgroup of "ent"
2156 */
8a9478ca
KH
2157void
2158mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2159{
2160 struct mem_cgroup *memcg;
8a9478ca
KH
2161 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2162
2163 if (!swapout) /* this was a swap cache but the swap is unused ! */
2164 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2165
2166 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2167
8c7c6e34 2168 /* record memcg information */
8a9478ca 2169 if (do_swap_account && swapout && memcg) {
a3b2d692 2170 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
2171 mem_cgroup_get(memcg);
2172 }
8a9478ca 2173 if (swapout && memcg)
a7fe942e 2174 css_put(&memcg->css);
8c7c6e34 2175}
e767e056 2176#endif
8c7c6e34
KH
2177
2178#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2179/*
2180 * called from swap_entry_free(). remove record in swap_cgroup and
2181 * uncharge "memsw" account.
2182 */
2183void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2184{
8c7c6e34 2185 struct mem_cgroup *memcg;
a3b2d692 2186 unsigned short id;
8c7c6e34
KH
2187
2188 if (!do_swap_account)
2189 return;
2190
a3b2d692
KH
2191 id = swap_cgroup_record(ent, 0);
2192 rcu_read_lock();
2193 memcg = mem_cgroup_lookup(id);
8c7c6e34 2194 if (memcg) {
a3b2d692
KH
2195 /*
2196 * We uncharge this because swap is freed.
2197 * This memcg can be obsolete one. We avoid calling css_tryget
2198 */
0c3e73e8 2199 if (!mem_cgroup_is_root(memcg))
4e649152 2200 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2201 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2202 mem_cgroup_put(memcg);
2203 }
a3b2d692 2204 rcu_read_unlock();
d13d1443 2205}
8c7c6e34 2206#endif
d13d1443 2207
ae41be37 2208/*
01b1ae63
KH
2209 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2210 * page belongs to.
ae41be37 2211 */
01b1ae63 2212int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
2213{
2214 struct page_cgroup *pc;
e8589cc1 2215 struct mem_cgroup *mem = NULL;
e8589cc1 2216 int ret = 0;
8869b8f6 2217
f8d66542 2218 if (mem_cgroup_disabled())
4077960e
BS
2219 return 0;
2220
52d4b9ac
KH
2221 pc = lookup_page_cgroup(page);
2222 lock_page_cgroup(pc);
2223 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2224 mem = pc->mem_cgroup;
2225 css_get(&mem->css);
e8589cc1 2226 }
52d4b9ac 2227 unlock_page_cgroup(pc);
01b1ae63 2228
e8589cc1 2229 if (mem) {
f64c3f54
BS
2230 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2231 page);
e8589cc1
KH
2232 css_put(&mem->css);
2233 }
01b1ae63 2234 *ptr = mem;
e8589cc1 2235 return ret;
ae41be37 2236}
8869b8f6 2237
69029cd5 2238/* remove redundant charge if migration failed*/
01b1ae63
KH
2239void mem_cgroup_end_migration(struct mem_cgroup *mem,
2240 struct page *oldpage, struct page *newpage)
ae41be37 2241{
01b1ae63
KH
2242 struct page *target, *unused;
2243 struct page_cgroup *pc;
2244 enum charge_type ctype;
2245
2246 if (!mem)
2247 return;
88703267 2248 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2249 /* at migration success, oldpage->mapping is NULL. */
2250 if (oldpage->mapping) {
2251 target = oldpage;
2252 unused = NULL;
2253 } else {
2254 target = newpage;
2255 unused = oldpage;
2256 }
2257
2258 if (PageAnon(target))
2259 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2260 else if (page_is_file_cache(target))
2261 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2262 else
2263 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2264
2265 /* unused page is not on radix-tree now. */
d13d1443 2266 if (unused)
01b1ae63
KH
2267 __mem_cgroup_uncharge_common(unused, ctype);
2268
2269 pc = lookup_page_cgroup(target);
69029cd5 2270 /*
01b1ae63
KH
2271 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2272 * So, double-counting is effectively avoided.
2273 */
2274 __mem_cgroup_commit_charge(mem, pc, ctype);
2275
2276 /*
2277 * Both of oldpage and newpage are still under lock_page().
2278 * Then, we don't have to care about race in radix-tree.
2279 * But we have to be careful that this page is unmapped or not.
2280 *
2281 * There is a case for !page_mapped(). At the start of
2282 * migration, oldpage was mapped. But now, it's zapped.
2283 * But we know *target* page is not freed/reused under us.
2284 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 2285 */
01b1ae63
KH
2286 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2287 mem_cgroup_uncharge_page(target);
88703267
KH
2288 /*
2289 * At migration, we may charge account against cgroup which has no tasks
2290 * So, rmdir()->pre_destroy() can be called while we do this charge.
2291 * In that case, we need to call pre_destroy() again. check it here.
2292 */
2293 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2294}
78fb7466 2295
c9b0ed51 2296/*
ae3abae6
DN
2297 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2298 * Calling hierarchical_reclaim is not enough because we should update
2299 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2300 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2301 * not from the memcg which this page would be charged to.
2302 * try_charge_swapin does all of these works properly.
c9b0ed51 2303 */
ae3abae6 2304int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2305 struct mm_struct *mm,
2306 gfp_t gfp_mask)
c9b0ed51 2307{
b5a84319 2308 struct mem_cgroup *mem = NULL;
ae3abae6 2309 int ret;
c9b0ed51 2310
f8d66542 2311 if (mem_cgroup_disabled())
cede86ac 2312 return 0;
c9b0ed51 2313
ae3abae6
DN
2314 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2315 if (!ret)
2316 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2317
ae3abae6 2318 return ret;
c9b0ed51
KH
2319}
2320
8c7c6e34
KH
2321static DEFINE_MUTEX(set_limit_mutex);
2322
d38d2a75 2323static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2324 unsigned long long val)
628f4235 2325{
81d39c20 2326 int retry_count;
628f4235 2327 int progress;
8c7c6e34 2328 u64 memswlimit;
628f4235 2329 int ret = 0;
81d39c20
KH
2330 int children = mem_cgroup_count_children(memcg);
2331 u64 curusage, oldusage;
2332
2333 /*
2334 * For keeping hierarchical_reclaim simple, how long we should retry
2335 * is depends on callers. We set our retry-count to be function
2336 * of # of children which we should visit in this loop.
2337 */
2338 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2339
2340 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2341
8c7c6e34 2342 while (retry_count) {
628f4235
KH
2343 if (signal_pending(current)) {
2344 ret = -EINTR;
2345 break;
2346 }
8c7c6e34
KH
2347 /*
2348 * Rather than hide all in some function, I do this in
2349 * open coded manner. You see what this really does.
2350 * We have to guarantee mem->res.limit < mem->memsw.limit.
2351 */
2352 mutex_lock(&set_limit_mutex);
2353 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2354 if (memswlimit < val) {
2355 ret = -EINVAL;
2356 mutex_unlock(&set_limit_mutex);
628f4235
KH
2357 break;
2358 }
8c7c6e34 2359 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2360 if (!ret) {
2361 if (memswlimit == val)
2362 memcg->memsw_is_minimum = true;
2363 else
2364 memcg->memsw_is_minimum = false;
2365 }
8c7c6e34
KH
2366 mutex_unlock(&set_limit_mutex);
2367
2368 if (!ret)
2369 break;
2370
4e416953
BS
2371 progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
2372 GFP_KERNEL,
2373 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2374 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2375 /* Usage is reduced ? */
2376 if (curusage >= oldusage)
2377 retry_count--;
2378 else
2379 oldusage = curusage;
8c7c6e34 2380 }
14797e23 2381
8c7c6e34
KH
2382 return ret;
2383}
2384
338c8431
LZ
2385static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2386 unsigned long long val)
8c7c6e34 2387{
81d39c20 2388 int retry_count;
8c7c6e34 2389 u64 memlimit, oldusage, curusage;
81d39c20
KH
2390 int children = mem_cgroup_count_children(memcg);
2391 int ret = -EBUSY;
8c7c6e34 2392
81d39c20
KH
2393 /* see mem_cgroup_resize_res_limit */
2394 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2395 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2396 while (retry_count) {
2397 if (signal_pending(current)) {
2398 ret = -EINTR;
2399 break;
2400 }
2401 /*
2402 * Rather than hide all in some function, I do this in
2403 * open coded manner. You see what this really does.
2404 * We have to guarantee mem->res.limit < mem->memsw.limit.
2405 */
2406 mutex_lock(&set_limit_mutex);
2407 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2408 if (memlimit > val) {
2409 ret = -EINVAL;
2410 mutex_unlock(&set_limit_mutex);
2411 break;
2412 }
2413 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2414 if (!ret) {
2415 if (memlimit == val)
2416 memcg->memsw_is_minimum = true;
2417 else
2418 memcg->memsw_is_minimum = false;
2419 }
8c7c6e34
KH
2420 mutex_unlock(&set_limit_mutex);
2421
2422 if (!ret)
2423 break;
2424
4e416953 2425 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
2426 MEM_CGROUP_RECLAIM_NOSWAP |
2427 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 2428 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 2429 /* Usage is reduced ? */
8c7c6e34 2430 if (curusage >= oldusage)
628f4235 2431 retry_count--;
81d39c20
KH
2432 else
2433 oldusage = curusage;
628f4235
KH
2434 }
2435 return ret;
2436}
2437
4e416953
BS
2438unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2439 gfp_t gfp_mask, int nid,
2440 int zid)
2441{
2442 unsigned long nr_reclaimed = 0;
2443 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2444 unsigned long reclaimed;
2445 int loop = 0;
2446 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 2447 unsigned long long excess;
4e416953
BS
2448
2449 if (order > 0)
2450 return 0;
2451
2452 mctz = soft_limit_tree_node_zone(nid, zid);
2453 /*
2454 * This loop can run a while, specially if mem_cgroup's continuously
2455 * keep exceeding their soft limit and putting the system under
2456 * pressure
2457 */
2458 do {
2459 if (next_mz)
2460 mz = next_mz;
2461 else
2462 mz = mem_cgroup_largest_soft_limit_node(mctz);
2463 if (!mz)
2464 break;
2465
2466 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2467 gfp_mask,
2468 MEM_CGROUP_RECLAIM_SOFT);
2469 nr_reclaimed += reclaimed;
2470 spin_lock(&mctz->lock);
2471
2472 /*
2473 * If we failed to reclaim anything from this memory cgroup
2474 * it is time to move on to the next cgroup
2475 */
2476 next_mz = NULL;
2477 if (!reclaimed) {
2478 do {
2479 /*
2480 * Loop until we find yet another one.
2481 *
2482 * By the time we get the soft_limit lock
2483 * again, someone might have aded the
2484 * group back on the RB tree. Iterate to
2485 * make sure we get a different mem.
2486 * mem_cgroup_largest_soft_limit_node returns
2487 * NULL if no other cgroup is present on
2488 * the tree
2489 */
2490 next_mz =
2491 __mem_cgroup_largest_soft_limit_node(mctz);
2492 if (next_mz == mz) {
2493 css_put(&next_mz->mem->css);
2494 next_mz = NULL;
2495 } else /* next_mz == NULL or other memcg */
2496 break;
2497 } while (1);
2498 }
4e416953 2499 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 2500 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
2501 /*
2502 * One school of thought says that we should not add
2503 * back the node to the tree if reclaim returns 0.
2504 * But our reclaim could return 0, simply because due
2505 * to priority we are exposing a smaller subset of
2506 * memory to reclaim from. Consider this as a longer
2507 * term TODO.
2508 */
ef8745c1
KH
2509 /* If excess == 0, no tree ops */
2510 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
2511 spin_unlock(&mctz->lock);
2512 css_put(&mz->mem->css);
2513 loop++;
2514 /*
2515 * Could not reclaim anything and there are no more
2516 * mem cgroups to try or we seem to be looping without
2517 * reclaiming anything.
2518 */
2519 if (!nr_reclaimed &&
2520 (next_mz == NULL ||
2521 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2522 break;
2523 } while (!nr_reclaimed);
2524 if (next_mz)
2525 css_put(&next_mz->mem->css);
2526 return nr_reclaimed;
2527}
2528
cc847582
KH
2529/*
2530 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
2531 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2532 */
f817ed48 2533static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 2534 int node, int zid, enum lru_list lru)
cc847582 2535{
08e552c6
KH
2536 struct zone *zone;
2537 struct mem_cgroup_per_zone *mz;
f817ed48 2538 struct page_cgroup *pc, *busy;
08e552c6 2539 unsigned long flags, loop;
072c56c1 2540 struct list_head *list;
f817ed48 2541 int ret = 0;
072c56c1 2542
08e552c6
KH
2543 zone = &NODE_DATA(node)->node_zones[zid];
2544 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 2545 list = &mz->lists[lru];
cc847582 2546
f817ed48
KH
2547 loop = MEM_CGROUP_ZSTAT(mz, lru);
2548 /* give some margin against EBUSY etc...*/
2549 loop += 256;
2550 busy = NULL;
2551 while (loop--) {
2552 ret = 0;
08e552c6 2553 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 2554 if (list_empty(list)) {
08e552c6 2555 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 2556 break;
f817ed48
KH
2557 }
2558 pc = list_entry(list->prev, struct page_cgroup, lru);
2559 if (busy == pc) {
2560 list_move(&pc->lru, list);
2561 busy = 0;
08e552c6 2562 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
2563 continue;
2564 }
08e552c6 2565 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 2566
2c26fdd7 2567 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 2568 if (ret == -ENOMEM)
52d4b9ac 2569 break;
f817ed48
KH
2570
2571 if (ret == -EBUSY || ret == -EINVAL) {
2572 /* found lock contention or "pc" is obsolete. */
2573 busy = pc;
2574 cond_resched();
2575 } else
2576 busy = NULL;
cc847582 2577 }
08e552c6 2578
f817ed48
KH
2579 if (!ret && !list_empty(list))
2580 return -EBUSY;
2581 return ret;
cc847582
KH
2582}
2583
2584/*
2585 * make mem_cgroup's charge to be 0 if there is no task.
2586 * This enables deleting this mem_cgroup.
2587 */
c1e862c1 2588static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 2589{
f817ed48
KH
2590 int ret;
2591 int node, zid, shrink;
2592 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 2593 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 2594
cc847582 2595 css_get(&mem->css);
f817ed48
KH
2596
2597 shrink = 0;
c1e862c1
KH
2598 /* should free all ? */
2599 if (free_all)
2600 goto try_to_free;
f817ed48 2601move_account:
1ecaab2b 2602 while (mem->res.usage > 0) {
f817ed48 2603 ret = -EBUSY;
c1e862c1
KH
2604 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2605 goto out;
2606 ret = -EINTR;
2607 if (signal_pending(current))
cc847582 2608 goto out;
52d4b9ac
KH
2609 /* This is for making all *used* pages to be on LRU. */
2610 lru_add_drain_all();
cdec2e42 2611 drain_all_stock_sync();
f817ed48 2612 ret = 0;
299b4eaa 2613 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 2614 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 2615 enum lru_list l;
f817ed48
KH
2616 for_each_lru(l) {
2617 ret = mem_cgroup_force_empty_list(mem,
08e552c6 2618 node, zid, l);
f817ed48
KH
2619 if (ret)
2620 break;
2621 }
1ecaab2b 2622 }
f817ed48
KH
2623 if (ret)
2624 break;
2625 }
2626 /* it seems parent cgroup doesn't have enough mem */
2627 if (ret == -ENOMEM)
2628 goto try_to_free;
52d4b9ac 2629 cond_resched();
cc847582
KH
2630 }
2631 ret = 0;
2632out:
2633 css_put(&mem->css);
2634 return ret;
f817ed48
KH
2635
2636try_to_free:
c1e862c1
KH
2637 /* returns EBUSY if there is a task or if we come here twice. */
2638 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
2639 ret = -EBUSY;
2640 goto out;
2641 }
c1e862c1
KH
2642 /* we call try-to-free pages for make this cgroup empty */
2643 lru_add_drain_all();
f817ed48
KH
2644 /* try to free all pages in this cgroup */
2645 shrink = 1;
2646 while (nr_retries && mem->res.usage > 0) {
2647 int progress;
c1e862c1
KH
2648
2649 if (signal_pending(current)) {
2650 ret = -EINTR;
2651 goto out;
2652 }
a7885eb8
KM
2653 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2654 false, get_swappiness(mem));
c1e862c1 2655 if (!progress) {
f817ed48 2656 nr_retries--;
c1e862c1 2657 /* maybe some writeback is necessary */
8aa7e847 2658 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2659 }
f817ed48
KH
2660
2661 }
08e552c6 2662 lru_add_drain();
f817ed48
KH
2663 /* try move_account...there may be some *locked* pages. */
2664 if (mem->res.usage)
2665 goto move_account;
2666 ret = 0;
2667 goto out;
cc847582
KH
2668}
2669
c1e862c1
KH
2670int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2671{
2672 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2673}
2674
2675
18f59ea7
BS
2676static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2677{
2678 return mem_cgroup_from_cont(cont)->use_hierarchy;
2679}
2680
2681static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2682 u64 val)
2683{
2684 int retval = 0;
2685 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2686 struct cgroup *parent = cont->parent;
2687 struct mem_cgroup *parent_mem = NULL;
2688
2689 if (parent)
2690 parent_mem = mem_cgroup_from_cont(parent);
2691
2692 cgroup_lock();
2693 /*
af901ca1 2694 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2695 * in the child subtrees. If it is unset, then the change can
2696 * occur, provided the current cgroup has no children.
2697 *
2698 * For the root cgroup, parent_mem is NULL, we allow value to be
2699 * set if there are no children.
2700 */
2701 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2702 (val == 1 || val == 0)) {
2703 if (list_empty(&cont->children))
2704 mem->use_hierarchy = val;
2705 else
2706 retval = -EBUSY;
2707 } else
2708 retval = -EINVAL;
2709 cgroup_unlock();
2710
2711 return retval;
2712}
2713
0c3e73e8
BS
2714struct mem_cgroup_idx_data {
2715 s64 val;
2716 enum mem_cgroup_stat_index idx;
2717};
2718
2719static int
2720mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2721{
2722 struct mem_cgroup_idx_data *d = data;
2723 d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2724 return 0;
2725}
2726
2727static void
2728mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2729 enum mem_cgroup_stat_index idx, s64 *val)
2730{
2731 struct mem_cgroup_idx_data d;
2732 d.idx = idx;
2733 d.val = 0;
2734 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2735 *val = d.val;
2736}
2737
2c3daa72 2738static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 2739{
8c7c6e34 2740 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
0c3e73e8 2741 u64 idx_val, val;
8c7c6e34
KH
2742 int type, name;
2743
2744 type = MEMFILE_TYPE(cft->private);
2745 name = MEMFILE_ATTR(cft->private);
2746 switch (type) {
2747 case _MEM:
0c3e73e8
BS
2748 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2749 mem_cgroup_get_recursive_idx_stat(mem,
2750 MEM_CGROUP_STAT_CACHE, &idx_val);
2751 val = idx_val;
2752 mem_cgroup_get_recursive_idx_stat(mem,
2753 MEM_CGROUP_STAT_RSS, &idx_val);
2754 val += idx_val;
2755 val <<= PAGE_SHIFT;
2756 } else
2757 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
2758 break;
2759 case _MEMSWAP:
0c3e73e8
BS
2760 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2761 mem_cgroup_get_recursive_idx_stat(mem,
2762 MEM_CGROUP_STAT_CACHE, &idx_val);
2763 val = idx_val;
2764 mem_cgroup_get_recursive_idx_stat(mem,
2765 MEM_CGROUP_STAT_RSS, &idx_val);
2766 val += idx_val;
2767 mem_cgroup_get_recursive_idx_stat(mem,
2768 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
cd9b45b7 2769 val += idx_val;
0c3e73e8
BS
2770 val <<= PAGE_SHIFT;
2771 } else
2772 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
2773 break;
2774 default:
2775 BUG();
2776 break;
2777 }
2778 return val;
8cdea7c0 2779}
628f4235
KH
2780/*
2781 * The user of this function is...
2782 * RES_LIMIT.
2783 */
856c13aa
PM
2784static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2785 const char *buffer)
8cdea7c0 2786{
628f4235 2787 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 2788 int type, name;
628f4235
KH
2789 unsigned long long val;
2790 int ret;
2791
8c7c6e34
KH
2792 type = MEMFILE_TYPE(cft->private);
2793 name = MEMFILE_ATTR(cft->private);
2794 switch (name) {
628f4235 2795 case RES_LIMIT:
4b3bde4c
BS
2796 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2797 ret = -EINVAL;
2798 break;
2799 }
628f4235
KH
2800 /* This function does all necessary parse...reuse it */
2801 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
2802 if (ret)
2803 break;
2804 if (type == _MEM)
628f4235 2805 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
2806 else
2807 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 2808 break;
296c81d8
BS
2809 case RES_SOFT_LIMIT:
2810 ret = res_counter_memparse_write_strategy(buffer, &val);
2811 if (ret)
2812 break;
2813 /*
2814 * For memsw, soft limits are hard to implement in terms
2815 * of semantics, for now, we support soft limits for
2816 * control without swap
2817 */
2818 if (type == _MEM)
2819 ret = res_counter_set_soft_limit(&memcg->res, val);
2820 else
2821 ret = -EINVAL;
2822 break;
628f4235
KH
2823 default:
2824 ret = -EINVAL; /* should be BUG() ? */
2825 break;
2826 }
2827 return ret;
8cdea7c0
BS
2828}
2829
fee7b548
KH
2830static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2831 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2832{
2833 struct cgroup *cgroup;
2834 unsigned long long min_limit, min_memsw_limit, tmp;
2835
2836 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2837 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2838 cgroup = memcg->css.cgroup;
2839 if (!memcg->use_hierarchy)
2840 goto out;
2841
2842 while (cgroup->parent) {
2843 cgroup = cgroup->parent;
2844 memcg = mem_cgroup_from_cont(cgroup);
2845 if (!memcg->use_hierarchy)
2846 break;
2847 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2848 min_limit = min(min_limit, tmp);
2849 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2850 min_memsw_limit = min(min_memsw_limit, tmp);
2851 }
2852out:
2853 *mem_limit = min_limit;
2854 *memsw_limit = min_memsw_limit;
2855 return;
2856}
2857
29f2a4da 2858static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2859{
2860 struct mem_cgroup *mem;
8c7c6e34 2861 int type, name;
c84872e1
PE
2862
2863 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2864 type = MEMFILE_TYPE(event);
2865 name = MEMFILE_ATTR(event);
2866 switch (name) {
29f2a4da 2867 case RES_MAX_USAGE:
8c7c6e34
KH
2868 if (type == _MEM)
2869 res_counter_reset_max(&mem->res);
2870 else
2871 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2872 break;
2873 case RES_FAILCNT:
8c7c6e34
KH
2874 if (type == _MEM)
2875 res_counter_reset_failcnt(&mem->res);
2876 else
2877 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2878 break;
2879 }
f64c3f54 2880
85cc59db 2881 return 0;
c84872e1
PE
2882}
2883
14067bb3
KH
2884
2885/* For read statistics */
2886enum {
2887 MCS_CACHE,
2888 MCS_RSS,
d8046582 2889 MCS_FILE_MAPPED,
14067bb3
KH
2890 MCS_PGPGIN,
2891 MCS_PGPGOUT,
1dd3a273 2892 MCS_SWAP,
14067bb3
KH
2893 MCS_INACTIVE_ANON,
2894 MCS_ACTIVE_ANON,
2895 MCS_INACTIVE_FILE,
2896 MCS_ACTIVE_FILE,
2897 MCS_UNEVICTABLE,
2898 NR_MCS_STAT,
2899};
2900
2901struct mcs_total_stat {
2902 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
2903};
2904
14067bb3
KH
2905struct {
2906 char *local_name;
2907 char *total_name;
2908} memcg_stat_strings[NR_MCS_STAT] = {
2909 {"cache", "total_cache"},
2910 {"rss", "total_rss"},
d69b042f 2911 {"mapped_file", "total_mapped_file"},
14067bb3
KH
2912 {"pgpgin", "total_pgpgin"},
2913 {"pgpgout", "total_pgpgout"},
1dd3a273 2914 {"swap", "total_swap"},
14067bb3
KH
2915 {"inactive_anon", "total_inactive_anon"},
2916 {"active_anon", "total_active_anon"},
2917 {"inactive_file", "total_inactive_file"},
2918 {"active_file", "total_active_file"},
2919 {"unevictable", "total_unevictable"}
2920};
2921
2922
2923static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2924{
2925 struct mcs_total_stat *s = data;
2926 s64 val;
2927
2928 /* per cpu stat */
2929 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2930 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2931 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2932 s->stat[MCS_RSS] += val * PAGE_SIZE;
d8046582
KH
2933 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
2934 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
14067bb3
KH
2935 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2936 s->stat[MCS_PGPGIN] += val;
2937 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2938 s->stat[MCS_PGPGOUT] += val;
1dd3a273
DN
2939 if (do_swap_account) {
2940 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2941 s->stat[MCS_SWAP] += val * PAGE_SIZE;
2942 }
14067bb3
KH
2943
2944 /* per zone stat */
2945 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2946 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2947 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2948 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2949 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2950 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2951 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2952 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2953 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2954 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2955 return 0;
2956}
2957
2958static void
2959mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2960{
2961 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2962}
2963
c64745cf
PM
2964static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2965 struct cgroup_map_cb *cb)
d2ceb9b7 2966{
d2ceb9b7 2967 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 2968 struct mcs_total_stat mystat;
d2ceb9b7
KH
2969 int i;
2970
14067bb3
KH
2971 memset(&mystat, 0, sizeof(mystat));
2972 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 2973
1dd3a273
DN
2974 for (i = 0; i < NR_MCS_STAT; i++) {
2975 if (i == MCS_SWAP && !do_swap_account)
2976 continue;
14067bb3 2977 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 2978 }
7b854121 2979
14067bb3 2980 /* Hierarchical information */
fee7b548
KH
2981 {
2982 unsigned long long limit, memsw_limit;
2983 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2984 cb->fill(cb, "hierarchical_memory_limit", limit);
2985 if (do_swap_account)
2986 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2987 }
7f016ee8 2988
14067bb3
KH
2989 memset(&mystat, 0, sizeof(mystat));
2990 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
2991 for (i = 0; i < NR_MCS_STAT; i++) {
2992 if (i == MCS_SWAP && !do_swap_account)
2993 continue;
14067bb3 2994 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 2995 }
14067bb3 2996
7f016ee8 2997#ifdef CONFIG_DEBUG_VM
c772be93 2998 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
2999
3000 {
3001 int nid, zid;
3002 struct mem_cgroup_per_zone *mz;
3003 unsigned long recent_rotated[2] = {0, 0};
3004 unsigned long recent_scanned[2] = {0, 0};
3005
3006 for_each_online_node(nid)
3007 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3008 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3009
3010 recent_rotated[0] +=
3011 mz->reclaim_stat.recent_rotated[0];
3012 recent_rotated[1] +=
3013 mz->reclaim_stat.recent_rotated[1];
3014 recent_scanned[0] +=
3015 mz->reclaim_stat.recent_scanned[0];
3016 recent_scanned[1] +=
3017 mz->reclaim_stat.recent_scanned[1];
3018 }
3019 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3020 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3021 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3022 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3023 }
3024#endif
3025
d2ceb9b7
KH
3026 return 0;
3027}
3028
a7885eb8
KM
3029static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3030{
3031 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3032
3033 return get_swappiness(memcg);
3034}
3035
3036static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3037 u64 val)
3038{
3039 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3040 struct mem_cgroup *parent;
068b38c1 3041
a7885eb8
KM
3042 if (val > 100)
3043 return -EINVAL;
3044
3045 if (cgrp->parent == NULL)
3046 return -EINVAL;
3047
3048 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3049
3050 cgroup_lock();
3051
a7885eb8
KM
3052 /* If under hierarchy, only empty-root can set this value */
3053 if ((parent->use_hierarchy) ||
068b38c1
LZ
3054 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3055 cgroup_unlock();
a7885eb8 3056 return -EINVAL;
068b38c1 3057 }
a7885eb8
KM
3058
3059 spin_lock(&memcg->reclaim_param_lock);
3060 memcg->swappiness = val;
3061 spin_unlock(&memcg->reclaim_param_lock);
3062
068b38c1
LZ
3063 cgroup_unlock();
3064
a7885eb8
KM
3065 return 0;
3066}
3067
c1e862c1 3068
8cdea7c0
BS
3069static struct cftype mem_cgroup_files[] = {
3070 {
0eea1030 3071 .name = "usage_in_bytes",
8c7c6e34 3072 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 3073 .read_u64 = mem_cgroup_read,
8cdea7c0 3074 },
c84872e1
PE
3075 {
3076 .name = "max_usage_in_bytes",
8c7c6e34 3077 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 3078 .trigger = mem_cgroup_reset,
c84872e1
PE
3079 .read_u64 = mem_cgroup_read,
3080 },
8cdea7c0 3081 {
0eea1030 3082 .name = "limit_in_bytes",
8c7c6e34 3083 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 3084 .write_string = mem_cgroup_write,
2c3daa72 3085 .read_u64 = mem_cgroup_read,
8cdea7c0 3086 },
296c81d8
BS
3087 {
3088 .name = "soft_limit_in_bytes",
3089 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3090 .write_string = mem_cgroup_write,
3091 .read_u64 = mem_cgroup_read,
3092 },
8cdea7c0
BS
3093 {
3094 .name = "failcnt",
8c7c6e34 3095 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 3096 .trigger = mem_cgroup_reset,
2c3daa72 3097 .read_u64 = mem_cgroup_read,
8cdea7c0 3098 },
d2ceb9b7
KH
3099 {
3100 .name = "stat",
c64745cf 3101 .read_map = mem_control_stat_show,
d2ceb9b7 3102 },
c1e862c1
KH
3103 {
3104 .name = "force_empty",
3105 .trigger = mem_cgroup_force_empty_write,
3106 },
18f59ea7
BS
3107 {
3108 .name = "use_hierarchy",
3109 .write_u64 = mem_cgroup_hierarchy_write,
3110 .read_u64 = mem_cgroup_hierarchy_read,
3111 },
a7885eb8
KM
3112 {
3113 .name = "swappiness",
3114 .read_u64 = mem_cgroup_swappiness_read,
3115 .write_u64 = mem_cgroup_swappiness_write,
3116 },
8cdea7c0
BS
3117};
3118
8c7c6e34
KH
3119#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3120static struct cftype memsw_cgroup_files[] = {
3121 {
3122 .name = "memsw.usage_in_bytes",
3123 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3124 .read_u64 = mem_cgroup_read,
3125 },
3126 {
3127 .name = "memsw.max_usage_in_bytes",
3128 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3129 .trigger = mem_cgroup_reset,
3130 .read_u64 = mem_cgroup_read,
3131 },
3132 {
3133 .name = "memsw.limit_in_bytes",
3134 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3135 .write_string = mem_cgroup_write,
3136 .read_u64 = mem_cgroup_read,
3137 },
3138 {
3139 .name = "memsw.failcnt",
3140 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3141 .trigger = mem_cgroup_reset,
3142 .read_u64 = mem_cgroup_read,
3143 },
3144};
3145
3146static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3147{
3148 if (!do_swap_account)
3149 return 0;
3150 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3151 ARRAY_SIZE(memsw_cgroup_files));
3152};
3153#else
3154static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3155{
3156 return 0;
3157}
3158#endif
3159
6d12e2d8
KH
3160static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3161{
3162 struct mem_cgroup_per_node *pn;
1ecaab2b 3163 struct mem_cgroup_per_zone *mz;
b69408e8 3164 enum lru_list l;
41e3355d 3165 int zone, tmp = node;
1ecaab2b
KH
3166 /*
3167 * This routine is called against possible nodes.
3168 * But it's BUG to call kmalloc() against offline node.
3169 *
3170 * TODO: this routine can waste much memory for nodes which will
3171 * never be onlined. It's better to use memory hotplug callback
3172 * function.
3173 */
41e3355d
KH
3174 if (!node_state(node, N_NORMAL_MEMORY))
3175 tmp = -1;
3176 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
3177 if (!pn)
3178 return 1;
1ecaab2b 3179
6d12e2d8
KH
3180 mem->info.nodeinfo[node] = pn;
3181 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
3182
3183 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3184 mz = &pn->zoneinfo[zone];
b69408e8
CL
3185 for_each_lru(l)
3186 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 3187 mz->usage_in_excess = 0;
4e416953
BS
3188 mz->on_tree = false;
3189 mz->mem = mem;
1ecaab2b 3190 }
6d12e2d8
KH
3191 return 0;
3192}
3193
1ecaab2b
KH
3194static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3195{
3196 kfree(mem->info.nodeinfo[node]);
3197}
3198
c8dad2bb
JB
3199static int mem_cgroup_size(void)
3200{
3201 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
3202 return sizeof(struct mem_cgroup) + cpustat_size;
3203}
3204
33327948
KH
3205static struct mem_cgroup *mem_cgroup_alloc(void)
3206{
3207 struct mem_cgroup *mem;
c8dad2bb 3208 int size = mem_cgroup_size();
33327948 3209
c8dad2bb
JB
3210 if (size < PAGE_SIZE)
3211 mem = kmalloc(size, GFP_KERNEL);
33327948 3212 else
c8dad2bb 3213 mem = vmalloc(size);
33327948
KH
3214
3215 if (mem)
c8dad2bb 3216 memset(mem, 0, size);
33327948
KH
3217 return mem;
3218}
3219
8c7c6e34
KH
3220/*
3221 * At destroying mem_cgroup, references from swap_cgroup can remain.
3222 * (scanning all at force_empty is too costly...)
3223 *
3224 * Instead of clearing all references at force_empty, we remember
3225 * the number of reference from swap_cgroup and free mem_cgroup when
3226 * it goes down to 0.
3227 *
8c7c6e34
KH
3228 * Removal of cgroup itself succeeds regardless of refs from swap.
3229 */
3230
a7ba0eef 3231static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 3232{
08e552c6
KH
3233 int node;
3234
f64c3f54 3235 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
3236 free_css_id(&mem_cgroup_subsys, &mem->css);
3237
08e552c6
KH
3238 for_each_node_state(node, N_POSSIBLE)
3239 free_mem_cgroup_per_zone_info(mem, node);
3240
c8dad2bb 3241 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
3242 kfree(mem);
3243 else
3244 vfree(mem);
3245}
3246
8c7c6e34
KH
3247static void mem_cgroup_get(struct mem_cgroup *mem)
3248{
3249 atomic_inc(&mem->refcnt);
3250}
3251
3252static void mem_cgroup_put(struct mem_cgroup *mem)
3253{
7bcc1bb1
DN
3254 if (atomic_dec_and_test(&mem->refcnt)) {
3255 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 3256 __mem_cgroup_free(mem);
7bcc1bb1
DN
3257 if (parent)
3258 mem_cgroup_put(parent);
3259 }
8c7c6e34
KH
3260}
3261
7bcc1bb1
DN
3262/*
3263 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3264 */
3265static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3266{
3267 if (!mem->res.parent)
3268 return NULL;
3269 return mem_cgroup_from_res_counter(mem->res.parent, res);
3270}
33327948 3271
c077719b
KH
3272#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3273static void __init enable_swap_cgroup(void)
3274{
f8d66542 3275 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
3276 do_swap_account = 1;
3277}
3278#else
3279static void __init enable_swap_cgroup(void)
3280{
3281}
3282#endif
3283
f64c3f54
BS
3284static int mem_cgroup_soft_limit_tree_init(void)
3285{
3286 struct mem_cgroup_tree_per_node *rtpn;
3287 struct mem_cgroup_tree_per_zone *rtpz;
3288 int tmp, node, zone;
3289
3290 for_each_node_state(node, N_POSSIBLE) {
3291 tmp = node;
3292 if (!node_state(node, N_NORMAL_MEMORY))
3293 tmp = -1;
3294 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3295 if (!rtpn)
3296 return 1;
3297
3298 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3299
3300 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3301 rtpz = &rtpn->rb_tree_per_zone[zone];
3302 rtpz->rb_root = RB_ROOT;
3303 spin_lock_init(&rtpz->lock);
3304 }
3305 }
3306 return 0;
3307}
3308
0eb253e2 3309static struct cgroup_subsys_state * __ref
8cdea7c0
BS
3310mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3311{
28dbc4b6 3312 struct mem_cgroup *mem, *parent;
04046e1a 3313 long error = -ENOMEM;
6d12e2d8 3314 int node;
8cdea7c0 3315
c8dad2bb
JB
3316 mem = mem_cgroup_alloc();
3317 if (!mem)
04046e1a 3318 return ERR_PTR(error);
78fb7466 3319
6d12e2d8
KH
3320 for_each_node_state(node, N_POSSIBLE)
3321 if (alloc_mem_cgroup_per_zone_info(mem, node))
3322 goto free_out;
f64c3f54 3323
c077719b 3324 /* root ? */
28dbc4b6 3325 if (cont->parent == NULL) {
cdec2e42 3326 int cpu;
c077719b 3327 enable_swap_cgroup();
28dbc4b6 3328 parent = NULL;
4b3bde4c 3329 root_mem_cgroup = mem;
f64c3f54
BS
3330 if (mem_cgroup_soft_limit_tree_init())
3331 goto free_out;
cdec2e42
KH
3332 for_each_possible_cpu(cpu) {
3333 struct memcg_stock_pcp *stock =
3334 &per_cpu(memcg_stock, cpu);
3335 INIT_WORK(&stock->work, drain_local_stock);
3336 }
3337 hotcpu_notifier(memcg_stock_cpu_callback, 0);
f64c3f54 3338
18f59ea7 3339 } else {
28dbc4b6 3340 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
3341 mem->use_hierarchy = parent->use_hierarchy;
3342 }
28dbc4b6 3343
18f59ea7
BS
3344 if (parent && parent->use_hierarchy) {
3345 res_counter_init(&mem->res, &parent->res);
3346 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
3347 /*
3348 * We increment refcnt of the parent to ensure that we can
3349 * safely access it on res_counter_charge/uncharge.
3350 * This refcnt will be decremented when freeing this
3351 * mem_cgroup(see mem_cgroup_put).
3352 */
3353 mem_cgroup_get(parent);
18f59ea7
BS
3354 } else {
3355 res_counter_init(&mem->res, NULL);
3356 res_counter_init(&mem->memsw, NULL);
3357 }
04046e1a 3358 mem->last_scanned_child = 0;
2733c06a 3359 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 3360
a7885eb8
KM
3361 if (parent)
3362 mem->swappiness = get_swappiness(parent);
a7ba0eef 3363 atomic_set(&mem->refcnt, 1);
8cdea7c0 3364 return &mem->css;
6d12e2d8 3365free_out:
a7ba0eef 3366 __mem_cgroup_free(mem);
4b3bde4c 3367 root_mem_cgroup = NULL;
04046e1a 3368 return ERR_PTR(error);
8cdea7c0
BS
3369}
3370
ec64f515 3371static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
3372 struct cgroup *cont)
3373{
3374 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
3375
3376 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
3377}
3378
8cdea7c0
BS
3379static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3380 struct cgroup *cont)
3381{
c268e994 3382 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 3383
c268e994 3384 mem_cgroup_put(mem);
8cdea7c0
BS
3385}
3386
3387static int mem_cgroup_populate(struct cgroup_subsys *ss,
3388 struct cgroup *cont)
3389{
8c7c6e34
KH
3390 int ret;
3391
3392 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3393 ARRAY_SIZE(mem_cgroup_files));
3394
3395 if (!ret)
3396 ret = register_memsw_files(cont, ss);
3397 return ret;
8cdea7c0
BS
3398}
3399
67e465a7
BS
3400static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3401 struct cgroup *cont,
3402 struct cgroup *old_cont,
be367d09
BB
3403 struct task_struct *p,
3404 bool threadgroup)
67e465a7 3405{
7f4d454d 3406 mutex_lock(&memcg_tasklist);
67e465a7 3407 /*
f9717d28
NK
3408 * FIXME: It's better to move charges of this process from old
3409 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 3410 */
7f4d454d 3411 mutex_unlock(&memcg_tasklist);
67e465a7
BS
3412}
3413
8cdea7c0
BS
3414struct cgroup_subsys mem_cgroup_subsys = {
3415 .name = "memory",
3416 .subsys_id = mem_cgroup_subsys_id,
3417 .create = mem_cgroup_create,
df878fb0 3418 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
3419 .destroy = mem_cgroup_destroy,
3420 .populate = mem_cgroup_populate,
67e465a7 3421 .attach = mem_cgroup_move_task,
6d12e2d8 3422 .early_init = 0,
04046e1a 3423 .use_id = 1,
8cdea7c0 3424};
c077719b
KH
3425
3426#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3427
3428static int __init disable_swap_account(char *s)
3429{
3430 really_do_swap_account = 0;
3431 return 1;
3432}
3433__setup("noswapaccount", disable_swap_account);
3434#endif