]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memory controller: soft limit refactor reclaim flags
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
e222432b 30#include <linux/limits.h>
8c7c6e34 31#include <linux/mutex.h>
f64c3f54 32#include <linux/rbtree.h>
b6ac57d5 33#include <linux/slab.h>
66e1707b
BS
34#include <linux/swap.h>
35#include <linux/spinlock.h>
36#include <linux/fs.h>
d2ceb9b7 37#include <linux/seq_file.h>
33327948 38#include <linux/vmalloc.h>
b69408e8 39#include <linux/mm_inline.h>
52d4b9ac 40#include <linux/page_cgroup.h>
08e552c6 41#include "internal.h"
8cdea7c0 42
8697d331
BS
43#include <asm/uaccess.h>
44
a181b0e8 45struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 46#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 47struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 48
c077719b 49#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 50/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
51int do_swap_account __read_mostly;
52static int really_do_swap_account __initdata = 1; /* for remember boot option*/
53#else
54#define do_swap_account (0)
55#endif
56
7f4d454d 57static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
f64c3f54 58#define SOFTLIMIT_EVENTS_THRESH (1000)
c077719b 59
d52aa412
KH
60/*
61 * Statistics for memory cgroup.
62 */
63enum mem_cgroup_stat_index {
64 /*
65 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
66 */
67 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f
BS
68 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
69 MEM_CGROUP_STAT_MAPPED_FILE, /* # of pages charged as file rss */
55e462b0
BR
70 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
71 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
f64c3f54 72 MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
d52aa412
KH
73
74 MEM_CGROUP_STAT_NSTATS,
75};
76
77struct mem_cgroup_stat_cpu {
78 s64 count[MEM_CGROUP_STAT_NSTATS];
79} ____cacheline_aligned_in_smp;
80
81struct mem_cgroup_stat {
c8dad2bb 82 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
83};
84
f64c3f54
BS
85static inline void
86__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
87 enum mem_cgroup_stat_index idx)
88{
89 stat->count[idx] = 0;
90}
91
92static inline s64
93__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
94 enum mem_cgroup_stat_index idx)
95{
96 return stat->count[idx];
97}
98
d52aa412
KH
99/*
100 * For accounting under irq disable, no need for increment preempt count.
101 */
addb9efe 102static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
103 enum mem_cgroup_stat_index idx, int val)
104{
addb9efe 105 stat->count[idx] += val;
d52aa412
KH
106}
107
108static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
109 enum mem_cgroup_stat_index idx)
110{
111 int cpu;
112 s64 ret = 0;
113 for_each_possible_cpu(cpu)
114 ret += stat->cpustat[cpu].count[idx];
115 return ret;
116}
117
04046e1a
KH
118static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
119{
120 s64 ret;
121
122 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
123 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
124 return ret;
125}
126
6d12e2d8
KH
127/*
128 * per-zone information in memory controller.
129 */
6d12e2d8 130struct mem_cgroup_per_zone {
072c56c1
KH
131 /*
132 * spin_lock to protect the per cgroup LRU
133 */
b69408e8
CL
134 struct list_head lists[NR_LRU_LISTS];
135 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
136
137 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
138 struct rb_node tree_node; /* RB tree node */
139 unsigned long long usage_in_excess;/* Set to the value by which */
140 /* the soft limit is exceeded*/
141 bool on_tree;
6d12e2d8
KH
142};
143/* Macro for accessing counter */
144#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
145
146struct mem_cgroup_per_node {
147 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
148};
149
150struct mem_cgroup_lru_info {
151 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
152};
153
f64c3f54
BS
154/*
155 * Cgroups above their limits are maintained in a RB-Tree, independent of
156 * their hierarchy representation
157 */
158
159struct mem_cgroup_tree_per_zone {
160 struct rb_root rb_root;
161 spinlock_t lock;
162};
163
164struct mem_cgroup_tree_per_node {
165 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
166};
167
168struct mem_cgroup_tree {
169 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
170};
171
172static struct mem_cgroup_tree soft_limit_tree __read_mostly;
173
8cdea7c0
BS
174/*
175 * The memory controller data structure. The memory controller controls both
176 * page cache and RSS per cgroup. We would eventually like to provide
177 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
178 * to help the administrator determine what knobs to tune.
179 *
180 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
181 * we hit the water mark. May be even add a low water mark, such that
182 * no reclaim occurs from a cgroup at it's low water mark, this is
183 * a feature that will be implemented much later in the future.
8cdea7c0
BS
184 */
185struct mem_cgroup {
186 struct cgroup_subsys_state css;
187 /*
188 * the counter to account for memory usage
189 */
190 struct res_counter res;
8c7c6e34
KH
191 /*
192 * the counter to account for mem+swap usage.
193 */
194 struct res_counter memsw;
78fb7466
PE
195 /*
196 * Per cgroup active and inactive list, similar to the
197 * per zone LRU lists.
78fb7466 198 */
6d12e2d8 199 struct mem_cgroup_lru_info info;
072c56c1 200
2733c06a
KM
201 /*
202 protect against reclaim related member.
203 */
204 spinlock_t reclaim_param_lock;
205
6c48a1d0 206 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
207
208 /*
209 * While reclaiming in a hiearchy, we cache the last child we
04046e1a 210 * reclaimed from.
6d61ef40 211 */
04046e1a 212 int last_scanned_child;
18f59ea7
BS
213 /*
214 * Should the accounting and control be hierarchical, per subtree?
215 */
216 bool use_hierarchy;
a636b327 217 unsigned long last_oom_jiffies;
8c7c6e34 218 atomic_t refcnt;
14797e23 219
a7885eb8
KM
220 unsigned int swappiness;
221
22a668d7
KH
222 /* set when res.limit == memsw.limit */
223 bool memsw_is_minimum;
224
d52aa412 225 /*
c8dad2bb 226 * statistics. This must be placed at the end of memcg.
d52aa412
KH
227 */
228 struct mem_cgroup_stat stat;
8cdea7c0
BS
229};
230
217bc319
KH
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 234 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 235 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 236 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 237 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
238 NR_CHARGE_TYPE,
239};
240
52d4b9ac
KH
241/* only for here (for easy reading.) */
242#define PCGF_CACHE (1UL << PCG_CACHE)
243#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 244#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
245/* Not used, but added here for completeness */
246#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 247
8c7c6e34
KH
248/* for encoding cft->private value on file */
249#define _MEM (0)
250#define _MEMSWAP (1)
251#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
252#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
253#define MEMFILE_ATTR(val) ((val) & 0xffff)
254
75822b44
BS
255/*
256 * Reclaim flags for mem_cgroup_hierarchical_reclaim
257 */
258#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
259#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
260#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
261#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
262
8c7c6e34
KH
263static void mem_cgroup_get(struct mem_cgroup *mem);
264static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 265static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
8c7c6e34 266
f64c3f54
BS
267static struct mem_cgroup_per_zone *
268mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
269{
270 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
271}
272
273static struct mem_cgroup_per_zone *
274page_cgroup_zoneinfo(struct page_cgroup *pc)
275{
276 struct mem_cgroup *mem = pc->mem_cgroup;
277 int nid = page_cgroup_nid(pc);
278 int zid = page_cgroup_zid(pc);
279
280 if (!mem)
281 return NULL;
282
283 return mem_cgroup_zoneinfo(mem, nid, zid);
284}
285
286static struct mem_cgroup_tree_per_zone *
287soft_limit_tree_node_zone(int nid, int zid)
288{
289 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
290}
291
292static struct mem_cgroup_tree_per_zone *
293soft_limit_tree_from_page(struct page *page)
294{
295 int nid = page_to_nid(page);
296 int zid = page_zonenum(page);
297
298 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
299}
300
301static void
302mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
303 struct mem_cgroup_per_zone *mz,
304 struct mem_cgroup_tree_per_zone *mctz)
305{
306 struct rb_node **p = &mctz->rb_root.rb_node;
307 struct rb_node *parent = NULL;
308 struct mem_cgroup_per_zone *mz_node;
309
310 if (mz->on_tree)
311 return;
312
313 mz->usage_in_excess = res_counter_soft_limit_excess(&mem->res);
314 spin_lock(&mctz->lock);
315 while (*p) {
316 parent = *p;
317 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
318 tree_node);
319 if (mz->usage_in_excess < mz_node->usage_in_excess)
320 p = &(*p)->rb_left;
321 /*
322 * We can't avoid mem cgroups that are over their soft
323 * limit by the same amount
324 */
325 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
326 p = &(*p)->rb_right;
327 }
328 rb_link_node(&mz->tree_node, parent, p);
329 rb_insert_color(&mz->tree_node, &mctz->rb_root);
330 mz->on_tree = true;
331 spin_unlock(&mctz->lock);
332}
333
334static void
335mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
336 struct mem_cgroup_per_zone *mz,
337 struct mem_cgroup_tree_per_zone *mctz)
338{
339 spin_lock(&mctz->lock);
340 rb_erase(&mz->tree_node, &mctz->rb_root);
341 mz->on_tree = false;
342 spin_unlock(&mctz->lock);
343}
344
345static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
346{
347 bool ret = false;
348 int cpu;
349 s64 val;
350 struct mem_cgroup_stat_cpu *cpustat;
351
352 cpu = get_cpu();
353 cpustat = &mem->stat.cpustat[cpu];
354 val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
355 if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
356 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
357 ret = true;
358 }
359 put_cpu();
360 return ret;
361}
362
363static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
364{
365 unsigned long long prev_usage_in_excess, new_usage_in_excess;
366 bool updated_tree = false;
367 struct mem_cgroup_per_zone *mz;
368 struct mem_cgroup_tree_per_zone *mctz;
369
370 mz = mem_cgroup_zoneinfo(mem, page_to_nid(page), page_zonenum(page));
371 mctz = soft_limit_tree_from_page(page);
372
373 /*
374 * We do updates in lazy mode, mem's are removed
375 * lazily from the per-zone, per-node rb tree
376 */
377 prev_usage_in_excess = mz->usage_in_excess;
378
379 new_usage_in_excess = res_counter_soft_limit_excess(&mem->res);
380 if (prev_usage_in_excess) {
381 mem_cgroup_remove_exceeded(mem, mz, mctz);
382 updated_tree = true;
383 }
384 if (!new_usage_in_excess)
385 goto done;
386 mem_cgroup_insert_exceeded(mem, mz, mctz);
387
388done:
389 if (updated_tree) {
390 spin_lock(&mctz->lock);
391 mz->usage_in_excess = new_usage_in_excess;
392 spin_unlock(&mctz->lock);
393 }
394}
395
396static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
397{
398 int node, zone;
399 struct mem_cgroup_per_zone *mz;
400 struct mem_cgroup_tree_per_zone *mctz;
401
402 for_each_node_state(node, N_POSSIBLE) {
403 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
404 mz = mem_cgroup_zoneinfo(mem, node, zone);
405 mctz = soft_limit_tree_node_zone(node, zone);
406 mem_cgroup_remove_exceeded(mem, mz, mctz);
407 }
408 }
409}
410
c05555b5
KH
411static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
412 struct page_cgroup *pc,
413 bool charge)
d52aa412
KH
414{
415 int val = (charge)? 1 : -1;
416 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 417 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 418 int cpu = get_cpu();
d52aa412 419
08e552c6 420 cpustat = &stat->cpustat[cpu];
c05555b5 421 if (PageCgroupCache(pc))
addb9efe 422 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 423 else
addb9efe 424 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
425
426 if (charge)
addb9efe 427 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
428 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
429 else
addb9efe 430 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 431 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
f64c3f54 432 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
08e552c6 433 put_cpu();
6d12e2d8
KH
434}
435
14067bb3 436static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 437 enum lru_list idx)
6d12e2d8
KH
438{
439 int nid, zid;
440 struct mem_cgroup_per_zone *mz;
441 u64 total = 0;
442
443 for_each_online_node(nid)
444 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
445 mz = mem_cgroup_zoneinfo(mem, nid, zid);
446 total += MEM_CGROUP_ZSTAT(mz, idx);
447 }
448 return total;
d52aa412
KH
449}
450
d5b69e38 451static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
452{
453 return container_of(cgroup_subsys_state(cont,
454 mem_cgroup_subsys_id), struct mem_cgroup,
455 css);
456}
457
cf475ad2 458struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 459{
31a78f23
BS
460 /*
461 * mm_update_next_owner() may clear mm->owner to NULL
462 * if it races with swapoff, page migration, etc.
463 * So this can be called with p == NULL.
464 */
465 if (unlikely(!p))
466 return NULL;
467
78fb7466
PE
468 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
469 struct mem_cgroup, css);
470}
471
54595fe2
KH
472static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
473{
474 struct mem_cgroup *mem = NULL;
0b7f569e
KH
475
476 if (!mm)
477 return NULL;
54595fe2
KH
478 /*
479 * Because we have no locks, mm->owner's may be being moved to other
480 * cgroup. We use css_tryget() here even if this looks
481 * pessimistic (rather than adding locks here).
482 */
483 rcu_read_lock();
484 do {
485 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
486 if (unlikely(!mem))
487 break;
488 } while (!css_tryget(&mem->css));
489 rcu_read_unlock();
490 return mem;
491}
492
14067bb3
KH
493/*
494 * Call callback function against all cgroup under hierarchy tree.
495 */
496static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
497 int (*func)(struct mem_cgroup *, void *))
498{
499 int found, ret, nextid;
500 struct cgroup_subsys_state *css;
501 struct mem_cgroup *mem;
502
503 if (!root->use_hierarchy)
504 return (*func)(root, data);
505
506 nextid = 1;
507 do {
508 ret = 0;
509 mem = NULL;
510
511 rcu_read_lock();
512 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
513 &found);
514 if (css && css_tryget(css))
515 mem = container_of(css, struct mem_cgroup, css);
516 rcu_read_unlock();
517
518 if (mem) {
519 ret = (*func)(mem, data);
520 css_put(&mem->css);
521 }
522 nextid = found + 1;
523 } while (!ret && css);
524
525 return ret;
526}
527
4b3bde4c
BS
528static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
529{
530 return (mem == root_mem_cgroup);
531}
532
08e552c6
KH
533/*
534 * Following LRU functions are allowed to be used without PCG_LOCK.
535 * Operations are called by routine of global LRU independently from memcg.
536 * What we have to take care of here is validness of pc->mem_cgroup.
537 *
538 * Changes to pc->mem_cgroup happens when
539 * 1. charge
540 * 2. moving account
541 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
542 * It is added to LRU before charge.
543 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
544 * When moving account, the page is not on LRU. It's isolated.
545 */
4f98a2fe 546
08e552c6
KH
547void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
548{
549 struct page_cgroup *pc;
08e552c6 550 struct mem_cgroup_per_zone *mz;
6d12e2d8 551
f8d66542 552 if (mem_cgroup_disabled())
08e552c6
KH
553 return;
554 pc = lookup_page_cgroup(page);
555 /* can happen while we handle swapcache. */
4b3bde4c 556 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 557 return;
4b3bde4c 558 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
559 /*
560 * We don't check PCG_USED bit. It's cleared when the "page" is finally
561 * removed from global LRU.
562 */
08e552c6 563 mz = page_cgroup_zoneinfo(pc);
b69408e8 564 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
565 if (mem_cgroup_is_root(pc->mem_cgroup))
566 return;
567 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
568 list_del_init(&pc->lru);
569 return;
6d12e2d8
KH
570}
571
08e552c6 572void mem_cgroup_del_lru(struct page *page)
6d12e2d8 573{
08e552c6
KH
574 mem_cgroup_del_lru_list(page, page_lru(page));
575}
b69408e8 576
08e552c6
KH
577void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
578{
579 struct mem_cgroup_per_zone *mz;
580 struct page_cgroup *pc;
b69408e8 581
f8d66542 582 if (mem_cgroup_disabled())
08e552c6 583 return;
6d12e2d8 584
08e552c6 585 pc = lookup_page_cgroup(page);
bd112db8
DN
586 /*
587 * Used bit is set without atomic ops but after smp_wmb().
588 * For making pc->mem_cgroup visible, insert smp_rmb() here.
589 */
08e552c6 590 smp_rmb();
4b3bde4c
BS
591 /* unused or root page is not rotated. */
592 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
593 return;
594 mz = page_cgroup_zoneinfo(pc);
595 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
596}
597
08e552c6 598void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 599{
08e552c6
KH
600 struct page_cgroup *pc;
601 struct mem_cgroup_per_zone *mz;
6d12e2d8 602
f8d66542 603 if (mem_cgroup_disabled())
08e552c6
KH
604 return;
605 pc = lookup_page_cgroup(page);
4b3bde4c 606 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
607 /*
608 * Used bit is set without atomic ops but after smp_wmb().
609 * For making pc->mem_cgroup visible, insert smp_rmb() here.
610 */
08e552c6
KH
611 smp_rmb();
612 if (!PageCgroupUsed(pc))
894bc310 613 return;
b69408e8 614
08e552c6 615 mz = page_cgroup_zoneinfo(pc);
b69408e8 616 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
617 SetPageCgroupAcctLRU(pc);
618 if (mem_cgroup_is_root(pc->mem_cgroup))
619 return;
08e552c6
KH
620 list_add(&pc->lru, &mz->lists[lru]);
621}
544122e5 622
08e552c6 623/*
544122e5
KH
624 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
625 * lru because the page may.be reused after it's fully uncharged (because of
626 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
627 * it again. This function is only used to charge SwapCache. It's done under
628 * lock_page and expected that zone->lru_lock is never held.
08e552c6 629 */
544122e5 630static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 631{
544122e5
KH
632 unsigned long flags;
633 struct zone *zone = page_zone(page);
634 struct page_cgroup *pc = lookup_page_cgroup(page);
635
636 spin_lock_irqsave(&zone->lru_lock, flags);
637 /*
638 * Forget old LRU when this page_cgroup is *not* used. This Used bit
639 * is guarded by lock_page() because the page is SwapCache.
640 */
641 if (!PageCgroupUsed(pc))
642 mem_cgroup_del_lru_list(page, page_lru(page));
643 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
644}
645
544122e5
KH
646static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
647{
648 unsigned long flags;
649 struct zone *zone = page_zone(page);
650 struct page_cgroup *pc = lookup_page_cgroup(page);
651
652 spin_lock_irqsave(&zone->lru_lock, flags);
653 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 654 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
655 mem_cgroup_add_lru_list(page, page_lru(page));
656 spin_unlock_irqrestore(&zone->lru_lock, flags);
657}
658
659
08e552c6
KH
660void mem_cgroup_move_lists(struct page *page,
661 enum lru_list from, enum lru_list to)
662{
f8d66542 663 if (mem_cgroup_disabled())
08e552c6
KH
664 return;
665 mem_cgroup_del_lru_list(page, from);
666 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
667}
668
4c4a2214
DR
669int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
670{
671 int ret;
0b7f569e 672 struct mem_cgroup *curr = NULL;
4c4a2214
DR
673
674 task_lock(task);
0b7f569e
KH
675 rcu_read_lock();
676 curr = try_get_mem_cgroup_from_mm(task->mm);
677 rcu_read_unlock();
4c4a2214 678 task_unlock(task);
0b7f569e
KH
679 if (!curr)
680 return 0;
681 if (curr->use_hierarchy)
682 ret = css_is_ancestor(&curr->css, &mem->css);
683 else
684 ret = (curr == mem);
685 css_put(&curr->css);
4c4a2214
DR
686 return ret;
687}
688
6c48a1d0
KH
689/*
690 * prev_priority control...this will be used in memory reclaim path.
691 */
692int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
693{
2733c06a
KM
694 int prev_priority;
695
696 spin_lock(&mem->reclaim_param_lock);
697 prev_priority = mem->prev_priority;
698 spin_unlock(&mem->reclaim_param_lock);
699
700 return prev_priority;
6c48a1d0
KH
701}
702
703void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
704{
2733c06a 705 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
706 if (priority < mem->prev_priority)
707 mem->prev_priority = priority;
2733c06a 708 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
709}
710
711void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
712{
2733c06a 713 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 714 mem->prev_priority = priority;
2733c06a 715 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
716}
717
c772be93 718static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
719{
720 unsigned long active;
721 unsigned long inactive;
c772be93
KM
722 unsigned long gb;
723 unsigned long inactive_ratio;
14797e23 724
14067bb3
KH
725 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
726 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 727
c772be93
KM
728 gb = (inactive + active) >> (30 - PAGE_SHIFT);
729 if (gb)
730 inactive_ratio = int_sqrt(10 * gb);
731 else
732 inactive_ratio = 1;
733
734 if (present_pages) {
735 present_pages[0] = inactive;
736 present_pages[1] = active;
737 }
738
739 return inactive_ratio;
740}
741
742int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
743{
744 unsigned long active;
745 unsigned long inactive;
746 unsigned long present_pages[2];
747 unsigned long inactive_ratio;
748
749 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
750
751 inactive = present_pages[0];
752 active = present_pages[1];
753
754 if (inactive * inactive_ratio < active)
14797e23
KM
755 return 1;
756
757 return 0;
758}
759
56e49d21
RR
760int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
761{
762 unsigned long active;
763 unsigned long inactive;
764
765 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
766 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
767
768 return (active > inactive);
769}
770
a3d8e054
KM
771unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
772 struct zone *zone,
773 enum lru_list lru)
774{
775 int nid = zone->zone_pgdat->node_id;
776 int zid = zone_idx(zone);
777 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
778
779 return MEM_CGROUP_ZSTAT(mz, lru);
780}
781
3e2f41f1
KM
782struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
783 struct zone *zone)
784{
785 int nid = zone->zone_pgdat->node_id;
786 int zid = zone_idx(zone);
787 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
788
789 return &mz->reclaim_stat;
790}
791
792struct zone_reclaim_stat *
793mem_cgroup_get_reclaim_stat_from_page(struct page *page)
794{
795 struct page_cgroup *pc;
796 struct mem_cgroup_per_zone *mz;
797
798 if (mem_cgroup_disabled())
799 return NULL;
800
801 pc = lookup_page_cgroup(page);
bd112db8
DN
802 /*
803 * Used bit is set without atomic ops but after smp_wmb().
804 * For making pc->mem_cgroup visible, insert smp_rmb() here.
805 */
806 smp_rmb();
807 if (!PageCgroupUsed(pc))
808 return NULL;
809
3e2f41f1
KM
810 mz = page_cgroup_zoneinfo(pc);
811 if (!mz)
812 return NULL;
813
814 return &mz->reclaim_stat;
815}
816
66e1707b
BS
817unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
818 struct list_head *dst,
819 unsigned long *scanned, int order,
820 int mode, struct zone *z,
821 struct mem_cgroup *mem_cont,
4f98a2fe 822 int active, int file)
66e1707b
BS
823{
824 unsigned long nr_taken = 0;
825 struct page *page;
826 unsigned long scan;
827 LIST_HEAD(pc_list);
828 struct list_head *src;
ff7283fa 829 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
830 int nid = z->zone_pgdat->node_id;
831 int zid = zone_idx(z);
832 struct mem_cgroup_per_zone *mz;
b7c46d15 833 int lru = LRU_FILE * file + active;
2ffebca6 834 int ret;
66e1707b 835
cf475ad2 836 BUG_ON(!mem_cont);
1ecaab2b 837 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 838 src = &mz->lists[lru];
66e1707b 839
ff7283fa
KH
840 scan = 0;
841 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 842 if (scan >= nr_to_scan)
ff7283fa 843 break;
08e552c6
KH
844
845 page = pc->page;
52d4b9ac
KH
846 if (unlikely(!PageCgroupUsed(pc)))
847 continue;
436c6541 848 if (unlikely(!PageLRU(page)))
ff7283fa 849 continue;
ff7283fa 850
436c6541 851 scan++;
2ffebca6
KH
852 ret = __isolate_lru_page(page, mode, file);
853 switch (ret) {
854 case 0:
66e1707b 855 list_move(&page->lru, dst);
2ffebca6 856 mem_cgroup_del_lru(page);
66e1707b 857 nr_taken++;
2ffebca6
KH
858 break;
859 case -EBUSY:
860 /* we don't affect global LRU but rotate in our LRU */
861 mem_cgroup_rotate_lru_list(page, page_lru(page));
862 break;
863 default:
864 break;
66e1707b
BS
865 }
866 }
867
66e1707b
BS
868 *scanned = scan;
869 return nr_taken;
870}
871
6d61ef40
BS
872#define mem_cgroup_from_res_counter(counter, member) \
873 container_of(counter, struct mem_cgroup, member)
874
b85a96c0
DN
875static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
876{
877 if (do_swap_account) {
878 if (res_counter_check_under_limit(&mem->res) &&
879 res_counter_check_under_limit(&mem->memsw))
880 return true;
881 } else
882 if (res_counter_check_under_limit(&mem->res))
883 return true;
884 return false;
885}
886
a7885eb8
KM
887static unsigned int get_swappiness(struct mem_cgroup *memcg)
888{
889 struct cgroup *cgrp = memcg->css.cgroup;
890 unsigned int swappiness;
891
892 /* root ? */
893 if (cgrp->parent == NULL)
894 return vm_swappiness;
895
896 spin_lock(&memcg->reclaim_param_lock);
897 swappiness = memcg->swappiness;
898 spin_unlock(&memcg->reclaim_param_lock);
899
900 return swappiness;
901}
902
81d39c20
KH
903static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
904{
905 int *val = data;
906 (*val)++;
907 return 0;
908}
e222432b
BS
909
910/**
911 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
912 * @memcg: The memory cgroup that went over limit
913 * @p: Task that is going to be killed
914 *
915 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
916 * enabled
917 */
918void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
919{
920 struct cgroup *task_cgrp;
921 struct cgroup *mem_cgrp;
922 /*
923 * Need a buffer in BSS, can't rely on allocations. The code relies
924 * on the assumption that OOM is serialized for memory controller.
925 * If this assumption is broken, revisit this code.
926 */
927 static char memcg_name[PATH_MAX];
928 int ret;
929
930 if (!memcg)
931 return;
932
933
934 rcu_read_lock();
935
936 mem_cgrp = memcg->css.cgroup;
937 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
938
939 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
940 if (ret < 0) {
941 /*
942 * Unfortunately, we are unable to convert to a useful name
943 * But we'll still print out the usage information
944 */
945 rcu_read_unlock();
946 goto done;
947 }
948 rcu_read_unlock();
949
950 printk(KERN_INFO "Task in %s killed", memcg_name);
951
952 rcu_read_lock();
953 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
954 if (ret < 0) {
955 rcu_read_unlock();
956 goto done;
957 }
958 rcu_read_unlock();
959
960 /*
961 * Continues from above, so we don't need an KERN_ level
962 */
963 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
964done:
965
966 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
967 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
968 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
969 res_counter_read_u64(&memcg->res, RES_FAILCNT));
970 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
971 "failcnt %llu\n",
972 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
973 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
974 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
975}
976
81d39c20
KH
977/*
978 * This function returns the number of memcg under hierarchy tree. Returns
979 * 1(self count) if no children.
980 */
981static int mem_cgroup_count_children(struct mem_cgroup *mem)
982{
983 int num = 0;
984 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
985 return num;
986}
987
6d61ef40 988/*
04046e1a
KH
989 * Visit the first child (need not be the first child as per the ordering
990 * of the cgroup list, since we track last_scanned_child) of @mem and use
991 * that to reclaim free pages from.
992 */
993static struct mem_cgroup *
994mem_cgroup_select_victim(struct mem_cgroup *root_mem)
995{
996 struct mem_cgroup *ret = NULL;
997 struct cgroup_subsys_state *css;
998 int nextid, found;
999
1000 if (!root_mem->use_hierarchy) {
1001 css_get(&root_mem->css);
1002 ret = root_mem;
1003 }
1004
1005 while (!ret) {
1006 rcu_read_lock();
1007 nextid = root_mem->last_scanned_child + 1;
1008 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1009 &found);
1010 if (css && css_tryget(css))
1011 ret = container_of(css, struct mem_cgroup, css);
1012
1013 rcu_read_unlock();
1014 /* Updates scanning parameter */
1015 spin_lock(&root_mem->reclaim_param_lock);
1016 if (!css) {
1017 /* this means start scan from ID:1 */
1018 root_mem->last_scanned_child = 0;
1019 } else
1020 root_mem->last_scanned_child = found;
1021 spin_unlock(&root_mem->reclaim_param_lock);
1022 }
1023
1024 return ret;
1025}
1026
1027/*
1028 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1029 * we reclaimed from, so that we don't end up penalizing one child extensively
1030 * based on its position in the children list.
6d61ef40
BS
1031 *
1032 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1033 *
1034 * We give up and return to the caller when we visit root_mem twice.
1035 * (other groups can be removed while we're walking....)
81d39c20
KH
1036 *
1037 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1038 */
1039static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
75822b44
BS
1040 gfp_t gfp_mask,
1041 unsigned long reclaim_options)
6d61ef40 1042{
04046e1a
KH
1043 struct mem_cgroup *victim;
1044 int ret, total = 0;
1045 int loop = 0;
75822b44
BS
1046 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1047 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
04046e1a 1048
22a668d7
KH
1049 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1050 if (root_mem->memsw_is_minimum)
1051 noswap = true;
1052
04046e1a
KH
1053 while (loop < 2) {
1054 victim = mem_cgroup_select_victim(root_mem);
1055 if (victim == root_mem)
1056 loop++;
1057 if (!mem_cgroup_local_usage(&victim->stat)) {
1058 /* this cgroup's local usage == 0 */
1059 css_put(&victim->css);
6d61ef40
BS
1060 continue;
1061 }
04046e1a
KH
1062 /* we use swappiness of local cgroup */
1063 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
1064 get_swappiness(victim));
1065 css_put(&victim->css);
81d39c20
KH
1066 /*
1067 * At shrinking usage, we can't check we should stop here or
1068 * reclaim more. It's depends on callers. last_scanned_child
1069 * will work enough for keeping fairness under tree.
1070 */
1071 if (shrink)
1072 return ret;
04046e1a 1073 total += ret;
b85a96c0 1074 if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1075 return 1 + total;
6d61ef40 1076 }
04046e1a 1077 return total;
6d61ef40
BS
1078}
1079
a636b327
KH
1080bool mem_cgroup_oom_called(struct task_struct *task)
1081{
1082 bool ret = false;
1083 struct mem_cgroup *mem;
1084 struct mm_struct *mm;
1085
1086 rcu_read_lock();
1087 mm = task->mm;
1088 if (!mm)
1089 mm = &init_mm;
1090 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1091 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1092 ret = true;
1093 rcu_read_unlock();
1094 return ret;
1095}
0b7f569e
KH
1096
1097static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1098{
1099 mem->last_oom_jiffies = jiffies;
1100 return 0;
1101}
1102
1103static void record_last_oom(struct mem_cgroup *mem)
1104{
1105 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1106}
1107
d69b042f
BS
1108/*
1109 * Currently used to update mapped file statistics, but the routine can be
1110 * generalized to update other statistics as well.
1111 */
1112void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
1113{
1114 struct mem_cgroup *mem;
1115 struct mem_cgroup_stat *stat;
1116 struct mem_cgroup_stat_cpu *cpustat;
1117 int cpu;
1118 struct page_cgroup *pc;
1119
1120 if (!page_is_file_cache(page))
1121 return;
1122
1123 pc = lookup_page_cgroup(page);
1124 if (unlikely(!pc))
1125 return;
1126
1127 lock_page_cgroup(pc);
1128 mem = pc->mem_cgroup;
1129 if (!mem)
1130 goto done;
1131
1132 if (!PageCgroupUsed(pc))
1133 goto done;
1134
1135 /*
1136 * Preemption is already disabled, we don't need get_cpu()
1137 */
1138 cpu = smp_processor_id();
1139 stat = &mem->stat;
1140 cpustat = &stat->cpustat[cpu];
1141
1142 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
1143done:
1144 unlock_page_cgroup(pc);
1145}
0b7f569e 1146
f817ed48
KH
1147/*
1148 * Unlike exported interface, "oom" parameter is added. if oom==true,
1149 * oom-killer can be invoked.
8a9f3ccd 1150 */
f817ed48 1151static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34 1152 gfp_t gfp_mask, struct mem_cgroup **memcg,
f64c3f54 1153 bool oom, struct page *page)
8a9f3ccd 1154{
f64c3f54 1155 struct mem_cgroup *mem, *mem_over_limit, *mem_over_soft_limit;
7a81b88c 1156 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
f64c3f54 1157 struct res_counter *fail_res, *soft_fail_res = NULL;
a636b327
KH
1158
1159 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1160 /* Don't account this! */
1161 *memcg = NULL;
1162 return 0;
1163 }
1164
8a9f3ccd 1165 /*
3be91277
HD
1166 * We always charge the cgroup the mm_struct belongs to.
1167 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1168 * thread group leader migrates. It's possible that mm is not
1169 * set, if so charge the init_mm (happens for pagecache usage).
1170 */
54595fe2
KH
1171 mem = *memcg;
1172 if (likely(!mem)) {
1173 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 1174 *memcg = mem;
e8589cc1 1175 } else {
7a81b88c 1176 css_get(&mem->css);
e8589cc1 1177 }
54595fe2
KH
1178 if (unlikely(!mem))
1179 return 0;
1180
46f7e602 1181 VM_BUG_ON(css_is_removed(&mem->css));
8a9f3ccd 1182
8c7c6e34
KH
1183 while (1) {
1184 int ret;
75822b44 1185 unsigned long flags = 0;
7a81b88c 1186
f64c3f54
BS
1187 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res,
1188 &soft_fail_res);
8c7c6e34
KH
1189 if (likely(!ret)) {
1190 if (!do_swap_account)
1191 break;
28dbc4b6 1192 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
f64c3f54 1193 &fail_res, NULL);
8c7c6e34
KH
1194 if (likely(!ret))
1195 break;
1196 /* mem+swap counter fails */
f64c3f54 1197 res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
75822b44 1198 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
6d61ef40
BS
1199 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1200 memsw);
1201 } else
1202 /* mem counter fails */
1203 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1204 res);
1205
3be91277 1206 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1207 goto nomem;
e1a1cd59 1208
6d61ef40 1209 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
75822b44 1210 flags);
4d1c6273
DN
1211 if (ret)
1212 continue;
66e1707b
BS
1213
1214 /*
8869b8f6
HD
1215 * try_to_free_mem_cgroup_pages() might not give us a full
1216 * picture of reclaim. Some pages are reclaimed and might be
1217 * moved to swap cache or just unmapped from the cgroup.
1218 * Check the limit again to see if the reclaim reduced the
1219 * current usage of the cgroup before giving up
8c7c6e34 1220 *
8869b8f6 1221 */
b85a96c0
DN
1222 if (mem_cgroup_check_under_limit(mem_over_limit))
1223 continue;
3be91277
HD
1224
1225 if (!nr_retries--) {
a636b327 1226 if (oom) {
7f4d454d 1227 mutex_lock(&memcg_tasklist);
88700756 1228 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 1229 mutex_unlock(&memcg_tasklist);
0b7f569e 1230 record_last_oom(mem_over_limit);
a636b327 1231 }
7a81b88c 1232 goto nomem;
66e1707b 1233 }
8a9f3ccd 1234 }
f64c3f54
BS
1235 /*
1236 * Insert just the ancestor, we should trickle down to the correct
1237 * cgroup for reclaim, since the other nodes will be below their
1238 * soft limit
1239 */
1240 if (soft_fail_res) {
1241 mem_over_soft_limit =
1242 mem_cgroup_from_res_counter(soft_fail_res, res);
1243 if (mem_cgroup_soft_limit_check(mem_over_soft_limit))
1244 mem_cgroup_update_tree(mem_over_soft_limit, page);
1245 }
7a81b88c
KH
1246 return 0;
1247nomem:
1248 css_put(&mem->css);
1249 return -ENOMEM;
1250}
8a9f3ccd 1251
a3b2d692
KH
1252/*
1253 * A helper function to get mem_cgroup from ID. must be called under
1254 * rcu_read_lock(). The caller must check css_is_removed() or some if
1255 * it's concern. (dropping refcnt from swap can be called against removed
1256 * memcg.)
1257 */
1258static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1259{
1260 struct cgroup_subsys_state *css;
1261
1262 /* ID 0 is unused ID */
1263 if (!id)
1264 return NULL;
1265 css = css_lookup(&mem_cgroup_subsys, id);
1266 if (!css)
1267 return NULL;
1268 return container_of(css, struct mem_cgroup, css);
1269}
1270
b5a84319
KH
1271static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1272{
1273 struct mem_cgroup *mem;
3c776e64 1274 struct page_cgroup *pc;
a3b2d692 1275 unsigned short id;
b5a84319
KH
1276 swp_entry_t ent;
1277
3c776e64
DN
1278 VM_BUG_ON(!PageLocked(page));
1279
b5a84319
KH
1280 if (!PageSwapCache(page))
1281 return NULL;
1282
3c776e64 1283 pc = lookup_page_cgroup(page);
c0bd3f63 1284 lock_page_cgroup(pc);
a3b2d692 1285 if (PageCgroupUsed(pc)) {
3c776e64 1286 mem = pc->mem_cgroup;
a3b2d692
KH
1287 if (mem && !css_tryget(&mem->css))
1288 mem = NULL;
1289 } else {
3c776e64 1290 ent.val = page_private(page);
a3b2d692
KH
1291 id = lookup_swap_cgroup(ent);
1292 rcu_read_lock();
1293 mem = mem_cgroup_lookup(id);
1294 if (mem && !css_tryget(&mem->css))
1295 mem = NULL;
1296 rcu_read_unlock();
3c776e64 1297 }
c0bd3f63 1298 unlock_page_cgroup(pc);
b5a84319
KH
1299 return mem;
1300}
1301
7a81b88c 1302/*
a5e924f5 1303 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1304 * USED state. If already USED, uncharge and return.
1305 */
1306
1307static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1308 struct page_cgroup *pc,
1309 enum charge_type ctype)
1310{
7a81b88c
KH
1311 /* try_charge() can return NULL to *memcg, taking care of it. */
1312 if (!mem)
1313 return;
52d4b9ac
KH
1314
1315 lock_page_cgroup(pc);
1316 if (unlikely(PageCgroupUsed(pc))) {
1317 unlock_page_cgroup(pc);
f64c3f54 1318 res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
8c7c6e34 1319 if (do_swap_account)
f64c3f54 1320 res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
52d4b9ac 1321 css_put(&mem->css);
7a81b88c 1322 return;
52d4b9ac 1323 }
4b3bde4c 1324
8a9f3ccd 1325 pc->mem_cgroup = mem;
261fb61a
KH
1326 /*
1327 * We access a page_cgroup asynchronously without lock_page_cgroup().
1328 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1329 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1330 * before USED bit, we need memory barrier here.
1331 * See mem_cgroup_add_lru_list(), etc.
1332 */
08e552c6 1333 smp_wmb();
4b3bde4c
BS
1334 switch (ctype) {
1335 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1336 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1337 SetPageCgroupCache(pc);
1338 SetPageCgroupUsed(pc);
1339 break;
1340 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1341 ClearPageCgroupCache(pc);
1342 SetPageCgroupUsed(pc);
1343 break;
1344 default:
1345 break;
1346 }
3be91277 1347
08e552c6 1348 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1349
52d4b9ac 1350 unlock_page_cgroup(pc);
7a81b88c 1351}
66e1707b 1352
f817ed48
KH
1353/**
1354 * mem_cgroup_move_account - move account of the page
1355 * @pc: page_cgroup of the page.
1356 * @from: mem_cgroup which the page is moved from.
1357 * @to: mem_cgroup which the page is moved to. @from != @to.
1358 *
1359 * The caller must confirm following.
08e552c6 1360 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
1361 *
1362 * returns 0 at success,
1363 * returns -EBUSY when lock is busy or "pc" is unstable.
1364 *
1365 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1366 * new cgroup. It should be done by a caller.
1367 */
1368
1369static int mem_cgroup_move_account(struct page_cgroup *pc,
1370 struct mem_cgroup *from, struct mem_cgroup *to)
1371{
1372 struct mem_cgroup_per_zone *from_mz, *to_mz;
1373 int nid, zid;
1374 int ret = -EBUSY;
d69b042f
BS
1375 struct page *page;
1376 int cpu;
1377 struct mem_cgroup_stat *stat;
1378 struct mem_cgroup_stat_cpu *cpustat;
f817ed48 1379
f817ed48 1380 VM_BUG_ON(from == to);
08e552c6 1381 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
1382
1383 nid = page_cgroup_nid(pc);
1384 zid = page_cgroup_zid(pc);
1385 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1386 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1387
f817ed48
KH
1388 if (!trylock_page_cgroup(pc))
1389 return ret;
1390
1391 if (!PageCgroupUsed(pc))
1392 goto out;
1393
1394 if (pc->mem_cgroup != from)
1395 goto out;
1396
f64c3f54 1397 res_counter_uncharge(&from->res, PAGE_SIZE, NULL);
08e552c6 1398 mem_cgroup_charge_statistics(from, pc, false);
d69b042f
BS
1399
1400 page = pc->page;
1401 if (page_is_file_cache(page) && page_mapped(page)) {
1402 cpu = smp_processor_id();
1403 /* Update mapped_file data for mem_cgroup "from" */
1404 stat = &from->stat;
1405 cpustat = &stat->cpustat[cpu];
1406 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1407 -1);
1408
1409 /* Update mapped_file data for mem_cgroup "to" */
1410 stat = &to->stat;
1411 cpustat = &stat->cpustat[cpu];
1412 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1413 1);
1414 }
1415
08e552c6 1416 if (do_swap_account)
f64c3f54 1417 res_counter_uncharge(&from->memsw, PAGE_SIZE, NULL);
40d58138
DN
1418 css_put(&from->css);
1419
1420 css_get(&to->css);
08e552c6
KH
1421 pc->mem_cgroup = to;
1422 mem_cgroup_charge_statistics(to, pc, true);
08e552c6 1423 ret = 0;
f817ed48
KH
1424out:
1425 unlock_page_cgroup(pc);
88703267
KH
1426 /*
1427 * We charges against "to" which may not have any tasks. Then, "to"
1428 * can be under rmdir(). But in current implementation, caller of
1429 * this function is just force_empty() and it's garanteed that
1430 * "to" is never removed. So, we don't check rmdir status here.
1431 */
f817ed48
KH
1432 return ret;
1433}
1434
1435/*
1436 * move charges to its parent.
1437 */
1438
1439static int mem_cgroup_move_parent(struct page_cgroup *pc,
1440 struct mem_cgroup *child,
1441 gfp_t gfp_mask)
1442{
08e552c6 1443 struct page *page = pc->page;
f817ed48
KH
1444 struct cgroup *cg = child->css.cgroup;
1445 struct cgroup *pcg = cg->parent;
1446 struct mem_cgroup *parent;
f817ed48
KH
1447 int ret;
1448
1449 /* Is ROOT ? */
1450 if (!pcg)
1451 return -EINVAL;
1452
08e552c6 1453
f817ed48
KH
1454 parent = mem_cgroup_from_cont(pcg);
1455
08e552c6 1456
f64c3f54 1457 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
a636b327 1458 if (ret || !parent)
f817ed48
KH
1459 return ret;
1460
40d58138
DN
1461 if (!get_page_unless_zero(page)) {
1462 ret = -EBUSY;
1463 goto uncharge;
1464 }
08e552c6
KH
1465
1466 ret = isolate_lru_page(page);
1467
1468 if (ret)
1469 goto cancel;
f817ed48 1470
f817ed48 1471 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1472
08e552c6
KH
1473 putback_lru_page(page);
1474 if (!ret) {
1475 put_page(page);
40d58138
DN
1476 /* drop extra refcnt by try_charge() */
1477 css_put(&parent->css);
08e552c6 1478 return 0;
8c7c6e34 1479 }
40d58138 1480
08e552c6 1481cancel:
40d58138
DN
1482 put_page(page);
1483uncharge:
1484 /* drop extra refcnt by try_charge() */
1485 css_put(&parent->css);
1486 /* uncharge if move fails */
f64c3f54 1487 res_counter_uncharge(&parent->res, PAGE_SIZE, NULL);
08e552c6 1488 if (do_swap_account)
f64c3f54 1489 res_counter_uncharge(&parent->memsw, PAGE_SIZE, NULL);
f817ed48
KH
1490 return ret;
1491}
1492
7a81b88c
KH
1493/*
1494 * Charge the memory controller for page usage.
1495 * Return
1496 * 0 if the charge was successful
1497 * < 0 if the cgroup is over its limit
1498 */
1499static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1500 gfp_t gfp_mask, enum charge_type ctype,
1501 struct mem_cgroup *memcg)
1502{
1503 struct mem_cgroup *mem;
1504 struct page_cgroup *pc;
1505 int ret;
1506
1507 pc = lookup_page_cgroup(page);
1508 /* can happen at boot */
1509 if (unlikely(!pc))
1510 return 0;
1511 prefetchw(pc);
1512
1513 mem = memcg;
f64c3f54 1514 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
a636b327 1515 if (ret || !mem)
7a81b88c
KH
1516 return ret;
1517
1518 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1519 return 0;
8a9f3ccd
BS
1520}
1521
7a81b88c
KH
1522int mem_cgroup_newpage_charge(struct page *page,
1523 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1524{
f8d66542 1525 if (mem_cgroup_disabled())
cede86ac 1526 return 0;
52d4b9ac
KH
1527 if (PageCompound(page))
1528 return 0;
69029cd5
KH
1529 /*
1530 * If already mapped, we don't have to account.
1531 * If page cache, page->mapping has address_space.
1532 * But page->mapping may have out-of-use anon_vma pointer,
1533 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1534 * is NULL.
1535 */
1536 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1537 return 0;
1538 if (unlikely(!mm))
1539 mm = &init_mm;
217bc319 1540 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1541 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1542}
1543
83aae4c7
DN
1544static void
1545__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1546 enum charge_type ctype);
1547
e1a1cd59
BS
1548int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1549 gfp_t gfp_mask)
8697d331 1550{
b5a84319
KH
1551 struct mem_cgroup *mem = NULL;
1552 int ret;
1553
f8d66542 1554 if (mem_cgroup_disabled())
cede86ac 1555 return 0;
52d4b9ac
KH
1556 if (PageCompound(page))
1557 return 0;
accf163e
KH
1558 /*
1559 * Corner case handling. This is called from add_to_page_cache()
1560 * in usual. But some FS (shmem) precharges this page before calling it
1561 * and call add_to_page_cache() with GFP_NOWAIT.
1562 *
1563 * For GFP_NOWAIT case, the page may be pre-charged before calling
1564 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1565 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1566 * And when the page is SwapCache, it should take swap information
1567 * into account. This is under lock_page() now.
accf163e
KH
1568 */
1569 if (!(gfp_mask & __GFP_WAIT)) {
1570 struct page_cgroup *pc;
1571
52d4b9ac
KH
1572
1573 pc = lookup_page_cgroup(page);
1574 if (!pc)
1575 return 0;
1576 lock_page_cgroup(pc);
1577 if (PageCgroupUsed(pc)) {
1578 unlock_page_cgroup(pc);
accf163e
KH
1579 return 0;
1580 }
52d4b9ac 1581 unlock_page_cgroup(pc);
accf163e
KH
1582 }
1583
b5a84319 1584 if (unlikely(!mm && !mem))
8697d331 1585 mm = &init_mm;
accf163e 1586
c05555b5
KH
1587 if (page_is_file_cache(page))
1588 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1589 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1590
83aae4c7
DN
1591 /* shmem */
1592 if (PageSwapCache(page)) {
1593 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1594 if (!ret)
1595 __mem_cgroup_commit_charge_swapin(page, mem,
1596 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1597 } else
1598 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1599 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1600
b5a84319 1601 return ret;
e8589cc1
KH
1602}
1603
54595fe2
KH
1604/*
1605 * While swap-in, try_charge -> commit or cancel, the page is locked.
1606 * And when try_charge() successfully returns, one refcnt to memcg without
1607 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1608 * "commit()" or removed by "cancel()"
1609 */
8c7c6e34
KH
1610int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1611 struct page *page,
1612 gfp_t mask, struct mem_cgroup **ptr)
1613{
1614 struct mem_cgroup *mem;
54595fe2 1615 int ret;
8c7c6e34 1616
f8d66542 1617 if (mem_cgroup_disabled())
8c7c6e34
KH
1618 return 0;
1619
1620 if (!do_swap_account)
1621 goto charge_cur_mm;
8c7c6e34
KH
1622 /*
1623 * A racing thread's fault, or swapoff, may have already updated
1624 * the pte, and even removed page from swap cache: return success
1625 * to go on to do_swap_page()'s pte_same() test, which should fail.
1626 */
1627 if (!PageSwapCache(page))
1628 return 0;
b5a84319 1629 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1630 if (!mem)
1631 goto charge_cur_mm;
8c7c6e34 1632 *ptr = mem;
f64c3f54 1633 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
54595fe2
KH
1634 /* drop extra refcnt from tryget */
1635 css_put(&mem->css);
1636 return ret;
8c7c6e34
KH
1637charge_cur_mm:
1638 if (unlikely(!mm))
1639 mm = &init_mm;
f64c3f54 1640 return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
8c7c6e34
KH
1641}
1642
83aae4c7
DN
1643static void
1644__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1645 enum charge_type ctype)
7a81b88c
KH
1646{
1647 struct page_cgroup *pc;
1648
f8d66542 1649 if (mem_cgroup_disabled())
7a81b88c
KH
1650 return;
1651 if (!ptr)
1652 return;
88703267 1653 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 1654 pc = lookup_page_cgroup(page);
544122e5 1655 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1656 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1657 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1658 /*
1659 * Now swap is on-memory. This means this page may be
1660 * counted both as mem and swap....double count.
03f3c433
KH
1661 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1662 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1663 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1664 */
03f3c433 1665 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1666 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1667 unsigned short id;
8c7c6e34 1668 struct mem_cgroup *memcg;
a3b2d692
KH
1669
1670 id = swap_cgroup_record(ent, 0);
1671 rcu_read_lock();
1672 memcg = mem_cgroup_lookup(id);
8c7c6e34 1673 if (memcg) {
a3b2d692
KH
1674 /*
1675 * This recorded memcg can be obsolete one. So, avoid
1676 * calling css_tryget
1677 */
f64c3f54 1678 res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
8c7c6e34
KH
1679 mem_cgroup_put(memcg);
1680 }
a3b2d692 1681 rcu_read_unlock();
8c7c6e34 1682 }
88703267
KH
1683 /*
1684 * At swapin, we may charge account against cgroup which has no tasks.
1685 * So, rmdir()->pre_destroy() can be called while we do this charge.
1686 * In that case, we need to call pre_destroy() again. check it here.
1687 */
1688 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
1689}
1690
83aae4c7
DN
1691void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1692{
1693 __mem_cgroup_commit_charge_swapin(page, ptr,
1694 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1695}
1696
7a81b88c
KH
1697void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1698{
f8d66542 1699 if (mem_cgroup_disabled())
7a81b88c
KH
1700 return;
1701 if (!mem)
1702 return;
f64c3f54 1703 res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
8c7c6e34 1704 if (do_swap_account)
f64c3f54 1705 res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
7a81b88c
KH
1706 css_put(&mem->css);
1707}
1708
1709
8a9f3ccd 1710/*
69029cd5 1711 * uncharge if !page_mapped(page)
8a9f3ccd 1712 */
8c7c6e34 1713static struct mem_cgroup *
69029cd5 1714__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1715{
8289546e 1716 struct page_cgroup *pc;
8c7c6e34 1717 struct mem_cgroup *mem = NULL;
072c56c1 1718 struct mem_cgroup_per_zone *mz;
f64c3f54 1719 bool soft_limit_excess = false;
8a9f3ccd 1720
f8d66542 1721 if (mem_cgroup_disabled())
8c7c6e34 1722 return NULL;
4077960e 1723
d13d1443 1724 if (PageSwapCache(page))
8c7c6e34 1725 return NULL;
d13d1443 1726
8697d331 1727 /*
3c541e14 1728 * Check if our page_cgroup is valid
8697d331 1729 */
52d4b9ac
KH
1730 pc = lookup_page_cgroup(page);
1731 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1732 return NULL;
b9c565d5 1733
52d4b9ac 1734 lock_page_cgroup(pc);
d13d1443 1735
8c7c6e34
KH
1736 mem = pc->mem_cgroup;
1737
d13d1443
KH
1738 if (!PageCgroupUsed(pc))
1739 goto unlock_out;
1740
1741 switch (ctype) {
1742 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 1743 case MEM_CGROUP_CHARGE_TYPE_DROP:
d13d1443
KH
1744 if (page_mapped(page))
1745 goto unlock_out;
1746 break;
1747 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1748 if (!PageAnon(page)) { /* Shared memory */
1749 if (page->mapping && !page_is_file_cache(page))
1750 goto unlock_out;
1751 } else if (page_mapped(page)) /* Anon */
1752 goto unlock_out;
1753 break;
1754 default:
1755 break;
52d4b9ac 1756 }
d13d1443 1757
f64c3f54 1758 res_counter_uncharge(&mem->res, PAGE_SIZE, &soft_limit_excess);
8c7c6e34 1759 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
f64c3f54 1760 res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
08e552c6 1761 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 1762
52d4b9ac 1763 ClearPageCgroupUsed(pc);
544122e5
KH
1764 /*
1765 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1766 * freed from LRU. This is safe because uncharged page is expected not
1767 * to be reused (freed soon). Exception is SwapCache, it's handled by
1768 * special functions.
1769 */
b9c565d5 1770
69029cd5 1771 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1772 unlock_page_cgroup(pc);
fb59e9f1 1773
f64c3f54
BS
1774 if (soft_limit_excess && mem_cgroup_soft_limit_check(mem))
1775 mem_cgroup_update_tree(mem, page);
a7fe942e
KH
1776 /* at swapout, this memcg will be accessed to record to swap */
1777 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1778 css_put(&mem->css);
6d12e2d8 1779
8c7c6e34 1780 return mem;
d13d1443
KH
1781
1782unlock_out:
1783 unlock_page_cgroup(pc);
8c7c6e34 1784 return NULL;
3c541e14
BS
1785}
1786
69029cd5
KH
1787void mem_cgroup_uncharge_page(struct page *page)
1788{
52d4b9ac
KH
1789 /* early check. */
1790 if (page_mapped(page))
1791 return;
1792 if (page->mapping && !PageAnon(page))
1793 return;
69029cd5
KH
1794 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1795}
1796
1797void mem_cgroup_uncharge_cache_page(struct page *page)
1798{
1799 VM_BUG_ON(page_mapped(page));
b7abea96 1800 VM_BUG_ON(page->mapping);
69029cd5
KH
1801 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1802}
1803
e767e056 1804#ifdef CONFIG_SWAP
8c7c6e34 1805/*
e767e056 1806 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
1807 * memcg information is recorded to swap_cgroup of "ent"
1808 */
8a9478ca
KH
1809void
1810mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
1811{
1812 struct mem_cgroup *memcg;
8a9478ca
KH
1813 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1814
1815 if (!swapout) /* this was a swap cache but the swap is unused ! */
1816 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1817
1818 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 1819
8c7c6e34 1820 /* record memcg information */
8a9478ca 1821 if (do_swap_account && swapout && memcg) {
a3b2d692 1822 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
1823 mem_cgroup_get(memcg);
1824 }
8a9478ca 1825 if (swapout && memcg)
a7fe942e 1826 css_put(&memcg->css);
8c7c6e34 1827}
e767e056 1828#endif
8c7c6e34
KH
1829
1830#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1831/*
1832 * called from swap_entry_free(). remove record in swap_cgroup and
1833 * uncharge "memsw" account.
1834 */
1835void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1836{
8c7c6e34 1837 struct mem_cgroup *memcg;
a3b2d692 1838 unsigned short id;
8c7c6e34
KH
1839
1840 if (!do_swap_account)
1841 return;
1842
a3b2d692
KH
1843 id = swap_cgroup_record(ent, 0);
1844 rcu_read_lock();
1845 memcg = mem_cgroup_lookup(id);
8c7c6e34 1846 if (memcg) {
a3b2d692
KH
1847 /*
1848 * We uncharge this because swap is freed.
1849 * This memcg can be obsolete one. We avoid calling css_tryget
1850 */
f64c3f54 1851 res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
8c7c6e34
KH
1852 mem_cgroup_put(memcg);
1853 }
a3b2d692 1854 rcu_read_unlock();
d13d1443 1855}
8c7c6e34 1856#endif
d13d1443 1857
ae41be37 1858/*
01b1ae63
KH
1859 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1860 * page belongs to.
ae41be37 1861 */
01b1ae63 1862int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1863{
1864 struct page_cgroup *pc;
e8589cc1 1865 struct mem_cgroup *mem = NULL;
e8589cc1 1866 int ret = 0;
8869b8f6 1867
f8d66542 1868 if (mem_cgroup_disabled())
4077960e
BS
1869 return 0;
1870
52d4b9ac
KH
1871 pc = lookup_page_cgroup(page);
1872 lock_page_cgroup(pc);
1873 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1874 mem = pc->mem_cgroup;
1875 css_get(&mem->css);
e8589cc1 1876 }
52d4b9ac 1877 unlock_page_cgroup(pc);
01b1ae63 1878
e8589cc1 1879 if (mem) {
f64c3f54
BS
1880 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
1881 page);
e8589cc1
KH
1882 css_put(&mem->css);
1883 }
01b1ae63 1884 *ptr = mem;
e8589cc1 1885 return ret;
ae41be37 1886}
8869b8f6 1887
69029cd5 1888/* remove redundant charge if migration failed*/
01b1ae63
KH
1889void mem_cgroup_end_migration(struct mem_cgroup *mem,
1890 struct page *oldpage, struct page *newpage)
ae41be37 1891{
01b1ae63
KH
1892 struct page *target, *unused;
1893 struct page_cgroup *pc;
1894 enum charge_type ctype;
1895
1896 if (!mem)
1897 return;
88703267 1898 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
1899 /* at migration success, oldpage->mapping is NULL. */
1900 if (oldpage->mapping) {
1901 target = oldpage;
1902 unused = NULL;
1903 } else {
1904 target = newpage;
1905 unused = oldpage;
1906 }
1907
1908 if (PageAnon(target))
1909 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1910 else if (page_is_file_cache(target))
1911 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1912 else
1913 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1914
1915 /* unused page is not on radix-tree now. */
d13d1443 1916 if (unused)
01b1ae63
KH
1917 __mem_cgroup_uncharge_common(unused, ctype);
1918
1919 pc = lookup_page_cgroup(target);
69029cd5 1920 /*
01b1ae63
KH
1921 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1922 * So, double-counting is effectively avoided.
1923 */
1924 __mem_cgroup_commit_charge(mem, pc, ctype);
1925
1926 /*
1927 * Both of oldpage and newpage are still under lock_page().
1928 * Then, we don't have to care about race in radix-tree.
1929 * But we have to be careful that this page is unmapped or not.
1930 *
1931 * There is a case for !page_mapped(). At the start of
1932 * migration, oldpage was mapped. But now, it's zapped.
1933 * But we know *target* page is not freed/reused under us.
1934 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1935 */
01b1ae63
KH
1936 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1937 mem_cgroup_uncharge_page(target);
88703267
KH
1938 /*
1939 * At migration, we may charge account against cgroup which has no tasks
1940 * So, rmdir()->pre_destroy() can be called while we do this charge.
1941 * In that case, we need to call pre_destroy() again. check it here.
1942 */
1943 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 1944}
78fb7466 1945
c9b0ed51 1946/*
ae3abae6
DN
1947 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1948 * Calling hierarchical_reclaim is not enough because we should update
1949 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1950 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1951 * not from the memcg which this page would be charged to.
1952 * try_charge_swapin does all of these works properly.
c9b0ed51 1953 */
ae3abae6 1954int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
1955 struct mm_struct *mm,
1956 gfp_t gfp_mask)
c9b0ed51 1957{
b5a84319 1958 struct mem_cgroup *mem = NULL;
ae3abae6 1959 int ret;
c9b0ed51 1960
f8d66542 1961 if (mem_cgroup_disabled())
cede86ac 1962 return 0;
c9b0ed51 1963
ae3abae6
DN
1964 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1965 if (!ret)
1966 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 1967
ae3abae6 1968 return ret;
c9b0ed51
KH
1969}
1970
8c7c6e34
KH
1971static DEFINE_MUTEX(set_limit_mutex);
1972
d38d2a75 1973static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1974 unsigned long long val)
628f4235 1975{
81d39c20 1976 int retry_count;
628f4235 1977 int progress;
8c7c6e34 1978 u64 memswlimit;
628f4235 1979 int ret = 0;
81d39c20
KH
1980 int children = mem_cgroup_count_children(memcg);
1981 u64 curusage, oldusage;
1982
1983 /*
1984 * For keeping hierarchical_reclaim simple, how long we should retry
1985 * is depends on callers. We set our retry-count to be function
1986 * of # of children which we should visit in this loop.
1987 */
1988 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1989
1990 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 1991
8c7c6e34 1992 while (retry_count) {
628f4235
KH
1993 if (signal_pending(current)) {
1994 ret = -EINTR;
1995 break;
1996 }
8c7c6e34
KH
1997 /*
1998 * Rather than hide all in some function, I do this in
1999 * open coded manner. You see what this really does.
2000 * We have to guarantee mem->res.limit < mem->memsw.limit.
2001 */
2002 mutex_lock(&set_limit_mutex);
2003 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2004 if (memswlimit < val) {
2005 ret = -EINVAL;
2006 mutex_unlock(&set_limit_mutex);
628f4235
KH
2007 break;
2008 }
8c7c6e34 2009 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2010 if (!ret) {
2011 if (memswlimit == val)
2012 memcg->memsw_is_minimum = true;
2013 else
2014 memcg->memsw_is_minimum = false;
2015 }
8c7c6e34
KH
2016 mutex_unlock(&set_limit_mutex);
2017
2018 if (!ret)
2019 break;
2020
42e9abb6 2021 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
75822b44 2022 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2023 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2024 /* Usage is reduced ? */
2025 if (curusage >= oldusage)
2026 retry_count--;
2027 else
2028 oldusage = curusage;
8c7c6e34 2029 }
14797e23 2030
8c7c6e34
KH
2031 return ret;
2032}
2033
338c8431
LZ
2034static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2035 unsigned long long val)
8c7c6e34 2036{
81d39c20 2037 int retry_count;
8c7c6e34 2038 u64 memlimit, oldusage, curusage;
81d39c20
KH
2039 int children = mem_cgroup_count_children(memcg);
2040 int ret = -EBUSY;
8c7c6e34 2041
81d39c20
KH
2042 /* see mem_cgroup_resize_res_limit */
2043 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2044 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2045 while (retry_count) {
2046 if (signal_pending(current)) {
2047 ret = -EINTR;
2048 break;
2049 }
2050 /*
2051 * Rather than hide all in some function, I do this in
2052 * open coded manner. You see what this really does.
2053 * We have to guarantee mem->res.limit < mem->memsw.limit.
2054 */
2055 mutex_lock(&set_limit_mutex);
2056 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2057 if (memlimit > val) {
2058 ret = -EINVAL;
2059 mutex_unlock(&set_limit_mutex);
2060 break;
2061 }
2062 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2063 if (!ret) {
2064 if (memlimit == val)
2065 memcg->memsw_is_minimum = true;
2066 else
2067 memcg->memsw_is_minimum = false;
2068 }
8c7c6e34
KH
2069 mutex_unlock(&set_limit_mutex);
2070
2071 if (!ret)
2072 break;
2073
75822b44
BS
2074 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
2075 MEM_CGROUP_RECLAIM_NOSWAP |
2076 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 2077 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 2078 /* Usage is reduced ? */
8c7c6e34 2079 if (curusage >= oldusage)
628f4235 2080 retry_count--;
81d39c20
KH
2081 else
2082 oldusage = curusage;
628f4235
KH
2083 }
2084 return ret;
2085}
2086
cc847582
KH
2087/*
2088 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
2089 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2090 */
f817ed48 2091static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 2092 int node, int zid, enum lru_list lru)
cc847582 2093{
08e552c6
KH
2094 struct zone *zone;
2095 struct mem_cgroup_per_zone *mz;
f817ed48 2096 struct page_cgroup *pc, *busy;
08e552c6 2097 unsigned long flags, loop;
072c56c1 2098 struct list_head *list;
f817ed48 2099 int ret = 0;
072c56c1 2100
08e552c6
KH
2101 zone = &NODE_DATA(node)->node_zones[zid];
2102 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 2103 list = &mz->lists[lru];
cc847582 2104
f817ed48
KH
2105 loop = MEM_CGROUP_ZSTAT(mz, lru);
2106 /* give some margin against EBUSY etc...*/
2107 loop += 256;
2108 busy = NULL;
2109 while (loop--) {
2110 ret = 0;
08e552c6 2111 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 2112 if (list_empty(list)) {
08e552c6 2113 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 2114 break;
f817ed48
KH
2115 }
2116 pc = list_entry(list->prev, struct page_cgroup, lru);
2117 if (busy == pc) {
2118 list_move(&pc->lru, list);
2119 busy = 0;
08e552c6 2120 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
2121 continue;
2122 }
08e552c6 2123 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 2124
2c26fdd7 2125 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 2126 if (ret == -ENOMEM)
52d4b9ac 2127 break;
f817ed48
KH
2128
2129 if (ret == -EBUSY || ret == -EINVAL) {
2130 /* found lock contention or "pc" is obsolete. */
2131 busy = pc;
2132 cond_resched();
2133 } else
2134 busy = NULL;
cc847582 2135 }
08e552c6 2136
f817ed48
KH
2137 if (!ret && !list_empty(list))
2138 return -EBUSY;
2139 return ret;
cc847582
KH
2140}
2141
2142/*
2143 * make mem_cgroup's charge to be 0 if there is no task.
2144 * This enables deleting this mem_cgroup.
2145 */
c1e862c1 2146static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 2147{
f817ed48
KH
2148 int ret;
2149 int node, zid, shrink;
2150 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 2151 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 2152
cc847582 2153 css_get(&mem->css);
f817ed48
KH
2154
2155 shrink = 0;
c1e862c1
KH
2156 /* should free all ? */
2157 if (free_all)
2158 goto try_to_free;
f817ed48 2159move_account:
1ecaab2b 2160 while (mem->res.usage > 0) {
f817ed48 2161 ret = -EBUSY;
c1e862c1
KH
2162 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2163 goto out;
2164 ret = -EINTR;
2165 if (signal_pending(current))
cc847582 2166 goto out;
52d4b9ac
KH
2167 /* This is for making all *used* pages to be on LRU. */
2168 lru_add_drain_all();
f817ed48 2169 ret = 0;
299b4eaa 2170 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 2171 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 2172 enum lru_list l;
f817ed48
KH
2173 for_each_lru(l) {
2174 ret = mem_cgroup_force_empty_list(mem,
08e552c6 2175 node, zid, l);
f817ed48
KH
2176 if (ret)
2177 break;
2178 }
1ecaab2b 2179 }
f817ed48
KH
2180 if (ret)
2181 break;
2182 }
2183 /* it seems parent cgroup doesn't have enough mem */
2184 if (ret == -ENOMEM)
2185 goto try_to_free;
52d4b9ac 2186 cond_resched();
cc847582
KH
2187 }
2188 ret = 0;
2189out:
2190 css_put(&mem->css);
2191 return ret;
f817ed48
KH
2192
2193try_to_free:
c1e862c1
KH
2194 /* returns EBUSY if there is a task or if we come here twice. */
2195 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
2196 ret = -EBUSY;
2197 goto out;
2198 }
c1e862c1
KH
2199 /* we call try-to-free pages for make this cgroup empty */
2200 lru_add_drain_all();
f817ed48
KH
2201 /* try to free all pages in this cgroup */
2202 shrink = 1;
2203 while (nr_retries && mem->res.usage > 0) {
2204 int progress;
c1e862c1
KH
2205
2206 if (signal_pending(current)) {
2207 ret = -EINTR;
2208 goto out;
2209 }
a7885eb8
KM
2210 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2211 false, get_swappiness(mem));
c1e862c1 2212 if (!progress) {
f817ed48 2213 nr_retries--;
c1e862c1 2214 /* maybe some writeback is necessary */
8aa7e847 2215 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2216 }
f817ed48
KH
2217
2218 }
08e552c6 2219 lru_add_drain();
f817ed48
KH
2220 /* try move_account...there may be some *locked* pages. */
2221 if (mem->res.usage)
2222 goto move_account;
2223 ret = 0;
2224 goto out;
cc847582
KH
2225}
2226
c1e862c1
KH
2227int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2228{
2229 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2230}
2231
2232
18f59ea7
BS
2233static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2234{
2235 return mem_cgroup_from_cont(cont)->use_hierarchy;
2236}
2237
2238static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2239 u64 val)
2240{
2241 int retval = 0;
2242 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2243 struct cgroup *parent = cont->parent;
2244 struct mem_cgroup *parent_mem = NULL;
2245
2246 if (parent)
2247 parent_mem = mem_cgroup_from_cont(parent);
2248
2249 cgroup_lock();
2250 /*
2251 * If parent's use_hiearchy is set, we can't make any modifications
2252 * in the child subtrees. If it is unset, then the change can
2253 * occur, provided the current cgroup has no children.
2254 *
2255 * For the root cgroup, parent_mem is NULL, we allow value to be
2256 * set if there are no children.
2257 */
2258 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2259 (val == 1 || val == 0)) {
2260 if (list_empty(&cont->children))
2261 mem->use_hierarchy = val;
2262 else
2263 retval = -EBUSY;
2264 } else
2265 retval = -EINVAL;
2266 cgroup_unlock();
2267
2268 return retval;
2269}
2270
2c3daa72 2271static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 2272{
8c7c6e34
KH
2273 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2274 u64 val = 0;
2275 int type, name;
2276
2277 type = MEMFILE_TYPE(cft->private);
2278 name = MEMFILE_ATTR(cft->private);
2279 switch (type) {
2280 case _MEM:
2281 val = res_counter_read_u64(&mem->res, name);
2282 break;
2283 case _MEMSWAP:
338c8431 2284 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
2285 break;
2286 default:
2287 BUG();
2288 break;
2289 }
2290 return val;
8cdea7c0 2291}
628f4235
KH
2292/*
2293 * The user of this function is...
2294 * RES_LIMIT.
2295 */
856c13aa
PM
2296static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2297 const char *buffer)
8cdea7c0 2298{
628f4235 2299 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 2300 int type, name;
628f4235
KH
2301 unsigned long long val;
2302 int ret;
2303
8c7c6e34
KH
2304 type = MEMFILE_TYPE(cft->private);
2305 name = MEMFILE_ATTR(cft->private);
2306 switch (name) {
628f4235 2307 case RES_LIMIT:
4b3bde4c
BS
2308 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2309 ret = -EINVAL;
2310 break;
2311 }
628f4235
KH
2312 /* This function does all necessary parse...reuse it */
2313 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
2314 if (ret)
2315 break;
2316 if (type == _MEM)
628f4235 2317 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
2318 else
2319 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 2320 break;
296c81d8
BS
2321 case RES_SOFT_LIMIT:
2322 ret = res_counter_memparse_write_strategy(buffer, &val);
2323 if (ret)
2324 break;
2325 /*
2326 * For memsw, soft limits are hard to implement in terms
2327 * of semantics, for now, we support soft limits for
2328 * control without swap
2329 */
2330 if (type == _MEM)
2331 ret = res_counter_set_soft_limit(&memcg->res, val);
2332 else
2333 ret = -EINVAL;
2334 break;
628f4235
KH
2335 default:
2336 ret = -EINVAL; /* should be BUG() ? */
2337 break;
2338 }
2339 return ret;
8cdea7c0
BS
2340}
2341
fee7b548
KH
2342static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2343 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2344{
2345 struct cgroup *cgroup;
2346 unsigned long long min_limit, min_memsw_limit, tmp;
2347
2348 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2349 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2350 cgroup = memcg->css.cgroup;
2351 if (!memcg->use_hierarchy)
2352 goto out;
2353
2354 while (cgroup->parent) {
2355 cgroup = cgroup->parent;
2356 memcg = mem_cgroup_from_cont(cgroup);
2357 if (!memcg->use_hierarchy)
2358 break;
2359 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2360 min_limit = min(min_limit, tmp);
2361 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2362 min_memsw_limit = min(min_memsw_limit, tmp);
2363 }
2364out:
2365 *mem_limit = min_limit;
2366 *memsw_limit = min_memsw_limit;
2367 return;
2368}
2369
29f2a4da 2370static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2371{
2372 struct mem_cgroup *mem;
8c7c6e34 2373 int type, name;
c84872e1
PE
2374
2375 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2376 type = MEMFILE_TYPE(event);
2377 name = MEMFILE_ATTR(event);
2378 switch (name) {
29f2a4da 2379 case RES_MAX_USAGE:
8c7c6e34
KH
2380 if (type == _MEM)
2381 res_counter_reset_max(&mem->res);
2382 else
2383 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2384 break;
2385 case RES_FAILCNT:
8c7c6e34
KH
2386 if (type == _MEM)
2387 res_counter_reset_failcnt(&mem->res);
2388 else
2389 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2390 break;
2391 }
f64c3f54 2392
85cc59db 2393 return 0;
c84872e1
PE
2394}
2395
14067bb3
KH
2396
2397/* For read statistics */
2398enum {
2399 MCS_CACHE,
2400 MCS_RSS,
d69b042f 2401 MCS_MAPPED_FILE,
14067bb3
KH
2402 MCS_PGPGIN,
2403 MCS_PGPGOUT,
2404 MCS_INACTIVE_ANON,
2405 MCS_ACTIVE_ANON,
2406 MCS_INACTIVE_FILE,
2407 MCS_ACTIVE_FILE,
2408 MCS_UNEVICTABLE,
2409 NR_MCS_STAT,
2410};
2411
2412struct mcs_total_stat {
2413 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
2414};
2415
14067bb3
KH
2416struct {
2417 char *local_name;
2418 char *total_name;
2419} memcg_stat_strings[NR_MCS_STAT] = {
2420 {"cache", "total_cache"},
2421 {"rss", "total_rss"},
d69b042f 2422 {"mapped_file", "total_mapped_file"},
14067bb3
KH
2423 {"pgpgin", "total_pgpgin"},
2424 {"pgpgout", "total_pgpgout"},
2425 {"inactive_anon", "total_inactive_anon"},
2426 {"active_anon", "total_active_anon"},
2427 {"inactive_file", "total_inactive_file"},
2428 {"active_file", "total_active_file"},
2429 {"unevictable", "total_unevictable"}
2430};
2431
2432
2433static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2434{
2435 struct mcs_total_stat *s = data;
2436 s64 val;
2437
2438 /* per cpu stat */
2439 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2440 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2441 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2442 s->stat[MCS_RSS] += val * PAGE_SIZE;
d69b042f
BS
2443 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2444 s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
14067bb3
KH
2445 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2446 s->stat[MCS_PGPGIN] += val;
2447 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2448 s->stat[MCS_PGPGOUT] += val;
2449
2450 /* per zone stat */
2451 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2452 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2453 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2454 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2455 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2456 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2457 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2458 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2459 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2460 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2461 return 0;
2462}
2463
2464static void
2465mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2466{
2467 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2468}
2469
c64745cf
PM
2470static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2471 struct cgroup_map_cb *cb)
d2ceb9b7 2472{
d2ceb9b7 2473 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 2474 struct mcs_total_stat mystat;
d2ceb9b7
KH
2475 int i;
2476
14067bb3
KH
2477 memset(&mystat, 0, sizeof(mystat));
2478 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 2479
14067bb3
KH
2480 for (i = 0; i < NR_MCS_STAT; i++)
2481 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
7b854121 2482
14067bb3 2483 /* Hierarchical information */
fee7b548
KH
2484 {
2485 unsigned long long limit, memsw_limit;
2486 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2487 cb->fill(cb, "hierarchical_memory_limit", limit);
2488 if (do_swap_account)
2489 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2490 }
7f016ee8 2491
14067bb3
KH
2492 memset(&mystat, 0, sizeof(mystat));
2493 mem_cgroup_get_total_stat(mem_cont, &mystat);
2494 for (i = 0; i < NR_MCS_STAT; i++)
2495 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2496
2497
7f016ee8 2498#ifdef CONFIG_DEBUG_VM
c772be93 2499 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
2500
2501 {
2502 int nid, zid;
2503 struct mem_cgroup_per_zone *mz;
2504 unsigned long recent_rotated[2] = {0, 0};
2505 unsigned long recent_scanned[2] = {0, 0};
2506
2507 for_each_online_node(nid)
2508 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2509 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2510
2511 recent_rotated[0] +=
2512 mz->reclaim_stat.recent_rotated[0];
2513 recent_rotated[1] +=
2514 mz->reclaim_stat.recent_rotated[1];
2515 recent_scanned[0] +=
2516 mz->reclaim_stat.recent_scanned[0];
2517 recent_scanned[1] +=
2518 mz->reclaim_stat.recent_scanned[1];
2519 }
2520 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2521 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2522 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2523 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2524 }
2525#endif
2526
d2ceb9b7
KH
2527 return 0;
2528}
2529
a7885eb8
KM
2530static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2531{
2532 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2533
2534 return get_swappiness(memcg);
2535}
2536
2537static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2538 u64 val)
2539{
2540 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2541 struct mem_cgroup *parent;
068b38c1 2542
a7885eb8
KM
2543 if (val > 100)
2544 return -EINVAL;
2545
2546 if (cgrp->parent == NULL)
2547 return -EINVAL;
2548
2549 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
2550
2551 cgroup_lock();
2552
a7885eb8
KM
2553 /* If under hierarchy, only empty-root can set this value */
2554 if ((parent->use_hierarchy) ||
068b38c1
LZ
2555 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2556 cgroup_unlock();
a7885eb8 2557 return -EINVAL;
068b38c1 2558 }
a7885eb8
KM
2559
2560 spin_lock(&memcg->reclaim_param_lock);
2561 memcg->swappiness = val;
2562 spin_unlock(&memcg->reclaim_param_lock);
2563
068b38c1
LZ
2564 cgroup_unlock();
2565
a7885eb8
KM
2566 return 0;
2567}
2568
c1e862c1 2569
8cdea7c0
BS
2570static struct cftype mem_cgroup_files[] = {
2571 {
0eea1030 2572 .name = "usage_in_bytes",
8c7c6e34 2573 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 2574 .read_u64 = mem_cgroup_read,
8cdea7c0 2575 },
c84872e1
PE
2576 {
2577 .name = "max_usage_in_bytes",
8c7c6e34 2578 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2579 .trigger = mem_cgroup_reset,
c84872e1
PE
2580 .read_u64 = mem_cgroup_read,
2581 },
8cdea7c0 2582 {
0eea1030 2583 .name = "limit_in_bytes",
8c7c6e34 2584 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2585 .write_string = mem_cgroup_write,
2c3daa72 2586 .read_u64 = mem_cgroup_read,
8cdea7c0 2587 },
296c81d8
BS
2588 {
2589 .name = "soft_limit_in_bytes",
2590 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2591 .write_string = mem_cgroup_write,
2592 .read_u64 = mem_cgroup_read,
2593 },
8cdea7c0
BS
2594 {
2595 .name = "failcnt",
8c7c6e34 2596 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2597 .trigger = mem_cgroup_reset,
2c3daa72 2598 .read_u64 = mem_cgroup_read,
8cdea7c0 2599 },
d2ceb9b7
KH
2600 {
2601 .name = "stat",
c64745cf 2602 .read_map = mem_control_stat_show,
d2ceb9b7 2603 },
c1e862c1
KH
2604 {
2605 .name = "force_empty",
2606 .trigger = mem_cgroup_force_empty_write,
2607 },
18f59ea7
BS
2608 {
2609 .name = "use_hierarchy",
2610 .write_u64 = mem_cgroup_hierarchy_write,
2611 .read_u64 = mem_cgroup_hierarchy_read,
2612 },
a7885eb8
KM
2613 {
2614 .name = "swappiness",
2615 .read_u64 = mem_cgroup_swappiness_read,
2616 .write_u64 = mem_cgroup_swappiness_write,
2617 },
8cdea7c0
BS
2618};
2619
8c7c6e34
KH
2620#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2621static struct cftype memsw_cgroup_files[] = {
2622 {
2623 .name = "memsw.usage_in_bytes",
2624 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2625 .read_u64 = mem_cgroup_read,
2626 },
2627 {
2628 .name = "memsw.max_usage_in_bytes",
2629 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2630 .trigger = mem_cgroup_reset,
2631 .read_u64 = mem_cgroup_read,
2632 },
2633 {
2634 .name = "memsw.limit_in_bytes",
2635 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2636 .write_string = mem_cgroup_write,
2637 .read_u64 = mem_cgroup_read,
2638 },
2639 {
2640 .name = "memsw.failcnt",
2641 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2642 .trigger = mem_cgroup_reset,
2643 .read_u64 = mem_cgroup_read,
2644 },
2645};
2646
2647static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2648{
2649 if (!do_swap_account)
2650 return 0;
2651 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2652 ARRAY_SIZE(memsw_cgroup_files));
2653};
2654#else
2655static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2656{
2657 return 0;
2658}
2659#endif
2660
6d12e2d8
KH
2661static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2662{
2663 struct mem_cgroup_per_node *pn;
1ecaab2b 2664 struct mem_cgroup_per_zone *mz;
b69408e8 2665 enum lru_list l;
41e3355d 2666 int zone, tmp = node;
1ecaab2b
KH
2667 /*
2668 * This routine is called against possible nodes.
2669 * But it's BUG to call kmalloc() against offline node.
2670 *
2671 * TODO: this routine can waste much memory for nodes which will
2672 * never be onlined. It's better to use memory hotplug callback
2673 * function.
2674 */
41e3355d
KH
2675 if (!node_state(node, N_NORMAL_MEMORY))
2676 tmp = -1;
2677 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2678 if (!pn)
2679 return 1;
1ecaab2b 2680
6d12e2d8
KH
2681 mem->info.nodeinfo[node] = pn;
2682 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2683
2684 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2685 mz = &pn->zoneinfo[zone];
b69408e8
CL
2686 for_each_lru(l)
2687 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 2688 mz->usage_in_excess = 0;
1ecaab2b 2689 }
6d12e2d8
KH
2690 return 0;
2691}
2692
1ecaab2b
KH
2693static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2694{
2695 kfree(mem->info.nodeinfo[node]);
2696}
2697
c8dad2bb
JB
2698static int mem_cgroup_size(void)
2699{
2700 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2701 return sizeof(struct mem_cgroup) + cpustat_size;
2702}
2703
33327948
KH
2704static struct mem_cgroup *mem_cgroup_alloc(void)
2705{
2706 struct mem_cgroup *mem;
c8dad2bb 2707 int size = mem_cgroup_size();
33327948 2708
c8dad2bb
JB
2709 if (size < PAGE_SIZE)
2710 mem = kmalloc(size, GFP_KERNEL);
33327948 2711 else
c8dad2bb 2712 mem = vmalloc(size);
33327948
KH
2713
2714 if (mem)
c8dad2bb 2715 memset(mem, 0, size);
33327948
KH
2716 return mem;
2717}
2718
8c7c6e34
KH
2719/*
2720 * At destroying mem_cgroup, references from swap_cgroup can remain.
2721 * (scanning all at force_empty is too costly...)
2722 *
2723 * Instead of clearing all references at force_empty, we remember
2724 * the number of reference from swap_cgroup and free mem_cgroup when
2725 * it goes down to 0.
2726 *
8c7c6e34
KH
2727 * Removal of cgroup itself succeeds regardless of refs from swap.
2728 */
2729
a7ba0eef 2730static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2731{
08e552c6
KH
2732 int node;
2733
f64c3f54 2734 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
2735 free_css_id(&mem_cgroup_subsys, &mem->css);
2736
08e552c6
KH
2737 for_each_node_state(node, N_POSSIBLE)
2738 free_mem_cgroup_per_zone_info(mem, node);
2739
c8dad2bb 2740 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2741 kfree(mem);
2742 else
2743 vfree(mem);
2744}
2745
8c7c6e34
KH
2746static void mem_cgroup_get(struct mem_cgroup *mem)
2747{
2748 atomic_inc(&mem->refcnt);
2749}
2750
2751static void mem_cgroup_put(struct mem_cgroup *mem)
2752{
7bcc1bb1
DN
2753 if (atomic_dec_and_test(&mem->refcnt)) {
2754 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 2755 __mem_cgroup_free(mem);
7bcc1bb1
DN
2756 if (parent)
2757 mem_cgroup_put(parent);
2758 }
8c7c6e34
KH
2759}
2760
7bcc1bb1
DN
2761/*
2762 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2763 */
2764static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2765{
2766 if (!mem->res.parent)
2767 return NULL;
2768 return mem_cgroup_from_res_counter(mem->res.parent, res);
2769}
33327948 2770
c077719b
KH
2771#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2772static void __init enable_swap_cgroup(void)
2773{
f8d66542 2774 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2775 do_swap_account = 1;
2776}
2777#else
2778static void __init enable_swap_cgroup(void)
2779{
2780}
2781#endif
2782
f64c3f54
BS
2783static int mem_cgroup_soft_limit_tree_init(void)
2784{
2785 struct mem_cgroup_tree_per_node *rtpn;
2786 struct mem_cgroup_tree_per_zone *rtpz;
2787 int tmp, node, zone;
2788
2789 for_each_node_state(node, N_POSSIBLE) {
2790 tmp = node;
2791 if (!node_state(node, N_NORMAL_MEMORY))
2792 tmp = -1;
2793 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
2794 if (!rtpn)
2795 return 1;
2796
2797 soft_limit_tree.rb_tree_per_node[node] = rtpn;
2798
2799 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2800 rtpz = &rtpn->rb_tree_per_zone[zone];
2801 rtpz->rb_root = RB_ROOT;
2802 spin_lock_init(&rtpz->lock);
2803 }
2804 }
2805 return 0;
2806}
2807
0eb253e2 2808static struct cgroup_subsys_state * __ref
8cdea7c0
BS
2809mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2810{
28dbc4b6 2811 struct mem_cgroup *mem, *parent;
04046e1a 2812 long error = -ENOMEM;
6d12e2d8 2813 int node;
8cdea7c0 2814
c8dad2bb
JB
2815 mem = mem_cgroup_alloc();
2816 if (!mem)
04046e1a 2817 return ERR_PTR(error);
78fb7466 2818
6d12e2d8
KH
2819 for_each_node_state(node, N_POSSIBLE)
2820 if (alloc_mem_cgroup_per_zone_info(mem, node))
2821 goto free_out;
f64c3f54 2822
c077719b 2823 /* root ? */
28dbc4b6 2824 if (cont->parent == NULL) {
c077719b 2825 enable_swap_cgroup();
28dbc4b6 2826 parent = NULL;
4b3bde4c 2827 root_mem_cgroup = mem;
f64c3f54
BS
2828 if (mem_cgroup_soft_limit_tree_init())
2829 goto free_out;
2830
18f59ea7 2831 } else {
28dbc4b6 2832 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2833 mem->use_hierarchy = parent->use_hierarchy;
2834 }
28dbc4b6 2835
18f59ea7
BS
2836 if (parent && parent->use_hierarchy) {
2837 res_counter_init(&mem->res, &parent->res);
2838 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
2839 /*
2840 * We increment refcnt of the parent to ensure that we can
2841 * safely access it on res_counter_charge/uncharge.
2842 * This refcnt will be decremented when freeing this
2843 * mem_cgroup(see mem_cgroup_put).
2844 */
2845 mem_cgroup_get(parent);
18f59ea7
BS
2846 } else {
2847 res_counter_init(&mem->res, NULL);
2848 res_counter_init(&mem->memsw, NULL);
2849 }
04046e1a 2850 mem->last_scanned_child = 0;
2733c06a 2851 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2852
a7885eb8
KM
2853 if (parent)
2854 mem->swappiness = get_swappiness(parent);
a7ba0eef 2855 atomic_set(&mem->refcnt, 1);
8cdea7c0 2856 return &mem->css;
6d12e2d8 2857free_out:
a7ba0eef 2858 __mem_cgroup_free(mem);
4b3bde4c 2859 root_mem_cgroup = NULL;
04046e1a 2860 return ERR_PTR(error);
8cdea7c0
BS
2861}
2862
ec64f515 2863static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
2864 struct cgroup *cont)
2865{
2866 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
2867
2868 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
2869}
2870
8cdea7c0
BS
2871static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2872 struct cgroup *cont)
2873{
c268e994 2874 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 2875
c268e994 2876 mem_cgroup_put(mem);
8cdea7c0
BS
2877}
2878
2879static int mem_cgroup_populate(struct cgroup_subsys *ss,
2880 struct cgroup *cont)
2881{
8c7c6e34
KH
2882 int ret;
2883
2884 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2885 ARRAY_SIZE(mem_cgroup_files));
2886
2887 if (!ret)
2888 ret = register_memsw_files(cont, ss);
2889 return ret;
8cdea7c0
BS
2890}
2891
67e465a7
BS
2892static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2893 struct cgroup *cont,
2894 struct cgroup *old_cont,
be367d09
BB
2895 struct task_struct *p,
2896 bool threadgroup)
67e465a7 2897{
7f4d454d 2898 mutex_lock(&memcg_tasklist);
67e465a7 2899 /*
f9717d28
NK
2900 * FIXME: It's better to move charges of this process from old
2901 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2902 */
7f4d454d 2903 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2904}
2905
8cdea7c0
BS
2906struct cgroup_subsys mem_cgroup_subsys = {
2907 .name = "memory",
2908 .subsys_id = mem_cgroup_subsys_id,
2909 .create = mem_cgroup_create,
df878fb0 2910 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2911 .destroy = mem_cgroup_destroy,
2912 .populate = mem_cgroup_populate,
67e465a7 2913 .attach = mem_cgroup_move_task,
6d12e2d8 2914 .early_init = 0,
04046e1a 2915 .use_id = 1,
8cdea7c0 2916};
c077719b
KH
2917
2918#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2919
2920static int __init disable_swap_account(char *s)
2921{
2922 really_do_swap_account = 0;
2923 return 1;
2924}
2925__setup("noswapaccount", disable_swap_account);
2926#endif