]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: improve performance in moving charge
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
4ffef5fe 24#include <linux/hugetlb.h>
d13d1443 25#include <linux/pagemap.h>
d52aa412 26#include <linux/smp.h>
8a9f3ccd 27#include <linux/page-flags.h>
66e1707b 28#include <linux/backing-dev.h>
8a9f3ccd
BS
29#include <linux/bit_spinlock.h>
30#include <linux/rcupdate.h>
e222432b 31#include <linux/limits.h>
8c7c6e34 32#include <linux/mutex.h>
f64c3f54 33#include <linux/rbtree.h>
b6ac57d5 34#include <linux/slab.h>
66e1707b
BS
35#include <linux/swap.h>
36#include <linux/spinlock.h>
37#include <linux/fs.h>
d2ceb9b7 38#include <linux/seq_file.h>
33327948 39#include <linux/vmalloc.h>
b69408e8 40#include <linux/mm_inline.h>
52d4b9ac 41#include <linux/page_cgroup.h>
cdec2e42 42#include <linux/cpu.h>
08e552c6 43#include "internal.h"
8cdea7c0 44
8697d331
BS
45#include <asm/uaccess.h>
46
a181b0e8 47struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 48#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 49struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 50
c077719b 51#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 52/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
53int do_swap_account __read_mostly;
54static int really_do_swap_account __initdata = 1; /* for remember boot option*/
55#else
56#define do_swap_account (0)
57#endif
58
f64c3f54 59#define SOFTLIMIT_EVENTS_THRESH (1000)
c077719b 60
d52aa412
KH
61/*
62 * Statistics for memory cgroup.
63 */
64enum mem_cgroup_stat_index {
65 /*
66 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
67 */
68 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 69 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 70 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
71 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
72 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
f64c3f54 73 MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
0c3e73e8 74 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
d52aa412
KH
75
76 MEM_CGROUP_STAT_NSTATS,
77};
78
79struct mem_cgroup_stat_cpu {
80 s64 count[MEM_CGROUP_STAT_NSTATS];
81} ____cacheline_aligned_in_smp;
82
83struct mem_cgroup_stat {
c8dad2bb 84 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
85};
86
f64c3f54
BS
87static inline void
88__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 stat->count[idx] = 0;
92}
93
94static inline s64
95__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
96 enum mem_cgroup_stat_index idx)
97{
98 return stat->count[idx];
99}
100
d52aa412
KH
101/*
102 * For accounting under irq disable, no need for increment preempt count.
103 */
addb9efe 104static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
105 enum mem_cgroup_stat_index idx, int val)
106{
addb9efe 107 stat->count[idx] += val;
d52aa412
KH
108}
109
110static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
111 enum mem_cgroup_stat_index idx)
112{
113 int cpu;
114 s64 ret = 0;
115 for_each_possible_cpu(cpu)
116 ret += stat->cpustat[cpu].count[idx];
117 return ret;
118}
119
04046e1a
KH
120static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
121{
122 s64 ret;
123
124 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
125 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
126 return ret;
127}
128
6d12e2d8
KH
129/*
130 * per-zone information in memory controller.
131 */
6d12e2d8 132struct mem_cgroup_per_zone {
072c56c1
KH
133 /*
134 * spin_lock to protect the per cgroup LRU
135 */
b69408e8
CL
136 struct list_head lists[NR_LRU_LISTS];
137 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
138
139 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
140 struct rb_node tree_node; /* RB tree node */
141 unsigned long long usage_in_excess;/* Set to the value by which */
142 /* the soft limit is exceeded*/
143 bool on_tree;
4e416953
BS
144 struct mem_cgroup *mem; /* Back pointer, we cannot */
145 /* use container_of */
6d12e2d8
KH
146};
147/* Macro for accessing counter */
148#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
149
150struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156};
157
f64c3f54
BS
158/*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166};
167
168struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170};
171
172struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174};
175
176static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
8cdea7c0
BS
178/*
179 * The memory controller data structure. The memory controller controls both
180 * page cache and RSS per cgroup. We would eventually like to provide
181 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
182 * to help the administrator determine what knobs to tune.
183 *
184 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
185 * we hit the water mark. May be even add a low water mark, such that
186 * no reclaim occurs from a cgroup at it's low water mark, this is
187 * a feature that will be implemented much later in the future.
8cdea7c0
BS
188 */
189struct mem_cgroup {
190 struct cgroup_subsys_state css;
191 /*
192 * the counter to account for memory usage
193 */
194 struct res_counter res;
8c7c6e34
KH
195 /*
196 * the counter to account for mem+swap usage.
197 */
198 struct res_counter memsw;
78fb7466
PE
199 /*
200 * Per cgroup active and inactive list, similar to the
201 * per zone LRU lists.
78fb7466 202 */
6d12e2d8 203 struct mem_cgroup_lru_info info;
072c56c1 204
2733c06a
KM
205 /*
206 protect against reclaim related member.
207 */
208 spinlock_t reclaim_param_lock;
209
6c48a1d0 210 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
211
212 /*
af901ca1 213 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 214 * reclaimed from.
6d61ef40 215 */
04046e1a 216 int last_scanned_child;
18f59ea7
BS
217 /*
218 * Should the accounting and control be hierarchical, per subtree?
219 */
220 bool use_hierarchy;
a636b327 221 unsigned long last_oom_jiffies;
8c7c6e34 222 atomic_t refcnt;
14797e23 223
a7885eb8
KM
224 unsigned int swappiness;
225
22a668d7
KH
226 /* set when res.limit == memsw.limit */
227 bool memsw_is_minimum;
228
7dc74be0
DN
229 /*
230 * Should we move charges of a task when a task is moved into this
231 * mem_cgroup ? And what type of charges should we move ?
232 */
233 unsigned long move_charge_at_immigrate;
234
d52aa412 235 /*
c8dad2bb 236 * statistics. This must be placed at the end of memcg.
d52aa412
KH
237 */
238 struct mem_cgroup_stat stat;
8cdea7c0
BS
239};
240
7dc74be0
DN
241/* Stuffs for move charges at task migration. */
242/*
243 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
244 * left-shifted bitmap of these types.
245 */
246enum move_type {
4ffef5fe 247 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
7dc74be0
DN
248 NR_MOVE_TYPE,
249};
250
4ffef5fe
DN
251/* "mc" and its members are protected by cgroup_mutex */
252static struct move_charge_struct {
253 struct mem_cgroup *from;
254 struct mem_cgroup *to;
255 unsigned long precharge;
854ffa8d 256 unsigned long moved_charge;
4ffef5fe
DN
257} mc;
258
4e416953
BS
259/*
260 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
261 * limit reclaim to prevent infinite loops, if they ever occur.
262 */
263#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
264#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
265
217bc319
KH
266enum charge_type {
267 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
268 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 269 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 270 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 271 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 272 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
273 NR_CHARGE_TYPE,
274};
275
52d4b9ac
KH
276/* only for here (for easy reading.) */
277#define PCGF_CACHE (1UL << PCG_CACHE)
278#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 279#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
280/* Not used, but added here for completeness */
281#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 282
8c7c6e34
KH
283/* for encoding cft->private value on file */
284#define _MEM (0)
285#define _MEMSWAP (1)
286#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
287#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
288#define MEMFILE_ATTR(val) ((val) & 0xffff)
289
75822b44
BS
290/*
291 * Reclaim flags for mem_cgroup_hierarchical_reclaim
292 */
293#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
294#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
295#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
296#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
297#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
298#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 299
8c7c6e34
KH
300static void mem_cgroup_get(struct mem_cgroup *mem);
301static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 302static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 303static void drain_all_stock_async(void);
8c7c6e34 304
f64c3f54
BS
305static struct mem_cgroup_per_zone *
306mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
307{
308 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
309}
310
d324236b
WF
311struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
312{
313 return &mem->css;
314}
315
f64c3f54
BS
316static struct mem_cgroup_per_zone *
317page_cgroup_zoneinfo(struct page_cgroup *pc)
318{
319 struct mem_cgroup *mem = pc->mem_cgroup;
320 int nid = page_cgroup_nid(pc);
321 int zid = page_cgroup_zid(pc);
322
323 if (!mem)
324 return NULL;
325
326 return mem_cgroup_zoneinfo(mem, nid, zid);
327}
328
329static struct mem_cgroup_tree_per_zone *
330soft_limit_tree_node_zone(int nid, int zid)
331{
332 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
333}
334
335static struct mem_cgroup_tree_per_zone *
336soft_limit_tree_from_page(struct page *page)
337{
338 int nid = page_to_nid(page);
339 int zid = page_zonenum(page);
340
341 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
342}
343
344static void
4e416953 345__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 346 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
347 struct mem_cgroup_tree_per_zone *mctz,
348 unsigned long long new_usage_in_excess)
f64c3f54
BS
349{
350 struct rb_node **p = &mctz->rb_root.rb_node;
351 struct rb_node *parent = NULL;
352 struct mem_cgroup_per_zone *mz_node;
353
354 if (mz->on_tree)
355 return;
356
ef8745c1
KH
357 mz->usage_in_excess = new_usage_in_excess;
358 if (!mz->usage_in_excess)
359 return;
f64c3f54
BS
360 while (*p) {
361 parent = *p;
362 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
363 tree_node);
364 if (mz->usage_in_excess < mz_node->usage_in_excess)
365 p = &(*p)->rb_left;
366 /*
367 * We can't avoid mem cgroups that are over their soft
368 * limit by the same amount
369 */
370 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
371 p = &(*p)->rb_right;
372 }
373 rb_link_node(&mz->tree_node, parent, p);
374 rb_insert_color(&mz->tree_node, &mctz->rb_root);
375 mz->on_tree = true;
4e416953
BS
376}
377
378static void
379__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
380 struct mem_cgroup_per_zone *mz,
381 struct mem_cgroup_tree_per_zone *mctz)
382{
383 if (!mz->on_tree)
384 return;
385 rb_erase(&mz->tree_node, &mctz->rb_root);
386 mz->on_tree = false;
387}
388
f64c3f54
BS
389static void
390mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
391 struct mem_cgroup_per_zone *mz,
392 struct mem_cgroup_tree_per_zone *mctz)
393{
394 spin_lock(&mctz->lock);
4e416953 395 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
396 spin_unlock(&mctz->lock);
397}
398
399static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
400{
401 bool ret = false;
402 int cpu;
403 s64 val;
404 struct mem_cgroup_stat_cpu *cpustat;
405
406 cpu = get_cpu();
407 cpustat = &mem->stat.cpustat[cpu];
408 val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
409 if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
410 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
411 ret = true;
412 }
413 put_cpu();
414 return ret;
415}
416
417static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
418{
ef8745c1 419 unsigned long long excess;
f64c3f54
BS
420 struct mem_cgroup_per_zone *mz;
421 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
422 int nid = page_to_nid(page);
423 int zid = page_zonenum(page);
f64c3f54
BS
424 mctz = soft_limit_tree_from_page(page);
425
426 /*
4e649152
KH
427 * Necessary to update all ancestors when hierarchy is used.
428 * because their event counter is not touched.
f64c3f54 429 */
4e649152
KH
430 for (; mem; mem = parent_mem_cgroup(mem)) {
431 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 432 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
433 /*
434 * We have to update the tree if mz is on RB-tree or
435 * mem is over its softlimit.
436 */
ef8745c1 437 if (excess || mz->on_tree) {
4e649152
KH
438 spin_lock(&mctz->lock);
439 /* if on-tree, remove it */
440 if (mz->on_tree)
441 __mem_cgroup_remove_exceeded(mem, mz, mctz);
442 /*
ef8745c1
KH
443 * Insert again. mz->usage_in_excess will be updated.
444 * If excess is 0, no tree ops.
4e649152 445 */
ef8745c1 446 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
447 spin_unlock(&mctz->lock);
448 }
f64c3f54
BS
449 }
450}
451
452static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
453{
454 int node, zone;
455 struct mem_cgroup_per_zone *mz;
456 struct mem_cgroup_tree_per_zone *mctz;
457
458 for_each_node_state(node, N_POSSIBLE) {
459 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
460 mz = mem_cgroup_zoneinfo(mem, node, zone);
461 mctz = soft_limit_tree_node_zone(node, zone);
462 mem_cgroup_remove_exceeded(mem, mz, mctz);
463 }
464 }
465}
466
4e416953
BS
467static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
468{
469 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
470}
471
472static struct mem_cgroup_per_zone *
473__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
474{
475 struct rb_node *rightmost = NULL;
26251eaf 476 struct mem_cgroup_per_zone *mz;
4e416953
BS
477
478retry:
26251eaf 479 mz = NULL;
4e416953
BS
480 rightmost = rb_last(&mctz->rb_root);
481 if (!rightmost)
482 goto done; /* Nothing to reclaim from */
483
484 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
485 /*
486 * Remove the node now but someone else can add it back,
487 * we will to add it back at the end of reclaim to its correct
488 * position in the tree.
489 */
490 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
491 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
492 !css_tryget(&mz->mem->css))
493 goto retry;
494done:
495 return mz;
496}
497
498static struct mem_cgroup_per_zone *
499mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
500{
501 struct mem_cgroup_per_zone *mz;
502
503 spin_lock(&mctz->lock);
504 mz = __mem_cgroup_largest_soft_limit_node(mctz);
505 spin_unlock(&mctz->lock);
506 return mz;
507}
508
0c3e73e8
BS
509static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
510 bool charge)
511{
512 int val = (charge) ? 1 : -1;
513 struct mem_cgroup_stat *stat = &mem->stat;
514 struct mem_cgroup_stat_cpu *cpustat;
515 int cpu = get_cpu();
516
517 cpustat = &stat->cpustat[cpu];
518 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
519 put_cpu();
520}
521
c05555b5
KH
522static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
523 struct page_cgroup *pc,
524 bool charge)
d52aa412 525{
0c3e73e8 526 int val = (charge) ? 1 : -1;
d52aa412 527 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 528 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 529 int cpu = get_cpu();
d52aa412 530
08e552c6 531 cpustat = &stat->cpustat[cpu];
c05555b5 532 if (PageCgroupCache(pc))
addb9efe 533 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 534 else
addb9efe 535 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
536
537 if (charge)
addb9efe 538 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
539 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
540 else
addb9efe 541 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 542 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
f64c3f54 543 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
08e552c6 544 put_cpu();
6d12e2d8
KH
545}
546
14067bb3 547static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 548 enum lru_list idx)
6d12e2d8
KH
549{
550 int nid, zid;
551 struct mem_cgroup_per_zone *mz;
552 u64 total = 0;
553
554 for_each_online_node(nid)
555 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
556 mz = mem_cgroup_zoneinfo(mem, nid, zid);
557 total += MEM_CGROUP_ZSTAT(mz, idx);
558 }
559 return total;
d52aa412
KH
560}
561
d5b69e38 562static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
563{
564 return container_of(cgroup_subsys_state(cont,
565 mem_cgroup_subsys_id), struct mem_cgroup,
566 css);
567}
568
cf475ad2 569struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 570{
31a78f23
BS
571 /*
572 * mm_update_next_owner() may clear mm->owner to NULL
573 * if it races with swapoff, page migration, etc.
574 * So this can be called with p == NULL.
575 */
576 if (unlikely(!p))
577 return NULL;
578
78fb7466
PE
579 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
580 struct mem_cgroup, css);
581}
582
54595fe2
KH
583static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
584{
585 struct mem_cgroup *mem = NULL;
0b7f569e
KH
586
587 if (!mm)
588 return NULL;
54595fe2
KH
589 /*
590 * Because we have no locks, mm->owner's may be being moved to other
591 * cgroup. We use css_tryget() here even if this looks
592 * pessimistic (rather than adding locks here).
593 */
594 rcu_read_lock();
595 do {
596 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
597 if (unlikely(!mem))
598 break;
599 } while (!css_tryget(&mem->css));
600 rcu_read_unlock();
601 return mem;
602}
603
14067bb3
KH
604/*
605 * Call callback function against all cgroup under hierarchy tree.
606 */
607static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
608 int (*func)(struct mem_cgroup *, void *))
609{
610 int found, ret, nextid;
611 struct cgroup_subsys_state *css;
612 struct mem_cgroup *mem;
613
614 if (!root->use_hierarchy)
615 return (*func)(root, data);
616
617 nextid = 1;
618 do {
619 ret = 0;
620 mem = NULL;
621
622 rcu_read_lock();
623 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
624 &found);
625 if (css && css_tryget(css))
626 mem = container_of(css, struct mem_cgroup, css);
627 rcu_read_unlock();
628
629 if (mem) {
630 ret = (*func)(mem, data);
631 css_put(&mem->css);
632 }
633 nextid = found + 1;
634 } while (!ret && css);
635
636 return ret;
637}
638
4b3bde4c
BS
639static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
640{
641 return (mem == root_mem_cgroup);
642}
643
08e552c6
KH
644/*
645 * Following LRU functions are allowed to be used without PCG_LOCK.
646 * Operations are called by routine of global LRU independently from memcg.
647 * What we have to take care of here is validness of pc->mem_cgroup.
648 *
649 * Changes to pc->mem_cgroup happens when
650 * 1. charge
651 * 2. moving account
652 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
653 * It is added to LRU before charge.
654 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
655 * When moving account, the page is not on LRU. It's isolated.
656 */
4f98a2fe 657
08e552c6
KH
658void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
659{
660 struct page_cgroup *pc;
08e552c6 661 struct mem_cgroup_per_zone *mz;
6d12e2d8 662
f8d66542 663 if (mem_cgroup_disabled())
08e552c6
KH
664 return;
665 pc = lookup_page_cgroup(page);
666 /* can happen while we handle swapcache. */
4b3bde4c 667 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 668 return;
4b3bde4c 669 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
670 /*
671 * We don't check PCG_USED bit. It's cleared when the "page" is finally
672 * removed from global LRU.
673 */
08e552c6 674 mz = page_cgroup_zoneinfo(pc);
b69408e8 675 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
676 if (mem_cgroup_is_root(pc->mem_cgroup))
677 return;
678 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
679 list_del_init(&pc->lru);
680 return;
6d12e2d8
KH
681}
682
08e552c6 683void mem_cgroup_del_lru(struct page *page)
6d12e2d8 684{
08e552c6
KH
685 mem_cgroup_del_lru_list(page, page_lru(page));
686}
b69408e8 687
08e552c6
KH
688void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
689{
690 struct mem_cgroup_per_zone *mz;
691 struct page_cgroup *pc;
b69408e8 692
f8d66542 693 if (mem_cgroup_disabled())
08e552c6 694 return;
6d12e2d8 695
08e552c6 696 pc = lookup_page_cgroup(page);
bd112db8
DN
697 /*
698 * Used bit is set without atomic ops but after smp_wmb().
699 * For making pc->mem_cgroup visible, insert smp_rmb() here.
700 */
08e552c6 701 smp_rmb();
4b3bde4c
BS
702 /* unused or root page is not rotated. */
703 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
704 return;
705 mz = page_cgroup_zoneinfo(pc);
706 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
707}
708
08e552c6 709void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 710{
08e552c6
KH
711 struct page_cgroup *pc;
712 struct mem_cgroup_per_zone *mz;
6d12e2d8 713
f8d66542 714 if (mem_cgroup_disabled())
08e552c6
KH
715 return;
716 pc = lookup_page_cgroup(page);
4b3bde4c 717 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
718 /*
719 * Used bit is set without atomic ops but after smp_wmb().
720 * For making pc->mem_cgroup visible, insert smp_rmb() here.
721 */
08e552c6
KH
722 smp_rmb();
723 if (!PageCgroupUsed(pc))
894bc310 724 return;
b69408e8 725
08e552c6 726 mz = page_cgroup_zoneinfo(pc);
b69408e8 727 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
728 SetPageCgroupAcctLRU(pc);
729 if (mem_cgroup_is_root(pc->mem_cgroup))
730 return;
08e552c6
KH
731 list_add(&pc->lru, &mz->lists[lru]);
732}
544122e5 733
08e552c6 734/*
544122e5
KH
735 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
736 * lru because the page may.be reused after it's fully uncharged (because of
737 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
738 * it again. This function is only used to charge SwapCache. It's done under
739 * lock_page and expected that zone->lru_lock is never held.
08e552c6 740 */
544122e5 741static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 742{
544122e5
KH
743 unsigned long flags;
744 struct zone *zone = page_zone(page);
745 struct page_cgroup *pc = lookup_page_cgroup(page);
746
747 spin_lock_irqsave(&zone->lru_lock, flags);
748 /*
749 * Forget old LRU when this page_cgroup is *not* used. This Used bit
750 * is guarded by lock_page() because the page is SwapCache.
751 */
752 if (!PageCgroupUsed(pc))
753 mem_cgroup_del_lru_list(page, page_lru(page));
754 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
755}
756
544122e5
KH
757static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
758{
759 unsigned long flags;
760 struct zone *zone = page_zone(page);
761 struct page_cgroup *pc = lookup_page_cgroup(page);
762
763 spin_lock_irqsave(&zone->lru_lock, flags);
764 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 765 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
766 mem_cgroup_add_lru_list(page, page_lru(page));
767 spin_unlock_irqrestore(&zone->lru_lock, flags);
768}
769
770
08e552c6
KH
771void mem_cgroup_move_lists(struct page *page,
772 enum lru_list from, enum lru_list to)
773{
f8d66542 774 if (mem_cgroup_disabled())
08e552c6
KH
775 return;
776 mem_cgroup_del_lru_list(page, from);
777 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
778}
779
4c4a2214
DR
780int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
781{
782 int ret;
0b7f569e 783 struct mem_cgroup *curr = NULL;
4c4a2214
DR
784
785 task_lock(task);
0b7f569e
KH
786 rcu_read_lock();
787 curr = try_get_mem_cgroup_from_mm(task->mm);
788 rcu_read_unlock();
4c4a2214 789 task_unlock(task);
0b7f569e
KH
790 if (!curr)
791 return 0;
d31f56db
DN
792 /*
793 * We should check use_hierarchy of "mem" not "curr". Because checking
794 * use_hierarchy of "curr" here make this function true if hierarchy is
795 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
796 * hierarchy(even if use_hierarchy is disabled in "mem").
797 */
798 if (mem->use_hierarchy)
0b7f569e
KH
799 ret = css_is_ancestor(&curr->css, &mem->css);
800 else
801 ret = (curr == mem);
802 css_put(&curr->css);
4c4a2214
DR
803 return ret;
804}
805
6c48a1d0
KH
806/*
807 * prev_priority control...this will be used in memory reclaim path.
808 */
809int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
810{
2733c06a
KM
811 int prev_priority;
812
813 spin_lock(&mem->reclaim_param_lock);
814 prev_priority = mem->prev_priority;
815 spin_unlock(&mem->reclaim_param_lock);
816
817 return prev_priority;
6c48a1d0
KH
818}
819
820void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
821{
2733c06a 822 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
823 if (priority < mem->prev_priority)
824 mem->prev_priority = priority;
2733c06a 825 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
826}
827
828void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
829{
2733c06a 830 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 831 mem->prev_priority = priority;
2733c06a 832 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
833}
834
c772be93 835static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
836{
837 unsigned long active;
838 unsigned long inactive;
c772be93
KM
839 unsigned long gb;
840 unsigned long inactive_ratio;
14797e23 841
14067bb3
KH
842 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
843 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 844
c772be93
KM
845 gb = (inactive + active) >> (30 - PAGE_SHIFT);
846 if (gb)
847 inactive_ratio = int_sqrt(10 * gb);
848 else
849 inactive_ratio = 1;
850
851 if (present_pages) {
852 present_pages[0] = inactive;
853 present_pages[1] = active;
854 }
855
856 return inactive_ratio;
857}
858
859int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
860{
861 unsigned long active;
862 unsigned long inactive;
863 unsigned long present_pages[2];
864 unsigned long inactive_ratio;
865
866 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
867
868 inactive = present_pages[0];
869 active = present_pages[1];
870
871 if (inactive * inactive_ratio < active)
14797e23
KM
872 return 1;
873
874 return 0;
875}
876
56e49d21
RR
877int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
878{
879 unsigned long active;
880 unsigned long inactive;
881
882 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
883 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
884
885 return (active > inactive);
886}
887
a3d8e054
KM
888unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
889 struct zone *zone,
890 enum lru_list lru)
891{
892 int nid = zone->zone_pgdat->node_id;
893 int zid = zone_idx(zone);
894 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
895
896 return MEM_CGROUP_ZSTAT(mz, lru);
897}
898
3e2f41f1
KM
899struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
900 struct zone *zone)
901{
902 int nid = zone->zone_pgdat->node_id;
903 int zid = zone_idx(zone);
904 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
905
906 return &mz->reclaim_stat;
907}
908
909struct zone_reclaim_stat *
910mem_cgroup_get_reclaim_stat_from_page(struct page *page)
911{
912 struct page_cgroup *pc;
913 struct mem_cgroup_per_zone *mz;
914
915 if (mem_cgroup_disabled())
916 return NULL;
917
918 pc = lookup_page_cgroup(page);
bd112db8
DN
919 /*
920 * Used bit is set without atomic ops but after smp_wmb().
921 * For making pc->mem_cgroup visible, insert smp_rmb() here.
922 */
923 smp_rmb();
924 if (!PageCgroupUsed(pc))
925 return NULL;
926
3e2f41f1
KM
927 mz = page_cgroup_zoneinfo(pc);
928 if (!mz)
929 return NULL;
930
931 return &mz->reclaim_stat;
932}
933
66e1707b
BS
934unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
935 struct list_head *dst,
936 unsigned long *scanned, int order,
937 int mode, struct zone *z,
938 struct mem_cgroup *mem_cont,
4f98a2fe 939 int active, int file)
66e1707b
BS
940{
941 unsigned long nr_taken = 0;
942 struct page *page;
943 unsigned long scan;
944 LIST_HEAD(pc_list);
945 struct list_head *src;
ff7283fa 946 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
947 int nid = z->zone_pgdat->node_id;
948 int zid = zone_idx(z);
949 struct mem_cgroup_per_zone *mz;
b7c46d15 950 int lru = LRU_FILE * file + active;
2ffebca6 951 int ret;
66e1707b 952
cf475ad2 953 BUG_ON(!mem_cont);
1ecaab2b 954 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 955 src = &mz->lists[lru];
66e1707b 956
ff7283fa
KH
957 scan = 0;
958 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 959 if (scan >= nr_to_scan)
ff7283fa 960 break;
08e552c6
KH
961
962 page = pc->page;
52d4b9ac
KH
963 if (unlikely(!PageCgroupUsed(pc)))
964 continue;
436c6541 965 if (unlikely(!PageLRU(page)))
ff7283fa 966 continue;
ff7283fa 967
436c6541 968 scan++;
2ffebca6
KH
969 ret = __isolate_lru_page(page, mode, file);
970 switch (ret) {
971 case 0:
66e1707b 972 list_move(&page->lru, dst);
2ffebca6 973 mem_cgroup_del_lru(page);
66e1707b 974 nr_taken++;
2ffebca6
KH
975 break;
976 case -EBUSY:
977 /* we don't affect global LRU but rotate in our LRU */
978 mem_cgroup_rotate_lru_list(page, page_lru(page));
979 break;
980 default:
981 break;
66e1707b
BS
982 }
983 }
984
66e1707b
BS
985 *scanned = scan;
986 return nr_taken;
987}
988
6d61ef40
BS
989#define mem_cgroup_from_res_counter(counter, member) \
990 container_of(counter, struct mem_cgroup, member)
991
b85a96c0
DN
992static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
993{
994 if (do_swap_account) {
995 if (res_counter_check_under_limit(&mem->res) &&
996 res_counter_check_under_limit(&mem->memsw))
997 return true;
998 } else
999 if (res_counter_check_under_limit(&mem->res))
1000 return true;
1001 return false;
1002}
1003
a7885eb8
KM
1004static unsigned int get_swappiness(struct mem_cgroup *memcg)
1005{
1006 struct cgroup *cgrp = memcg->css.cgroup;
1007 unsigned int swappiness;
1008
1009 /* root ? */
1010 if (cgrp->parent == NULL)
1011 return vm_swappiness;
1012
1013 spin_lock(&memcg->reclaim_param_lock);
1014 swappiness = memcg->swappiness;
1015 spin_unlock(&memcg->reclaim_param_lock);
1016
1017 return swappiness;
1018}
1019
81d39c20
KH
1020static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1021{
1022 int *val = data;
1023 (*val)++;
1024 return 0;
1025}
e222432b
BS
1026
1027/**
1028 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
1029 * @memcg: The memory cgroup that went over limit
1030 * @p: Task that is going to be killed
1031 *
1032 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1033 * enabled
1034 */
1035void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1036{
1037 struct cgroup *task_cgrp;
1038 struct cgroup *mem_cgrp;
1039 /*
1040 * Need a buffer in BSS, can't rely on allocations. The code relies
1041 * on the assumption that OOM is serialized for memory controller.
1042 * If this assumption is broken, revisit this code.
1043 */
1044 static char memcg_name[PATH_MAX];
1045 int ret;
1046
d31f56db 1047 if (!memcg || !p)
e222432b
BS
1048 return;
1049
1050
1051 rcu_read_lock();
1052
1053 mem_cgrp = memcg->css.cgroup;
1054 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1055
1056 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1057 if (ret < 0) {
1058 /*
1059 * Unfortunately, we are unable to convert to a useful name
1060 * But we'll still print out the usage information
1061 */
1062 rcu_read_unlock();
1063 goto done;
1064 }
1065 rcu_read_unlock();
1066
1067 printk(KERN_INFO "Task in %s killed", memcg_name);
1068
1069 rcu_read_lock();
1070 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1071 if (ret < 0) {
1072 rcu_read_unlock();
1073 goto done;
1074 }
1075 rcu_read_unlock();
1076
1077 /*
1078 * Continues from above, so we don't need an KERN_ level
1079 */
1080 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1081done:
1082
1083 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1084 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1085 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1086 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1087 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1088 "failcnt %llu\n",
1089 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1090 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1091 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1092}
1093
81d39c20
KH
1094/*
1095 * This function returns the number of memcg under hierarchy tree. Returns
1096 * 1(self count) if no children.
1097 */
1098static int mem_cgroup_count_children(struct mem_cgroup *mem)
1099{
1100 int num = 0;
1101 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1102 return num;
1103}
1104
6d61ef40 1105/*
04046e1a
KH
1106 * Visit the first child (need not be the first child as per the ordering
1107 * of the cgroup list, since we track last_scanned_child) of @mem and use
1108 * that to reclaim free pages from.
1109 */
1110static struct mem_cgroup *
1111mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1112{
1113 struct mem_cgroup *ret = NULL;
1114 struct cgroup_subsys_state *css;
1115 int nextid, found;
1116
1117 if (!root_mem->use_hierarchy) {
1118 css_get(&root_mem->css);
1119 ret = root_mem;
1120 }
1121
1122 while (!ret) {
1123 rcu_read_lock();
1124 nextid = root_mem->last_scanned_child + 1;
1125 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1126 &found);
1127 if (css && css_tryget(css))
1128 ret = container_of(css, struct mem_cgroup, css);
1129
1130 rcu_read_unlock();
1131 /* Updates scanning parameter */
1132 spin_lock(&root_mem->reclaim_param_lock);
1133 if (!css) {
1134 /* this means start scan from ID:1 */
1135 root_mem->last_scanned_child = 0;
1136 } else
1137 root_mem->last_scanned_child = found;
1138 spin_unlock(&root_mem->reclaim_param_lock);
1139 }
1140
1141 return ret;
1142}
1143
1144/*
1145 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1146 * we reclaimed from, so that we don't end up penalizing one child extensively
1147 * based on its position in the children list.
6d61ef40
BS
1148 *
1149 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1150 *
1151 * We give up and return to the caller when we visit root_mem twice.
1152 * (other groups can be removed while we're walking....)
81d39c20
KH
1153 *
1154 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1155 */
1156static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1157 struct zone *zone,
75822b44
BS
1158 gfp_t gfp_mask,
1159 unsigned long reclaim_options)
6d61ef40 1160{
04046e1a
KH
1161 struct mem_cgroup *victim;
1162 int ret, total = 0;
1163 int loop = 0;
75822b44
BS
1164 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1165 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1166 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1167 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1168
22a668d7
KH
1169 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1170 if (root_mem->memsw_is_minimum)
1171 noswap = true;
1172
4e416953 1173 while (1) {
04046e1a 1174 victim = mem_cgroup_select_victim(root_mem);
4e416953 1175 if (victim == root_mem) {
04046e1a 1176 loop++;
cdec2e42
KH
1177 if (loop >= 1)
1178 drain_all_stock_async();
4e416953
BS
1179 if (loop >= 2) {
1180 /*
1181 * If we have not been able to reclaim
1182 * anything, it might because there are
1183 * no reclaimable pages under this hierarchy
1184 */
1185 if (!check_soft || !total) {
1186 css_put(&victim->css);
1187 break;
1188 }
1189 /*
1190 * We want to do more targetted reclaim.
1191 * excess >> 2 is not to excessive so as to
1192 * reclaim too much, nor too less that we keep
1193 * coming back to reclaim from this cgroup
1194 */
1195 if (total >= (excess >> 2) ||
1196 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1197 css_put(&victim->css);
1198 break;
1199 }
1200 }
1201 }
04046e1a
KH
1202 if (!mem_cgroup_local_usage(&victim->stat)) {
1203 /* this cgroup's local usage == 0 */
1204 css_put(&victim->css);
6d61ef40
BS
1205 continue;
1206 }
04046e1a 1207 /* we use swappiness of local cgroup */
4e416953
BS
1208 if (check_soft)
1209 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1210 noswap, get_swappiness(victim), zone,
1211 zone->zone_pgdat->node_id);
1212 else
1213 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1214 noswap, get_swappiness(victim));
04046e1a 1215 css_put(&victim->css);
81d39c20
KH
1216 /*
1217 * At shrinking usage, we can't check we should stop here or
1218 * reclaim more. It's depends on callers. last_scanned_child
1219 * will work enough for keeping fairness under tree.
1220 */
1221 if (shrink)
1222 return ret;
04046e1a 1223 total += ret;
4e416953
BS
1224 if (check_soft) {
1225 if (res_counter_check_under_soft_limit(&root_mem->res))
1226 return total;
1227 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1228 return 1 + total;
6d61ef40 1229 }
04046e1a 1230 return total;
6d61ef40
BS
1231}
1232
a636b327
KH
1233bool mem_cgroup_oom_called(struct task_struct *task)
1234{
1235 bool ret = false;
1236 struct mem_cgroup *mem;
1237 struct mm_struct *mm;
1238
1239 rcu_read_lock();
1240 mm = task->mm;
1241 if (!mm)
1242 mm = &init_mm;
1243 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1244 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1245 ret = true;
1246 rcu_read_unlock();
1247 return ret;
1248}
0b7f569e
KH
1249
1250static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1251{
1252 mem->last_oom_jiffies = jiffies;
1253 return 0;
1254}
1255
1256static void record_last_oom(struct mem_cgroup *mem)
1257{
1258 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1259}
1260
d69b042f
BS
1261/*
1262 * Currently used to update mapped file statistics, but the routine can be
1263 * generalized to update other statistics as well.
1264 */
d8046582 1265void mem_cgroup_update_file_mapped(struct page *page, int val)
d69b042f
BS
1266{
1267 struct mem_cgroup *mem;
1268 struct mem_cgroup_stat *stat;
1269 struct mem_cgroup_stat_cpu *cpustat;
1270 int cpu;
1271 struct page_cgroup *pc;
1272
d69b042f
BS
1273 pc = lookup_page_cgroup(page);
1274 if (unlikely(!pc))
1275 return;
1276
1277 lock_page_cgroup(pc);
1278 mem = pc->mem_cgroup;
1279 if (!mem)
1280 goto done;
1281
1282 if (!PageCgroupUsed(pc))
1283 goto done;
1284
1285 /*
1286 * Preemption is already disabled, we don't need get_cpu()
1287 */
1288 cpu = smp_processor_id();
1289 stat = &mem->stat;
1290 cpustat = &stat->cpustat[cpu];
1291
d8046582 1292 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
d69b042f
BS
1293done:
1294 unlock_page_cgroup(pc);
1295}
0b7f569e 1296
cdec2e42
KH
1297/*
1298 * size of first charge trial. "32" comes from vmscan.c's magic value.
1299 * TODO: maybe necessary to use big numbers in big irons.
1300 */
1301#define CHARGE_SIZE (32 * PAGE_SIZE)
1302struct memcg_stock_pcp {
1303 struct mem_cgroup *cached; /* this never be root cgroup */
1304 int charge;
1305 struct work_struct work;
1306};
1307static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1308static atomic_t memcg_drain_count;
1309
1310/*
1311 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1312 * from local stock and true is returned. If the stock is 0 or charges from a
1313 * cgroup which is not current target, returns false. This stock will be
1314 * refilled.
1315 */
1316static bool consume_stock(struct mem_cgroup *mem)
1317{
1318 struct memcg_stock_pcp *stock;
1319 bool ret = true;
1320
1321 stock = &get_cpu_var(memcg_stock);
1322 if (mem == stock->cached && stock->charge)
1323 stock->charge -= PAGE_SIZE;
1324 else /* need to call res_counter_charge */
1325 ret = false;
1326 put_cpu_var(memcg_stock);
1327 return ret;
1328}
1329
1330/*
1331 * Returns stocks cached in percpu to res_counter and reset cached information.
1332 */
1333static void drain_stock(struct memcg_stock_pcp *stock)
1334{
1335 struct mem_cgroup *old = stock->cached;
1336
1337 if (stock->charge) {
1338 res_counter_uncharge(&old->res, stock->charge);
1339 if (do_swap_account)
1340 res_counter_uncharge(&old->memsw, stock->charge);
1341 }
1342 stock->cached = NULL;
1343 stock->charge = 0;
1344}
1345
1346/*
1347 * This must be called under preempt disabled or must be called by
1348 * a thread which is pinned to local cpu.
1349 */
1350static void drain_local_stock(struct work_struct *dummy)
1351{
1352 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1353 drain_stock(stock);
1354}
1355
1356/*
1357 * Cache charges(val) which is from res_counter, to local per_cpu area.
1358 * This will be consumed by consumt_stock() function, later.
1359 */
1360static void refill_stock(struct mem_cgroup *mem, int val)
1361{
1362 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1363
1364 if (stock->cached != mem) { /* reset if necessary */
1365 drain_stock(stock);
1366 stock->cached = mem;
1367 }
1368 stock->charge += val;
1369 put_cpu_var(memcg_stock);
1370}
1371
1372/*
1373 * Tries to drain stocked charges in other cpus. This function is asynchronous
1374 * and just put a work per cpu for draining localy on each cpu. Caller can
1375 * expects some charges will be back to res_counter later but cannot wait for
1376 * it.
1377 */
1378static void drain_all_stock_async(void)
1379{
1380 int cpu;
1381 /* This function is for scheduling "drain" in asynchronous way.
1382 * The result of "drain" is not directly handled by callers. Then,
1383 * if someone is calling drain, we don't have to call drain more.
1384 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1385 * there is a race. We just do loose check here.
1386 */
1387 if (atomic_read(&memcg_drain_count))
1388 return;
1389 /* Notify other cpus that system-wide "drain" is running */
1390 atomic_inc(&memcg_drain_count);
1391 get_online_cpus();
1392 for_each_online_cpu(cpu) {
1393 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1394 schedule_work_on(cpu, &stock->work);
1395 }
1396 put_online_cpus();
1397 atomic_dec(&memcg_drain_count);
1398 /* We don't wait for flush_work */
1399}
1400
1401/* This is a synchronous drain interface. */
1402static void drain_all_stock_sync(void)
1403{
1404 /* called when force_empty is called */
1405 atomic_inc(&memcg_drain_count);
1406 schedule_on_each_cpu(drain_local_stock);
1407 atomic_dec(&memcg_drain_count);
1408}
1409
1410static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1411 unsigned long action,
1412 void *hcpu)
1413{
1414 int cpu = (unsigned long)hcpu;
1415 struct memcg_stock_pcp *stock;
1416
1417 if (action != CPU_DEAD)
1418 return NOTIFY_OK;
1419 stock = &per_cpu(memcg_stock, cpu);
1420 drain_stock(stock);
1421 return NOTIFY_OK;
1422}
1423
f817ed48
KH
1424/*
1425 * Unlike exported interface, "oom" parameter is added. if oom==true,
1426 * oom-killer can be invoked.
8a9f3ccd 1427 */
f817ed48 1428static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34 1429 gfp_t gfp_mask, struct mem_cgroup **memcg,
f64c3f54 1430 bool oom, struct page *page)
8a9f3ccd 1431{
4e649152 1432 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 1433 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4e649152 1434 struct res_counter *fail_res;
cdec2e42 1435 int csize = CHARGE_SIZE;
a636b327
KH
1436
1437 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1438 /* Don't account this! */
1439 *memcg = NULL;
1440 return 0;
1441 }
1442
8a9f3ccd 1443 /*
3be91277
HD
1444 * We always charge the cgroup the mm_struct belongs to.
1445 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1446 * thread group leader migrates. It's possible that mm is not
1447 * set, if so charge the init_mm (happens for pagecache usage).
1448 */
54595fe2
KH
1449 mem = *memcg;
1450 if (likely(!mem)) {
1451 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 1452 *memcg = mem;
e8589cc1 1453 } else {
7a81b88c 1454 css_get(&mem->css);
e8589cc1 1455 }
54595fe2
KH
1456 if (unlikely(!mem))
1457 return 0;
1458
46f7e602 1459 VM_BUG_ON(css_is_removed(&mem->css));
cdec2e42
KH
1460 if (mem_cgroup_is_root(mem))
1461 goto done;
8a9f3ccd 1462
8c7c6e34 1463 while (1) {
0c3e73e8 1464 int ret = 0;
75822b44 1465 unsigned long flags = 0;
7a81b88c 1466
cdec2e42
KH
1467 if (consume_stock(mem))
1468 goto charged;
1469
1470 ret = res_counter_charge(&mem->res, csize, &fail_res);
8c7c6e34
KH
1471 if (likely(!ret)) {
1472 if (!do_swap_account)
1473 break;
cdec2e42 1474 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
8c7c6e34
KH
1475 if (likely(!ret))
1476 break;
1477 /* mem+swap counter fails */
cdec2e42 1478 res_counter_uncharge(&mem->res, csize);
75822b44 1479 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
6d61ef40
BS
1480 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1481 memsw);
1482 } else
1483 /* mem counter fails */
1484 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1485 res);
1486
cdec2e42
KH
1487 /* reduce request size and retry */
1488 if (csize > PAGE_SIZE) {
1489 csize = PAGE_SIZE;
1490 continue;
1491 }
3be91277 1492 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1493 goto nomem;
e1a1cd59 1494
4e416953
BS
1495 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1496 gfp_mask, flags);
4d1c6273
DN
1497 if (ret)
1498 continue;
66e1707b
BS
1499
1500 /*
8869b8f6
HD
1501 * try_to_free_mem_cgroup_pages() might not give us a full
1502 * picture of reclaim. Some pages are reclaimed and might be
1503 * moved to swap cache or just unmapped from the cgroup.
1504 * Check the limit again to see if the reclaim reduced the
1505 * current usage of the cgroup before giving up
8c7c6e34 1506 *
8869b8f6 1507 */
b85a96c0
DN
1508 if (mem_cgroup_check_under_limit(mem_over_limit))
1509 continue;
3be91277
HD
1510
1511 if (!nr_retries--) {
a636b327 1512 if (oom) {
88700756 1513 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
0b7f569e 1514 record_last_oom(mem_over_limit);
a636b327 1515 }
7a81b88c 1516 goto nomem;
66e1707b 1517 }
8a9f3ccd 1518 }
cdec2e42
KH
1519 if (csize > PAGE_SIZE)
1520 refill_stock(mem, csize - PAGE_SIZE);
1521charged:
f64c3f54 1522 /*
4e649152
KH
1523 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1524 * if they exceeds softlimit.
f64c3f54 1525 */
4ffef5fe 1526 if (page && mem_cgroup_soft_limit_check(mem))
4e649152 1527 mem_cgroup_update_tree(mem, page);
0c3e73e8 1528done:
7a81b88c
KH
1529 return 0;
1530nomem:
1531 css_put(&mem->css);
1532 return -ENOMEM;
1533}
8a9f3ccd 1534
a3032a2c
DN
1535/*
1536 * Somemtimes we have to undo a charge we got by try_charge().
1537 * This function is for that and do uncharge, put css's refcnt.
1538 * gotten by try_charge().
1539 */
854ffa8d
DN
1540static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1541 unsigned long count)
a3032a2c
DN
1542{
1543 if (!mem_cgroup_is_root(mem)) {
854ffa8d 1544 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 1545 if (do_swap_account)
854ffa8d
DN
1546 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1547 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1548 WARN_ON_ONCE(count > INT_MAX);
1549 __css_put(&mem->css, (int)count);
a3032a2c 1550 }
854ffa8d
DN
1551 /* we don't need css_put for root */
1552}
1553
1554static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1555{
1556 __mem_cgroup_cancel_charge(mem, 1);
a3032a2c
DN
1557}
1558
a3b2d692
KH
1559/*
1560 * A helper function to get mem_cgroup from ID. must be called under
1561 * rcu_read_lock(). The caller must check css_is_removed() or some if
1562 * it's concern. (dropping refcnt from swap can be called against removed
1563 * memcg.)
1564 */
1565static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1566{
1567 struct cgroup_subsys_state *css;
1568
1569 /* ID 0 is unused ID */
1570 if (!id)
1571 return NULL;
1572 css = css_lookup(&mem_cgroup_subsys, id);
1573 if (!css)
1574 return NULL;
1575 return container_of(css, struct mem_cgroup, css);
1576}
1577
e42d9d5d 1578struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 1579{
e42d9d5d 1580 struct mem_cgroup *mem = NULL;
3c776e64 1581 struct page_cgroup *pc;
a3b2d692 1582 unsigned short id;
b5a84319
KH
1583 swp_entry_t ent;
1584
3c776e64
DN
1585 VM_BUG_ON(!PageLocked(page));
1586
3c776e64 1587 pc = lookup_page_cgroup(page);
c0bd3f63 1588 lock_page_cgroup(pc);
a3b2d692 1589 if (PageCgroupUsed(pc)) {
3c776e64 1590 mem = pc->mem_cgroup;
a3b2d692
KH
1591 if (mem && !css_tryget(&mem->css))
1592 mem = NULL;
e42d9d5d 1593 } else if (PageSwapCache(page)) {
3c776e64 1594 ent.val = page_private(page);
a3b2d692
KH
1595 id = lookup_swap_cgroup(ent);
1596 rcu_read_lock();
1597 mem = mem_cgroup_lookup(id);
1598 if (mem && !css_tryget(&mem->css))
1599 mem = NULL;
1600 rcu_read_unlock();
3c776e64 1601 }
c0bd3f63 1602 unlock_page_cgroup(pc);
b5a84319
KH
1603 return mem;
1604}
1605
7a81b88c 1606/*
a5e924f5 1607 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1608 * USED state. If already USED, uncharge and return.
1609 */
1610
1611static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1612 struct page_cgroup *pc,
1613 enum charge_type ctype)
1614{
7a81b88c
KH
1615 /* try_charge() can return NULL to *memcg, taking care of it. */
1616 if (!mem)
1617 return;
52d4b9ac
KH
1618
1619 lock_page_cgroup(pc);
1620 if (unlikely(PageCgroupUsed(pc))) {
1621 unlock_page_cgroup(pc);
a3032a2c 1622 mem_cgroup_cancel_charge(mem);
7a81b88c 1623 return;
52d4b9ac 1624 }
4b3bde4c 1625
8a9f3ccd 1626 pc->mem_cgroup = mem;
261fb61a
KH
1627 /*
1628 * We access a page_cgroup asynchronously without lock_page_cgroup().
1629 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1630 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1631 * before USED bit, we need memory barrier here.
1632 * See mem_cgroup_add_lru_list(), etc.
1633 */
08e552c6 1634 smp_wmb();
4b3bde4c
BS
1635 switch (ctype) {
1636 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1637 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1638 SetPageCgroupCache(pc);
1639 SetPageCgroupUsed(pc);
1640 break;
1641 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1642 ClearPageCgroupCache(pc);
1643 SetPageCgroupUsed(pc);
1644 break;
1645 default:
1646 break;
1647 }
3be91277 1648
08e552c6 1649 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1650
52d4b9ac 1651 unlock_page_cgroup(pc);
7a81b88c 1652}
66e1707b 1653
f817ed48 1654/**
57f9fd7d 1655 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
1656 * @pc: page_cgroup of the page.
1657 * @from: mem_cgroup which the page is moved from.
1658 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 1659 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
1660 *
1661 * The caller must confirm following.
08e552c6 1662 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 1663 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 1664 *
854ffa8d
DN
1665 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1666 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1667 * true, this function does "uncharge" from old cgroup, but it doesn't if
1668 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
1669 */
1670
57f9fd7d 1671static void __mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 1672 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
f817ed48 1673{
d69b042f
BS
1674 struct page *page;
1675 int cpu;
1676 struct mem_cgroup_stat *stat;
1677 struct mem_cgroup_stat_cpu *cpustat;
f817ed48 1678
f817ed48 1679 VM_BUG_ON(from == to);
08e552c6 1680 VM_BUG_ON(PageLRU(pc->page));
57f9fd7d
DN
1681 VM_BUG_ON(!PageCgroupLocked(pc));
1682 VM_BUG_ON(!PageCgroupUsed(pc));
1683 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 1684
d69b042f 1685 page = pc->page;
d8046582 1686 if (page_mapped(page) && !PageAnon(page)) {
d69b042f
BS
1687 cpu = smp_processor_id();
1688 /* Update mapped_file data for mem_cgroup "from" */
1689 stat = &from->stat;
1690 cpustat = &stat->cpustat[cpu];
d8046582 1691 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
d69b042f
BS
1692 -1);
1693
1694 /* Update mapped_file data for mem_cgroup "to" */
1695 stat = &to->stat;
1696 cpustat = &stat->cpustat[cpu];
d8046582 1697 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
d69b042f
BS
1698 1);
1699 }
854ffa8d
DN
1700 mem_cgroup_charge_statistics(from, pc, false);
1701 if (uncharge)
1702 /* This is not "cancel", but cancel_charge does all we need. */
1703 mem_cgroup_cancel_charge(from);
d69b042f 1704
854ffa8d 1705 /* caller should have done css_get */
08e552c6
KH
1706 pc->mem_cgroup = to;
1707 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
1708 /*
1709 * We charges against "to" which may not have any tasks. Then, "to"
1710 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
1711 * this function is just force_empty() and move charge, so it's
1712 * garanteed that "to" is never removed. So, we don't check rmdir
1713 * status here.
88703267 1714 */
57f9fd7d
DN
1715}
1716
1717/*
1718 * check whether the @pc is valid for moving account and call
1719 * __mem_cgroup_move_account()
1720 */
1721static int mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 1722 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
57f9fd7d
DN
1723{
1724 int ret = -EINVAL;
1725 lock_page_cgroup(pc);
1726 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
854ffa8d 1727 __mem_cgroup_move_account(pc, from, to, uncharge);
57f9fd7d
DN
1728 ret = 0;
1729 }
1730 unlock_page_cgroup(pc);
f817ed48
KH
1731 return ret;
1732}
1733
1734/*
1735 * move charges to its parent.
1736 */
1737
1738static int mem_cgroup_move_parent(struct page_cgroup *pc,
1739 struct mem_cgroup *child,
1740 gfp_t gfp_mask)
1741{
08e552c6 1742 struct page *page = pc->page;
f817ed48
KH
1743 struct cgroup *cg = child->css.cgroup;
1744 struct cgroup *pcg = cg->parent;
1745 struct mem_cgroup *parent;
f817ed48
KH
1746 int ret;
1747
1748 /* Is ROOT ? */
1749 if (!pcg)
1750 return -EINVAL;
1751
57f9fd7d
DN
1752 ret = -EBUSY;
1753 if (!get_page_unless_zero(page))
1754 goto out;
1755 if (isolate_lru_page(page))
1756 goto put;
08e552c6 1757
f817ed48 1758 parent = mem_cgroup_from_cont(pcg);
f64c3f54 1759 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
a636b327 1760 if (ret || !parent)
57f9fd7d 1761 goto put_back;
f817ed48 1762
854ffa8d
DN
1763 ret = mem_cgroup_move_account(pc, child, parent, true);
1764 if (ret)
1765 mem_cgroup_cancel_charge(parent);
57f9fd7d 1766put_back:
08e552c6 1767 putback_lru_page(page);
57f9fd7d 1768put:
40d58138 1769 put_page(page);
57f9fd7d 1770out:
f817ed48
KH
1771 return ret;
1772}
1773
7a81b88c
KH
1774/*
1775 * Charge the memory controller for page usage.
1776 * Return
1777 * 0 if the charge was successful
1778 * < 0 if the cgroup is over its limit
1779 */
1780static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1781 gfp_t gfp_mask, enum charge_type ctype,
1782 struct mem_cgroup *memcg)
1783{
1784 struct mem_cgroup *mem;
1785 struct page_cgroup *pc;
1786 int ret;
1787
1788 pc = lookup_page_cgroup(page);
1789 /* can happen at boot */
1790 if (unlikely(!pc))
1791 return 0;
1792 prefetchw(pc);
1793
1794 mem = memcg;
f64c3f54 1795 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
a636b327 1796 if (ret || !mem)
7a81b88c
KH
1797 return ret;
1798
1799 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1800 return 0;
8a9f3ccd
BS
1801}
1802
7a81b88c
KH
1803int mem_cgroup_newpage_charge(struct page *page,
1804 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1805{
f8d66542 1806 if (mem_cgroup_disabled())
cede86ac 1807 return 0;
52d4b9ac
KH
1808 if (PageCompound(page))
1809 return 0;
69029cd5
KH
1810 /*
1811 * If already mapped, we don't have to account.
1812 * If page cache, page->mapping has address_space.
1813 * But page->mapping may have out-of-use anon_vma pointer,
1814 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1815 * is NULL.
1816 */
1817 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1818 return 0;
1819 if (unlikely(!mm))
1820 mm = &init_mm;
217bc319 1821 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1822 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1823}
1824
83aae4c7
DN
1825static void
1826__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1827 enum charge_type ctype);
1828
e1a1cd59
BS
1829int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1830 gfp_t gfp_mask)
8697d331 1831{
b5a84319
KH
1832 struct mem_cgroup *mem = NULL;
1833 int ret;
1834
f8d66542 1835 if (mem_cgroup_disabled())
cede86ac 1836 return 0;
52d4b9ac
KH
1837 if (PageCompound(page))
1838 return 0;
accf163e
KH
1839 /*
1840 * Corner case handling. This is called from add_to_page_cache()
1841 * in usual. But some FS (shmem) precharges this page before calling it
1842 * and call add_to_page_cache() with GFP_NOWAIT.
1843 *
1844 * For GFP_NOWAIT case, the page may be pre-charged before calling
1845 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1846 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1847 * And when the page is SwapCache, it should take swap information
1848 * into account. This is under lock_page() now.
accf163e
KH
1849 */
1850 if (!(gfp_mask & __GFP_WAIT)) {
1851 struct page_cgroup *pc;
1852
52d4b9ac
KH
1853
1854 pc = lookup_page_cgroup(page);
1855 if (!pc)
1856 return 0;
1857 lock_page_cgroup(pc);
1858 if (PageCgroupUsed(pc)) {
1859 unlock_page_cgroup(pc);
accf163e
KH
1860 return 0;
1861 }
52d4b9ac 1862 unlock_page_cgroup(pc);
accf163e
KH
1863 }
1864
b5a84319 1865 if (unlikely(!mm && !mem))
8697d331 1866 mm = &init_mm;
accf163e 1867
c05555b5
KH
1868 if (page_is_file_cache(page))
1869 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1870 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1871
83aae4c7
DN
1872 /* shmem */
1873 if (PageSwapCache(page)) {
1874 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1875 if (!ret)
1876 __mem_cgroup_commit_charge_swapin(page, mem,
1877 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1878 } else
1879 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1880 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1881
b5a84319 1882 return ret;
e8589cc1
KH
1883}
1884
54595fe2
KH
1885/*
1886 * While swap-in, try_charge -> commit or cancel, the page is locked.
1887 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 1888 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
1889 * "commit()" or removed by "cancel()"
1890 */
8c7c6e34
KH
1891int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1892 struct page *page,
1893 gfp_t mask, struct mem_cgroup **ptr)
1894{
1895 struct mem_cgroup *mem;
54595fe2 1896 int ret;
8c7c6e34 1897
f8d66542 1898 if (mem_cgroup_disabled())
8c7c6e34
KH
1899 return 0;
1900
1901 if (!do_swap_account)
1902 goto charge_cur_mm;
8c7c6e34
KH
1903 /*
1904 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
1905 * the pte, and even removed page from swap cache: in those cases
1906 * do_swap_page()'s pte_same() test will fail; but there's also a
1907 * KSM case which does need to charge the page.
8c7c6e34
KH
1908 */
1909 if (!PageSwapCache(page))
407f9c8b 1910 goto charge_cur_mm;
e42d9d5d 1911 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
1912 if (!mem)
1913 goto charge_cur_mm;
8c7c6e34 1914 *ptr = mem;
f64c3f54 1915 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
54595fe2
KH
1916 /* drop extra refcnt from tryget */
1917 css_put(&mem->css);
1918 return ret;
8c7c6e34
KH
1919charge_cur_mm:
1920 if (unlikely(!mm))
1921 mm = &init_mm;
f64c3f54 1922 return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
8c7c6e34
KH
1923}
1924
83aae4c7
DN
1925static void
1926__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1927 enum charge_type ctype)
7a81b88c
KH
1928{
1929 struct page_cgroup *pc;
1930
f8d66542 1931 if (mem_cgroup_disabled())
7a81b88c
KH
1932 return;
1933 if (!ptr)
1934 return;
88703267 1935 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 1936 pc = lookup_page_cgroup(page);
544122e5 1937 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1938 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1939 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1940 /*
1941 * Now swap is on-memory. This means this page may be
1942 * counted both as mem and swap....double count.
03f3c433
KH
1943 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1944 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1945 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1946 */
03f3c433 1947 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1948 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1949 unsigned short id;
8c7c6e34 1950 struct mem_cgroup *memcg;
a3b2d692
KH
1951
1952 id = swap_cgroup_record(ent, 0);
1953 rcu_read_lock();
1954 memcg = mem_cgroup_lookup(id);
8c7c6e34 1955 if (memcg) {
a3b2d692
KH
1956 /*
1957 * This recorded memcg can be obsolete one. So, avoid
1958 * calling css_tryget
1959 */
0c3e73e8 1960 if (!mem_cgroup_is_root(memcg))
4e649152 1961 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 1962 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
1963 mem_cgroup_put(memcg);
1964 }
a3b2d692 1965 rcu_read_unlock();
8c7c6e34 1966 }
88703267
KH
1967 /*
1968 * At swapin, we may charge account against cgroup which has no tasks.
1969 * So, rmdir()->pre_destroy() can be called while we do this charge.
1970 * In that case, we need to call pre_destroy() again. check it here.
1971 */
1972 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
1973}
1974
83aae4c7
DN
1975void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1976{
1977 __mem_cgroup_commit_charge_swapin(page, ptr,
1978 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1979}
1980
7a81b88c
KH
1981void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1982{
f8d66542 1983 if (mem_cgroup_disabled())
7a81b88c
KH
1984 return;
1985 if (!mem)
1986 return;
a3032a2c 1987 mem_cgroup_cancel_charge(mem);
7a81b88c
KH
1988}
1989
569b846d
KH
1990static void
1991__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
1992{
1993 struct memcg_batch_info *batch = NULL;
1994 bool uncharge_memsw = true;
1995 /* If swapout, usage of swap doesn't decrease */
1996 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1997 uncharge_memsw = false;
1998 /*
1999 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2000 * In those cases, all pages freed continously can be expected to be in
2001 * the same cgroup and we have chance to coalesce uncharges.
2002 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2003 * because we want to do uncharge as soon as possible.
2004 */
2005 if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
2006 goto direct_uncharge;
2007
2008 batch = &current->memcg_batch;
2009 /*
2010 * In usual, we do css_get() when we remember memcg pointer.
2011 * But in this case, we keep res->usage until end of a series of
2012 * uncharges. Then, it's ok to ignore memcg's refcnt.
2013 */
2014 if (!batch->memcg)
2015 batch->memcg = mem;
2016 /*
2017 * In typical case, batch->memcg == mem. This means we can
2018 * merge a series of uncharges to an uncharge of res_counter.
2019 * If not, we uncharge res_counter ony by one.
2020 */
2021 if (batch->memcg != mem)
2022 goto direct_uncharge;
2023 /* remember freed charge and uncharge it later */
2024 batch->bytes += PAGE_SIZE;
2025 if (uncharge_memsw)
2026 batch->memsw_bytes += PAGE_SIZE;
2027 return;
2028direct_uncharge:
2029 res_counter_uncharge(&mem->res, PAGE_SIZE);
2030 if (uncharge_memsw)
2031 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2032 return;
2033}
7a81b88c 2034
8a9f3ccd 2035/*
69029cd5 2036 * uncharge if !page_mapped(page)
8a9f3ccd 2037 */
8c7c6e34 2038static struct mem_cgroup *
69029cd5 2039__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2040{
8289546e 2041 struct page_cgroup *pc;
8c7c6e34 2042 struct mem_cgroup *mem = NULL;
072c56c1 2043 struct mem_cgroup_per_zone *mz;
8a9f3ccd 2044
f8d66542 2045 if (mem_cgroup_disabled())
8c7c6e34 2046 return NULL;
4077960e 2047
d13d1443 2048 if (PageSwapCache(page))
8c7c6e34 2049 return NULL;
d13d1443 2050
8697d331 2051 /*
3c541e14 2052 * Check if our page_cgroup is valid
8697d331 2053 */
52d4b9ac
KH
2054 pc = lookup_page_cgroup(page);
2055 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2056 return NULL;
b9c565d5 2057
52d4b9ac 2058 lock_page_cgroup(pc);
d13d1443 2059
8c7c6e34
KH
2060 mem = pc->mem_cgroup;
2061
d13d1443
KH
2062 if (!PageCgroupUsed(pc))
2063 goto unlock_out;
2064
2065 switch (ctype) {
2066 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2067 case MEM_CGROUP_CHARGE_TYPE_DROP:
d13d1443
KH
2068 if (page_mapped(page))
2069 goto unlock_out;
2070 break;
2071 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2072 if (!PageAnon(page)) { /* Shared memory */
2073 if (page->mapping && !page_is_file_cache(page))
2074 goto unlock_out;
2075 } else if (page_mapped(page)) /* Anon */
2076 goto unlock_out;
2077 break;
2078 default:
2079 break;
52d4b9ac 2080 }
d13d1443 2081
569b846d
KH
2082 if (!mem_cgroup_is_root(mem))
2083 __do_uncharge(mem, ctype);
0c3e73e8
BS
2084 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2085 mem_cgroup_swap_statistics(mem, true);
08e552c6 2086 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 2087
52d4b9ac 2088 ClearPageCgroupUsed(pc);
544122e5
KH
2089 /*
2090 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2091 * freed from LRU. This is safe because uncharged page is expected not
2092 * to be reused (freed soon). Exception is SwapCache, it's handled by
2093 * special functions.
2094 */
b9c565d5 2095
69029cd5 2096 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 2097 unlock_page_cgroup(pc);
fb59e9f1 2098
4e649152 2099 if (mem_cgroup_soft_limit_check(mem))
f64c3f54 2100 mem_cgroup_update_tree(mem, page);
a7fe942e
KH
2101 /* at swapout, this memcg will be accessed to record to swap */
2102 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2103 css_put(&mem->css);
6d12e2d8 2104
8c7c6e34 2105 return mem;
d13d1443
KH
2106
2107unlock_out:
2108 unlock_page_cgroup(pc);
8c7c6e34 2109 return NULL;
3c541e14
BS
2110}
2111
69029cd5
KH
2112void mem_cgroup_uncharge_page(struct page *page)
2113{
52d4b9ac
KH
2114 /* early check. */
2115 if (page_mapped(page))
2116 return;
2117 if (page->mapping && !PageAnon(page))
2118 return;
69029cd5
KH
2119 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2120}
2121
2122void mem_cgroup_uncharge_cache_page(struct page *page)
2123{
2124 VM_BUG_ON(page_mapped(page));
b7abea96 2125 VM_BUG_ON(page->mapping);
69029cd5
KH
2126 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2127}
2128
569b846d
KH
2129/*
2130 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2131 * In that cases, pages are freed continuously and we can expect pages
2132 * are in the same memcg. All these calls itself limits the number of
2133 * pages freed at once, then uncharge_start/end() is called properly.
2134 * This may be called prural(2) times in a context,
2135 */
2136
2137void mem_cgroup_uncharge_start(void)
2138{
2139 current->memcg_batch.do_batch++;
2140 /* We can do nest. */
2141 if (current->memcg_batch.do_batch == 1) {
2142 current->memcg_batch.memcg = NULL;
2143 current->memcg_batch.bytes = 0;
2144 current->memcg_batch.memsw_bytes = 0;
2145 }
2146}
2147
2148void mem_cgroup_uncharge_end(void)
2149{
2150 struct memcg_batch_info *batch = &current->memcg_batch;
2151
2152 if (!batch->do_batch)
2153 return;
2154
2155 batch->do_batch--;
2156 if (batch->do_batch) /* If stacked, do nothing. */
2157 return;
2158
2159 if (!batch->memcg)
2160 return;
2161 /*
2162 * This "batch->memcg" is valid without any css_get/put etc...
2163 * bacause we hide charges behind us.
2164 */
2165 if (batch->bytes)
2166 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2167 if (batch->memsw_bytes)
2168 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2169 /* forget this pointer (for sanity check) */
2170 batch->memcg = NULL;
2171}
2172
e767e056 2173#ifdef CONFIG_SWAP
8c7c6e34 2174/*
e767e056 2175 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2176 * memcg information is recorded to swap_cgroup of "ent"
2177 */
8a9478ca
KH
2178void
2179mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2180{
2181 struct mem_cgroup *memcg;
8a9478ca
KH
2182 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2183
2184 if (!swapout) /* this was a swap cache but the swap is unused ! */
2185 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2186
2187 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2188
8c7c6e34 2189 /* record memcg information */
8a9478ca 2190 if (do_swap_account && swapout && memcg) {
a3b2d692 2191 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
2192 mem_cgroup_get(memcg);
2193 }
8a9478ca 2194 if (swapout && memcg)
a7fe942e 2195 css_put(&memcg->css);
8c7c6e34 2196}
e767e056 2197#endif
8c7c6e34
KH
2198
2199#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2200/*
2201 * called from swap_entry_free(). remove record in swap_cgroup and
2202 * uncharge "memsw" account.
2203 */
2204void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2205{
8c7c6e34 2206 struct mem_cgroup *memcg;
a3b2d692 2207 unsigned short id;
8c7c6e34
KH
2208
2209 if (!do_swap_account)
2210 return;
2211
a3b2d692
KH
2212 id = swap_cgroup_record(ent, 0);
2213 rcu_read_lock();
2214 memcg = mem_cgroup_lookup(id);
8c7c6e34 2215 if (memcg) {
a3b2d692
KH
2216 /*
2217 * We uncharge this because swap is freed.
2218 * This memcg can be obsolete one. We avoid calling css_tryget
2219 */
0c3e73e8 2220 if (!mem_cgroup_is_root(memcg))
4e649152 2221 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2222 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2223 mem_cgroup_put(memcg);
2224 }
a3b2d692 2225 rcu_read_unlock();
d13d1443 2226}
8c7c6e34 2227#endif
d13d1443 2228
ae41be37 2229/*
01b1ae63
KH
2230 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2231 * page belongs to.
ae41be37 2232 */
01b1ae63 2233int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
2234{
2235 struct page_cgroup *pc;
e8589cc1 2236 struct mem_cgroup *mem = NULL;
e8589cc1 2237 int ret = 0;
8869b8f6 2238
f8d66542 2239 if (mem_cgroup_disabled())
4077960e
BS
2240 return 0;
2241
52d4b9ac
KH
2242 pc = lookup_page_cgroup(page);
2243 lock_page_cgroup(pc);
2244 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2245 mem = pc->mem_cgroup;
2246 css_get(&mem->css);
e8589cc1 2247 }
52d4b9ac 2248 unlock_page_cgroup(pc);
01b1ae63 2249
e8589cc1 2250 if (mem) {
f64c3f54
BS
2251 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2252 page);
e8589cc1
KH
2253 css_put(&mem->css);
2254 }
01b1ae63 2255 *ptr = mem;
e8589cc1 2256 return ret;
ae41be37 2257}
8869b8f6 2258
69029cd5 2259/* remove redundant charge if migration failed*/
01b1ae63
KH
2260void mem_cgroup_end_migration(struct mem_cgroup *mem,
2261 struct page *oldpage, struct page *newpage)
ae41be37 2262{
01b1ae63
KH
2263 struct page *target, *unused;
2264 struct page_cgroup *pc;
2265 enum charge_type ctype;
2266
2267 if (!mem)
2268 return;
88703267 2269 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2270 /* at migration success, oldpage->mapping is NULL. */
2271 if (oldpage->mapping) {
2272 target = oldpage;
2273 unused = NULL;
2274 } else {
2275 target = newpage;
2276 unused = oldpage;
2277 }
2278
2279 if (PageAnon(target))
2280 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2281 else if (page_is_file_cache(target))
2282 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2283 else
2284 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2285
2286 /* unused page is not on radix-tree now. */
d13d1443 2287 if (unused)
01b1ae63
KH
2288 __mem_cgroup_uncharge_common(unused, ctype);
2289
2290 pc = lookup_page_cgroup(target);
69029cd5 2291 /*
01b1ae63
KH
2292 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2293 * So, double-counting is effectively avoided.
2294 */
2295 __mem_cgroup_commit_charge(mem, pc, ctype);
2296
2297 /*
2298 * Both of oldpage and newpage are still under lock_page().
2299 * Then, we don't have to care about race in radix-tree.
2300 * But we have to be careful that this page is unmapped or not.
2301 *
2302 * There is a case for !page_mapped(). At the start of
2303 * migration, oldpage was mapped. But now, it's zapped.
2304 * But we know *target* page is not freed/reused under us.
2305 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 2306 */
01b1ae63
KH
2307 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2308 mem_cgroup_uncharge_page(target);
88703267
KH
2309 /*
2310 * At migration, we may charge account against cgroup which has no tasks
2311 * So, rmdir()->pre_destroy() can be called while we do this charge.
2312 * In that case, we need to call pre_destroy() again. check it here.
2313 */
2314 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2315}
78fb7466 2316
c9b0ed51 2317/*
ae3abae6
DN
2318 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2319 * Calling hierarchical_reclaim is not enough because we should update
2320 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2321 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2322 * not from the memcg which this page would be charged to.
2323 * try_charge_swapin does all of these works properly.
c9b0ed51 2324 */
ae3abae6 2325int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2326 struct mm_struct *mm,
2327 gfp_t gfp_mask)
c9b0ed51 2328{
b5a84319 2329 struct mem_cgroup *mem = NULL;
ae3abae6 2330 int ret;
c9b0ed51 2331
f8d66542 2332 if (mem_cgroup_disabled())
cede86ac 2333 return 0;
c9b0ed51 2334
ae3abae6
DN
2335 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2336 if (!ret)
2337 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2338
ae3abae6 2339 return ret;
c9b0ed51
KH
2340}
2341
8c7c6e34
KH
2342static DEFINE_MUTEX(set_limit_mutex);
2343
d38d2a75 2344static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2345 unsigned long long val)
628f4235 2346{
81d39c20 2347 int retry_count;
8c7c6e34 2348 u64 memswlimit;
628f4235 2349 int ret = 0;
81d39c20
KH
2350 int children = mem_cgroup_count_children(memcg);
2351 u64 curusage, oldusage;
2352
2353 /*
2354 * For keeping hierarchical_reclaim simple, how long we should retry
2355 * is depends on callers. We set our retry-count to be function
2356 * of # of children which we should visit in this loop.
2357 */
2358 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2359
2360 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2361
8c7c6e34 2362 while (retry_count) {
628f4235
KH
2363 if (signal_pending(current)) {
2364 ret = -EINTR;
2365 break;
2366 }
8c7c6e34
KH
2367 /*
2368 * Rather than hide all in some function, I do this in
2369 * open coded manner. You see what this really does.
2370 * We have to guarantee mem->res.limit < mem->memsw.limit.
2371 */
2372 mutex_lock(&set_limit_mutex);
2373 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2374 if (memswlimit < val) {
2375 ret = -EINVAL;
2376 mutex_unlock(&set_limit_mutex);
628f4235
KH
2377 break;
2378 }
8c7c6e34 2379 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2380 if (!ret) {
2381 if (memswlimit == val)
2382 memcg->memsw_is_minimum = true;
2383 else
2384 memcg->memsw_is_minimum = false;
2385 }
8c7c6e34
KH
2386 mutex_unlock(&set_limit_mutex);
2387
2388 if (!ret)
2389 break;
2390
aa20d489 2391 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 2392 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2393 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2394 /* Usage is reduced ? */
2395 if (curusage >= oldusage)
2396 retry_count--;
2397 else
2398 oldusage = curusage;
8c7c6e34 2399 }
14797e23 2400
8c7c6e34
KH
2401 return ret;
2402}
2403
338c8431
LZ
2404static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2405 unsigned long long val)
8c7c6e34 2406{
81d39c20 2407 int retry_count;
8c7c6e34 2408 u64 memlimit, oldusage, curusage;
81d39c20
KH
2409 int children = mem_cgroup_count_children(memcg);
2410 int ret = -EBUSY;
8c7c6e34 2411
81d39c20
KH
2412 /* see mem_cgroup_resize_res_limit */
2413 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2414 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2415 while (retry_count) {
2416 if (signal_pending(current)) {
2417 ret = -EINTR;
2418 break;
2419 }
2420 /*
2421 * Rather than hide all in some function, I do this in
2422 * open coded manner. You see what this really does.
2423 * We have to guarantee mem->res.limit < mem->memsw.limit.
2424 */
2425 mutex_lock(&set_limit_mutex);
2426 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2427 if (memlimit > val) {
2428 ret = -EINVAL;
2429 mutex_unlock(&set_limit_mutex);
2430 break;
2431 }
2432 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2433 if (!ret) {
2434 if (memlimit == val)
2435 memcg->memsw_is_minimum = true;
2436 else
2437 memcg->memsw_is_minimum = false;
2438 }
8c7c6e34
KH
2439 mutex_unlock(&set_limit_mutex);
2440
2441 if (!ret)
2442 break;
2443
4e416953 2444 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
2445 MEM_CGROUP_RECLAIM_NOSWAP |
2446 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 2447 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 2448 /* Usage is reduced ? */
8c7c6e34 2449 if (curusage >= oldusage)
628f4235 2450 retry_count--;
81d39c20
KH
2451 else
2452 oldusage = curusage;
628f4235
KH
2453 }
2454 return ret;
2455}
2456
4e416953
BS
2457unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2458 gfp_t gfp_mask, int nid,
2459 int zid)
2460{
2461 unsigned long nr_reclaimed = 0;
2462 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2463 unsigned long reclaimed;
2464 int loop = 0;
2465 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 2466 unsigned long long excess;
4e416953
BS
2467
2468 if (order > 0)
2469 return 0;
2470
2471 mctz = soft_limit_tree_node_zone(nid, zid);
2472 /*
2473 * This loop can run a while, specially if mem_cgroup's continuously
2474 * keep exceeding their soft limit and putting the system under
2475 * pressure
2476 */
2477 do {
2478 if (next_mz)
2479 mz = next_mz;
2480 else
2481 mz = mem_cgroup_largest_soft_limit_node(mctz);
2482 if (!mz)
2483 break;
2484
2485 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2486 gfp_mask,
2487 MEM_CGROUP_RECLAIM_SOFT);
2488 nr_reclaimed += reclaimed;
2489 spin_lock(&mctz->lock);
2490
2491 /*
2492 * If we failed to reclaim anything from this memory cgroup
2493 * it is time to move on to the next cgroup
2494 */
2495 next_mz = NULL;
2496 if (!reclaimed) {
2497 do {
2498 /*
2499 * Loop until we find yet another one.
2500 *
2501 * By the time we get the soft_limit lock
2502 * again, someone might have aded the
2503 * group back on the RB tree. Iterate to
2504 * make sure we get a different mem.
2505 * mem_cgroup_largest_soft_limit_node returns
2506 * NULL if no other cgroup is present on
2507 * the tree
2508 */
2509 next_mz =
2510 __mem_cgroup_largest_soft_limit_node(mctz);
2511 if (next_mz == mz) {
2512 css_put(&next_mz->mem->css);
2513 next_mz = NULL;
2514 } else /* next_mz == NULL or other memcg */
2515 break;
2516 } while (1);
2517 }
4e416953 2518 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 2519 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
2520 /*
2521 * One school of thought says that we should not add
2522 * back the node to the tree if reclaim returns 0.
2523 * But our reclaim could return 0, simply because due
2524 * to priority we are exposing a smaller subset of
2525 * memory to reclaim from. Consider this as a longer
2526 * term TODO.
2527 */
ef8745c1
KH
2528 /* If excess == 0, no tree ops */
2529 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
2530 spin_unlock(&mctz->lock);
2531 css_put(&mz->mem->css);
2532 loop++;
2533 /*
2534 * Could not reclaim anything and there are no more
2535 * mem cgroups to try or we seem to be looping without
2536 * reclaiming anything.
2537 */
2538 if (!nr_reclaimed &&
2539 (next_mz == NULL ||
2540 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2541 break;
2542 } while (!nr_reclaimed);
2543 if (next_mz)
2544 css_put(&next_mz->mem->css);
2545 return nr_reclaimed;
2546}
2547
cc847582
KH
2548/*
2549 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
2550 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2551 */
f817ed48 2552static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 2553 int node, int zid, enum lru_list lru)
cc847582 2554{
08e552c6
KH
2555 struct zone *zone;
2556 struct mem_cgroup_per_zone *mz;
f817ed48 2557 struct page_cgroup *pc, *busy;
08e552c6 2558 unsigned long flags, loop;
072c56c1 2559 struct list_head *list;
f817ed48 2560 int ret = 0;
072c56c1 2561
08e552c6
KH
2562 zone = &NODE_DATA(node)->node_zones[zid];
2563 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 2564 list = &mz->lists[lru];
cc847582 2565
f817ed48
KH
2566 loop = MEM_CGROUP_ZSTAT(mz, lru);
2567 /* give some margin against EBUSY etc...*/
2568 loop += 256;
2569 busy = NULL;
2570 while (loop--) {
2571 ret = 0;
08e552c6 2572 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 2573 if (list_empty(list)) {
08e552c6 2574 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 2575 break;
f817ed48
KH
2576 }
2577 pc = list_entry(list->prev, struct page_cgroup, lru);
2578 if (busy == pc) {
2579 list_move(&pc->lru, list);
648bcc77 2580 busy = NULL;
08e552c6 2581 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
2582 continue;
2583 }
08e552c6 2584 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 2585
2c26fdd7 2586 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 2587 if (ret == -ENOMEM)
52d4b9ac 2588 break;
f817ed48
KH
2589
2590 if (ret == -EBUSY || ret == -EINVAL) {
2591 /* found lock contention or "pc" is obsolete. */
2592 busy = pc;
2593 cond_resched();
2594 } else
2595 busy = NULL;
cc847582 2596 }
08e552c6 2597
f817ed48
KH
2598 if (!ret && !list_empty(list))
2599 return -EBUSY;
2600 return ret;
cc847582
KH
2601}
2602
2603/*
2604 * make mem_cgroup's charge to be 0 if there is no task.
2605 * This enables deleting this mem_cgroup.
2606 */
c1e862c1 2607static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 2608{
f817ed48
KH
2609 int ret;
2610 int node, zid, shrink;
2611 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 2612 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 2613
cc847582 2614 css_get(&mem->css);
f817ed48
KH
2615
2616 shrink = 0;
c1e862c1
KH
2617 /* should free all ? */
2618 if (free_all)
2619 goto try_to_free;
f817ed48 2620move_account:
fce66477 2621 do {
f817ed48 2622 ret = -EBUSY;
c1e862c1
KH
2623 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2624 goto out;
2625 ret = -EINTR;
2626 if (signal_pending(current))
cc847582 2627 goto out;
52d4b9ac
KH
2628 /* This is for making all *used* pages to be on LRU. */
2629 lru_add_drain_all();
cdec2e42 2630 drain_all_stock_sync();
f817ed48 2631 ret = 0;
299b4eaa 2632 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 2633 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 2634 enum lru_list l;
f817ed48
KH
2635 for_each_lru(l) {
2636 ret = mem_cgroup_force_empty_list(mem,
08e552c6 2637 node, zid, l);
f817ed48
KH
2638 if (ret)
2639 break;
2640 }
1ecaab2b 2641 }
f817ed48
KH
2642 if (ret)
2643 break;
2644 }
2645 /* it seems parent cgroup doesn't have enough mem */
2646 if (ret == -ENOMEM)
2647 goto try_to_free;
52d4b9ac 2648 cond_resched();
fce66477
DN
2649 /* "ret" should also be checked to ensure all lists are empty. */
2650 } while (mem->res.usage > 0 || ret);
cc847582
KH
2651out:
2652 css_put(&mem->css);
2653 return ret;
f817ed48
KH
2654
2655try_to_free:
c1e862c1
KH
2656 /* returns EBUSY if there is a task or if we come here twice. */
2657 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
2658 ret = -EBUSY;
2659 goto out;
2660 }
c1e862c1
KH
2661 /* we call try-to-free pages for make this cgroup empty */
2662 lru_add_drain_all();
f817ed48
KH
2663 /* try to free all pages in this cgroup */
2664 shrink = 1;
2665 while (nr_retries && mem->res.usage > 0) {
2666 int progress;
c1e862c1
KH
2667
2668 if (signal_pending(current)) {
2669 ret = -EINTR;
2670 goto out;
2671 }
a7885eb8
KM
2672 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2673 false, get_swappiness(mem));
c1e862c1 2674 if (!progress) {
f817ed48 2675 nr_retries--;
c1e862c1 2676 /* maybe some writeback is necessary */
8aa7e847 2677 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2678 }
f817ed48
KH
2679
2680 }
08e552c6 2681 lru_add_drain();
f817ed48 2682 /* try move_account...there may be some *locked* pages. */
fce66477 2683 goto move_account;
cc847582
KH
2684}
2685
c1e862c1
KH
2686int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2687{
2688 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2689}
2690
2691
18f59ea7
BS
2692static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2693{
2694 return mem_cgroup_from_cont(cont)->use_hierarchy;
2695}
2696
2697static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2698 u64 val)
2699{
2700 int retval = 0;
2701 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2702 struct cgroup *parent = cont->parent;
2703 struct mem_cgroup *parent_mem = NULL;
2704
2705 if (parent)
2706 parent_mem = mem_cgroup_from_cont(parent);
2707
2708 cgroup_lock();
2709 /*
af901ca1 2710 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2711 * in the child subtrees. If it is unset, then the change can
2712 * occur, provided the current cgroup has no children.
2713 *
2714 * For the root cgroup, parent_mem is NULL, we allow value to be
2715 * set if there are no children.
2716 */
2717 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2718 (val == 1 || val == 0)) {
2719 if (list_empty(&cont->children))
2720 mem->use_hierarchy = val;
2721 else
2722 retval = -EBUSY;
2723 } else
2724 retval = -EINVAL;
2725 cgroup_unlock();
2726
2727 return retval;
2728}
2729
0c3e73e8
BS
2730struct mem_cgroup_idx_data {
2731 s64 val;
2732 enum mem_cgroup_stat_index idx;
2733};
2734
2735static int
2736mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2737{
2738 struct mem_cgroup_idx_data *d = data;
2739 d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2740 return 0;
2741}
2742
2743static void
2744mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2745 enum mem_cgroup_stat_index idx, s64 *val)
2746{
2747 struct mem_cgroup_idx_data d;
2748 d.idx = idx;
2749 d.val = 0;
2750 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2751 *val = d.val;
2752}
2753
2c3daa72 2754static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 2755{
8c7c6e34 2756 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
0c3e73e8 2757 u64 idx_val, val;
8c7c6e34
KH
2758 int type, name;
2759
2760 type = MEMFILE_TYPE(cft->private);
2761 name = MEMFILE_ATTR(cft->private);
2762 switch (type) {
2763 case _MEM:
0c3e73e8
BS
2764 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2765 mem_cgroup_get_recursive_idx_stat(mem,
2766 MEM_CGROUP_STAT_CACHE, &idx_val);
2767 val = idx_val;
2768 mem_cgroup_get_recursive_idx_stat(mem,
2769 MEM_CGROUP_STAT_RSS, &idx_val);
2770 val += idx_val;
2771 val <<= PAGE_SHIFT;
2772 } else
2773 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
2774 break;
2775 case _MEMSWAP:
0c3e73e8
BS
2776 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2777 mem_cgroup_get_recursive_idx_stat(mem,
2778 MEM_CGROUP_STAT_CACHE, &idx_val);
2779 val = idx_val;
2780 mem_cgroup_get_recursive_idx_stat(mem,
2781 MEM_CGROUP_STAT_RSS, &idx_val);
2782 val += idx_val;
2783 mem_cgroup_get_recursive_idx_stat(mem,
2784 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
cd9b45b7 2785 val += idx_val;
0c3e73e8
BS
2786 val <<= PAGE_SHIFT;
2787 } else
2788 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
2789 break;
2790 default:
2791 BUG();
2792 break;
2793 }
2794 return val;
8cdea7c0 2795}
628f4235
KH
2796/*
2797 * The user of this function is...
2798 * RES_LIMIT.
2799 */
856c13aa
PM
2800static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2801 const char *buffer)
8cdea7c0 2802{
628f4235 2803 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 2804 int type, name;
628f4235
KH
2805 unsigned long long val;
2806 int ret;
2807
8c7c6e34
KH
2808 type = MEMFILE_TYPE(cft->private);
2809 name = MEMFILE_ATTR(cft->private);
2810 switch (name) {
628f4235 2811 case RES_LIMIT:
4b3bde4c
BS
2812 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2813 ret = -EINVAL;
2814 break;
2815 }
628f4235
KH
2816 /* This function does all necessary parse...reuse it */
2817 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
2818 if (ret)
2819 break;
2820 if (type == _MEM)
628f4235 2821 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
2822 else
2823 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 2824 break;
296c81d8
BS
2825 case RES_SOFT_LIMIT:
2826 ret = res_counter_memparse_write_strategy(buffer, &val);
2827 if (ret)
2828 break;
2829 /*
2830 * For memsw, soft limits are hard to implement in terms
2831 * of semantics, for now, we support soft limits for
2832 * control without swap
2833 */
2834 if (type == _MEM)
2835 ret = res_counter_set_soft_limit(&memcg->res, val);
2836 else
2837 ret = -EINVAL;
2838 break;
628f4235
KH
2839 default:
2840 ret = -EINVAL; /* should be BUG() ? */
2841 break;
2842 }
2843 return ret;
8cdea7c0
BS
2844}
2845
fee7b548
KH
2846static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2847 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2848{
2849 struct cgroup *cgroup;
2850 unsigned long long min_limit, min_memsw_limit, tmp;
2851
2852 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2853 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2854 cgroup = memcg->css.cgroup;
2855 if (!memcg->use_hierarchy)
2856 goto out;
2857
2858 while (cgroup->parent) {
2859 cgroup = cgroup->parent;
2860 memcg = mem_cgroup_from_cont(cgroup);
2861 if (!memcg->use_hierarchy)
2862 break;
2863 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2864 min_limit = min(min_limit, tmp);
2865 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2866 min_memsw_limit = min(min_memsw_limit, tmp);
2867 }
2868out:
2869 *mem_limit = min_limit;
2870 *memsw_limit = min_memsw_limit;
2871 return;
2872}
2873
29f2a4da 2874static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2875{
2876 struct mem_cgroup *mem;
8c7c6e34 2877 int type, name;
c84872e1
PE
2878
2879 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2880 type = MEMFILE_TYPE(event);
2881 name = MEMFILE_ATTR(event);
2882 switch (name) {
29f2a4da 2883 case RES_MAX_USAGE:
8c7c6e34
KH
2884 if (type == _MEM)
2885 res_counter_reset_max(&mem->res);
2886 else
2887 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2888 break;
2889 case RES_FAILCNT:
8c7c6e34
KH
2890 if (type == _MEM)
2891 res_counter_reset_failcnt(&mem->res);
2892 else
2893 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2894 break;
2895 }
f64c3f54 2896
85cc59db 2897 return 0;
c84872e1
PE
2898}
2899
7dc74be0
DN
2900static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
2901 struct cftype *cft)
2902{
2903 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
2904}
2905
2906static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
2907 struct cftype *cft, u64 val)
2908{
2909 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
2910
2911 if (val >= (1 << NR_MOVE_TYPE))
2912 return -EINVAL;
2913 /*
2914 * We check this value several times in both in can_attach() and
2915 * attach(), so we need cgroup lock to prevent this value from being
2916 * inconsistent.
2917 */
2918 cgroup_lock();
2919 mem->move_charge_at_immigrate = val;
2920 cgroup_unlock();
2921
2922 return 0;
2923}
2924
14067bb3
KH
2925
2926/* For read statistics */
2927enum {
2928 MCS_CACHE,
2929 MCS_RSS,
d8046582 2930 MCS_FILE_MAPPED,
14067bb3
KH
2931 MCS_PGPGIN,
2932 MCS_PGPGOUT,
1dd3a273 2933 MCS_SWAP,
14067bb3
KH
2934 MCS_INACTIVE_ANON,
2935 MCS_ACTIVE_ANON,
2936 MCS_INACTIVE_FILE,
2937 MCS_ACTIVE_FILE,
2938 MCS_UNEVICTABLE,
2939 NR_MCS_STAT,
2940};
2941
2942struct mcs_total_stat {
2943 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
2944};
2945
14067bb3
KH
2946struct {
2947 char *local_name;
2948 char *total_name;
2949} memcg_stat_strings[NR_MCS_STAT] = {
2950 {"cache", "total_cache"},
2951 {"rss", "total_rss"},
d69b042f 2952 {"mapped_file", "total_mapped_file"},
14067bb3
KH
2953 {"pgpgin", "total_pgpgin"},
2954 {"pgpgout", "total_pgpgout"},
1dd3a273 2955 {"swap", "total_swap"},
14067bb3
KH
2956 {"inactive_anon", "total_inactive_anon"},
2957 {"active_anon", "total_active_anon"},
2958 {"inactive_file", "total_inactive_file"},
2959 {"active_file", "total_active_file"},
2960 {"unevictable", "total_unevictable"}
2961};
2962
2963
2964static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2965{
2966 struct mcs_total_stat *s = data;
2967 s64 val;
2968
2969 /* per cpu stat */
2970 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2971 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2972 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2973 s->stat[MCS_RSS] += val * PAGE_SIZE;
d8046582
KH
2974 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
2975 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
14067bb3
KH
2976 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2977 s->stat[MCS_PGPGIN] += val;
2978 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2979 s->stat[MCS_PGPGOUT] += val;
1dd3a273
DN
2980 if (do_swap_account) {
2981 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2982 s->stat[MCS_SWAP] += val * PAGE_SIZE;
2983 }
14067bb3
KH
2984
2985 /* per zone stat */
2986 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2987 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2988 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2989 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2990 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2991 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2992 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2993 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2994 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2995 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2996 return 0;
2997}
2998
2999static void
3000mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3001{
3002 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3003}
3004
c64745cf
PM
3005static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3006 struct cgroup_map_cb *cb)
d2ceb9b7 3007{
d2ceb9b7 3008 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3009 struct mcs_total_stat mystat;
d2ceb9b7
KH
3010 int i;
3011
14067bb3
KH
3012 memset(&mystat, 0, sizeof(mystat));
3013 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3014
1dd3a273
DN
3015 for (i = 0; i < NR_MCS_STAT; i++) {
3016 if (i == MCS_SWAP && !do_swap_account)
3017 continue;
14067bb3 3018 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3019 }
7b854121 3020
14067bb3 3021 /* Hierarchical information */
fee7b548
KH
3022 {
3023 unsigned long long limit, memsw_limit;
3024 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3025 cb->fill(cb, "hierarchical_memory_limit", limit);
3026 if (do_swap_account)
3027 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3028 }
7f016ee8 3029
14067bb3
KH
3030 memset(&mystat, 0, sizeof(mystat));
3031 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3032 for (i = 0; i < NR_MCS_STAT; i++) {
3033 if (i == MCS_SWAP && !do_swap_account)
3034 continue;
14067bb3 3035 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3036 }
14067bb3 3037
7f016ee8 3038#ifdef CONFIG_DEBUG_VM
c772be93 3039 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3040
3041 {
3042 int nid, zid;
3043 struct mem_cgroup_per_zone *mz;
3044 unsigned long recent_rotated[2] = {0, 0};
3045 unsigned long recent_scanned[2] = {0, 0};
3046
3047 for_each_online_node(nid)
3048 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3049 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3050
3051 recent_rotated[0] +=
3052 mz->reclaim_stat.recent_rotated[0];
3053 recent_rotated[1] +=
3054 mz->reclaim_stat.recent_rotated[1];
3055 recent_scanned[0] +=
3056 mz->reclaim_stat.recent_scanned[0];
3057 recent_scanned[1] +=
3058 mz->reclaim_stat.recent_scanned[1];
3059 }
3060 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3061 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3062 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3063 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3064 }
3065#endif
3066
d2ceb9b7
KH
3067 return 0;
3068}
3069
a7885eb8
KM
3070static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3071{
3072 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3073
3074 return get_swappiness(memcg);
3075}
3076
3077static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3078 u64 val)
3079{
3080 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3081 struct mem_cgroup *parent;
068b38c1 3082
a7885eb8
KM
3083 if (val > 100)
3084 return -EINVAL;
3085
3086 if (cgrp->parent == NULL)
3087 return -EINVAL;
3088
3089 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3090
3091 cgroup_lock();
3092
a7885eb8
KM
3093 /* If under hierarchy, only empty-root can set this value */
3094 if ((parent->use_hierarchy) ||
068b38c1
LZ
3095 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3096 cgroup_unlock();
a7885eb8 3097 return -EINVAL;
068b38c1 3098 }
a7885eb8
KM
3099
3100 spin_lock(&memcg->reclaim_param_lock);
3101 memcg->swappiness = val;
3102 spin_unlock(&memcg->reclaim_param_lock);
3103
068b38c1
LZ
3104 cgroup_unlock();
3105
a7885eb8
KM
3106 return 0;
3107}
3108
c1e862c1 3109
8cdea7c0
BS
3110static struct cftype mem_cgroup_files[] = {
3111 {
0eea1030 3112 .name = "usage_in_bytes",
8c7c6e34 3113 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 3114 .read_u64 = mem_cgroup_read,
8cdea7c0 3115 },
c84872e1
PE
3116 {
3117 .name = "max_usage_in_bytes",
8c7c6e34 3118 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 3119 .trigger = mem_cgroup_reset,
c84872e1
PE
3120 .read_u64 = mem_cgroup_read,
3121 },
8cdea7c0 3122 {
0eea1030 3123 .name = "limit_in_bytes",
8c7c6e34 3124 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 3125 .write_string = mem_cgroup_write,
2c3daa72 3126 .read_u64 = mem_cgroup_read,
8cdea7c0 3127 },
296c81d8
BS
3128 {
3129 .name = "soft_limit_in_bytes",
3130 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3131 .write_string = mem_cgroup_write,
3132 .read_u64 = mem_cgroup_read,
3133 },
8cdea7c0
BS
3134 {
3135 .name = "failcnt",
8c7c6e34 3136 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 3137 .trigger = mem_cgroup_reset,
2c3daa72 3138 .read_u64 = mem_cgroup_read,
8cdea7c0 3139 },
d2ceb9b7
KH
3140 {
3141 .name = "stat",
c64745cf 3142 .read_map = mem_control_stat_show,
d2ceb9b7 3143 },
c1e862c1
KH
3144 {
3145 .name = "force_empty",
3146 .trigger = mem_cgroup_force_empty_write,
3147 },
18f59ea7
BS
3148 {
3149 .name = "use_hierarchy",
3150 .write_u64 = mem_cgroup_hierarchy_write,
3151 .read_u64 = mem_cgroup_hierarchy_read,
3152 },
a7885eb8
KM
3153 {
3154 .name = "swappiness",
3155 .read_u64 = mem_cgroup_swappiness_read,
3156 .write_u64 = mem_cgroup_swappiness_write,
3157 },
7dc74be0
DN
3158 {
3159 .name = "move_charge_at_immigrate",
3160 .read_u64 = mem_cgroup_move_charge_read,
3161 .write_u64 = mem_cgroup_move_charge_write,
3162 },
8cdea7c0
BS
3163};
3164
8c7c6e34
KH
3165#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3166static struct cftype memsw_cgroup_files[] = {
3167 {
3168 .name = "memsw.usage_in_bytes",
3169 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3170 .read_u64 = mem_cgroup_read,
3171 },
3172 {
3173 .name = "memsw.max_usage_in_bytes",
3174 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3175 .trigger = mem_cgroup_reset,
3176 .read_u64 = mem_cgroup_read,
3177 },
3178 {
3179 .name = "memsw.limit_in_bytes",
3180 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3181 .write_string = mem_cgroup_write,
3182 .read_u64 = mem_cgroup_read,
3183 },
3184 {
3185 .name = "memsw.failcnt",
3186 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3187 .trigger = mem_cgroup_reset,
3188 .read_u64 = mem_cgroup_read,
3189 },
3190};
3191
3192static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3193{
3194 if (!do_swap_account)
3195 return 0;
3196 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3197 ARRAY_SIZE(memsw_cgroup_files));
3198};
3199#else
3200static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3201{
3202 return 0;
3203}
3204#endif
3205
6d12e2d8
KH
3206static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3207{
3208 struct mem_cgroup_per_node *pn;
1ecaab2b 3209 struct mem_cgroup_per_zone *mz;
b69408e8 3210 enum lru_list l;
41e3355d 3211 int zone, tmp = node;
1ecaab2b
KH
3212 /*
3213 * This routine is called against possible nodes.
3214 * But it's BUG to call kmalloc() against offline node.
3215 *
3216 * TODO: this routine can waste much memory for nodes which will
3217 * never be onlined. It's better to use memory hotplug callback
3218 * function.
3219 */
41e3355d
KH
3220 if (!node_state(node, N_NORMAL_MEMORY))
3221 tmp = -1;
3222 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
3223 if (!pn)
3224 return 1;
1ecaab2b 3225
6d12e2d8
KH
3226 mem->info.nodeinfo[node] = pn;
3227 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
3228
3229 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3230 mz = &pn->zoneinfo[zone];
b69408e8
CL
3231 for_each_lru(l)
3232 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 3233 mz->usage_in_excess = 0;
4e416953
BS
3234 mz->on_tree = false;
3235 mz->mem = mem;
1ecaab2b 3236 }
6d12e2d8
KH
3237 return 0;
3238}
3239
1ecaab2b
KH
3240static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3241{
3242 kfree(mem->info.nodeinfo[node]);
3243}
3244
c8dad2bb
JB
3245static int mem_cgroup_size(void)
3246{
3247 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
3248 return sizeof(struct mem_cgroup) + cpustat_size;
3249}
3250
33327948
KH
3251static struct mem_cgroup *mem_cgroup_alloc(void)
3252{
3253 struct mem_cgroup *mem;
c8dad2bb 3254 int size = mem_cgroup_size();
33327948 3255
c8dad2bb
JB
3256 if (size < PAGE_SIZE)
3257 mem = kmalloc(size, GFP_KERNEL);
33327948 3258 else
c8dad2bb 3259 mem = vmalloc(size);
33327948
KH
3260
3261 if (mem)
c8dad2bb 3262 memset(mem, 0, size);
33327948
KH
3263 return mem;
3264}
3265
8c7c6e34
KH
3266/*
3267 * At destroying mem_cgroup, references from swap_cgroup can remain.
3268 * (scanning all at force_empty is too costly...)
3269 *
3270 * Instead of clearing all references at force_empty, we remember
3271 * the number of reference from swap_cgroup and free mem_cgroup when
3272 * it goes down to 0.
3273 *
8c7c6e34
KH
3274 * Removal of cgroup itself succeeds regardless of refs from swap.
3275 */
3276
a7ba0eef 3277static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 3278{
08e552c6
KH
3279 int node;
3280
f64c3f54 3281 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
3282 free_css_id(&mem_cgroup_subsys, &mem->css);
3283
08e552c6
KH
3284 for_each_node_state(node, N_POSSIBLE)
3285 free_mem_cgroup_per_zone_info(mem, node);
3286
c8dad2bb 3287 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
3288 kfree(mem);
3289 else
3290 vfree(mem);
3291}
3292
8c7c6e34
KH
3293static void mem_cgroup_get(struct mem_cgroup *mem)
3294{
3295 atomic_inc(&mem->refcnt);
3296}
3297
3298static void mem_cgroup_put(struct mem_cgroup *mem)
3299{
7bcc1bb1
DN
3300 if (atomic_dec_and_test(&mem->refcnt)) {
3301 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 3302 __mem_cgroup_free(mem);
7bcc1bb1
DN
3303 if (parent)
3304 mem_cgroup_put(parent);
3305 }
8c7c6e34
KH
3306}
3307
7bcc1bb1
DN
3308/*
3309 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3310 */
3311static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3312{
3313 if (!mem->res.parent)
3314 return NULL;
3315 return mem_cgroup_from_res_counter(mem->res.parent, res);
3316}
33327948 3317
c077719b
KH
3318#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3319static void __init enable_swap_cgroup(void)
3320{
f8d66542 3321 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
3322 do_swap_account = 1;
3323}
3324#else
3325static void __init enable_swap_cgroup(void)
3326{
3327}
3328#endif
3329
f64c3f54
BS
3330static int mem_cgroup_soft_limit_tree_init(void)
3331{
3332 struct mem_cgroup_tree_per_node *rtpn;
3333 struct mem_cgroup_tree_per_zone *rtpz;
3334 int tmp, node, zone;
3335
3336 for_each_node_state(node, N_POSSIBLE) {
3337 tmp = node;
3338 if (!node_state(node, N_NORMAL_MEMORY))
3339 tmp = -1;
3340 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3341 if (!rtpn)
3342 return 1;
3343
3344 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3345
3346 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3347 rtpz = &rtpn->rb_tree_per_zone[zone];
3348 rtpz->rb_root = RB_ROOT;
3349 spin_lock_init(&rtpz->lock);
3350 }
3351 }
3352 return 0;
3353}
3354
0eb253e2 3355static struct cgroup_subsys_state * __ref
8cdea7c0
BS
3356mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3357{
28dbc4b6 3358 struct mem_cgroup *mem, *parent;
04046e1a 3359 long error = -ENOMEM;
6d12e2d8 3360 int node;
8cdea7c0 3361
c8dad2bb
JB
3362 mem = mem_cgroup_alloc();
3363 if (!mem)
04046e1a 3364 return ERR_PTR(error);
78fb7466 3365
6d12e2d8
KH
3366 for_each_node_state(node, N_POSSIBLE)
3367 if (alloc_mem_cgroup_per_zone_info(mem, node))
3368 goto free_out;
f64c3f54 3369
c077719b 3370 /* root ? */
28dbc4b6 3371 if (cont->parent == NULL) {
cdec2e42 3372 int cpu;
c077719b 3373 enable_swap_cgroup();
28dbc4b6 3374 parent = NULL;
4b3bde4c 3375 root_mem_cgroup = mem;
f64c3f54
BS
3376 if (mem_cgroup_soft_limit_tree_init())
3377 goto free_out;
cdec2e42
KH
3378 for_each_possible_cpu(cpu) {
3379 struct memcg_stock_pcp *stock =
3380 &per_cpu(memcg_stock, cpu);
3381 INIT_WORK(&stock->work, drain_local_stock);
3382 }
3383 hotcpu_notifier(memcg_stock_cpu_callback, 0);
f64c3f54 3384
18f59ea7 3385 } else {
28dbc4b6 3386 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
3387 mem->use_hierarchy = parent->use_hierarchy;
3388 }
28dbc4b6 3389
18f59ea7
BS
3390 if (parent && parent->use_hierarchy) {
3391 res_counter_init(&mem->res, &parent->res);
3392 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
3393 /*
3394 * We increment refcnt of the parent to ensure that we can
3395 * safely access it on res_counter_charge/uncharge.
3396 * This refcnt will be decremented when freeing this
3397 * mem_cgroup(see mem_cgroup_put).
3398 */
3399 mem_cgroup_get(parent);
18f59ea7
BS
3400 } else {
3401 res_counter_init(&mem->res, NULL);
3402 res_counter_init(&mem->memsw, NULL);
3403 }
04046e1a 3404 mem->last_scanned_child = 0;
2733c06a 3405 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 3406
a7885eb8
KM
3407 if (parent)
3408 mem->swappiness = get_swappiness(parent);
a7ba0eef 3409 atomic_set(&mem->refcnt, 1);
7dc74be0 3410 mem->move_charge_at_immigrate = 0;
8cdea7c0 3411 return &mem->css;
6d12e2d8 3412free_out:
a7ba0eef 3413 __mem_cgroup_free(mem);
4b3bde4c 3414 root_mem_cgroup = NULL;
04046e1a 3415 return ERR_PTR(error);
8cdea7c0
BS
3416}
3417
ec64f515 3418static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
3419 struct cgroup *cont)
3420{
3421 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
3422
3423 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
3424}
3425
8cdea7c0
BS
3426static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3427 struct cgroup *cont)
3428{
c268e994 3429 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 3430
c268e994 3431 mem_cgroup_put(mem);
8cdea7c0
BS
3432}
3433
3434static int mem_cgroup_populate(struct cgroup_subsys *ss,
3435 struct cgroup *cont)
3436{
8c7c6e34
KH
3437 int ret;
3438
3439 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3440 ARRAY_SIZE(mem_cgroup_files));
3441
3442 if (!ret)
3443 ret = register_memsw_files(cont, ss);
3444 return ret;
8cdea7c0
BS
3445}
3446
7dc74be0 3447/* Handlers for move charge at task migration. */
854ffa8d
DN
3448#define PRECHARGE_COUNT_AT_ONCE 256
3449static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 3450{
854ffa8d
DN
3451 int ret = 0;
3452 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
3453 struct mem_cgroup *mem = mc.to;
3454
854ffa8d
DN
3455 if (mem_cgroup_is_root(mem)) {
3456 mc.precharge += count;
3457 /* we don't need css_get for root */
3458 return ret;
3459 }
3460 /* try to charge at once */
3461 if (count > 1) {
3462 struct res_counter *dummy;
3463 /*
3464 * "mem" cannot be under rmdir() because we've already checked
3465 * by cgroup_lock_live_cgroup() that it is not removed and we
3466 * are still under the same cgroup_mutex. So we can postpone
3467 * css_get().
3468 */
3469 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
3470 goto one_by_one;
3471 if (do_swap_account && res_counter_charge(&mem->memsw,
3472 PAGE_SIZE * count, &dummy)) {
3473 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
3474 goto one_by_one;
3475 }
3476 mc.precharge += count;
3477 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
3478 WARN_ON_ONCE(count > INT_MAX);
3479 __css_get(&mem->css, (int)count);
3480 return ret;
3481 }
3482one_by_one:
3483 /* fall back to one by one charge */
3484 while (count--) {
3485 if (signal_pending(current)) {
3486 ret = -EINTR;
3487 break;
3488 }
3489 if (!batch_count--) {
3490 batch_count = PRECHARGE_COUNT_AT_ONCE;
3491 cond_resched();
3492 }
3493 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem,
3494 false, NULL);
3495 if (ret || !mem)
3496 /* mem_cgroup_clear_mc() will do uncharge later */
3497 return -ENOMEM;
3498 mc.precharge++;
3499 }
4ffef5fe
DN
3500 return ret;
3501}
3502
3503/**
3504 * is_target_pte_for_mc - check a pte whether it is valid for move charge
3505 * @vma: the vma the pte to be checked belongs
3506 * @addr: the address corresponding to the pte to be checked
3507 * @ptent: the pte to be checked
3508 * @target: the pointer the target page will be stored(can be NULL)
3509 *
3510 * Returns
3511 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
3512 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
3513 * move charge. if @target is not NULL, the page is stored in target->page
3514 * with extra refcnt got(Callers should handle it).
3515 *
3516 * Called with pte lock held.
3517 */
3518/* We add a new member later. */
3519union mc_target {
3520 struct page *page;
3521};
3522
3523/* We add a new type later. */
3524enum mc_target_type {
3525 MC_TARGET_NONE, /* not used */
3526 MC_TARGET_PAGE,
3527};
3528
3529static int is_target_pte_for_mc(struct vm_area_struct *vma,
3530 unsigned long addr, pte_t ptent, union mc_target *target)
3531{
3532 struct page *page;
3533 struct page_cgroup *pc;
3534 int ret = 0;
3535 bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
3536 &mc.to->move_charge_at_immigrate);
3537
3538 if (!pte_present(ptent))
3539 return 0;
3540
3541 page = vm_normal_page(vma, addr, ptent);
3542 if (!page || !page_mapped(page))
3543 return 0;
3544 /*
3545 * TODO: We don't move charges of file(including shmem/tmpfs) pages for
3546 * now.
3547 */
3548 if (!move_anon || !PageAnon(page))
3549 return 0;
3550 /*
3551 * TODO: We don't move charges of shared(used by multiple processes)
3552 * pages for now.
3553 */
3554 if (page_mapcount(page) > 1)
3555 return 0;
3556 if (!get_page_unless_zero(page))
3557 return 0;
3558
3559 pc = lookup_page_cgroup(page);
3560 /*
3561 * Do only loose check w/o page_cgroup lock. mem_cgroup_move_account()
3562 * checks the pc is valid or not under the lock.
3563 */
3564 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
3565 ret = MC_TARGET_PAGE;
3566 if (target)
3567 target->page = page;
3568 }
3569
3570 if (!ret || !target)
3571 put_page(page);
3572
3573 return ret;
3574}
3575
3576static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
3577 unsigned long addr, unsigned long end,
3578 struct mm_walk *walk)
3579{
3580 struct vm_area_struct *vma = walk->private;
3581 pte_t *pte;
3582 spinlock_t *ptl;
3583
3584 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
3585 for (; addr != end; pte++, addr += PAGE_SIZE)
3586 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
3587 mc.precharge++; /* increment precharge temporarily */
3588 pte_unmap_unlock(pte - 1, ptl);
3589 cond_resched();
3590
7dc74be0
DN
3591 return 0;
3592}
3593
4ffef5fe
DN
3594static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
3595{
3596 unsigned long precharge;
3597 struct vm_area_struct *vma;
3598
3599 down_read(&mm->mmap_sem);
3600 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3601 struct mm_walk mem_cgroup_count_precharge_walk = {
3602 .pmd_entry = mem_cgroup_count_precharge_pte_range,
3603 .mm = mm,
3604 .private = vma,
3605 };
3606 if (is_vm_hugetlb_page(vma))
3607 continue;
3608 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
3609 if (vma->vm_flags & VM_SHARED)
3610 continue;
3611 walk_page_range(vma->vm_start, vma->vm_end,
3612 &mem_cgroup_count_precharge_walk);
3613 }
3614 up_read(&mm->mmap_sem);
3615
3616 precharge = mc.precharge;
3617 mc.precharge = 0;
3618
3619 return precharge;
3620}
3621
4ffef5fe
DN
3622static int mem_cgroup_precharge_mc(struct mm_struct *mm)
3623{
854ffa8d 3624 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4ffef5fe
DN
3625}
3626
3627static void mem_cgroup_clear_mc(void)
3628{
3629 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
3630 if (mc.precharge) {
3631 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
3632 mc.precharge = 0;
3633 }
3634 /*
3635 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
3636 * we must uncharge here.
3637 */
3638 if (mc.moved_charge) {
3639 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
3640 mc.moved_charge = 0;
4ffef5fe
DN
3641 }
3642 mc.from = NULL;
3643 mc.to = NULL;
3644}
3645
7dc74be0
DN
3646static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
3647 struct cgroup *cgroup,
3648 struct task_struct *p,
3649 bool threadgroup)
3650{
3651 int ret = 0;
3652 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
3653
3654 if (mem->move_charge_at_immigrate) {
3655 struct mm_struct *mm;
3656 struct mem_cgroup *from = mem_cgroup_from_task(p);
3657
3658 VM_BUG_ON(from == mem);
3659
3660 mm = get_task_mm(p);
3661 if (!mm)
3662 return 0;
7dc74be0 3663 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
3664 if (mm->owner == p) {
3665 VM_BUG_ON(mc.from);
3666 VM_BUG_ON(mc.to);
3667 VM_BUG_ON(mc.precharge);
854ffa8d 3668 VM_BUG_ON(mc.moved_charge);
4ffef5fe
DN
3669 mc.from = from;
3670 mc.to = mem;
3671 mc.precharge = 0;
854ffa8d 3672 mc.moved_charge = 0;
4ffef5fe
DN
3673
3674 ret = mem_cgroup_precharge_mc(mm);
3675 if (ret)
3676 mem_cgroup_clear_mc();
3677 }
7dc74be0
DN
3678 mmput(mm);
3679 }
3680 return ret;
3681}
3682
3683static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
3684 struct cgroup *cgroup,
3685 struct task_struct *p,
3686 bool threadgroup)
3687{
4ffef5fe 3688 mem_cgroup_clear_mc();
7dc74be0
DN
3689}
3690
4ffef5fe
DN
3691static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
3692 unsigned long addr, unsigned long end,
3693 struct mm_walk *walk)
7dc74be0 3694{
4ffef5fe
DN
3695 int ret = 0;
3696 struct vm_area_struct *vma = walk->private;
3697 pte_t *pte;
3698 spinlock_t *ptl;
3699
3700retry:
3701 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
3702 for (; addr != end; addr += PAGE_SIZE) {
3703 pte_t ptent = *(pte++);
3704 union mc_target target;
3705 int type;
3706 struct page *page;
3707 struct page_cgroup *pc;
3708
3709 if (!mc.precharge)
3710 break;
3711
3712 type = is_target_pte_for_mc(vma, addr, ptent, &target);
3713 switch (type) {
3714 case MC_TARGET_PAGE:
3715 page = target.page;
3716 if (isolate_lru_page(page))
3717 goto put;
3718 pc = lookup_page_cgroup(page);
854ffa8d
DN
3719 if (!mem_cgroup_move_account(pc,
3720 mc.from, mc.to, false)) {
4ffef5fe 3721 mc.precharge--;
854ffa8d
DN
3722 /* we uncharge from mc.from later. */
3723 mc.moved_charge++;
4ffef5fe
DN
3724 }
3725 putback_lru_page(page);
3726put: /* is_target_pte_for_mc() gets the page */
3727 put_page(page);
3728 break;
3729 default:
3730 break;
3731 }
3732 }
3733 pte_unmap_unlock(pte - 1, ptl);
3734 cond_resched();
3735
3736 if (addr != end) {
3737 /*
3738 * We have consumed all precharges we got in can_attach().
3739 * We try charge one by one, but don't do any additional
3740 * charges to mc.to if we have failed in charge once in attach()
3741 * phase.
3742 */
854ffa8d 3743 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
3744 if (!ret)
3745 goto retry;
3746 }
3747
3748 return ret;
3749}
3750
3751static void mem_cgroup_move_charge(struct mm_struct *mm)
3752{
3753 struct vm_area_struct *vma;
3754
3755 lru_add_drain_all();
3756 down_read(&mm->mmap_sem);
3757 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3758 int ret;
3759 struct mm_walk mem_cgroup_move_charge_walk = {
3760 .pmd_entry = mem_cgroup_move_charge_pte_range,
3761 .mm = mm,
3762 .private = vma,
3763 };
3764 if (is_vm_hugetlb_page(vma))
3765 continue;
3766 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
3767 if (vma->vm_flags & VM_SHARED)
3768 continue;
3769 ret = walk_page_range(vma->vm_start, vma->vm_end,
3770 &mem_cgroup_move_charge_walk);
3771 if (ret)
3772 /*
3773 * means we have consumed all precharges and failed in
3774 * doing additional charge. Just abandon here.
3775 */
3776 break;
3777 }
3778 up_read(&mm->mmap_sem);
7dc74be0
DN
3779}
3780
67e465a7
BS
3781static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3782 struct cgroup *cont,
3783 struct cgroup *old_cont,
be367d09
BB
3784 struct task_struct *p,
3785 bool threadgroup)
67e465a7 3786{
4ffef5fe
DN
3787 struct mm_struct *mm;
3788
3789 if (!mc.to)
3790 /* no need to move charge */
3791 return;
3792
3793 mm = get_task_mm(p);
3794 if (mm) {
3795 mem_cgroup_move_charge(mm);
3796 mmput(mm);
3797 }
3798 mem_cgroup_clear_mc();
67e465a7
BS
3799}
3800
8cdea7c0
BS
3801struct cgroup_subsys mem_cgroup_subsys = {
3802 .name = "memory",
3803 .subsys_id = mem_cgroup_subsys_id,
3804 .create = mem_cgroup_create,
df878fb0 3805 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
3806 .destroy = mem_cgroup_destroy,
3807 .populate = mem_cgroup_populate,
7dc74be0
DN
3808 .can_attach = mem_cgroup_can_attach,
3809 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 3810 .attach = mem_cgroup_move_task,
6d12e2d8 3811 .early_init = 0,
04046e1a 3812 .use_id = 1,
8cdea7c0 3813};
c077719b
KH
3814
3815#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3816
3817static int __init disable_swap_account(char *s)
3818{
3819 really_do_swap_account = 0;
3820 return 1;
3821}
3822__setup("noswapaccount", disable_swap_account);
3823#endif