]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: some modification to softlimit under hierarchical memory reclaim.
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
e222432b 30#include <linux/limits.h>
8c7c6e34 31#include <linux/mutex.h>
f64c3f54 32#include <linux/rbtree.h>
b6ac57d5 33#include <linux/slab.h>
66e1707b
BS
34#include <linux/swap.h>
35#include <linux/spinlock.h>
36#include <linux/fs.h>
d2ceb9b7 37#include <linux/seq_file.h>
33327948 38#include <linux/vmalloc.h>
b69408e8 39#include <linux/mm_inline.h>
52d4b9ac 40#include <linux/page_cgroup.h>
08e552c6 41#include "internal.h"
8cdea7c0 42
8697d331
BS
43#include <asm/uaccess.h>
44
a181b0e8 45struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 46#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 47struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 48
c077719b 49#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 50/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
51int do_swap_account __read_mostly;
52static int really_do_swap_account __initdata = 1; /* for remember boot option*/
53#else
54#define do_swap_account (0)
55#endif
56
7f4d454d 57static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
f64c3f54 58#define SOFTLIMIT_EVENTS_THRESH (1000)
c077719b 59
d52aa412
KH
60/*
61 * Statistics for memory cgroup.
62 */
63enum mem_cgroup_stat_index {
64 /*
65 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
66 */
67 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f
BS
68 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
69 MEM_CGROUP_STAT_MAPPED_FILE, /* # of pages charged as file rss */
55e462b0
BR
70 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
71 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
f64c3f54 72 MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
0c3e73e8 73 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
d52aa412
KH
74
75 MEM_CGROUP_STAT_NSTATS,
76};
77
78struct mem_cgroup_stat_cpu {
79 s64 count[MEM_CGROUP_STAT_NSTATS];
80} ____cacheline_aligned_in_smp;
81
82struct mem_cgroup_stat {
c8dad2bb 83 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
84};
85
f64c3f54
BS
86static inline void
87__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
88 enum mem_cgroup_stat_index idx)
89{
90 stat->count[idx] = 0;
91}
92
93static inline s64
94__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
95 enum mem_cgroup_stat_index idx)
96{
97 return stat->count[idx];
98}
99
d52aa412
KH
100/*
101 * For accounting under irq disable, no need for increment preempt count.
102 */
addb9efe 103static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
104 enum mem_cgroup_stat_index idx, int val)
105{
addb9efe 106 stat->count[idx] += val;
d52aa412
KH
107}
108
109static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
110 enum mem_cgroup_stat_index idx)
111{
112 int cpu;
113 s64 ret = 0;
114 for_each_possible_cpu(cpu)
115 ret += stat->cpustat[cpu].count[idx];
116 return ret;
117}
118
04046e1a
KH
119static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
120{
121 s64 ret;
122
123 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
124 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
125 return ret;
126}
127
6d12e2d8
KH
128/*
129 * per-zone information in memory controller.
130 */
6d12e2d8 131struct mem_cgroup_per_zone {
072c56c1
KH
132 /*
133 * spin_lock to protect the per cgroup LRU
134 */
b69408e8
CL
135 struct list_head lists[NR_LRU_LISTS];
136 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
137
138 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
4e416953
BS
143 struct mem_cgroup *mem; /* Back pointer, we cannot */
144 /* use container_of */
6d12e2d8
KH
145};
146/* Macro for accessing counter */
147#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
148
149struct mem_cgroup_per_node {
150 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151};
152
153struct mem_cgroup_lru_info {
154 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155};
156
f64c3f54
BS
157/*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162struct mem_cgroup_tree_per_zone {
163 struct rb_root rb_root;
164 spinlock_t lock;
165};
166
167struct mem_cgroup_tree_per_node {
168 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169};
170
171struct mem_cgroup_tree {
172 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173};
174
175static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
8cdea7c0
BS
177/*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 *
183 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
184 * we hit the water mark. May be even add a low water mark, such that
185 * no reclaim occurs from a cgroup at it's low water mark, this is
186 * a feature that will be implemented much later in the future.
8cdea7c0
BS
187 */
188struct mem_cgroup {
189 struct cgroup_subsys_state css;
190 /*
191 * the counter to account for memory usage
192 */
193 struct res_counter res;
8c7c6e34
KH
194 /*
195 * the counter to account for mem+swap usage.
196 */
197 struct res_counter memsw;
78fb7466
PE
198 /*
199 * Per cgroup active and inactive list, similar to the
200 * per zone LRU lists.
78fb7466 201 */
6d12e2d8 202 struct mem_cgroup_lru_info info;
072c56c1 203
2733c06a
KM
204 /*
205 protect against reclaim related member.
206 */
207 spinlock_t reclaim_param_lock;
208
6c48a1d0 209 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
210
211 /*
212 * While reclaiming in a hiearchy, we cache the last child we
04046e1a 213 * reclaimed from.
6d61ef40 214 */
04046e1a 215 int last_scanned_child;
18f59ea7
BS
216 /*
217 * Should the accounting and control be hierarchical, per subtree?
218 */
219 bool use_hierarchy;
a636b327 220 unsigned long last_oom_jiffies;
8c7c6e34 221 atomic_t refcnt;
14797e23 222
a7885eb8
KM
223 unsigned int swappiness;
224
22a668d7
KH
225 /* set when res.limit == memsw.limit */
226 bool memsw_is_minimum;
227
d52aa412 228 /*
c8dad2bb 229 * statistics. This must be placed at the end of memcg.
d52aa412
KH
230 */
231 struct mem_cgroup_stat stat;
8cdea7c0
BS
232};
233
4e416953
BS
234/*
235 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
236 * limit reclaim to prevent infinite loops, if they ever occur.
237 */
238#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
239#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
240
217bc319
KH
241enum charge_type {
242 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
243 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 244 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 245 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 246 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 247 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
248 NR_CHARGE_TYPE,
249};
250
52d4b9ac
KH
251/* only for here (for easy reading.) */
252#define PCGF_CACHE (1UL << PCG_CACHE)
253#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 254#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
255/* Not used, but added here for completeness */
256#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 257
8c7c6e34
KH
258/* for encoding cft->private value on file */
259#define _MEM (0)
260#define _MEMSWAP (1)
261#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
262#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
263#define MEMFILE_ATTR(val) ((val) & 0xffff)
264
75822b44
BS
265/*
266 * Reclaim flags for mem_cgroup_hierarchical_reclaim
267 */
268#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
269#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
270#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
271#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
272#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
273#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 274
8c7c6e34
KH
275static void mem_cgroup_get(struct mem_cgroup *mem);
276static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 277static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
8c7c6e34 278
f64c3f54
BS
279static struct mem_cgroup_per_zone *
280mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
281{
282 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
283}
284
285static struct mem_cgroup_per_zone *
286page_cgroup_zoneinfo(struct page_cgroup *pc)
287{
288 struct mem_cgroup *mem = pc->mem_cgroup;
289 int nid = page_cgroup_nid(pc);
290 int zid = page_cgroup_zid(pc);
291
292 if (!mem)
293 return NULL;
294
295 return mem_cgroup_zoneinfo(mem, nid, zid);
296}
297
298static struct mem_cgroup_tree_per_zone *
299soft_limit_tree_node_zone(int nid, int zid)
300{
301 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
302}
303
304static struct mem_cgroup_tree_per_zone *
305soft_limit_tree_from_page(struct page *page)
306{
307 int nid = page_to_nid(page);
308 int zid = page_zonenum(page);
309
310 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
311}
312
313static void
4e416953 314__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54
BS
315 struct mem_cgroup_per_zone *mz,
316 struct mem_cgroup_tree_per_zone *mctz)
317{
318 struct rb_node **p = &mctz->rb_root.rb_node;
319 struct rb_node *parent = NULL;
320 struct mem_cgroup_per_zone *mz_node;
321
322 if (mz->on_tree)
323 return;
324
325 mz->usage_in_excess = res_counter_soft_limit_excess(&mem->res);
f64c3f54
BS
326 while (*p) {
327 parent = *p;
328 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
329 tree_node);
330 if (mz->usage_in_excess < mz_node->usage_in_excess)
331 p = &(*p)->rb_left;
332 /*
333 * We can't avoid mem cgroups that are over their soft
334 * limit by the same amount
335 */
336 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
337 p = &(*p)->rb_right;
338 }
339 rb_link_node(&mz->tree_node, parent, p);
340 rb_insert_color(&mz->tree_node, &mctz->rb_root);
341 mz->on_tree = true;
4e416953
BS
342}
343
344static void
345__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
346 struct mem_cgroup_per_zone *mz,
347 struct mem_cgroup_tree_per_zone *mctz)
348{
349 if (!mz->on_tree)
350 return;
351 rb_erase(&mz->tree_node, &mctz->rb_root);
352 mz->on_tree = false;
353}
354
f64c3f54
BS
355static void
356mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
357 struct mem_cgroup_per_zone *mz,
358 struct mem_cgroup_tree_per_zone *mctz)
359{
360 spin_lock(&mctz->lock);
4e416953 361 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
362 spin_unlock(&mctz->lock);
363}
364
365static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
366{
367 bool ret = false;
368 int cpu;
369 s64 val;
370 struct mem_cgroup_stat_cpu *cpustat;
371
372 cpu = get_cpu();
373 cpustat = &mem->stat.cpustat[cpu];
374 val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
375 if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
376 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
377 ret = true;
378 }
379 put_cpu();
380 return ret;
381}
382
383static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
384{
4e649152 385 unsigned long long new_usage_in_excess;
f64c3f54
BS
386 struct mem_cgroup_per_zone *mz;
387 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
f64c3f54
BS
390 mctz = soft_limit_tree_from_page(page);
391
392 /*
4e649152
KH
393 * Necessary to update all ancestors when hierarchy is used.
394 * because their event counter is not touched.
f64c3f54 395 */
4e649152
KH
396 for (; mem; mem = parent_mem_cgroup(mem)) {
397 mz = mem_cgroup_zoneinfo(mem, nid, zid);
398 new_usage_in_excess =
399 res_counter_soft_limit_excess(&mem->res);
400 /*
401 * We have to update the tree if mz is on RB-tree or
402 * mem is over its softlimit.
403 */
404 if (new_usage_in_excess || mz->on_tree) {
405 spin_lock(&mctz->lock);
406 /* if on-tree, remove it */
407 if (mz->on_tree)
408 __mem_cgroup_remove_exceeded(mem, mz, mctz);
409 /*
410 * if over soft limit, insert again. mz->usage_in_excess
411 * will be updated properly.
412 */
413 if (new_usage_in_excess)
414 __mem_cgroup_insert_exceeded(mem, mz, mctz);
415 else
416 mz->usage_in_excess = 0;
417 spin_unlock(&mctz->lock);
418 }
f64c3f54
BS
419 }
420}
421
422static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
423{
424 int node, zone;
425 struct mem_cgroup_per_zone *mz;
426 struct mem_cgroup_tree_per_zone *mctz;
427
428 for_each_node_state(node, N_POSSIBLE) {
429 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
430 mz = mem_cgroup_zoneinfo(mem, node, zone);
431 mctz = soft_limit_tree_node_zone(node, zone);
432 mem_cgroup_remove_exceeded(mem, mz, mctz);
433 }
434 }
435}
436
4e416953
BS
437static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
438{
439 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
440}
441
442static struct mem_cgroup_per_zone *
443__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
444{
445 struct rb_node *rightmost = NULL;
26251eaf 446 struct mem_cgroup_per_zone *mz;
4e416953
BS
447
448retry:
26251eaf 449 mz = NULL;
4e416953
BS
450 rightmost = rb_last(&mctz->rb_root);
451 if (!rightmost)
452 goto done; /* Nothing to reclaim from */
453
454 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
455 /*
456 * Remove the node now but someone else can add it back,
457 * we will to add it back at the end of reclaim to its correct
458 * position in the tree.
459 */
460 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
461 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
462 !css_tryget(&mz->mem->css))
463 goto retry;
464done:
465 return mz;
466}
467
468static struct mem_cgroup_per_zone *
469mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
470{
471 struct mem_cgroup_per_zone *mz;
472
473 spin_lock(&mctz->lock);
474 mz = __mem_cgroup_largest_soft_limit_node(mctz);
475 spin_unlock(&mctz->lock);
476 return mz;
477}
478
0c3e73e8
BS
479static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
480 bool charge)
481{
482 int val = (charge) ? 1 : -1;
483 struct mem_cgroup_stat *stat = &mem->stat;
484 struct mem_cgroup_stat_cpu *cpustat;
485 int cpu = get_cpu();
486
487 cpustat = &stat->cpustat[cpu];
488 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
489 put_cpu();
490}
491
c05555b5
KH
492static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
493 struct page_cgroup *pc,
494 bool charge)
d52aa412 495{
0c3e73e8 496 int val = (charge) ? 1 : -1;
d52aa412 497 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 498 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 499 int cpu = get_cpu();
d52aa412 500
08e552c6 501 cpustat = &stat->cpustat[cpu];
c05555b5 502 if (PageCgroupCache(pc))
addb9efe 503 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 504 else
addb9efe 505 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
506
507 if (charge)
addb9efe 508 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
509 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
510 else
addb9efe 511 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 512 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
f64c3f54 513 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
08e552c6 514 put_cpu();
6d12e2d8
KH
515}
516
14067bb3 517static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 518 enum lru_list idx)
6d12e2d8
KH
519{
520 int nid, zid;
521 struct mem_cgroup_per_zone *mz;
522 u64 total = 0;
523
524 for_each_online_node(nid)
525 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
526 mz = mem_cgroup_zoneinfo(mem, nid, zid);
527 total += MEM_CGROUP_ZSTAT(mz, idx);
528 }
529 return total;
d52aa412
KH
530}
531
d5b69e38 532static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
533{
534 return container_of(cgroup_subsys_state(cont,
535 mem_cgroup_subsys_id), struct mem_cgroup,
536 css);
537}
538
cf475ad2 539struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 540{
31a78f23
BS
541 /*
542 * mm_update_next_owner() may clear mm->owner to NULL
543 * if it races with swapoff, page migration, etc.
544 * So this can be called with p == NULL.
545 */
546 if (unlikely(!p))
547 return NULL;
548
78fb7466
PE
549 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
550 struct mem_cgroup, css);
551}
552
54595fe2
KH
553static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
554{
555 struct mem_cgroup *mem = NULL;
0b7f569e
KH
556
557 if (!mm)
558 return NULL;
54595fe2
KH
559 /*
560 * Because we have no locks, mm->owner's may be being moved to other
561 * cgroup. We use css_tryget() here even if this looks
562 * pessimistic (rather than adding locks here).
563 */
564 rcu_read_lock();
565 do {
566 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
567 if (unlikely(!mem))
568 break;
569 } while (!css_tryget(&mem->css));
570 rcu_read_unlock();
571 return mem;
572}
573
14067bb3
KH
574/*
575 * Call callback function against all cgroup under hierarchy tree.
576 */
577static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
578 int (*func)(struct mem_cgroup *, void *))
579{
580 int found, ret, nextid;
581 struct cgroup_subsys_state *css;
582 struct mem_cgroup *mem;
583
584 if (!root->use_hierarchy)
585 return (*func)(root, data);
586
587 nextid = 1;
588 do {
589 ret = 0;
590 mem = NULL;
591
592 rcu_read_lock();
593 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
594 &found);
595 if (css && css_tryget(css))
596 mem = container_of(css, struct mem_cgroup, css);
597 rcu_read_unlock();
598
599 if (mem) {
600 ret = (*func)(mem, data);
601 css_put(&mem->css);
602 }
603 nextid = found + 1;
604 } while (!ret && css);
605
606 return ret;
607}
608
4b3bde4c
BS
609static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
610{
611 return (mem == root_mem_cgroup);
612}
613
08e552c6
KH
614/*
615 * Following LRU functions are allowed to be used without PCG_LOCK.
616 * Operations are called by routine of global LRU independently from memcg.
617 * What we have to take care of here is validness of pc->mem_cgroup.
618 *
619 * Changes to pc->mem_cgroup happens when
620 * 1. charge
621 * 2. moving account
622 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
623 * It is added to LRU before charge.
624 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
625 * When moving account, the page is not on LRU. It's isolated.
626 */
4f98a2fe 627
08e552c6
KH
628void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
629{
630 struct page_cgroup *pc;
08e552c6 631 struct mem_cgroup_per_zone *mz;
6d12e2d8 632
f8d66542 633 if (mem_cgroup_disabled())
08e552c6
KH
634 return;
635 pc = lookup_page_cgroup(page);
636 /* can happen while we handle swapcache. */
4b3bde4c 637 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 638 return;
4b3bde4c 639 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
640 /*
641 * We don't check PCG_USED bit. It's cleared when the "page" is finally
642 * removed from global LRU.
643 */
08e552c6 644 mz = page_cgroup_zoneinfo(pc);
b69408e8 645 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
646 if (mem_cgroup_is_root(pc->mem_cgroup))
647 return;
648 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
649 list_del_init(&pc->lru);
650 return;
6d12e2d8
KH
651}
652
08e552c6 653void mem_cgroup_del_lru(struct page *page)
6d12e2d8 654{
08e552c6
KH
655 mem_cgroup_del_lru_list(page, page_lru(page));
656}
b69408e8 657
08e552c6
KH
658void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
659{
660 struct mem_cgroup_per_zone *mz;
661 struct page_cgroup *pc;
b69408e8 662
f8d66542 663 if (mem_cgroup_disabled())
08e552c6 664 return;
6d12e2d8 665
08e552c6 666 pc = lookup_page_cgroup(page);
bd112db8
DN
667 /*
668 * Used bit is set without atomic ops but after smp_wmb().
669 * For making pc->mem_cgroup visible, insert smp_rmb() here.
670 */
08e552c6 671 smp_rmb();
4b3bde4c
BS
672 /* unused or root page is not rotated. */
673 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
674 return;
675 mz = page_cgroup_zoneinfo(pc);
676 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
677}
678
08e552c6 679void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 680{
08e552c6
KH
681 struct page_cgroup *pc;
682 struct mem_cgroup_per_zone *mz;
6d12e2d8 683
f8d66542 684 if (mem_cgroup_disabled())
08e552c6
KH
685 return;
686 pc = lookup_page_cgroup(page);
4b3bde4c 687 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
688 /*
689 * Used bit is set without atomic ops but after smp_wmb().
690 * For making pc->mem_cgroup visible, insert smp_rmb() here.
691 */
08e552c6
KH
692 smp_rmb();
693 if (!PageCgroupUsed(pc))
894bc310 694 return;
b69408e8 695
08e552c6 696 mz = page_cgroup_zoneinfo(pc);
b69408e8 697 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
698 SetPageCgroupAcctLRU(pc);
699 if (mem_cgroup_is_root(pc->mem_cgroup))
700 return;
08e552c6
KH
701 list_add(&pc->lru, &mz->lists[lru]);
702}
544122e5 703
08e552c6 704/*
544122e5
KH
705 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
706 * lru because the page may.be reused after it's fully uncharged (because of
707 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
708 * it again. This function is only used to charge SwapCache. It's done under
709 * lock_page and expected that zone->lru_lock is never held.
08e552c6 710 */
544122e5 711static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 712{
544122e5
KH
713 unsigned long flags;
714 struct zone *zone = page_zone(page);
715 struct page_cgroup *pc = lookup_page_cgroup(page);
716
717 spin_lock_irqsave(&zone->lru_lock, flags);
718 /*
719 * Forget old LRU when this page_cgroup is *not* used. This Used bit
720 * is guarded by lock_page() because the page is SwapCache.
721 */
722 if (!PageCgroupUsed(pc))
723 mem_cgroup_del_lru_list(page, page_lru(page));
724 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
725}
726
544122e5
KH
727static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
728{
729 unsigned long flags;
730 struct zone *zone = page_zone(page);
731 struct page_cgroup *pc = lookup_page_cgroup(page);
732
733 spin_lock_irqsave(&zone->lru_lock, flags);
734 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 735 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
736 mem_cgroup_add_lru_list(page, page_lru(page));
737 spin_unlock_irqrestore(&zone->lru_lock, flags);
738}
739
740
08e552c6
KH
741void mem_cgroup_move_lists(struct page *page,
742 enum lru_list from, enum lru_list to)
743{
f8d66542 744 if (mem_cgroup_disabled())
08e552c6
KH
745 return;
746 mem_cgroup_del_lru_list(page, from);
747 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
748}
749
4c4a2214
DR
750int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
751{
752 int ret;
0b7f569e 753 struct mem_cgroup *curr = NULL;
4c4a2214
DR
754
755 task_lock(task);
0b7f569e
KH
756 rcu_read_lock();
757 curr = try_get_mem_cgroup_from_mm(task->mm);
758 rcu_read_unlock();
4c4a2214 759 task_unlock(task);
0b7f569e
KH
760 if (!curr)
761 return 0;
762 if (curr->use_hierarchy)
763 ret = css_is_ancestor(&curr->css, &mem->css);
764 else
765 ret = (curr == mem);
766 css_put(&curr->css);
4c4a2214
DR
767 return ret;
768}
769
6c48a1d0
KH
770/*
771 * prev_priority control...this will be used in memory reclaim path.
772 */
773int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
774{
2733c06a
KM
775 int prev_priority;
776
777 spin_lock(&mem->reclaim_param_lock);
778 prev_priority = mem->prev_priority;
779 spin_unlock(&mem->reclaim_param_lock);
780
781 return prev_priority;
6c48a1d0
KH
782}
783
784void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
785{
2733c06a 786 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
787 if (priority < mem->prev_priority)
788 mem->prev_priority = priority;
2733c06a 789 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
790}
791
792void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
793{
2733c06a 794 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 795 mem->prev_priority = priority;
2733c06a 796 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
797}
798
c772be93 799static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
800{
801 unsigned long active;
802 unsigned long inactive;
c772be93
KM
803 unsigned long gb;
804 unsigned long inactive_ratio;
14797e23 805
14067bb3
KH
806 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
807 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 808
c772be93
KM
809 gb = (inactive + active) >> (30 - PAGE_SHIFT);
810 if (gb)
811 inactive_ratio = int_sqrt(10 * gb);
812 else
813 inactive_ratio = 1;
814
815 if (present_pages) {
816 present_pages[0] = inactive;
817 present_pages[1] = active;
818 }
819
820 return inactive_ratio;
821}
822
823int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
824{
825 unsigned long active;
826 unsigned long inactive;
827 unsigned long present_pages[2];
828 unsigned long inactive_ratio;
829
830 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
831
832 inactive = present_pages[0];
833 active = present_pages[1];
834
835 if (inactive * inactive_ratio < active)
14797e23
KM
836 return 1;
837
838 return 0;
839}
840
56e49d21
RR
841int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
842{
843 unsigned long active;
844 unsigned long inactive;
845
846 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
847 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
848
849 return (active > inactive);
850}
851
a3d8e054
KM
852unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
853 struct zone *zone,
854 enum lru_list lru)
855{
856 int nid = zone->zone_pgdat->node_id;
857 int zid = zone_idx(zone);
858 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
859
860 return MEM_CGROUP_ZSTAT(mz, lru);
861}
862
3e2f41f1
KM
863struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
864 struct zone *zone)
865{
866 int nid = zone->zone_pgdat->node_id;
867 int zid = zone_idx(zone);
868 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
869
870 return &mz->reclaim_stat;
871}
872
873struct zone_reclaim_stat *
874mem_cgroup_get_reclaim_stat_from_page(struct page *page)
875{
876 struct page_cgroup *pc;
877 struct mem_cgroup_per_zone *mz;
878
879 if (mem_cgroup_disabled())
880 return NULL;
881
882 pc = lookup_page_cgroup(page);
bd112db8
DN
883 /*
884 * Used bit is set without atomic ops but after smp_wmb().
885 * For making pc->mem_cgroup visible, insert smp_rmb() here.
886 */
887 smp_rmb();
888 if (!PageCgroupUsed(pc))
889 return NULL;
890
3e2f41f1
KM
891 mz = page_cgroup_zoneinfo(pc);
892 if (!mz)
893 return NULL;
894
895 return &mz->reclaim_stat;
896}
897
66e1707b
BS
898unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
899 struct list_head *dst,
900 unsigned long *scanned, int order,
901 int mode, struct zone *z,
902 struct mem_cgroup *mem_cont,
4f98a2fe 903 int active, int file)
66e1707b
BS
904{
905 unsigned long nr_taken = 0;
906 struct page *page;
907 unsigned long scan;
908 LIST_HEAD(pc_list);
909 struct list_head *src;
ff7283fa 910 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
911 int nid = z->zone_pgdat->node_id;
912 int zid = zone_idx(z);
913 struct mem_cgroup_per_zone *mz;
b7c46d15 914 int lru = LRU_FILE * file + active;
2ffebca6 915 int ret;
66e1707b 916
cf475ad2 917 BUG_ON(!mem_cont);
1ecaab2b 918 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 919 src = &mz->lists[lru];
66e1707b 920
ff7283fa
KH
921 scan = 0;
922 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 923 if (scan >= nr_to_scan)
ff7283fa 924 break;
08e552c6
KH
925
926 page = pc->page;
52d4b9ac
KH
927 if (unlikely(!PageCgroupUsed(pc)))
928 continue;
436c6541 929 if (unlikely(!PageLRU(page)))
ff7283fa 930 continue;
ff7283fa 931
436c6541 932 scan++;
2ffebca6
KH
933 ret = __isolate_lru_page(page, mode, file);
934 switch (ret) {
935 case 0:
66e1707b 936 list_move(&page->lru, dst);
2ffebca6 937 mem_cgroup_del_lru(page);
66e1707b 938 nr_taken++;
2ffebca6
KH
939 break;
940 case -EBUSY:
941 /* we don't affect global LRU but rotate in our LRU */
942 mem_cgroup_rotate_lru_list(page, page_lru(page));
943 break;
944 default:
945 break;
66e1707b
BS
946 }
947 }
948
66e1707b
BS
949 *scanned = scan;
950 return nr_taken;
951}
952
6d61ef40
BS
953#define mem_cgroup_from_res_counter(counter, member) \
954 container_of(counter, struct mem_cgroup, member)
955
b85a96c0
DN
956static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
957{
958 if (do_swap_account) {
959 if (res_counter_check_under_limit(&mem->res) &&
960 res_counter_check_under_limit(&mem->memsw))
961 return true;
962 } else
963 if (res_counter_check_under_limit(&mem->res))
964 return true;
965 return false;
966}
967
a7885eb8
KM
968static unsigned int get_swappiness(struct mem_cgroup *memcg)
969{
970 struct cgroup *cgrp = memcg->css.cgroup;
971 unsigned int swappiness;
972
973 /* root ? */
974 if (cgrp->parent == NULL)
975 return vm_swappiness;
976
977 spin_lock(&memcg->reclaim_param_lock);
978 swappiness = memcg->swappiness;
979 spin_unlock(&memcg->reclaim_param_lock);
980
981 return swappiness;
982}
983
81d39c20
KH
984static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
985{
986 int *val = data;
987 (*val)++;
988 return 0;
989}
e222432b
BS
990
991/**
992 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
993 * @memcg: The memory cgroup that went over limit
994 * @p: Task that is going to be killed
995 *
996 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
997 * enabled
998 */
999void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1000{
1001 struct cgroup *task_cgrp;
1002 struct cgroup *mem_cgrp;
1003 /*
1004 * Need a buffer in BSS, can't rely on allocations. The code relies
1005 * on the assumption that OOM is serialized for memory controller.
1006 * If this assumption is broken, revisit this code.
1007 */
1008 static char memcg_name[PATH_MAX];
1009 int ret;
1010
1011 if (!memcg)
1012 return;
1013
1014
1015 rcu_read_lock();
1016
1017 mem_cgrp = memcg->css.cgroup;
1018 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1019
1020 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1021 if (ret < 0) {
1022 /*
1023 * Unfortunately, we are unable to convert to a useful name
1024 * But we'll still print out the usage information
1025 */
1026 rcu_read_unlock();
1027 goto done;
1028 }
1029 rcu_read_unlock();
1030
1031 printk(KERN_INFO "Task in %s killed", memcg_name);
1032
1033 rcu_read_lock();
1034 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1035 if (ret < 0) {
1036 rcu_read_unlock();
1037 goto done;
1038 }
1039 rcu_read_unlock();
1040
1041 /*
1042 * Continues from above, so we don't need an KERN_ level
1043 */
1044 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1045done:
1046
1047 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1048 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1049 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1050 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1051 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1052 "failcnt %llu\n",
1053 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1054 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1055 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1056}
1057
81d39c20
KH
1058/*
1059 * This function returns the number of memcg under hierarchy tree. Returns
1060 * 1(self count) if no children.
1061 */
1062static int mem_cgroup_count_children(struct mem_cgroup *mem)
1063{
1064 int num = 0;
1065 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1066 return num;
1067}
1068
6d61ef40 1069/*
04046e1a
KH
1070 * Visit the first child (need not be the first child as per the ordering
1071 * of the cgroup list, since we track last_scanned_child) of @mem and use
1072 * that to reclaim free pages from.
1073 */
1074static struct mem_cgroup *
1075mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1076{
1077 struct mem_cgroup *ret = NULL;
1078 struct cgroup_subsys_state *css;
1079 int nextid, found;
1080
1081 if (!root_mem->use_hierarchy) {
1082 css_get(&root_mem->css);
1083 ret = root_mem;
1084 }
1085
1086 while (!ret) {
1087 rcu_read_lock();
1088 nextid = root_mem->last_scanned_child + 1;
1089 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1090 &found);
1091 if (css && css_tryget(css))
1092 ret = container_of(css, struct mem_cgroup, css);
1093
1094 rcu_read_unlock();
1095 /* Updates scanning parameter */
1096 spin_lock(&root_mem->reclaim_param_lock);
1097 if (!css) {
1098 /* this means start scan from ID:1 */
1099 root_mem->last_scanned_child = 0;
1100 } else
1101 root_mem->last_scanned_child = found;
1102 spin_unlock(&root_mem->reclaim_param_lock);
1103 }
1104
1105 return ret;
1106}
1107
1108/*
1109 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1110 * we reclaimed from, so that we don't end up penalizing one child extensively
1111 * based on its position in the children list.
6d61ef40
BS
1112 *
1113 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1114 *
1115 * We give up and return to the caller when we visit root_mem twice.
1116 * (other groups can be removed while we're walking....)
81d39c20
KH
1117 *
1118 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1119 */
1120static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1121 struct zone *zone,
75822b44
BS
1122 gfp_t gfp_mask,
1123 unsigned long reclaim_options)
6d61ef40 1124{
04046e1a
KH
1125 struct mem_cgroup *victim;
1126 int ret, total = 0;
1127 int loop = 0;
75822b44
BS
1128 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1129 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1130 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1131 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1132
22a668d7
KH
1133 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1134 if (root_mem->memsw_is_minimum)
1135 noswap = true;
1136
4e416953 1137 while (1) {
04046e1a 1138 victim = mem_cgroup_select_victim(root_mem);
4e416953 1139 if (victim == root_mem) {
04046e1a 1140 loop++;
4e416953
BS
1141 if (loop >= 2) {
1142 /*
1143 * If we have not been able to reclaim
1144 * anything, it might because there are
1145 * no reclaimable pages under this hierarchy
1146 */
1147 if (!check_soft || !total) {
1148 css_put(&victim->css);
1149 break;
1150 }
1151 /*
1152 * We want to do more targetted reclaim.
1153 * excess >> 2 is not to excessive so as to
1154 * reclaim too much, nor too less that we keep
1155 * coming back to reclaim from this cgroup
1156 */
1157 if (total >= (excess >> 2) ||
1158 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1159 css_put(&victim->css);
1160 break;
1161 }
1162 }
1163 }
04046e1a
KH
1164 if (!mem_cgroup_local_usage(&victim->stat)) {
1165 /* this cgroup's local usage == 0 */
1166 css_put(&victim->css);
6d61ef40
BS
1167 continue;
1168 }
04046e1a 1169 /* we use swappiness of local cgroup */
4e416953
BS
1170 if (check_soft)
1171 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1172 noswap, get_swappiness(victim), zone,
1173 zone->zone_pgdat->node_id);
1174 else
1175 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1176 noswap, get_swappiness(victim));
04046e1a 1177 css_put(&victim->css);
81d39c20
KH
1178 /*
1179 * At shrinking usage, we can't check we should stop here or
1180 * reclaim more. It's depends on callers. last_scanned_child
1181 * will work enough for keeping fairness under tree.
1182 */
1183 if (shrink)
1184 return ret;
04046e1a 1185 total += ret;
4e416953
BS
1186 if (check_soft) {
1187 if (res_counter_check_under_soft_limit(&root_mem->res))
1188 return total;
1189 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1190 return 1 + total;
6d61ef40 1191 }
04046e1a 1192 return total;
6d61ef40
BS
1193}
1194
a636b327
KH
1195bool mem_cgroup_oom_called(struct task_struct *task)
1196{
1197 bool ret = false;
1198 struct mem_cgroup *mem;
1199 struct mm_struct *mm;
1200
1201 rcu_read_lock();
1202 mm = task->mm;
1203 if (!mm)
1204 mm = &init_mm;
1205 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1206 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1207 ret = true;
1208 rcu_read_unlock();
1209 return ret;
1210}
0b7f569e
KH
1211
1212static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1213{
1214 mem->last_oom_jiffies = jiffies;
1215 return 0;
1216}
1217
1218static void record_last_oom(struct mem_cgroup *mem)
1219{
1220 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1221}
1222
d69b042f
BS
1223/*
1224 * Currently used to update mapped file statistics, but the routine can be
1225 * generalized to update other statistics as well.
1226 */
1227void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
1228{
1229 struct mem_cgroup *mem;
1230 struct mem_cgroup_stat *stat;
1231 struct mem_cgroup_stat_cpu *cpustat;
1232 int cpu;
1233 struct page_cgroup *pc;
1234
1235 if (!page_is_file_cache(page))
1236 return;
1237
1238 pc = lookup_page_cgroup(page);
1239 if (unlikely(!pc))
1240 return;
1241
1242 lock_page_cgroup(pc);
1243 mem = pc->mem_cgroup;
1244 if (!mem)
1245 goto done;
1246
1247 if (!PageCgroupUsed(pc))
1248 goto done;
1249
1250 /*
1251 * Preemption is already disabled, we don't need get_cpu()
1252 */
1253 cpu = smp_processor_id();
1254 stat = &mem->stat;
1255 cpustat = &stat->cpustat[cpu];
1256
1257 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
1258done:
1259 unlock_page_cgroup(pc);
1260}
0b7f569e 1261
f817ed48
KH
1262/*
1263 * Unlike exported interface, "oom" parameter is added. if oom==true,
1264 * oom-killer can be invoked.
8a9f3ccd 1265 */
f817ed48 1266static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34 1267 gfp_t gfp_mask, struct mem_cgroup **memcg,
f64c3f54 1268 bool oom, struct page *page)
8a9f3ccd 1269{
4e649152 1270 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 1271 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4e649152 1272 struct res_counter *fail_res;
a636b327
KH
1273
1274 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1275 /* Don't account this! */
1276 *memcg = NULL;
1277 return 0;
1278 }
1279
8a9f3ccd 1280 /*
3be91277
HD
1281 * We always charge the cgroup the mm_struct belongs to.
1282 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1283 * thread group leader migrates. It's possible that mm is not
1284 * set, if so charge the init_mm (happens for pagecache usage).
1285 */
54595fe2
KH
1286 mem = *memcg;
1287 if (likely(!mem)) {
1288 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 1289 *memcg = mem;
e8589cc1 1290 } else {
7a81b88c 1291 css_get(&mem->css);
e8589cc1 1292 }
54595fe2
KH
1293 if (unlikely(!mem))
1294 return 0;
1295
46f7e602 1296 VM_BUG_ON(css_is_removed(&mem->css));
8a9f3ccd 1297
8c7c6e34 1298 while (1) {
0c3e73e8 1299 int ret = 0;
75822b44 1300 unsigned long flags = 0;
7a81b88c 1301
0c3e73e8
BS
1302 if (mem_cgroup_is_root(mem))
1303 goto done;
4e649152 1304 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
1305 if (likely(!ret)) {
1306 if (!do_swap_account)
1307 break;
28dbc4b6 1308 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
4e649152 1309 &fail_res);
8c7c6e34
KH
1310 if (likely(!ret))
1311 break;
1312 /* mem+swap counter fails */
4e649152 1313 res_counter_uncharge(&mem->res, PAGE_SIZE);
75822b44 1314 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
6d61ef40
BS
1315 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1316 memsw);
1317 } else
1318 /* mem counter fails */
1319 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1320 res);
1321
3be91277 1322 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1323 goto nomem;
e1a1cd59 1324
4e416953
BS
1325 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1326 gfp_mask, flags);
4d1c6273
DN
1327 if (ret)
1328 continue;
66e1707b
BS
1329
1330 /*
8869b8f6
HD
1331 * try_to_free_mem_cgroup_pages() might not give us a full
1332 * picture of reclaim. Some pages are reclaimed and might be
1333 * moved to swap cache or just unmapped from the cgroup.
1334 * Check the limit again to see if the reclaim reduced the
1335 * current usage of the cgroup before giving up
8c7c6e34 1336 *
8869b8f6 1337 */
b85a96c0
DN
1338 if (mem_cgroup_check_under_limit(mem_over_limit))
1339 continue;
3be91277
HD
1340
1341 if (!nr_retries--) {
a636b327 1342 if (oom) {
7f4d454d 1343 mutex_lock(&memcg_tasklist);
88700756 1344 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 1345 mutex_unlock(&memcg_tasklist);
0b7f569e 1346 record_last_oom(mem_over_limit);
a636b327 1347 }
7a81b88c 1348 goto nomem;
66e1707b 1349 }
8a9f3ccd 1350 }
f64c3f54 1351 /*
4e649152
KH
1352 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1353 * if they exceeds softlimit.
f64c3f54 1354 */
4e649152
KH
1355 if (mem_cgroup_soft_limit_check(mem))
1356 mem_cgroup_update_tree(mem, page);
0c3e73e8 1357done:
7a81b88c
KH
1358 return 0;
1359nomem:
1360 css_put(&mem->css);
1361 return -ENOMEM;
1362}
8a9f3ccd 1363
a3b2d692
KH
1364/*
1365 * A helper function to get mem_cgroup from ID. must be called under
1366 * rcu_read_lock(). The caller must check css_is_removed() or some if
1367 * it's concern. (dropping refcnt from swap can be called against removed
1368 * memcg.)
1369 */
1370static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1371{
1372 struct cgroup_subsys_state *css;
1373
1374 /* ID 0 is unused ID */
1375 if (!id)
1376 return NULL;
1377 css = css_lookup(&mem_cgroup_subsys, id);
1378 if (!css)
1379 return NULL;
1380 return container_of(css, struct mem_cgroup, css);
1381}
1382
b5a84319
KH
1383static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1384{
1385 struct mem_cgroup *mem;
3c776e64 1386 struct page_cgroup *pc;
a3b2d692 1387 unsigned short id;
b5a84319
KH
1388 swp_entry_t ent;
1389
3c776e64
DN
1390 VM_BUG_ON(!PageLocked(page));
1391
b5a84319
KH
1392 if (!PageSwapCache(page))
1393 return NULL;
1394
3c776e64 1395 pc = lookup_page_cgroup(page);
c0bd3f63 1396 lock_page_cgroup(pc);
a3b2d692 1397 if (PageCgroupUsed(pc)) {
3c776e64 1398 mem = pc->mem_cgroup;
a3b2d692
KH
1399 if (mem && !css_tryget(&mem->css))
1400 mem = NULL;
1401 } else {
3c776e64 1402 ent.val = page_private(page);
a3b2d692
KH
1403 id = lookup_swap_cgroup(ent);
1404 rcu_read_lock();
1405 mem = mem_cgroup_lookup(id);
1406 if (mem && !css_tryget(&mem->css))
1407 mem = NULL;
1408 rcu_read_unlock();
3c776e64 1409 }
c0bd3f63 1410 unlock_page_cgroup(pc);
b5a84319
KH
1411 return mem;
1412}
1413
7a81b88c 1414/*
a5e924f5 1415 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1416 * USED state. If already USED, uncharge and return.
1417 */
1418
1419static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1420 struct page_cgroup *pc,
1421 enum charge_type ctype)
1422{
7a81b88c
KH
1423 /* try_charge() can return NULL to *memcg, taking care of it. */
1424 if (!mem)
1425 return;
52d4b9ac
KH
1426
1427 lock_page_cgroup(pc);
1428 if (unlikely(PageCgroupUsed(pc))) {
1429 unlock_page_cgroup(pc);
0c3e73e8 1430 if (!mem_cgroup_is_root(mem)) {
4e649152 1431 res_counter_uncharge(&mem->res, PAGE_SIZE);
0c3e73e8 1432 if (do_swap_account)
4e649152 1433 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
0c3e73e8 1434 }
52d4b9ac 1435 css_put(&mem->css);
7a81b88c 1436 return;
52d4b9ac 1437 }
4b3bde4c 1438
8a9f3ccd 1439 pc->mem_cgroup = mem;
261fb61a
KH
1440 /*
1441 * We access a page_cgroup asynchronously without lock_page_cgroup().
1442 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1443 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1444 * before USED bit, we need memory barrier here.
1445 * See mem_cgroup_add_lru_list(), etc.
1446 */
08e552c6 1447 smp_wmb();
4b3bde4c
BS
1448 switch (ctype) {
1449 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1450 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1451 SetPageCgroupCache(pc);
1452 SetPageCgroupUsed(pc);
1453 break;
1454 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1455 ClearPageCgroupCache(pc);
1456 SetPageCgroupUsed(pc);
1457 break;
1458 default:
1459 break;
1460 }
3be91277 1461
08e552c6 1462 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1463
52d4b9ac 1464 unlock_page_cgroup(pc);
7a81b88c 1465}
66e1707b 1466
f817ed48
KH
1467/**
1468 * mem_cgroup_move_account - move account of the page
1469 * @pc: page_cgroup of the page.
1470 * @from: mem_cgroup which the page is moved from.
1471 * @to: mem_cgroup which the page is moved to. @from != @to.
1472 *
1473 * The caller must confirm following.
08e552c6 1474 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
1475 *
1476 * returns 0 at success,
1477 * returns -EBUSY when lock is busy or "pc" is unstable.
1478 *
1479 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1480 * new cgroup. It should be done by a caller.
1481 */
1482
1483static int mem_cgroup_move_account(struct page_cgroup *pc,
1484 struct mem_cgroup *from, struct mem_cgroup *to)
1485{
1486 struct mem_cgroup_per_zone *from_mz, *to_mz;
1487 int nid, zid;
1488 int ret = -EBUSY;
d69b042f
BS
1489 struct page *page;
1490 int cpu;
1491 struct mem_cgroup_stat *stat;
1492 struct mem_cgroup_stat_cpu *cpustat;
f817ed48 1493
f817ed48 1494 VM_BUG_ON(from == to);
08e552c6 1495 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
1496
1497 nid = page_cgroup_nid(pc);
1498 zid = page_cgroup_zid(pc);
1499 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1500 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1501
f817ed48
KH
1502 if (!trylock_page_cgroup(pc))
1503 return ret;
1504
1505 if (!PageCgroupUsed(pc))
1506 goto out;
1507
1508 if (pc->mem_cgroup != from)
1509 goto out;
1510
0c3e73e8 1511 if (!mem_cgroup_is_root(from))
4e649152 1512 res_counter_uncharge(&from->res, PAGE_SIZE);
08e552c6 1513 mem_cgroup_charge_statistics(from, pc, false);
d69b042f
BS
1514
1515 page = pc->page;
1516 if (page_is_file_cache(page) && page_mapped(page)) {
1517 cpu = smp_processor_id();
1518 /* Update mapped_file data for mem_cgroup "from" */
1519 stat = &from->stat;
1520 cpustat = &stat->cpustat[cpu];
1521 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1522 -1);
1523
1524 /* Update mapped_file data for mem_cgroup "to" */
1525 stat = &to->stat;
1526 cpustat = &stat->cpustat[cpu];
1527 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1528 1);
1529 }
1530
0c3e73e8 1531 if (do_swap_account && !mem_cgroup_is_root(from))
4e649152 1532 res_counter_uncharge(&from->memsw, PAGE_SIZE);
40d58138
DN
1533 css_put(&from->css);
1534
1535 css_get(&to->css);
08e552c6
KH
1536 pc->mem_cgroup = to;
1537 mem_cgroup_charge_statistics(to, pc, true);
08e552c6 1538 ret = 0;
f817ed48
KH
1539out:
1540 unlock_page_cgroup(pc);
88703267
KH
1541 /*
1542 * We charges against "to" which may not have any tasks. Then, "to"
1543 * can be under rmdir(). But in current implementation, caller of
1544 * this function is just force_empty() and it's garanteed that
1545 * "to" is never removed. So, we don't check rmdir status here.
1546 */
f817ed48
KH
1547 return ret;
1548}
1549
1550/*
1551 * move charges to its parent.
1552 */
1553
1554static int mem_cgroup_move_parent(struct page_cgroup *pc,
1555 struct mem_cgroup *child,
1556 gfp_t gfp_mask)
1557{
08e552c6 1558 struct page *page = pc->page;
f817ed48
KH
1559 struct cgroup *cg = child->css.cgroup;
1560 struct cgroup *pcg = cg->parent;
1561 struct mem_cgroup *parent;
f817ed48
KH
1562 int ret;
1563
1564 /* Is ROOT ? */
1565 if (!pcg)
1566 return -EINVAL;
1567
08e552c6 1568
f817ed48
KH
1569 parent = mem_cgroup_from_cont(pcg);
1570
08e552c6 1571
f64c3f54 1572 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
a636b327 1573 if (ret || !parent)
f817ed48
KH
1574 return ret;
1575
40d58138
DN
1576 if (!get_page_unless_zero(page)) {
1577 ret = -EBUSY;
1578 goto uncharge;
1579 }
08e552c6
KH
1580
1581 ret = isolate_lru_page(page);
1582
1583 if (ret)
1584 goto cancel;
f817ed48 1585
f817ed48 1586 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1587
08e552c6
KH
1588 putback_lru_page(page);
1589 if (!ret) {
1590 put_page(page);
40d58138
DN
1591 /* drop extra refcnt by try_charge() */
1592 css_put(&parent->css);
08e552c6 1593 return 0;
8c7c6e34 1594 }
40d58138 1595
08e552c6 1596cancel:
40d58138
DN
1597 put_page(page);
1598uncharge:
1599 /* drop extra refcnt by try_charge() */
1600 css_put(&parent->css);
1601 /* uncharge if move fails */
0c3e73e8 1602 if (!mem_cgroup_is_root(parent)) {
4e649152 1603 res_counter_uncharge(&parent->res, PAGE_SIZE);
0c3e73e8 1604 if (do_swap_account)
4e649152 1605 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
0c3e73e8 1606 }
f817ed48
KH
1607 return ret;
1608}
1609
7a81b88c
KH
1610/*
1611 * Charge the memory controller for page usage.
1612 * Return
1613 * 0 if the charge was successful
1614 * < 0 if the cgroup is over its limit
1615 */
1616static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1617 gfp_t gfp_mask, enum charge_type ctype,
1618 struct mem_cgroup *memcg)
1619{
1620 struct mem_cgroup *mem;
1621 struct page_cgroup *pc;
1622 int ret;
1623
1624 pc = lookup_page_cgroup(page);
1625 /* can happen at boot */
1626 if (unlikely(!pc))
1627 return 0;
1628 prefetchw(pc);
1629
1630 mem = memcg;
f64c3f54 1631 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
a636b327 1632 if (ret || !mem)
7a81b88c
KH
1633 return ret;
1634
1635 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1636 return 0;
8a9f3ccd
BS
1637}
1638
7a81b88c
KH
1639int mem_cgroup_newpage_charge(struct page *page,
1640 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1641{
f8d66542 1642 if (mem_cgroup_disabled())
cede86ac 1643 return 0;
52d4b9ac
KH
1644 if (PageCompound(page))
1645 return 0;
69029cd5
KH
1646 /*
1647 * If already mapped, we don't have to account.
1648 * If page cache, page->mapping has address_space.
1649 * But page->mapping may have out-of-use anon_vma pointer,
1650 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1651 * is NULL.
1652 */
1653 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1654 return 0;
1655 if (unlikely(!mm))
1656 mm = &init_mm;
217bc319 1657 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1658 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1659}
1660
83aae4c7
DN
1661static void
1662__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1663 enum charge_type ctype);
1664
e1a1cd59
BS
1665int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1666 gfp_t gfp_mask)
8697d331 1667{
b5a84319
KH
1668 struct mem_cgroup *mem = NULL;
1669 int ret;
1670
f8d66542 1671 if (mem_cgroup_disabled())
cede86ac 1672 return 0;
52d4b9ac
KH
1673 if (PageCompound(page))
1674 return 0;
accf163e
KH
1675 /*
1676 * Corner case handling. This is called from add_to_page_cache()
1677 * in usual. But some FS (shmem) precharges this page before calling it
1678 * and call add_to_page_cache() with GFP_NOWAIT.
1679 *
1680 * For GFP_NOWAIT case, the page may be pre-charged before calling
1681 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1682 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1683 * And when the page is SwapCache, it should take swap information
1684 * into account. This is under lock_page() now.
accf163e
KH
1685 */
1686 if (!(gfp_mask & __GFP_WAIT)) {
1687 struct page_cgroup *pc;
1688
52d4b9ac
KH
1689
1690 pc = lookup_page_cgroup(page);
1691 if (!pc)
1692 return 0;
1693 lock_page_cgroup(pc);
1694 if (PageCgroupUsed(pc)) {
1695 unlock_page_cgroup(pc);
accf163e
KH
1696 return 0;
1697 }
52d4b9ac 1698 unlock_page_cgroup(pc);
accf163e
KH
1699 }
1700
b5a84319 1701 if (unlikely(!mm && !mem))
8697d331 1702 mm = &init_mm;
accf163e 1703
c05555b5
KH
1704 if (page_is_file_cache(page))
1705 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1706 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1707
83aae4c7
DN
1708 /* shmem */
1709 if (PageSwapCache(page)) {
1710 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1711 if (!ret)
1712 __mem_cgroup_commit_charge_swapin(page, mem,
1713 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1714 } else
1715 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1716 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1717
b5a84319 1718 return ret;
e8589cc1
KH
1719}
1720
54595fe2
KH
1721/*
1722 * While swap-in, try_charge -> commit or cancel, the page is locked.
1723 * And when try_charge() successfully returns, one refcnt to memcg without
1724 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1725 * "commit()" or removed by "cancel()"
1726 */
8c7c6e34
KH
1727int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1728 struct page *page,
1729 gfp_t mask, struct mem_cgroup **ptr)
1730{
1731 struct mem_cgroup *mem;
54595fe2 1732 int ret;
8c7c6e34 1733
f8d66542 1734 if (mem_cgroup_disabled())
8c7c6e34
KH
1735 return 0;
1736
1737 if (!do_swap_account)
1738 goto charge_cur_mm;
8c7c6e34
KH
1739 /*
1740 * A racing thread's fault, or swapoff, may have already updated
1741 * the pte, and even removed page from swap cache: return success
1742 * to go on to do_swap_page()'s pte_same() test, which should fail.
1743 */
1744 if (!PageSwapCache(page))
1745 return 0;
b5a84319 1746 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1747 if (!mem)
1748 goto charge_cur_mm;
8c7c6e34 1749 *ptr = mem;
f64c3f54 1750 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
54595fe2
KH
1751 /* drop extra refcnt from tryget */
1752 css_put(&mem->css);
1753 return ret;
8c7c6e34
KH
1754charge_cur_mm:
1755 if (unlikely(!mm))
1756 mm = &init_mm;
f64c3f54 1757 return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
8c7c6e34
KH
1758}
1759
83aae4c7
DN
1760static void
1761__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1762 enum charge_type ctype)
7a81b88c
KH
1763{
1764 struct page_cgroup *pc;
1765
f8d66542 1766 if (mem_cgroup_disabled())
7a81b88c
KH
1767 return;
1768 if (!ptr)
1769 return;
88703267 1770 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 1771 pc = lookup_page_cgroup(page);
544122e5 1772 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1773 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1774 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1775 /*
1776 * Now swap is on-memory. This means this page may be
1777 * counted both as mem and swap....double count.
03f3c433
KH
1778 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1779 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1780 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1781 */
03f3c433 1782 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1783 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1784 unsigned short id;
8c7c6e34 1785 struct mem_cgroup *memcg;
a3b2d692
KH
1786
1787 id = swap_cgroup_record(ent, 0);
1788 rcu_read_lock();
1789 memcg = mem_cgroup_lookup(id);
8c7c6e34 1790 if (memcg) {
a3b2d692
KH
1791 /*
1792 * This recorded memcg can be obsolete one. So, avoid
1793 * calling css_tryget
1794 */
0c3e73e8 1795 if (!mem_cgroup_is_root(memcg))
4e649152 1796 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 1797 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
1798 mem_cgroup_put(memcg);
1799 }
a3b2d692 1800 rcu_read_unlock();
8c7c6e34 1801 }
88703267
KH
1802 /*
1803 * At swapin, we may charge account against cgroup which has no tasks.
1804 * So, rmdir()->pre_destroy() can be called while we do this charge.
1805 * In that case, we need to call pre_destroy() again. check it here.
1806 */
1807 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
1808}
1809
83aae4c7
DN
1810void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1811{
1812 __mem_cgroup_commit_charge_swapin(page, ptr,
1813 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1814}
1815
7a81b88c
KH
1816void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1817{
f8d66542 1818 if (mem_cgroup_disabled())
7a81b88c
KH
1819 return;
1820 if (!mem)
1821 return;
0c3e73e8 1822 if (!mem_cgroup_is_root(mem)) {
4e649152 1823 res_counter_uncharge(&mem->res, PAGE_SIZE);
0c3e73e8 1824 if (do_swap_account)
4e649152 1825 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
0c3e73e8 1826 }
7a81b88c
KH
1827 css_put(&mem->css);
1828}
1829
1830
8a9f3ccd 1831/*
69029cd5 1832 * uncharge if !page_mapped(page)
8a9f3ccd 1833 */
8c7c6e34 1834static struct mem_cgroup *
69029cd5 1835__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1836{
8289546e 1837 struct page_cgroup *pc;
8c7c6e34 1838 struct mem_cgroup *mem = NULL;
072c56c1 1839 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1840
f8d66542 1841 if (mem_cgroup_disabled())
8c7c6e34 1842 return NULL;
4077960e 1843
d13d1443 1844 if (PageSwapCache(page))
8c7c6e34 1845 return NULL;
d13d1443 1846
8697d331 1847 /*
3c541e14 1848 * Check if our page_cgroup is valid
8697d331 1849 */
52d4b9ac
KH
1850 pc = lookup_page_cgroup(page);
1851 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1852 return NULL;
b9c565d5 1853
52d4b9ac 1854 lock_page_cgroup(pc);
d13d1443 1855
8c7c6e34
KH
1856 mem = pc->mem_cgroup;
1857
d13d1443
KH
1858 if (!PageCgroupUsed(pc))
1859 goto unlock_out;
1860
1861 switch (ctype) {
1862 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 1863 case MEM_CGROUP_CHARGE_TYPE_DROP:
d13d1443
KH
1864 if (page_mapped(page))
1865 goto unlock_out;
1866 break;
1867 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1868 if (!PageAnon(page)) { /* Shared memory */
1869 if (page->mapping && !page_is_file_cache(page))
1870 goto unlock_out;
1871 } else if (page_mapped(page)) /* Anon */
1872 goto unlock_out;
1873 break;
1874 default:
1875 break;
52d4b9ac 1876 }
d13d1443 1877
0c3e73e8 1878 if (!mem_cgroup_is_root(mem)) {
4e649152 1879 res_counter_uncharge(&mem->res, PAGE_SIZE);
0c3e73e8
BS
1880 if (do_swap_account &&
1881 (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
4e649152 1882 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
0c3e73e8
BS
1883 }
1884 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1885 mem_cgroup_swap_statistics(mem, true);
08e552c6 1886 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 1887
52d4b9ac 1888 ClearPageCgroupUsed(pc);
544122e5
KH
1889 /*
1890 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1891 * freed from LRU. This is safe because uncharged page is expected not
1892 * to be reused (freed soon). Exception is SwapCache, it's handled by
1893 * special functions.
1894 */
b9c565d5 1895
69029cd5 1896 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1897 unlock_page_cgroup(pc);
fb59e9f1 1898
4e649152 1899 if (mem_cgroup_soft_limit_check(mem))
f64c3f54 1900 mem_cgroup_update_tree(mem, page);
a7fe942e
KH
1901 /* at swapout, this memcg will be accessed to record to swap */
1902 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1903 css_put(&mem->css);
6d12e2d8 1904
8c7c6e34 1905 return mem;
d13d1443
KH
1906
1907unlock_out:
1908 unlock_page_cgroup(pc);
8c7c6e34 1909 return NULL;
3c541e14
BS
1910}
1911
69029cd5
KH
1912void mem_cgroup_uncharge_page(struct page *page)
1913{
52d4b9ac
KH
1914 /* early check. */
1915 if (page_mapped(page))
1916 return;
1917 if (page->mapping && !PageAnon(page))
1918 return;
69029cd5
KH
1919 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1920}
1921
1922void mem_cgroup_uncharge_cache_page(struct page *page)
1923{
1924 VM_BUG_ON(page_mapped(page));
b7abea96 1925 VM_BUG_ON(page->mapping);
69029cd5
KH
1926 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1927}
1928
e767e056 1929#ifdef CONFIG_SWAP
8c7c6e34 1930/*
e767e056 1931 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
1932 * memcg information is recorded to swap_cgroup of "ent"
1933 */
8a9478ca
KH
1934void
1935mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
1936{
1937 struct mem_cgroup *memcg;
8a9478ca
KH
1938 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1939
1940 if (!swapout) /* this was a swap cache but the swap is unused ! */
1941 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1942
1943 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 1944
8c7c6e34 1945 /* record memcg information */
8a9478ca 1946 if (do_swap_account && swapout && memcg) {
a3b2d692 1947 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
1948 mem_cgroup_get(memcg);
1949 }
8a9478ca 1950 if (swapout && memcg)
a7fe942e 1951 css_put(&memcg->css);
8c7c6e34 1952}
e767e056 1953#endif
8c7c6e34
KH
1954
1955#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1956/*
1957 * called from swap_entry_free(). remove record in swap_cgroup and
1958 * uncharge "memsw" account.
1959 */
1960void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1961{
8c7c6e34 1962 struct mem_cgroup *memcg;
a3b2d692 1963 unsigned short id;
8c7c6e34
KH
1964
1965 if (!do_swap_account)
1966 return;
1967
a3b2d692
KH
1968 id = swap_cgroup_record(ent, 0);
1969 rcu_read_lock();
1970 memcg = mem_cgroup_lookup(id);
8c7c6e34 1971 if (memcg) {
a3b2d692
KH
1972 /*
1973 * We uncharge this because swap is freed.
1974 * This memcg can be obsolete one. We avoid calling css_tryget
1975 */
0c3e73e8 1976 if (!mem_cgroup_is_root(memcg))
4e649152 1977 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 1978 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
1979 mem_cgroup_put(memcg);
1980 }
a3b2d692 1981 rcu_read_unlock();
d13d1443 1982}
8c7c6e34 1983#endif
d13d1443 1984
ae41be37 1985/*
01b1ae63
KH
1986 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1987 * page belongs to.
ae41be37 1988 */
01b1ae63 1989int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1990{
1991 struct page_cgroup *pc;
e8589cc1 1992 struct mem_cgroup *mem = NULL;
e8589cc1 1993 int ret = 0;
8869b8f6 1994
f8d66542 1995 if (mem_cgroup_disabled())
4077960e
BS
1996 return 0;
1997
52d4b9ac
KH
1998 pc = lookup_page_cgroup(page);
1999 lock_page_cgroup(pc);
2000 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2001 mem = pc->mem_cgroup;
2002 css_get(&mem->css);
e8589cc1 2003 }
52d4b9ac 2004 unlock_page_cgroup(pc);
01b1ae63 2005
e8589cc1 2006 if (mem) {
f64c3f54
BS
2007 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2008 page);
e8589cc1
KH
2009 css_put(&mem->css);
2010 }
01b1ae63 2011 *ptr = mem;
e8589cc1 2012 return ret;
ae41be37 2013}
8869b8f6 2014
69029cd5 2015/* remove redundant charge if migration failed*/
01b1ae63
KH
2016void mem_cgroup_end_migration(struct mem_cgroup *mem,
2017 struct page *oldpage, struct page *newpage)
ae41be37 2018{
01b1ae63
KH
2019 struct page *target, *unused;
2020 struct page_cgroup *pc;
2021 enum charge_type ctype;
2022
2023 if (!mem)
2024 return;
88703267 2025 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2026 /* at migration success, oldpage->mapping is NULL. */
2027 if (oldpage->mapping) {
2028 target = oldpage;
2029 unused = NULL;
2030 } else {
2031 target = newpage;
2032 unused = oldpage;
2033 }
2034
2035 if (PageAnon(target))
2036 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2037 else if (page_is_file_cache(target))
2038 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2039 else
2040 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2041
2042 /* unused page is not on radix-tree now. */
d13d1443 2043 if (unused)
01b1ae63
KH
2044 __mem_cgroup_uncharge_common(unused, ctype);
2045
2046 pc = lookup_page_cgroup(target);
69029cd5 2047 /*
01b1ae63
KH
2048 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2049 * So, double-counting is effectively avoided.
2050 */
2051 __mem_cgroup_commit_charge(mem, pc, ctype);
2052
2053 /*
2054 * Both of oldpage and newpage are still under lock_page().
2055 * Then, we don't have to care about race in radix-tree.
2056 * But we have to be careful that this page is unmapped or not.
2057 *
2058 * There is a case for !page_mapped(). At the start of
2059 * migration, oldpage was mapped. But now, it's zapped.
2060 * But we know *target* page is not freed/reused under us.
2061 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 2062 */
01b1ae63
KH
2063 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2064 mem_cgroup_uncharge_page(target);
88703267
KH
2065 /*
2066 * At migration, we may charge account against cgroup which has no tasks
2067 * So, rmdir()->pre_destroy() can be called while we do this charge.
2068 * In that case, we need to call pre_destroy() again. check it here.
2069 */
2070 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2071}
78fb7466 2072
c9b0ed51 2073/*
ae3abae6
DN
2074 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2075 * Calling hierarchical_reclaim is not enough because we should update
2076 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2077 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2078 * not from the memcg which this page would be charged to.
2079 * try_charge_swapin does all of these works properly.
c9b0ed51 2080 */
ae3abae6 2081int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2082 struct mm_struct *mm,
2083 gfp_t gfp_mask)
c9b0ed51 2084{
b5a84319 2085 struct mem_cgroup *mem = NULL;
ae3abae6 2086 int ret;
c9b0ed51 2087
f8d66542 2088 if (mem_cgroup_disabled())
cede86ac 2089 return 0;
c9b0ed51 2090
ae3abae6
DN
2091 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2092 if (!ret)
2093 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2094
ae3abae6 2095 return ret;
c9b0ed51
KH
2096}
2097
8c7c6e34
KH
2098static DEFINE_MUTEX(set_limit_mutex);
2099
d38d2a75 2100static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2101 unsigned long long val)
628f4235 2102{
81d39c20 2103 int retry_count;
628f4235 2104 int progress;
8c7c6e34 2105 u64 memswlimit;
628f4235 2106 int ret = 0;
81d39c20
KH
2107 int children = mem_cgroup_count_children(memcg);
2108 u64 curusage, oldusage;
2109
2110 /*
2111 * For keeping hierarchical_reclaim simple, how long we should retry
2112 * is depends on callers. We set our retry-count to be function
2113 * of # of children which we should visit in this loop.
2114 */
2115 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2116
2117 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2118
8c7c6e34 2119 while (retry_count) {
628f4235
KH
2120 if (signal_pending(current)) {
2121 ret = -EINTR;
2122 break;
2123 }
8c7c6e34
KH
2124 /*
2125 * Rather than hide all in some function, I do this in
2126 * open coded manner. You see what this really does.
2127 * We have to guarantee mem->res.limit < mem->memsw.limit.
2128 */
2129 mutex_lock(&set_limit_mutex);
2130 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2131 if (memswlimit < val) {
2132 ret = -EINVAL;
2133 mutex_unlock(&set_limit_mutex);
628f4235
KH
2134 break;
2135 }
8c7c6e34 2136 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2137 if (!ret) {
2138 if (memswlimit == val)
2139 memcg->memsw_is_minimum = true;
2140 else
2141 memcg->memsw_is_minimum = false;
2142 }
8c7c6e34
KH
2143 mutex_unlock(&set_limit_mutex);
2144
2145 if (!ret)
2146 break;
2147
4e416953
BS
2148 progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
2149 GFP_KERNEL,
2150 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2151 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2152 /* Usage is reduced ? */
2153 if (curusage >= oldusage)
2154 retry_count--;
2155 else
2156 oldusage = curusage;
8c7c6e34 2157 }
14797e23 2158
8c7c6e34
KH
2159 return ret;
2160}
2161
338c8431
LZ
2162static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2163 unsigned long long val)
8c7c6e34 2164{
81d39c20 2165 int retry_count;
8c7c6e34 2166 u64 memlimit, oldusage, curusage;
81d39c20
KH
2167 int children = mem_cgroup_count_children(memcg);
2168 int ret = -EBUSY;
8c7c6e34 2169
81d39c20
KH
2170 /* see mem_cgroup_resize_res_limit */
2171 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2172 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2173 while (retry_count) {
2174 if (signal_pending(current)) {
2175 ret = -EINTR;
2176 break;
2177 }
2178 /*
2179 * Rather than hide all in some function, I do this in
2180 * open coded manner. You see what this really does.
2181 * We have to guarantee mem->res.limit < mem->memsw.limit.
2182 */
2183 mutex_lock(&set_limit_mutex);
2184 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2185 if (memlimit > val) {
2186 ret = -EINVAL;
2187 mutex_unlock(&set_limit_mutex);
2188 break;
2189 }
2190 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2191 if (!ret) {
2192 if (memlimit == val)
2193 memcg->memsw_is_minimum = true;
2194 else
2195 memcg->memsw_is_minimum = false;
2196 }
8c7c6e34
KH
2197 mutex_unlock(&set_limit_mutex);
2198
2199 if (!ret)
2200 break;
2201
4e416953 2202 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
2203 MEM_CGROUP_RECLAIM_NOSWAP |
2204 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 2205 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 2206 /* Usage is reduced ? */
8c7c6e34 2207 if (curusage >= oldusage)
628f4235 2208 retry_count--;
81d39c20
KH
2209 else
2210 oldusage = curusage;
628f4235
KH
2211 }
2212 return ret;
2213}
2214
4e416953
BS
2215unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2216 gfp_t gfp_mask, int nid,
2217 int zid)
2218{
2219 unsigned long nr_reclaimed = 0;
2220 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2221 unsigned long reclaimed;
2222 int loop = 0;
2223 struct mem_cgroup_tree_per_zone *mctz;
2224
2225 if (order > 0)
2226 return 0;
2227
2228 mctz = soft_limit_tree_node_zone(nid, zid);
2229 /*
2230 * This loop can run a while, specially if mem_cgroup's continuously
2231 * keep exceeding their soft limit and putting the system under
2232 * pressure
2233 */
2234 do {
2235 if (next_mz)
2236 mz = next_mz;
2237 else
2238 mz = mem_cgroup_largest_soft_limit_node(mctz);
2239 if (!mz)
2240 break;
2241
2242 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2243 gfp_mask,
2244 MEM_CGROUP_RECLAIM_SOFT);
2245 nr_reclaimed += reclaimed;
2246 spin_lock(&mctz->lock);
2247
2248 /*
2249 * If we failed to reclaim anything from this memory cgroup
2250 * it is time to move on to the next cgroup
2251 */
2252 next_mz = NULL;
2253 if (!reclaimed) {
2254 do {
2255 /*
2256 * Loop until we find yet another one.
2257 *
2258 * By the time we get the soft_limit lock
2259 * again, someone might have aded the
2260 * group back on the RB tree. Iterate to
2261 * make sure we get a different mem.
2262 * mem_cgroup_largest_soft_limit_node returns
2263 * NULL if no other cgroup is present on
2264 * the tree
2265 */
2266 next_mz =
2267 __mem_cgroup_largest_soft_limit_node(mctz);
2268 if (next_mz == mz) {
2269 css_put(&next_mz->mem->css);
2270 next_mz = NULL;
2271 } else /* next_mz == NULL or other memcg */
2272 break;
2273 } while (1);
2274 }
2275 mz->usage_in_excess =
2276 res_counter_soft_limit_excess(&mz->mem->res);
2277 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2278 /*
2279 * One school of thought says that we should not add
2280 * back the node to the tree if reclaim returns 0.
2281 * But our reclaim could return 0, simply because due
2282 * to priority we are exposing a smaller subset of
2283 * memory to reclaim from. Consider this as a longer
2284 * term TODO.
2285 */
2286 if (mz->usage_in_excess)
2287 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz);
2288 spin_unlock(&mctz->lock);
2289 css_put(&mz->mem->css);
2290 loop++;
2291 /*
2292 * Could not reclaim anything and there are no more
2293 * mem cgroups to try or we seem to be looping without
2294 * reclaiming anything.
2295 */
2296 if (!nr_reclaimed &&
2297 (next_mz == NULL ||
2298 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2299 break;
2300 } while (!nr_reclaimed);
2301 if (next_mz)
2302 css_put(&next_mz->mem->css);
2303 return nr_reclaimed;
2304}
2305
cc847582
KH
2306/*
2307 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
2308 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2309 */
f817ed48 2310static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 2311 int node, int zid, enum lru_list lru)
cc847582 2312{
08e552c6
KH
2313 struct zone *zone;
2314 struct mem_cgroup_per_zone *mz;
f817ed48 2315 struct page_cgroup *pc, *busy;
08e552c6 2316 unsigned long flags, loop;
072c56c1 2317 struct list_head *list;
f817ed48 2318 int ret = 0;
072c56c1 2319
08e552c6
KH
2320 zone = &NODE_DATA(node)->node_zones[zid];
2321 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 2322 list = &mz->lists[lru];
cc847582 2323
f817ed48
KH
2324 loop = MEM_CGROUP_ZSTAT(mz, lru);
2325 /* give some margin against EBUSY etc...*/
2326 loop += 256;
2327 busy = NULL;
2328 while (loop--) {
2329 ret = 0;
08e552c6 2330 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 2331 if (list_empty(list)) {
08e552c6 2332 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 2333 break;
f817ed48
KH
2334 }
2335 pc = list_entry(list->prev, struct page_cgroup, lru);
2336 if (busy == pc) {
2337 list_move(&pc->lru, list);
2338 busy = 0;
08e552c6 2339 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
2340 continue;
2341 }
08e552c6 2342 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 2343
2c26fdd7 2344 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 2345 if (ret == -ENOMEM)
52d4b9ac 2346 break;
f817ed48
KH
2347
2348 if (ret == -EBUSY || ret == -EINVAL) {
2349 /* found lock contention or "pc" is obsolete. */
2350 busy = pc;
2351 cond_resched();
2352 } else
2353 busy = NULL;
cc847582 2354 }
08e552c6 2355
f817ed48
KH
2356 if (!ret && !list_empty(list))
2357 return -EBUSY;
2358 return ret;
cc847582
KH
2359}
2360
2361/*
2362 * make mem_cgroup's charge to be 0 if there is no task.
2363 * This enables deleting this mem_cgroup.
2364 */
c1e862c1 2365static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 2366{
f817ed48
KH
2367 int ret;
2368 int node, zid, shrink;
2369 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 2370 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 2371
cc847582 2372 css_get(&mem->css);
f817ed48
KH
2373
2374 shrink = 0;
c1e862c1
KH
2375 /* should free all ? */
2376 if (free_all)
2377 goto try_to_free;
f817ed48 2378move_account:
1ecaab2b 2379 while (mem->res.usage > 0) {
f817ed48 2380 ret = -EBUSY;
c1e862c1
KH
2381 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2382 goto out;
2383 ret = -EINTR;
2384 if (signal_pending(current))
cc847582 2385 goto out;
52d4b9ac
KH
2386 /* This is for making all *used* pages to be on LRU. */
2387 lru_add_drain_all();
f817ed48 2388 ret = 0;
299b4eaa 2389 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 2390 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 2391 enum lru_list l;
f817ed48
KH
2392 for_each_lru(l) {
2393 ret = mem_cgroup_force_empty_list(mem,
08e552c6 2394 node, zid, l);
f817ed48
KH
2395 if (ret)
2396 break;
2397 }
1ecaab2b 2398 }
f817ed48
KH
2399 if (ret)
2400 break;
2401 }
2402 /* it seems parent cgroup doesn't have enough mem */
2403 if (ret == -ENOMEM)
2404 goto try_to_free;
52d4b9ac 2405 cond_resched();
cc847582
KH
2406 }
2407 ret = 0;
2408out:
2409 css_put(&mem->css);
2410 return ret;
f817ed48
KH
2411
2412try_to_free:
c1e862c1
KH
2413 /* returns EBUSY if there is a task or if we come here twice. */
2414 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
2415 ret = -EBUSY;
2416 goto out;
2417 }
c1e862c1
KH
2418 /* we call try-to-free pages for make this cgroup empty */
2419 lru_add_drain_all();
f817ed48
KH
2420 /* try to free all pages in this cgroup */
2421 shrink = 1;
2422 while (nr_retries && mem->res.usage > 0) {
2423 int progress;
c1e862c1
KH
2424
2425 if (signal_pending(current)) {
2426 ret = -EINTR;
2427 goto out;
2428 }
a7885eb8
KM
2429 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2430 false, get_swappiness(mem));
c1e862c1 2431 if (!progress) {
f817ed48 2432 nr_retries--;
c1e862c1 2433 /* maybe some writeback is necessary */
8aa7e847 2434 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2435 }
f817ed48
KH
2436
2437 }
08e552c6 2438 lru_add_drain();
f817ed48
KH
2439 /* try move_account...there may be some *locked* pages. */
2440 if (mem->res.usage)
2441 goto move_account;
2442 ret = 0;
2443 goto out;
cc847582
KH
2444}
2445
c1e862c1
KH
2446int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2447{
2448 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2449}
2450
2451
18f59ea7
BS
2452static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2453{
2454 return mem_cgroup_from_cont(cont)->use_hierarchy;
2455}
2456
2457static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2458 u64 val)
2459{
2460 int retval = 0;
2461 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2462 struct cgroup *parent = cont->parent;
2463 struct mem_cgroup *parent_mem = NULL;
2464
2465 if (parent)
2466 parent_mem = mem_cgroup_from_cont(parent);
2467
2468 cgroup_lock();
2469 /*
2470 * If parent's use_hiearchy is set, we can't make any modifications
2471 * in the child subtrees. If it is unset, then the change can
2472 * occur, provided the current cgroup has no children.
2473 *
2474 * For the root cgroup, parent_mem is NULL, we allow value to be
2475 * set if there are no children.
2476 */
2477 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2478 (val == 1 || val == 0)) {
2479 if (list_empty(&cont->children))
2480 mem->use_hierarchy = val;
2481 else
2482 retval = -EBUSY;
2483 } else
2484 retval = -EINVAL;
2485 cgroup_unlock();
2486
2487 return retval;
2488}
2489
0c3e73e8
BS
2490struct mem_cgroup_idx_data {
2491 s64 val;
2492 enum mem_cgroup_stat_index idx;
2493};
2494
2495static int
2496mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2497{
2498 struct mem_cgroup_idx_data *d = data;
2499 d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2500 return 0;
2501}
2502
2503static void
2504mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2505 enum mem_cgroup_stat_index idx, s64 *val)
2506{
2507 struct mem_cgroup_idx_data d;
2508 d.idx = idx;
2509 d.val = 0;
2510 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2511 *val = d.val;
2512}
2513
2c3daa72 2514static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 2515{
8c7c6e34 2516 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
0c3e73e8 2517 u64 idx_val, val;
8c7c6e34
KH
2518 int type, name;
2519
2520 type = MEMFILE_TYPE(cft->private);
2521 name = MEMFILE_ATTR(cft->private);
2522 switch (type) {
2523 case _MEM:
0c3e73e8
BS
2524 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2525 mem_cgroup_get_recursive_idx_stat(mem,
2526 MEM_CGROUP_STAT_CACHE, &idx_val);
2527 val = idx_val;
2528 mem_cgroup_get_recursive_idx_stat(mem,
2529 MEM_CGROUP_STAT_RSS, &idx_val);
2530 val += idx_val;
2531 val <<= PAGE_SHIFT;
2532 } else
2533 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
2534 break;
2535 case _MEMSWAP:
0c3e73e8
BS
2536 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2537 mem_cgroup_get_recursive_idx_stat(mem,
2538 MEM_CGROUP_STAT_CACHE, &idx_val);
2539 val = idx_val;
2540 mem_cgroup_get_recursive_idx_stat(mem,
2541 MEM_CGROUP_STAT_RSS, &idx_val);
2542 val += idx_val;
2543 mem_cgroup_get_recursive_idx_stat(mem,
2544 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2545 val <<= PAGE_SHIFT;
2546 } else
2547 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
2548 break;
2549 default:
2550 BUG();
2551 break;
2552 }
2553 return val;
8cdea7c0 2554}
628f4235
KH
2555/*
2556 * The user of this function is...
2557 * RES_LIMIT.
2558 */
856c13aa
PM
2559static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2560 const char *buffer)
8cdea7c0 2561{
628f4235 2562 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 2563 int type, name;
628f4235
KH
2564 unsigned long long val;
2565 int ret;
2566
8c7c6e34
KH
2567 type = MEMFILE_TYPE(cft->private);
2568 name = MEMFILE_ATTR(cft->private);
2569 switch (name) {
628f4235 2570 case RES_LIMIT:
4b3bde4c
BS
2571 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2572 ret = -EINVAL;
2573 break;
2574 }
628f4235
KH
2575 /* This function does all necessary parse...reuse it */
2576 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
2577 if (ret)
2578 break;
2579 if (type == _MEM)
628f4235 2580 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
2581 else
2582 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 2583 break;
296c81d8
BS
2584 case RES_SOFT_LIMIT:
2585 ret = res_counter_memparse_write_strategy(buffer, &val);
2586 if (ret)
2587 break;
2588 /*
2589 * For memsw, soft limits are hard to implement in terms
2590 * of semantics, for now, we support soft limits for
2591 * control without swap
2592 */
2593 if (type == _MEM)
2594 ret = res_counter_set_soft_limit(&memcg->res, val);
2595 else
2596 ret = -EINVAL;
2597 break;
628f4235
KH
2598 default:
2599 ret = -EINVAL; /* should be BUG() ? */
2600 break;
2601 }
2602 return ret;
8cdea7c0
BS
2603}
2604
fee7b548
KH
2605static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2606 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2607{
2608 struct cgroup *cgroup;
2609 unsigned long long min_limit, min_memsw_limit, tmp;
2610
2611 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2612 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2613 cgroup = memcg->css.cgroup;
2614 if (!memcg->use_hierarchy)
2615 goto out;
2616
2617 while (cgroup->parent) {
2618 cgroup = cgroup->parent;
2619 memcg = mem_cgroup_from_cont(cgroup);
2620 if (!memcg->use_hierarchy)
2621 break;
2622 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2623 min_limit = min(min_limit, tmp);
2624 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2625 min_memsw_limit = min(min_memsw_limit, tmp);
2626 }
2627out:
2628 *mem_limit = min_limit;
2629 *memsw_limit = min_memsw_limit;
2630 return;
2631}
2632
29f2a4da 2633static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2634{
2635 struct mem_cgroup *mem;
8c7c6e34 2636 int type, name;
c84872e1
PE
2637
2638 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2639 type = MEMFILE_TYPE(event);
2640 name = MEMFILE_ATTR(event);
2641 switch (name) {
29f2a4da 2642 case RES_MAX_USAGE:
8c7c6e34
KH
2643 if (type == _MEM)
2644 res_counter_reset_max(&mem->res);
2645 else
2646 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2647 break;
2648 case RES_FAILCNT:
8c7c6e34
KH
2649 if (type == _MEM)
2650 res_counter_reset_failcnt(&mem->res);
2651 else
2652 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2653 break;
2654 }
f64c3f54 2655
85cc59db 2656 return 0;
c84872e1
PE
2657}
2658
14067bb3
KH
2659
2660/* For read statistics */
2661enum {
2662 MCS_CACHE,
2663 MCS_RSS,
d69b042f 2664 MCS_MAPPED_FILE,
14067bb3
KH
2665 MCS_PGPGIN,
2666 MCS_PGPGOUT,
1dd3a273 2667 MCS_SWAP,
14067bb3
KH
2668 MCS_INACTIVE_ANON,
2669 MCS_ACTIVE_ANON,
2670 MCS_INACTIVE_FILE,
2671 MCS_ACTIVE_FILE,
2672 MCS_UNEVICTABLE,
2673 NR_MCS_STAT,
2674};
2675
2676struct mcs_total_stat {
2677 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
2678};
2679
14067bb3
KH
2680struct {
2681 char *local_name;
2682 char *total_name;
2683} memcg_stat_strings[NR_MCS_STAT] = {
2684 {"cache", "total_cache"},
2685 {"rss", "total_rss"},
d69b042f 2686 {"mapped_file", "total_mapped_file"},
14067bb3
KH
2687 {"pgpgin", "total_pgpgin"},
2688 {"pgpgout", "total_pgpgout"},
1dd3a273 2689 {"swap", "total_swap"},
14067bb3
KH
2690 {"inactive_anon", "total_inactive_anon"},
2691 {"active_anon", "total_active_anon"},
2692 {"inactive_file", "total_inactive_file"},
2693 {"active_file", "total_active_file"},
2694 {"unevictable", "total_unevictable"}
2695};
2696
2697
2698static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2699{
2700 struct mcs_total_stat *s = data;
2701 s64 val;
2702
2703 /* per cpu stat */
2704 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2705 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2706 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2707 s->stat[MCS_RSS] += val * PAGE_SIZE;
d69b042f
BS
2708 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2709 s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
14067bb3
KH
2710 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2711 s->stat[MCS_PGPGIN] += val;
2712 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2713 s->stat[MCS_PGPGOUT] += val;
1dd3a273
DN
2714 if (do_swap_account) {
2715 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2716 s->stat[MCS_SWAP] += val * PAGE_SIZE;
2717 }
14067bb3
KH
2718
2719 /* per zone stat */
2720 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2721 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2722 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2723 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2724 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2725 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2726 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2727 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2728 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2729 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2730 return 0;
2731}
2732
2733static void
2734mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2735{
2736 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2737}
2738
c64745cf
PM
2739static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2740 struct cgroup_map_cb *cb)
d2ceb9b7 2741{
d2ceb9b7 2742 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 2743 struct mcs_total_stat mystat;
d2ceb9b7
KH
2744 int i;
2745
14067bb3
KH
2746 memset(&mystat, 0, sizeof(mystat));
2747 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 2748
1dd3a273
DN
2749 for (i = 0; i < NR_MCS_STAT; i++) {
2750 if (i == MCS_SWAP && !do_swap_account)
2751 continue;
14067bb3 2752 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 2753 }
7b854121 2754
14067bb3 2755 /* Hierarchical information */
fee7b548
KH
2756 {
2757 unsigned long long limit, memsw_limit;
2758 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2759 cb->fill(cb, "hierarchical_memory_limit", limit);
2760 if (do_swap_account)
2761 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2762 }
7f016ee8 2763
14067bb3
KH
2764 memset(&mystat, 0, sizeof(mystat));
2765 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
2766 for (i = 0; i < NR_MCS_STAT; i++) {
2767 if (i == MCS_SWAP && !do_swap_account)
2768 continue;
14067bb3 2769 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 2770 }
14067bb3 2771
7f016ee8 2772#ifdef CONFIG_DEBUG_VM
c772be93 2773 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
2774
2775 {
2776 int nid, zid;
2777 struct mem_cgroup_per_zone *mz;
2778 unsigned long recent_rotated[2] = {0, 0};
2779 unsigned long recent_scanned[2] = {0, 0};
2780
2781 for_each_online_node(nid)
2782 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2783 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2784
2785 recent_rotated[0] +=
2786 mz->reclaim_stat.recent_rotated[0];
2787 recent_rotated[1] +=
2788 mz->reclaim_stat.recent_rotated[1];
2789 recent_scanned[0] +=
2790 mz->reclaim_stat.recent_scanned[0];
2791 recent_scanned[1] +=
2792 mz->reclaim_stat.recent_scanned[1];
2793 }
2794 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2795 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2796 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2797 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2798 }
2799#endif
2800
d2ceb9b7
KH
2801 return 0;
2802}
2803
a7885eb8
KM
2804static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2805{
2806 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2807
2808 return get_swappiness(memcg);
2809}
2810
2811static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2812 u64 val)
2813{
2814 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2815 struct mem_cgroup *parent;
068b38c1 2816
a7885eb8
KM
2817 if (val > 100)
2818 return -EINVAL;
2819
2820 if (cgrp->parent == NULL)
2821 return -EINVAL;
2822
2823 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
2824
2825 cgroup_lock();
2826
a7885eb8
KM
2827 /* If under hierarchy, only empty-root can set this value */
2828 if ((parent->use_hierarchy) ||
068b38c1
LZ
2829 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2830 cgroup_unlock();
a7885eb8 2831 return -EINVAL;
068b38c1 2832 }
a7885eb8
KM
2833
2834 spin_lock(&memcg->reclaim_param_lock);
2835 memcg->swappiness = val;
2836 spin_unlock(&memcg->reclaim_param_lock);
2837
068b38c1
LZ
2838 cgroup_unlock();
2839
a7885eb8
KM
2840 return 0;
2841}
2842
c1e862c1 2843
8cdea7c0
BS
2844static struct cftype mem_cgroup_files[] = {
2845 {
0eea1030 2846 .name = "usage_in_bytes",
8c7c6e34 2847 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 2848 .read_u64 = mem_cgroup_read,
8cdea7c0 2849 },
c84872e1
PE
2850 {
2851 .name = "max_usage_in_bytes",
8c7c6e34 2852 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2853 .trigger = mem_cgroup_reset,
c84872e1
PE
2854 .read_u64 = mem_cgroup_read,
2855 },
8cdea7c0 2856 {
0eea1030 2857 .name = "limit_in_bytes",
8c7c6e34 2858 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2859 .write_string = mem_cgroup_write,
2c3daa72 2860 .read_u64 = mem_cgroup_read,
8cdea7c0 2861 },
296c81d8
BS
2862 {
2863 .name = "soft_limit_in_bytes",
2864 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2865 .write_string = mem_cgroup_write,
2866 .read_u64 = mem_cgroup_read,
2867 },
8cdea7c0
BS
2868 {
2869 .name = "failcnt",
8c7c6e34 2870 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2871 .trigger = mem_cgroup_reset,
2c3daa72 2872 .read_u64 = mem_cgroup_read,
8cdea7c0 2873 },
d2ceb9b7
KH
2874 {
2875 .name = "stat",
c64745cf 2876 .read_map = mem_control_stat_show,
d2ceb9b7 2877 },
c1e862c1
KH
2878 {
2879 .name = "force_empty",
2880 .trigger = mem_cgroup_force_empty_write,
2881 },
18f59ea7
BS
2882 {
2883 .name = "use_hierarchy",
2884 .write_u64 = mem_cgroup_hierarchy_write,
2885 .read_u64 = mem_cgroup_hierarchy_read,
2886 },
a7885eb8
KM
2887 {
2888 .name = "swappiness",
2889 .read_u64 = mem_cgroup_swappiness_read,
2890 .write_u64 = mem_cgroup_swappiness_write,
2891 },
8cdea7c0
BS
2892};
2893
8c7c6e34
KH
2894#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2895static struct cftype memsw_cgroup_files[] = {
2896 {
2897 .name = "memsw.usage_in_bytes",
2898 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2899 .read_u64 = mem_cgroup_read,
2900 },
2901 {
2902 .name = "memsw.max_usage_in_bytes",
2903 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2904 .trigger = mem_cgroup_reset,
2905 .read_u64 = mem_cgroup_read,
2906 },
2907 {
2908 .name = "memsw.limit_in_bytes",
2909 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2910 .write_string = mem_cgroup_write,
2911 .read_u64 = mem_cgroup_read,
2912 },
2913 {
2914 .name = "memsw.failcnt",
2915 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2916 .trigger = mem_cgroup_reset,
2917 .read_u64 = mem_cgroup_read,
2918 },
2919};
2920
2921static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2922{
2923 if (!do_swap_account)
2924 return 0;
2925 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2926 ARRAY_SIZE(memsw_cgroup_files));
2927};
2928#else
2929static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2930{
2931 return 0;
2932}
2933#endif
2934
6d12e2d8
KH
2935static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2936{
2937 struct mem_cgroup_per_node *pn;
1ecaab2b 2938 struct mem_cgroup_per_zone *mz;
b69408e8 2939 enum lru_list l;
41e3355d 2940 int zone, tmp = node;
1ecaab2b
KH
2941 /*
2942 * This routine is called against possible nodes.
2943 * But it's BUG to call kmalloc() against offline node.
2944 *
2945 * TODO: this routine can waste much memory for nodes which will
2946 * never be onlined. It's better to use memory hotplug callback
2947 * function.
2948 */
41e3355d
KH
2949 if (!node_state(node, N_NORMAL_MEMORY))
2950 tmp = -1;
2951 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2952 if (!pn)
2953 return 1;
1ecaab2b 2954
6d12e2d8
KH
2955 mem->info.nodeinfo[node] = pn;
2956 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2957
2958 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2959 mz = &pn->zoneinfo[zone];
b69408e8
CL
2960 for_each_lru(l)
2961 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 2962 mz->usage_in_excess = 0;
4e416953
BS
2963 mz->on_tree = false;
2964 mz->mem = mem;
1ecaab2b 2965 }
6d12e2d8
KH
2966 return 0;
2967}
2968
1ecaab2b
KH
2969static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2970{
2971 kfree(mem->info.nodeinfo[node]);
2972}
2973
c8dad2bb
JB
2974static int mem_cgroup_size(void)
2975{
2976 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2977 return sizeof(struct mem_cgroup) + cpustat_size;
2978}
2979
33327948
KH
2980static struct mem_cgroup *mem_cgroup_alloc(void)
2981{
2982 struct mem_cgroup *mem;
c8dad2bb 2983 int size = mem_cgroup_size();
33327948 2984
c8dad2bb
JB
2985 if (size < PAGE_SIZE)
2986 mem = kmalloc(size, GFP_KERNEL);
33327948 2987 else
c8dad2bb 2988 mem = vmalloc(size);
33327948
KH
2989
2990 if (mem)
c8dad2bb 2991 memset(mem, 0, size);
33327948
KH
2992 return mem;
2993}
2994
8c7c6e34
KH
2995/*
2996 * At destroying mem_cgroup, references from swap_cgroup can remain.
2997 * (scanning all at force_empty is too costly...)
2998 *
2999 * Instead of clearing all references at force_empty, we remember
3000 * the number of reference from swap_cgroup and free mem_cgroup when
3001 * it goes down to 0.
3002 *
8c7c6e34
KH
3003 * Removal of cgroup itself succeeds regardless of refs from swap.
3004 */
3005
a7ba0eef 3006static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 3007{
08e552c6
KH
3008 int node;
3009
f64c3f54 3010 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
3011 free_css_id(&mem_cgroup_subsys, &mem->css);
3012
08e552c6
KH
3013 for_each_node_state(node, N_POSSIBLE)
3014 free_mem_cgroup_per_zone_info(mem, node);
3015
c8dad2bb 3016 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
3017 kfree(mem);
3018 else
3019 vfree(mem);
3020}
3021
8c7c6e34
KH
3022static void mem_cgroup_get(struct mem_cgroup *mem)
3023{
3024 atomic_inc(&mem->refcnt);
3025}
3026
3027static void mem_cgroup_put(struct mem_cgroup *mem)
3028{
7bcc1bb1
DN
3029 if (atomic_dec_and_test(&mem->refcnt)) {
3030 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 3031 __mem_cgroup_free(mem);
7bcc1bb1
DN
3032 if (parent)
3033 mem_cgroup_put(parent);
3034 }
8c7c6e34
KH
3035}
3036
7bcc1bb1
DN
3037/*
3038 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3039 */
3040static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3041{
3042 if (!mem->res.parent)
3043 return NULL;
3044 return mem_cgroup_from_res_counter(mem->res.parent, res);
3045}
33327948 3046
c077719b
KH
3047#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3048static void __init enable_swap_cgroup(void)
3049{
f8d66542 3050 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
3051 do_swap_account = 1;
3052}
3053#else
3054static void __init enable_swap_cgroup(void)
3055{
3056}
3057#endif
3058
f64c3f54
BS
3059static int mem_cgroup_soft_limit_tree_init(void)
3060{
3061 struct mem_cgroup_tree_per_node *rtpn;
3062 struct mem_cgroup_tree_per_zone *rtpz;
3063 int tmp, node, zone;
3064
3065 for_each_node_state(node, N_POSSIBLE) {
3066 tmp = node;
3067 if (!node_state(node, N_NORMAL_MEMORY))
3068 tmp = -1;
3069 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3070 if (!rtpn)
3071 return 1;
3072
3073 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3074
3075 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3076 rtpz = &rtpn->rb_tree_per_zone[zone];
3077 rtpz->rb_root = RB_ROOT;
3078 spin_lock_init(&rtpz->lock);
3079 }
3080 }
3081 return 0;
3082}
3083
0eb253e2 3084static struct cgroup_subsys_state * __ref
8cdea7c0
BS
3085mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3086{
28dbc4b6 3087 struct mem_cgroup *mem, *parent;
04046e1a 3088 long error = -ENOMEM;
6d12e2d8 3089 int node;
8cdea7c0 3090
c8dad2bb
JB
3091 mem = mem_cgroup_alloc();
3092 if (!mem)
04046e1a 3093 return ERR_PTR(error);
78fb7466 3094
6d12e2d8
KH
3095 for_each_node_state(node, N_POSSIBLE)
3096 if (alloc_mem_cgroup_per_zone_info(mem, node))
3097 goto free_out;
f64c3f54 3098
c077719b 3099 /* root ? */
28dbc4b6 3100 if (cont->parent == NULL) {
c077719b 3101 enable_swap_cgroup();
28dbc4b6 3102 parent = NULL;
4b3bde4c 3103 root_mem_cgroup = mem;
f64c3f54
BS
3104 if (mem_cgroup_soft_limit_tree_init())
3105 goto free_out;
3106
18f59ea7 3107 } else {
28dbc4b6 3108 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
3109 mem->use_hierarchy = parent->use_hierarchy;
3110 }
28dbc4b6 3111
18f59ea7
BS
3112 if (parent && parent->use_hierarchy) {
3113 res_counter_init(&mem->res, &parent->res);
3114 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
3115 /*
3116 * We increment refcnt of the parent to ensure that we can
3117 * safely access it on res_counter_charge/uncharge.
3118 * This refcnt will be decremented when freeing this
3119 * mem_cgroup(see mem_cgroup_put).
3120 */
3121 mem_cgroup_get(parent);
18f59ea7
BS
3122 } else {
3123 res_counter_init(&mem->res, NULL);
3124 res_counter_init(&mem->memsw, NULL);
3125 }
04046e1a 3126 mem->last_scanned_child = 0;
2733c06a 3127 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 3128
a7885eb8
KM
3129 if (parent)
3130 mem->swappiness = get_swappiness(parent);
a7ba0eef 3131 atomic_set(&mem->refcnt, 1);
8cdea7c0 3132 return &mem->css;
6d12e2d8 3133free_out:
a7ba0eef 3134 __mem_cgroup_free(mem);
4b3bde4c 3135 root_mem_cgroup = NULL;
04046e1a 3136 return ERR_PTR(error);
8cdea7c0
BS
3137}
3138
ec64f515 3139static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
3140 struct cgroup *cont)
3141{
3142 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
3143
3144 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
3145}
3146
8cdea7c0
BS
3147static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3148 struct cgroup *cont)
3149{
c268e994 3150 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 3151
c268e994 3152 mem_cgroup_put(mem);
8cdea7c0
BS
3153}
3154
3155static int mem_cgroup_populate(struct cgroup_subsys *ss,
3156 struct cgroup *cont)
3157{
8c7c6e34
KH
3158 int ret;
3159
3160 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3161 ARRAY_SIZE(mem_cgroup_files));
3162
3163 if (!ret)
3164 ret = register_memsw_files(cont, ss);
3165 return ret;
8cdea7c0
BS
3166}
3167
67e465a7
BS
3168static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3169 struct cgroup *cont,
3170 struct cgroup *old_cont,
be367d09
BB
3171 struct task_struct *p,
3172 bool threadgroup)
67e465a7 3173{
7f4d454d 3174 mutex_lock(&memcg_tasklist);
67e465a7 3175 /*
f9717d28
NK
3176 * FIXME: It's better to move charges of this process from old
3177 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 3178 */
7f4d454d 3179 mutex_unlock(&memcg_tasklist);
67e465a7
BS
3180}
3181
8cdea7c0
BS
3182struct cgroup_subsys mem_cgroup_subsys = {
3183 .name = "memory",
3184 .subsys_id = mem_cgroup_subsys_id,
3185 .create = mem_cgroup_create,
df878fb0 3186 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
3187 .destroy = mem_cgroup_destroy,
3188 .populate = mem_cgroup_populate,
67e465a7 3189 .attach = mem_cgroup_move_task,
6d12e2d8 3190 .early_init = 0,
04046e1a 3191 .use_id = 1,
8cdea7c0 3192};
c077719b
KH
3193
3194#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3195
3196static int __init disable_swap_account(char *s)
3197{
3198 really_do_swap_account = 0;
3199 return 1;
3200}
3201__setup("noswapaccount", disable_swap_account);
3202#endif