]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: cleanup mem_cgroup_move_parent()
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
e222432b 30#include <linux/limits.h>
8c7c6e34 31#include <linux/mutex.h>
f64c3f54 32#include <linux/rbtree.h>
b6ac57d5 33#include <linux/slab.h>
66e1707b
BS
34#include <linux/swap.h>
35#include <linux/spinlock.h>
36#include <linux/fs.h>
d2ceb9b7 37#include <linux/seq_file.h>
33327948 38#include <linux/vmalloc.h>
b69408e8 39#include <linux/mm_inline.h>
52d4b9ac 40#include <linux/page_cgroup.h>
cdec2e42 41#include <linux/cpu.h>
08e552c6 42#include "internal.h"
8cdea7c0 43
8697d331
BS
44#include <asm/uaccess.h>
45
a181b0e8 46struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 47#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 48struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 49
c077719b 50#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 51/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
52int do_swap_account __read_mostly;
53static int really_do_swap_account __initdata = 1; /* for remember boot option*/
54#else
55#define do_swap_account (0)
56#endif
57
7f4d454d 58static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
f64c3f54 59#define SOFTLIMIT_EVENTS_THRESH (1000)
c077719b 60
d52aa412
KH
61/*
62 * Statistics for memory cgroup.
63 */
64enum mem_cgroup_stat_index {
65 /*
66 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
67 */
68 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 69 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 70 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
71 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
72 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
f64c3f54 73 MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
0c3e73e8 74 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
d52aa412
KH
75
76 MEM_CGROUP_STAT_NSTATS,
77};
78
79struct mem_cgroup_stat_cpu {
80 s64 count[MEM_CGROUP_STAT_NSTATS];
81} ____cacheline_aligned_in_smp;
82
83struct mem_cgroup_stat {
c8dad2bb 84 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
85};
86
f64c3f54
BS
87static inline void
88__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 stat->count[idx] = 0;
92}
93
94static inline s64
95__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
96 enum mem_cgroup_stat_index idx)
97{
98 return stat->count[idx];
99}
100
d52aa412
KH
101/*
102 * For accounting under irq disable, no need for increment preempt count.
103 */
addb9efe 104static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
105 enum mem_cgroup_stat_index idx, int val)
106{
addb9efe 107 stat->count[idx] += val;
d52aa412
KH
108}
109
110static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
111 enum mem_cgroup_stat_index idx)
112{
113 int cpu;
114 s64 ret = 0;
115 for_each_possible_cpu(cpu)
116 ret += stat->cpustat[cpu].count[idx];
117 return ret;
118}
119
04046e1a
KH
120static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
121{
122 s64 ret;
123
124 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
125 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
126 return ret;
127}
128
6d12e2d8
KH
129/*
130 * per-zone information in memory controller.
131 */
6d12e2d8 132struct mem_cgroup_per_zone {
072c56c1
KH
133 /*
134 * spin_lock to protect the per cgroup LRU
135 */
b69408e8
CL
136 struct list_head lists[NR_LRU_LISTS];
137 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
138
139 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
140 struct rb_node tree_node; /* RB tree node */
141 unsigned long long usage_in_excess;/* Set to the value by which */
142 /* the soft limit is exceeded*/
143 bool on_tree;
4e416953
BS
144 struct mem_cgroup *mem; /* Back pointer, we cannot */
145 /* use container_of */
6d12e2d8
KH
146};
147/* Macro for accessing counter */
148#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
149
150struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156};
157
f64c3f54
BS
158/*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166};
167
168struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170};
171
172struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174};
175
176static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
8cdea7c0
BS
178/*
179 * The memory controller data structure. The memory controller controls both
180 * page cache and RSS per cgroup. We would eventually like to provide
181 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
182 * to help the administrator determine what knobs to tune.
183 *
184 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
185 * we hit the water mark. May be even add a low water mark, such that
186 * no reclaim occurs from a cgroup at it's low water mark, this is
187 * a feature that will be implemented much later in the future.
8cdea7c0
BS
188 */
189struct mem_cgroup {
190 struct cgroup_subsys_state css;
191 /*
192 * the counter to account for memory usage
193 */
194 struct res_counter res;
8c7c6e34
KH
195 /*
196 * the counter to account for mem+swap usage.
197 */
198 struct res_counter memsw;
78fb7466
PE
199 /*
200 * Per cgroup active and inactive list, similar to the
201 * per zone LRU lists.
78fb7466 202 */
6d12e2d8 203 struct mem_cgroup_lru_info info;
072c56c1 204
2733c06a
KM
205 /*
206 protect against reclaim related member.
207 */
208 spinlock_t reclaim_param_lock;
209
6c48a1d0 210 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
211
212 /*
af901ca1 213 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 214 * reclaimed from.
6d61ef40 215 */
04046e1a 216 int last_scanned_child;
18f59ea7
BS
217 /*
218 * Should the accounting and control be hierarchical, per subtree?
219 */
220 bool use_hierarchy;
a636b327 221 unsigned long last_oom_jiffies;
8c7c6e34 222 atomic_t refcnt;
14797e23 223
a7885eb8
KM
224 unsigned int swappiness;
225
22a668d7
KH
226 /* set when res.limit == memsw.limit */
227 bool memsw_is_minimum;
228
d52aa412 229 /*
c8dad2bb 230 * statistics. This must be placed at the end of memcg.
d52aa412
KH
231 */
232 struct mem_cgroup_stat stat;
8cdea7c0
BS
233};
234
4e416953
BS
235/*
236 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
237 * limit reclaim to prevent infinite loops, if they ever occur.
238 */
239#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
240#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
241
217bc319
KH
242enum charge_type {
243 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
244 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 245 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 246 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 247 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 248 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
249 NR_CHARGE_TYPE,
250};
251
52d4b9ac
KH
252/* only for here (for easy reading.) */
253#define PCGF_CACHE (1UL << PCG_CACHE)
254#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 255#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
256/* Not used, but added here for completeness */
257#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 258
8c7c6e34
KH
259/* for encoding cft->private value on file */
260#define _MEM (0)
261#define _MEMSWAP (1)
262#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
263#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
264#define MEMFILE_ATTR(val) ((val) & 0xffff)
265
75822b44
BS
266/*
267 * Reclaim flags for mem_cgroup_hierarchical_reclaim
268 */
269#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
270#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
271#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
272#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
273#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
274#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 275
8c7c6e34
KH
276static void mem_cgroup_get(struct mem_cgroup *mem);
277static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 278static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 279static void drain_all_stock_async(void);
8c7c6e34 280
f64c3f54
BS
281static struct mem_cgroup_per_zone *
282mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
283{
284 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
285}
286
287static struct mem_cgroup_per_zone *
288page_cgroup_zoneinfo(struct page_cgroup *pc)
289{
290 struct mem_cgroup *mem = pc->mem_cgroup;
291 int nid = page_cgroup_nid(pc);
292 int zid = page_cgroup_zid(pc);
293
294 if (!mem)
295 return NULL;
296
297 return mem_cgroup_zoneinfo(mem, nid, zid);
298}
299
300static struct mem_cgroup_tree_per_zone *
301soft_limit_tree_node_zone(int nid, int zid)
302{
303 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
304}
305
306static struct mem_cgroup_tree_per_zone *
307soft_limit_tree_from_page(struct page *page)
308{
309 int nid = page_to_nid(page);
310 int zid = page_zonenum(page);
311
312 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
313}
314
315static void
4e416953 316__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 317 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
318 struct mem_cgroup_tree_per_zone *mctz,
319 unsigned long long new_usage_in_excess)
f64c3f54
BS
320{
321 struct rb_node **p = &mctz->rb_root.rb_node;
322 struct rb_node *parent = NULL;
323 struct mem_cgroup_per_zone *mz_node;
324
325 if (mz->on_tree)
326 return;
327
ef8745c1
KH
328 mz->usage_in_excess = new_usage_in_excess;
329 if (!mz->usage_in_excess)
330 return;
f64c3f54
BS
331 while (*p) {
332 parent = *p;
333 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
334 tree_node);
335 if (mz->usage_in_excess < mz_node->usage_in_excess)
336 p = &(*p)->rb_left;
337 /*
338 * We can't avoid mem cgroups that are over their soft
339 * limit by the same amount
340 */
341 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
342 p = &(*p)->rb_right;
343 }
344 rb_link_node(&mz->tree_node, parent, p);
345 rb_insert_color(&mz->tree_node, &mctz->rb_root);
346 mz->on_tree = true;
4e416953
BS
347}
348
349static void
350__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
351 struct mem_cgroup_per_zone *mz,
352 struct mem_cgroup_tree_per_zone *mctz)
353{
354 if (!mz->on_tree)
355 return;
356 rb_erase(&mz->tree_node, &mctz->rb_root);
357 mz->on_tree = false;
358}
359
f64c3f54
BS
360static void
361mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
362 struct mem_cgroup_per_zone *mz,
363 struct mem_cgroup_tree_per_zone *mctz)
364{
365 spin_lock(&mctz->lock);
4e416953 366 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
367 spin_unlock(&mctz->lock);
368}
369
370static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
371{
372 bool ret = false;
373 int cpu;
374 s64 val;
375 struct mem_cgroup_stat_cpu *cpustat;
376
377 cpu = get_cpu();
378 cpustat = &mem->stat.cpustat[cpu];
379 val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
380 if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
381 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
382 ret = true;
383 }
384 put_cpu();
385 return ret;
386}
387
388static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
389{
ef8745c1 390 unsigned long long excess;
f64c3f54
BS
391 struct mem_cgroup_per_zone *mz;
392 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
393 int nid = page_to_nid(page);
394 int zid = page_zonenum(page);
f64c3f54
BS
395 mctz = soft_limit_tree_from_page(page);
396
397 /*
4e649152
KH
398 * Necessary to update all ancestors when hierarchy is used.
399 * because their event counter is not touched.
f64c3f54 400 */
4e649152
KH
401 for (; mem; mem = parent_mem_cgroup(mem)) {
402 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 403 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
404 /*
405 * We have to update the tree if mz is on RB-tree or
406 * mem is over its softlimit.
407 */
ef8745c1 408 if (excess || mz->on_tree) {
4e649152
KH
409 spin_lock(&mctz->lock);
410 /* if on-tree, remove it */
411 if (mz->on_tree)
412 __mem_cgroup_remove_exceeded(mem, mz, mctz);
413 /*
ef8745c1
KH
414 * Insert again. mz->usage_in_excess will be updated.
415 * If excess is 0, no tree ops.
4e649152 416 */
ef8745c1 417 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
418 spin_unlock(&mctz->lock);
419 }
f64c3f54
BS
420 }
421}
422
423static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
424{
425 int node, zone;
426 struct mem_cgroup_per_zone *mz;
427 struct mem_cgroup_tree_per_zone *mctz;
428
429 for_each_node_state(node, N_POSSIBLE) {
430 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
431 mz = mem_cgroup_zoneinfo(mem, node, zone);
432 mctz = soft_limit_tree_node_zone(node, zone);
433 mem_cgroup_remove_exceeded(mem, mz, mctz);
434 }
435 }
436}
437
4e416953
BS
438static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
439{
440 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
441}
442
443static struct mem_cgroup_per_zone *
444__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
445{
446 struct rb_node *rightmost = NULL;
26251eaf 447 struct mem_cgroup_per_zone *mz;
4e416953
BS
448
449retry:
26251eaf 450 mz = NULL;
4e416953
BS
451 rightmost = rb_last(&mctz->rb_root);
452 if (!rightmost)
453 goto done; /* Nothing to reclaim from */
454
455 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
456 /*
457 * Remove the node now but someone else can add it back,
458 * we will to add it back at the end of reclaim to its correct
459 * position in the tree.
460 */
461 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
462 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
463 !css_tryget(&mz->mem->css))
464 goto retry;
465done:
466 return mz;
467}
468
469static struct mem_cgroup_per_zone *
470mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
471{
472 struct mem_cgroup_per_zone *mz;
473
474 spin_lock(&mctz->lock);
475 mz = __mem_cgroup_largest_soft_limit_node(mctz);
476 spin_unlock(&mctz->lock);
477 return mz;
478}
479
0c3e73e8
BS
480static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
481 bool charge)
482{
483 int val = (charge) ? 1 : -1;
484 struct mem_cgroup_stat *stat = &mem->stat;
485 struct mem_cgroup_stat_cpu *cpustat;
486 int cpu = get_cpu();
487
488 cpustat = &stat->cpustat[cpu];
489 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
490 put_cpu();
491}
492
c05555b5
KH
493static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
494 struct page_cgroup *pc,
495 bool charge)
d52aa412 496{
0c3e73e8 497 int val = (charge) ? 1 : -1;
d52aa412 498 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 499 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 500 int cpu = get_cpu();
d52aa412 501
08e552c6 502 cpustat = &stat->cpustat[cpu];
c05555b5 503 if (PageCgroupCache(pc))
addb9efe 504 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 505 else
addb9efe 506 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
507
508 if (charge)
addb9efe 509 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
510 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
511 else
addb9efe 512 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 513 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
f64c3f54 514 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
08e552c6 515 put_cpu();
6d12e2d8
KH
516}
517
14067bb3 518static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 519 enum lru_list idx)
6d12e2d8
KH
520{
521 int nid, zid;
522 struct mem_cgroup_per_zone *mz;
523 u64 total = 0;
524
525 for_each_online_node(nid)
526 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
527 mz = mem_cgroup_zoneinfo(mem, nid, zid);
528 total += MEM_CGROUP_ZSTAT(mz, idx);
529 }
530 return total;
d52aa412
KH
531}
532
d5b69e38 533static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
534{
535 return container_of(cgroup_subsys_state(cont,
536 mem_cgroup_subsys_id), struct mem_cgroup,
537 css);
538}
539
cf475ad2 540struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 541{
31a78f23
BS
542 /*
543 * mm_update_next_owner() may clear mm->owner to NULL
544 * if it races with swapoff, page migration, etc.
545 * So this can be called with p == NULL.
546 */
547 if (unlikely(!p))
548 return NULL;
549
78fb7466
PE
550 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
551 struct mem_cgroup, css);
552}
553
54595fe2
KH
554static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
555{
556 struct mem_cgroup *mem = NULL;
0b7f569e
KH
557
558 if (!mm)
559 return NULL;
54595fe2
KH
560 /*
561 * Because we have no locks, mm->owner's may be being moved to other
562 * cgroup. We use css_tryget() here even if this looks
563 * pessimistic (rather than adding locks here).
564 */
565 rcu_read_lock();
566 do {
567 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
568 if (unlikely(!mem))
569 break;
570 } while (!css_tryget(&mem->css));
571 rcu_read_unlock();
572 return mem;
573}
574
14067bb3
KH
575/*
576 * Call callback function against all cgroup under hierarchy tree.
577 */
578static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
579 int (*func)(struct mem_cgroup *, void *))
580{
581 int found, ret, nextid;
582 struct cgroup_subsys_state *css;
583 struct mem_cgroup *mem;
584
585 if (!root->use_hierarchy)
586 return (*func)(root, data);
587
588 nextid = 1;
589 do {
590 ret = 0;
591 mem = NULL;
592
593 rcu_read_lock();
594 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
595 &found);
596 if (css && css_tryget(css))
597 mem = container_of(css, struct mem_cgroup, css);
598 rcu_read_unlock();
599
600 if (mem) {
601 ret = (*func)(mem, data);
602 css_put(&mem->css);
603 }
604 nextid = found + 1;
605 } while (!ret && css);
606
607 return ret;
608}
609
4b3bde4c
BS
610static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
611{
612 return (mem == root_mem_cgroup);
613}
614
08e552c6
KH
615/*
616 * Following LRU functions are allowed to be used without PCG_LOCK.
617 * Operations are called by routine of global LRU independently from memcg.
618 * What we have to take care of here is validness of pc->mem_cgroup.
619 *
620 * Changes to pc->mem_cgroup happens when
621 * 1. charge
622 * 2. moving account
623 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
624 * It is added to LRU before charge.
625 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
626 * When moving account, the page is not on LRU. It's isolated.
627 */
4f98a2fe 628
08e552c6
KH
629void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
630{
631 struct page_cgroup *pc;
08e552c6 632 struct mem_cgroup_per_zone *mz;
6d12e2d8 633
f8d66542 634 if (mem_cgroup_disabled())
08e552c6
KH
635 return;
636 pc = lookup_page_cgroup(page);
637 /* can happen while we handle swapcache. */
4b3bde4c 638 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 639 return;
4b3bde4c 640 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
641 /*
642 * We don't check PCG_USED bit. It's cleared when the "page" is finally
643 * removed from global LRU.
644 */
08e552c6 645 mz = page_cgroup_zoneinfo(pc);
b69408e8 646 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
647 if (mem_cgroup_is_root(pc->mem_cgroup))
648 return;
649 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
650 list_del_init(&pc->lru);
651 return;
6d12e2d8
KH
652}
653
08e552c6 654void mem_cgroup_del_lru(struct page *page)
6d12e2d8 655{
08e552c6
KH
656 mem_cgroup_del_lru_list(page, page_lru(page));
657}
b69408e8 658
08e552c6
KH
659void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
660{
661 struct mem_cgroup_per_zone *mz;
662 struct page_cgroup *pc;
b69408e8 663
f8d66542 664 if (mem_cgroup_disabled())
08e552c6 665 return;
6d12e2d8 666
08e552c6 667 pc = lookup_page_cgroup(page);
bd112db8
DN
668 /*
669 * Used bit is set without atomic ops but after smp_wmb().
670 * For making pc->mem_cgroup visible, insert smp_rmb() here.
671 */
08e552c6 672 smp_rmb();
4b3bde4c
BS
673 /* unused or root page is not rotated. */
674 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
675 return;
676 mz = page_cgroup_zoneinfo(pc);
677 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
678}
679
08e552c6 680void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 681{
08e552c6
KH
682 struct page_cgroup *pc;
683 struct mem_cgroup_per_zone *mz;
6d12e2d8 684
f8d66542 685 if (mem_cgroup_disabled())
08e552c6
KH
686 return;
687 pc = lookup_page_cgroup(page);
4b3bde4c 688 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
689 /*
690 * Used bit is set without atomic ops but after smp_wmb().
691 * For making pc->mem_cgroup visible, insert smp_rmb() here.
692 */
08e552c6
KH
693 smp_rmb();
694 if (!PageCgroupUsed(pc))
894bc310 695 return;
b69408e8 696
08e552c6 697 mz = page_cgroup_zoneinfo(pc);
b69408e8 698 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
699 SetPageCgroupAcctLRU(pc);
700 if (mem_cgroup_is_root(pc->mem_cgroup))
701 return;
08e552c6
KH
702 list_add(&pc->lru, &mz->lists[lru]);
703}
544122e5 704
08e552c6 705/*
544122e5
KH
706 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
707 * lru because the page may.be reused after it's fully uncharged (because of
708 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
709 * it again. This function is only used to charge SwapCache. It's done under
710 * lock_page and expected that zone->lru_lock is never held.
08e552c6 711 */
544122e5 712static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 713{
544122e5
KH
714 unsigned long flags;
715 struct zone *zone = page_zone(page);
716 struct page_cgroup *pc = lookup_page_cgroup(page);
717
718 spin_lock_irqsave(&zone->lru_lock, flags);
719 /*
720 * Forget old LRU when this page_cgroup is *not* used. This Used bit
721 * is guarded by lock_page() because the page is SwapCache.
722 */
723 if (!PageCgroupUsed(pc))
724 mem_cgroup_del_lru_list(page, page_lru(page));
725 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
726}
727
544122e5
KH
728static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
729{
730 unsigned long flags;
731 struct zone *zone = page_zone(page);
732 struct page_cgroup *pc = lookup_page_cgroup(page);
733
734 spin_lock_irqsave(&zone->lru_lock, flags);
735 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 736 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
737 mem_cgroup_add_lru_list(page, page_lru(page));
738 spin_unlock_irqrestore(&zone->lru_lock, flags);
739}
740
741
08e552c6
KH
742void mem_cgroup_move_lists(struct page *page,
743 enum lru_list from, enum lru_list to)
744{
f8d66542 745 if (mem_cgroup_disabled())
08e552c6
KH
746 return;
747 mem_cgroup_del_lru_list(page, from);
748 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
749}
750
4c4a2214
DR
751int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
752{
753 int ret;
0b7f569e 754 struct mem_cgroup *curr = NULL;
4c4a2214
DR
755
756 task_lock(task);
0b7f569e
KH
757 rcu_read_lock();
758 curr = try_get_mem_cgroup_from_mm(task->mm);
759 rcu_read_unlock();
4c4a2214 760 task_unlock(task);
0b7f569e
KH
761 if (!curr)
762 return 0;
763 if (curr->use_hierarchy)
764 ret = css_is_ancestor(&curr->css, &mem->css);
765 else
766 ret = (curr == mem);
767 css_put(&curr->css);
4c4a2214
DR
768 return ret;
769}
770
6c48a1d0
KH
771/*
772 * prev_priority control...this will be used in memory reclaim path.
773 */
774int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
775{
2733c06a
KM
776 int prev_priority;
777
778 spin_lock(&mem->reclaim_param_lock);
779 prev_priority = mem->prev_priority;
780 spin_unlock(&mem->reclaim_param_lock);
781
782 return prev_priority;
6c48a1d0
KH
783}
784
785void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
786{
2733c06a 787 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
788 if (priority < mem->prev_priority)
789 mem->prev_priority = priority;
2733c06a 790 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
791}
792
793void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
794{
2733c06a 795 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 796 mem->prev_priority = priority;
2733c06a 797 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
798}
799
c772be93 800static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
801{
802 unsigned long active;
803 unsigned long inactive;
c772be93
KM
804 unsigned long gb;
805 unsigned long inactive_ratio;
14797e23 806
14067bb3
KH
807 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
808 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 809
c772be93
KM
810 gb = (inactive + active) >> (30 - PAGE_SHIFT);
811 if (gb)
812 inactive_ratio = int_sqrt(10 * gb);
813 else
814 inactive_ratio = 1;
815
816 if (present_pages) {
817 present_pages[0] = inactive;
818 present_pages[1] = active;
819 }
820
821 return inactive_ratio;
822}
823
824int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
825{
826 unsigned long active;
827 unsigned long inactive;
828 unsigned long present_pages[2];
829 unsigned long inactive_ratio;
830
831 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
832
833 inactive = present_pages[0];
834 active = present_pages[1];
835
836 if (inactive * inactive_ratio < active)
14797e23
KM
837 return 1;
838
839 return 0;
840}
841
56e49d21
RR
842int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
843{
844 unsigned long active;
845 unsigned long inactive;
846
847 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
848 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
849
850 return (active > inactive);
851}
852
a3d8e054
KM
853unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
854 struct zone *zone,
855 enum lru_list lru)
856{
857 int nid = zone->zone_pgdat->node_id;
858 int zid = zone_idx(zone);
859 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
860
861 return MEM_CGROUP_ZSTAT(mz, lru);
862}
863
3e2f41f1
KM
864struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
865 struct zone *zone)
866{
867 int nid = zone->zone_pgdat->node_id;
868 int zid = zone_idx(zone);
869 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
870
871 return &mz->reclaim_stat;
872}
873
874struct zone_reclaim_stat *
875mem_cgroup_get_reclaim_stat_from_page(struct page *page)
876{
877 struct page_cgroup *pc;
878 struct mem_cgroup_per_zone *mz;
879
880 if (mem_cgroup_disabled())
881 return NULL;
882
883 pc = lookup_page_cgroup(page);
bd112db8
DN
884 /*
885 * Used bit is set without atomic ops but after smp_wmb().
886 * For making pc->mem_cgroup visible, insert smp_rmb() here.
887 */
888 smp_rmb();
889 if (!PageCgroupUsed(pc))
890 return NULL;
891
3e2f41f1
KM
892 mz = page_cgroup_zoneinfo(pc);
893 if (!mz)
894 return NULL;
895
896 return &mz->reclaim_stat;
897}
898
66e1707b
BS
899unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
900 struct list_head *dst,
901 unsigned long *scanned, int order,
902 int mode, struct zone *z,
903 struct mem_cgroup *mem_cont,
4f98a2fe 904 int active, int file)
66e1707b
BS
905{
906 unsigned long nr_taken = 0;
907 struct page *page;
908 unsigned long scan;
909 LIST_HEAD(pc_list);
910 struct list_head *src;
ff7283fa 911 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
912 int nid = z->zone_pgdat->node_id;
913 int zid = zone_idx(z);
914 struct mem_cgroup_per_zone *mz;
b7c46d15 915 int lru = LRU_FILE * file + active;
2ffebca6 916 int ret;
66e1707b 917
cf475ad2 918 BUG_ON(!mem_cont);
1ecaab2b 919 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 920 src = &mz->lists[lru];
66e1707b 921
ff7283fa
KH
922 scan = 0;
923 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 924 if (scan >= nr_to_scan)
ff7283fa 925 break;
08e552c6
KH
926
927 page = pc->page;
52d4b9ac
KH
928 if (unlikely(!PageCgroupUsed(pc)))
929 continue;
436c6541 930 if (unlikely(!PageLRU(page)))
ff7283fa 931 continue;
ff7283fa 932
436c6541 933 scan++;
2ffebca6
KH
934 ret = __isolate_lru_page(page, mode, file);
935 switch (ret) {
936 case 0:
66e1707b 937 list_move(&page->lru, dst);
2ffebca6 938 mem_cgroup_del_lru(page);
66e1707b 939 nr_taken++;
2ffebca6
KH
940 break;
941 case -EBUSY:
942 /* we don't affect global LRU but rotate in our LRU */
943 mem_cgroup_rotate_lru_list(page, page_lru(page));
944 break;
945 default:
946 break;
66e1707b
BS
947 }
948 }
949
66e1707b
BS
950 *scanned = scan;
951 return nr_taken;
952}
953
6d61ef40
BS
954#define mem_cgroup_from_res_counter(counter, member) \
955 container_of(counter, struct mem_cgroup, member)
956
b85a96c0
DN
957static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
958{
959 if (do_swap_account) {
960 if (res_counter_check_under_limit(&mem->res) &&
961 res_counter_check_under_limit(&mem->memsw))
962 return true;
963 } else
964 if (res_counter_check_under_limit(&mem->res))
965 return true;
966 return false;
967}
968
a7885eb8
KM
969static unsigned int get_swappiness(struct mem_cgroup *memcg)
970{
971 struct cgroup *cgrp = memcg->css.cgroup;
972 unsigned int swappiness;
973
974 /* root ? */
975 if (cgrp->parent == NULL)
976 return vm_swappiness;
977
978 spin_lock(&memcg->reclaim_param_lock);
979 swappiness = memcg->swappiness;
980 spin_unlock(&memcg->reclaim_param_lock);
981
982 return swappiness;
983}
984
81d39c20
KH
985static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
986{
987 int *val = data;
988 (*val)++;
989 return 0;
990}
e222432b
BS
991
992/**
993 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
994 * @memcg: The memory cgroup that went over limit
995 * @p: Task that is going to be killed
996 *
997 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
998 * enabled
999 */
1000void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1001{
1002 struct cgroup *task_cgrp;
1003 struct cgroup *mem_cgrp;
1004 /*
1005 * Need a buffer in BSS, can't rely on allocations. The code relies
1006 * on the assumption that OOM is serialized for memory controller.
1007 * If this assumption is broken, revisit this code.
1008 */
1009 static char memcg_name[PATH_MAX];
1010 int ret;
1011
1012 if (!memcg)
1013 return;
1014
1015
1016 rcu_read_lock();
1017
1018 mem_cgrp = memcg->css.cgroup;
1019 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1020
1021 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1022 if (ret < 0) {
1023 /*
1024 * Unfortunately, we are unable to convert to a useful name
1025 * But we'll still print out the usage information
1026 */
1027 rcu_read_unlock();
1028 goto done;
1029 }
1030 rcu_read_unlock();
1031
1032 printk(KERN_INFO "Task in %s killed", memcg_name);
1033
1034 rcu_read_lock();
1035 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1036 if (ret < 0) {
1037 rcu_read_unlock();
1038 goto done;
1039 }
1040 rcu_read_unlock();
1041
1042 /*
1043 * Continues from above, so we don't need an KERN_ level
1044 */
1045 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1046done:
1047
1048 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1049 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1050 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1051 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1052 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1053 "failcnt %llu\n",
1054 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1055 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1056 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1057}
1058
81d39c20
KH
1059/*
1060 * This function returns the number of memcg under hierarchy tree. Returns
1061 * 1(self count) if no children.
1062 */
1063static int mem_cgroup_count_children(struct mem_cgroup *mem)
1064{
1065 int num = 0;
1066 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1067 return num;
1068}
1069
6d61ef40 1070/*
04046e1a
KH
1071 * Visit the first child (need not be the first child as per the ordering
1072 * of the cgroup list, since we track last_scanned_child) of @mem and use
1073 * that to reclaim free pages from.
1074 */
1075static struct mem_cgroup *
1076mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1077{
1078 struct mem_cgroup *ret = NULL;
1079 struct cgroup_subsys_state *css;
1080 int nextid, found;
1081
1082 if (!root_mem->use_hierarchy) {
1083 css_get(&root_mem->css);
1084 ret = root_mem;
1085 }
1086
1087 while (!ret) {
1088 rcu_read_lock();
1089 nextid = root_mem->last_scanned_child + 1;
1090 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1091 &found);
1092 if (css && css_tryget(css))
1093 ret = container_of(css, struct mem_cgroup, css);
1094
1095 rcu_read_unlock();
1096 /* Updates scanning parameter */
1097 spin_lock(&root_mem->reclaim_param_lock);
1098 if (!css) {
1099 /* this means start scan from ID:1 */
1100 root_mem->last_scanned_child = 0;
1101 } else
1102 root_mem->last_scanned_child = found;
1103 spin_unlock(&root_mem->reclaim_param_lock);
1104 }
1105
1106 return ret;
1107}
1108
1109/*
1110 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1111 * we reclaimed from, so that we don't end up penalizing one child extensively
1112 * based on its position in the children list.
6d61ef40
BS
1113 *
1114 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1115 *
1116 * We give up and return to the caller when we visit root_mem twice.
1117 * (other groups can be removed while we're walking....)
81d39c20
KH
1118 *
1119 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1120 */
1121static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1122 struct zone *zone,
75822b44
BS
1123 gfp_t gfp_mask,
1124 unsigned long reclaim_options)
6d61ef40 1125{
04046e1a
KH
1126 struct mem_cgroup *victim;
1127 int ret, total = 0;
1128 int loop = 0;
75822b44
BS
1129 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1130 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1131 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1132 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1133
22a668d7
KH
1134 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1135 if (root_mem->memsw_is_minimum)
1136 noswap = true;
1137
4e416953 1138 while (1) {
04046e1a 1139 victim = mem_cgroup_select_victim(root_mem);
4e416953 1140 if (victim == root_mem) {
04046e1a 1141 loop++;
cdec2e42
KH
1142 if (loop >= 1)
1143 drain_all_stock_async();
4e416953
BS
1144 if (loop >= 2) {
1145 /*
1146 * If we have not been able to reclaim
1147 * anything, it might because there are
1148 * no reclaimable pages under this hierarchy
1149 */
1150 if (!check_soft || !total) {
1151 css_put(&victim->css);
1152 break;
1153 }
1154 /*
1155 * We want to do more targetted reclaim.
1156 * excess >> 2 is not to excessive so as to
1157 * reclaim too much, nor too less that we keep
1158 * coming back to reclaim from this cgroup
1159 */
1160 if (total >= (excess >> 2) ||
1161 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1162 css_put(&victim->css);
1163 break;
1164 }
1165 }
1166 }
04046e1a
KH
1167 if (!mem_cgroup_local_usage(&victim->stat)) {
1168 /* this cgroup's local usage == 0 */
1169 css_put(&victim->css);
6d61ef40
BS
1170 continue;
1171 }
04046e1a 1172 /* we use swappiness of local cgroup */
4e416953
BS
1173 if (check_soft)
1174 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1175 noswap, get_swappiness(victim), zone,
1176 zone->zone_pgdat->node_id);
1177 else
1178 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1179 noswap, get_swappiness(victim));
04046e1a 1180 css_put(&victim->css);
81d39c20
KH
1181 /*
1182 * At shrinking usage, we can't check we should stop here or
1183 * reclaim more. It's depends on callers. last_scanned_child
1184 * will work enough for keeping fairness under tree.
1185 */
1186 if (shrink)
1187 return ret;
04046e1a 1188 total += ret;
4e416953
BS
1189 if (check_soft) {
1190 if (res_counter_check_under_soft_limit(&root_mem->res))
1191 return total;
1192 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1193 return 1 + total;
6d61ef40 1194 }
04046e1a 1195 return total;
6d61ef40
BS
1196}
1197
a636b327
KH
1198bool mem_cgroup_oom_called(struct task_struct *task)
1199{
1200 bool ret = false;
1201 struct mem_cgroup *mem;
1202 struct mm_struct *mm;
1203
1204 rcu_read_lock();
1205 mm = task->mm;
1206 if (!mm)
1207 mm = &init_mm;
1208 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1209 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1210 ret = true;
1211 rcu_read_unlock();
1212 return ret;
1213}
0b7f569e
KH
1214
1215static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1216{
1217 mem->last_oom_jiffies = jiffies;
1218 return 0;
1219}
1220
1221static void record_last_oom(struct mem_cgroup *mem)
1222{
1223 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1224}
1225
d69b042f
BS
1226/*
1227 * Currently used to update mapped file statistics, but the routine can be
1228 * generalized to update other statistics as well.
1229 */
d8046582 1230void mem_cgroup_update_file_mapped(struct page *page, int val)
d69b042f
BS
1231{
1232 struct mem_cgroup *mem;
1233 struct mem_cgroup_stat *stat;
1234 struct mem_cgroup_stat_cpu *cpustat;
1235 int cpu;
1236 struct page_cgroup *pc;
1237
d69b042f
BS
1238 pc = lookup_page_cgroup(page);
1239 if (unlikely(!pc))
1240 return;
1241
1242 lock_page_cgroup(pc);
1243 mem = pc->mem_cgroup;
1244 if (!mem)
1245 goto done;
1246
1247 if (!PageCgroupUsed(pc))
1248 goto done;
1249
1250 /*
1251 * Preemption is already disabled, we don't need get_cpu()
1252 */
1253 cpu = smp_processor_id();
1254 stat = &mem->stat;
1255 cpustat = &stat->cpustat[cpu];
1256
d8046582 1257 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
d69b042f
BS
1258done:
1259 unlock_page_cgroup(pc);
1260}
0b7f569e 1261
cdec2e42
KH
1262/*
1263 * size of first charge trial. "32" comes from vmscan.c's magic value.
1264 * TODO: maybe necessary to use big numbers in big irons.
1265 */
1266#define CHARGE_SIZE (32 * PAGE_SIZE)
1267struct memcg_stock_pcp {
1268 struct mem_cgroup *cached; /* this never be root cgroup */
1269 int charge;
1270 struct work_struct work;
1271};
1272static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1273static atomic_t memcg_drain_count;
1274
1275/*
1276 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1277 * from local stock and true is returned. If the stock is 0 or charges from a
1278 * cgroup which is not current target, returns false. This stock will be
1279 * refilled.
1280 */
1281static bool consume_stock(struct mem_cgroup *mem)
1282{
1283 struct memcg_stock_pcp *stock;
1284 bool ret = true;
1285
1286 stock = &get_cpu_var(memcg_stock);
1287 if (mem == stock->cached && stock->charge)
1288 stock->charge -= PAGE_SIZE;
1289 else /* need to call res_counter_charge */
1290 ret = false;
1291 put_cpu_var(memcg_stock);
1292 return ret;
1293}
1294
1295/*
1296 * Returns stocks cached in percpu to res_counter and reset cached information.
1297 */
1298static void drain_stock(struct memcg_stock_pcp *stock)
1299{
1300 struct mem_cgroup *old = stock->cached;
1301
1302 if (stock->charge) {
1303 res_counter_uncharge(&old->res, stock->charge);
1304 if (do_swap_account)
1305 res_counter_uncharge(&old->memsw, stock->charge);
1306 }
1307 stock->cached = NULL;
1308 stock->charge = 0;
1309}
1310
1311/*
1312 * This must be called under preempt disabled or must be called by
1313 * a thread which is pinned to local cpu.
1314 */
1315static void drain_local_stock(struct work_struct *dummy)
1316{
1317 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1318 drain_stock(stock);
1319}
1320
1321/*
1322 * Cache charges(val) which is from res_counter, to local per_cpu area.
1323 * This will be consumed by consumt_stock() function, later.
1324 */
1325static void refill_stock(struct mem_cgroup *mem, int val)
1326{
1327 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1328
1329 if (stock->cached != mem) { /* reset if necessary */
1330 drain_stock(stock);
1331 stock->cached = mem;
1332 }
1333 stock->charge += val;
1334 put_cpu_var(memcg_stock);
1335}
1336
1337/*
1338 * Tries to drain stocked charges in other cpus. This function is asynchronous
1339 * and just put a work per cpu for draining localy on each cpu. Caller can
1340 * expects some charges will be back to res_counter later but cannot wait for
1341 * it.
1342 */
1343static void drain_all_stock_async(void)
1344{
1345 int cpu;
1346 /* This function is for scheduling "drain" in asynchronous way.
1347 * The result of "drain" is not directly handled by callers. Then,
1348 * if someone is calling drain, we don't have to call drain more.
1349 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1350 * there is a race. We just do loose check here.
1351 */
1352 if (atomic_read(&memcg_drain_count))
1353 return;
1354 /* Notify other cpus that system-wide "drain" is running */
1355 atomic_inc(&memcg_drain_count);
1356 get_online_cpus();
1357 for_each_online_cpu(cpu) {
1358 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1359 schedule_work_on(cpu, &stock->work);
1360 }
1361 put_online_cpus();
1362 atomic_dec(&memcg_drain_count);
1363 /* We don't wait for flush_work */
1364}
1365
1366/* This is a synchronous drain interface. */
1367static void drain_all_stock_sync(void)
1368{
1369 /* called when force_empty is called */
1370 atomic_inc(&memcg_drain_count);
1371 schedule_on_each_cpu(drain_local_stock);
1372 atomic_dec(&memcg_drain_count);
1373}
1374
1375static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1376 unsigned long action,
1377 void *hcpu)
1378{
1379 int cpu = (unsigned long)hcpu;
1380 struct memcg_stock_pcp *stock;
1381
1382 if (action != CPU_DEAD)
1383 return NOTIFY_OK;
1384 stock = &per_cpu(memcg_stock, cpu);
1385 drain_stock(stock);
1386 return NOTIFY_OK;
1387}
1388
f817ed48
KH
1389/*
1390 * Unlike exported interface, "oom" parameter is added. if oom==true,
1391 * oom-killer can be invoked.
8a9f3ccd 1392 */
f817ed48 1393static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34 1394 gfp_t gfp_mask, struct mem_cgroup **memcg,
f64c3f54 1395 bool oom, struct page *page)
8a9f3ccd 1396{
4e649152 1397 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 1398 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4e649152 1399 struct res_counter *fail_res;
cdec2e42 1400 int csize = CHARGE_SIZE;
a636b327
KH
1401
1402 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1403 /* Don't account this! */
1404 *memcg = NULL;
1405 return 0;
1406 }
1407
8a9f3ccd 1408 /*
3be91277
HD
1409 * We always charge the cgroup the mm_struct belongs to.
1410 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1411 * thread group leader migrates. It's possible that mm is not
1412 * set, if so charge the init_mm (happens for pagecache usage).
1413 */
54595fe2
KH
1414 mem = *memcg;
1415 if (likely(!mem)) {
1416 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 1417 *memcg = mem;
e8589cc1 1418 } else {
7a81b88c 1419 css_get(&mem->css);
e8589cc1 1420 }
54595fe2
KH
1421 if (unlikely(!mem))
1422 return 0;
1423
46f7e602 1424 VM_BUG_ON(css_is_removed(&mem->css));
cdec2e42
KH
1425 if (mem_cgroup_is_root(mem))
1426 goto done;
8a9f3ccd 1427
8c7c6e34 1428 while (1) {
0c3e73e8 1429 int ret = 0;
75822b44 1430 unsigned long flags = 0;
7a81b88c 1431
cdec2e42
KH
1432 if (consume_stock(mem))
1433 goto charged;
1434
1435 ret = res_counter_charge(&mem->res, csize, &fail_res);
8c7c6e34
KH
1436 if (likely(!ret)) {
1437 if (!do_swap_account)
1438 break;
cdec2e42 1439 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
8c7c6e34
KH
1440 if (likely(!ret))
1441 break;
1442 /* mem+swap counter fails */
cdec2e42 1443 res_counter_uncharge(&mem->res, csize);
75822b44 1444 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
6d61ef40
BS
1445 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1446 memsw);
1447 } else
1448 /* mem counter fails */
1449 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1450 res);
1451
cdec2e42
KH
1452 /* reduce request size and retry */
1453 if (csize > PAGE_SIZE) {
1454 csize = PAGE_SIZE;
1455 continue;
1456 }
3be91277 1457 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1458 goto nomem;
e1a1cd59 1459
4e416953
BS
1460 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1461 gfp_mask, flags);
4d1c6273
DN
1462 if (ret)
1463 continue;
66e1707b
BS
1464
1465 /*
8869b8f6
HD
1466 * try_to_free_mem_cgroup_pages() might not give us a full
1467 * picture of reclaim. Some pages are reclaimed and might be
1468 * moved to swap cache or just unmapped from the cgroup.
1469 * Check the limit again to see if the reclaim reduced the
1470 * current usage of the cgroup before giving up
8c7c6e34 1471 *
8869b8f6 1472 */
b85a96c0
DN
1473 if (mem_cgroup_check_under_limit(mem_over_limit))
1474 continue;
3be91277
HD
1475
1476 if (!nr_retries--) {
a636b327 1477 if (oom) {
7f4d454d 1478 mutex_lock(&memcg_tasklist);
88700756 1479 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 1480 mutex_unlock(&memcg_tasklist);
0b7f569e 1481 record_last_oom(mem_over_limit);
a636b327 1482 }
7a81b88c 1483 goto nomem;
66e1707b 1484 }
8a9f3ccd 1485 }
cdec2e42
KH
1486 if (csize > PAGE_SIZE)
1487 refill_stock(mem, csize - PAGE_SIZE);
1488charged:
f64c3f54 1489 /*
4e649152
KH
1490 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1491 * if they exceeds softlimit.
f64c3f54 1492 */
4e649152
KH
1493 if (mem_cgroup_soft_limit_check(mem))
1494 mem_cgroup_update_tree(mem, page);
0c3e73e8 1495done:
7a81b88c
KH
1496 return 0;
1497nomem:
1498 css_put(&mem->css);
1499 return -ENOMEM;
1500}
8a9f3ccd 1501
a3032a2c
DN
1502/*
1503 * Somemtimes we have to undo a charge we got by try_charge().
1504 * This function is for that and do uncharge, put css's refcnt.
1505 * gotten by try_charge().
1506 */
1507static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1508{
1509 if (!mem_cgroup_is_root(mem)) {
1510 res_counter_uncharge(&mem->res, PAGE_SIZE);
1511 if (do_swap_account)
1512 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1513 }
1514 css_put(&mem->css);
1515}
1516
a3b2d692
KH
1517/*
1518 * A helper function to get mem_cgroup from ID. must be called under
1519 * rcu_read_lock(). The caller must check css_is_removed() or some if
1520 * it's concern. (dropping refcnt from swap can be called against removed
1521 * memcg.)
1522 */
1523static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1524{
1525 struct cgroup_subsys_state *css;
1526
1527 /* ID 0 is unused ID */
1528 if (!id)
1529 return NULL;
1530 css = css_lookup(&mem_cgroup_subsys, id);
1531 if (!css)
1532 return NULL;
1533 return container_of(css, struct mem_cgroup, css);
1534}
1535
b5a84319
KH
1536static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1537{
1538 struct mem_cgroup *mem;
3c776e64 1539 struct page_cgroup *pc;
a3b2d692 1540 unsigned short id;
b5a84319
KH
1541 swp_entry_t ent;
1542
3c776e64
DN
1543 VM_BUG_ON(!PageLocked(page));
1544
b5a84319
KH
1545 if (!PageSwapCache(page))
1546 return NULL;
1547
3c776e64 1548 pc = lookup_page_cgroup(page);
c0bd3f63 1549 lock_page_cgroup(pc);
a3b2d692 1550 if (PageCgroupUsed(pc)) {
3c776e64 1551 mem = pc->mem_cgroup;
a3b2d692
KH
1552 if (mem && !css_tryget(&mem->css))
1553 mem = NULL;
1554 } else {
3c776e64 1555 ent.val = page_private(page);
a3b2d692
KH
1556 id = lookup_swap_cgroup(ent);
1557 rcu_read_lock();
1558 mem = mem_cgroup_lookup(id);
1559 if (mem && !css_tryget(&mem->css))
1560 mem = NULL;
1561 rcu_read_unlock();
3c776e64 1562 }
c0bd3f63 1563 unlock_page_cgroup(pc);
b5a84319
KH
1564 return mem;
1565}
1566
7a81b88c 1567/*
a5e924f5 1568 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1569 * USED state. If already USED, uncharge and return.
1570 */
1571
1572static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1573 struct page_cgroup *pc,
1574 enum charge_type ctype)
1575{
7a81b88c
KH
1576 /* try_charge() can return NULL to *memcg, taking care of it. */
1577 if (!mem)
1578 return;
52d4b9ac
KH
1579
1580 lock_page_cgroup(pc);
1581 if (unlikely(PageCgroupUsed(pc))) {
1582 unlock_page_cgroup(pc);
a3032a2c 1583 mem_cgroup_cancel_charge(mem);
7a81b88c 1584 return;
52d4b9ac 1585 }
4b3bde4c 1586
8a9f3ccd 1587 pc->mem_cgroup = mem;
261fb61a
KH
1588 /*
1589 * We access a page_cgroup asynchronously without lock_page_cgroup().
1590 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1591 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1592 * before USED bit, we need memory barrier here.
1593 * See mem_cgroup_add_lru_list(), etc.
1594 */
08e552c6 1595 smp_wmb();
4b3bde4c
BS
1596 switch (ctype) {
1597 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1598 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1599 SetPageCgroupCache(pc);
1600 SetPageCgroupUsed(pc);
1601 break;
1602 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1603 ClearPageCgroupCache(pc);
1604 SetPageCgroupUsed(pc);
1605 break;
1606 default:
1607 break;
1608 }
3be91277 1609
08e552c6 1610 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1611
52d4b9ac 1612 unlock_page_cgroup(pc);
7a81b88c 1613}
66e1707b 1614
f817ed48 1615/**
57f9fd7d 1616 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
1617 * @pc: page_cgroup of the page.
1618 * @from: mem_cgroup which the page is moved from.
1619 * @to: mem_cgroup which the page is moved to. @from != @to.
1620 *
1621 * The caller must confirm following.
08e552c6 1622 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 1623 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48
KH
1624 *
1625 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1626 * new cgroup. It should be done by a caller.
1627 */
1628
57f9fd7d 1629static void __mem_cgroup_move_account(struct page_cgroup *pc,
f817ed48
KH
1630 struct mem_cgroup *from, struct mem_cgroup *to)
1631{
d69b042f
BS
1632 struct page *page;
1633 int cpu;
1634 struct mem_cgroup_stat *stat;
1635 struct mem_cgroup_stat_cpu *cpustat;
f817ed48 1636
f817ed48 1637 VM_BUG_ON(from == to);
08e552c6 1638 VM_BUG_ON(PageLRU(pc->page));
57f9fd7d
DN
1639 VM_BUG_ON(!PageCgroupLocked(pc));
1640 VM_BUG_ON(!PageCgroupUsed(pc));
1641 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 1642
0c3e73e8 1643 if (!mem_cgroup_is_root(from))
4e649152 1644 res_counter_uncharge(&from->res, PAGE_SIZE);
08e552c6 1645 mem_cgroup_charge_statistics(from, pc, false);
d69b042f
BS
1646
1647 page = pc->page;
d8046582 1648 if (page_mapped(page) && !PageAnon(page)) {
d69b042f
BS
1649 cpu = smp_processor_id();
1650 /* Update mapped_file data for mem_cgroup "from" */
1651 stat = &from->stat;
1652 cpustat = &stat->cpustat[cpu];
d8046582 1653 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
d69b042f
BS
1654 -1);
1655
1656 /* Update mapped_file data for mem_cgroup "to" */
1657 stat = &to->stat;
1658 cpustat = &stat->cpustat[cpu];
d8046582 1659 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
d69b042f
BS
1660 1);
1661 }
1662
0c3e73e8 1663 if (do_swap_account && !mem_cgroup_is_root(from))
4e649152 1664 res_counter_uncharge(&from->memsw, PAGE_SIZE);
40d58138
DN
1665 css_put(&from->css);
1666
1667 css_get(&to->css);
08e552c6
KH
1668 pc->mem_cgroup = to;
1669 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
1670 /*
1671 * We charges against "to" which may not have any tasks. Then, "to"
1672 * can be under rmdir(). But in current implementation, caller of
1673 * this function is just force_empty() and it's garanteed that
1674 * "to" is never removed. So, we don't check rmdir status here.
1675 */
57f9fd7d
DN
1676}
1677
1678/*
1679 * check whether the @pc is valid for moving account and call
1680 * __mem_cgroup_move_account()
1681 */
1682static int mem_cgroup_move_account(struct page_cgroup *pc,
1683 struct mem_cgroup *from, struct mem_cgroup *to)
1684{
1685 int ret = -EINVAL;
1686 lock_page_cgroup(pc);
1687 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1688 __mem_cgroup_move_account(pc, from, to);
1689 ret = 0;
1690 }
1691 unlock_page_cgroup(pc);
f817ed48
KH
1692 return ret;
1693}
1694
1695/*
1696 * move charges to its parent.
1697 */
1698
1699static int mem_cgroup_move_parent(struct page_cgroup *pc,
1700 struct mem_cgroup *child,
1701 gfp_t gfp_mask)
1702{
08e552c6 1703 struct page *page = pc->page;
f817ed48
KH
1704 struct cgroup *cg = child->css.cgroup;
1705 struct cgroup *pcg = cg->parent;
1706 struct mem_cgroup *parent;
f817ed48
KH
1707 int ret;
1708
1709 /* Is ROOT ? */
1710 if (!pcg)
1711 return -EINVAL;
1712
57f9fd7d
DN
1713 ret = -EBUSY;
1714 if (!get_page_unless_zero(page))
1715 goto out;
1716 if (isolate_lru_page(page))
1717 goto put;
08e552c6 1718
f817ed48 1719 parent = mem_cgroup_from_cont(pcg);
f64c3f54 1720 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
a636b327 1721 if (ret || !parent)
57f9fd7d 1722 goto put_back;
f817ed48 1723
f817ed48 1724 ret = mem_cgroup_move_account(pc, child, parent);
57f9fd7d
DN
1725 if (!ret)
1726 css_put(&parent->css); /* drop extra refcnt by try_charge() */
1727 else
1728 mem_cgroup_cancel_charge(parent); /* does css_put */
1729put_back:
08e552c6 1730 putback_lru_page(page);
57f9fd7d 1731put:
40d58138 1732 put_page(page);
57f9fd7d 1733out:
f817ed48
KH
1734 return ret;
1735}
1736
7a81b88c
KH
1737/*
1738 * Charge the memory controller for page usage.
1739 * Return
1740 * 0 if the charge was successful
1741 * < 0 if the cgroup is over its limit
1742 */
1743static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1744 gfp_t gfp_mask, enum charge_type ctype,
1745 struct mem_cgroup *memcg)
1746{
1747 struct mem_cgroup *mem;
1748 struct page_cgroup *pc;
1749 int ret;
1750
1751 pc = lookup_page_cgroup(page);
1752 /* can happen at boot */
1753 if (unlikely(!pc))
1754 return 0;
1755 prefetchw(pc);
1756
1757 mem = memcg;
f64c3f54 1758 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
a636b327 1759 if (ret || !mem)
7a81b88c
KH
1760 return ret;
1761
1762 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1763 return 0;
8a9f3ccd
BS
1764}
1765
7a81b88c
KH
1766int mem_cgroup_newpage_charge(struct page *page,
1767 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1768{
f8d66542 1769 if (mem_cgroup_disabled())
cede86ac 1770 return 0;
52d4b9ac
KH
1771 if (PageCompound(page))
1772 return 0;
69029cd5
KH
1773 /*
1774 * If already mapped, we don't have to account.
1775 * If page cache, page->mapping has address_space.
1776 * But page->mapping may have out-of-use anon_vma pointer,
1777 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1778 * is NULL.
1779 */
1780 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1781 return 0;
1782 if (unlikely(!mm))
1783 mm = &init_mm;
217bc319 1784 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1785 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1786}
1787
83aae4c7
DN
1788static void
1789__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1790 enum charge_type ctype);
1791
e1a1cd59
BS
1792int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1793 gfp_t gfp_mask)
8697d331 1794{
b5a84319
KH
1795 struct mem_cgroup *mem = NULL;
1796 int ret;
1797
f8d66542 1798 if (mem_cgroup_disabled())
cede86ac 1799 return 0;
52d4b9ac
KH
1800 if (PageCompound(page))
1801 return 0;
accf163e
KH
1802 /*
1803 * Corner case handling. This is called from add_to_page_cache()
1804 * in usual. But some FS (shmem) precharges this page before calling it
1805 * and call add_to_page_cache() with GFP_NOWAIT.
1806 *
1807 * For GFP_NOWAIT case, the page may be pre-charged before calling
1808 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1809 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1810 * And when the page is SwapCache, it should take swap information
1811 * into account. This is under lock_page() now.
accf163e
KH
1812 */
1813 if (!(gfp_mask & __GFP_WAIT)) {
1814 struct page_cgroup *pc;
1815
52d4b9ac
KH
1816
1817 pc = lookup_page_cgroup(page);
1818 if (!pc)
1819 return 0;
1820 lock_page_cgroup(pc);
1821 if (PageCgroupUsed(pc)) {
1822 unlock_page_cgroup(pc);
accf163e
KH
1823 return 0;
1824 }
52d4b9ac 1825 unlock_page_cgroup(pc);
accf163e
KH
1826 }
1827
b5a84319 1828 if (unlikely(!mm && !mem))
8697d331 1829 mm = &init_mm;
accf163e 1830
c05555b5
KH
1831 if (page_is_file_cache(page))
1832 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1833 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1834
83aae4c7
DN
1835 /* shmem */
1836 if (PageSwapCache(page)) {
1837 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1838 if (!ret)
1839 __mem_cgroup_commit_charge_swapin(page, mem,
1840 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1841 } else
1842 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1843 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1844
b5a84319 1845 return ret;
e8589cc1
KH
1846}
1847
54595fe2
KH
1848/*
1849 * While swap-in, try_charge -> commit or cancel, the page is locked.
1850 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 1851 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
1852 * "commit()" or removed by "cancel()"
1853 */
8c7c6e34
KH
1854int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1855 struct page *page,
1856 gfp_t mask, struct mem_cgroup **ptr)
1857{
1858 struct mem_cgroup *mem;
54595fe2 1859 int ret;
8c7c6e34 1860
f8d66542 1861 if (mem_cgroup_disabled())
8c7c6e34
KH
1862 return 0;
1863
1864 if (!do_swap_account)
1865 goto charge_cur_mm;
8c7c6e34
KH
1866 /*
1867 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
1868 * the pte, and even removed page from swap cache: in those cases
1869 * do_swap_page()'s pte_same() test will fail; but there's also a
1870 * KSM case which does need to charge the page.
8c7c6e34
KH
1871 */
1872 if (!PageSwapCache(page))
407f9c8b 1873 goto charge_cur_mm;
b5a84319 1874 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1875 if (!mem)
1876 goto charge_cur_mm;
8c7c6e34 1877 *ptr = mem;
f64c3f54 1878 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
54595fe2
KH
1879 /* drop extra refcnt from tryget */
1880 css_put(&mem->css);
1881 return ret;
8c7c6e34
KH
1882charge_cur_mm:
1883 if (unlikely(!mm))
1884 mm = &init_mm;
f64c3f54 1885 return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
8c7c6e34
KH
1886}
1887
83aae4c7
DN
1888static void
1889__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1890 enum charge_type ctype)
7a81b88c
KH
1891{
1892 struct page_cgroup *pc;
1893
f8d66542 1894 if (mem_cgroup_disabled())
7a81b88c
KH
1895 return;
1896 if (!ptr)
1897 return;
88703267 1898 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 1899 pc = lookup_page_cgroup(page);
544122e5 1900 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1901 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1902 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1903 /*
1904 * Now swap is on-memory. This means this page may be
1905 * counted both as mem and swap....double count.
03f3c433
KH
1906 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1907 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1908 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1909 */
03f3c433 1910 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1911 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1912 unsigned short id;
8c7c6e34 1913 struct mem_cgroup *memcg;
a3b2d692
KH
1914
1915 id = swap_cgroup_record(ent, 0);
1916 rcu_read_lock();
1917 memcg = mem_cgroup_lookup(id);
8c7c6e34 1918 if (memcg) {
a3b2d692
KH
1919 /*
1920 * This recorded memcg can be obsolete one. So, avoid
1921 * calling css_tryget
1922 */
0c3e73e8 1923 if (!mem_cgroup_is_root(memcg))
4e649152 1924 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 1925 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
1926 mem_cgroup_put(memcg);
1927 }
a3b2d692 1928 rcu_read_unlock();
8c7c6e34 1929 }
88703267
KH
1930 /*
1931 * At swapin, we may charge account against cgroup which has no tasks.
1932 * So, rmdir()->pre_destroy() can be called while we do this charge.
1933 * In that case, we need to call pre_destroy() again. check it here.
1934 */
1935 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
1936}
1937
83aae4c7
DN
1938void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1939{
1940 __mem_cgroup_commit_charge_swapin(page, ptr,
1941 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1942}
1943
7a81b88c
KH
1944void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1945{
f8d66542 1946 if (mem_cgroup_disabled())
7a81b88c
KH
1947 return;
1948 if (!mem)
1949 return;
a3032a2c 1950 mem_cgroup_cancel_charge(mem);
7a81b88c
KH
1951}
1952
569b846d
KH
1953static void
1954__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
1955{
1956 struct memcg_batch_info *batch = NULL;
1957 bool uncharge_memsw = true;
1958 /* If swapout, usage of swap doesn't decrease */
1959 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1960 uncharge_memsw = false;
1961 /*
1962 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
1963 * In those cases, all pages freed continously can be expected to be in
1964 * the same cgroup and we have chance to coalesce uncharges.
1965 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
1966 * because we want to do uncharge as soon as possible.
1967 */
1968 if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
1969 goto direct_uncharge;
1970
1971 batch = &current->memcg_batch;
1972 /*
1973 * In usual, we do css_get() when we remember memcg pointer.
1974 * But in this case, we keep res->usage until end of a series of
1975 * uncharges. Then, it's ok to ignore memcg's refcnt.
1976 */
1977 if (!batch->memcg)
1978 batch->memcg = mem;
1979 /*
1980 * In typical case, batch->memcg == mem. This means we can
1981 * merge a series of uncharges to an uncharge of res_counter.
1982 * If not, we uncharge res_counter ony by one.
1983 */
1984 if (batch->memcg != mem)
1985 goto direct_uncharge;
1986 /* remember freed charge and uncharge it later */
1987 batch->bytes += PAGE_SIZE;
1988 if (uncharge_memsw)
1989 batch->memsw_bytes += PAGE_SIZE;
1990 return;
1991direct_uncharge:
1992 res_counter_uncharge(&mem->res, PAGE_SIZE);
1993 if (uncharge_memsw)
1994 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1995 return;
1996}
7a81b88c 1997
8a9f3ccd 1998/*
69029cd5 1999 * uncharge if !page_mapped(page)
8a9f3ccd 2000 */
8c7c6e34 2001static struct mem_cgroup *
69029cd5 2002__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2003{
8289546e 2004 struct page_cgroup *pc;
8c7c6e34 2005 struct mem_cgroup *mem = NULL;
072c56c1 2006 struct mem_cgroup_per_zone *mz;
8a9f3ccd 2007
f8d66542 2008 if (mem_cgroup_disabled())
8c7c6e34 2009 return NULL;
4077960e 2010
d13d1443 2011 if (PageSwapCache(page))
8c7c6e34 2012 return NULL;
d13d1443 2013
8697d331 2014 /*
3c541e14 2015 * Check if our page_cgroup is valid
8697d331 2016 */
52d4b9ac
KH
2017 pc = lookup_page_cgroup(page);
2018 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2019 return NULL;
b9c565d5 2020
52d4b9ac 2021 lock_page_cgroup(pc);
d13d1443 2022
8c7c6e34
KH
2023 mem = pc->mem_cgroup;
2024
d13d1443
KH
2025 if (!PageCgroupUsed(pc))
2026 goto unlock_out;
2027
2028 switch (ctype) {
2029 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2030 case MEM_CGROUP_CHARGE_TYPE_DROP:
d13d1443
KH
2031 if (page_mapped(page))
2032 goto unlock_out;
2033 break;
2034 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2035 if (!PageAnon(page)) { /* Shared memory */
2036 if (page->mapping && !page_is_file_cache(page))
2037 goto unlock_out;
2038 } else if (page_mapped(page)) /* Anon */
2039 goto unlock_out;
2040 break;
2041 default:
2042 break;
52d4b9ac 2043 }
d13d1443 2044
569b846d
KH
2045 if (!mem_cgroup_is_root(mem))
2046 __do_uncharge(mem, ctype);
0c3e73e8
BS
2047 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2048 mem_cgroup_swap_statistics(mem, true);
08e552c6 2049 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 2050
52d4b9ac 2051 ClearPageCgroupUsed(pc);
544122e5
KH
2052 /*
2053 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2054 * freed from LRU. This is safe because uncharged page is expected not
2055 * to be reused (freed soon). Exception is SwapCache, it's handled by
2056 * special functions.
2057 */
b9c565d5 2058
69029cd5 2059 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 2060 unlock_page_cgroup(pc);
fb59e9f1 2061
4e649152 2062 if (mem_cgroup_soft_limit_check(mem))
f64c3f54 2063 mem_cgroup_update_tree(mem, page);
a7fe942e
KH
2064 /* at swapout, this memcg will be accessed to record to swap */
2065 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2066 css_put(&mem->css);
6d12e2d8 2067
8c7c6e34 2068 return mem;
d13d1443
KH
2069
2070unlock_out:
2071 unlock_page_cgroup(pc);
8c7c6e34 2072 return NULL;
3c541e14
BS
2073}
2074
69029cd5
KH
2075void mem_cgroup_uncharge_page(struct page *page)
2076{
52d4b9ac
KH
2077 /* early check. */
2078 if (page_mapped(page))
2079 return;
2080 if (page->mapping && !PageAnon(page))
2081 return;
69029cd5
KH
2082 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2083}
2084
2085void mem_cgroup_uncharge_cache_page(struct page *page)
2086{
2087 VM_BUG_ON(page_mapped(page));
b7abea96 2088 VM_BUG_ON(page->mapping);
69029cd5
KH
2089 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2090}
2091
569b846d
KH
2092/*
2093 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2094 * In that cases, pages are freed continuously and we can expect pages
2095 * are in the same memcg. All these calls itself limits the number of
2096 * pages freed at once, then uncharge_start/end() is called properly.
2097 * This may be called prural(2) times in a context,
2098 */
2099
2100void mem_cgroup_uncharge_start(void)
2101{
2102 current->memcg_batch.do_batch++;
2103 /* We can do nest. */
2104 if (current->memcg_batch.do_batch == 1) {
2105 current->memcg_batch.memcg = NULL;
2106 current->memcg_batch.bytes = 0;
2107 current->memcg_batch.memsw_bytes = 0;
2108 }
2109}
2110
2111void mem_cgroup_uncharge_end(void)
2112{
2113 struct memcg_batch_info *batch = &current->memcg_batch;
2114
2115 if (!batch->do_batch)
2116 return;
2117
2118 batch->do_batch--;
2119 if (batch->do_batch) /* If stacked, do nothing. */
2120 return;
2121
2122 if (!batch->memcg)
2123 return;
2124 /*
2125 * This "batch->memcg" is valid without any css_get/put etc...
2126 * bacause we hide charges behind us.
2127 */
2128 if (batch->bytes)
2129 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2130 if (batch->memsw_bytes)
2131 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2132 /* forget this pointer (for sanity check) */
2133 batch->memcg = NULL;
2134}
2135
e767e056 2136#ifdef CONFIG_SWAP
8c7c6e34 2137/*
e767e056 2138 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2139 * memcg information is recorded to swap_cgroup of "ent"
2140 */
8a9478ca
KH
2141void
2142mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2143{
2144 struct mem_cgroup *memcg;
8a9478ca
KH
2145 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2146
2147 if (!swapout) /* this was a swap cache but the swap is unused ! */
2148 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2149
2150 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2151
8c7c6e34 2152 /* record memcg information */
8a9478ca 2153 if (do_swap_account && swapout && memcg) {
a3b2d692 2154 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
2155 mem_cgroup_get(memcg);
2156 }
8a9478ca 2157 if (swapout && memcg)
a7fe942e 2158 css_put(&memcg->css);
8c7c6e34 2159}
e767e056 2160#endif
8c7c6e34
KH
2161
2162#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2163/*
2164 * called from swap_entry_free(). remove record in swap_cgroup and
2165 * uncharge "memsw" account.
2166 */
2167void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2168{
8c7c6e34 2169 struct mem_cgroup *memcg;
a3b2d692 2170 unsigned short id;
8c7c6e34
KH
2171
2172 if (!do_swap_account)
2173 return;
2174
a3b2d692
KH
2175 id = swap_cgroup_record(ent, 0);
2176 rcu_read_lock();
2177 memcg = mem_cgroup_lookup(id);
8c7c6e34 2178 if (memcg) {
a3b2d692
KH
2179 /*
2180 * We uncharge this because swap is freed.
2181 * This memcg can be obsolete one. We avoid calling css_tryget
2182 */
0c3e73e8 2183 if (!mem_cgroup_is_root(memcg))
4e649152 2184 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2185 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2186 mem_cgroup_put(memcg);
2187 }
a3b2d692 2188 rcu_read_unlock();
d13d1443 2189}
8c7c6e34 2190#endif
d13d1443 2191
ae41be37 2192/*
01b1ae63
KH
2193 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2194 * page belongs to.
ae41be37 2195 */
01b1ae63 2196int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
2197{
2198 struct page_cgroup *pc;
e8589cc1 2199 struct mem_cgroup *mem = NULL;
e8589cc1 2200 int ret = 0;
8869b8f6 2201
f8d66542 2202 if (mem_cgroup_disabled())
4077960e
BS
2203 return 0;
2204
52d4b9ac
KH
2205 pc = lookup_page_cgroup(page);
2206 lock_page_cgroup(pc);
2207 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2208 mem = pc->mem_cgroup;
2209 css_get(&mem->css);
e8589cc1 2210 }
52d4b9ac 2211 unlock_page_cgroup(pc);
01b1ae63 2212
e8589cc1 2213 if (mem) {
f64c3f54
BS
2214 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2215 page);
e8589cc1
KH
2216 css_put(&mem->css);
2217 }
01b1ae63 2218 *ptr = mem;
e8589cc1 2219 return ret;
ae41be37 2220}
8869b8f6 2221
69029cd5 2222/* remove redundant charge if migration failed*/
01b1ae63
KH
2223void mem_cgroup_end_migration(struct mem_cgroup *mem,
2224 struct page *oldpage, struct page *newpage)
ae41be37 2225{
01b1ae63
KH
2226 struct page *target, *unused;
2227 struct page_cgroup *pc;
2228 enum charge_type ctype;
2229
2230 if (!mem)
2231 return;
88703267 2232 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2233 /* at migration success, oldpage->mapping is NULL. */
2234 if (oldpage->mapping) {
2235 target = oldpage;
2236 unused = NULL;
2237 } else {
2238 target = newpage;
2239 unused = oldpage;
2240 }
2241
2242 if (PageAnon(target))
2243 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2244 else if (page_is_file_cache(target))
2245 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2246 else
2247 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2248
2249 /* unused page is not on radix-tree now. */
d13d1443 2250 if (unused)
01b1ae63
KH
2251 __mem_cgroup_uncharge_common(unused, ctype);
2252
2253 pc = lookup_page_cgroup(target);
69029cd5 2254 /*
01b1ae63
KH
2255 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2256 * So, double-counting is effectively avoided.
2257 */
2258 __mem_cgroup_commit_charge(mem, pc, ctype);
2259
2260 /*
2261 * Both of oldpage and newpage are still under lock_page().
2262 * Then, we don't have to care about race in radix-tree.
2263 * But we have to be careful that this page is unmapped or not.
2264 *
2265 * There is a case for !page_mapped(). At the start of
2266 * migration, oldpage was mapped. But now, it's zapped.
2267 * But we know *target* page is not freed/reused under us.
2268 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 2269 */
01b1ae63
KH
2270 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2271 mem_cgroup_uncharge_page(target);
88703267
KH
2272 /*
2273 * At migration, we may charge account against cgroup which has no tasks
2274 * So, rmdir()->pre_destroy() can be called while we do this charge.
2275 * In that case, we need to call pre_destroy() again. check it here.
2276 */
2277 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2278}
78fb7466 2279
c9b0ed51 2280/*
ae3abae6
DN
2281 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2282 * Calling hierarchical_reclaim is not enough because we should update
2283 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2284 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2285 * not from the memcg which this page would be charged to.
2286 * try_charge_swapin does all of these works properly.
c9b0ed51 2287 */
ae3abae6 2288int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2289 struct mm_struct *mm,
2290 gfp_t gfp_mask)
c9b0ed51 2291{
b5a84319 2292 struct mem_cgroup *mem = NULL;
ae3abae6 2293 int ret;
c9b0ed51 2294
f8d66542 2295 if (mem_cgroup_disabled())
cede86ac 2296 return 0;
c9b0ed51 2297
ae3abae6
DN
2298 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2299 if (!ret)
2300 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2301
ae3abae6 2302 return ret;
c9b0ed51
KH
2303}
2304
8c7c6e34
KH
2305static DEFINE_MUTEX(set_limit_mutex);
2306
d38d2a75 2307static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2308 unsigned long long val)
628f4235 2309{
81d39c20 2310 int retry_count;
628f4235 2311 int progress;
8c7c6e34 2312 u64 memswlimit;
628f4235 2313 int ret = 0;
81d39c20
KH
2314 int children = mem_cgroup_count_children(memcg);
2315 u64 curusage, oldusage;
2316
2317 /*
2318 * For keeping hierarchical_reclaim simple, how long we should retry
2319 * is depends on callers. We set our retry-count to be function
2320 * of # of children which we should visit in this loop.
2321 */
2322 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2323
2324 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2325
8c7c6e34 2326 while (retry_count) {
628f4235
KH
2327 if (signal_pending(current)) {
2328 ret = -EINTR;
2329 break;
2330 }
8c7c6e34
KH
2331 /*
2332 * Rather than hide all in some function, I do this in
2333 * open coded manner. You see what this really does.
2334 * We have to guarantee mem->res.limit < mem->memsw.limit.
2335 */
2336 mutex_lock(&set_limit_mutex);
2337 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2338 if (memswlimit < val) {
2339 ret = -EINVAL;
2340 mutex_unlock(&set_limit_mutex);
628f4235
KH
2341 break;
2342 }
8c7c6e34 2343 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2344 if (!ret) {
2345 if (memswlimit == val)
2346 memcg->memsw_is_minimum = true;
2347 else
2348 memcg->memsw_is_minimum = false;
2349 }
8c7c6e34
KH
2350 mutex_unlock(&set_limit_mutex);
2351
2352 if (!ret)
2353 break;
2354
4e416953
BS
2355 progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
2356 GFP_KERNEL,
2357 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2358 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2359 /* Usage is reduced ? */
2360 if (curusage >= oldusage)
2361 retry_count--;
2362 else
2363 oldusage = curusage;
8c7c6e34 2364 }
14797e23 2365
8c7c6e34
KH
2366 return ret;
2367}
2368
338c8431
LZ
2369static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2370 unsigned long long val)
8c7c6e34 2371{
81d39c20 2372 int retry_count;
8c7c6e34 2373 u64 memlimit, oldusage, curusage;
81d39c20
KH
2374 int children = mem_cgroup_count_children(memcg);
2375 int ret = -EBUSY;
8c7c6e34 2376
81d39c20
KH
2377 /* see mem_cgroup_resize_res_limit */
2378 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2379 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2380 while (retry_count) {
2381 if (signal_pending(current)) {
2382 ret = -EINTR;
2383 break;
2384 }
2385 /*
2386 * Rather than hide all in some function, I do this in
2387 * open coded manner. You see what this really does.
2388 * We have to guarantee mem->res.limit < mem->memsw.limit.
2389 */
2390 mutex_lock(&set_limit_mutex);
2391 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2392 if (memlimit > val) {
2393 ret = -EINVAL;
2394 mutex_unlock(&set_limit_mutex);
2395 break;
2396 }
2397 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2398 if (!ret) {
2399 if (memlimit == val)
2400 memcg->memsw_is_minimum = true;
2401 else
2402 memcg->memsw_is_minimum = false;
2403 }
8c7c6e34
KH
2404 mutex_unlock(&set_limit_mutex);
2405
2406 if (!ret)
2407 break;
2408
4e416953 2409 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
2410 MEM_CGROUP_RECLAIM_NOSWAP |
2411 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 2412 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 2413 /* Usage is reduced ? */
8c7c6e34 2414 if (curusage >= oldusage)
628f4235 2415 retry_count--;
81d39c20
KH
2416 else
2417 oldusage = curusage;
628f4235
KH
2418 }
2419 return ret;
2420}
2421
4e416953
BS
2422unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2423 gfp_t gfp_mask, int nid,
2424 int zid)
2425{
2426 unsigned long nr_reclaimed = 0;
2427 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2428 unsigned long reclaimed;
2429 int loop = 0;
2430 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 2431 unsigned long long excess;
4e416953
BS
2432
2433 if (order > 0)
2434 return 0;
2435
2436 mctz = soft_limit_tree_node_zone(nid, zid);
2437 /*
2438 * This loop can run a while, specially if mem_cgroup's continuously
2439 * keep exceeding their soft limit and putting the system under
2440 * pressure
2441 */
2442 do {
2443 if (next_mz)
2444 mz = next_mz;
2445 else
2446 mz = mem_cgroup_largest_soft_limit_node(mctz);
2447 if (!mz)
2448 break;
2449
2450 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2451 gfp_mask,
2452 MEM_CGROUP_RECLAIM_SOFT);
2453 nr_reclaimed += reclaimed;
2454 spin_lock(&mctz->lock);
2455
2456 /*
2457 * If we failed to reclaim anything from this memory cgroup
2458 * it is time to move on to the next cgroup
2459 */
2460 next_mz = NULL;
2461 if (!reclaimed) {
2462 do {
2463 /*
2464 * Loop until we find yet another one.
2465 *
2466 * By the time we get the soft_limit lock
2467 * again, someone might have aded the
2468 * group back on the RB tree. Iterate to
2469 * make sure we get a different mem.
2470 * mem_cgroup_largest_soft_limit_node returns
2471 * NULL if no other cgroup is present on
2472 * the tree
2473 */
2474 next_mz =
2475 __mem_cgroup_largest_soft_limit_node(mctz);
2476 if (next_mz == mz) {
2477 css_put(&next_mz->mem->css);
2478 next_mz = NULL;
2479 } else /* next_mz == NULL or other memcg */
2480 break;
2481 } while (1);
2482 }
4e416953 2483 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 2484 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
2485 /*
2486 * One school of thought says that we should not add
2487 * back the node to the tree if reclaim returns 0.
2488 * But our reclaim could return 0, simply because due
2489 * to priority we are exposing a smaller subset of
2490 * memory to reclaim from. Consider this as a longer
2491 * term TODO.
2492 */
ef8745c1
KH
2493 /* If excess == 0, no tree ops */
2494 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
2495 spin_unlock(&mctz->lock);
2496 css_put(&mz->mem->css);
2497 loop++;
2498 /*
2499 * Could not reclaim anything and there are no more
2500 * mem cgroups to try or we seem to be looping without
2501 * reclaiming anything.
2502 */
2503 if (!nr_reclaimed &&
2504 (next_mz == NULL ||
2505 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2506 break;
2507 } while (!nr_reclaimed);
2508 if (next_mz)
2509 css_put(&next_mz->mem->css);
2510 return nr_reclaimed;
2511}
2512
cc847582
KH
2513/*
2514 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
2515 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2516 */
f817ed48 2517static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 2518 int node, int zid, enum lru_list lru)
cc847582 2519{
08e552c6
KH
2520 struct zone *zone;
2521 struct mem_cgroup_per_zone *mz;
f817ed48 2522 struct page_cgroup *pc, *busy;
08e552c6 2523 unsigned long flags, loop;
072c56c1 2524 struct list_head *list;
f817ed48 2525 int ret = 0;
072c56c1 2526
08e552c6
KH
2527 zone = &NODE_DATA(node)->node_zones[zid];
2528 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 2529 list = &mz->lists[lru];
cc847582 2530
f817ed48
KH
2531 loop = MEM_CGROUP_ZSTAT(mz, lru);
2532 /* give some margin against EBUSY etc...*/
2533 loop += 256;
2534 busy = NULL;
2535 while (loop--) {
2536 ret = 0;
08e552c6 2537 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 2538 if (list_empty(list)) {
08e552c6 2539 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 2540 break;
f817ed48
KH
2541 }
2542 pc = list_entry(list->prev, struct page_cgroup, lru);
2543 if (busy == pc) {
2544 list_move(&pc->lru, list);
2545 busy = 0;
08e552c6 2546 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
2547 continue;
2548 }
08e552c6 2549 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 2550
2c26fdd7 2551 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 2552 if (ret == -ENOMEM)
52d4b9ac 2553 break;
f817ed48
KH
2554
2555 if (ret == -EBUSY || ret == -EINVAL) {
2556 /* found lock contention or "pc" is obsolete. */
2557 busy = pc;
2558 cond_resched();
2559 } else
2560 busy = NULL;
cc847582 2561 }
08e552c6 2562
f817ed48
KH
2563 if (!ret && !list_empty(list))
2564 return -EBUSY;
2565 return ret;
cc847582
KH
2566}
2567
2568/*
2569 * make mem_cgroup's charge to be 0 if there is no task.
2570 * This enables deleting this mem_cgroup.
2571 */
c1e862c1 2572static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 2573{
f817ed48
KH
2574 int ret;
2575 int node, zid, shrink;
2576 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 2577 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 2578
cc847582 2579 css_get(&mem->css);
f817ed48
KH
2580
2581 shrink = 0;
c1e862c1
KH
2582 /* should free all ? */
2583 if (free_all)
2584 goto try_to_free;
f817ed48 2585move_account:
1ecaab2b 2586 while (mem->res.usage > 0) {
f817ed48 2587 ret = -EBUSY;
c1e862c1
KH
2588 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2589 goto out;
2590 ret = -EINTR;
2591 if (signal_pending(current))
cc847582 2592 goto out;
52d4b9ac
KH
2593 /* This is for making all *used* pages to be on LRU. */
2594 lru_add_drain_all();
cdec2e42 2595 drain_all_stock_sync();
f817ed48 2596 ret = 0;
299b4eaa 2597 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 2598 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 2599 enum lru_list l;
f817ed48
KH
2600 for_each_lru(l) {
2601 ret = mem_cgroup_force_empty_list(mem,
08e552c6 2602 node, zid, l);
f817ed48
KH
2603 if (ret)
2604 break;
2605 }
1ecaab2b 2606 }
f817ed48
KH
2607 if (ret)
2608 break;
2609 }
2610 /* it seems parent cgroup doesn't have enough mem */
2611 if (ret == -ENOMEM)
2612 goto try_to_free;
52d4b9ac 2613 cond_resched();
cc847582
KH
2614 }
2615 ret = 0;
2616out:
2617 css_put(&mem->css);
2618 return ret;
f817ed48
KH
2619
2620try_to_free:
c1e862c1
KH
2621 /* returns EBUSY if there is a task or if we come here twice. */
2622 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
2623 ret = -EBUSY;
2624 goto out;
2625 }
c1e862c1
KH
2626 /* we call try-to-free pages for make this cgroup empty */
2627 lru_add_drain_all();
f817ed48
KH
2628 /* try to free all pages in this cgroup */
2629 shrink = 1;
2630 while (nr_retries && mem->res.usage > 0) {
2631 int progress;
c1e862c1
KH
2632
2633 if (signal_pending(current)) {
2634 ret = -EINTR;
2635 goto out;
2636 }
a7885eb8
KM
2637 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2638 false, get_swappiness(mem));
c1e862c1 2639 if (!progress) {
f817ed48 2640 nr_retries--;
c1e862c1 2641 /* maybe some writeback is necessary */
8aa7e847 2642 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2643 }
f817ed48
KH
2644
2645 }
08e552c6 2646 lru_add_drain();
f817ed48
KH
2647 /* try move_account...there may be some *locked* pages. */
2648 if (mem->res.usage)
2649 goto move_account;
2650 ret = 0;
2651 goto out;
cc847582
KH
2652}
2653
c1e862c1
KH
2654int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2655{
2656 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2657}
2658
2659
18f59ea7
BS
2660static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2661{
2662 return mem_cgroup_from_cont(cont)->use_hierarchy;
2663}
2664
2665static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2666 u64 val)
2667{
2668 int retval = 0;
2669 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2670 struct cgroup *parent = cont->parent;
2671 struct mem_cgroup *parent_mem = NULL;
2672
2673 if (parent)
2674 parent_mem = mem_cgroup_from_cont(parent);
2675
2676 cgroup_lock();
2677 /*
af901ca1 2678 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2679 * in the child subtrees. If it is unset, then the change can
2680 * occur, provided the current cgroup has no children.
2681 *
2682 * For the root cgroup, parent_mem is NULL, we allow value to be
2683 * set if there are no children.
2684 */
2685 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2686 (val == 1 || val == 0)) {
2687 if (list_empty(&cont->children))
2688 mem->use_hierarchy = val;
2689 else
2690 retval = -EBUSY;
2691 } else
2692 retval = -EINVAL;
2693 cgroup_unlock();
2694
2695 return retval;
2696}
2697
0c3e73e8
BS
2698struct mem_cgroup_idx_data {
2699 s64 val;
2700 enum mem_cgroup_stat_index idx;
2701};
2702
2703static int
2704mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2705{
2706 struct mem_cgroup_idx_data *d = data;
2707 d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2708 return 0;
2709}
2710
2711static void
2712mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2713 enum mem_cgroup_stat_index idx, s64 *val)
2714{
2715 struct mem_cgroup_idx_data d;
2716 d.idx = idx;
2717 d.val = 0;
2718 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2719 *val = d.val;
2720}
2721
2c3daa72 2722static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 2723{
8c7c6e34 2724 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
0c3e73e8 2725 u64 idx_val, val;
8c7c6e34
KH
2726 int type, name;
2727
2728 type = MEMFILE_TYPE(cft->private);
2729 name = MEMFILE_ATTR(cft->private);
2730 switch (type) {
2731 case _MEM:
0c3e73e8
BS
2732 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2733 mem_cgroup_get_recursive_idx_stat(mem,
2734 MEM_CGROUP_STAT_CACHE, &idx_val);
2735 val = idx_val;
2736 mem_cgroup_get_recursive_idx_stat(mem,
2737 MEM_CGROUP_STAT_RSS, &idx_val);
2738 val += idx_val;
2739 val <<= PAGE_SHIFT;
2740 } else
2741 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
2742 break;
2743 case _MEMSWAP:
0c3e73e8
BS
2744 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2745 mem_cgroup_get_recursive_idx_stat(mem,
2746 MEM_CGROUP_STAT_CACHE, &idx_val);
2747 val = idx_val;
2748 mem_cgroup_get_recursive_idx_stat(mem,
2749 MEM_CGROUP_STAT_RSS, &idx_val);
2750 val += idx_val;
2751 mem_cgroup_get_recursive_idx_stat(mem,
2752 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
cd9b45b7 2753 val += idx_val;
0c3e73e8
BS
2754 val <<= PAGE_SHIFT;
2755 } else
2756 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
2757 break;
2758 default:
2759 BUG();
2760 break;
2761 }
2762 return val;
8cdea7c0 2763}
628f4235
KH
2764/*
2765 * The user of this function is...
2766 * RES_LIMIT.
2767 */
856c13aa
PM
2768static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2769 const char *buffer)
8cdea7c0 2770{
628f4235 2771 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 2772 int type, name;
628f4235
KH
2773 unsigned long long val;
2774 int ret;
2775
8c7c6e34
KH
2776 type = MEMFILE_TYPE(cft->private);
2777 name = MEMFILE_ATTR(cft->private);
2778 switch (name) {
628f4235 2779 case RES_LIMIT:
4b3bde4c
BS
2780 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2781 ret = -EINVAL;
2782 break;
2783 }
628f4235
KH
2784 /* This function does all necessary parse...reuse it */
2785 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
2786 if (ret)
2787 break;
2788 if (type == _MEM)
628f4235 2789 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
2790 else
2791 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 2792 break;
296c81d8
BS
2793 case RES_SOFT_LIMIT:
2794 ret = res_counter_memparse_write_strategy(buffer, &val);
2795 if (ret)
2796 break;
2797 /*
2798 * For memsw, soft limits are hard to implement in terms
2799 * of semantics, for now, we support soft limits for
2800 * control without swap
2801 */
2802 if (type == _MEM)
2803 ret = res_counter_set_soft_limit(&memcg->res, val);
2804 else
2805 ret = -EINVAL;
2806 break;
628f4235
KH
2807 default:
2808 ret = -EINVAL; /* should be BUG() ? */
2809 break;
2810 }
2811 return ret;
8cdea7c0
BS
2812}
2813
fee7b548
KH
2814static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2815 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2816{
2817 struct cgroup *cgroup;
2818 unsigned long long min_limit, min_memsw_limit, tmp;
2819
2820 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2821 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2822 cgroup = memcg->css.cgroup;
2823 if (!memcg->use_hierarchy)
2824 goto out;
2825
2826 while (cgroup->parent) {
2827 cgroup = cgroup->parent;
2828 memcg = mem_cgroup_from_cont(cgroup);
2829 if (!memcg->use_hierarchy)
2830 break;
2831 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2832 min_limit = min(min_limit, tmp);
2833 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2834 min_memsw_limit = min(min_memsw_limit, tmp);
2835 }
2836out:
2837 *mem_limit = min_limit;
2838 *memsw_limit = min_memsw_limit;
2839 return;
2840}
2841
29f2a4da 2842static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2843{
2844 struct mem_cgroup *mem;
8c7c6e34 2845 int type, name;
c84872e1
PE
2846
2847 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2848 type = MEMFILE_TYPE(event);
2849 name = MEMFILE_ATTR(event);
2850 switch (name) {
29f2a4da 2851 case RES_MAX_USAGE:
8c7c6e34
KH
2852 if (type == _MEM)
2853 res_counter_reset_max(&mem->res);
2854 else
2855 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2856 break;
2857 case RES_FAILCNT:
8c7c6e34
KH
2858 if (type == _MEM)
2859 res_counter_reset_failcnt(&mem->res);
2860 else
2861 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2862 break;
2863 }
f64c3f54 2864
85cc59db 2865 return 0;
c84872e1
PE
2866}
2867
14067bb3
KH
2868
2869/* For read statistics */
2870enum {
2871 MCS_CACHE,
2872 MCS_RSS,
d8046582 2873 MCS_FILE_MAPPED,
14067bb3
KH
2874 MCS_PGPGIN,
2875 MCS_PGPGOUT,
1dd3a273 2876 MCS_SWAP,
14067bb3
KH
2877 MCS_INACTIVE_ANON,
2878 MCS_ACTIVE_ANON,
2879 MCS_INACTIVE_FILE,
2880 MCS_ACTIVE_FILE,
2881 MCS_UNEVICTABLE,
2882 NR_MCS_STAT,
2883};
2884
2885struct mcs_total_stat {
2886 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
2887};
2888
14067bb3
KH
2889struct {
2890 char *local_name;
2891 char *total_name;
2892} memcg_stat_strings[NR_MCS_STAT] = {
2893 {"cache", "total_cache"},
2894 {"rss", "total_rss"},
d69b042f 2895 {"mapped_file", "total_mapped_file"},
14067bb3
KH
2896 {"pgpgin", "total_pgpgin"},
2897 {"pgpgout", "total_pgpgout"},
1dd3a273 2898 {"swap", "total_swap"},
14067bb3
KH
2899 {"inactive_anon", "total_inactive_anon"},
2900 {"active_anon", "total_active_anon"},
2901 {"inactive_file", "total_inactive_file"},
2902 {"active_file", "total_active_file"},
2903 {"unevictable", "total_unevictable"}
2904};
2905
2906
2907static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2908{
2909 struct mcs_total_stat *s = data;
2910 s64 val;
2911
2912 /* per cpu stat */
2913 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2914 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2915 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2916 s->stat[MCS_RSS] += val * PAGE_SIZE;
d8046582
KH
2917 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
2918 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
14067bb3
KH
2919 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2920 s->stat[MCS_PGPGIN] += val;
2921 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2922 s->stat[MCS_PGPGOUT] += val;
1dd3a273
DN
2923 if (do_swap_account) {
2924 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2925 s->stat[MCS_SWAP] += val * PAGE_SIZE;
2926 }
14067bb3
KH
2927
2928 /* per zone stat */
2929 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2930 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2931 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2932 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2933 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2934 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2935 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2936 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2937 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2938 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2939 return 0;
2940}
2941
2942static void
2943mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2944{
2945 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2946}
2947
c64745cf
PM
2948static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2949 struct cgroup_map_cb *cb)
d2ceb9b7 2950{
d2ceb9b7 2951 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 2952 struct mcs_total_stat mystat;
d2ceb9b7
KH
2953 int i;
2954
14067bb3
KH
2955 memset(&mystat, 0, sizeof(mystat));
2956 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 2957
1dd3a273
DN
2958 for (i = 0; i < NR_MCS_STAT; i++) {
2959 if (i == MCS_SWAP && !do_swap_account)
2960 continue;
14067bb3 2961 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 2962 }
7b854121 2963
14067bb3 2964 /* Hierarchical information */
fee7b548
KH
2965 {
2966 unsigned long long limit, memsw_limit;
2967 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2968 cb->fill(cb, "hierarchical_memory_limit", limit);
2969 if (do_swap_account)
2970 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2971 }
7f016ee8 2972
14067bb3
KH
2973 memset(&mystat, 0, sizeof(mystat));
2974 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
2975 for (i = 0; i < NR_MCS_STAT; i++) {
2976 if (i == MCS_SWAP && !do_swap_account)
2977 continue;
14067bb3 2978 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 2979 }
14067bb3 2980
7f016ee8 2981#ifdef CONFIG_DEBUG_VM
c772be93 2982 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
2983
2984 {
2985 int nid, zid;
2986 struct mem_cgroup_per_zone *mz;
2987 unsigned long recent_rotated[2] = {0, 0};
2988 unsigned long recent_scanned[2] = {0, 0};
2989
2990 for_each_online_node(nid)
2991 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2992 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2993
2994 recent_rotated[0] +=
2995 mz->reclaim_stat.recent_rotated[0];
2996 recent_rotated[1] +=
2997 mz->reclaim_stat.recent_rotated[1];
2998 recent_scanned[0] +=
2999 mz->reclaim_stat.recent_scanned[0];
3000 recent_scanned[1] +=
3001 mz->reclaim_stat.recent_scanned[1];
3002 }
3003 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3004 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3005 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3006 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3007 }
3008#endif
3009
d2ceb9b7
KH
3010 return 0;
3011}
3012
a7885eb8
KM
3013static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3014{
3015 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3016
3017 return get_swappiness(memcg);
3018}
3019
3020static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3021 u64 val)
3022{
3023 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3024 struct mem_cgroup *parent;
068b38c1 3025
a7885eb8
KM
3026 if (val > 100)
3027 return -EINVAL;
3028
3029 if (cgrp->parent == NULL)
3030 return -EINVAL;
3031
3032 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3033
3034 cgroup_lock();
3035
a7885eb8
KM
3036 /* If under hierarchy, only empty-root can set this value */
3037 if ((parent->use_hierarchy) ||
068b38c1
LZ
3038 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3039 cgroup_unlock();
a7885eb8 3040 return -EINVAL;
068b38c1 3041 }
a7885eb8
KM
3042
3043 spin_lock(&memcg->reclaim_param_lock);
3044 memcg->swappiness = val;
3045 spin_unlock(&memcg->reclaim_param_lock);
3046
068b38c1
LZ
3047 cgroup_unlock();
3048
a7885eb8
KM
3049 return 0;
3050}
3051
c1e862c1 3052
8cdea7c0
BS
3053static struct cftype mem_cgroup_files[] = {
3054 {
0eea1030 3055 .name = "usage_in_bytes",
8c7c6e34 3056 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 3057 .read_u64 = mem_cgroup_read,
8cdea7c0 3058 },
c84872e1
PE
3059 {
3060 .name = "max_usage_in_bytes",
8c7c6e34 3061 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 3062 .trigger = mem_cgroup_reset,
c84872e1
PE
3063 .read_u64 = mem_cgroup_read,
3064 },
8cdea7c0 3065 {
0eea1030 3066 .name = "limit_in_bytes",
8c7c6e34 3067 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 3068 .write_string = mem_cgroup_write,
2c3daa72 3069 .read_u64 = mem_cgroup_read,
8cdea7c0 3070 },
296c81d8
BS
3071 {
3072 .name = "soft_limit_in_bytes",
3073 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3074 .write_string = mem_cgroup_write,
3075 .read_u64 = mem_cgroup_read,
3076 },
8cdea7c0
BS
3077 {
3078 .name = "failcnt",
8c7c6e34 3079 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 3080 .trigger = mem_cgroup_reset,
2c3daa72 3081 .read_u64 = mem_cgroup_read,
8cdea7c0 3082 },
d2ceb9b7
KH
3083 {
3084 .name = "stat",
c64745cf 3085 .read_map = mem_control_stat_show,
d2ceb9b7 3086 },
c1e862c1
KH
3087 {
3088 .name = "force_empty",
3089 .trigger = mem_cgroup_force_empty_write,
3090 },
18f59ea7
BS
3091 {
3092 .name = "use_hierarchy",
3093 .write_u64 = mem_cgroup_hierarchy_write,
3094 .read_u64 = mem_cgroup_hierarchy_read,
3095 },
a7885eb8
KM
3096 {
3097 .name = "swappiness",
3098 .read_u64 = mem_cgroup_swappiness_read,
3099 .write_u64 = mem_cgroup_swappiness_write,
3100 },
8cdea7c0
BS
3101};
3102
8c7c6e34
KH
3103#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3104static struct cftype memsw_cgroup_files[] = {
3105 {
3106 .name = "memsw.usage_in_bytes",
3107 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3108 .read_u64 = mem_cgroup_read,
3109 },
3110 {
3111 .name = "memsw.max_usage_in_bytes",
3112 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3113 .trigger = mem_cgroup_reset,
3114 .read_u64 = mem_cgroup_read,
3115 },
3116 {
3117 .name = "memsw.limit_in_bytes",
3118 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3119 .write_string = mem_cgroup_write,
3120 .read_u64 = mem_cgroup_read,
3121 },
3122 {
3123 .name = "memsw.failcnt",
3124 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3125 .trigger = mem_cgroup_reset,
3126 .read_u64 = mem_cgroup_read,
3127 },
3128};
3129
3130static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3131{
3132 if (!do_swap_account)
3133 return 0;
3134 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3135 ARRAY_SIZE(memsw_cgroup_files));
3136};
3137#else
3138static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3139{
3140 return 0;
3141}
3142#endif
3143
6d12e2d8
KH
3144static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3145{
3146 struct mem_cgroup_per_node *pn;
1ecaab2b 3147 struct mem_cgroup_per_zone *mz;
b69408e8 3148 enum lru_list l;
41e3355d 3149 int zone, tmp = node;
1ecaab2b
KH
3150 /*
3151 * This routine is called against possible nodes.
3152 * But it's BUG to call kmalloc() against offline node.
3153 *
3154 * TODO: this routine can waste much memory for nodes which will
3155 * never be onlined. It's better to use memory hotplug callback
3156 * function.
3157 */
41e3355d
KH
3158 if (!node_state(node, N_NORMAL_MEMORY))
3159 tmp = -1;
3160 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
3161 if (!pn)
3162 return 1;
1ecaab2b 3163
6d12e2d8
KH
3164 mem->info.nodeinfo[node] = pn;
3165 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
3166
3167 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3168 mz = &pn->zoneinfo[zone];
b69408e8
CL
3169 for_each_lru(l)
3170 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 3171 mz->usage_in_excess = 0;
4e416953
BS
3172 mz->on_tree = false;
3173 mz->mem = mem;
1ecaab2b 3174 }
6d12e2d8
KH
3175 return 0;
3176}
3177
1ecaab2b
KH
3178static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3179{
3180 kfree(mem->info.nodeinfo[node]);
3181}
3182
c8dad2bb
JB
3183static int mem_cgroup_size(void)
3184{
3185 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
3186 return sizeof(struct mem_cgroup) + cpustat_size;
3187}
3188
33327948
KH
3189static struct mem_cgroup *mem_cgroup_alloc(void)
3190{
3191 struct mem_cgroup *mem;
c8dad2bb 3192 int size = mem_cgroup_size();
33327948 3193
c8dad2bb
JB
3194 if (size < PAGE_SIZE)
3195 mem = kmalloc(size, GFP_KERNEL);
33327948 3196 else
c8dad2bb 3197 mem = vmalloc(size);
33327948
KH
3198
3199 if (mem)
c8dad2bb 3200 memset(mem, 0, size);
33327948
KH
3201 return mem;
3202}
3203
8c7c6e34
KH
3204/*
3205 * At destroying mem_cgroup, references from swap_cgroup can remain.
3206 * (scanning all at force_empty is too costly...)
3207 *
3208 * Instead of clearing all references at force_empty, we remember
3209 * the number of reference from swap_cgroup and free mem_cgroup when
3210 * it goes down to 0.
3211 *
8c7c6e34
KH
3212 * Removal of cgroup itself succeeds regardless of refs from swap.
3213 */
3214
a7ba0eef 3215static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 3216{
08e552c6
KH
3217 int node;
3218
f64c3f54 3219 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
3220 free_css_id(&mem_cgroup_subsys, &mem->css);
3221
08e552c6
KH
3222 for_each_node_state(node, N_POSSIBLE)
3223 free_mem_cgroup_per_zone_info(mem, node);
3224
c8dad2bb 3225 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
3226 kfree(mem);
3227 else
3228 vfree(mem);
3229}
3230
8c7c6e34
KH
3231static void mem_cgroup_get(struct mem_cgroup *mem)
3232{
3233 atomic_inc(&mem->refcnt);
3234}
3235
3236static void mem_cgroup_put(struct mem_cgroup *mem)
3237{
7bcc1bb1
DN
3238 if (atomic_dec_and_test(&mem->refcnt)) {
3239 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 3240 __mem_cgroup_free(mem);
7bcc1bb1
DN
3241 if (parent)
3242 mem_cgroup_put(parent);
3243 }
8c7c6e34
KH
3244}
3245
7bcc1bb1
DN
3246/*
3247 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3248 */
3249static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3250{
3251 if (!mem->res.parent)
3252 return NULL;
3253 return mem_cgroup_from_res_counter(mem->res.parent, res);
3254}
33327948 3255
c077719b
KH
3256#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3257static void __init enable_swap_cgroup(void)
3258{
f8d66542 3259 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
3260 do_swap_account = 1;
3261}
3262#else
3263static void __init enable_swap_cgroup(void)
3264{
3265}
3266#endif
3267
f64c3f54
BS
3268static int mem_cgroup_soft_limit_tree_init(void)
3269{
3270 struct mem_cgroup_tree_per_node *rtpn;
3271 struct mem_cgroup_tree_per_zone *rtpz;
3272 int tmp, node, zone;
3273
3274 for_each_node_state(node, N_POSSIBLE) {
3275 tmp = node;
3276 if (!node_state(node, N_NORMAL_MEMORY))
3277 tmp = -1;
3278 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3279 if (!rtpn)
3280 return 1;
3281
3282 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3283
3284 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3285 rtpz = &rtpn->rb_tree_per_zone[zone];
3286 rtpz->rb_root = RB_ROOT;
3287 spin_lock_init(&rtpz->lock);
3288 }
3289 }
3290 return 0;
3291}
3292
0eb253e2 3293static struct cgroup_subsys_state * __ref
8cdea7c0
BS
3294mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3295{
28dbc4b6 3296 struct mem_cgroup *mem, *parent;
04046e1a 3297 long error = -ENOMEM;
6d12e2d8 3298 int node;
8cdea7c0 3299
c8dad2bb
JB
3300 mem = mem_cgroup_alloc();
3301 if (!mem)
04046e1a 3302 return ERR_PTR(error);
78fb7466 3303
6d12e2d8
KH
3304 for_each_node_state(node, N_POSSIBLE)
3305 if (alloc_mem_cgroup_per_zone_info(mem, node))
3306 goto free_out;
f64c3f54 3307
c077719b 3308 /* root ? */
28dbc4b6 3309 if (cont->parent == NULL) {
cdec2e42 3310 int cpu;
c077719b 3311 enable_swap_cgroup();
28dbc4b6 3312 parent = NULL;
4b3bde4c 3313 root_mem_cgroup = mem;
f64c3f54
BS
3314 if (mem_cgroup_soft_limit_tree_init())
3315 goto free_out;
cdec2e42
KH
3316 for_each_possible_cpu(cpu) {
3317 struct memcg_stock_pcp *stock =
3318 &per_cpu(memcg_stock, cpu);
3319 INIT_WORK(&stock->work, drain_local_stock);
3320 }
3321 hotcpu_notifier(memcg_stock_cpu_callback, 0);
f64c3f54 3322
18f59ea7 3323 } else {
28dbc4b6 3324 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
3325 mem->use_hierarchy = parent->use_hierarchy;
3326 }
28dbc4b6 3327
18f59ea7
BS
3328 if (parent && parent->use_hierarchy) {
3329 res_counter_init(&mem->res, &parent->res);
3330 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
3331 /*
3332 * We increment refcnt of the parent to ensure that we can
3333 * safely access it on res_counter_charge/uncharge.
3334 * This refcnt will be decremented when freeing this
3335 * mem_cgroup(see mem_cgroup_put).
3336 */
3337 mem_cgroup_get(parent);
18f59ea7
BS
3338 } else {
3339 res_counter_init(&mem->res, NULL);
3340 res_counter_init(&mem->memsw, NULL);
3341 }
04046e1a 3342 mem->last_scanned_child = 0;
2733c06a 3343 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 3344
a7885eb8
KM
3345 if (parent)
3346 mem->swappiness = get_swappiness(parent);
a7ba0eef 3347 atomic_set(&mem->refcnt, 1);
8cdea7c0 3348 return &mem->css;
6d12e2d8 3349free_out:
a7ba0eef 3350 __mem_cgroup_free(mem);
4b3bde4c 3351 root_mem_cgroup = NULL;
04046e1a 3352 return ERR_PTR(error);
8cdea7c0
BS
3353}
3354
ec64f515 3355static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
3356 struct cgroup *cont)
3357{
3358 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
3359
3360 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
3361}
3362
8cdea7c0
BS
3363static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3364 struct cgroup *cont)
3365{
c268e994 3366 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 3367
c268e994 3368 mem_cgroup_put(mem);
8cdea7c0
BS
3369}
3370
3371static int mem_cgroup_populate(struct cgroup_subsys *ss,
3372 struct cgroup *cont)
3373{
8c7c6e34
KH
3374 int ret;
3375
3376 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3377 ARRAY_SIZE(mem_cgroup_files));
3378
3379 if (!ret)
3380 ret = register_memsw_files(cont, ss);
3381 return ret;
8cdea7c0
BS
3382}
3383
67e465a7
BS
3384static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3385 struct cgroup *cont,
3386 struct cgroup *old_cont,
be367d09
BB
3387 struct task_struct *p,
3388 bool threadgroup)
67e465a7 3389{
7f4d454d 3390 mutex_lock(&memcg_tasklist);
67e465a7 3391 /*
f9717d28
NK
3392 * FIXME: It's better to move charges of this process from old
3393 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 3394 */
7f4d454d 3395 mutex_unlock(&memcg_tasklist);
67e465a7
BS
3396}
3397
8cdea7c0
BS
3398struct cgroup_subsys mem_cgroup_subsys = {
3399 .name = "memory",
3400 .subsys_id = mem_cgroup_subsys_id,
3401 .create = mem_cgroup_create,
df878fb0 3402 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
3403 .destroy = mem_cgroup_destroy,
3404 .populate = mem_cgroup_populate,
67e465a7 3405 .attach = mem_cgroup_move_task,
6d12e2d8 3406 .early_init = 0,
04046e1a 3407 .use_id = 1,
8cdea7c0 3408};
c077719b
KH
3409
3410#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3411
3412static int __init disable_swap_account(char *s)
3413{
3414 really_do_swap_account = 0;
3415 return 1;
3416}
3417__setup("noswapaccount", disable_swap_account);
3418#endif