]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: update threshold and softlimit at commit
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
08e552c6 50#include "internal.h"
8cdea7c0 51
8697d331
BS
52#include <asm/uaccess.h>
53
a181b0e8 54struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 55#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 56struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 57
c077719b 58#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 59/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
60int do_swap_account __read_mostly;
61static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62#else
63#define do_swap_account (0)
64#endif
65
f64c3f54 66#define SOFTLIMIT_EVENTS_THRESH (1000)
2e72b634 67#define THRESHOLDS_EVENTS_THRESH (100)
c077719b 68
d52aa412
KH
69/*
70 * Statistics for memory cgroup.
71 */
72enum mem_cgroup_stat_index {
73 /*
74 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
75 */
76 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 77 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 78 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
79 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
80 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 81 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
378ce724
KS
82 MEM_CGROUP_STAT_SOFTLIMIT, /* decrements on each page in/out.
83 used by soft limit implementation */
2e72b634
KS
84 MEM_CGROUP_STAT_THRESHOLDS, /* decrements on each page in/out.
85 used by threshold implementation */
d52aa412
KH
86
87 MEM_CGROUP_STAT_NSTATS,
88};
89
90struct mem_cgroup_stat_cpu {
91 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
92};
93
6d12e2d8
KH
94/*
95 * per-zone information in memory controller.
96 */
6d12e2d8 97struct mem_cgroup_per_zone {
072c56c1
KH
98 /*
99 * spin_lock to protect the per cgroup LRU
100 */
b69408e8
CL
101 struct list_head lists[NR_LRU_LISTS];
102 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
103
104 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
105 struct rb_node tree_node; /* RB tree node */
106 unsigned long long usage_in_excess;/* Set to the value by which */
107 /* the soft limit is exceeded*/
108 bool on_tree;
4e416953
BS
109 struct mem_cgroup *mem; /* Back pointer, we cannot */
110 /* use container_of */
6d12e2d8
KH
111};
112/* Macro for accessing counter */
113#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
114
115struct mem_cgroup_per_node {
116 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
117};
118
119struct mem_cgroup_lru_info {
120 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
121};
122
f64c3f54
BS
123/*
124 * Cgroups above their limits are maintained in a RB-Tree, independent of
125 * their hierarchy representation
126 */
127
128struct mem_cgroup_tree_per_zone {
129 struct rb_root rb_root;
130 spinlock_t lock;
131};
132
133struct mem_cgroup_tree_per_node {
134 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
135};
136
137struct mem_cgroup_tree {
138 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
139};
140
141static struct mem_cgroup_tree soft_limit_tree __read_mostly;
142
2e72b634
KS
143struct mem_cgroup_threshold {
144 struct eventfd_ctx *eventfd;
145 u64 threshold;
146};
147
148struct mem_cgroup_threshold_ary {
149 /* An array index points to threshold just below usage. */
150 atomic_t current_threshold;
151 /* Size of entries[] */
152 unsigned int size;
153 /* Array of thresholds */
154 struct mem_cgroup_threshold entries[0];
155};
156
157static bool mem_cgroup_threshold_check(struct mem_cgroup *mem);
158static void mem_cgroup_threshold(struct mem_cgroup *mem);
159
8cdea7c0
BS
160/*
161 * The memory controller data structure. The memory controller controls both
162 * page cache and RSS per cgroup. We would eventually like to provide
163 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
164 * to help the administrator determine what knobs to tune.
165 *
166 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
167 * we hit the water mark. May be even add a low water mark, such that
168 * no reclaim occurs from a cgroup at it's low water mark, this is
169 * a feature that will be implemented much later in the future.
8cdea7c0
BS
170 */
171struct mem_cgroup {
172 struct cgroup_subsys_state css;
173 /*
174 * the counter to account for memory usage
175 */
176 struct res_counter res;
8c7c6e34
KH
177 /*
178 * the counter to account for mem+swap usage.
179 */
180 struct res_counter memsw;
78fb7466
PE
181 /*
182 * Per cgroup active and inactive list, similar to the
183 * per zone LRU lists.
78fb7466 184 */
6d12e2d8 185 struct mem_cgroup_lru_info info;
072c56c1 186
2733c06a
KM
187 /*
188 protect against reclaim related member.
189 */
190 spinlock_t reclaim_param_lock;
191
6c48a1d0 192 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
193
194 /*
af901ca1 195 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 196 * reclaimed from.
6d61ef40 197 */
04046e1a 198 int last_scanned_child;
18f59ea7
BS
199 /*
200 * Should the accounting and control be hierarchical, per subtree?
201 */
202 bool use_hierarchy;
a636b327 203 unsigned long last_oom_jiffies;
8c7c6e34 204 atomic_t refcnt;
14797e23 205
a7885eb8
KM
206 unsigned int swappiness;
207
22a668d7
KH
208 /* set when res.limit == memsw.limit */
209 bool memsw_is_minimum;
210
2e72b634
KS
211 /* protect arrays of thresholds */
212 struct mutex thresholds_lock;
213
214 /* thresholds for memory usage. RCU-protected */
215 struct mem_cgroup_threshold_ary *thresholds;
216
217 /* thresholds for mem+swap usage. RCU-protected */
218 struct mem_cgroup_threshold_ary *memsw_thresholds;
219
7dc74be0
DN
220 /*
221 * Should we move charges of a task when a task is moved into this
222 * mem_cgroup ? And what type of charges should we move ?
223 */
224 unsigned long move_charge_at_immigrate;
225
d52aa412 226 /*
c62b1a3b 227 * percpu counter.
d52aa412 228 */
c62b1a3b 229 struct mem_cgroup_stat_cpu *stat;
8cdea7c0
BS
230};
231
7dc74be0
DN
232/* Stuffs for move charges at task migration. */
233/*
234 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
235 * left-shifted bitmap of these types.
236 */
237enum move_type {
4ffef5fe 238 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
7dc74be0
DN
239 NR_MOVE_TYPE,
240};
241
4ffef5fe
DN
242/* "mc" and its members are protected by cgroup_mutex */
243static struct move_charge_struct {
244 struct mem_cgroup *from;
245 struct mem_cgroup *to;
246 unsigned long precharge;
854ffa8d 247 unsigned long moved_charge;
483c30b5 248 unsigned long moved_swap;
8033b97c
DN
249 struct task_struct *moving_task; /* a task moving charges */
250 wait_queue_head_t waitq; /* a waitq for other context */
251} mc = {
252 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
253};
4ffef5fe 254
4e416953
BS
255/*
256 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
257 * limit reclaim to prevent infinite loops, if they ever occur.
258 */
259#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
260#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
261
217bc319
KH
262enum charge_type {
263 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
264 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 265 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 266 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 267 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 268 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
269 NR_CHARGE_TYPE,
270};
271
52d4b9ac
KH
272/* only for here (for easy reading.) */
273#define PCGF_CACHE (1UL << PCG_CACHE)
274#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 275#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
276/* Not used, but added here for completeness */
277#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 278
8c7c6e34
KH
279/* for encoding cft->private value on file */
280#define _MEM (0)
281#define _MEMSWAP (1)
282#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
283#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
284#define MEMFILE_ATTR(val) ((val) & 0xffff)
285
75822b44
BS
286/*
287 * Reclaim flags for mem_cgroup_hierarchical_reclaim
288 */
289#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
290#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
291#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
292#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
293#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
294#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 295
8c7c6e34
KH
296static void mem_cgroup_get(struct mem_cgroup *mem);
297static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 298static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 299static void drain_all_stock_async(void);
8c7c6e34 300
f64c3f54
BS
301static struct mem_cgroup_per_zone *
302mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
303{
304 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
305}
306
d324236b
WF
307struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
308{
309 return &mem->css;
310}
311
f64c3f54
BS
312static struct mem_cgroup_per_zone *
313page_cgroup_zoneinfo(struct page_cgroup *pc)
314{
315 struct mem_cgroup *mem = pc->mem_cgroup;
316 int nid = page_cgroup_nid(pc);
317 int zid = page_cgroup_zid(pc);
318
319 if (!mem)
320 return NULL;
321
322 return mem_cgroup_zoneinfo(mem, nid, zid);
323}
324
325static struct mem_cgroup_tree_per_zone *
326soft_limit_tree_node_zone(int nid, int zid)
327{
328 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
329}
330
331static struct mem_cgroup_tree_per_zone *
332soft_limit_tree_from_page(struct page *page)
333{
334 int nid = page_to_nid(page);
335 int zid = page_zonenum(page);
336
337 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
338}
339
340static void
4e416953 341__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 342 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
343 struct mem_cgroup_tree_per_zone *mctz,
344 unsigned long long new_usage_in_excess)
f64c3f54
BS
345{
346 struct rb_node **p = &mctz->rb_root.rb_node;
347 struct rb_node *parent = NULL;
348 struct mem_cgroup_per_zone *mz_node;
349
350 if (mz->on_tree)
351 return;
352
ef8745c1
KH
353 mz->usage_in_excess = new_usage_in_excess;
354 if (!mz->usage_in_excess)
355 return;
f64c3f54
BS
356 while (*p) {
357 parent = *p;
358 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
359 tree_node);
360 if (mz->usage_in_excess < mz_node->usage_in_excess)
361 p = &(*p)->rb_left;
362 /*
363 * We can't avoid mem cgroups that are over their soft
364 * limit by the same amount
365 */
366 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
367 p = &(*p)->rb_right;
368 }
369 rb_link_node(&mz->tree_node, parent, p);
370 rb_insert_color(&mz->tree_node, &mctz->rb_root);
371 mz->on_tree = true;
4e416953
BS
372}
373
374static void
375__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
376 struct mem_cgroup_per_zone *mz,
377 struct mem_cgroup_tree_per_zone *mctz)
378{
379 if (!mz->on_tree)
380 return;
381 rb_erase(&mz->tree_node, &mctz->rb_root);
382 mz->on_tree = false;
383}
384
f64c3f54
BS
385static void
386mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
387 struct mem_cgroup_per_zone *mz,
388 struct mem_cgroup_tree_per_zone *mctz)
389{
390 spin_lock(&mctz->lock);
4e416953 391 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
392 spin_unlock(&mctz->lock);
393}
394
395static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
396{
397 bool ret = false;
f64c3f54 398 s64 val;
f64c3f54 399
c62b1a3b 400 val = this_cpu_read(mem->stat->count[MEM_CGROUP_STAT_SOFTLIMIT]);
378ce724 401 if (unlikely(val < 0)) {
c62b1a3b 402 this_cpu_write(mem->stat->count[MEM_CGROUP_STAT_SOFTLIMIT],
378ce724 403 SOFTLIMIT_EVENTS_THRESH);
f64c3f54
BS
404 ret = true;
405 }
f64c3f54
BS
406 return ret;
407}
408
409static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
410{
ef8745c1 411 unsigned long long excess;
f64c3f54
BS
412 struct mem_cgroup_per_zone *mz;
413 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
414 int nid = page_to_nid(page);
415 int zid = page_zonenum(page);
f64c3f54
BS
416 mctz = soft_limit_tree_from_page(page);
417
418 /*
4e649152
KH
419 * Necessary to update all ancestors when hierarchy is used.
420 * because their event counter is not touched.
f64c3f54 421 */
4e649152
KH
422 for (; mem; mem = parent_mem_cgroup(mem)) {
423 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 424 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
425 /*
426 * We have to update the tree if mz is on RB-tree or
427 * mem is over its softlimit.
428 */
ef8745c1 429 if (excess || mz->on_tree) {
4e649152
KH
430 spin_lock(&mctz->lock);
431 /* if on-tree, remove it */
432 if (mz->on_tree)
433 __mem_cgroup_remove_exceeded(mem, mz, mctz);
434 /*
ef8745c1
KH
435 * Insert again. mz->usage_in_excess will be updated.
436 * If excess is 0, no tree ops.
4e649152 437 */
ef8745c1 438 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
439 spin_unlock(&mctz->lock);
440 }
f64c3f54
BS
441 }
442}
443
444static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
445{
446 int node, zone;
447 struct mem_cgroup_per_zone *mz;
448 struct mem_cgroup_tree_per_zone *mctz;
449
450 for_each_node_state(node, N_POSSIBLE) {
451 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
452 mz = mem_cgroup_zoneinfo(mem, node, zone);
453 mctz = soft_limit_tree_node_zone(node, zone);
454 mem_cgroup_remove_exceeded(mem, mz, mctz);
455 }
456 }
457}
458
4e416953
BS
459static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
460{
461 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
462}
463
464static struct mem_cgroup_per_zone *
465__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
466{
467 struct rb_node *rightmost = NULL;
26251eaf 468 struct mem_cgroup_per_zone *mz;
4e416953
BS
469
470retry:
26251eaf 471 mz = NULL;
4e416953
BS
472 rightmost = rb_last(&mctz->rb_root);
473 if (!rightmost)
474 goto done; /* Nothing to reclaim from */
475
476 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
477 /*
478 * Remove the node now but someone else can add it back,
479 * we will to add it back at the end of reclaim to its correct
480 * position in the tree.
481 */
482 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
483 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
484 !css_tryget(&mz->mem->css))
485 goto retry;
486done:
487 return mz;
488}
489
490static struct mem_cgroup_per_zone *
491mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
492{
493 struct mem_cgroup_per_zone *mz;
494
495 spin_lock(&mctz->lock);
496 mz = __mem_cgroup_largest_soft_limit_node(mctz);
497 spin_unlock(&mctz->lock);
498 return mz;
499}
500
c62b1a3b
KH
501static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
502 enum mem_cgroup_stat_index idx)
503{
504 int cpu;
505 s64 val = 0;
506
507 for_each_possible_cpu(cpu)
508 val += per_cpu(mem->stat->count[idx], cpu);
509 return val;
510}
511
512static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
513{
514 s64 ret;
515
516 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
517 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
518 return ret;
519}
520
0c3e73e8
BS
521static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
522 bool charge)
523{
524 int val = (charge) ? 1 : -1;
c62b1a3b 525 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
526}
527
c05555b5
KH
528static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
529 struct page_cgroup *pc,
530 bool charge)
d52aa412 531{
0c3e73e8 532 int val = (charge) ? 1 : -1;
d52aa412 533
c62b1a3b
KH
534 preempt_disable();
535
c05555b5 536 if (PageCgroupCache(pc))
c62b1a3b 537 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
d52aa412 538 else
c62b1a3b 539 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
55e462b0
BR
540
541 if (charge)
c62b1a3b 542 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
55e462b0 543 else
c62b1a3b
KH
544 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
545 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_SOFTLIMIT]);
546 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_THRESHOLDS]);
2e72b634 547
c62b1a3b 548 preempt_enable();
6d12e2d8
KH
549}
550
14067bb3 551static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 552 enum lru_list idx)
6d12e2d8
KH
553{
554 int nid, zid;
555 struct mem_cgroup_per_zone *mz;
556 u64 total = 0;
557
558 for_each_online_node(nid)
559 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
560 mz = mem_cgroup_zoneinfo(mem, nid, zid);
561 total += MEM_CGROUP_ZSTAT(mz, idx);
562 }
563 return total;
d52aa412
KH
564}
565
d5b69e38 566static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
567{
568 return container_of(cgroup_subsys_state(cont,
569 mem_cgroup_subsys_id), struct mem_cgroup,
570 css);
571}
572
cf475ad2 573struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 574{
31a78f23
BS
575 /*
576 * mm_update_next_owner() may clear mm->owner to NULL
577 * if it races with swapoff, page migration, etc.
578 * So this can be called with p == NULL.
579 */
580 if (unlikely(!p))
581 return NULL;
582
78fb7466
PE
583 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
584 struct mem_cgroup, css);
585}
586
54595fe2
KH
587static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
588{
589 struct mem_cgroup *mem = NULL;
0b7f569e
KH
590
591 if (!mm)
592 return NULL;
54595fe2
KH
593 /*
594 * Because we have no locks, mm->owner's may be being moved to other
595 * cgroup. We use css_tryget() here even if this looks
596 * pessimistic (rather than adding locks here).
597 */
598 rcu_read_lock();
599 do {
600 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
601 if (unlikely(!mem))
602 break;
603 } while (!css_tryget(&mem->css));
604 rcu_read_unlock();
605 return mem;
606}
607
14067bb3
KH
608/*
609 * Call callback function against all cgroup under hierarchy tree.
610 */
611static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
612 int (*func)(struct mem_cgroup *, void *))
613{
614 int found, ret, nextid;
615 struct cgroup_subsys_state *css;
616 struct mem_cgroup *mem;
617
618 if (!root->use_hierarchy)
619 return (*func)(root, data);
620
621 nextid = 1;
622 do {
623 ret = 0;
624 mem = NULL;
625
626 rcu_read_lock();
627 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
628 &found);
629 if (css && css_tryget(css))
630 mem = container_of(css, struct mem_cgroup, css);
631 rcu_read_unlock();
632
633 if (mem) {
634 ret = (*func)(mem, data);
635 css_put(&mem->css);
636 }
637 nextid = found + 1;
638 } while (!ret && css);
639
640 return ret;
641}
642
4b3bde4c
BS
643static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
644{
645 return (mem == root_mem_cgroup);
646}
647
08e552c6
KH
648/*
649 * Following LRU functions are allowed to be used without PCG_LOCK.
650 * Operations are called by routine of global LRU independently from memcg.
651 * What we have to take care of here is validness of pc->mem_cgroup.
652 *
653 * Changes to pc->mem_cgroup happens when
654 * 1. charge
655 * 2. moving account
656 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
657 * It is added to LRU before charge.
658 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
659 * When moving account, the page is not on LRU. It's isolated.
660 */
4f98a2fe 661
08e552c6
KH
662void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
663{
664 struct page_cgroup *pc;
08e552c6 665 struct mem_cgroup_per_zone *mz;
6d12e2d8 666
f8d66542 667 if (mem_cgroup_disabled())
08e552c6
KH
668 return;
669 pc = lookup_page_cgroup(page);
670 /* can happen while we handle swapcache. */
4b3bde4c 671 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 672 return;
4b3bde4c 673 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
674 /*
675 * We don't check PCG_USED bit. It's cleared when the "page" is finally
676 * removed from global LRU.
677 */
08e552c6 678 mz = page_cgroup_zoneinfo(pc);
b69408e8 679 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
680 if (mem_cgroup_is_root(pc->mem_cgroup))
681 return;
682 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
683 list_del_init(&pc->lru);
684 return;
6d12e2d8
KH
685}
686
08e552c6 687void mem_cgroup_del_lru(struct page *page)
6d12e2d8 688{
08e552c6
KH
689 mem_cgroup_del_lru_list(page, page_lru(page));
690}
b69408e8 691
08e552c6
KH
692void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
693{
694 struct mem_cgroup_per_zone *mz;
695 struct page_cgroup *pc;
b69408e8 696
f8d66542 697 if (mem_cgroup_disabled())
08e552c6 698 return;
6d12e2d8 699
08e552c6 700 pc = lookup_page_cgroup(page);
bd112db8
DN
701 /*
702 * Used bit is set without atomic ops but after smp_wmb().
703 * For making pc->mem_cgroup visible, insert smp_rmb() here.
704 */
08e552c6 705 smp_rmb();
4b3bde4c
BS
706 /* unused or root page is not rotated. */
707 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
708 return;
709 mz = page_cgroup_zoneinfo(pc);
710 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
711}
712
08e552c6 713void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 714{
08e552c6
KH
715 struct page_cgroup *pc;
716 struct mem_cgroup_per_zone *mz;
6d12e2d8 717
f8d66542 718 if (mem_cgroup_disabled())
08e552c6
KH
719 return;
720 pc = lookup_page_cgroup(page);
4b3bde4c 721 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
722 /*
723 * Used bit is set without atomic ops but after smp_wmb().
724 * For making pc->mem_cgroup visible, insert smp_rmb() here.
725 */
08e552c6
KH
726 smp_rmb();
727 if (!PageCgroupUsed(pc))
894bc310 728 return;
b69408e8 729
08e552c6 730 mz = page_cgroup_zoneinfo(pc);
b69408e8 731 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
732 SetPageCgroupAcctLRU(pc);
733 if (mem_cgroup_is_root(pc->mem_cgroup))
734 return;
08e552c6
KH
735 list_add(&pc->lru, &mz->lists[lru]);
736}
544122e5 737
08e552c6 738/*
544122e5
KH
739 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
740 * lru because the page may.be reused after it's fully uncharged (because of
741 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
742 * it again. This function is only used to charge SwapCache. It's done under
743 * lock_page and expected that zone->lru_lock is never held.
08e552c6 744 */
544122e5 745static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 746{
544122e5
KH
747 unsigned long flags;
748 struct zone *zone = page_zone(page);
749 struct page_cgroup *pc = lookup_page_cgroup(page);
750
751 spin_lock_irqsave(&zone->lru_lock, flags);
752 /*
753 * Forget old LRU when this page_cgroup is *not* used. This Used bit
754 * is guarded by lock_page() because the page is SwapCache.
755 */
756 if (!PageCgroupUsed(pc))
757 mem_cgroup_del_lru_list(page, page_lru(page));
758 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
759}
760
544122e5
KH
761static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
762{
763 unsigned long flags;
764 struct zone *zone = page_zone(page);
765 struct page_cgroup *pc = lookup_page_cgroup(page);
766
767 spin_lock_irqsave(&zone->lru_lock, flags);
768 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 769 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
770 mem_cgroup_add_lru_list(page, page_lru(page));
771 spin_unlock_irqrestore(&zone->lru_lock, flags);
772}
773
774
08e552c6
KH
775void mem_cgroup_move_lists(struct page *page,
776 enum lru_list from, enum lru_list to)
777{
f8d66542 778 if (mem_cgroup_disabled())
08e552c6
KH
779 return;
780 mem_cgroup_del_lru_list(page, from);
781 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
782}
783
4c4a2214
DR
784int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
785{
786 int ret;
0b7f569e 787 struct mem_cgroup *curr = NULL;
4c4a2214
DR
788
789 task_lock(task);
0b7f569e
KH
790 rcu_read_lock();
791 curr = try_get_mem_cgroup_from_mm(task->mm);
792 rcu_read_unlock();
4c4a2214 793 task_unlock(task);
0b7f569e
KH
794 if (!curr)
795 return 0;
d31f56db
DN
796 /*
797 * We should check use_hierarchy of "mem" not "curr". Because checking
798 * use_hierarchy of "curr" here make this function true if hierarchy is
799 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
800 * hierarchy(even if use_hierarchy is disabled in "mem").
801 */
802 if (mem->use_hierarchy)
0b7f569e
KH
803 ret = css_is_ancestor(&curr->css, &mem->css);
804 else
805 ret = (curr == mem);
806 css_put(&curr->css);
4c4a2214
DR
807 return ret;
808}
809
6c48a1d0
KH
810/*
811 * prev_priority control...this will be used in memory reclaim path.
812 */
813int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
814{
2733c06a
KM
815 int prev_priority;
816
817 spin_lock(&mem->reclaim_param_lock);
818 prev_priority = mem->prev_priority;
819 spin_unlock(&mem->reclaim_param_lock);
820
821 return prev_priority;
6c48a1d0
KH
822}
823
824void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
825{
2733c06a 826 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
827 if (priority < mem->prev_priority)
828 mem->prev_priority = priority;
2733c06a 829 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
830}
831
832void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
833{
2733c06a 834 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 835 mem->prev_priority = priority;
2733c06a 836 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
837}
838
c772be93 839static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
840{
841 unsigned long active;
842 unsigned long inactive;
c772be93
KM
843 unsigned long gb;
844 unsigned long inactive_ratio;
14797e23 845
14067bb3
KH
846 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
847 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 848
c772be93
KM
849 gb = (inactive + active) >> (30 - PAGE_SHIFT);
850 if (gb)
851 inactive_ratio = int_sqrt(10 * gb);
852 else
853 inactive_ratio = 1;
854
855 if (present_pages) {
856 present_pages[0] = inactive;
857 present_pages[1] = active;
858 }
859
860 return inactive_ratio;
861}
862
863int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
864{
865 unsigned long active;
866 unsigned long inactive;
867 unsigned long present_pages[2];
868 unsigned long inactive_ratio;
869
870 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
871
872 inactive = present_pages[0];
873 active = present_pages[1];
874
875 if (inactive * inactive_ratio < active)
14797e23
KM
876 return 1;
877
878 return 0;
879}
880
56e49d21
RR
881int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
882{
883 unsigned long active;
884 unsigned long inactive;
885
886 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
887 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
888
889 return (active > inactive);
890}
891
a3d8e054
KM
892unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
893 struct zone *zone,
894 enum lru_list lru)
895{
896 int nid = zone->zone_pgdat->node_id;
897 int zid = zone_idx(zone);
898 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
899
900 return MEM_CGROUP_ZSTAT(mz, lru);
901}
902
3e2f41f1
KM
903struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
904 struct zone *zone)
905{
906 int nid = zone->zone_pgdat->node_id;
907 int zid = zone_idx(zone);
908 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
909
910 return &mz->reclaim_stat;
911}
912
913struct zone_reclaim_stat *
914mem_cgroup_get_reclaim_stat_from_page(struct page *page)
915{
916 struct page_cgroup *pc;
917 struct mem_cgroup_per_zone *mz;
918
919 if (mem_cgroup_disabled())
920 return NULL;
921
922 pc = lookup_page_cgroup(page);
bd112db8
DN
923 /*
924 * Used bit is set without atomic ops but after smp_wmb().
925 * For making pc->mem_cgroup visible, insert smp_rmb() here.
926 */
927 smp_rmb();
928 if (!PageCgroupUsed(pc))
929 return NULL;
930
3e2f41f1
KM
931 mz = page_cgroup_zoneinfo(pc);
932 if (!mz)
933 return NULL;
934
935 return &mz->reclaim_stat;
936}
937
66e1707b
BS
938unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
939 struct list_head *dst,
940 unsigned long *scanned, int order,
941 int mode, struct zone *z,
942 struct mem_cgroup *mem_cont,
4f98a2fe 943 int active, int file)
66e1707b
BS
944{
945 unsigned long nr_taken = 0;
946 struct page *page;
947 unsigned long scan;
948 LIST_HEAD(pc_list);
949 struct list_head *src;
ff7283fa 950 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
951 int nid = z->zone_pgdat->node_id;
952 int zid = zone_idx(z);
953 struct mem_cgroup_per_zone *mz;
b7c46d15 954 int lru = LRU_FILE * file + active;
2ffebca6 955 int ret;
66e1707b 956
cf475ad2 957 BUG_ON(!mem_cont);
1ecaab2b 958 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 959 src = &mz->lists[lru];
66e1707b 960
ff7283fa
KH
961 scan = 0;
962 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 963 if (scan >= nr_to_scan)
ff7283fa 964 break;
08e552c6
KH
965
966 page = pc->page;
52d4b9ac
KH
967 if (unlikely(!PageCgroupUsed(pc)))
968 continue;
436c6541 969 if (unlikely(!PageLRU(page)))
ff7283fa 970 continue;
ff7283fa 971
436c6541 972 scan++;
2ffebca6
KH
973 ret = __isolate_lru_page(page, mode, file);
974 switch (ret) {
975 case 0:
66e1707b 976 list_move(&page->lru, dst);
2ffebca6 977 mem_cgroup_del_lru(page);
66e1707b 978 nr_taken++;
2ffebca6
KH
979 break;
980 case -EBUSY:
981 /* we don't affect global LRU but rotate in our LRU */
982 mem_cgroup_rotate_lru_list(page, page_lru(page));
983 break;
984 default:
985 break;
66e1707b
BS
986 }
987 }
988
66e1707b
BS
989 *scanned = scan;
990 return nr_taken;
991}
992
6d61ef40
BS
993#define mem_cgroup_from_res_counter(counter, member) \
994 container_of(counter, struct mem_cgroup, member)
995
b85a96c0
DN
996static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
997{
998 if (do_swap_account) {
999 if (res_counter_check_under_limit(&mem->res) &&
1000 res_counter_check_under_limit(&mem->memsw))
1001 return true;
1002 } else
1003 if (res_counter_check_under_limit(&mem->res))
1004 return true;
1005 return false;
1006}
1007
a7885eb8
KM
1008static unsigned int get_swappiness(struct mem_cgroup *memcg)
1009{
1010 struct cgroup *cgrp = memcg->css.cgroup;
1011 unsigned int swappiness;
1012
1013 /* root ? */
1014 if (cgrp->parent == NULL)
1015 return vm_swappiness;
1016
1017 spin_lock(&memcg->reclaim_param_lock);
1018 swappiness = memcg->swappiness;
1019 spin_unlock(&memcg->reclaim_param_lock);
1020
1021 return swappiness;
1022}
1023
81d39c20
KH
1024static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1025{
1026 int *val = data;
1027 (*val)++;
1028 return 0;
1029}
e222432b
BS
1030
1031/**
6a6135b6 1032 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1033 * @memcg: The memory cgroup that went over limit
1034 * @p: Task that is going to be killed
1035 *
1036 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1037 * enabled
1038 */
1039void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1040{
1041 struct cgroup *task_cgrp;
1042 struct cgroup *mem_cgrp;
1043 /*
1044 * Need a buffer in BSS, can't rely on allocations. The code relies
1045 * on the assumption that OOM is serialized for memory controller.
1046 * If this assumption is broken, revisit this code.
1047 */
1048 static char memcg_name[PATH_MAX];
1049 int ret;
1050
d31f56db 1051 if (!memcg || !p)
e222432b
BS
1052 return;
1053
1054
1055 rcu_read_lock();
1056
1057 mem_cgrp = memcg->css.cgroup;
1058 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1059
1060 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1061 if (ret < 0) {
1062 /*
1063 * Unfortunately, we are unable to convert to a useful name
1064 * But we'll still print out the usage information
1065 */
1066 rcu_read_unlock();
1067 goto done;
1068 }
1069 rcu_read_unlock();
1070
1071 printk(KERN_INFO "Task in %s killed", memcg_name);
1072
1073 rcu_read_lock();
1074 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1075 if (ret < 0) {
1076 rcu_read_unlock();
1077 goto done;
1078 }
1079 rcu_read_unlock();
1080
1081 /*
1082 * Continues from above, so we don't need an KERN_ level
1083 */
1084 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1085done:
1086
1087 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1088 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1089 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1090 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1091 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1092 "failcnt %llu\n",
1093 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1094 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1095 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1096}
1097
81d39c20
KH
1098/*
1099 * This function returns the number of memcg under hierarchy tree. Returns
1100 * 1(self count) if no children.
1101 */
1102static int mem_cgroup_count_children(struct mem_cgroup *mem)
1103{
1104 int num = 0;
1105 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1106 return num;
1107}
1108
6d61ef40 1109/*
04046e1a
KH
1110 * Visit the first child (need not be the first child as per the ordering
1111 * of the cgroup list, since we track last_scanned_child) of @mem and use
1112 * that to reclaim free pages from.
1113 */
1114static struct mem_cgroup *
1115mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1116{
1117 struct mem_cgroup *ret = NULL;
1118 struct cgroup_subsys_state *css;
1119 int nextid, found;
1120
1121 if (!root_mem->use_hierarchy) {
1122 css_get(&root_mem->css);
1123 ret = root_mem;
1124 }
1125
1126 while (!ret) {
1127 rcu_read_lock();
1128 nextid = root_mem->last_scanned_child + 1;
1129 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1130 &found);
1131 if (css && css_tryget(css))
1132 ret = container_of(css, struct mem_cgroup, css);
1133
1134 rcu_read_unlock();
1135 /* Updates scanning parameter */
1136 spin_lock(&root_mem->reclaim_param_lock);
1137 if (!css) {
1138 /* this means start scan from ID:1 */
1139 root_mem->last_scanned_child = 0;
1140 } else
1141 root_mem->last_scanned_child = found;
1142 spin_unlock(&root_mem->reclaim_param_lock);
1143 }
1144
1145 return ret;
1146}
1147
1148/*
1149 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1150 * we reclaimed from, so that we don't end up penalizing one child extensively
1151 * based on its position in the children list.
6d61ef40
BS
1152 *
1153 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1154 *
1155 * We give up and return to the caller when we visit root_mem twice.
1156 * (other groups can be removed while we're walking....)
81d39c20
KH
1157 *
1158 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1159 */
1160static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1161 struct zone *zone,
75822b44
BS
1162 gfp_t gfp_mask,
1163 unsigned long reclaim_options)
6d61ef40 1164{
04046e1a
KH
1165 struct mem_cgroup *victim;
1166 int ret, total = 0;
1167 int loop = 0;
75822b44
BS
1168 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1169 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1170 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1171 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1172
22a668d7
KH
1173 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1174 if (root_mem->memsw_is_minimum)
1175 noswap = true;
1176
4e416953 1177 while (1) {
04046e1a 1178 victim = mem_cgroup_select_victim(root_mem);
4e416953 1179 if (victim == root_mem) {
04046e1a 1180 loop++;
cdec2e42
KH
1181 if (loop >= 1)
1182 drain_all_stock_async();
4e416953
BS
1183 if (loop >= 2) {
1184 /*
1185 * If we have not been able to reclaim
1186 * anything, it might because there are
1187 * no reclaimable pages under this hierarchy
1188 */
1189 if (!check_soft || !total) {
1190 css_put(&victim->css);
1191 break;
1192 }
1193 /*
1194 * We want to do more targetted reclaim.
1195 * excess >> 2 is not to excessive so as to
1196 * reclaim too much, nor too less that we keep
1197 * coming back to reclaim from this cgroup
1198 */
1199 if (total >= (excess >> 2) ||
1200 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1201 css_put(&victim->css);
1202 break;
1203 }
1204 }
1205 }
c62b1a3b 1206 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1207 /* this cgroup's local usage == 0 */
1208 css_put(&victim->css);
6d61ef40
BS
1209 continue;
1210 }
04046e1a 1211 /* we use swappiness of local cgroup */
4e416953
BS
1212 if (check_soft)
1213 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1214 noswap, get_swappiness(victim), zone,
1215 zone->zone_pgdat->node_id);
1216 else
1217 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1218 noswap, get_swappiness(victim));
04046e1a 1219 css_put(&victim->css);
81d39c20
KH
1220 /*
1221 * At shrinking usage, we can't check we should stop here or
1222 * reclaim more. It's depends on callers. last_scanned_child
1223 * will work enough for keeping fairness under tree.
1224 */
1225 if (shrink)
1226 return ret;
04046e1a 1227 total += ret;
4e416953
BS
1228 if (check_soft) {
1229 if (res_counter_check_under_soft_limit(&root_mem->res))
1230 return total;
1231 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1232 return 1 + total;
6d61ef40 1233 }
04046e1a 1234 return total;
6d61ef40
BS
1235}
1236
a636b327
KH
1237bool mem_cgroup_oom_called(struct task_struct *task)
1238{
1239 bool ret = false;
1240 struct mem_cgroup *mem;
1241 struct mm_struct *mm;
1242
1243 rcu_read_lock();
1244 mm = task->mm;
1245 if (!mm)
1246 mm = &init_mm;
1247 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1248 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1249 ret = true;
1250 rcu_read_unlock();
1251 return ret;
1252}
0b7f569e
KH
1253
1254static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1255{
1256 mem->last_oom_jiffies = jiffies;
1257 return 0;
1258}
1259
1260static void record_last_oom(struct mem_cgroup *mem)
1261{
1262 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1263}
1264
d69b042f
BS
1265/*
1266 * Currently used to update mapped file statistics, but the routine can be
1267 * generalized to update other statistics as well.
1268 */
d8046582 1269void mem_cgroup_update_file_mapped(struct page *page, int val)
d69b042f
BS
1270{
1271 struct mem_cgroup *mem;
d69b042f
BS
1272 struct page_cgroup *pc;
1273
d69b042f
BS
1274 pc = lookup_page_cgroup(page);
1275 if (unlikely(!pc))
1276 return;
1277
1278 lock_page_cgroup(pc);
1279 mem = pc->mem_cgroup;
1280 if (!mem)
1281 goto done;
1282
1283 if (!PageCgroupUsed(pc))
1284 goto done;
1285
1286 /*
c62b1a3b 1287 * Preemption is already disabled. We can use __this_cpu_xxx
d69b042f 1288 */
c62b1a3b 1289 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], val);
d69b042f 1290
d69b042f
BS
1291done:
1292 unlock_page_cgroup(pc);
1293}
0b7f569e 1294
cdec2e42
KH
1295/*
1296 * size of first charge trial. "32" comes from vmscan.c's magic value.
1297 * TODO: maybe necessary to use big numbers in big irons.
1298 */
1299#define CHARGE_SIZE (32 * PAGE_SIZE)
1300struct memcg_stock_pcp {
1301 struct mem_cgroup *cached; /* this never be root cgroup */
1302 int charge;
1303 struct work_struct work;
1304};
1305static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1306static atomic_t memcg_drain_count;
1307
1308/*
1309 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1310 * from local stock and true is returned. If the stock is 0 or charges from a
1311 * cgroup which is not current target, returns false. This stock will be
1312 * refilled.
1313 */
1314static bool consume_stock(struct mem_cgroup *mem)
1315{
1316 struct memcg_stock_pcp *stock;
1317 bool ret = true;
1318
1319 stock = &get_cpu_var(memcg_stock);
1320 if (mem == stock->cached && stock->charge)
1321 stock->charge -= PAGE_SIZE;
1322 else /* need to call res_counter_charge */
1323 ret = false;
1324 put_cpu_var(memcg_stock);
1325 return ret;
1326}
1327
1328/*
1329 * Returns stocks cached in percpu to res_counter and reset cached information.
1330 */
1331static void drain_stock(struct memcg_stock_pcp *stock)
1332{
1333 struct mem_cgroup *old = stock->cached;
1334
1335 if (stock->charge) {
1336 res_counter_uncharge(&old->res, stock->charge);
1337 if (do_swap_account)
1338 res_counter_uncharge(&old->memsw, stock->charge);
1339 }
1340 stock->cached = NULL;
1341 stock->charge = 0;
1342}
1343
1344/*
1345 * This must be called under preempt disabled or must be called by
1346 * a thread which is pinned to local cpu.
1347 */
1348static void drain_local_stock(struct work_struct *dummy)
1349{
1350 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1351 drain_stock(stock);
1352}
1353
1354/*
1355 * Cache charges(val) which is from res_counter, to local per_cpu area.
1356 * This will be consumed by consumt_stock() function, later.
1357 */
1358static void refill_stock(struct mem_cgroup *mem, int val)
1359{
1360 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1361
1362 if (stock->cached != mem) { /* reset if necessary */
1363 drain_stock(stock);
1364 stock->cached = mem;
1365 }
1366 stock->charge += val;
1367 put_cpu_var(memcg_stock);
1368}
1369
1370/*
1371 * Tries to drain stocked charges in other cpus. This function is asynchronous
1372 * and just put a work per cpu for draining localy on each cpu. Caller can
1373 * expects some charges will be back to res_counter later but cannot wait for
1374 * it.
1375 */
1376static void drain_all_stock_async(void)
1377{
1378 int cpu;
1379 /* This function is for scheduling "drain" in asynchronous way.
1380 * The result of "drain" is not directly handled by callers. Then,
1381 * if someone is calling drain, we don't have to call drain more.
1382 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1383 * there is a race. We just do loose check here.
1384 */
1385 if (atomic_read(&memcg_drain_count))
1386 return;
1387 /* Notify other cpus that system-wide "drain" is running */
1388 atomic_inc(&memcg_drain_count);
1389 get_online_cpus();
1390 for_each_online_cpu(cpu) {
1391 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1392 schedule_work_on(cpu, &stock->work);
1393 }
1394 put_online_cpus();
1395 atomic_dec(&memcg_drain_count);
1396 /* We don't wait for flush_work */
1397}
1398
1399/* This is a synchronous drain interface. */
1400static void drain_all_stock_sync(void)
1401{
1402 /* called when force_empty is called */
1403 atomic_inc(&memcg_drain_count);
1404 schedule_on_each_cpu(drain_local_stock);
1405 atomic_dec(&memcg_drain_count);
1406}
1407
1408static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1409 unsigned long action,
1410 void *hcpu)
1411{
1412 int cpu = (unsigned long)hcpu;
1413 struct memcg_stock_pcp *stock;
1414
1415 if (action != CPU_DEAD)
1416 return NOTIFY_OK;
1417 stock = &per_cpu(memcg_stock, cpu);
1418 drain_stock(stock);
1419 return NOTIFY_OK;
1420}
1421
f817ed48
KH
1422/*
1423 * Unlike exported interface, "oom" parameter is added. if oom==true,
1424 * oom-killer can be invoked.
8a9f3ccd 1425 */
f817ed48 1426static int __mem_cgroup_try_charge(struct mm_struct *mm,
430e4863 1427 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
8a9f3ccd 1428{
4e649152 1429 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 1430 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4e649152 1431 struct res_counter *fail_res;
cdec2e42 1432 int csize = CHARGE_SIZE;
a636b327
KH
1433
1434 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1435 /* Don't account this! */
1436 *memcg = NULL;
1437 return 0;
1438 }
1439
8a9f3ccd 1440 /*
3be91277
HD
1441 * We always charge the cgroup the mm_struct belongs to.
1442 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1443 * thread group leader migrates. It's possible that mm is not
1444 * set, if so charge the init_mm (happens for pagecache usage).
1445 */
54595fe2
KH
1446 mem = *memcg;
1447 if (likely(!mem)) {
1448 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 1449 *memcg = mem;
e8589cc1 1450 } else {
7a81b88c 1451 css_get(&mem->css);
e8589cc1 1452 }
54595fe2
KH
1453 if (unlikely(!mem))
1454 return 0;
1455
46f7e602 1456 VM_BUG_ON(css_is_removed(&mem->css));
cdec2e42
KH
1457 if (mem_cgroup_is_root(mem))
1458 goto done;
8a9f3ccd 1459
8c7c6e34 1460 while (1) {
0c3e73e8 1461 int ret = 0;
75822b44 1462 unsigned long flags = 0;
7a81b88c 1463
cdec2e42 1464 if (consume_stock(mem))
430e4863 1465 goto done;
cdec2e42
KH
1466
1467 ret = res_counter_charge(&mem->res, csize, &fail_res);
8c7c6e34
KH
1468 if (likely(!ret)) {
1469 if (!do_swap_account)
1470 break;
cdec2e42 1471 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
8c7c6e34
KH
1472 if (likely(!ret))
1473 break;
1474 /* mem+swap counter fails */
cdec2e42 1475 res_counter_uncharge(&mem->res, csize);
75822b44 1476 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
6d61ef40
BS
1477 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1478 memsw);
1479 } else
1480 /* mem counter fails */
1481 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1482 res);
1483
cdec2e42
KH
1484 /* reduce request size and retry */
1485 if (csize > PAGE_SIZE) {
1486 csize = PAGE_SIZE;
1487 continue;
1488 }
3be91277 1489 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1490 goto nomem;
e1a1cd59 1491
4e416953
BS
1492 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1493 gfp_mask, flags);
4d1c6273
DN
1494 if (ret)
1495 continue;
66e1707b
BS
1496
1497 /*
8869b8f6
HD
1498 * try_to_free_mem_cgroup_pages() might not give us a full
1499 * picture of reclaim. Some pages are reclaimed and might be
1500 * moved to swap cache or just unmapped from the cgroup.
1501 * Check the limit again to see if the reclaim reduced the
1502 * current usage of the cgroup before giving up
8c7c6e34 1503 *
8869b8f6 1504 */
b85a96c0
DN
1505 if (mem_cgroup_check_under_limit(mem_over_limit))
1506 continue;
3be91277 1507
8033b97c
DN
1508 /* try to avoid oom while someone is moving charge */
1509 if (mc.moving_task && current != mc.moving_task) {
1510 struct mem_cgroup *from, *to;
1511 bool do_continue = false;
1512 /*
1513 * There is a small race that "from" or "to" can be
1514 * freed by rmdir, so we use css_tryget().
1515 */
1516 rcu_read_lock();
1517 from = mc.from;
1518 to = mc.to;
1519 if (from && css_tryget(&from->css)) {
1520 if (mem_over_limit->use_hierarchy)
1521 do_continue = css_is_ancestor(
1522 &from->css,
1523 &mem_over_limit->css);
1524 else
1525 do_continue = (from == mem_over_limit);
1526 css_put(&from->css);
1527 }
1528 if (!do_continue && to && css_tryget(&to->css)) {
1529 if (mem_over_limit->use_hierarchy)
1530 do_continue = css_is_ancestor(
1531 &to->css,
1532 &mem_over_limit->css);
1533 else
1534 do_continue = (to == mem_over_limit);
1535 css_put(&to->css);
1536 }
1537 rcu_read_unlock();
1538 if (do_continue) {
1539 DEFINE_WAIT(wait);
1540 prepare_to_wait(&mc.waitq, &wait,
1541 TASK_INTERRUPTIBLE);
1542 /* moving charge context might have finished. */
1543 if (mc.moving_task)
1544 schedule();
1545 finish_wait(&mc.waitq, &wait);
1546 continue;
1547 }
1548 }
1549
3be91277 1550 if (!nr_retries--) {
a636b327 1551 if (oom) {
88700756 1552 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
0b7f569e 1553 record_last_oom(mem_over_limit);
a636b327 1554 }
7a81b88c 1555 goto nomem;
66e1707b 1556 }
8a9f3ccd 1557 }
cdec2e42
KH
1558 if (csize > PAGE_SIZE)
1559 refill_stock(mem, csize - PAGE_SIZE);
0c3e73e8 1560done:
7a81b88c
KH
1561 return 0;
1562nomem:
1563 css_put(&mem->css);
1564 return -ENOMEM;
1565}
8a9f3ccd 1566
a3032a2c
DN
1567/*
1568 * Somemtimes we have to undo a charge we got by try_charge().
1569 * This function is for that and do uncharge, put css's refcnt.
1570 * gotten by try_charge().
1571 */
854ffa8d
DN
1572static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1573 unsigned long count)
a3032a2c
DN
1574{
1575 if (!mem_cgroup_is_root(mem)) {
854ffa8d 1576 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 1577 if (do_swap_account)
854ffa8d
DN
1578 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1579 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1580 WARN_ON_ONCE(count > INT_MAX);
1581 __css_put(&mem->css, (int)count);
a3032a2c 1582 }
854ffa8d
DN
1583 /* we don't need css_put for root */
1584}
1585
1586static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1587{
1588 __mem_cgroup_cancel_charge(mem, 1);
a3032a2c
DN
1589}
1590
a3b2d692
KH
1591/*
1592 * A helper function to get mem_cgroup from ID. must be called under
1593 * rcu_read_lock(). The caller must check css_is_removed() or some if
1594 * it's concern. (dropping refcnt from swap can be called against removed
1595 * memcg.)
1596 */
1597static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1598{
1599 struct cgroup_subsys_state *css;
1600
1601 /* ID 0 is unused ID */
1602 if (!id)
1603 return NULL;
1604 css = css_lookup(&mem_cgroup_subsys, id);
1605 if (!css)
1606 return NULL;
1607 return container_of(css, struct mem_cgroup, css);
1608}
1609
e42d9d5d 1610struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 1611{
e42d9d5d 1612 struct mem_cgroup *mem = NULL;
3c776e64 1613 struct page_cgroup *pc;
a3b2d692 1614 unsigned short id;
b5a84319
KH
1615 swp_entry_t ent;
1616
3c776e64
DN
1617 VM_BUG_ON(!PageLocked(page));
1618
3c776e64 1619 pc = lookup_page_cgroup(page);
c0bd3f63 1620 lock_page_cgroup(pc);
a3b2d692 1621 if (PageCgroupUsed(pc)) {
3c776e64 1622 mem = pc->mem_cgroup;
a3b2d692
KH
1623 if (mem && !css_tryget(&mem->css))
1624 mem = NULL;
e42d9d5d 1625 } else if (PageSwapCache(page)) {
3c776e64 1626 ent.val = page_private(page);
a3b2d692
KH
1627 id = lookup_swap_cgroup(ent);
1628 rcu_read_lock();
1629 mem = mem_cgroup_lookup(id);
1630 if (mem && !css_tryget(&mem->css))
1631 mem = NULL;
1632 rcu_read_unlock();
3c776e64 1633 }
c0bd3f63 1634 unlock_page_cgroup(pc);
b5a84319
KH
1635 return mem;
1636}
1637
7a81b88c 1638/*
a5e924f5 1639 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1640 * USED state. If already USED, uncharge and return.
1641 */
1642
1643static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1644 struct page_cgroup *pc,
1645 enum charge_type ctype)
1646{
7a81b88c
KH
1647 /* try_charge() can return NULL to *memcg, taking care of it. */
1648 if (!mem)
1649 return;
52d4b9ac
KH
1650
1651 lock_page_cgroup(pc);
1652 if (unlikely(PageCgroupUsed(pc))) {
1653 unlock_page_cgroup(pc);
a3032a2c 1654 mem_cgroup_cancel_charge(mem);
7a81b88c 1655 return;
52d4b9ac 1656 }
4b3bde4c 1657
8a9f3ccd 1658 pc->mem_cgroup = mem;
261fb61a
KH
1659 /*
1660 * We access a page_cgroup asynchronously without lock_page_cgroup().
1661 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1662 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1663 * before USED bit, we need memory barrier here.
1664 * See mem_cgroup_add_lru_list(), etc.
1665 */
08e552c6 1666 smp_wmb();
4b3bde4c
BS
1667 switch (ctype) {
1668 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1669 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1670 SetPageCgroupCache(pc);
1671 SetPageCgroupUsed(pc);
1672 break;
1673 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1674 ClearPageCgroupCache(pc);
1675 SetPageCgroupUsed(pc);
1676 break;
1677 default:
1678 break;
1679 }
3be91277 1680
08e552c6 1681 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1682
52d4b9ac 1683 unlock_page_cgroup(pc);
430e4863
KH
1684 /*
1685 * "charge_statistics" updated event counter. Then, check it.
1686 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1687 * if they exceeds softlimit.
1688 */
1689 if (mem_cgroup_soft_limit_check(mem))
1690 mem_cgroup_update_tree(mem, pc->page);
1691 if (mem_cgroup_threshold_check(mem))
1692 mem_cgroup_threshold(mem);
1693
7a81b88c 1694}
66e1707b 1695
f817ed48 1696/**
57f9fd7d 1697 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
1698 * @pc: page_cgroup of the page.
1699 * @from: mem_cgroup which the page is moved from.
1700 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 1701 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
1702 *
1703 * The caller must confirm following.
08e552c6 1704 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 1705 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 1706 *
854ffa8d
DN
1707 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1708 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1709 * true, this function does "uncharge" from old cgroup, but it doesn't if
1710 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
1711 */
1712
57f9fd7d 1713static void __mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 1714 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
f817ed48 1715{
d69b042f 1716 struct page *page;
f817ed48 1717
f817ed48 1718 VM_BUG_ON(from == to);
08e552c6 1719 VM_BUG_ON(PageLRU(pc->page));
57f9fd7d
DN
1720 VM_BUG_ON(!PageCgroupLocked(pc));
1721 VM_BUG_ON(!PageCgroupUsed(pc));
1722 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 1723
d69b042f 1724 page = pc->page;
d8046582 1725 if (page_mapped(page) && !PageAnon(page)) {
c62b1a3b
KH
1726 /* Update mapped_file data for mem_cgroup */
1727 preempt_disable();
1728 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1729 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1730 preempt_enable();
d69b042f 1731 }
854ffa8d
DN
1732 mem_cgroup_charge_statistics(from, pc, false);
1733 if (uncharge)
1734 /* This is not "cancel", but cancel_charge does all we need. */
1735 mem_cgroup_cancel_charge(from);
d69b042f 1736
854ffa8d 1737 /* caller should have done css_get */
08e552c6
KH
1738 pc->mem_cgroup = to;
1739 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
1740 /*
1741 * We charges against "to" which may not have any tasks. Then, "to"
1742 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
1743 * this function is just force_empty() and move charge, so it's
1744 * garanteed that "to" is never removed. So, we don't check rmdir
1745 * status here.
88703267 1746 */
57f9fd7d
DN
1747}
1748
1749/*
1750 * check whether the @pc is valid for moving account and call
1751 * __mem_cgroup_move_account()
1752 */
1753static int mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 1754 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
57f9fd7d
DN
1755{
1756 int ret = -EINVAL;
1757 lock_page_cgroup(pc);
1758 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
854ffa8d 1759 __mem_cgroup_move_account(pc, from, to, uncharge);
57f9fd7d
DN
1760 ret = 0;
1761 }
1762 unlock_page_cgroup(pc);
f817ed48
KH
1763 return ret;
1764}
1765
1766/*
1767 * move charges to its parent.
1768 */
1769
1770static int mem_cgroup_move_parent(struct page_cgroup *pc,
1771 struct mem_cgroup *child,
1772 gfp_t gfp_mask)
1773{
08e552c6 1774 struct page *page = pc->page;
f817ed48
KH
1775 struct cgroup *cg = child->css.cgroup;
1776 struct cgroup *pcg = cg->parent;
1777 struct mem_cgroup *parent;
f817ed48
KH
1778 int ret;
1779
1780 /* Is ROOT ? */
1781 if (!pcg)
1782 return -EINVAL;
1783
57f9fd7d
DN
1784 ret = -EBUSY;
1785 if (!get_page_unless_zero(page))
1786 goto out;
1787 if (isolate_lru_page(page))
1788 goto put;
08e552c6 1789
f817ed48 1790 parent = mem_cgroup_from_cont(pcg);
430e4863 1791 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1792 if (ret || !parent)
57f9fd7d 1793 goto put_back;
f817ed48 1794
854ffa8d
DN
1795 ret = mem_cgroup_move_account(pc, child, parent, true);
1796 if (ret)
1797 mem_cgroup_cancel_charge(parent);
57f9fd7d 1798put_back:
08e552c6 1799 putback_lru_page(page);
57f9fd7d 1800put:
40d58138 1801 put_page(page);
57f9fd7d 1802out:
f817ed48
KH
1803 return ret;
1804}
1805
7a81b88c
KH
1806/*
1807 * Charge the memory controller for page usage.
1808 * Return
1809 * 0 if the charge was successful
1810 * < 0 if the cgroup is over its limit
1811 */
1812static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1813 gfp_t gfp_mask, enum charge_type ctype,
1814 struct mem_cgroup *memcg)
1815{
1816 struct mem_cgroup *mem;
1817 struct page_cgroup *pc;
1818 int ret;
1819
1820 pc = lookup_page_cgroup(page);
1821 /* can happen at boot */
1822 if (unlikely(!pc))
1823 return 0;
1824 prefetchw(pc);
1825
1826 mem = memcg;
430e4863 1827 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1828 if (ret || !mem)
7a81b88c
KH
1829 return ret;
1830
1831 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1832 return 0;
8a9f3ccd
BS
1833}
1834
7a81b88c
KH
1835int mem_cgroup_newpage_charge(struct page *page,
1836 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1837{
f8d66542 1838 if (mem_cgroup_disabled())
cede86ac 1839 return 0;
52d4b9ac
KH
1840 if (PageCompound(page))
1841 return 0;
69029cd5
KH
1842 /*
1843 * If already mapped, we don't have to account.
1844 * If page cache, page->mapping has address_space.
1845 * But page->mapping may have out-of-use anon_vma pointer,
1846 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1847 * is NULL.
1848 */
1849 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1850 return 0;
1851 if (unlikely(!mm))
1852 mm = &init_mm;
217bc319 1853 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1854 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1855}
1856
83aae4c7
DN
1857static void
1858__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1859 enum charge_type ctype);
1860
e1a1cd59
BS
1861int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1862 gfp_t gfp_mask)
8697d331 1863{
b5a84319
KH
1864 struct mem_cgroup *mem = NULL;
1865 int ret;
1866
f8d66542 1867 if (mem_cgroup_disabled())
cede86ac 1868 return 0;
52d4b9ac
KH
1869 if (PageCompound(page))
1870 return 0;
accf163e
KH
1871 /*
1872 * Corner case handling. This is called from add_to_page_cache()
1873 * in usual. But some FS (shmem) precharges this page before calling it
1874 * and call add_to_page_cache() with GFP_NOWAIT.
1875 *
1876 * For GFP_NOWAIT case, the page may be pre-charged before calling
1877 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1878 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1879 * And when the page is SwapCache, it should take swap information
1880 * into account. This is under lock_page() now.
accf163e
KH
1881 */
1882 if (!(gfp_mask & __GFP_WAIT)) {
1883 struct page_cgroup *pc;
1884
52d4b9ac
KH
1885
1886 pc = lookup_page_cgroup(page);
1887 if (!pc)
1888 return 0;
1889 lock_page_cgroup(pc);
1890 if (PageCgroupUsed(pc)) {
1891 unlock_page_cgroup(pc);
accf163e
KH
1892 return 0;
1893 }
52d4b9ac 1894 unlock_page_cgroup(pc);
accf163e
KH
1895 }
1896
b5a84319 1897 if (unlikely(!mm && !mem))
8697d331 1898 mm = &init_mm;
accf163e 1899
c05555b5
KH
1900 if (page_is_file_cache(page))
1901 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1902 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1903
83aae4c7
DN
1904 /* shmem */
1905 if (PageSwapCache(page)) {
1906 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1907 if (!ret)
1908 __mem_cgroup_commit_charge_swapin(page, mem,
1909 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1910 } else
1911 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1912 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1913
b5a84319 1914 return ret;
e8589cc1
KH
1915}
1916
54595fe2
KH
1917/*
1918 * While swap-in, try_charge -> commit or cancel, the page is locked.
1919 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 1920 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
1921 * "commit()" or removed by "cancel()"
1922 */
8c7c6e34
KH
1923int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1924 struct page *page,
1925 gfp_t mask, struct mem_cgroup **ptr)
1926{
1927 struct mem_cgroup *mem;
54595fe2 1928 int ret;
8c7c6e34 1929
f8d66542 1930 if (mem_cgroup_disabled())
8c7c6e34
KH
1931 return 0;
1932
1933 if (!do_swap_account)
1934 goto charge_cur_mm;
8c7c6e34
KH
1935 /*
1936 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
1937 * the pte, and even removed page from swap cache: in those cases
1938 * do_swap_page()'s pte_same() test will fail; but there's also a
1939 * KSM case which does need to charge the page.
8c7c6e34
KH
1940 */
1941 if (!PageSwapCache(page))
407f9c8b 1942 goto charge_cur_mm;
e42d9d5d 1943 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
1944 if (!mem)
1945 goto charge_cur_mm;
8c7c6e34 1946 *ptr = mem;
430e4863 1947 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
54595fe2
KH
1948 /* drop extra refcnt from tryget */
1949 css_put(&mem->css);
1950 return ret;
8c7c6e34
KH
1951charge_cur_mm:
1952 if (unlikely(!mm))
1953 mm = &init_mm;
430e4863 1954 return __mem_cgroup_try_charge(mm, mask, ptr, true);
8c7c6e34
KH
1955}
1956
83aae4c7
DN
1957static void
1958__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1959 enum charge_type ctype)
7a81b88c
KH
1960{
1961 struct page_cgroup *pc;
1962
f8d66542 1963 if (mem_cgroup_disabled())
7a81b88c
KH
1964 return;
1965 if (!ptr)
1966 return;
88703267 1967 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 1968 pc = lookup_page_cgroup(page);
544122e5 1969 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1970 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1971 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1972 /*
1973 * Now swap is on-memory. This means this page may be
1974 * counted both as mem and swap....double count.
03f3c433
KH
1975 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1976 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1977 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1978 */
03f3c433 1979 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1980 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1981 unsigned short id;
8c7c6e34 1982 struct mem_cgroup *memcg;
a3b2d692
KH
1983
1984 id = swap_cgroup_record(ent, 0);
1985 rcu_read_lock();
1986 memcg = mem_cgroup_lookup(id);
8c7c6e34 1987 if (memcg) {
a3b2d692
KH
1988 /*
1989 * This recorded memcg can be obsolete one. So, avoid
1990 * calling css_tryget
1991 */
0c3e73e8 1992 if (!mem_cgroup_is_root(memcg))
4e649152 1993 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 1994 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
1995 mem_cgroup_put(memcg);
1996 }
a3b2d692 1997 rcu_read_unlock();
8c7c6e34 1998 }
88703267
KH
1999 /*
2000 * At swapin, we may charge account against cgroup which has no tasks.
2001 * So, rmdir()->pre_destroy() can be called while we do this charge.
2002 * In that case, we need to call pre_destroy() again. check it here.
2003 */
2004 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2005}
2006
83aae4c7
DN
2007void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2008{
2009 __mem_cgroup_commit_charge_swapin(page, ptr,
2010 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2011}
2012
7a81b88c
KH
2013void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2014{
f8d66542 2015 if (mem_cgroup_disabled())
7a81b88c
KH
2016 return;
2017 if (!mem)
2018 return;
a3032a2c 2019 mem_cgroup_cancel_charge(mem);
7a81b88c
KH
2020}
2021
569b846d
KH
2022static void
2023__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2024{
2025 struct memcg_batch_info *batch = NULL;
2026 bool uncharge_memsw = true;
2027 /* If swapout, usage of swap doesn't decrease */
2028 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2029 uncharge_memsw = false;
2030 /*
2031 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2032 * In those cases, all pages freed continously can be expected to be in
2033 * the same cgroup and we have chance to coalesce uncharges.
2034 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2035 * because we want to do uncharge as soon as possible.
2036 */
2037 if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
2038 goto direct_uncharge;
2039
2040 batch = &current->memcg_batch;
2041 /*
2042 * In usual, we do css_get() when we remember memcg pointer.
2043 * But in this case, we keep res->usage until end of a series of
2044 * uncharges. Then, it's ok to ignore memcg's refcnt.
2045 */
2046 if (!batch->memcg)
2047 batch->memcg = mem;
2048 /*
2049 * In typical case, batch->memcg == mem. This means we can
2050 * merge a series of uncharges to an uncharge of res_counter.
2051 * If not, we uncharge res_counter ony by one.
2052 */
2053 if (batch->memcg != mem)
2054 goto direct_uncharge;
2055 /* remember freed charge and uncharge it later */
2056 batch->bytes += PAGE_SIZE;
2057 if (uncharge_memsw)
2058 batch->memsw_bytes += PAGE_SIZE;
2059 return;
2060direct_uncharge:
2061 res_counter_uncharge(&mem->res, PAGE_SIZE);
2062 if (uncharge_memsw)
2063 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2064 return;
2065}
7a81b88c 2066
8a9f3ccd 2067/*
69029cd5 2068 * uncharge if !page_mapped(page)
8a9f3ccd 2069 */
8c7c6e34 2070static struct mem_cgroup *
69029cd5 2071__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2072{
8289546e 2073 struct page_cgroup *pc;
8c7c6e34 2074 struct mem_cgroup *mem = NULL;
072c56c1 2075 struct mem_cgroup_per_zone *mz;
8a9f3ccd 2076
f8d66542 2077 if (mem_cgroup_disabled())
8c7c6e34 2078 return NULL;
4077960e 2079
d13d1443 2080 if (PageSwapCache(page))
8c7c6e34 2081 return NULL;
d13d1443 2082
8697d331 2083 /*
3c541e14 2084 * Check if our page_cgroup is valid
8697d331 2085 */
52d4b9ac
KH
2086 pc = lookup_page_cgroup(page);
2087 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2088 return NULL;
b9c565d5 2089
52d4b9ac 2090 lock_page_cgroup(pc);
d13d1443 2091
8c7c6e34
KH
2092 mem = pc->mem_cgroup;
2093
d13d1443
KH
2094 if (!PageCgroupUsed(pc))
2095 goto unlock_out;
2096
2097 switch (ctype) {
2098 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2099 case MEM_CGROUP_CHARGE_TYPE_DROP:
d13d1443
KH
2100 if (page_mapped(page))
2101 goto unlock_out;
2102 break;
2103 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2104 if (!PageAnon(page)) { /* Shared memory */
2105 if (page->mapping && !page_is_file_cache(page))
2106 goto unlock_out;
2107 } else if (page_mapped(page)) /* Anon */
2108 goto unlock_out;
2109 break;
2110 default:
2111 break;
52d4b9ac 2112 }
d13d1443 2113
569b846d
KH
2114 if (!mem_cgroup_is_root(mem))
2115 __do_uncharge(mem, ctype);
0c3e73e8
BS
2116 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2117 mem_cgroup_swap_statistics(mem, true);
08e552c6 2118 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 2119
52d4b9ac 2120 ClearPageCgroupUsed(pc);
544122e5
KH
2121 /*
2122 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2123 * freed from LRU. This is safe because uncharged page is expected not
2124 * to be reused (freed soon). Exception is SwapCache, it's handled by
2125 * special functions.
2126 */
b9c565d5 2127
69029cd5 2128 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 2129 unlock_page_cgroup(pc);
fb59e9f1 2130
4e649152 2131 if (mem_cgroup_soft_limit_check(mem))
f64c3f54 2132 mem_cgroup_update_tree(mem, page);
2e72b634
KS
2133 if (mem_cgroup_threshold_check(mem))
2134 mem_cgroup_threshold(mem);
a7fe942e
KH
2135 /* at swapout, this memcg will be accessed to record to swap */
2136 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2137 css_put(&mem->css);
6d12e2d8 2138
8c7c6e34 2139 return mem;
d13d1443
KH
2140
2141unlock_out:
2142 unlock_page_cgroup(pc);
8c7c6e34 2143 return NULL;
3c541e14
BS
2144}
2145
69029cd5
KH
2146void mem_cgroup_uncharge_page(struct page *page)
2147{
52d4b9ac
KH
2148 /* early check. */
2149 if (page_mapped(page))
2150 return;
2151 if (page->mapping && !PageAnon(page))
2152 return;
69029cd5
KH
2153 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2154}
2155
2156void mem_cgroup_uncharge_cache_page(struct page *page)
2157{
2158 VM_BUG_ON(page_mapped(page));
b7abea96 2159 VM_BUG_ON(page->mapping);
69029cd5
KH
2160 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2161}
2162
569b846d
KH
2163/*
2164 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2165 * In that cases, pages are freed continuously and we can expect pages
2166 * are in the same memcg. All these calls itself limits the number of
2167 * pages freed at once, then uncharge_start/end() is called properly.
2168 * This may be called prural(2) times in a context,
2169 */
2170
2171void mem_cgroup_uncharge_start(void)
2172{
2173 current->memcg_batch.do_batch++;
2174 /* We can do nest. */
2175 if (current->memcg_batch.do_batch == 1) {
2176 current->memcg_batch.memcg = NULL;
2177 current->memcg_batch.bytes = 0;
2178 current->memcg_batch.memsw_bytes = 0;
2179 }
2180}
2181
2182void mem_cgroup_uncharge_end(void)
2183{
2184 struct memcg_batch_info *batch = &current->memcg_batch;
2185
2186 if (!batch->do_batch)
2187 return;
2188
2189 batch->do_batch--;
2190 if (batch->do_batch) /* If stacked, do nothing. */
2191 return;
2192
2193 if (!batch->memcg)
2194 return;
2195 /*
2196 * This "batch->memcg" is valid without any css_get/put etc...
2197 * bacause we hide charges behind us.
2198 */
2199 if (batch->bytes)
2200 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2201 if (batch->memsw_bytes)
2202 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2203 /* forget this pointer (for sanity check) */
2204 batch->memcg = NULL;
2205}
2206
e767e056 2207#ifdef CONFIG_SWAP
8c7c6e34 2208/*
e767e056 2209 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2210 * memcg information is recorded to swap_cgroup of "ent"
2211 */
8a9478ca
KH
2212void
2213mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2214{
2215 struct mem_cgroup *memcg;
8a9478ca
KH
2216 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2217
2218 if (!swapout) /* this was a swap cache but the swap is unused ! */
2219 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2220
2221 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2222
8c7c6e34 2223 /* record memcg information */
8a9478ca 2224 if (do_swap_account && swapout && memcg) {
a3b2d692 2225 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
2226 mem_cgroup_get(memcg);
2227 }
8a9478ca 2228 if (swapout && memcg)
a7fe942e 2229 css_put(&memcg->css);
8c7c6e34 2230}
e767e056 2231#endif
8c7c6e34
KH
2232
2233#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2234/*
2235 * called from swap_entry_free(). remove record in swap_cgroup and
2236 * uncharge "memsw" account.
2237 */
2238void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2239{
8c7c6e34 2240 struct mem_cgroup *memcg;
a3b2d692 2241 unsigned short id;
8c7c6e34
KH
2242
2243 if (!do_swap_account)
2244 return;
2245
a3b2d692
KH
2246 id = swap_cgroup_record(ent, 0);
2247 rcu_read_lock();
2248 memcg = mem_cgroup_lookup(id);
8c7c6e34 2249 if (memcg) {
a3b2d692
KH
2250 /*
2251 * We uncharge this because swap is freed.
2252 * This memcg can be obsolete one. We avoid calling css_tryget
2253 */
0c3e73e8 2254 if (!mem_cgroup_is_root(memcg))
4e649152 2255 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2256 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2257 mem_cgroup_put(memcg);
2258 }
a3b2d692 2259 rcu_read_unlock();
d13d1443 2260}
02491447
DN
2261
2262/**
2263 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2264 * @entry: swap entry to be moved
2265 * @from: mem_cgroup which the entry is moved from
2266 * @to: mem_cgroup which the entry is moved to
483c30b5 2267 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2268 *
2269 * It succeeds only when the swap_cgroup's record for this entry is the same
2270 * as the mem_cgroup's id of @from.
2271 *
2272 * Returns 0 on success, -EINVAL on failure.
2273 *
2274 * The caller must have charged to @to, IOW, called res_counter_charge() about
2275 * both res and memsw, and called css_get().
2276 */
2277static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2278 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2279{
2280 unsigned short old_id, new_id;
2281
2282 old_id = css_id(&from->css);
2283 new_id = css_id(&to->css);
2284
2285 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2286 mem_cgroup_swap_statistics(from, false);
483c30b5 2287 mem_cgroup_swap_statistics(to, true);
02491447 2288 /*
483c30b5
DN
2289 * This function is only called from task migration context now.
2290 * It postpones res_counter and refcount handling till the end
2291 * of task migration(mem_cgroup_clear_mc()) for performance
2292 * improvement. But we cannot postpone mem_cgroup_get(to)
2293 * because if the process that has been moved to @to does
2294 * swap-in, the refcount of @to might be decreased to 0.
02491447 2295 */
02491447 2296 mem_cgroup_get(to);
483c30b5
DN
2297 if (need_fixup) {
2298 if (!mem_cgroup_is_root(from))
2299 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2300 mem_cgroup_put(from);
2301 /*
2302 * we charged both to->res and to->memsw, so we should
2303 * uncharge to->res.
2304 */
2305 if (!mem_cgroup_is_root(to))
2306 res_counter_uncharge(&to->res, PAGE_SIZE);
2307 css_put(&to->css);
2308 }
02491447
DN
2309 return 0;
2310 }
2311 return -EINVAL;
2312}
2313#else
2314static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2315 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2316{
2317 return -EINVAL;
2318}
8c7c6e34 2319#endif
d13d1443 2320
ae41be37 2321/*
01b1ae63
KH
2322 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2323 * page belongs to.
ae41be37 2324 */
01b1ae63 2325int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
2326{
2327 struct page_cgroup *pc;
e8589cc1 2328 struct mem_cgroup *mem = NULL;
e8589cc1 2329 int ret = 0;
8869b8f6 2330
f8d66542 2331 if (mem_cgroup_disabled())
4077960e
BS
2332 return 0;
2333
52d4b9ac
KH
2334 pc = lookup_page_cgroup(page);
2335 lock_page_cgroup(pc);
2336 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2337 mem = pc->mem_cgroup;
2338 css_get(&mem->css);
e8589cc1 2339 }
52d4b9ac 2340 unlock_page_cgroup(pc);
01b1ae63 2341
e8589cc1 2342 if (mem) {
430e4863 2343 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
2344 css_put(&mem->css);
2345 }
01b1ae63 2346 *ptr = mem;
e8589cc1 2347 return ret;
ae41be37 2348}
8869b8f6 2349
69029cd5 2350/* remove redundant charge if migration failed*/
01b1ae63
KH
2351void mem_cgroup_end_migration(struct mem_cgroup *mem,
2352 struct page *oldpage, struct page *newpage)
ae41be37 2353{
01b1ae63
KH
2354 struct page *target, *unused;
2355 struct page_cgroup *pc;
2356 enum charge_type ctype;
2357
2358 if (!mem)
2359 return;
88703267 2360 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2361 /* at migration success, oldpage->mapping is NULL. */
2362 if (oldpage->mapping) {
2363 target = oldpage;
2364 unused = NULL;
2365 } else {
2366 target = newpage;
2367 unused = oldpage;
2368 }
2369
2370 if (PageAnon(target))
2371 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2372 else if (page_is_file_cache(target))
2373 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2374 else
2375 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2376
2377 /* unused page is not on radix-tree now. */
d13d1443 2378 if (unused)
01b1ae63
KH
2379 __mem_cgroup_uncharge_common(unused, ctype);
2380
2381 pc = lookup_page_cgroup(target);
69029cd5 2382 /*
01b1ae63
KH
2383 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2384 * So, double-counting is effectively avoided.
2385 */
2386 __mem_cgroup_commit_charge(mem, pc, ctype);
2387
2388 /*
2389 * Both of oldpage and newpage are still under lock_page().
2390 * Then, we don't have to care about race in radix-tree.
2391 * But we have to be careful that this page is unmapped or not.
2392 *
2393 * There is a case for !page_mapped(). At the start of
2394 * migration, oldpage was mapped. But now, it's zapped.
2395 * But we know *target* page is not freed/reused under us.
2396 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 2397 */
01b1ae63
KH
2398 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2399 mem_cgroup_uncharge_page(target);
88703267
KH
2400 /*
2401 * At migration, we may charge account against cgroup which has no tasks
2402 * So, rmdir()->pre_destroy() can be called while we do this charge.
2403 * In that case, we need to call pre_destroy() again. check it here.
2404 */
2405 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2406}
78fb7466 2407
c9b0ed51 2408/*
ae3abae6
DN
2409 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2410 * Calling hierarchical_reclaim is not enough because we should update
2411 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2412 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2413 * not from the memcg which this page would be charged to.
2414 * try_charge_swapin does all of these works properly.
c9b0ed51 2415 */
ae3abae6 2416int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2417 struct mm_struct *mm,
2418 gfp_t gfp_mask)
c9b0ed51 2419{
b5a84319 2420 struct mem_cgroup *mem = NULL;
ae3abae6 2421 int ret;
c9b0ed51 2422
f8d66542 2423 if (mem_cgroup_disabled())
cede86ac 2424 return 0;
c9b0ed51 2425
ae3abae6
DN
2426 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2427 if (!ret)
2428 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2429
ae3abae6 2430 return ret;
c9b0ed51
KH
2431}
2432
8c7c6e34
KH
2433static DEFINE_MUTEX(set_limit_mutex);
2434
d38d2a75 2435static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2436 unsigned long long val)
628f4235 2437{
81d39c20 2438 int retry_count;
8c7c6e34 2439 u64 memswlimit;
628f4235 2440 int ret = 0;
81d39c20
KH
2441 int children = mem_cgroup_count_children(memcg);
2442 u64 curusage, oldusage;
2443
2444 /*
2445 * For keeping hierarchical_reclaim simple, how long we should retry
2446 * is depends on callers. We set our retry-count to be function
2447 * of # of children which we should visit in this loop.
2448 */
2449 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2450
2451 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2452
8c7c6e34 2453 while (retry_count) {
628f4235
KH
2454 if (signal_pending(current)) {
2455 ret = -EINTR;
2456 break;
2457 }
8c7c6e34
KH
2458 /*
2459 * Rather than hide all in some function, I do this in
2460 * open coded manner. You see what this really does.
2461 * We have to guarantee mem->res.limit < mem->memsw.limit.
2462 */
2463 mutex_lock(&set_limit_mutex);
2464 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2465 if (memswlimit < val) {
2466 ret = -EINVAL;
2467 mutex_unlock(&set_limit_mutex);
628f4235
KH
2468 break;
2469 }
8c7c6e34 2470 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2471 if (!ret) {
2472 if (memswlimit == val)
2473 memcg->memsw_is_minimum = true;
2474 else
2475 memcg->memsw_is_minimum = false;
2476 }
8c7c6e34
KH
2477 mutex_unlock(&set_limit_mutex);
2478
2479 if (!ret)
2480 break;
2481
aa20d489 2482 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 2483 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2484 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2485 /* Usage is reduced ? */
2486 if (curusage >= oldusage)
2487 retry_count--;
2488 else
2489 oldusage = curusage;
8c7c6e34 2490 }
14797e23 2491
8c7c6e34
KH
2492 return ret;
2493}
2494
338c8431
LZ
2495static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2496 unsigned long long val)
8c7c6e34 2497{
81d39c20 2498 int retry_count;
8c7c6e34 2499 u64 memlimit, oldusage, curusage;
81d39c20
KH
2500 int children = mem_cgroup_count_children(memcg);
2501 int ret = -EBUSY;
8c7c6e34 2502
81d39c20
KH
2503 /* see mem_cgroup_resize_res_limit */
2504 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2505 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2506 while (retry_count) {
2507 if (signal_pending(current)) {
2508 ret = -EINTR;
2509 break;
2510 }
2511 /*
2512 * Rather than hide all in some function, I do this in
2513 * open coded manner. You see what this really does.
2514 * We have to guarantee mem->res.limit < mem->memsw.limit.
2515 */
2516 mutex_lock(&set_limit_mutex);
2517 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2518 if (memlimit > val) {
2519 ret = -EINVAL;
2520 mutex_unlock(&set_limit_mutex);
2521 break;
2522 }
2523 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2524 if (!ret) {
2525 if (memlimit == val)
2526 memcg->memsw_is_minimum = true;
2527 else
2528 memcg->memsw_is_minimum = false;
2529 }
8c7c6e34
KH
2530 mutex_unlock(&set_limit_mutex);
2531
2532 if (!ret)
2533 break;
2534
4e416953 2535 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
2536 MEM_CGROUP_RECLAIM_NOSWAP |
2537 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 2538 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 2539 /* Usage is reduced ? */
8c7c6e34 2540 if (curusage >= oldusage)
628f4235 2541 retry_count--;
81d39c20
KH
2542 else
2543 oldusage = curusage;
628f4235
KH
2544 }
2545 return ret;
2546}
2547
4e416953
BS
2548unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549 gfp_t gfp_mask, int nid,
2550 int zid)
2551{
2552 unsigned long nr_reclaimed = 0;
2553 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554 unsigned long reclaimed;
2555 int loop = 0;
2556 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 2557 unsigned long long excess;
4e416953
BS
2558
2559 if (order > 0)
2560 return 0;
2561
2562 mctz = soft_limit_tree_node_zone(nid, zid);
2563 /*
2564 * This loop can run a while, specially if mem_cgroup's continuously
2565 * keep exceeding their soft limit and putting the system under
2566 * pressure
2567 */
2568 do {
2569 if (next_mz)
2570 mz = next_mz;
2571 else
2572 mz = mem_cgroup_largest_soft_limit_node(mctz);
2573 if (!mz)
2574 break;
2575
2576 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2577 gfp_mask,
2578 MEM_CGROUP_RECLAIM_SOFT);
2579 nr_reclaimed += reclaimed;
2580 spin_lock(&mctz->lock);
2581
2582 /*
2583 * If we failed to reclaim anything from this memory cgroup
2584 * it is time to move on to the next cgroup
2585 */
2586 next_mz = NULL;
2587 if (!reclaimed) {
2588 do {
2589 /*
2590 * Loop until we find yet another one.
2591 *
2592 * By the time we get the soft_limit lock
2593 * again, someone might have aded the
2594 * group back on the RB tree. Iterate to
2595 * make sure we get a different mem.
2596 * mem_cgroup_largest_soft_limit_node returns
2597 * NULL if no other cgroup is present on
2598 * the tree
2599 */
2600 next_mz =
2601 __mem_cgroup_largest_soft_limit_node(mctz);
2602 if (next_mz == mz) {
2603 css_put(&next_mz->mem->css);
2604 next_mz = NULL;
2605 } else /* next_mz == NULL or other memcg */
2606 break;
2607 } while (1);
2608 }
4e416953 2609 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 2610 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
2611 /*
2612 * One school of thought says that we should not add
2613 * back the node to the tree if reclaim returns 0.
2614 * But our reclaim could return 0, simply because due
2615 * to priority we are exposing a smaller subset of
2616 * memory to reclaim from. Consider this as a longer
2617 * term TODO.
2618 */
ef8745c1
KH
2619 /* If excess == 0, no tree ops */
2620 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
2621 spin_unlock(&mctz->lock);
2622 css_put(&mz->mem->css);
2623 loop++;
2624 /*
2625 * Could not reclaim anything and there are no more
2626 * mem cgroups to try or we seem to be looping without
2627 * reclaiming anything.
2628 */
2629 if (!nr_reclaimed &&
2630 (next_mz == NULL ||
2631 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2632 break;
2633 } while (!nr_reclaimed);
2634 if (next_mz)
2635 css_put(&next_mz->mem->css);
2636 return nr_reclaimed;
2637}
2638
cc847582
KH
2639/*
2640 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
2641 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2642 */
f817ed48 2643static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 2644 int node, int zid, enum lru_list lru)
cc847582 2645{
08e552c6
KH
2646 struct zone *zone;
2647 struct mem_cgroup_per_zone *mz;
f817ed48 2648 struct page_cgroup *pc, *busy;
08e552c6 2649 unsigned long flags, loop;
072c56c1 2650 struct list_head *list;
f817ed48 2651 int ret = 0;
072c56c1 2652
08e552c6
KH
2653 zone = &NODE_DATA(node)->node_zones[zid];
2654 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 2655 list = &mz->lists[lru];
cc847582 2656
f817ed48
KH
2657 loop = MEM_CGROUP_ZSTAT(mz, lru);
2658 /* give some margin against EBUSY etc...*/
2659 loop += 256;
2660 busy = NULL;
2661 while (loop--) {
2662 ret = 0;
08e552c6 2663 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 2664 if (list_empty(list)) {
08e552c6 2665 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 2666 break;
f817ed48
KH
2667 }
2668 pc = list_entry(list->prev, struct page_cgroup, lru);
2669 if (busy == pc) {
2670 list_move(&pc->lru, list);
648bcc77 2671 busy = NULL;
08e552c6 2672 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
2673 continue;
2674 }
08e552c6 2675 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 2676
2c26fdd7 2677 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 2678 if (ret == -ENOMEM)
52d4b9ac 2679 break;
f817ed48
KH
2680
2681 if (ret == -EBUSY || ret == -EINVAL) {
2682 /* found lock contention or "pc" is obsolete. */
2683 busy = pc;
2684 cond_resched();
2685 } else
2686 busy = NULL;
cc847582 2687 }
08e552c6 2688
f817ed48
KH
2689 if (!ret && !list_empty(list))
2690 return -EBUSY;
2691 return ret;
cc847582
KH
2692}
2693
2694/*
2695 * make mem_cgroup's charge to be 0 if there is no task.
2696 * This enables deleting this mem_cgroup.
2697 */
c1e862c1 2698static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 2699{
f817ed48
KH
2700 int ret;
2701 int node, zid, shrink;
2702 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 2703 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 2704
cc847582 2705 css_get(&mem->css);
f817ed48
KH
2706
2707 shrink = 0;
c1e862c1
KH
2708 /* should free all ? */
2709 if (free_all)
2710 goto try_to_free;
f817ed48 2711move_account:
fce66477 2712 do {
f817ed48 2713 ret = -EBUSY;
c1e862c1
KH
2714 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2715 goto out;
2716 ret = -EINTR;
2717 if (signal_pending(current))
cc847582 2718 goto out;
52d4b9ac
KH
2719 /* This is for making all *used* pages to be on LRU. */
2720 lru_add_drain_all();
cdec2e42 2721 drain_all_stock_sync();
f817ed48 2722 ret = 0;
299b4eaa 2723 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 2724 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 2725 enum lru_list l;
f817ed48
KH
2726 for_each_lru(l) {
2727 ret = mem_cgroup_force_empty_list(mem,
08e552c6 2728 node, zid, l);
f817ed48
KH
2729 if (ret)
2730 break;
2731 }
1ecaab2b 2732 }
f817ed48
KH
2733 if (ret)
2734 break;
2735 }
2736 /* it seems parent cgroup doesn't have enough mem */
2737 if (ret == -ENOMEM)
2738 goto try_to_free;
52d4b9ac 2739 cond_resched();
fce66477
DN
2740 /* "ret" should also be checked to ensure all lists are empty. */
2741 } while (mem->res.usage > 0 || ret);
cc847582
KH
2742out:
2743 css_put(&mem->css);
2744 return ret;
f817ed48
KH
2745
2746try_to_free:
c1e862c1
KH
2747 /* returns EBUSY if there is a task or if we come here twice. */
2748 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
2749 ret = -EBUSY;
2750 goto out;
2751 }
c1e862c1
KH
2752 /* we call try-to-free pages for make this cgroup empty */
2753 lru_add_drain_all();
f817ed48
KH
2754 /* try to free all pages in this cgroup */
2755 shrink = 1;
2756 while (nr_retries && mem->res.usage > 0) {
2757 int progress;
c1e862c1
KH
2758
2759 if (signal_pending(current)) {
2760 ret = -EINTR;
2761 goto out;
2762 }
a7885eb8
KM
2763 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2764 false, get_swappiness(mem));
c1e862c1 2765 if (!progress) {
f817ed48 2766 nr_retries--;
c1e862c1 2767 /* maybe some writeback is necessary */
8aa7e847 2768 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2769 }
f817ed48
KH
2770
2771 }
08e552c6 2772 lru_add_drain();
f817ed48 2773 /* try move_account...there may be some *locked* pages. */
fce66477 2774 goto move_account;
cc847582
KH
2775}
2776
c1e862c1
KH
2777int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2778{
2779 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2780}
2781
2782
18f59ea7
BS
2783static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2784{
2785 return mem_cgroup_from_cont(cont)->use_hierarchy;
2786}
2787
2788static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2789 u64 val)
2790{
2791 int retval = 0;
2792 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2793 struct cgroup *parent = cont->parent;
2794 struct mem_cgroup *parent_mem = NULL;
2795
2796 if (parent)
2797 parent_mem = mem_cgroup_from_cont(parent);
2798
2799 cgroup_lock();
2800 /*
af901ca1 2801 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2802 * in the child subtrees. If it is unset, then the change can
2803 * occur, provided the current cgroup has no children.
2804 *
2805 * For the root cgroup, parent_mem is NULL, we allow value to be
2806 * set if there are no children.
2807 */
2808 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2809 (val == 1 || val == 0)) {
2810 if (list_empty(&cont->children))
2811 mem->use_hierarchy = val;
2812 else
2813 retval = -EBUSY;
2814 } else
2815 retval = -EINVAL;
2816 cgroup_unlock();
2817
2818 return retval;
2819}
2820
0c3e73e8
BS
2821struct mem_cgroup_idx_data {
2822 s64 val;
2823 enum mem_cgroup_stat_index idx;
2824};
2825
2826static int
2827mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2828{
2829 struct mem_cgroup_idx_data *d = data;
c62b1a3b 2830 d->val += mem_cgroup_read_stat(mem, d->idx);
0c3e73e8
BS
2831 return 0;
2832}
2833
2834static void
2835mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2836 enum mem_cgroup_stat_index idx, s64 *val)
2837{
2838 struct mem_cgroup_idx_data d;
2839 d.idx = idx;
2840 d.val = 0;
2841 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2842 *val = d.val;
2843}
2844
104f3928
KS
2845static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
2846{
2847 u64 idx_val, val;
2848
2849 if (!mem_cgroup_is_root(mem)) {
2850 if (!swap)
2851 return res_counter_read_u64(&mem->res, RES_USAGE);
2852 else
2853 return res_counter_read_u64(&mem->memsw, RES_USAGE);
2854 }
2855
2856 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
2857 val = idx_val;
2858 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
2859 val += idx_val;
2860
2861 if (swap) {
2862 mem_cgroup_get_recursive_idx_stat(mem,
2863 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2864 val += idx_val;
2865 }
2866
2867 return val << PAGE_SHIFT;
2868}
2869
2c3daa72 2870static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 2871{
8c7c6e34 2872 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 2873 u64 val;
8c7c6e34
KH
2874 int type, name;
2875
2876 type = MEMFILE_TYPE(cft->private);
2877 name = MEMFILE_ATTR(cft->private);
2878 switch (type) {
2879 case _MEM:
104f3928
KS
2880 if (name == RES_USAGE)
2881 val = mem_cgroup_usage(mem, false);
2882 else
0c3e73e8 2883 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
2884 break;
2885 case _MEMSWAP:
104f3928
KS
2886 if (name == RES_USAGE)
2887 val = mem_cgroup_usage(mem, true);
2888 else
0c3e73e8 2889 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
2890 break;
2891 default:
2892 BUG();
2893 break;
2894 }
2895 return val;
8cdea7c0 2896}
628f4235
KH
2897/*
2898 * The user of this function is...
2899 * RES_LIMIT.
2900 */
856c13aa
PM
2901static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2902 const char *buffer)
8cdea7c0 2903{
628f4235 2904 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 2905 int type, name;
628f4235
KH
2906 unsigned long long val;
2907 int ret;
2908
8c7c6e34
KH
2909 type = MEMFILE_TYPE(cft->private);
2910 name = MEMFILE_ATTR(cft->private);
2911 switch (name) {
628f4235 2912 case RES_LIMIT:
4b3bde4c
BS
2913 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2914 ret = -EINVAL;
2915 break;
2916 }
628f4235
KH
2917 /* This function does all necessary parse...reuse it */
2918 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
2919 if (ret)
2920 break;
2921 if (type == _MEM)
628f4235 2922 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
2923 else
2924 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 2925 break;
296c81d8
BS
2926 case RES_SOFT_LIMIT:
2927 ret = res_counter_memparse_write_strategy(buffer, &val);
2928 if (ret)
2929 break;
2930 /*
2931 * For memsw, soft limits are hard to implement in terms
2932 * of semantics, for now, we support soft limits for
2933 * control without swap
2934 */
2935 if (type == _MEM)
2936 ret = res_counter_set_soft_limit(&memcg->res, val);
2937 else
2938 ret = -EINVAL;
2939 break;
628f4235
KH
2940 default:
2941 ret = -EINVAL; /* should be BUG() ? */
2942 break;
2943 }
2944 return ret;
8cdea7c0
BS
2945}
2946
fee7b548
KH
2947static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2948 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2949{
2950 struct cgroup *cgroup;
2951 unsigned long long min_limit, min_memsw_limit, tmp;
2952
2953 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2954 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2955 cgroup = memcg->css.cgroup;
2956 if (!memcg->use_hierarchy)
2957 goto out;
2958
2959 while (cgroup->parent) {
2960 cgroup = cgroup->parent;
2961 memcg = mem_cgroup_from_cont(cgroup);
2962 if (!memcg->use_hierarchy)
2963 break;
2964 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2965 min_limit = min(min_limit, tmp);
2966 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2967 min_memsw_limit = min(min_memsw_limit, tmp);
2968 }
2969out:
2970 *mem_limit = min_limit;
2971 *memsw_limit = min_memsw_limit;
2972 return;
2973}
2974
29f2a4da 2975static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2976{
2977 struct mem_cgroup *mem;
8c7c6e34 2978 int type, name;
c84872e1
PE
2979
2980 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2981 type = MEMFILE_TYPE(event);
2982 name = MEMFILE_ATTR(event);
2983 switch (name) {
29f2a4da 2984 case RES_MAX_USAGE:
8c7c6e34
KH
2985 if (type == _MEM)
2986 res_counter_reset_max(&mem->res);
2987 else
2988 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2989 break;
2990 case RES_FAILCNT:
8c7c6e34
KH
2991 if (type == _MEM)
2992 res_counter_reset_failcnt(&mem->res);
2993 else
2994 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2995 break;
2996 }
f64c3f54 2997
85cc59db 2998 return 0;
c84872e1
PE
2999}
3000
7dc74be0
DN
3001static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3002 struct cftype *cft)
3003{
3004 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3005}
3006
02491447 3007#ifdef CONFIG_MMU
7dc74be0
DN
3008static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3009 struct cftype *cft, u64 val)
3010{
3011 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3012
3013 if (val >= (1 << NR_MOVE_TYPE))
3014 return -EINVAL;
3015 /*
3016 * We check this value several times in both in can_attach() and
3017 * attach(), so we need cgroup lock to prevent this value from being
3018 * inconsistent.
3019 */
3020 cgroup_lock();
3021 mem->move_charge_at_immigrate = val;
3022 cgroup_unlock();
3023
3024 return 0;
3025}
02491447
DN
3026#else
3027static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3028 struct cftype *cft, u64 val)
3029{
3030 return -ENOSYS;
3031}
3032#endif
7dc74be0 3033
14067bb3
KH
3034
3035/* For read statistics */
3036enum {
3037 MCS_CACHE,
3038 MCS_RSS,
d8046582 3039 MCS_FILE_MAPPED,
14067bb3
KH
3040 MCS_PGPGIN,
3041 MCS_PGPGOUT,
1dd3a273 3042 MCS_SWAP,
14067bb3
KH
3043 MCS_INACTIVE_ANON,
3044 MCS_ACTIVE_ANON,
3045 MCS_INACTIVE_FILE,
3046 MCS_ACTIVE_FILE,
3047 MCS_UNEVICTABLE,
3048 NR_MCS_STAT,
3049};
3050
3051struct mcs_total_stat {
3052 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3053};
3054
14067bb3
KH
3055struct {
3056 char *local_name;
3057 char *total_name;
3058} memcg_stat_strings[NR_MCS_STAT] = {
3059 {"cache", "total_cache"},
3060 {"rss", "total_rss"},
d69b042f 3061 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3062 {"pgpgin", "total_pgpgin"},
3063 {"pgpgout", "total_pgpgout"},
1dd3a273 3064 {"swap", "total_swap"},
14067bb3
KH
3065 {"inactive_anon", "total_inactive_anon"},
3066 {"active_anon", "total_active_anon"},
3067 {"inactive_file", "total_inactive_file"},
3068 {"active_file", "total_active_file"},
3069 {"unevictable", "total_unevictable"}
3070};
3071
3072
3073static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3074{
3075 struct mcs_total_stat *s = data;
3076 s64 val;
3077
3078 /* per cpu stat */
c62b1a3b 3079 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3080 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3081 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3082 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3083 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3084 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3085 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3086 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3087 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3088 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3089 if (do_swap_account) {
c62b1a3b 3090 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3091 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3092 }
14067bb3
KH
3093
3094 /* per zone stat */
3095 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3096 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3097 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3098 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3099 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3100 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3101 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3102 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3103 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3104 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3105 return 0;
3106}
3107
3108static void
3109mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3110{
3111 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3112}
3113
c64745cf
PM
3114static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3115 struct cgroup_map_cb *cb)
d2ceb9b7 3116{
d2ceb9b7 3117 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3118 struct mcs_total_stat mystat;
d2ceb9b7
KH
3119 int i;
3120
14067bb3
KH
3121 memset(&mystat, 0, sizeof(mystat));
3122 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3123
1dd3a273
DN
3124 for (i = 0; i < NR_MCS_STAT; i++) {
3125 if (i == MCS_SWAP && !do_swap_account)
3126 continue;
14067bb3 3127 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3128 }
7b854121 3129
14067bb3 3130 /* Hierarchical information */
fee7b548
KH
3131 {
3132 unsigned long long limit, memsw_limit;
3133 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3134 cb->fill(cb, "hierarchical_memory_limit", limit);
3135 if (do_swap_account)
3136 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3137 }
7f016ee8 3138
14067bb3
KH
3139 memset(&mystat, 0, sizeof(mystat));
3140 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3141 for (i = 0; i < NR_MCS_STAT; i++) {
3142 if (i == MCS_SWAP && !do_swap_account)
3143 continue;
14067bb3 3144 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3145 }
14067bb3 3146
7f016ee8 3147#ifdef CONFIG_DEBUG_VM
c772be93 3148 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3149
3150 {
3151 int nid, zid;
3152 struct mem_cgroup_per_zone *mz;
3153 unsigned long recent_rotated[2] = {0, 0};
3154 unsigned long recent_scanned[2] = {0, 0};
3155
3156 for_each_online_node(nid)
3157 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3158 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3159
3160 recent_rotated[0] +=
3161 mz->reclaim_stat.recent_rotated[0];
3162 recent_rotated[1] +=
3163 mz->reclaim_stat.recent_rotated[1];
3164 recent_scanned[0] +=
3165 mz->reclaim_stat.recent_scanned[0];
3166 recent_scanned[1] +=
3167 mz->reclaim_stat.recent_scanned[1];
3168 }
3169 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3170 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3171 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3172 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3173 }
3174#endif
3175
d2ceb9b7
KH
3176 return 0;
3177}
3178
a7885eb8
KM
3179static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3180{
3181 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3182
3183 return get_swappiness(memcg);
3184}
3185
3186static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3187 u64 val)
3188{
3189 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3190 struct mem_cgroup *parent;
068b38c1 3191
a7885eb8
KM
3192 if (val > 100)
3193 return -EINVAL;
3194
3195 if (cgrp->parent == NULL)
3196 return -EINVAL;
3197
3198 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3199
3200 cgroup_lock();
3201
a7885eb8
KM
3202 /* If under hierarchy, only empty-root can set this value */
3203 if ((parent->use_hierarchy) ||
068b38c1
LZ
3204 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3205 cgroup_unlock();
a7885eb8 3206 return -EINVAL;
068b38c1 3207 }
a7885eb8
KM
3208
3209 spin_lock(&memcg->reclaim_param_lock);
3210 memcg->swappiness = val;
3211 spin_unlock(&memcg->reclaim_param_lock);
3212
068b38c1
LZ
3213 cgroup_unlock();
3214
a7885eb8
KM
3215 return 0;
3216}
3217
2e72b634
KS
3218static bool mem_cgroup_threshold_check(struct mem_cgroup *mem)
3219{
3220 bool ret = false;
2e72b634 3221 s64 val;
2e72b634 3222
c62b1a3b 3223 val = this_cpu_read(mem->stat->count[MEM_CGROUP_STAT_THRESHOLDS]);
2e72b634 3224 if (unlikely(val < 0)) {
c62b1a3b 3225 this_cpu_write(mem->stat->count[MEM_CGROUP_STAT_THRESHOLDS],
2e72b634
KS
3226 THRESHOLDS_EVENTS_THRESH);
3227 ret = true;
3228 }
2e72b634
KS
3229 return ret;
3230}
3231
3232static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3233{
3234 struct mem_cgroup_threshold_ary *t;
3235 u64 usage;
3236 int i;
3237
3238 rcu_read_lock();
3239 if (!swap)
3240 t = rcu_dereference(memcg->thresholds);
3241 else
3242 t = rcu_dereference(memcg->memsw_thresholds);
3243
3244 if (!t)
3245 goto unlock;
3246
3247 usage = mem_cgroup_usage(memcg, swap);
3248
3249 /*
3250 * current_threshold points to threshold just below usage.
3251 * If it's not true, a threshold was crossed after last
3252 * call of __mem_cgroup_threshold().
3253 */
3254 i = atomic_read(&t->current_threshold);
3255
3256 /*
3257 * Iterate backward over array of thresholds starting from
3258 * current_threshold and check if a threshold is crossed.
3259 * If none of thresholds below usage is crossed, we read
3260 * only one element of the array here.
3261 */
3262 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3263 eventfd_signal(t->entries[i].eventfd, 1);
3264
3265 /* i = current_threshold + 1 */
3266 i++;
3267
3268 /*
3269 * Iterate forward over array of thresholds starting from
3270 * current_threshold+1 and check if a threshold is crossed.
3271 * If none of thresholds above usage is crossed, we read
3272 * only one element of the array here.
3273 */
3274 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3275 eventfd_signal(t->entries[i].eventfd, 1);
3276
3277 /* Update current_threshold */
3278 atomic_set(&t->current_threshold, i - 1);
3279unlock:
3280 rcu_read_unlock();
3281}
3282
3283static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3284{
3285 __mem_cgroup_threshold(memcg, false);
3286 if (do_swap_account)
3287 __mem_cgroup_threshold(memcg, true);
3288}
3289
3290static int compare_thresholds(const void *a, const void *b)
3291{
3292 const struct mem_cgroup_threshold *_a = a;
3293 const struct mem_cgroup_threshold *_b = b;
3294
3295 return _a->threshold - _b->threshold;
3296}
3297
3298static int mem_cgroup_register_event(struct cgroup *cgrp, struct cftype *cft,
3299 struct eventfd_ctx *eventfd, const char *args)
3300{
3301 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3302 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3303 int type = MEMFILE_TYPE(cft->private);
3304 u64 threshold, usage;
3305 int size;
3306 int i, ret;
3307
3308 ret = res_counter_memparse_write_strategy(args, &threshold);
3309 if (ret)
3310 return ret;
3311
3312 mutex_lock(&memcg->thresholds_lock);
3313 if (type == _MEM)
3314 thresholds = memcg->thresholds;
3315 else if (type == _MEMSWAP)
3316 thresholds = memcg->memsw_thresholds;
3317 else
3318 BUG();
3319
3320 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3321
3322 /* Check if a threshold crossed before adding a new one */
3323 if (thresholds)
3324 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3325
3326 if (thresholds)
3327 size = thresholds->size + 1;
3328 else
3329 size = 1;
3330
3331 /* Allocate memory for new array of thresholds */
3332 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3333 size * sizeof(struct mem_cgroup_threshold),
3334 GFP_KERNEL);
3335 if (!thresholds_new) {
3336 ret = -ENOMEM;
3337 goto unlock;
3338 }
3339 thresholds_new->size = size;
3340
3341 /* Copy thresholds (if any) to new array */
3342 if (thresholds)
3343 memcpy(thresholds_new->entries, thresholds->entries,
3344 thresholds->size *
3345 sizeof(struct mem_cgroup_threshold));
3346 /* Add new threshold */
3347 thresholds_new->entries[size - 1].eventfd = eventfd;
3348 thresholds_new->entries[size - 1].threshold = threshold;
3349
3350 /* Sort thresholds. Registering of new threshold isn't time-critical */
3351 sort(thresholds_new->entries, size,
3352 sizeof(struct mem_cgroup_threshold),
3353 compare_thresholds, NULL);
3354
3355 /* Find current threshold */
3356 atomic_set(&thresholds_new->current_threshold, -1);
3357 for (i = 0; i < size; i++) {
3358 if (thresholds_new->entries[i].threshold < usage) {
3359 /*
3360 * thresholds_new->current_threshold will not be used
3361 * until rcu_assign_pointer(), so it's safe to increment
3362 * it here.
3363 */
3364 atomic_inc(&thresholds_new->current_threshold);
3365 }
3366 }
3367
3368 /*
3369 * We need to increment refcnt to be sure that all thresholds
3370 * will be unregistered before calling __mem_cgroup_free()
3371 */
3372 mem_cgroup_get(memcg);
3373
3374 if (type == _MEM)
3375 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3376 else
3377 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3378
3379 /* To be sure that nobody uses thresholds before freeing it */
3380 synchronize_rcu();
3381
3382 kfree(thresholds);
3383unlock:
3384 mutex_unlock(&memcg->thresholds_lock);
3385
3386 return ret;
3387}
3388
3389static int mem_cgroup_unregister_event(struct cgroup *cgrp, struct cftype *cft,
3390 struct eventfd_ctx *eventfd)
3391{
3392 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3393 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3394 int type = MEMFILE_TYPE(cft->private);
3395 u64 usage;
3396 int size = 0;
3397 int i, j, ret;
3398
3399 mutex_lock(&memcg->thresholds_lock);
3400 if (type == _MEM)
3401 thresholds = memcg->thresholds;
3402 else if (type == _MEMSWAP)
3403 thresholds = memcg->memsw_thresholds;
3404 else
3405 BUG();
3406
3407 /*
3408 * Something went wrong if we trying to unregister a threshold
3409 * if we don't have thresholds
3410 */
3411 BUG_ON(!thresholds);
3412
3413 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3414
3415 /* Check if a threshold crossed before removing */
3416 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3417
3418 /* Calculate new number of threshold */
3419 for (i = 0; i < thresholds->size; i++) {
3420 if (thresholds->entries[i].eventfd != eventfd)
3421 size++;
3422 }
3423
3424 /* Set thresholds array to NULL if we don't have thresholds */
3425 if (!size) {
3426 thresholds_new = NULL;
3427 goto assign;
3428 }
3429
3430 /* Allocate memory for new array of thresholds */
3431 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3432 size * sizeof(struct mem_cgroup_threshold),
3433 GFP_KERNEL);
3434 if (!thresholds_new) {
3435 ret = -ENOMEM;
3436 goto unlock;
3437 }
3438 thresholds_new->size = size;
3439
3440 /* Copy thresholds and find current threshold */
3441 atomic_set(&thresholds_new->current_threshold, -1);
3442 for (i = 0, j = 0; i < thresholds->size; i++) {
3443 if (thresholds->entries[i].eventfd == eventfd)
3444 continue;
3445
3446 thresholds_new->entries[j] = thresholds->entries[i];
3447 if (thresholds_new->entries[j].threshold < usage) {
3448 /*
3449 * thresholds_new->current_threshold will not be used
3450 * until rcu_assign_pointer(), so it's safe to increment
3451 * it here.
3452 */
3453 atomic_inc(&thresholds_new->current_threshold);
3454 }
3455 j++;
3456 }
3457
3458assign:
3459 if (type == _MEM)
3460 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3461 else
3462 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3463
3464 /* To be sure that nobody uses thresholds before freeing it */
3465 synchronize_rcu();
3466
3467 for (i = 0; i < thresholds->size - size; i++)
3468 mem_cgroup_put(memcg);
3469
3470 kfree(thresholds);
3471unlock:
3472 mutex_unlock(&memcg->thresholds_lock);
3473
3474 return ret;
3475}
c1e862c1 3476
8cdea7c0
BS
3477static struct cftype mem_cgroup_files[] = {
3478 {
0eea1030 3479 .name = "usage_in_bytes",
8c7c6e34 3480 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 3481 .read_u64 = mem_cgroup_read,
2e72b634
KS
3482 .register_event = mem_cgroup_register_event,
3483 .unregister_event = mem_cgroup_unregister_event,
8cdea7c0 3484 },
c84872e1
PE
3485 {
3486 .name = "max_usage_in_bytes",
8c7c6e34 3487 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 3488 .trigger = mem_cgroup_reset,
c84872e1
PE
3489 .read_u64 = mem_cgroup_read,
3490 },
8cdea7c0 3491 {
0eea1030 3492 .name = "limit_in_bytes",
8c7c6e34 3493 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 3494 .write_string = mem_cgroup_write,
2c3daa72 3495 .read_u64 = mem_cgroup_read,
8cdea7c0 3496 },
296c81d8
BS
3497 {
3498 .name = "soft_limit_in_bytes",
3499 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3500 .write_string = mem_cgroup_write,
3501 .read_u64 = mem_cgroup_read,
3502 },
8cdea7c0
BS
3503 {
3504 .name = "failcnt",
8c7c6e34 3505 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 3506 .trigger = mem_cgroup_reset,
2c3daa72 3507 .read_u64 = mem_cgroup_read,
8cdea7c0 3508 },
d2ceb9b7
KH
3509 {
3510 .name = "stat",
c64745cf 3511 .read_map = mem_control_stat_show,
d2ceb9b7 3512 },
c1e862c1
KH
3513 {
3514 .name = "force_empty",
3515 .trigger = mem_cgroup_force_empty_write,
3516 },
18f59ea7
BS
3517 {
3518 .name = "use_hierarchy",
3519 .write_u64 = mem_cgroup_hierarchy_write,
3520 .read_u64 = mem_cgroup_hierarchy_read,
3521 },
a7885eb8
KM
3522 {
3523 .name = "swappiness",
3524 .read_u64 = mem_cgroup_swappiness_read,
3525 .write_u64 = mem_cgroup_swappiness_write,
3526 },
7dc74be0
DN
3527 {
3528 .name = "move_charge_at_immigrate",
3529 .read_u64 = mem_cgroup_move_charge_read,
3530 .write_u64 = mem_cgroup_move_charge_write,
3531 },
8cdea7c0
BS
3532};
3533
8c7c6e34
KH
3534#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3535static struct cftype memsw_cgroup_files[] = {
3536 {
3537 .name = "memsw.usage_in_bytes",
3538 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3539 .read_u64 = mem_cgroup_read,
2e72b634
KS
3540 .register_event = mem_cgroup_register_event,
3541 .unregister_event = mem_cgroup_unregister_event,
8c7c6e34
KH
3542 },
3543 {
3544 .name = "memsw.max_usage_in_bytes",
3545 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3546 .trigger = mem_cgroup_reset,
3547 .read_u64 = mem_cgroup_read,
3548 },
3549 {
3550 .name = "memsw.limit_in_bytes",
3551 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3552 .write_string = mem_cgroup_write,
3553 .read_u64 = mem_cgroup_read,
3554 },
3555 {
3556 .name = "memsw.failcnt",
3557 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3558 .trigger = mem_cgroup_reset,
3559 .read_u64 = mem_cgroup_read,
3560 },
3561};
3562
3563static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3564{
3565 if (!do_swap_account)
3566 return 0;
3567 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3568 ARRAY_SIZE(memsw_cgroup_files));
3569};
3570#else
3571static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3572{
3573 return 0;
3574}
3575#endif
3576
6d12e2d8
KH
3577static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3578{
3579 struct mem_cgroup_per_node *pn;
1ecaab2b 3580 struct mem_cgroup_per_zone *mz;
b69408e8 3581 enum lru_list l;
41e3355d 3582 int zone, tmp = node;
1ecaab2b
KH
3583 /*
3584 * This routine is called against possible nodes.
3585 * But it's BUG to call kmalloc() against offline node.
3586 *
3587 * TODO: this routine can waste much memory for nodes which will
3588 * never be onlined. It's better to use memory hotplug callback
3589 * function.
3590 */
41e3355d
KH
3591 if (!node_state(node, N_NORMAL_MEMORY))
3592 tmp = -1;
3593 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
3594 if (!pn)
3595 return 1;
1ecaab2b 3596
6d12e2d8
KH
3597 mem->info.nodeinfo[node] = pn;
3598 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
3599
3600 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3601 mz = &pn->zoneinfo[zone];
b69408e8
CL
3602 for_each_lru(l)
3603 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 3604 mz->usage_in_excess = 0;
4e416953
BS
3605 mz->on_tree = false;
3606 mz->mem = mem;
1ecaab2b 3607 }
6d12e2d8
KH
3608 return 0;
3609}
3610
1ecaab2b
KH
3611static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3612{
3613 kfree(mem->info.nodeinfo[node]);
3614}
3615
33327948
KH
3616static struct mem_cgroup *mem_cgroup_alloc(void)
3617{
3618 struct mem_cgroup *mem;
c62b1a3b 3619 int size = sizeof(struct mem_cgroup);
33327948 3620
c62b1a3b 3621 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb
JB
3622 if (size < PAGE_SIZE)
3623 mem = kmalloc(size, GFP_KERNEL);
33327948 3624 else
c8dad2bb 3625 mem = vmalloc(size);
33327948
KH
3626
3627 if (mem)
c8dad2bb 3628 memset(mem, 0, size);
c62b1a3b
KH
3629 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3630 if (!mem->stat) {
3631 if (size < PAGE_SIZE)
3632 kfree(mem);
3633 else
3634 vfree(mem);
3635 mem = NULL;
3636 }
33327948
KH
3637 return mem;
3638}
3639
8c7c6e34
KH
3640/*
3641 * At destroying mem_cgroup, references from swap_cgroup can remain.
3642 * (scanning all at force_empty is too costly...)
3643 *
3644 * Instead of clearing all references at force_empty, we remember
3645 * the number of reference from swap_cgroup and free mem_cgroup when
3646 * it goes down to 0.
3647 *
8c7c6e34
KH
3648 * Removal of cgroup itself succeeds regardless of refs from swap.
3649 */
3650
a7ba0eef 3651static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 3652{
08e552c6
KH
3653 int node;
3654
f64c3f54 3655 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
3656 free_css_id(&mem_cgroup_subsys, &mem->css);
3657
08e552c6
KH
3658 for_each_node_state(node, N_POSSIBLE)
3659 free_mem_cgroup_per_zone_info(mem, node);
3660
c62b1a3b
KH
3661 free_percpu(mem->stat);
3662 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
3663 kfree(mem);
3664 else
3665 vfree(mem);
3666}
3667
8c7c6e34
KH
3668static void mem_cgroup_get(struct mem_cgroup *mem)
3669{
3670 atomic_inc(&mem->refcnt);
3671}
3672
483c30b5 3673static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 3674{
483c30b5 3675 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 3676 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 3677 __mem_cgroup_free(mem);
7bcc1bb1
DN
3678 if (parent)
3679 mem_cgroup_put(parent);
3680 }
8c7c6e34
KH
3681}
3682
483c30b5
DN
3683static void mem_cgroup_put(struct mem_cgroup *mem)
3684{
3685 __mem_cgroup_put(mem, 1);
3686}
3687
7bcc1bb1
DN
3688/*
3689 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3690 */
3691static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3692{
3693 if (!mem->res.parent)
3694 return NULL;
3695 return mem_cgroup_from_res_counter(mem->res.parent, res);
3696}
33327948 3697
c077719b
KH
3698#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3699static void __init enable_swap_cgroup(void)
3700{
f8d66542 3701 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
3702 do_swap_account = 1;
3703}
3704#else
3705static void __init enable_swap_cgroup(void)
3706{
3707}
3708#endif
3709
f64c3f54
BS
3710static int mem_cgroup_soft_limit_tree_init(void)
3711{
3712 struct mem_cgroup_tree_per_node *rtpn;
3713 struct mem_cgroup_tree_per_zone *rtpz;
3714 int tmp, node, zone;
3715
3716 for_each_node_state(node, N_POSSIBLE) {
3717 tmp = node;
3718 if (!node_state(node, N_NORMAL_MEMORY))
3719 tmp = -1;
3720 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3721 if (!rtpn)
3722 return 1;
3723
3724 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3725
3726 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3727 rtpz = &rtpn->rb_tree_per_zone[zone];
3728 rtpz->rb_root = RB_ROOT;
3729 spin_lock_init(&rtpz->lock);
3730 }
3731 }
3732 return 0;
3733}
3734
0eb253e2 3735static struct cgroup_subsys_state * __ref
8cdea7c0
BS
3736mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3737{
28dbc4b6 3738 struct mem_cgroup *mem, *parent;
04046e1a 3739 long error = -ENOMEM;
6d12e2d8 3740 int node;
8cdea7c0 3741
c8dad2bb
JB
3742 mem = mem_cgroup_alloc();
3743 if (!mem)
04046e1a 3744 return ERR_PTR(error);
78fb7466 3745
6d12e2d8
KH
3746 for_each_node_state(node, N_POSSIBLE)
3747 if (alloc_mem_cgroup_per_zone_info(mem, node))
3748 goto free_out;
f64c3f54 3749
c077719b 3750 /* root ? */
28dbc4b6 3751 if (cont->parent == NULL) {
cdec2e42 3752 int cpu;
c077719b 3753 enable_swap_cgroup();
28dbc4b6 3754 parent = NULL;
4b3bde4c 3755 root_mem_cgroup = mem;
f64c3f54
BS
3756 if (mem_cgroup_soft_limit_tree_init())
3757 goto free_out;
cdec2e42
KH
3758 for_each_possible_cpu(cpu) {
3759 struct memcg_stock_pcp *stock =
3760 &per_cpu(memcg_stock, cpu);
3761 INIT_WORK(&stock->work, drain_local_stock);
3762 }
3763 hotcpu_notifier(memcg_stock_cpu_callback, 0);
18f59ea7 3764 } else {
28dbc4b6 3765 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
3766 mem->use_hierarchy = parent->use_hierarchy;
3767 }
28dbc4b6 3768
18f59ea7
BS
3769 if (parent && parent->use_hierarchy) {
3770 res_counter_init(&mem->res, &parent->res);
3771 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
3772 /*
3773 * We increment refcnt of the parent to ensure that we can
3774 * safely access it on res_counter_charge/uncharge.
3775 * This refcnt will be decremented when freeing this
3776 * mem_cgroup(see mem_cgroup_put).
3777 */
3778 mem_cgroup_get(parent);
18f59ea7
BS
3779 } else {
3780 res_counter_init(&mem->res, NULL);
3781 res_counter_init(&mem->memsw, NULL);
3782 }
04046e1a 3783 mem->last_scanned_child = 0;
2733c06a 3784 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 3785
a7885eb8
KM
3786 if (parent)
3787 mem->swappiness = get_swappiness(parent);
a7ba0eef 3788 atomic_set(&mem->refcnt, 1);
7dc74be0 3789 mem->move_charge_at_immigrate = 0;
2e72b634 3790 mutex_init(&mem->thresholds_lock);
8cdea7c0 3791 return &mem->css;
6d12e2d8 3792free_out:
a7ba0eef 3793 __mem_cgroup_free(mem);
4b3bde4c 3794 root_mem_cgroup = NULL;
04046e1a 3795 return ERR_PTR(error);
8cdea7c0
BS
3796}
3797
ec64f515 3798static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
3799 struct cgroup *cont)
3800{
3801 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
3802
3803 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
3804}
3805
8cdea7c0
BS
3806static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3807 struct cgroup *cont)
3808{
c268e994 3809 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 3810
c268e994 3811 mem_cgroup_put(mem);
8cdea7c0
BS
3812}
3813
3814static int mem_cgroup_populate(struct cgroup_subsys *ss,
3815 struct cgroup *cont)
3816{
8c7c6e34
KH
3817 int ret;
3818
3819 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3820 ARRAY_SIZE(mem_cgroup_files));
3821
3822 if (!ret)
3823 ret = register_memsw_files(cont, ss);
3824 return ret;
8cdea7c0
BS
3825}
3826
02491447 3827#ifdef CONFIG_MMU
7dc74be0 3828/* Handlers for move charge at task migration. */
854ffa8d
DN
3829#define PRECHARGE_COUNT_AT_ONCE 256
3830static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 3831{
854ffa8d
DN
3832 int ret = 0;
3833 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
3834 struct mem_cgroup *mem = mc.to;
3835
854ffa8d
DN
3836 if (mem_cgroup_is_root(mem)) {
3837 mc.precharge += count;
3838 /* we don't need css_get for root */
3839 return ret;
3840 }
3841 /* try to charge at once */
3842 if (count > 1) {
3843 struct res_counter *dummy;
3844 /*
3845 * "mem" cannot be under rmdir() because we've already checked
3846 * by cgroup_lock_live_cgroup() that it is not removed and we
3847 * are still under the same cgroup_mutex. So we can postpone
3848 * css_get().
3849 */
3850 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
3851 goto one_by_one;
3852 if (do_swap_account && res_counter_charge(&mem->memsw,
3853 PAGE_SIZE * count, &dummy)) {
3854 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
3855 goto one_by_one;
3856 }
3857 mc.precharge += count;
3858 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
3859 WARN_ON_ONCE(count > INT_MAX);
3860 __css_get(&mem->css, (int)count);
3861 return ret;
3862 }
3863one_by_one:
3864 /* fall back to one by one charge */
3865 while (count--) {
3866 if (signal_pending(current)) {
3867 ret = -EINTR;
3868 break;
3869 }
3870 if (!batch_count--) {
3871 batch_count = PRECHARGE_COUNT_AT_ONCE;
3872 cond_resched();
3873 }
430e4863 3874 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
854ffa8d
DN
3875 if (ret || !mem)
3876 /* mem_cgroup_clear_mc() will do uncharge later */
3877 return -ENOMEM;
3878 mc.precharge++;
3879 }
4ffef5fe
DN
3880 return ret;
3881}
02491447
DN
3882#else /* !CONFIG_MMU */
3883static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
3884 struct cgroup *cgroup,
3885 struct task_struct *p,
3886 bool threadgroup)
3887{
3888 return 0;
3889}
3890static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
3891 struct cgroup *cgroup,
3892 struct task_struct *p,
3893 bool threadgroup)
3894{
3895}
3896static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3897 struct cgroup *cont,
3898 struct cgroup *old_cont,
3899 struct task_struct *p,
3900 bool threadgroup)
3901{
3902}
3903#endif
4ffef5fe
DN
3904
3905/**
3906 * is_target_pte_for_mc - check a pte whether it is valid for move charge
3907 * @vma: the vma the pte to be checked belongs
3908 * @addr: the address corresponding to the pte to be checked
3909 * @ptent: the pte to be checked
02491447 3910 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
3911 *
3912 * Returns
3913 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
3914 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
3915 * move charge. if @target is not NULL, the page is stored in target->page
3916 * with extra refcnt got(Callers should handle it).
02491447
DN
3917 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
3918 * target for charge migration. if @target is not NULL, the entry is stored
3919 * in target->ent.
4ffef5fe
DN
3920 *
3921 * Called with pte lock held.
3922 */
4ffef5fe
DN
3923union mc_target {
3924 struct page *page;
02491447 3925 swp_entry_t ent;
4ffef5fe
DN
3926};
3927
4ffef5fe
DN
3928enum mc_target_type {
3929 MC_TARGET_NONE, /* not used */
3930 MC_TARGET_PAGE,
02491447 3931 MC_TARGET_SWAP,
4ffef5fe
DN
3932};
3933
3934static int is_target_pte_for_mc(struct vm_area_struct *vma,
3935 unsigned long addr, pte_t ptent, union mc_target *target)
3936{
02491447 3937 struct page *page = NULL;
4ffef5fe
DN
3938 struct page_cgroup *pc;
3939 int ret = 0;
02491447
DN
3940 swp_entry_t ent = { .val = 0 };
3941 int usage_count = 0;
4ffef5fe
DN
3942 bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
3943 &mc.to->move_charge_at_immigrate);
3944
02491447
DN
3945 if (!pte_present(ptent)) {
3946 /* TODO: handle swap of shmes/tmpfs */
3947 if (pte_none(ptent) || pte_file(ptent))
3948 return 0;
3949 else if (is_swap_pte(ptent)) {
3950 ent = pte_to_swp_entry(ptent);
3951 if (!move_anon || non_swap_entry(ent))
3952 return 0;
3953 usage_count = mem_cgroup_count_swap_user(ent, &page);
3954 }
3955 } else {
3956 page = vm_normal_page(vma, addr, ptent);
3957 if (!page || !page_mapped(page))
3958 return 0;
3959 /*
3960 * TODO: We don't move charges of file(including shmem/tmpfs)
3961 * pages for now.
3962 */
3963 if (!move_anon || !PageAnon(page))
3964 return 0;
3965 if (!get_page_unless_zero(page))
3966 return 0;
3967 usage_count = page_mapcount(page);
3968 }
3969 if (usage_count > 1) {
3970 /*
3971 * TODO: We don't move charges of shared(used by multiple
3972 * processes) pages for now.
3973 */
3974 if (page)
3975 put_page(page);
4ffef5fe 3976 return 0;
02491447
DN
3977 }
3978 if (page) {
3979 pc = lookup_page_cgroup(page);
3980 /*
3981 * Do only loose check w/o page_cgroup lock.
3982 * mem_cgroup_move_account() checks the pc is valid or not under
3983 * the lock.
3984 */
3985 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
3986 ret = MC_TARGET_PAGE;
3987 if (target)
3988 target->page = page;
3989 }
3990 if (!ret || !target)
3991 put_page(page);
3992 }
3993 /* throught */
3994 if (ent.val && do_swap_account && !ret &&
3995 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
3996 ret = MC_TARGET_SWAP;
4ffef5fe 3997 if (target)
02491447 3998 target->ent = ent;
4ffef5fe 3999 }
4ffef5fe
DN
4000 return ret;
4001}
4002
4003static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4004 unsigned long addr, unsigned long end,
4005 struct mm_walk *walk)
4006{
4007 struct vm_area_struct *vma = walk->private;
4008 pte_t *pte;
4009 spinlock_t *ptl;
4010
4011 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4012 for (; addr != end; pte++, addr += PAGE_SIZE)
4013 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4014 mc.precharge++; /* increment precharge temporarily */
4015 pte_unmap_unlock(pte - 1, ptl);
4016 cond_resched();
4017
7dc74be0
DN
4018 return 0;
4019}
4020
4ffef5fe
DN
4021static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4022{
4023 unsigned long precharge;
4024 struct vm_area_struct *vma;
4025
4026 down_read(&mm->mmap_sem);
4027 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4028 struct mm_walk mem_cgroup_count_precharge_walk = {
4029 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4030 .mm = mm,
4031 .private = vma,
4032 };
4033 if (is_vm_hugetlb_page(vma))
4034 continue;
4035 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4036 if (vma->vm_flags & VM_SHARED)
4037 continue;
4038 walk_page_range(vma->vm_start, vma->vm_end,
4039 &mem_cgroup_count_precharge_walk);
4040 }
4041 up_read(&mm->mmap_sem);
4042
4043 precharge = mc.precharge;
4044 mc.precharge = 0;
4045
4046 return precharge;
4047}
4048
4ffef5fe
DN
4049static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4050{
854ffa8d 4051 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4ffef5fe
DN
4052}
4053
4054static void mem_cgroup_clear_mc(void)
4055{
4056 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4057 if (mc.precharge) {
4058 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4059 mc.precharge = 0;
4060 }
4061 /*
4062 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4063 * we must uncharge here.
4064 */
4065 if (mc.moved_charge) {
4066 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4067 mc.moved_charge = 0;
4ffef5fe 4068 }
483c30b5
DN
4069 /* we must fixup refcnts and charges */
4070 if (mc.moved_swap) {
4071 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4072 /* uncharge swap account from the old cgroup */
4073 if (!mem_cgroup_is_root(mc.from))
4074 res_counter_uncharge(&mc.from->memsw,
4075 PAGE_SIZE * mc.moved_swap);
4076 __mem_cgroup_put(mc.from, mc.moved_swap);
4077
4078 if (!mem_cgroup_is_root(mc.to)) {
4079 /*
4080 * we charged both to->res and to->memsw, so we should
4081 * uncharge to->res.
4082 */
4083 res_counter_uncharge(&mc.to->res,
4084 PAGE_SIZE * mc.moved_swap);
4085 VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4086 __css_put(&mc.to->css, mc.moved_swap);
4087 }
4088 /* we've already done mem_cgroup_get(mc.to) */
4089
4090 mc.moved_swap = 0;
4091 }
4ffef5fe
DN
4092 mc.from = NULL;
4093 mc.to = NULL;
8033b97c
DN
4094 mc.moving_task = NULL;
4095 wake_up_all(&mc.waitq);
4ffef5fe
DN
4096}
4097
7dc74be0
DN
4098static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4099 struct cgroup *cgroup,
4100 struct task_struct *p,
4101 bool threadgroup)
4102{
4103 int ret = 0;
4104 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4105
4106 if (mem->move_charge_at_immigrate) {
4107 struct mm_struct *mm;
4108 struct mem_cgroup *from = mem_cgroup_from_task(p);
4109
4110 VM_BUG_ON(from == mem);
4111
4112 mm = get_task_mm(p);
4113 if (!mm)
4114 return 0;
7dc74be0 4115 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4116 if (mm->owner == p) {
4117 VM_BUG_ON(mc.from);
4118 VM_BUG_ON(mc.to);
4119 VM_BUG_ON(mc.precharge);
854ffa8d 4120 VM_BUG_ON(mc.moved_charge);
483c30b5 4121 VM_BUG_ON(mc.moved_swap);
8033b97c 4122 VM_BUG_ON(mc.moving_task);
4ffef5fe
DN
4123 mc.from = from;
4124 mc.to = mem;
4125 mc.precharge = 0;
854ffa8d 4126 mc.moved_charge = 0;
483c30b5 4127 mc.moved_swap = 0;
8033b97c 4128 mc.moving_task = current;
4ffef5fe
DN
4129
4130 ret = mem_cgroup_precharge_mc(mm);
4131 if (ret)
4132 mem_cgroup_clear_mc();
4133 }
7dc74be0
DN
4134 mmput(mm);
4135 }
4136 return ret;
4137}
4138
4139static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4140 struct cgroup *cgroup,
4141 struct task_struct *p,
4142 bool threadgroup)
4143{
4ffef5fe 4144 mem_cgroup_clear_mc();
7dc74be0
DN
4145}
4146
4ffef5fe
DN
4147static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4148 unsigned long addr, unsigned long end,
4149 struct mm_walk *walk)
7dc74be0 4150{
4ffef5fe
DN
4151 int ret = 0;
4152 struct vm_area_struct *vma = walk->private;
4153 pte_t *pte;
4154 spinlock_t *ptl;
4155
4156retry:
4157 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4158 for (; addr != end; addr += PAGE_SIZE) {
4159 pte_t ptent = *(pte++);
4160 union mc_target target;
4161 int type;
4162 struct page *page;
4163 struct page_cgroup *pc;
02491447 4164 swp_entry_t ent;
4ffef5fe
DN
4165
4166 if (!mc.precharge)
4167 break;
4168
4169 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4170 switch (type) {
4171 case MC_TARGET_PAGE:
4172 page = target.page;
4173 if (isolate_lru_page(page))
4174 goto put;
4175 pc = lookup_page_cgroup(page);
854ffa8d
DN
4176 if (!mem_cgroup_move_account(pc,
4177 mc.from, mc.to, false)) {
4ffef5fe 4178 mc.precharge--;
854ffa8d
DN
4179 /* we uncharge from mc.from later. */
4180 mc.moved_charge++;
4ffef5fe
DN
4181 }
4182 putback_lru_page(page);
4183put: /* is_target_pte_for_mc() gets the page */
4184 put_page(page);
4185 break;
02491447
DN
4186 case MC_TARGET_SWAP:
4187 ent = target.ent;
483c30b5
DN
4188 if (!mem_cgroup_move_swap_account(ent,
4189 mc.from, mc.to, false)) {
02491447 4190 mc.precharge--;
483c30b5
DN
4191 /* we fixup refcnts and charges later. */
4192 mc.moved_swap++;
4193 }
02491447 4194 break;
4ffef5fe
DN
4195 default:
4196 break;
4197 }
4198 }
4199 pte_unmap_unlock(pte - 1, ptl);
4200 cond_resched();
4201
4202 if (addr != end) {
4203 /*
4204 * We have consumed all precharges we got in can_attach().
4205 * We try charge one by one, but don't do any additional
4206 * charges to mc.to if we have failed in charge once in attach()
4207 * phase.
4208 */
854ffa8d 4209 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4210 if (!ret)
4211 goto retry;
4212 }
4213
4214 return ret;
4215}
4216
4217static void mem_cgroup_move_charge(struct mm_struct *mm)
4218{
4219 struct vm_area_struct *vma;
4220
4221 lru_add_drain_all();
4222 down_read(&mm->mmap_sem);
4223 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4224 int ret;
4225 struct mm_walk mem_cgroup_move_charge_walk = {
4226 .pmd_entry = mem_cgroup_move_charge_pte_range,
4227 .mm = mm,
4228 .private = vma,
4229 };
4230 if (is_vm_hugetlb_page(vma))
4231 continue;
4232 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4233 if (vma->vm_flags & VM_SHARED)
4234 continue;
4235 ret = walk_page_range(vma->vm_start, vma->vm_end,
4236 &mem_cgroup_move_charge_walk);
4237 if (ret)
4238 /*
4239 * means we have consumed all precharges and failed in
4240 * doing additional charge. Just abandon here.
4241 */
4242 break;
4243 }
4244 up_read(&mm->mmap_sem);
7dc74be0
DN
4245}
4246
67e465a7
BS
4247static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4248 struct cgroup *cont,
4249 struct cgroup *old_cont,
be367d09
BB
4250 struct task_struct *p,
4251 bool threadgroup)
67e465a7 4252{
4ffef5fe
DN
4253 struct mm_struct *mm;
4254
4255 if (!mc.to)
4256 /* no need to move charge */
4257 return;
4258
4259 mm = get_task_mm(p);
4260 if (mm) {
4261 mem_cgroup_move_charge(mm);
4262 mmput(mm);
4263 }
4264 mem_cgroup_clear_mc();
67e465a7
BS
4265}
4266
8cdea7c0
BS
4267struct cgroup_subsys mem_cgroup_subsys = {
4268 .name = "memory",
4269 .subsys_id = mem_cgroup_subsys_id,
4270 .create = mem_cgroup_create,
df878fb0 4271 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
4272 .destroy = mem_cgroup_destroy,
4273 .populate = mem_cgroup_populate,
7dc74be0
DN
4274 .can_attach = mem_cgroup_can_attach,
4275 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 4276 .attach = mem_cgroup_move_task,
6d12e2d8 4277 .early_init = 0,
04046e1a 4278 .use_id = 1,
8cdea7c0 4279};
c077719b
KH
4280
4281#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4282
4283static int __init disable_swap_account(char *s)
4284{
4285 really_do_swap_account = 0;
4286 return 1;
4287}
4288__setup("noswapaccount", disable_swap_account);
4289#endif