]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: use find_lock_task_mm() in memory cgroups oom
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
63int do_swap_account __read_mostly;
64static int really_do_swap_account __initdata = 1; /* for remember boot option*/
65#else
66#define do_swap_account (0)
67#endif
68
d2265e6f
KH
69/*
70 * Per memcg event counter is incremented at every pagein/pageout. This counter
71 * is used for trigger some periodic events. This is straightforward and better
72 * than using jiffies etc. to handle periodic memcg event.
73 *
74 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
75 */
76#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
77#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 78
d52aa412
KH
79/*
80 * Statistics for memory cgroup.
81 */
82enum mem_cgroup_stat_index {
83 /*
84 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 */
86 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 87 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 88 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
89 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
90 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 91 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
d2265e6f 92 MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */
d52aa412
KH
93
94 MEM_CGROUP_STAT_NSTATS,
95};
96
97struct mem_cgroup_stat_cpu {
98 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
99};
100
6d12e2d8
KH
101/*
102 * per-zone information in memory controller.
103 */
6d12e2d8 104struct mem_cgroup_per_zone {
072c56c1
KH
105 /*
106 * spin_lock to protect the per cgroup LRU
107 */
b69408e8
CL
108 struct list_head lists[NR_LRU_LISTS];
109 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
110
111 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
112 struct rb_node tree_node; /* RB tree node */
113 unsigned long long usage_in_excess;/* Set to the value by which */
114 /* the soft limit is exceeded*/
115 bool on_tree;
4e416953
BS
116 struct mem_cgroup *mem; /* Back pointer, we cannot */
117 /* use container_of */
6d12e2d8
KH
118};
119/* Macro for accessing counter */
120#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
121
122struct mem_cgroup_per_node {
123 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
124};
125
126struct mem_cgroup_lru_info {
127 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
128};
129
f64c3f54
BS
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
2e72b634
KS
150struct mem_cgroup_threshold {
151 struct eventfd_ctx *eventfd;
152 u64 threshold;
153};
154
9490ff27 155/* For threshold */
2e72b634
KS
156struct mem_cgroup_threshold_ary {
157 /* An array index points to threshold just below usage. */
5407a562 158 int current_threshold;
2e72b634
KS
159 /* Size of entries[] */
160 unsigned int size;
161 /* Array of thresholds */
162 struct mem_cgroup_threshold entries[0];
163};
2c488db2
KS
164
165struct mem_cgroup_thresholds {
166 /* Primary thresholds array */
167 struct mem_cgroup_threshold_ary *primary;
168 /*
169 * Spare threshold array.
170 * This is needed to make mem_cgroup_unregister_event() "never fail".
171 * It must be able to store at least primary->size - 1 entries.
172 */
173 struct mem_cgroup_threshold_ary *spare;
174};
175
9490ff27
KH
176/* for OOM */
177struct mem_cgroup_eventfd_list {
178 struct list_head list;
179 struct eventfd_ctx *eventfd;
180};
2e72b634 181
2e72b634 182static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 183static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 184
8cdea7c0
BS
185/*
186 * The memory controller data structure. The memory controller controls both
187 * page cache and RSS per cgroup. We would eventually like to provide
188 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
189 * to help the administrator determine what knobs to tune.
190 *
191 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
192 * we hit the water mark. May be even add a low water mark, such that
193 * no reclaim occurs from a cgroup at it's low water mark, this is
194 * a feature that will be implemented much later in the future.
8cdea7c0
BS
195 */
196struct mem_cgroup {
197 struct cgroup_subsys_state css;
198 /*
199 * the counter to account for memory usage
200 */
201 struct res_counter res;
8c7c6e34
KH
202 /*
203 * the counter to account for mem+swap usage.
204 */
205 struct res_counter memsw;
78fb7466
PE
206 /*
207 * Per cgroup active and inactive list, similar to the
208 * per zone LRU lists.
78fb7466 209 */
6d12e2d8 210 struct mem_cgroup_lru_info info;
072c56c1 211
2733c06a
KM
212 /*
213 protect against reclaim related member.
214 */
215 spinlock_t reclaim_param_lock;
216
6d61ef40 217 /*
af901ca1 218 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 219 * reclaimed from.
6d61ef40 220 */
04046e1a 221 int last_scanned_child;
18f59ea7
BS
222 /*
223 * Should the accounting and control be hierarchical, per subtree?
224 */
225 bool use_hierarchy;
867578cb 226 atomic_t oom_lock;
8c7c6e34 227 atomic_t refcnt;
14797e23 228
a7885eb8 229 unsigned int swappiness;
3c11ecf4
KH
230 /* OOM-Killer disable */
231 int oom_kill_disable;
a7885eb8 232
22a668d7
KH
233 /* set when res.limit == memsw.limit */
234 bool memsw_is_minimum;
235
2e72b634
KS
236 /* protect arrays of thresholds */
237 struct mutex thresholds_lock;
238
239 /* thresholds for memory usage. RCU-protected */
2c488db2 240 struct mem_cgroup_thresholds thresholds;
907860ed 241
2e72b634 242 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 243 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 244
9490ff27
KH
245 /* For oom notifier event fd */
246 struct list_head oom_notify;
247
7dc74be0
DN
248 /*
249 * Should we move charges of a task when a task is moved into this
250 * mem_cgroup ? And what type of charges should we move ?
251 */
252 unsigned long move_charge_at_immigrate;
d52aa412 253 /*
c62b1a3b 254 * percpu counter.
d52aa412 255 */
c62b1a3b 256 struct mem_cgroup_stat_cpu *stat;
8cdea7c0
BS
257};
258
7dc74be0
DN
259/* Stuffs for move charges at task migration. */
260/*
261 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
262 * left-shifted bitmap of these types.
263 */
264enum move_type {
4ffef5fe 265 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 266 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
267 NR_MOVE_TYPE,
268};
269
4ffef5fe
DN
270/* "mc" and its members are protected by cgroup_mutex */
271static struct move_charge_struct {
2bd9bb20 272 spinlock_t lock; /* for from, to, moving_task */
4ffef5fe
DN
273 struct mem_cgroup *from;
274 struct mem_cgroup *to;
275 unsigned long precharge;
854ffa8d 276 unsigned long moved_charge;
483c30b5 277 unsigned long moved_swap;
8033b97c
DN
278 struct task_struct *moving_task; /* a task moving charges */
279 wait_queue_head_t waitq; /* a waitq for other context */
280} mc = {
2bd9bb20 281 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
282 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
283};
4ffef5fe 284
90254a65
DN
285static bool move_anon(void)
286{
287 return test_bit(MOVE_CHARGE_TYPE_ANON,
288 &mc.to->move_charge_at_immigrate);
289}
290
87946a72
DN
291static bool move_file(void)
292{
293 return test_bit(MOVE_CHARGE_TYPE_FILE,
294 &mc.to->move_charge_at_immigrate);
295}
296
4e416953
BS
297/*
298 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
299 * limit reclaim to prevent infinite loops, if they ever occur.
300 */
301#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
302#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
303
217bc319
KH
304enum charge_type {
305 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
306 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 307 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 308 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 309 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 310 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
311 NR_CHARGE_TYPE,
312};
313
52d4b9ac
KH
314/* only for here (for easy reading.) */
315#define PCGF_CACHE (1UL << PCG_CACHE)
316#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 317#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
318/* Not used, but added here for completeness */
319#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 320
8c7c6e34
KH
321/* for encoding cft->private value on file */
322#define _MEM (0)
323#define _MEMSWAP (1)
9490ff27 324#define _OOM_TYPE (2)
8c7c6e34
KH
325#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
326#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
327#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
328/* Used for OOM nofiier */
329#define OOM_CONTROL (0)
8c7c6e34 330
75822b44
BS
331/*
332 * Reclaim flags for mem_cgroup_hierarchical_reclaim
333 */
334#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
335#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
336#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
337#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
338#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
339#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 340
8c7c6e34
KH
341static void mem_cgroup_get(struct mem_cgroup *mem);
342static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 343static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 344static void drain_all_stock_async(void);
8c7c6e34 345
f64c3f54
BS
346static struct mem_cgroup_per_zone *
347mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
348{
349 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
350}
351
d324236b
WF
352struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
353{
354 return &mem->css;
355}
356
f64c3f54
BS
357static struct mem_cgroup_per_zone *
358page_cgroup_zoneinfo(struct page_cgroup *pc)
359{
360 struct mem_cgroup *mem = pc->mem_cgroup;
361 int nid = page_cgroup_nid(pc);
362 int zid = page_cgroup_zid(pc);
363
364 if (!mem)
365 return NULL;
366
367 return mem_cgroup_zoneinfo(mem, nid, zid);
368}
369
370static struct mem_cgroup_tree_per_zone *
371soft_limit_tree_node_zone(int nid, int zid)
372{
373 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
374}
375
376static struct mem_cgroup_tree_per_zone *
377soft_limit_tree_from_page(struct page *page)
378{
379 int nid = page_to_nid(page);
380 int zid = page_zonenum(page);
381
382 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383}
384
385static void
4e416953 386__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 387 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
388 struct mem_cgroup_tree_per_zone *mctz,
389 unsigned long long new_usage_in_excess)
f64c3f54
BS
390{
391 struct rb_node **p = &mctz->rb_root.rb_node;
392 struct rb_node *parent = NULL;
393 struct mem_cgroup_per_zone *mz_node;
394
395 if (mz->on_tree)
396 return;
397
ef8745c1
KH
398 mz->usage_in_excess = new_usage_in_excess;
399 if (!mz->usage_in_excess)
400 return;
f64c3f54
BS
401 while (*p) {
402 parent = *p;
403 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
404 tree_node);
405 if (mz->usage_in_excess < mz_node->usage_in_excess)
406 p = &(*p)->rb_left;
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
414 rb_link_node(&mz->tree_node, parent, p);
415 rb_insert_color(&mz->tree_node, &mctz->rb_root);
416 mz->on_tree = true;
4e416953
BS
417}
418
419static void
420__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
421 struct mem_cgroup_per_zone *mz,
422 struct mem_cgroup_tree_per_zone *mctz)
423{
424 if (!mz->on_tree)
425 return;
426 rb_erase(&mz->tree_node, &mctz->rb_root);
427 mz->on_tree = false;
428}
429
f64c3f54
BS
430static void
431mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
432 struct mem_cgroup_per_zone *mz,
433 struct mem_cgroup_tree_per_zone *mctz)
434{
435 spin_lock(&mctz->lock);
4e416953 436 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
437 spin_unlock(&mctz->lock);
438}
439
f64c3f54
BS
440
441static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
442{
ef8745c1 443 unsigned long long excess;
f64c3f54
BS
444 struct mem_cgroup_per_zone *mz;
445 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
446 int nid = page_to_nid(page);
447 int zid = page_zonenum(page);
f64c3f54
BS
448 mctz = soft_limit_tree_from_page(page);
449
450 /*
4e649152
KH
451 * Necessary to update all ancestors when hierarchy is used.
452 * because their event counter is not touched.
f64c3f54 453 */
4e649152
KH
454 for (; mem; mem = parent_mem_cgroup(mem)) {
455 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 456 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
457 /*
458 * We have to update the tree if mz is on RB-tree or
459 * mem is over its softlimit.
460 */
ef8745c1 461 if (excess || mz->on_tree) {
4e649152
KH
462 spin_lock(&mctz->lock);
463 /* if on-tree, remove it */
464 if (mz->on_tree)
465 __mem_cgroup_remove_exceeded(mem, mz, mctz);
466 /*
ef8745c1
KH
467 * Insert again. mz->usage_in_excess will be updated.
468 * If excess is 0, no tree ops.
4e649152 469 */
ef8745c1 470 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
471 spin_unlock(&mctz->lock);
472 }
f64c3f54
BS
473 }
474}
475
476static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
477{
478 int node, zone;
479 struct mem_cgroup_per_zone *mz;
480 struct mem_cgroup_tree_per_zone *mctz;
481
482 for_each_node_state(node, N_POSSIBLE) {
483 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
484 mz = mem_cgroup_zoneinfo(mem, node, zone);
485 mctz = soft_limit_tree_node_zone(node, zone);
486 mem_cgroup_remove_exceeded(mem, mz, mctz);
487 }
488 }
489}
490
4e416953
BS
491static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
492{
493 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
494}
495
496static struct mem_cgroup_per_zone *
497__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
498{
499 struct rb_node *rightmost = NULL;
26251eaf 500 struct mem_cgroup_per_zone *mz;
4e416953
BS
501
502retry:
26251eaf 503 mz = NULL;
4e416953
BS
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
507
508 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
509 /*
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
513 */
514 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
515 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
516 !css_tryget(&mz->mem->css))
517 goto retry;
518done:
519 return mz;
520}
521
522static struct mem_cgroup_per_zone *
523mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525 struct mem_cgroup_per_zone *mz;
526
527 spin_lock(&mctz->lock);
528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 spin_unlock(&mctz->lock);
530 return mz;
531}
532
c62b1a3b
KH
533static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
534 enum mem_cgroup_stat_index idx)
535{
536 int cpu;
537 s64 val = 0;
538
539 for_each_possible_cpu(cpu)
540 val += per_cpu(mem->stat->count[idx], cpu);
541 return val;
542}
543
544static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
545{
546 s64 ret;
547
548 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
549 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
550 return ret;
551}
552
0c3e73e8
BS
553static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
554 bool charge)
555{
556 int val = (charge) ? 1 : -1;
c62b1a3b 557 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
558}
559
c05555b5
KH
560static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
561 struct page_cgroup *pc,
562 bool charge)
d52aa412 563{
0c3e73e8 564 int val = (charge) ? 1 : -1;
d52aa412 565
c62b1a3b
KH
566 preempt_disable();
567
c05555b5 568 if (PageCgroupCache(pc))
c62b1a3b 569 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
d52aa412 570 else
c62b1a3b 571 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
55e462b0
BR
572
573 if (charge)
c62b1a3b 574 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
55e462b0 575 else
c62b1a3b 576 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
d2265e6f 577 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
2e72b634 578
c62b1a3b 579 preempt_enable();
6d12e2d8
KH
580}
581
14067bb3 582static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 583 enum lru_list idx)
6d12e2d8
KH
584{
585 int nid, zid;
586 struct mem_cgroup_per_zone *mz;
587 u64 total = 0;
588
589 for_each_online_node(nid)
590 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
591 mz = mem_cgroup_zoneinfo(mem, nid, zid);
592 total += MEM_CGROUP_ZSTAT(mz, idx);
593 }
594 return total;
d52aa412
KH
595}
596
d2265e6f
KH
597static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
598{
599 s64 val;
600
601 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
602
603 return !(val & ((1 << event_mask_shift) - 1));
604}
605
606/*
607 * Check events in order.
608 *
609 */
610static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
611{
612 /* threshold event is triggered in finer grain than soft limit */
613 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
614 mem_cgroup_threshold(mem);
615 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
616 mem_cgroup_update_tree(mem, page);
617 }
618}
619
d5b69e38 620static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
621{
622 return container_of(cgroup_subsys_state(cont,
623 mem_cgroup_subsys_id), struct mem_cgroup,
624 css);
625}
626
cf475ad2 627struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 628{
31a78f23
BS
629 /*
630 * mm_update_next_owner() may clear mm->owner to NULL
631 * if it races with swapoff, page migration, etc.
632 * So this can be called with p == NULL.
633 */
634 if (unlikely(!p))
635 return NULL;
636
78fb7466
PE
637 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
638 struct mem_cgroup, css);
639}
640
54595fe2
KH
641static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
642{
643 struct mem_cgroup *mem = NULL;
0b7f569e
KH
644
645 if (!mm)
646 return NULL;
54595fe2
KH
647 /*
648 * Because we have no locks, mm->owner's may be being moved to other
649 * cgroup. We use css_tryget() here even if this looks
650 * pessimistic (rather than adding locks here).
651 */
652 rcu_read_lock();
653 do {
654 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
655 if (unlikely(!mem))
656 break;
657 } while (!css_tryget(&mem->css));
658 rcu_read_unlock();
659 return mem;
660}
661
14067bb3
KH
662/*
663 * Call callback function against all cgroup under hierarchy tree.
664 */
665static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
666 int (*func)(struct mem_cgroup *, void *))
667{
668 int found, ret, nextid;
669 struct cgroup_subsys_state *css;
670 struct mem_cgroup *mem;
671
672 if (!root->use_hierarchy)
673 return (*func)(root, data);
674
675 nextid = 1;
676 do {
677 ret = 0;
678 mem = NULL;
679
680 rcu_read_lock();
681 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
682 &found);
683 if (css && css_tryget(css))
684 mem = container_of(css, struct mem_cgroup, css);
685 rcu_read_unlock();
686
687 if (mem) {
688 ret = (*func)(mem, data);
689 css_put(&mem->css);
690 }
691 nextid = found + 1;
692 } while (!ret && css);
693
694 return ret;
695}
696
4b3bde4c
BS
697static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
698{
699 return (mem == root_mem_cgroup);
700}
701
08e552c6
KH
702/*
703 * Following LRU functions are allowed to be used without PCG_LOCK.
704 * Operations are called by routine of global LRU independently from memcg.
705 * What we have to take care of here is validness of pc->mem_cgroup.
706 *
707 * Changes to pc->mem_cgroup happens when
708 * 1. charge
709 * 2. moving account
710 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
711 * It is added to LRU before charge.
712 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
713 * When moving account, the page is not on LRU. It's isolated.
714 */
4f98a2fe 715
08e552c6
KH
716void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
717{
718 struct page_cgroup *pc;
08e552c6 719 struct mem_cgroup_per_zone *mz;
6d12e2d8 720
f8d66542 721 if (mem_cgroup_disabled())
08e552c6
KH
722 return;
723 pc = lookup_page_cgroup(page);
724 /* can happen while we handle swapcache. */
4b3bde4c 725 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 726 return;
4b3bde4c 727 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
728 /*
729 * We don't check PCG_USED bit. It's cleared when the "page" is finally
730 * removed from global LRU.
731 */
08e552c6 732 mz = page_cgroup_zoneinfo(pc);
b69408e8 733 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
734 if (mem_cgroup_is_root(pc->mem_cgroup))
735 return;
736 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
737 list_del_init(&pc->lru);
738 return;
6d12e2d8
KH
739}
740
08e552c6 741void mem_cgroup_del_lru(struct page *page)
6d12e2d8 742{
08e552c6
KH
743 mem_cgroup_del_lru_list(page, page_lru(page));
744}
b69408e8 745
08e552c6
KH
746void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
747{
748 struct mem_cgroup_per_zone *mz;
749 struct page_cgroup *pc;
b69408e8 750
f8d66542 751 if (mem_cgroup_disabled())
08e552c6 752 return;
6d12e2d8 753
08e552c6 754 pc = lookup_page_cgroup(page);
bd112db8
DN
755 /*
756 * Used bit is set without atomic ops but after smp_wmb().
757 * For making pc->mem_cgroup visible, insert smp_rmb() here.
758 */
08e552c6 759 smp_rmb();
4b3bde4c
BS
760 /* unused or root page is not rotated. */
761 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
762 return;
763 mz = page_cgroup_zoneinfo(pc);
764 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
765}
766
08e552c6 767void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 768{
08e552c6
KH
769 struct page_cgroup *pc;
770 struct mem_cgroup_per_zone *mz;
6d12e2d8 771
f8d66542 772 if (mem_cgroup_disabled())
08e552c6
KH
773 return;
774 pc = lookup_page_cgroup(page);
4b3bde4c 775 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
776 /*
777 * Used bit is set without atomic ops but after smp_wmb().
778 * For making pc->mem_cgroup visible, insert smp_rmb() here.
779 */
08e552c6
KH
780 smp_rmb();
781 if (!PageCgroupUsed(pc))
894bc310 782 return;
b69408e8 783
08e552c6 784 mz = page_cgroup_zoneinfo(pc);
b69408e8 785 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
786 SetPageCgroupAcctLRU(pc);
787 if (mem_cgroup_is_root(pc->mem_cgroup))
788 return;
08e552c6
KH
789 list_add(&pc->lru, &mz->lists[lru]);
790}
544122e5 791
08e552c6 792/*
544122e5
KH
793 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
794 * lru because the page may.be reused after it's fully uncharged (because of
795 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
796 * it again. This function is only used to charge SwapCache. It's done under
797 * lock_page and expected that zone->lru_lock is never held.
08e552c6 798 */
544122e5 799static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 800{
544122e5
KH
801 unsigned long flags;
802 struct zone *zone = page_zone(page);
803 struct page_cgroup *pc = lookup_page_cgroup(page);
804
805 spin_lock_irqsave(&zone->lru_lock, flags);
806 /*
807 * Forget old LRU when this page_cgroup is *not* used. This Used bit
808 * is guarded by lock_page() because the page is SwapCache.
809 */
810 if (!PageCgroupUsed(pc))
811 mem_cgroup_del_lru_list(page, page_lru(page));
812 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
813}
814
544122e5
KH
815static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
816{
817 unsigned long flags;
818 struct zone *zone = page_zone(page);
819 struct page_cgroup *pc = lookup_page_cgroup(page);
820
821 spin_lock_irqsave(&zone->lru_lock, flags);
822 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 823 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
824 mem_cgroup_add_lru_list(page, page_lru(page));
825 spin_unlock_irqrestore(&zone->lru_lock, flags);
826}
827
828
08e552c6
KH
829void mem_cgroup_move_lists(struct page *page,
830 enum lru_list from, enum lru_list to)
831{
f8d66542 832 if (mem_cgroup_disabled())
08e552c6
KH
833 return;
834 mem_cgroup_del_lru_list(page, from);
835 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
836}
837
4c4a2214
DR
838int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
839{
840 int ret;
0b7f569e 841 struct mem_cgroup *curr = NULL;
158e0a2d 842 struct task_struct *p;
4c4a2214 843
158e0a2d
KH
844 p = find_lock_task_mm(task);
845 if (!p)
846 return 0;
847 curr = try_get_mem_cgroup_from_mm(p->mm);
848 task_unlock(p);
0b7f569e
KH
849 if (!curr)
850 return 0;
d31f56db
DN
851 /*
852 * We should check use_hierarchy of "mem" not "curr". Because checking
853 * use_hierarchy of "curr" here make this function true if hierarchy is
854 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
855 * hierarchy(even if use_hierarchy is disabled in "mem").
856 */
857 if (mem->use_hierarchy)
0b7f569e
KH
858 ret = css_is_ancestor(&curr->css, &mem->css);
859 else
860 ret = (curr == mem);
861 css_put(&curr->css);
4c4a2214
DR
862 return ret;
863}
864
c772be93 865static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
866{
867 unsigned long active;
868 unsigned long inactive;
c772be93
KM
869 unsigned long gb;
870 unsigned long inactive_ratio;
14797e23 871
14067bb3
KH
872 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
873 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 874
c772be93
KM
875 gb = (inactive + active) >> (30 - PAGE_SHIFT);
876 if (gb)
877 inactive_ratio = int_sqrt(10 * gb);
878 else
879 inactive_ratio = 1;
880
881 if (present_pages) {
882 present_pages[0] = inactive;
883 present_pages[1] = active;
884 }
885
886 return inactive_ratio;
887}
888
889int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
890{
891 unsigned long active;
892 unsigned long inactive;
893 unsigned long present_pages[2];
894 unsigned long inactive_ratio;
895
896 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
897
898 inactive = present_pages[0];
899 active = present_pages[1];
900
901 if (inactive * inactive_ratio < active)
14797e23
KM
902 return 1;
903
904 return 0;
905}
906
56e49d21
RR
907int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
908{
909 unsigned long active;
910 unsigned long inactive;
911
912 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
913 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
914
915 return (active > inactive);
916}
917
a3d8e054
KM
918unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
919 struct zone *zone,
920 enum lru_list lru)
921{
922 int nid = zone->zone_pgdat->node_id;
923 int zid = zone_idx(zone);
924 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
925
926 return MEM_CGROUP_ZSTAT(mz, lru);
927}
928
3e2f41f1
KM
929struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
930 struct zone *zone)
931{
932 int nid = zone->zone_pgdat->node_id;
933 int zid = zone_idx(zone);
934 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
935
936 return &mz->reclaim_stat;
937}
938
939struct zone_reclaim_stat *
940mem_cgroup_get_reclaim_stat_from_page(struct page *page)
941{
942 struct page_cgroup *pc;
943 struct mem_cgroup_per_zone *mz;
944
945 if (mem_cgroup_disabled())
946 return NULL;
947
948 pc = lookup_page_cgroup(page);
bd112db8
DN
949 /*
950 * Used bit is set without atomic ops but after smp_wmb().
951 * For making pc->mem_cgroup visible, insert smp_rmb() here.
952 */
953 smp_rmb();
954 if (!PageCgroupUsed(pc))
955 return NULL;
956
3e2f41f1
KM
957 mz = page_cgroup_zoneinfo(pc);
958 if (!mz)
959 return NULL;
960
961 return &mz->reclaim_stat;
962}
963
66e1707b
BS
964unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
965 struct list_head *dst,
966 unsigned long *scanned, int order,
967 int mode, struct zone *z,
968 struct mem_cgroup *mem_cont,
4f98a2fe 969 int active, int file)
66e1707b
BS
970{
971 unsigned long nr_taken = 0;
972 struct page *page;
973 unsigned long scan;
974 LIST_HEAD(pc_list);
975 struct list_head *src;
ff7283fa 976 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
977 int nid = z->zone_pgdat->node_id;
978 int zid = zone_idx(z);
979 struct mem_cgroup_per_zone *mz;
b7c46d15 980 int lru = LRU_FILE * file + active;
2ffebca6 981 int ret;
66e1707b 982
cf475ad2 983 BUG_ON(!mem_cont);
1ecaab2b 984 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 985 src = &mz->lists[lru];
66e1707b 986
ff7283fa
KH
987 scan = 0;
988 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 989 if (scan >= nr_to_scan)
ff7283fa 990 break;
08e552c6
KH
991
992 page = pc->page;
52d4b9ac
KH
993 if (unlikely(!PageCgroupUsed(pc)))
994 continue;
436c6541 995 if (unlikely(!PageLRU(page)))
ff7283fa 996 continue;
ff7283fa 997
436c6541 998 scan++;
2ffebca6
KH
999 ret = __isolate_lru_page(page, mode, file);
1000 switch (ret) {
1001 case 0:
66e1707b 1002 list_move(&page->lru, dst);
2ffebca6 1003 mem_cgroup_del_lru(page);
66e1707b 1004 nr_taken++;
2ffebca6
KH
1005 break;
1006 case -EBUSY:
1007 /* we don't affect global LRU but rotate in our LRU */
1008 mem_cgroup_rotate_lru_list(page, page_lru(page));
1009 break;
1010 default:
1011 break;
66e1707b
BS
1012 }
1013 }
1014
66e1707b 1015 *scanned = scan;
cc8e970c
KM
1016
1017 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1018 0, 0, 0, mode);
1019
66e1707b
BS
1020 return nr_taken;
1021}
1022
6d61ef40
BS
1023#define mem_cgroup_from_res_counter(counter, member) \
1024 container_of(counter, struct mem_cgroup, member)
1025
b85a96c0
DN
1026static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1027{
1028 if (do_swap_account) {
1029 if (res_counter_check_under_limit(&mem->res) &&
1030 res_counter_check_under_limit(&mem->memsw))
1031 return true;
1032 } else
1033 if (res_counter_check_under_limit(&mem->res))
1034 return true;
1035 return false;
1036}
1037
a7885eb8
KM
1038static unsigned int get_swappiness(struct mem_cgroup *memcg)
1039{
1040 struct cgroup *cgrp = memcg->css.cgroup;
1041 unsigned int swappiness;
1042
1043 /* root ? */
1044 if (cgrp->parent == NULL)
1045 return vm_swappiness;
1046
1047 spin_lock(&memcg->reclaim_param_lock);
1048 swappiness = memcg->swappiness;
1049 spin_unlock(&memcg->reclaim_param_lock);
1050
1051 return swappiness;
1052}
1053
4b534334
KH
1054/* A routine for testing mem is not under move_account */
1055
1056static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1057{
2bd9bb20
KH
1058 struct mem_cgroup *from;
1059 struct mem_cgroup *to;
4b534334 1060 bool ret = false;
2bd9bb20
KH
1061 /*
1062 * Unlike task_move routines, we access mc.to, mc.from not under
1063 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1064 */
1065 spin_lock(&mc.lock);
1066 from = mc.from;
1067 to = mc.to;
1068 if (!from)
1069 goto unlock;
1070 if (from == mem || to == mem
1071 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1072 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1073 ret = true;
1074unlock:
1075 spin_unlock(&mc.lock);
4b534334
KH
1076 return ret;
1077}
1078
1079static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1080{
1081 if (mc.moving_task && current != mc.moving_task) {
1082 if (mem_cgroup_under_move(mem)) {
1083 DEFINE_WAIT(wait);
1084 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1085 /* moving charge context might have finished. */
1086 if (mc.moving_task)
1087 schedule();
1088 finish_wait(&mc.waitq, &wait);
1089 return true;
1090 }
1091 }
1092 return false;
1093}
1094
81d39c20
KH
1095static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1096{
1097 int *val = data;
1098 (*val)++;
1099 return 0;
1100}
e222432b
BS
1101
1102/**
6a6135b6 1103 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1104 * @memcg: The memory cgroup that went over limit
1105 * @p: Task that is going to be killed
1106 *
1107 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1108 * enabled
1109 */
1110void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1111{
1112 struct cgroup *task_cgrp;
1113 struct cgroup *mem_cgrp;
1114 /*
1115 * Need a buffer in BSS, can't rely on allocations. The code relies
1116 * on the assumption that OOM is serialized for memory controller.
1117 * If this assumption is broken, revisit this code.
1118 */
1119 static char memcg_name[PATH_MAX];
1120 int ret;
1121
d31f56db 1122 if (!memcg || !p)
e222432b
BS
1123 return;
1124
1125
1126 rcu_read_lock();
1127
1128 mem_cgrp = memcg->css.cgroup;
1129 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1130
1131 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1132 if (ret < 0) {
1133 /*
1134 * Unfortunately, we are unable to convert to a useful name
1135 * But we'll still print out the usage information
1136 */
1137 rcu_read_unlock();
1138 goto done;
1139 }
1140 rcu_read_unlock();
1141
1142 printk(KERN_INFO "Task in %s killed", memcg_name);
1143
1144 rcu_read_lock();
1145 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1146 if (ret < 0) {
1147 rcu_read_unlock();
1148 goto done;
1149 }
1150 rcu_read_unlock();
1151
1152 /*
1153 * Continues from above, so we don't need an KERN_ level
1154 */
1155 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1156done:
1157
1158 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1159 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1160 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1161 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1162 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1163 "failcnt %llu\n",
1164 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1165 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1166 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1167}
1168
81d39c20
KH
1169/*
1170 * This function returns the number of memcg under hierarchy tree. Returns
1171 * 1(self count) if no children.
1172 */
1173static int mem_cgroup_count_children(struct mem_cgroup *mem)
1174{
1175 int num = 0;
1176 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1177 return num;
1178}
1179
a63d83f4
DR
1180/*
1181 * Return the memory (and swap, if configured) limit for a memcg.
1182 */
1183u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1184{
1185 u64 limit;
1186 u64 memsw;
1187
1188 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1189 total_swap_pages;
1190 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1191 /*
1192 * If memsw is finite and limits the amount of swap space available
1193 * to this memcg, return that limit.
1194 */
1195 return min(limit, memsw);
1196}
1197
6d61ef40 1198/*
04046e1a
KH
1199 * Visit the first child (need not be the first child as per the ordering
1200 * of the cgroup list, since we track last_scanned_child) of @mem and use
1201 * that to reclaim free pages from.
1202 */
1203static struct mem_cgroup *
1204mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1205{
1206 struct mem_cgroup *ret = NULL;
1207 struct cgroup_subsys_state *css;
1208 int nextid, found;
1209
1210 if (!root_mem->use_hierarchy) {
1211 css_get(&root_mem->css);
1212 ret = root_mem;
1213 }
1214
1215 while (!ret) {
1216 rcu_read_lock();
1217 nextid = root_mem->last_scanned_child + 1;
1218 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1219 &found);
1220 if (css && css_tryget(css))
1221 ret = container_of(css, struct mem_cgroup, css);
1222
1223 rcu_read_unlock();
1224 /* Updates scanning parameter */
1225 spin_lock(&root_mem->reclaim_param_lock);
1226 if (!css) {
1227 /* this means start scan from ID:1 */
1228 root_mem->last_scanned_child = 0;
1229 } else
1230 root_mem->last_scanned_child = found;
1231 spin_unlock(&root_mem->reclaim_param_lock);
1232 }
1233
1234 return ret;
1235}
1236
1237/*
1238 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1239 * we reclaimed from, so that we don't end up penalizing one child extensively
1240 * based on its position in the children list.
6d61ef40
BS
1241 *
1242 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1243 *
1244 * We give up and return to the caller when we visit root_mem twice.
1245 * (other groups can be removed while we're walking....)
81d39c20
KH
1246 *
1247 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1248 */
1249static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1250 struct zone *zone,
75822b44
BS
1251 gfp_t gfp_mask,
1252 unsigned long reclaim_options)
6d61ef40 1253{
04046e1a
KH
1254 struct mem_cgroup *victim;
1255 int ret, total = 0;
1256 int loop = 0;
75822b44
BS
1257 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1258 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1259 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1260 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1261
22a668d7
KH
1262 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1263 if (root_mem->memsw_is_minimum)
1264 noswap = true;
1265
4e416953 1266 while (1) {
04046e1a 1267 victim = mem_cgroup_select_victim(root_mem);
4e416953 1268 if (victim == root_mem) {
04046e1a 1269 loop++;
cdec2e42
KH
1270 if (loop >= 1)
1271 drain_all_stock_async();
4e416953
BS
1272 if (loop >= 2) {
1273 /*
1274 * If we have not been able to reclaim
1275 * anything, it might because there are
1276 * no reclaimable pages under this hierarchy
1277 */
1278 if (!check_soft || !total) {
1279 css_put(&victim->css);
1280 break;
1281 }
1282 /*
1283 * We want to do more targetted reclaim.
1284 * excess >> 2 is not to excessive so as to
1285 * reclaim too much, nor too less that we keep
1286 * coming back to reclaim from this cgroup
1287 */
1288 if (total >= (excess >> 2) ||
1289 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1290 css_put(&victim->css);
1291 break;
1292 }
1293 }
1294 }
c62b1a3b 1295 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1296 /* this cgroup's local usage == 0 */
1297 css_put(&victim->css);
6d61ef40
BS
1298 continue;
1299 }
04046e1a 1300 /* we use swappiness of local cgroup */
4e416953
BS
1301 if (check_soft)
1302 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1303 noswap, get_swappiness(victim), zone,
1304 zone->zone_pgdat->node_id);
1305 else
1306 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1307 noswap, get_swappiness(victim));
04046e1a 1308 css_put(&victim->css);
81d39c20
KH
1309 /*
1310 * At shrinking usage, we can't check we should stop here or
1311 * reclaim more. It's depends on callers. last_scanned_child
1312 * will work enough for keeping fairness under tree.
1313 */
1314 if (shrink)
1315 return ret;
04046e1a 1316 total += ret;
4e416953
BS
1317 if (check_soft) {
1318 if (res_counter_check_under_soft_limit(&root_mem->res))
1319 return total;
1320 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1321 return 1 + total;
6d61ef40 1322 }
04046e1a 1323 return total;
6d61ef40
BS
1324}
1325
867578cb 1326static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
a636b327 1327{
867578cb
KH
1328 int *val = (int *)data;
1329 int x;
1330 /*
1331 * Logically, we can stop scanning immediately when we find
1332 * a memcg is already locked. But condidering unlock ops and
1333 * creation/removal of memcg, scan-all is simple operation.
1334 */
1335 x = atomic_inc_return(&mem->oom_lock);
1336 *val = max(x, *val);
1337 return 0;
1338}
1339/*
1340 * Check OOM-Killer is already running under our hierarchy.
1341 * If someone is running, return false.
1342 */
1343static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1344{
1345 int lock_count = 0;
a636b327 1346
867578cb
KH
1347 mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1348
1349 if (lock_count == 1)
1350 return true;
1351 return false;
a636b327 1352}
0b7f569e 1353
867578cb 1354static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
0b7f569e 1355{
867578cb
KH
1356 /*
1357 * When a new child is created while the hierarchy is under oom,
1358 * mem_cgroup_oom_lock() may not be called. We have to use
1359 * atomic_add_unless() here.
1360 */
1361 atomic_add_unless(&mem->oom_lock, -1, 0);
0b7f569e
KH
1362 return 0;
1363}
1364
867578cb
KH
1365static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1366{
1367 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1368}
1369
1370static DEFINE_MUTEX(memcg_oom_mutex);
1371static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1372
dc98df5a
KH
1373struct oom_wait_info {
1374 struct mem_cgroup *mem;
1375 wait_queue_t wait;
1376};
1377
1378static int memcg_oom_wake_function(wait_queue_t *wait,
1379 unsigned mode, int sync, void *arg)
1380{
1381 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1382 struct oom_wait_info *oom_wait_info;
1383
1384 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1385
1386 if (oom_wait_info->mem == wake_mem)
1387 goto wakeup;
1388 /* if no hierarchy, no match */
1389 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1390 return 0;
1391 /*
1392 * Both of oom_wait_info->mem and wake_mem are stable under us.
1393 * Then we can use css_is_ancestor without taking care of RCU.
1394 */
1395 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1396 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1397 return 0;
1398
1399wakeup:
1400 return autoremove_wake_function(wait, mode, sync, arg);
1401}
1402
1403static void memcg_wakeup_oom(struct mem_cgroup *mem)
1404{
1405 /* for filtering, pass "mem" as argument. */
1406 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1407}
1408
3c11ecf4
KH
1409static void memcg_oom_recover(struct mem_cgroup *mem)
1410{
2bd9bb20 1411 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1412 memcg_wakeup_oom(mem);
1413}
1414
867578cb
KH
1415/*
1416 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1417 */
1418bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1419{
dc98df5a 1420 struct oom_wait_info owait;
3c11ecf4 1421 bool locked, need_to_kill;
867578cb 1422
dc98df5a
KH
1423 owait.mem = mem;
1424 owait.wait.flags = 0;
1425 owait.wait.func = memcg_oom_wake_function;
1426 owait.wait.private = current;
1427 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1428 need_to_kill = true;
867578cb
KH
1429 /* At first, try to OOM lock hierarchy under mem.*/
1430 mutex_lock(&memcg_oom_mutex);
1431 locked = mem_cgroup_oom_lock(mem);
1432 /*
1433 * Even if signal_pending(), we can't quit charge() loop without
1434 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1435 * under OOM is always welcomed, use TASK_KILLABLE here.
1436 */
3c11ecf4
KH
1437 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1438 if (!locked || mem->oom_kill_disable)
1439 need_to_kill = false;
1440 if (locked)
9490ff27 1441 mem_cgroup_oom_notify(mem);
867578cb
KH
1442 mutex_unlock(&memcg_oom_mutex);
1443
3c11ecf4
KH
1444 if (need_to_kill) {
1445 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1446 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1447 } else {
867578cb 1448 schedule();
dc98df5a 1449 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1450 }
1451 mutex_lock(&memcg_oom_mutex);
1452 mem_cgroup_oom_unlock(mem);
dc98df5a 1453 memcg_wakeup_oom(mem);
867578cb
KH
1454 mutex_unlock(&memcg_oom_mutex);
1455
1456 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1457 return false;
1458 /* Give chance to dying process */
1459 schedule_timeout(1);
1460 return true;
0b7f569e
KH
1461}
1462
d69b042f
BS
1463/*
1464 * Currently used to update mapped file statistics, but the routine can be
1465 * generalized to update other statistics as well.
1466 */
d8046582 1467void mem_cgroup_update_file_mapped(struct page *page, int val)
d69b042f
BS
1468{
1469 struct mem_cgroup *mem;
d69b042f
BS
1470 struct page_cgroup *pc;
1471
d69b042f
BS
1472 pc = lookup_page_cgroup(page);
1473 if (unlikely(!pc))
1474 return;
1475
1476 lock_page_cgroup(pc);
1477 mem = pc->mem_cgroup;
8725d541 1478 if (!mem || !PageCgroupUsed(pc))
d69b042f
BS
1479 goto done;
1480
1481 /*
c62b1a3b 1482 * Preemption is already disabled. We can use __this_cpu_xxx
d69b042f 1483 */
8725d541
KH
1484 if (val > 0) {
1485 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1486 SetPageCgroupFileMapped(pc);
1487 } else {
1488 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1489 ClearPageCgroupFileMapped(pc);
1490 }
d69b042f 1491
d69b042f
BS
1492done:
1493 unlock_page_cgroup(pc);
1494}
0b7f569e 1495
cdec2e42
KH
1496/*
1497 * size of first charge trial. "32" comes from vmscan.c's magic value.
1498 * TODO: maybe necessary to use big numbers in big irons.
1499 */
1500#define CHARGE_SIZE (32 * PAGE_SIZE)
1501struct memcg_stock_pcp {
1502 struct mem_cgroup *cached; /* this never be root cgroup */
1503 int charge;
1504 struct work_struct work;
1505};
1506static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1507static atomic_t memcg_drain_count;
1508
1509/*
1510 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1511 * from local stock and true is returned. If the stock is 0 or charges from a
1512 * cgroup which is not current target, returns false. This stock will be
1513 * refilled.
1514 */
1515static bool consume_stock(struct mem_cgroup *mem)
1516{
1517 struct memcg_stock_pcp *stock;
1518 bool ret = true;
1519
1520 stock = &get_cpu_var(memcg_stock);
1521 if (mem == stock->cached && stock->charge)
1522 stock->charge -= PAGE_SIZE;
1523 else /* need to call res_counter_charge */
1524 ret = false;
1525 put_cpu_var(memcg_stock);
1526 return ret;
1527}
1528
1529/*
1530 * Returns stocks cached in percpu to res_counter and reset cached information.
1531 */
1532static void drain_stock(struct memcg_stock_pcp *stock)
1533{
1534 struct mem_cgroup *old = stock->cached;
1535
1536 if (stock->charge) {
1537 res_counter_uncharge(&old->res, stock->charge);
1538 if (do_swap_account)
1539 res_counter_uncharge(&old->memsw, stock->charge);
1540 }
1541 stock->cached = NULL;
1542 stock->charge = 0;
1543}
1544
1545/*
1546 * This must be called under preempt disabled or must be called by
1547 * a thread which is pinned to local cpu.
1548 */
1549static void drain_local_stock(struct work_struct *dummy)
1550{
1551 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1552 drain_stock(stock);
1553}
1554
1555/*
1556 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1557 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1558 */
1559static void refill_stock(struct mem_cgroup *mem, int val)
1560{
1561 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1562
1563 if (stock->cached != mem) { /* reset if necessary */
1564 drain_stock(stock);
1565 stock->cached = mem;
1566 }
1567 stock->charge += val;
1568 put_cpu_var(memcg_stock);
1569}
1570
1571/*
1572 * Tries to drain stocked charges in other cpus. This function is asynchronous
1573 * and just put a work per cpu for draining localy on each cpu. Caller can
1574 * expects some charges will be back to res_counter later but cannot wait for
1575 * it.
1576 */
1577static void drain_all_stock_async(void)
1578{
1579 int cpu;
1580 /* This function is for scheduling "drain" in asynchronous way.
1581 * The result of "drain" is not directly handled by callers. Then,
1582 * if someone is calling drain, we don't have to call drain more.
1583 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1584 * there is a race. We just do loose check here.
1585 */
1586 if (atomic_read(&memcg_drain_count))
1587 return;
1588 /* Notify other cpus that system-wide "drain" is running */
1589 atomic_inc(&memcg_drain_count);
1590 get_online_cpus();
1591 for_each_online_cpu(cpu) {
1592 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1593 schedule_work_on(cpu, &stock->work);
1594 }
1595 put_online_cpus();
1596 atomic_dec(&memcg_drain_count);
1597 /* We don't wait for flush_work */
1598}
1599
1600/* This is a synchronous drain interface. */
1601static void drain_all_stock_sync(void)
1602{
1603 /* called when force_empty is called */
1604 atomic_inc(&memcg_drain_count);
1605 schedule_on_each_cpu(drain_local_stock);
1606 atomic_dec(&memcg_drain_count);
1607}
1608
1609static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1610 unsigned long action,
1611 void *hcpu)
1612{
1613 int cpu = (unsigned long)hcpu;
1614 struct memcg_stock_pcp *stock;
1615
1616 if (action != CPU_DEAD)
1617 return NOTIFY_OK;
1618 stock = &per_cpu(memcg_stock, cpu);
1619 drain_stock(stock);
1620 return NOTIFY_OK;
1621}
1622
4b534334
KH
1623
1624/* See __mem_cgroup_try_charge() for details */
1625enum {
1626 CHARGE_OK, /* success */
1627 CHARGE_RETRY, /* need to retry but retry is not bad */
1628 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1629 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1630 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1631};
1632
1633static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1634 int csize, bool oom_check)
1635{
1636 struct mem_cgroup *mem_over_limit;
1637 struct res_counter *fail_res;
1638 unsigned long flags = 0;
1639 int ret;
1640
1641 ret = res_counter_charge(&mem->res, csize, &fail_res);
1642
1643 if (likely(!ret)) {
1644 if (!do_swap_account)
1645 return CHARGE_OK;
1646 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1647 if (likely(!ret))
1648 return CHARGE_OK;
1649
1650 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1651 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1652 } else
1653 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1654
1655 if (csize > PAGE_SIZE) /* change csize and retry */
1656 return CHARGE_RETRY;
1657
1658 if (!(gfp_mask & __GFP_WAIT))
1659 return CHARGE_WOULDBLOCK;
1660
1661 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1662 gfp_mask, flags);
1663 /*
1664 * try_to_free_mem_cgroup_pages() might not give us a full
1665 * picture of reclaim. Some pages are reclaimed and might be
1666 * moved to swap cache or just unmapped from the cgroup.
1667 * Check the limit again to see if the reclaim reduced the
1668 * current usage of the cgroup before giving up
1669 */
1670 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1671 return CHARGE_RETRY;
1672
1673 /*
1674 * At task move, charge accounts can be doubly counted. So, it's
1675 * better to wait until the end of task_move if something is going on.
1676 */
1677 if (mem_cgroup_wait_acct_move(mem_over_limit))
1678 return CHARGE_RETRY;
1679
1680 /* If we don't need to call oom-killer at el, return immediately */
1681 if (!oom_check)
1682 return CHARGE_NOMEM;
1683 /* check OOM */
1684 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1685 return CHARGE_OOM_DIE;
1686
1687 return CHARGE_RETRY;
1688}
1689
f817ed48
KH
1690/*
1691 * Unlike exported interface, "oom" parameter is added. if oom==true,
1692 * oom-killer can be invoked.
8a9f3ccd 1693 */
f817ed48 1694static int __mem_cgroup_try_charge(struct mm_struct *mm,
4b534334 1695 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
8a9f3ccd 1696{
4b534334
KH
1697 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1698 struct mem_cgroup *mem = NULL;
1699 int ret;
cdec2e42 1700 int csize = CHARGE_SIZE;
a636b327 1701
867578cb
KH
1702 /*
1703 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1704 * in system level. So, allow to go ahead dying process in addition to
1705 * MEMDIE process.
1706 */
1707 if (unlikely(test_thread_flag(TIF_MEMDIE)
1708 || fatal_signal_pending(current)))
1709 goto bypass;
a636b327 1710
8a9f3ccd 1711 /*
3be91277
HD
1712 * We always charge the cgroup the mm_struct belongs to.
1713 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1714 * thread group leader migrates. It's possible that mm is not
1715 * set, if so charge the init_mm (happens for pagecache usage).
1716 */
4b534334
KH
1717 if (*memcg) {
1718 mem = *memcg;
1719 css_get(&mem->css);
1720 } else {
54595fe2 1721 mem = try_get_mem_cgroup_from_mm(mm);
4b534334
KH
1722 if (unlikely(!mem))
1723 return 0;
7a81b88c 1724 *memcg = mem;
e8589cc1 1725 }
54595fe2 1726
46f7e602 1727 VM_BUG_ON(css_is_removed(&mem->css));
cdec2e42
KH
1728 if (mem_cgroup_is_root(mem))
1729 goto done;
8a9f3ccd 1730
4b534334
KH
1731 do {
1732 bool oom_check;
7a81b88c 1733
cdec2e42 1734 if (consume_stock(mem))
4b534334
KH
1735 goto done; /* don't need to fill stock */
1736 /* If killed, bypass charge */
1737 if (fatal_signal_pending(current))
1738 goto bypass;
6d61ef40 1739
4b534334
KH
1740 oom_check = false;
1741 if (oom && !nr_oom_retries) {
1742 oom_check = true;
1743 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 1744 }
66e1707b 1745
4b534334 1746 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 1747
4b534334
KH
1748 switch (ret) {
1749 case CHARGE_OK:
1750 break;
1751 case CHARGE_RETRY: /* not in OOM situation but retry */
1752 csize = PAGE_SIZE;
1753 break;
1754 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1755 goto nomem;
1756 case CHARGE_NOMEM: /* OOM routine works */
867578cb
KH
1757 if (!oom)
1758 goto nomem;
4b534334
KH
1759 /* If oom, we never return -ENOMEM */
1760 nr_oom_retries--;
1761 break;
1762 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
867578cb 1763 goto bypass;
66e1707b 1764 }
4b534334
KH
1765 } while (ret != CHARGE_OK);
1766
cdec2e42
KH
1767 if (csize > PAGE_SIZE)
1768 refill_stock(mem, csize - PAGE_SIZE);
0c3e73e8 1769done:
7a81b88c
KH
1770 return 0;
1771nomem:
1772 css_put(&mem->css);
1773 return -ENOMEM;
867578cb 1774bypass:
4b534334
KH
1775 if (mem)
1776 css_put(&mem->css);
867578cb
KH
1777 *memcg = NULL;
1778 return 0;
7a81b88c 1779}
8a9f3ccd 1780
a3032a2c
DN
1781/*
1782 * Somemtimes we have to undo a charge we got by try_charge().
1783 * This function is for that and do uncharge, put css's refcnt.
1784 * gotten by try_charge().
1785 */
854ffa8d
DN
1786static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1787 unsigned long count)
a3032a2c
DN
1788{
1789 if (!mem_cgroup_is_root(mem)) {
854ffa8d 1790 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 1791 if (do_swap_account)
854ffa8d
DN
1792 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1793 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1794 WARN_ON_ONCE(count > INT_MAX);
1795 __css_put(&mem->css, (int)count);
a3032a2c 1796 }
854ffa8d
DN
1797 /* we don't need css_put for root */
1798}
1799
1800static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1801{
1802 __mem_cgroup_cancel_charge(mem, 1);
a3032a2c
DN
1803}
1804
a3b2d692
KH
1805/*
1806 * A helper function to get mem_cgroup from ID. must be called under
1807 * rcu_read_lock(). The caller must check css_is_removed() or some if
1808 * it's concern. (dropping refcnt from swap can be called against removed
1809 * memcg.)
1810 */
1811static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1812{
1813 struct cgroup_subsys_state *css;
1814
1815 /* ID 0 is unused ID */
1816 if (!id)
1817 return NULL;
1818 css = css_lookup(&mem_cgroup_subsys, id);
1819 if (!css)
1820 return NULL;
1821 return container_of(css, struct mem_cgroup, css);
1822}
1823
e42d9d5d 1824struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 1825{
e42d9d5d 1826 struct mem_cgroup *mem = NULL;
3c776e64 1827 struct page_cgroup *pc;
a3b2d692 1828 unsigned short id;
b5a84319
KH
1829 swp_entry_t ent;
1830
3c776e64
DN
1831 VM_BUG_ON(!PageLocked(page));
1832
3c776e64 1833 pc = lookup_page_cgroup(page);
c0bd3f63 1834 lock_page_cgroup(pc);
a3b2d692 1835 if (PageCgroupUsed(pc)) {
3c776e64 1836 mem = pc->mem_cgroup;
a3b2d692
KH
1837 if (mem && !css_tryget(&mem->css))
1838 mem = NULL;
e42d9d5d 1839 } else if (PageSwapCache(page)) {
3c776e64 1840 ent.val = page_private(page);
a3b2d692
KH
1841 id = lookup_swap_cgroup(ent);
1842 rcu_read_lock();
1843 mem = mem_cgroup_lookup(id);
1844 if (mem && !css_tryget(&mem->css))
1845 mem = NULL;
1846 rcu_read_unlock();
3c776e64 1847 }
c0bd3f63 1848 unlock_page_cgroup(pc);
b5a84319
KH
1849 return mem;
1850}
1851
7a81b88c 1852/*
a5e924f5 1853 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1854 * USED state. If already USED, uncharge and return.
1855 */
1856
1857static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1858 struct page_cgroup *pc,
1859 enum charge_type ctype)
1860{
7a81b88c
KH
1861 /* try_charge() can return NULL to *memcg, taking care of it. */
1862 if (!mem)
1863 return;
52d4b9ac
KH
1864
1865 lock_page_cgroup(pc);
1866 if (unlikely(PageCgroupUsed(pc))) {
1867 unlock_page_cgroup(pc);
a3032a2c 1868 mem_cgroup_cancel_charge(mem);
7a81b88c 1869 return;
52d4b9ac 1870 }
4b3bde4c 1871
8a9f3ccd 1872 pc->mem_cgroup = mem;
261fb61a
KH
1873 /*
1874 * We access a page_cgroup asynchronously without lock_page_cgroup().
1875 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1876 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1877 * before USED bit, we need memory barrier here.
1878 * See mem_cgroup_add_lru_list(), etc.
1879 */
08e552c6 1880 smp_wmb();
4b3bde4c
BS
1881 switch (ctype) {
1882 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1883 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1884 SetPageCgroupCache(pc);
1885 SetPageCgroupUsed(pc);
1886 break;
1887 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1888 ClearPageCgroupCache(pc);
1889 SetPageCgroupUsed(pc);
1890 break;
1891 default:
1892 break;
1893 }
3be91277 1894
08e552c6 1895 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1896
52d4b9ac 1897 unlock_page_cgroup(pc);
430e4863
KH
1898 /*
1899 * "charge_statistics" updated event counter. Then, check it.
1900 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1901 * if they exceeds softlimit.
1902 */
d2265e6f 1903 memcg_check_events(mem, pc->page);
7a81b88c 1904}
66e1707b 1905
f817ed48 1906/**
57f9fd7d 1907 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
1908 * @pc: page_cgroup of the page.
1909 * @from: mem_cgroup which the page is moved from.
1910 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 1911 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
1912 *
1913 * The caller must confirm following.
08e552c6 1914 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 1915 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 1916 *
854ffa8d
DN
1917 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1918 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1919 * true, this function does "uncharge" from old cgroup, but it doesn't if
1920 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
1921 */
1922
57f9fd7d 1923static void __mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 1924 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
f817ed48 1925{
f817ed48 1926 VM_BUG_ON(from == to);
08e552c6 1927 VM_BUG_ON(PageLRU(pc->page));
57f9fd7d
DN
1928 VM_BUG_ON(!PageCgroupLocked(pc));
1929 VM_BUG_ON(!PageCgroupUsed(pc));
1930 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 1931
8725d541 1932 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
1933 /* Update mapped_file data for mem_cgroup */
1934 preempt_disable();
1935 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1936 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1937 preempt_enable();
d69b042f 1938 }
854ffa8d
DN
1939 mem_cgroup_charge_statistics(from, pc, false);
1940 if (uncharge)
1941 /* This is not "cancel", but cancel_charge does all we need. */
1942 mem_cgroup_cancel_charge(from);
d69b042f 1943
854ffa8d 1944 /* caller should have done css_get */
08e552c6
KH
1945 pc->mem_cgroup = to;
1946 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
1947 /*
1948 * We charges against "to" which may not have any tasks. Then, "to"
1949 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
1950 * this function is just force_empty() and move charge, so it's
1951 * garanteed that "to" is never removed. So, we don't check rmdir
1952 * status here.
88703267 1953 */
57f9fd7d
DN
1954}
1955
1956/*
1957 * check whether the @pc is valid for moving account and call
1958 * __mem_cgroup_move_account()
1959 */
1960static int mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 1961 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
57f9fd7d
DN
1962{
1963 int ret = -EINVAL;
1964 lock_page_cgroup(pc);
1965 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
854ffa8d 1966 __mem_cgroup_move_account(pc, from, to, uncharge);
57f9fd7d
DN
1967 ret = 0;
1968 }
1969 unlock_page_cgroup(pc);
d2265e6f
KH
1970 /*
1971 * check events
1972 */
1973 memcg_check_events(to, pc->page);
1974 memcg_check_events(from, pc->page);
f817ed48
KH
1975 return ret;
1976}
1977
1978/*
1979 * move charges to its parent.
1980 */
1981
1982static int mem_cgroup_move_parent(struct page_cgroup *pc,
1983 struct mem_cgroup *child,
1984 gfp_t gfp_mask)
1985{
08e552c6 1986 struct page *page = pc->page;
f817ed48
KH
1987 struct cgroup *cg = child->css.cgroup;
1988 struct cgroup *pcg = cg->parent;
1989 struct mem_cgroup *parent;
f817ed48
KH
1990 int ret;
1991
1992 /* Is ROOT ? */
1993 if (!pcg)
1994 return -EINVAL;
1995
57f9fd7d
DN
1996 ret = -EBUSY;
1997 if (!get_page_unless_zero(page))
1998 goto out;
1999 if (isolate_lru_page(page))
2000 goto put;
08e552c6 2001
f817ed48 2002 parent = mem_cgroup_from_cont(pcg);
430e4863 2003 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 2004 if (ret || !parent)
57f9fd7d 2005 goto put_back;
f817ed48 2006
854ffa8d
DN
2007 ret = mem_cgroup_move_account(pc, child, parent, true);
2008 if (ret)
2009 mem_cgroup_cancel_charge(parent);
57f9fd7d 2010put_back:
08e552c6 2011 putback_lru_page(page);
57f9fd7d 2012put:
40d58138 2013 put_page(page);
57f9fd7d 2014out:
f817ed48
KH
2015 return ret;
2016}
2017
7a81b88c
KH
2018/*
2019 * Charge the memory controller for page usage.
2020 * Return
2021 * 0 if the charge was successful
2022 * < 0 if the cgroup is over its limit
2023 */
2024static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2025 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2026{
73045c47 2027 struct mem_cgroup *mem = NULL;
7a81b88c
KH
2028 struct page_cgroup *pc;
2029 int ret;
2030
2031 pc = lookup_page_cgroup(page);
2032 /* can happen at boot */
2033 if (unlikely(!pc))
2034 return 0;
2035 prefetchw(pc);
2036
430e4863 2037 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 2038 if (ret || !mem)
7a81b88c
KH
2039 return ret;
2040
2041 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 2042 return 0;
8a9f3ccd
BS
2043}
2044
7a81b88c
KH
2045int mem_cgroup_newpage_charge(struct page *page,
2046 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2047{
f8d66542 2048 if (mem_cgroup_disabled())
cede86ac 2049 return 0;
52d4b9ac
KH
2050 if (PageCompound(page))
2051 return 0;
69029cd5
KH
2052 /*
2053 * If already mapped, we don't have to account.
2054 * If page cache, page->mapping has address_space.
2055 * But page->mapping may have out-of-use anon_vma pointer,
2056 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2057 * is NULL.
2058 */
2059 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2060 return 0;
2061 if (unlikely(!mm))
2062 mm = &init_mm;
217bc319 2063 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2064 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2065}
2066
83aae4c7
DN
2067static void
2068__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2069 enum charge_type ctype);
2070
e1a1cd59
BS
2071int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2072 gfp_t gfp_mask)
8697d331 2073{
b5a84319
KH
2074 int ret;
2075
f8d66542 2076 if (mem_cgroup_disabled())
cede86ac 2077 return 0;
52d4b9ac
KH
2078 if (PageCompound(page))
2079 return 0;
accf163e
KH
2080 /*
2081 * Corner case handling. This is called from add_to_page_cache()
2082 * in usual. But some FS (shmem) precharges this page before calling it
2083 * and call add_to_page_cache() with GFP_NOWAIT.
2084 *
2085 * For GFP_NOWAIT case, the page may be pre-charged before calling
2086 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2087 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2088 * And when the page is SwapCache, it should take swap information
2089 * into account. This is under lock_page() now.
accf163e
KH
2090 */
2091 if (!(gfp_mask & __GFP_WAIT)) {
2092 struct page_cgroup *pc;
2093
52d4b9ac
KH
2094 pc = lookup_page_cgroup(page);
2095 if (!pc)
2096 return 0;
2097 lock_page_cgroup(pc);
2098 if (PageCgroupUsed(pc)) {
2099 unlock_page_cgroup(pc);
accf163e
KH
2100 return 0;
2101 }
52d4b9ac 2102 unlock_page_cgroup(pc);
accf163e
KH
2103 }
2104
73045c47 2105 if (unlikely(!mm))
8697d331 2106 mm = &init_mm;
accf163e 2107
c05555b5
KH
2108 if (page_is_file_cache(page))
2109 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2110 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2111
83aae4c7
DN
2112 /* shmem */
2113 if (PageSwapCache(page)) {
73045c47
DN
2114 struct mem_cgroup *mem = NULL;
2115
83aae4c7
DN
2116 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2117 if (!ret)
2118 __mem_cgroup_commit_charge_swapin(page, mem,
2119 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2120 } else
2121 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2122 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2123
b5a84319 2124 return ret;
e8589cc1
KH
2125}
2126
54595fe2
KH
2127/*
2128 * While swap-in, try_charge -> commit or cancel, the page is locked.
2129 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2130 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2131 * "commit()" or removed by "cancel()"
2132 */
8c7c6e34
KH
2133int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2134 struct page *page,
2135 gfp_t mask, struct mem_cgroup **ptr)
2136{
2137 struct mem_cgroup *mem;
54595fe2 2138 int ret;
8c7c6e34 2139
f8d66542 2140 if (mem_cgroup_disabled())
8c7c6e34
KH
2141 return 0;
2142
2143 if (!do_swap_account)
2144 goto charge_cur_mm;
8c7c6e34
KH
2145 /*
2146 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2147 * the pte, and even removed page from swap cache: in those cases
2148 * do_swap_page()'s pte_same() test will fail; but there's also a
2149 * KSM case which does need to charge the page.
8c7c6e34
KH
2150 */
2151 if (!PageSwapCache(page))
407f9c8b 2152 goto charge_cur_mm;
e42d9d5d 2153 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2154 if (!mem)
2155 goto charge_cur_mm;
8c7c6e34 2156 *ptr = mem;
430e4863 2157 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
54595fe2
KH
2158 /* drop extra refcnt from tryget */
2159 css_put(&mem->css);
2160 return ret;
8c7c6e34
KH
2161charge_cur_mm:
2162 if (unlikely(!mm))
2163 mm = &init_mm;
430e4863 2164 return __mem_cgroup_try_charge(mm, mask, ptr, true);
8c7c6e34
KH
2165}
2166
83aae4c7
DN
2167static void
2168__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2169 enum charge_type ctype)
7a81b88c
KH
2170{
2171 struct page_cgroup *pc;
2172
f8d66542 2173 if (mem_cgroup_disabled())
7a81b88c
KH
2174 return;
2175 if (!ptr)
2176 return;
88703267 2177 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2178 pc = lookup_page_cgroup(page);
544122e5 2179 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 2180 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 2181 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2182 /*
2183 * Now swap is on-memory. This means this page may be
2184 * counted both as mem and swap....double count.
03f3c433
KH
2185 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2186 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2187 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2188 */
03f3c433 2189 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2190 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2191 unsigned short id;
8c7c6e34 2192 struct mem_cgroup *memcg;
a3b2d692
KH
2193
2194 id = swap_cgroup_record(ent, 0);
2195 rcu_read_lock();
2196 memcg = mem_cgroup_lookup(id);
8c7c6e34 2197 if (memcg) {
a3b2d692
KH
2198 /*
2199 * This recorded memcg can be obsolete one. So, avoid
2200 * calling css_tryget
2201 */
0c3e73e8 2202 if (!mem_cgroup_is_root(memcg))
4e649152 2203 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2204 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2205 mem_cgroup_put(memcg);
2206 }
a3b2d692 2207 rcu_read_unlock();
8c7c6e34 2208 }
88703267
KH
2209 /*
2210 * At swapin, we may charge account against cgroup which has no tasks.
2211 * So, rmdir()->pre_destroy() can be called while we do this charge.
2212 * In that case, we need to call pre_destroy() again. check it here.
2213 */
2214 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2215}
2216
83aae4c7
DN
2217void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2218{
2219 __mem_cgroup_commit_charge_swapin(page, ptr,
2220 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2221}
2222
7a81b88c
KH
2223void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2224{
f8d66542 2225 if (mem_cgroup_disabled())
7a81b88c
KH
2226 return;
2227 if (!mem)
2228 return;
a3032a2c 2229 mem_cgroup_cancel_charge(mem);
7a81b88c
KH
2230}
2231
569b846d
KH
2232static void
2233__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2234{
2235 struct memcg_batch_info *batch = NULL;
2236 bool uncharge_memsw = true;
2237 /* If swapout, usage of swap doesn't decrease */
2238 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2239 uncharge_memsw = false;
569b846d
KH
2240
2241 batch = &current->memcg_batch;
2242 /*
2243 * In usual, we do css_get() when we remember memcg pointer.
2244 * But in this case, we keep res->usage until end of a series of
2245 * uncharges. Then, it's ok to ignore memcg's refcnt.
2246 */
2247 if (!batch->memcg)
2248 batch->memcg = mem;
3c11ecf4
KH
2249 /*
2250 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2251 * In those cases, all pages freed continously can be expected to be in
2252 * the same cgroup and we have chance to coalesce uncharges.
2253 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2254 * because we want to do uncharge as soon as possible.
2255 */
2256
2257 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2258 goto direct_uncharge;
2259
569b846d
KH
2260 /*
2261 * In typical case, batch->memcg == mem. This means we can
2262 * merge a series of uncharges to an uncharge of res_counter.
2263 * If not, we uncharge res_counter ony by one.
2264 */
2265 if (batch->memcg != mem)
2266 goto direct_uncharge;
2267 /* remember freed charge and uncharge it later */
2268 batch->bytes += PAGE_SIZE;
2269 if (uncharge_memsw)
2270 batch->memsw_bytes += PAGE_SIZE;
2271 return;
2272direct_uncharge:
2273 res_counter_uncharge(&mem->res, PAGE_SIZE);
2274 if (uncharge_memsw)
2275 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
3c11ecf4
KH
2276 if (unlikely(batch->memcg != mem))
2277 memcg_oom_recover(mem);
569b846d
KH
2278 return;
2279}
7a81b88c 2280
8a9f3ccd 2281/*
69029cd5 2282 * uncharge if !page_mapped(page)
8a9f3ccd 2283 */
8c7c6e34 2284static struct mem_cgroup *
69029cd5 2285__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2286{
8289546e 2287 struct page_cgroup *pc;
8c7c6e34 2288 struct mem_cgroup *mem = NULL;
8a9f3ccd 2289
f8d66542 2290 if (mem_cgroup_disabled())
8c7c6e34 2291 return NULL;
4077960e 2292
d13d1443 2293 if (PageSwapCache(page))
8c7c6e34 2294 return NULL;
d13d1443 2295
8697d331 2296 /*
3c541e14 2297 * Check if our page_cgroup is valid
8697d331 2298 */
52d4b9ac
KH
2299 pc = lookup_page_cgroup(page);
2300 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2301 return NULL;
b9c565d5 2302
52d4b9ac 2303 lock_page_cgroup(pc);
d13d1443 2304
8c7c6e34
KH
2305 mem = pc->mem_cgroup;
2306
d13d1443
KH
2307 if (!PageCgroupUsed(pc))
2308 goto unlock_out;
2309
2310 switch (ctype) {
2311 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2312 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2313 /* See mem_cgroup_prepare_migration() */
2314 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2315 goto unlock_out;
2316 break;
2317 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2318 if (!PageAnon(page)) { /* Shared memory */
2319 if (page->mapping && !page_is_file_cache(page))
2320 goto unlock_out;
2321 } else if (page_mapped(page)) /* Anon */
2322 goto unlock_out;
2323 break;
2324 default:
2325 break;
52d4b9ac 2326 }
d13d1443 2327
569b846d
KH
2328 if (!mem_cgroup_is_root(mem))
2329 __do_uncharge(mem, ctype);
0c3e73e8
BS
2330 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2331 mem_cgroup_swap_statistics(mem, true);
08e552c6 2332 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 2333
52d4b9ac 2334 ClearPageCgroupUsed(pc);
544122e5
KH
2335 /*
2336 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2337 * freed from LRU. This is safe because uncharged page is expected not
2338 * to be reused (freed soon). Exception is SwapCache, it's handled by
2339 * special functions.
2340 */
b9c565d5 2341
52d4b9ac 2342 unlock_page_cgroup(pc);
fb59e9f1 2343
d2265e6f 2344 memcg_check_events(mem, page);
a7fe942e
KH
2345 /* at swapout, this memcg will be accessed to record to swap */
2346 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2347 css_put(&mem->css);
6d12e2d8 2348
8c7c6e34 2349 return mem;
d13d1443
KH
2350
2351unlock_out:
2352 unlock_page_cgroup(pc);
8c7c6e34 2353 return NULL;
3c541e14
BS
2354}
2355
69029cd5
KH
2356void mem_cgroup_uncharge_page(struct page *page)
2357{
52d4b9ac
KH
2358 /* early check. */
2359 if (page_mapped(page))
2360 return;
2361 if (page->mapping && !PageAnon(page))
2362 return;
69029cd5
KH
2363 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2364}
2365
2366void mem_cgroup_uncharge_cache_page(struct page *page)
2367{
2368 VM_BUG_ON(page_mapped(page));
b7abea96 2369 VM_BUG_ON(page->mapping);
69029cd5
KH
2370 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2371}
2372
569b846d
KH
2373/*
2374 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2375 * In that cases, pages are freed continuously and we can expect pages
2376 * are in the same memcg. All these calls itself limits the number of
2377 * pages freed at once, then uncharge_start/end() is called properly.
2378 * This may be called prural(2) times in a context,
2379 */
2380
2381void mem_cgroup_uncharge_start(void)
2382{
2383 current->memcg_batch.do_batch++;
2384 /* We can do nest. */
2385 if (current->memcg_batch.do_batch == 1) {
2386 current->memcg_batch.memcg = NULL;
2387 current->memcg_batch.bytes = 0;
2388 current->memcg_batch.memsw_bytes = 0;
2389 }
2390}
2391
2392void mem_cgroup_uncharge_end(void)
2393{
2394 struct memcg_batch_info *batch = &current->memcg_batch;
2395
2396 if (!batch->do_batch)
2397 return;
2398
2399 batch->do_batch--;
2400 if (batch->do_batch) /* If stacked, do nothing. */
2401 return;
2402
2403 if (!batch->memcg)
2404 return;
2405 /*
2406 * This "batch->memcg" is valid without any css_get/put etc...
2407 * bacause we hide charges behind us.
2408 */
2409 if (batch->bytes)
2410 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2411 if (batch->memsw_bytes)
2412 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2413 memcg_oom_recover(batch->memcg);
569b846d
KH
2414 /* forget this pointer (for sanity check) */
2415 batch->memcg = NULL;
2416}
2417
e767e056 2418#ifdef CONFIG_SWAP
8c7c6e34 2419/*
e767e056 2420 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2421 * memcg information is recorded to swap_cgroup of "ent"
2422 */
8a9478ca
KH
2423void
2424mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2425{
2426 struct mem_cgroup *memcg;
8a9478ca
KH
2427 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2428
2429 if (!swapout) /* this was a swap cache but the swap is unused ! */
2430 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2431
2432 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2433
8c7c6e34 2434 /* record memcg information */
8a9478ca 2435 if (do_swap_account && swapout && memcg) {
a3b2d692 2436 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
2437 mem_cgroup_get(memcg);
2438 }
8a9478ca 2439 if (swapout && memcg)
a7fe942e 2440 css_put(&memcg->css);
8c7c6e34 2441}
e767e056 2442#endif
8c7c6e34
KH
2443
2444#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2445/*
2446 * called from swap_entry_free(). remove record in swap_cgroup and
2447 * uncharge "memsw" account.
2448 */
2449void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2450{
8c7c6e34 2451 struct mem_cgroup *memcg;
a3b2d692 2452 unsigned short id;
8c7c6e34
KH
2453
2454 if (!do_swap_account)
2455 return;
2456
a3b2d692
KH
2457 id = swap_cgroup_record(ent, 0);
2458 rcu_read_lock();
2459 memcg = mem_cgroup_lookup(id);
8c7c6e34 2460 if (memcg) {
a3b2d692
KH
2461 /*
2462 * We uncharge this because swap is freed.
2463 * This memcg can be obsolete one. We avoid calling css_tryget
2464 */
0c3e73e8 2465 if (!mem_cgroup_is_root(memcg))
4e649152 2466 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2467 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2468 mem_cgroup_put(memcg);
2469 }
a3b2d692 2470 rcu_read_unlock();
d13d1443 2471}
02491447
DN
2472
2473/**
2474 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2475 * @entry: swap entry to be moved
2476 * @from: mem_cgroup which the entry is moved from
2477 * @to: mem_cgroup which the entry is moved to
483c30b5 2478 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2479 *
2480 * It succeeds only when the swap_cgroup's record for this entry is the same
2481 * as the mem_cgroup's id of @from.
2482 *
2483 * Returns 0 on success, -EINVAL on failure.
2484 *
2485 * The caller must have charged to @to, IOW, called res_counter_charge() about
2486 * both res and memsw, and called css_get().
2487 */
2488static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2489 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2490{
2491 unsigned short old_id, new_id;
2492
2493 old_id = css_id(&from->css);
2494 new_id = css_id(&to->css);
2495
2496 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2497 mem_cgroup_swap_statistics(from, false);
483c30b5 2498 mem_cgroup_swap_statistics(to, true);
02491447 2499 /*
483c30b5
DN
2500 * This function is only called from task migration context now.
2501 * It postpones res_counter and refcount handling till the end
2502 * of task migration(mem_cgroup_clear_mc()) for performance
2503 * improvement. But we cannot postpone mem_cgroup_get(to)
2504 * because if the process that has been moved to @to does
2505 * swap-in, the refcount of @to might be decreased to 0.
02491447 2506 */
02491447 2507 mem_cgroup_get(to);
483c30b5
DN
2508 if (need_fixup) {
2509 if (!mem_cgroup_is_root(from))
2510 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2511 mem_cgroup_put(from);
2512 /*
2513 * we charged both to->res and to->memsw, so we should
2514 * uncharge to->res.
2515 */
2516 if (!mem_cgroup_is_root(to))
2517 res_counter_uncharge(&to->res, PAGE_SIZE);
2518 css_put(&to->css);
2519 }
02491447
DN
2520 return 0;
2521 }
2522 return -EINVAL;
2523}
2524#else
2525static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2526 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2527{
2528 return -EINVAL;
2529}
8c7c6e34 2530#endif
d13d1443 2531
ae41be37 2532/*
01b1ae63
KH
2533 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2534 * page belongs to.
ae41be37 2535 */
ac39cf8c 2536int mem_cgroup_prepare_migration(struct page *page,
2537 struct page *newpage, struct mem_cgroup **ptr)
ae41be37
KH
2538{
2539 struct page_cgroup *pc;
e8589cc1 2540 struct mem_cgroup *mem = NULL;
ac39cf8c 2541 enum charge_type ctype;
e8589cc1 2542 int ret = 0;
8869b8f6 2543
f8d66542 2544 if (mem_cgroup_disabled())
4077960e
BS
2545 return 0;
2546
52d4b9ac
KH
2547 pc = lookup_page_cgroup(page);
2548 lock_page_cgroup(pc);
2549 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2550 mem = pc->mem_cgroup;
2551 css_get(&mem->css);
ac39cf8c 2552 /*
2553 * At migrating an anonymous page, its mapcount goes down
2554 * to 0 and uncharge() will be called. But, even if it's fully
2555 * unmapped, migration may fail and this page has to be
2556 * charged again. We set MIGRATION flag here and delay uncharge
2557 * until end_migration() is called
2558 *
2559 * Corner Case Thinking
2560 * A)
2561 * When the old page was mapped as Anon and it's unmap-and-freed
2562 * while migration was ongoing.
2563 * If unmap finds the old page, uncharge() of it will be delayed
2564 * until end_migration(). If unmap finds a new page, it's
2565 * uncharged when it make mapcount to be 1->0. If unmap code
2566 * finds swap_migration_entry, the new page will not be mapped
2567 * and end_migration() will find it(mapcount==0).
2568 *
2569 * B)
2570 * When the old page was mapped but migraion fails, the kernel
2571 * remaps it. A charge for it is kept by MIGRATION flag even
2572 * if mapcount goes down to 0. We can do remap successfully
2573 * without charging it again.
2574 *
2575 * C)
2576 * The "old" page is under lock_page() until the end of
2577 * migration, so, the old page itself will not be swapped-out.
2578 * If the new page is swapped out before end_migraton, our
2579 * hook to usual swap-out path will catch the event.
2580 */
2581 if (PageAnon(page))
2582 SetPageCgroupMigration(pc);
e8589cc1 2583 }
52d4b9ac 2584 unlock_page_cgroup(pc);
ac39cf8c 2585 /*
2586 * If the page is not charged at this point,
2587 * we return here.
2588 */
2589 if (!mem)
2590 return 0;
01b1ae63 2591
93d5c9be 2592 *ptr = mem;
ac39cf8c 2593 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2594 css_put(&mem->css);/* drop extra refcnt */
2595 if (ret || *ptr == NULL) {
2596 if (PageAnon(page)) {
2597 lock_page_cgroup(pc);
2598 ClearPageCgroupMigration(pc);
2599 unlock_page_cgroup(pc);
2600 /*
2601 * The old page may be fully unmapped while we kept it.
2602 */
2603 mem_cgroup_uncharge_page(page);
2604 }
2605 return -ENOMEM;
e8589cc1 2606 }
ac39cf8c 2607 /*
2608 * We charge new page before it's used/mapped. So, even if unlock_page()
2609 * is called before end_migration, we can catch all events on this new
2610 * page. In the case new page is migrated but not remapped, new page's
2611 * mapcount will be finally 0 and we call uncharge in end_migration().
2612 */
2613 pc = lookup_page_cgroup(newpage);
2614 if (PageAnon(page))
2615 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2616 else if (page_is_file_cache(page))
2617 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2618 else
2619 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2620 __mem_cgroup_commit_charge(mem, pc, ctype);
e8589cc1 2621 return ret;
ae41be37 2622}
8869b8f6 2623
69029cd5 2624/* remove redundant charge if migration failed*/
01b1ae63 2625void mem_cgroup_end_migration(struct mem_cgroup *mem,
ac39cf8c 2626 struct page *oldpage, struct page *newpage)
ae41be37 2627{
ac39cf8c 2628 struct page *used, *unused;
01b1ae63 2629 struct page_cgroup *pc;
01b1ae63
KH
2630
2631 if (!mem)
2632 return;
ac39cf8c 2633 /* blocks rmdir() */
88703267 2634 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2635 /* at migration success, oldpage->mapping is NULL. */
2636 if (oldpage->mapping) {
ac39cf8c 2637 used = oldpage;
2638 unused = newpage;
01b1ae63 2639 } else {
ac39cf8c 2640 used = newpage;
01b1ae63
KH
2641 unused = oldpage;
2642 }
69029cd5 2643 /*
ac39cf8c 2644 * We disallowed uncharge of pages under migration because mapcount
2645 * of the page goes down to zero, temporarly.
2646 * Clear the flag and check the page should be charged.
01b1ae63 2647 */
ac39cf8c 2648 pc = lookup_page_cgroup(oldpage);
2649 lock_page_cgroup(pc);
2650 ClearPageCgroupMigration(pc);
2651 unlock_page_cgroup(pc);
01b1ae63 2652
ac39cf8c 2653 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2654
01b1ae63 2655 /*
ac39cf8c 2656 * If a page is a file cache, radix-tree replacement is very atomic
2657 * and we can skip this check. When it was an Anon page, its mapcount
2658 * goes down to 0. But because we added MIGRATION flage, it's not
2659 * uncharged yet. There are several case but page->mapcount check
2660 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2661 * check. (see prepare_charge() also)
69029cd5 2662 */
ac39cf8c 2663 if (PageAnon(used))
2664 mem_cgroup_uncharge_page(used);
88703267 2665 /*
ac39cf8c 2666 * At migration, we may charge account against cgroup which has no
2667 * tasks.
88703267
KH
2668 * So, rmdir()->pre_destroy() can be called while we do this charge.
2669 * In that case, we need to call pre_destroy() again. check it here.
2670 */
2671 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2672}
78fb7466 2673
c9b0ed51 2674/*
ae3abae6
DN
2675 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2676 * Calling hierarchical_reclaim is not enough because we should update
2677 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2678 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2679 * not from the memcg which this page would be charged to.
2680 * try_charge_swapin does all of these works properly.
c9b0ed51 2681 */
ae3abae6 2682int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2683 struct mm_struct *mm,
2684 gfp_t gfp_mask)
c9b0ed51 2685{
b5a84319 2686 struct mem_cgroup *mem = NULL;
ae3abae6 2687 int ret;
c9b0ed51 2688
f8d66542 2689 if (mem_cgroup_disabled())
cede86ac 2690 return 0;
c9b0ed51 2691
ae3abae6
DN
2692 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2693 if (!ret)
2694 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2695
ae3abae6 2696 return ret;
c9b0ed51
KH
2697}
2698
8c7c6e34
KH
2699static DEFINE_MUTEX(set_limit_mutex);
2700
d38d2a75 2701static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2702 unsigned long long val)
628f4235 2703{
81d39c20 2704 int retry_count;
3c11ecf4 2705 u64 memswlimit, memlimit;
628f4235 2706 int ret = 0;
81d39c20
KH
2707 int children = mem_cgroup_count_children(memcg);
2708 u64 curusage, oldusage;
3c11ecf4 2709 int enlarge;
81d39c20
KH
2710
2711 /*
2712 * For keeping hierarchical_reclaim simple, how long we should retry
2713 * is depends on callers. We set our retry-count to be function
2714 * of # of children which we should visit in this loop.
2715 */
2716 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2717
2718 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2719
3c11ecf4 2720 enlarge = 0;
8c7c6e34 2721 while (retry_count) {
628f4235
KH
2722 if (signal_pending(current)) {
2723 ret = -EINTR;
2724 break;
2725 }
8c7c6e34
KH
2726 /*
2727 * Rather than hide all in some function, I do this in
2728 * open coded manner. You see what this really does.
2729 * We have to guarantee mem->res.limit < mem->memsw.limit.
2730 */
2731 mutex_lock(&set_limit_mutex);
2732 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2733 if (memswlimit < val) {
2734 ret = -EINVAL;
2735 mutex_unlock(&set_limit_mutex);
628f4235
KH
2736 break;
2737 }
3c11ecf4
KH
2738
2739 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2740 if (memlimit < val)
2741 enlarge = 1;
2742
8c7c6e34 2743 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2744 if (!ret) {
2745 if (memswlimit == val)
2746 memcg->memsw_is_minimum = true;
2747 else
2748 memcg->memsw_is_minimum = false;
2749 }
8c7c6e34
KH
2750 mutex_unlock(&set_limit_mutex);
2751
2752 if (!ret)
2753 break;
2754
aa20d489 2755 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 2756 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2757 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2758 /* Usage is reduced ? */
2759 if (curusage >= oldusage)
2760 retry_count--;
2761 else
2762 oldusage = curusage;
8c7c6e34 2763 }
3c11ecf4
KH
2764 if (!ret && enlarge)
2765 memcg_oom_recover(memcg);
14797e23 2766
8c7c6e34
KH
2767 return ret;
2768}
2769
338c8431
LZ
2770static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2771 unsigned long long val)
8c7c6e34 2772{
81d39c20 2773 int retry_count;
3c11ecf4 2774 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
2775 int children = mem_cgroup_count_children(memcg);
2776 int ret = -EBUSY;
3c11ecf4 2777 int enlarge = 0;
8c7c6e34 2778
81d39c20
KH
2779 /* see mem_cgroup_resize_res_limit */
2780 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2781 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2782 while (retry_count) {
2783 if (signal_pending(current)) {
2784 ret = -EINTR;
2785 break;
2786 }
2787 /*
2788 * Rather than hide all in some function, I do this in
2789 * open coded manner. You see what this really does.
2790 * We have to guarantee mem->res.limit < mem->memsw.limit.
2791 */
2792 mutex_lock(&set_limit_mutex);
2793 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2794 if (memlimit > val) {
2795 ret = -EINVAL;
2796 mutex_unlock(&set_limit_mutex);
2797 break;
2798 }
3c11ecf4
KH
2799 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2800 if (memswlimit < val)
2801 enlarge = 1;
8c7c6e34 2802 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2803 if (!ret) {
2804 if (memlimit == val)
2805 memcg->memsw_is_minimum = true;
2806 else
2807 memcg->memsw_is_minimum = false;
2808 }
8c7c6e34
KH
2809 mutex_unlock(&set_limit_mutex);
2810
2811 if (!ret)
2812 break;
2813
4e416953 2814 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
2815 MEM_CGROUP_RECLAIM_NOSWAP |
2816 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 2817 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 2818 /* Usage is reduced ? */
8c7c6e34 2819 if (curusage >= oldusage)
628f4235 2820 retry_count--;
81d39c20
KH
2821 else
2822 oldusage = curusage;
628f4235 2823 }
3c11ecf4
KH
2824 if (!ret && enlarge)
2825 memcg_oom_recover(memcg);
628f4235
KH
2826 return ret;
2827}
2828
4e416953
BS
2829unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2830 gfp_t gfp_mask, int nid,
2831 int zid)
2832{
2833 unsigned long nr_reclaimed = 0;
2834 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2835 unsigned long reclaimed;
2836 int loop = 0;
2837 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 2838 unsigned long long excess;
4e416953
BS
2839
2840 if (order > 0)
2841 return 0;
2842
2843 mctz = soft_limit_tree_node_zone(nid, zid);
2844 /*
2845 * This loop can run a while, specially if mem_cgroup's continuously
2846 * keep exceeding their soft limit and putting the system under
2847 * pressure
2848 */
2849 do {
2850 if (next_mz)
2851 mz = next_mz;
2852 else
2853 mz = mem_cgroup_largest_soft_limit_node(mctz);
2854 if (!mz)
2855 break;
2856
2857 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2858 gfp_mask,
2859 MEM_CGROUP_RECLAIM_SOFT);
2860 nr_reclaimed += reclaimed;
2861 spin_lock(&mctz->lock);
2862
2863 /*
2864 * If we failed to reclaim anything from this memory cgroup
2865 * it is time to move on to the next cgroup
2866 */
2867 next_mz = NULL;
2868 if (!reclaimed) {
2869 do {
2870 /*
2871 * Loop until we find yet another one.
2872 *
2873 * By the time we get the soft_limit lock
2874 * again, someone might have aded the
2875 * group back on the RB tree. Iterate to
2876 * make sure we get a different mem.
2877 * mem_cgroup_largest_soft_limit_node returns
2878 * NULL if no other cgroup is present on
2879 * the tree
2880 */
2881 next_mz =
2882 __mem_cgroup_largest_soft_limit_node(mctz);
2883 if (next_mz == mz) {
2884 css_put(&next_mz->mem->css);
2885 next_mz = NULL;
2886 } else /* next_mz == NULL or other memcg */
2887 break;
2888 } while (1);
2889 }
4e416953 2890 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 2891 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
2892 /*
2893 * One school of thought says that we should not add
2894 * back the node to the tree if reclaim returns 0.
2895 * But our reclaim could return 0, simply because due
2896 * to priority we are exposing a smaller subset of
2897 * memory to reclaim from. Consider this as a longer
2898 * term TODO.
2899 */
ef8745c1
KH
2900 /* If excess == 0, no tree ops */
2901 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
2902 spin_unlock(&mctz->lock);
2903 css_put(&mz->mem->css);
2904 loop++;
2905 /*
2906 * Could not reclaim anything and there are no more
2907 * mem cgroups to try or we seem to be looping without
2908 * reclaiming anything.
2909 */
2910 if (!nr_reclaimed &&
2911 (next_mz == NULL ||
2912 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2913 break;
2914 } while (!nr_reclaimed);
2915 if (next_mz)
2916 css_put(&next_mz->mem->css);
2917 return nr_reclaimed;
2918}
2919
cc847582
KH
2920/*
2921 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
2922 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2923 */
f817ed48 2924static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 2925 int node, int zid, enum lru_list lru)
cc847582 2926{
08e552c6
KH
2927 struct zone *zone;
2928 struct mem_cgroup_per_zone *mz;
f817ed48 2929 struct page_cgroup *pc, *busy;
08e552c6 2930 unsigned long flags, loop;
072c56c1 2931 struct list_head *list;
f817ed48 2932 int ret = 0;
072c56c1 2933
08e552c6
KH
2934 zone = &NODE_DATA(node)->node_zones[zid];
2935 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 2936 list = &mz->lists[lru];
cc847582 2937
f817ed48
KH
2938 loop = MEM_CGROUP_ZSTAT(mz, lru);
2939 /* give some margin against EBUSY etc...*/
2940 loop += 256;
2941 busy = NULL;
2942 while (loop--) {
2943 ret = 0;
08e552c6 2944 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 2945 if (list_empty(list)) {
08e552c6 2946 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 2947 break;
f817ed48
KH
2948 }
2949 pc = list_entry(list->prev, struct page_cgroup, lru);
2950 if (busy == pc) {
2951 list_move(&pc->lru, list);
648bcc77 2952 busy = NULL;
08e552c6 2953 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
2954 continue;
2955 }
08e552c6 2956 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 2957
2c26fdd7 2958 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 2959 if (ret == -ENOMEM)
52d4b9ac 2960 break;
f817ed48
KH
2961
2962 if (ret == -EBUSY || ret == -EINVAL) {
2963 /* found lock contention or "pc" is obsolete. */
2964 busy = pc;
2965 cond_resched();
2966 } else
2967 busy = NULL;
cc847582 2968 }
08e552c6 2969
f817ed48
KH
2970 if (!ret && !list_empty(list))
2971 return -EBUSY;
2972 return ret;
cc847582
KH
2973}
2974
2975/*
2976 * make mem_cgroup's charge to be 0 if there is no task.
2977 * This enables deleting this mem_cgroup.
2978 */
c1e862c1 2979static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 2980{
f817ed48
KH
2981 int ret;
2982 int node, zid, shrink;
2983 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 2984 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 2985
cc847582 2986 css_get(&mem->css);
f817ed48
KH
2987
2988 shrink = 0;
c1e862c1
KH
2989 /* should free all ? */
2990 if (free_all)
2991 goto try_to_free;
f817ed48 2992move_account:
fce66477 2993 do {
f817ed48 2994 ret = -EBUSY;
c1e862c1
KH
2995 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2996 goto out;
2997 ret = -EINTR;
2998 if (signal_pending(current))
cc847582 2999 goto out;
52d4b9ac
KH
3000 /* This is for making all *used* pages to be on LRU. */
3001 lru_add_drain_all();
cdec2e42 3002 drain_all_stock_sync();
f817ed48 3003 ret = 0;
299b4eaa 3004 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3005 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3006 enum lru_list l;
f817ed48
KH
3007 for_each_lru(l) {
3008 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3009 node, zid, l);
f817ed48
KH
3010 if (ret)
3011 break;
3012 }
1ecaab2b 3013 }
f817ed48
KH
3014 if (ret)
3015 break;
3016 }
3c11ecf4 3017 memcg_oom_recover(mem);
f817ed48
KH
3018 /* it seems parent cgroup doesn't have enough mem */
3019 if (ret == -ENOMEM)
3020 goto try_to_free;
52d4b9ac 3021 cond_resched();
fce66477
DN
3022 /* "ret" should also be checked to ensure all lists are empty. */
3023 } while (mem->res.usage > 0 || ret);
cc847582
KH
3024out:
3025 css_put(&mem->css);
3026 return ret;
f817ed48
KH
3027
3028try_to_free:
c1e862c1
KH
3029 /* returns EBUSY if there is a task or if we come here twice. */
3030 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3031 ret = -EBUSY;
3032 goto out;
3033 }
c1e862c1
KH
3034 /* we call try-to-free pages for make this cgroup empty */
3035 lru_add_drain_all();
f817ed48
KH
3036 /* try to free all pages in this cgroup */
3037 shrink = 1;
3038 while (nr_retries && mem->res.usage > 0) {
3039 int progress;
c1e862c1
KH
3040
3041 if (signal_pending(current)) {
3042 ret = -EINTR;
3043 goto out;
3044 }
a7885eb8
KM
3045 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3046 false, get_swappiness(mem));
c1e862c1 3047 if (!progress) {
f817ed48 3048 nr_retries--;
c1e862c1 3049 /* maybe some writeback is necessary */
8aa7e847 3050 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3051 }
f817ed48
KH
3052
3053 }
08e552c6 3054 lru_add_drain();
f817ed48 3055 /* try move_account...there may be some *locked* pages. */
fce66477 3056 goto move_account;
cc847582
KH
3057}
3058
c1e862c1
KH
3059int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3060{
3061 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3062}
3063
3064
18f59ea7
BS
3065static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3066{
3067 return mem_cgroup_from_cont(cont)->use_hierarchy;
3068}
3069
3070static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3071 u64 val)
3072{
3073 int retval = 0;
3074 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3075 struct cgroup *parent = cont->parent;
3076 struct mem_cgroup *parent_mem = NULL;
3077
3078 if (parent)
3079 parent_mem = mem_cgroup_from_cont(parent);
3080
3081 cgroup_lock();
3082 /*
af901ca1 3083 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3084 * in the child subtrees. If it is unset, then the change can
3085 * occur, provided the current cgroup has no children.
3086 *
3087 * For the root cgroup, parent_mem is NULL, we allow value to be
3088 * set if there are no children.
3089 */
3090 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3091 (val == 1 || val == 0)) {
3092 if (list_empty(&cont->children))
3093 mem->use_hierarchy = val;
3094 else
3095 retval = -EBUSY;
3096 } else
3097 retval = -EINVAL;
3098 cgroup_unlock();
3099
3100 return retval;
3101}
3102
0c3e73e8
BS
3103struct mem_cgroup_idx_data {
3104 s64 val;
3105 enum mem_cgroup_stat_index idx;
3106};
3107
3108static int
3109mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3110{
3111 struct mem_cgroup_idx_data *d = data;
c62b1a3b 3112 d->val += mem_cgroup_read_stat(mem, d->idx);
0c3e73e8
BS
3113 return 0;
3114}
3115
3116static void
3117mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3118 enum mem_cgroup_stat_index idx, s64 *val)
3119{
3120 struct mem_cgroup_idx_data d;
3121 d.idx = idx;
3122 d.val = 0;
3123 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3124 *val = d.val;
3125}
3126
104f3928
KS
3127static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3128{
3129 u64 idx_val, val;
3130
3131 if (!mem_cgroup_is_root(mem)) {
3132 if (!swap)
3133 return res_counter_read_u64(&mem->res, RES_USAGE);
3134 else
3135 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3136 }
3137
3138 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3139 val = idx_val;
3140 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3141 val += idx_val;
3142
3143 if (swap) {
3144 mem_cgroup_get_recursive_idx_stat(mem,
3145 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3146 val += idx_val;
3147 }
3148
3149 return val << PAGE_SHIFT;
3150}
3151
2c3daa72 3152static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3153{
8c7c6e34 3154 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3155 u64 val;
8c7c6e34
KH
3156 int type, name;
3157
3158 type = MEMFILE_TYPE(cft->private);
3159 name = MEMFILE_ATTR(cft->private);
3160 switch (type) {
3161 case _MEM:
104f3928
KS
3162 if (name == RES_USAGE)
3163 val = mem_cgroup_usage(mem, false);
3164 else
0c3e73e8 3165 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3166 break;
3167 case _MEMSWAP:
104f3928
KS
3168 if (name == RES_USAGE)
3169 val = mem_cgroup_usage(mem, true);
3170 else
0c3e73e8 3171 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3172 break;
3173 default:
3174 BUG();
3175 break;
3176 }
3177 return val;
8cdea7c0 3178}
628f4235
KH
3179/*
3180 * The user of this function is...
3181 * RES_LIMIT.
3182 */
856c13aa
PM
3183static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3184 const char *buffer)
8cdea7c0 3185{
628f4235 3186 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3187 int type, name;
628f4235
KH
3188 unsigned long long val;
3189 int ret;
3190
8c7c6e34
KH
3191 type = MEMFILE_TYPE(cft->private);
3192 name = MEMFILE_ATTR(cft->private);
3193 switch (name) {
628f4235 3194 case RES_LIMIT:
4b3bde4c
BS
3195 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3196 ret = -EINVAL;
3197 break;
3198 }
628f4235
KH
3199 /* This function does all necessary parse...reuse it */
3200 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3201 if (ret)
3202 break;
3203 if (type == _MEM)
628f4235 3204 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3205 else
3206 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3207 break;
296c81d8
BS
3208 case RES_SOFT_LIMIT:
3209 ret = res_counter_memparse_write_strategy(buffer, &val);
3210 if (ret)
3211 break;
3212 /*
3213 * For memsw, soft limits are hard to implement in terms
3214 * of semantics, for now, we support soft limits for
3215 * control without swap
3216 */
3217 if (type == _MEM)
3218 ret = res_counter_set_soft_limit(&memcg->res, val);
3219 else
3220 ret = -EINVAL;
3221 break;
628f4235
KH
3222 default:
3223 ret = -EINVAL; /* should be BUG() ? */
3224 break;
3225 }
3226 return ret;
8cdea7c0
BS
3227}
3228
fee7b548
KH
3229static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3230 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3231{
3232 struct cgroup *cgroup;
3233 unsigned long long min_limit, min_memsw_limit, tmp;
3234
3235 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3236 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3237 cgroup = memcg->css.cgroup;
3238 if (!memcg->use_hierarchy)
3239 goto out;
3240
3241 while (cgroup->parent) {
3242 cgroup = cgroup->parent;
3243 memcg = mem_cgroup_from_cont(cgroup);
3244 if (!memcg->use_hierarchy)
3245 break;
3246 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3247 min_limit = min(min_limit, tmp);
3248 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3249 min_memsw_limit = min(min_memsw_limit, tmp);
3250 }
3251out:
3252 *mem_limit = min_limit;
3253 *memsw_limit = min_memsw_limit;
3254 return;
3255}
3256
29f2a4da 3257static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3258{
3259 struct mem_cgroup *mem;
8c7c6e34 3260 int type, name;
c84872e1
PE
3261
3262 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3263 type = MEMFILE_TYPE(event);
3264 name = MEMFILE_ATTR(event);
3265 switch (name) {
29f2a4da 3266 case RES_MAX_USAGE:
8c7c6e34
KH
3267 if (type == _MEM)
3268 res_counter_reset_max(&mem->res);
3269 else
3270 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3271 break;
3272 case RES_FAILCNT:
8c7c6e34
KH
3273 if (type == _MEM)
3274 res_counter_reset_failcnt(&mem->res);
3275 else
3276 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3277 break;
3278 }
f64c3f54 3279
85cc59db 3280 return 0;
c84872e1
PE
3281}
3282
7dc74be0
DN
3283static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3284 struct cftype *cft)
3285{
3286 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3287}
3288
02491447 3289#ifdef CONFIG_MMU
7dc74be0
DN
3290static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3291 struct cftype *cft, u64 val)
3292{
3293 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3294
3295 if (val >= (1 << NR_MOVE_TYPE))
3296 return -EINVAL;
3297 /*
3298 * We check this value several times in both in can_attach() and
3299 * attach(), so we need cgroup lock to prevent this value from being
3300 * inconsistent.
3301 */
3302 cgroup_lock();
3303 mem->move_charge_at_immigrate = val;
3304 cgroup_unlock();
3305
3306 return 0;
3307}
02491447
DN
3308#else
3309static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3310 struct cftype *cft, u64 val)
3311{
3312 return -ENOSYS;
3313}
3314#endif
7dc74be0 3315
14067bb3
KH
3316
3317/* For read statistics */
3318enum {
3319 MCS_CACHE,
3320 MCS_RSS,
d8046582 3321 MCS_FILE_MAPPED,
14067bb3
KH
3322 MCS_PGPGIN,
3323 MCS_PGPGOUT,
1dd3a273 3324 MCS_SWAP,
14067bb3
KH
3325 MCS_INACTIVE_ANON,
3326 MCS_ACTIVE_ANON,
3327 MCS_INACTIVE_FILE,
3328 MCS_ACTIVE_FILE,
3329 MCS_UNEVICTABLE,
3330 NR_MCS_STAT,
3331};
3332
3333struct mcs_total_stat {
3334 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3335};
3336
14067bb3
KH
3337struct {
3338 char *local_name;
3339 char *total_name;
3340} memcg_stat_strings[NR_MCS_STAT] = {
3341 {"cache", "total_cache"},
3342 {"rss", "total_rss"},
d69b042f 3343 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3344 {"pgpgin", "total_pgpgin"},
3345 {"pgpgout", "total_pgpgout"},
1dd3a273 3346 {"swap", "total_swap"},
14067bb3
KH
3347 {"inactive_anon", "total_inactive_anon"},
3348 {"active_anon", "total_active_anon"},
3349 {"inactive_file", "total_inactive_file"},
3350 {"active_file", "total_active_file"},
3351 {"unevictable", "total_unevictable"}
3352};
3353
3354
3355static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3356{
3357 struct mcs_total_stat *s = data;
3358 s64 val;
3359
3360 /* per cpu stat */
c62b1a3b 3361 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3362 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3363 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3364 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3365 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3366 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3367 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3368 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3369 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3370 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3371 if (do_swap_account) {
c62b1a3b 3372 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3373 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3374 }
14067bb3
KH
3375
3376 /* per zone stat */
3377 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3378 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3379 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3380 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3381 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3382 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3383 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3384 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3385 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3386 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3387 return 0;
3388}
3389
3390static void
3391mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3392{
3393 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3394}
3395
c64745cf
PM
3396static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3397 struct cgroup_map_cb *cb)
d2ceb9b7 3398{
d2ceb9b7 3399 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3400 struct mcs_total_stat mystat;
d2ceb9b7
KH
3401 int i;
3402
14067bb3
KH
3403 memset(&mystat, 0, sizeof(mystat));
3404 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3405
1dd3a273
DN
3406 for (i = 0; i < NR_MCS_STAT; i++) {
3407 if (i == MCS_SWAP && !do_swap_account)
3408 continue;
14067bb3 3409 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3410 }
7b854121 3411
14067bb3 3412 /* Hierarchical information */
fee7b548
KH
3413 {
3414 unsigned long long limit, memsw_limit;
3415 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3416 cb->fill(cb, "hierarchical_memory_limit", limit);
3417 if (do_swap_account)
3418 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3419 }
7f016ee8 3420
14067bb3
KH
3421 memset(&mystat, 0, sizeof(mystat));
3422 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3423 for (i = 0; i < NR_MCS_STAT; i++) {
3424 if (i == MCS_SWAP && !do_swap_account)
3425 continue;
14067bb3 3426 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3427 }
14067bb3 3428
7f016ee8 3429#ifdef CONFIG_DEBUG_VM
c772be93 3430 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3431
3432 {
3433 int nid, zid;
3434 struct mem_cgroup_per_zone *mz;
3435 unsigned long recent_rotated[2] = {0, 0};
3436 unsigned long recent_scanned[2] = {0, 0};
3437
3438 for_each_online_node(nid)
3439 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3440 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3441
3442 recent_rotated[0] +=
3443 mz->reclaim_stat.recent_rotated[0];
3444 recent_rotated[1] +=
3445 mz->reclaim_stat.recent_rotated[1];
3446 recent_scanned[0] +=
3447 mz->reclaim_stat.recent_scanned[0];
3448 recent_scanned[1] +=
3449 mz->reclaim_stat.recent_scanned[1];
3450 }
3451 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3452 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3453 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3454 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3455 }
3456#endif
3457
d2ceb9b7
KH
3458 return 0;
3459}
3460
a7885eb8
KM
3461static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3462{
3463 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3464
3465 return get_swappiness(memcg);
3466}
3467
3468static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3469 u64 val)
3470{
3471 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3472 struct mem_cgroup *parent;
068b38c1 3473
a7885eb8
KM
3474 if (val > 100)
3475 return -EINVAL;
3476
3477 if (cgrp->parent == NULL)
3478 return -EINVAL;
3479
3480 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3481
3482 cgroup_lock();
3483
a7885eb8
KM
3484 /* If under hierarchy, only empty-root can set this value */
3485 if ((parent->use_hierarchy) ||
068b38c1
LZ
3486 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3487 cgroup_unlock();
a7885eb8 3488 return -EINVAL;
068b38c1 3489 }
a7885eb8
KM
3490
3491 spin_lock(&memcg->reclaim_param_lock);
3492 memcg->swappiness = val;
3493 spin_unlock(&memcg->reclaim_param_lock);
3494
068b38c1
LZ
3495 cgroup_unlock();
3496
a7885eb8
KM
3497 return 0;
3498}
3499
2e72b634
KS
3500static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3501{
3502 struct mem_cgroup_threshold_ary *t;
3503 u64 usage;
3504 int i;
3505
3506 rcu_read_lock();
3507 if (!swap)
2c488db2 3508 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3509 else
2c488db2 3510 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3511
3512 if (!t)
3513 goto unlock;
3514
3515 usage = mem_cgroup_usage(memcg, swap);
3516
3517 /*
3518 * current_threshold points to threshold just below usage.
3519 * If it's not true, a threshold was crossed after last
3520 * call of __mem_cgroup_threshold().
3521 */
5407a562 3522 i = t->current_threshold;
2e72b634
KS
3523
3524 /*
3525 * Iterate backward over array of thresholds starting from
3526 * current_threshold and check if a threshold is crossed.
3527 * If none of thresholds below usage is crossed, we read
3528 * only one element of the array here.
3529 */
3530 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3531 eventfd_signal(t->entries[i].eventfd, 1);
3532
3533 /* i = current_threshold + 1 */
3534 i++;
3535
3536 /*
3537 * Iterate forward over array of thresholds starting from
3538 * current_threshold+1 and check if a threshold is crossed.
3539 * If none of thresholds above usage is crossed, we read
3540 * only one element of the array here.
3541 */
3542 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3543 eventfd_signal(t->entries[i].eventfd, 1);
3544
3545 /* Update current_threshold */
5407a562 3546 t->current_threshold = i - 1;
2e72b634
KS
3547unlock:
3548 rcu_read_unlock();
3549}
3550
3551static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3552{
3553 __mem_cgroup_threshold(memcg, false);
3554 if (do_swap_account)
3555 __mem_cgroup_threshold(memcg, true);
3556}
3557
3558static int compare_thresholds(const void *a, const void *b)
3559{
3560 const struct mem_cgroup_threshold *_a = a;
3561 const struct mem_cgroup_threshold *_b = b;
3562
3563 return _a->threshold - _b->threshold;
3564}
3565
9490ff27
KH
3566static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3567{
3568 struct mem_cgroup_eventfd_list *ev;
3569
3570 list_for_each_entry(ev, &mem->oom_notify, list)
3571 eventfd_signal(ev->eventfd, 1);
3572 return 0;
3573}
3574
3575static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3576{
3577 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3578}
3579
3580static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3581 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3582{
3583 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3584 struct mem_cgroup_thresholds *thresholds;
3585 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3586 int type = MEMFILE_TYPE(cft->private);
3587 u64 threshold, usage;
2c488db2 3588 int i, size, ret;
2e72b634
KS
3589
3590 ret = res_counter_memparse_write_strategy(args, &threshold);
3591 if (ret)
3592 return ret;
3593
3594 mutex_lock(&memcg->thresholds_lock);
2c488db2 3595
2e72b634 3596 if (type == _MEM)
2c488db2 3597 thresholds = &memcg->thresholds;
2e72b634 3598 else if (type == _MEMSWAP)
2c488db2 3599 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3600 else
3601 BUG();
3602
3603 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3604
3605 /* Check if a threshold crossed before adding a new one */
2c488db2 3606 if (thresholds->primary)
2e72b634
KS
3607 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3608
2c488db2 3609 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3610
3611 /* Allocate memory for new array of thresholds */
2c488db2 3612 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3613 GFP_KERNEL);
2c488db2 3614 if (!new) {
2e72b634
KS
3615 ret = -ENOMEM;
3616 goto unlock;
3617 }
2c488db2 3618 new->size = size;
2e72b634
KS
3619
3620 /* Copy thresholds (if any) to new array */
2c488db2
KS
3621 if (thresholds->primary) {
3622 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3623 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3624 }
3625
2e72b634 3626 /* Add new threshold */
2c488db2
KS
3627 new->entries[size - 1].eventfd = eventfd;
3628 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3629
3630 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3631 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3632 compare_thresholds, NULL);
3633
3634 /* Find current threshold */
2c488db2 3635 new->current_threshold = -1;
2e72b634 3636 for (i = 0; i < size; i++) {
2c488db2 3637 if (new->entries[i].threshold < usage) {
2e72b634 3638 /*
2c488db2
KS
3639 * new->current_threshold will not be used until
3640 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3641 * it here.
3642 */
2c488db2 3643 ++new->current_threshold;
2e72b634
KS
3644 }
3645 }
3646
2c488db2
KS
3647 /* Free old spare buffer and save old primary buffer as spare */
3648 kfree(thresholds->spare);
3649 thresholds->spare = thresholds->primary;
3650
3651 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3652
907860ed 3653 /* To be sure that nobody uses thresholds */
2e72b634
KS
3654 synchronize_rcu();
3655
2e72b634
KS
3656unlock:
3657 mutex_unlock(&memcg->thresholds_lock);
3658
3659 return ret;
3660}
3661
907860ed 3662static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 3663 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
3664{
3665 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3666 struct mem_cgroup_thresholds *thresholds;
3667 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3668 int type = MEMFILE_TYPE(cft->private);
3669 u64 usage;
2c488db2 3670 int i, j, size;
2e72b634
KS
3671
3672 mutex_lock(&memcg->thresholds_lock);
3673 if (type == _MEM)
2c488db2 3674 thresholds = &memcg->thresholds;
2e72b634 3675 else if (type == _MEMSWAP)
2c488db2 3676 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3677 else
3678 BUG();
3679
3680 /*
3681 * Something went wrong if we trying to unregister a threshold
3682 * if we don't have thresholds
3683 */
3684 BUG_ON(!thresholds);
3685
3686 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3687
3688 /* Check if a threshold crossed before removing */
3689 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3690
3691 /* Calculate new number of threshold */
2c488db2
KS
3692 size = 0;
3693 for (i = 0; i < thresholds->primary->size; i++) {
3694 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3695 size++;
3696 }
3697
2c488db2 3698 new = thresholds->spare;
907860ed 3699
2e72b634
KS
3700 /* Set thresholds array to NULL if we don't have thresholds */
3701 if (!size) {
2c488db2
KS
3702 kfree(new);
3703 new = NULL;
907860ed 3704 goto swap_buffers;
2e72b634
KS
3705 }
3706
2c488db2 3707 new->size = size;
2e72b634
KS
3708
3709 /* Copy thresholds and find current threshold */
2c488db2
KS
3710 new->current_threshold = -1;
3711 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3712 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3713 continue;
3714
2c488db2
KS
3715 new->entries[j] = thresholds->primary->entries[i];
3716 if (new->entries[j].threshold < usage) {
2e72b634 3717 /*
2c488db2 3718 * new->current_threshold will not be used
2e72b634
KS
3719 * until rcu_assign_pointer(), so it's safe to increment
3720 * it here.
3721 */
2c488db2 3722 ++new->current_threshold;
2e72b634
KS
3723 }
3724 j++;
3725 }
3726
907860ed 3727swap_buffers:
2c488db2
KS
3728 /* Swap primary and spare array */
3729 thresholds->spare = thresholds->primary;
3730 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3731
907860ed 3732 /* To be sure that nobody uses thresholds */
2e72b634
KS
3733 synchronize_rcu();
3734
2e72b634 3735 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3736}
c1e862c1 3737
9490ff27
KH
3738static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3739 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3740{
3741 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3742 struct mem_cgroup_eventfd_list *event;
3743 int type = MEMFILE_TYPE(cft->private);
3744
3745 BUG_ON(type != _OOM_TYPE);
3746 event = kmalloc(sizeof(*event), GFP_KERNEL);
3747 if (!event)
3748 return -ENOMEM;
3749
3750 mutex_lock(&memcg_oom_mutex);
3751
3752 event->eventfd = eventfd;
3753 list_add(&event->list, &memcg->oom_notify);
3754
3755 /* already in OOM ? */
3756 if (atomic_read(&memcg->oom_lock))
3757 eventfd_signal(eventfd, 1);
3758 mutex_unlock(&memcg_oom_mutex);
3759
3760 return 0;
3761}
3762
907860ed 3763static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
3764 struct cftype *cft, struct eventfd_ctx *eventfd)
3765{
3766 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3767 struct mem_cgroup_eventfd_list *ev, *tmp;
3768 int type = MEMFILE_TYPE(cft->private);
3769
3770 BUG_ON(type != _OOM_TYPE);
3771
3772 mutex_lock(&memcg_oom_mutex);
3773
3774 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3775 if (ev->eventfd == eventfd) {
3776 list_del(&ev->list);
3777 kfree(ev);
3778 }
3779 }
3780
3781 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
3782}
3783
3c11ecf4
KH
3784static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3785 struct cftype *cft, struct cgroup_map_cb *cb)
3786{
3787 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3788
3789 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3790
3791 if (atomic_read(&mem->oom_lock))
3792 cb->fill(cb, "under_oom", 1);
3793 else
3794 cb->fill(cb, "under_oom", 0);
3795 return 0;
3796}
3797
3c11ecf4
KH
3798static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3799 struct cftype *cft, u64 val)
3800{
3801 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3802 struct mem_cgroup *parent;
3803
3804 /* cannot set to root cgroup and only 0 and 1 are allowed */
3805 if (!cgrp->parent || !((val == 0) || (val == 1)))
3806 return -EINVAL;
3807
3808 parent = mem_cgroup_from_cont(cgrp->parent);
3809
3810 cgroup_lock();
3811 /* oom-kill-disable is a flag for subhierarchy. */
3812 if ((parent->use_hierarchy) ||
3813 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3814 cgroup_unlock();
3815 return -EINVAL;
3816 }
3817 mem->oom_kill_disable = val;
4d845ebf
KH
3818 if (!val)
3819 memcg_oom_recover(mem);
3c11ecf4
KH
3820 cgroup_unlock();
3821 return 0;
3822}
3823
8cdea7c0
BS
3824static struct cftype mem_cgroup_files[] = {
3825 {
0eea1030 3826 .name = "usage_in_bytes",
8c7c6e34 3827 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 3828 .read_u64 = mem_cgroup_read,
9490ff27
KH
3829 .register_event = mem_cgroup_usage_register_event,
3830 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 3831 },
c84872e1
PE
3832 {
3833 .name = "max_usage_in_bytes",
8c7c6e34 3834 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 3835 .trigger = mem_cgroup_reset,
c84872e1
PE
3836 .read_u64 = mem_cgroup_read,
3837 },
8cdea7c0 3838 {
0eea1030 3839 .name = "limit_in_bytes",
8c7c6e34 3840 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 3841 .write_string = mem_cgroup_write,
2c3daa72 3842 .read_u64 = mem_cgroup_read,
8cdea7c0 3843 },
296c81d8
BS
3844 {
3845 .name = "soft_limit_in_bytes",
3846 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3847 .write_string = mem_cgroup_write,
3848 .read_u64 = mem_cgroup_read,
3849 },
8cdea7c0
BS
3850 {
3851 .name = "failcnt",
8c7c6e34 3852 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 3853 .trigger = mem_cgroup_reset,
2c3daa72 3854 .read_u64 = mem_cgroup_read,
8cdea7c0 3855 },
d2ceb9b7
KH
3856 {
3857 .name = "stat",
c64745cf 3858 .read_map = mem_control_stat_show,
d2ceb9b7 3859 },
c1e862c1
KH
3860 {
3861 .name = "force_empty",
3862 .trigger = mem_cgroup_force_empty_write,
3863 },
18f59ea7
BS
3864 {
3865 .name = "use_hierarchy",
3866 .write_u64 = mem_cgroup_hierarchy_write,
3867 .read_u64 = mem_cgroup_hierarchy_read,
3868 },
a7885eb8
KM
3869 {
3870 .name = "swappiness",
3871 .read_u64 = mem_cgroup_swappiness_read,
3872 .write_u64 = mem_cgroup_swappiness_write,
3873 },
7dc74be0
DN
3874 {
3875 .name = "move_charge_at_immigrate",
3876 .read_u64 = mem_cgroup_move_charge_read,
3877 .write_u64 = mem_cgroup_move_charge_write,
3878 },
9490ff27
KH
3879 {
3880 .name = "oom_control",
3c11ecf4
KH
3881 .read_map = mem_cgroup_oom_control_read,
3882 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3883 .register_event = mem_cgroup_oom_register_event,
3884 .unregister_event = mem_cgroup_oom_unregister_event,
3885 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3886 },
8cdea7c0
BS
3887};
3888
8c7c6e34
KH
3889#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3890static struct cftype memsw_cgroup_files[] = {
3891 {
3892 .name = "memsw.usage_in_bytes",
3893 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3894 .read_u64 = mem_cgroup_read,
9490ff27
KH
3895 .register_event = mem_cgroup_usage_register_event,
3896 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
3897 },
3898 {
3899 .name = "memsw.max_usage_in_bytes",
3900 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3901 .trigger = mem_cgroup_reset,
3902 .read_u64 = mem_cgroup_read,
3903 },
3904 {
3905 .name = "memsw.limit_in_bytes",
3906 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3907 .write_string = mem_cgroup_write,
3908 .read_u64 = mem_cgroup_read,
3909 },
3910 {
3911 .name = "memsw.failcnt",
3912 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3913 .trigger = mem_cgroup_reset,
3914 .read_u64 = mem_cgroup_read,
3915 },
3916};
3917
3918static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3919{
3920 if (!do_swap_account)
3921 return 0;
3922 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3923 ARRAY_SIZE(memsw_cgroup_files));
3924};
3925#else
3926static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3927{
3928 return 0;
3929}
3930#endif
3931
6d12e2d8
KH
3932static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3933{
3934 struct mem_cgroup_per_node *pn;
1ecaab2b 3935 struct mem_cgroup_per_zone *mz;
b69408e8 3936 enum lru_list l;
41e3355d 3937 int zone, tmp = node;
1ecaab2b
KH
3938 /*
3939 * This routine is called against possible nodes.
3940 * But it's BUG to call kmalloc() against offline node.
3941 *
3942 * TODO: this routine can waste much memory for nodes which will
3943 * never be onlined. It's better to use memory hotplug callback
3944 * function.
3945 */
41e3355d
KH
3946 if (!node_state(node, N_NORMAL_MEMORY))
3947 tmp = -1;
3948 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
3949 if (!pn)
3950 return 1;
1ecaab2b 3951
6d12e2d8
KH
3952 mem->info.nodeinfo[node] = pn;
3953 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
3954
3955 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3956 mz = &pn->zoneinfo[zone];
b69408e8
CL
3957 for_each_lru(l)
3958 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 3959 mz->usage_in_excess = 0;
4e416953
BS
3960 mz->on_tree = false;
3961 mz->mem = mem;
1ecaab2b 3962 }
6d12e2d8
KH
3963 return 0;
3964}
3965
1ecaab2b
KH
3966static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3967{
3968 kfree(mem->info.nodeinfo[node]);
3969}
3970
33327948
KH
3971static struct mem_cgroup *mem_cgroup_alloc(void)
3972{
3973 struct mem_cgroup *mem;
c62b1a3b 3974 int size = sizeof(struct mem_cgroup);
33327948 3975
c62b1a3b 3976 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb
JB
3977 if (size < PAGE_SIZE)
3978 mem = kmalloc(size, GFP_KERNEL);
33327948 3979 else
c8dad2bb 3980 mem = vmalloc(size);
33327948 3981
e7bbcdf3
DC
3982 if (!mem)
3983 return NULL;
3984
3985 memset(mem, 0, size);
c62b1a3b
KH
3986 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3987 if (!mem->stat) {
3988 if (size < PAGE_SIZE)
3989 kfree(mem);
3990 else
3991 vfree(mem);
3992 mem = NULL;
3993 }
33327948
KH
3994 return mem;
3995}
3996
8c7c6e34
KH
3997/*
3998 * At destroying mem_cgroup, references from swap_cgroup can remain.
3999 * (scanning all at force_empty is too costly...)
4000 *
4001 * Instead of clearing all references at force_empty, we remember
4002 * the number of reference from swap_cgroup and free mem_cgroup when
4003 * it goes down to 0.
4004 *
8c7c6e34
KH
4005 * Removal of cgroup itself succeeds regardless of refs from swap.
4006 */
4007
a7ba0eef 4008static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4009{
08e552c6
KH
4010 int node;
4011
f64c3f54 4012 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4013 free_css_id(&mem_cgroup_subsys, &mem->css);
4014
08e552c6
KH
4015 for_each_node_state(node, N_POSSIBLE)
4016 free_mem_cgroup_per_zone_info(mem, node);
4017
c62b1a3b
KH
4018 free_percpu(mem->stat);
4019 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4020 kfree(mem);
4021 else
4022 vfree(mem);
4023}
4024
8c7c6e34
KH
4025static void mem_cgroup_get(struct mem_cgroup *mem)
4026{
4027 atomic_inc(&mem->refcnt);
4028}
4029
483c30b5 4030static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4031{
483c30b5 4032 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4033 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4034 __mem_cgroup_free(mem);
7bcc1bb1
DN
4035 if (parent)
4036 mem_cgroup_put(parent);
4037 }
8c7c6e34
KH
4038}
4039
483c30b5
DN
4040static void mem_cgroup_put(struct mem_cgroup *mem)
4041{
4042 __mem_cgroup_put(mem, 1);
4043}
4044
7bcc1bb1
DN
4045/*
4046 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4047 */
4048static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4049{
4050 if (!mem->res.parent)
4051 return NULL;
4052 return mem_cgroup_from_res_counter(mem->res.parent, res);
4053}
33327948 4054
c077719b
KH
4055#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4056static void __init enable_swap_cgroup(void)
4057{
f8d66542 4058 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4059 do_swap_account = 1;
4060}
4061#else
4062static void __init enable_swap_cgroup(void)
4063{
4064}
4065#endif
4066
f64c3f54
BS
4067static int mem_cgroup_soft_limit_tree_init(void)
4068{
4069 struct mem_cgroup_tree_per_node *rtpn;
4070 struct mem_cgroup_tree_per_zone *rtpz;
4071 int tmp, node, zone;
4072
4073 for_each_node_state(node, N_POSSIBLE) {
4074 tmp = node;
4075 if (!node_state(node, N_NORMAL_MEMORY))
4076 tmp = -1;
4077 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4078 if (!rtpn)
4079 return 1;
4080
4081 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4082
4083 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4084 rtpz = &rtpn->rb_tree_per_zone[zone];
4085 rtpz->rb_root = RB_ROOT;
4086 spin_lock_init(&rtpz->lock);
4087 }
4088 }
4089 return 0;
4090}
4091
0eb253e2 4092static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4093mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4094{
28dbc4b6 4095 struct mem_cgroup *mem, *parent;
04046e1a 4096 long error = -ENOMEM;
6d12e2d8 4097 int node;
8cdea7c0 4098
c8dad2bb
JB
4099 mem = mem_cgroup_alloc();
4100 if (!mem)
04046e1a 4101 return ERR_PTR(error);
78fb7466 4102
6d12e2d8
KH
4103 for_each_node_state(node, N_POSSIBLE)
4104 if (alloc_mem_cgroup_per_zone_info(mem, node))
4105 goto free_out;
f64c3f54 4106
c077719b 4107 /* root ? */
28dbc4b6 4108 if (cont->parent == NULL) {
cdec2e42 4109 int cpu;
c077719b 4110 enable_swap_cgroup();
28dbc4b6 4111 parent = NULL;
4b3bde4c 4112 root_mem_cgroup = mem;
f64c3f54
BS
4113 if (mem_cgroup_soft_limit_tree_init())
4114 goto free_out;
cdec2e42
KH
4115 for_each_possible_cpu(cpu) {
4116 struct memcg_stock_pcp *stock =
4117 &per_cpu(memcg_stock, cpu);
4118 INIT_WORK(&stock->work, drain_local_stock);
4119 }
4120 hotcpu_notifier(memcg_stock_cpu_callback, 0);
18f59ea7 4121 } else {
28dbc4b6 4122 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4123 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4124 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4125 }
28dbc4b6 4126
18f59ea7
BS
4127 if (parent && parent->use_hierarchy) {
4128 res_counter_init(&mem->res, &parent->res);
4129 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4130 /*
4131 * We increment refcnt of the parent to ensure that we can
4132 * safely access it on res_counter_charge/uncharge.
4133 * This refcnt will be decremented when freeing this
4134 * mem_cgroup(see mem_cgroup_put).
4135 */
4136 mem_cgroup_get(parent);
18f59ea7
BS
4137 } else {
4138 res_counter_init(&mem->res, NULL);
4139 res_counter_init(&mem->memsw, NULL);
4140 }
04046e1a 4141 mem->last_scanned_child = 0;
2733c06a 4142 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4143 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4144
a7885eb8
KM
4145 if (parent)
4146 mem->swappiness = get_swappiness(parent);
a7ba0eef 4147 atomic_set(&mem->refcnt, 1);
7dc74be0 4148 mem->move_charge_at_immigrate = 0;
2e72b634 4149 mutex_init(&mem->thresholds_lock);
8cdea7c0 4150 return &mem->css;
6d12e2d8 4151free_out:
a7ba0eef 4152 __mem_cgroup_free(mem);
4b3bde4c 4153 root_mem_cgroup = NULL;
04046e1a 4154 return ERR_PTR(error);
8cdea7c0
BS
4155}
4156
ec64f515 4157static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4158 struct cgroup *cont)
4159{
4160 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4161
4162 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4163}
4164
8cdea7c0
BS
4165static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4166 struct cgroup *cont)
4167{
c268e994 4168 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4169
c268e994 4170 mem_cgroup_put(mem);
8cdea7c0
BS
4171}
4172
4173static int mem_cgroup_populate(struct cgroup_subsys *ss,
4174 struct cgroup *cont)
4175{
8c7c6e34
KH
4176 int ret;
4177
4178 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4179 ARRAY_SIZE(mem_cgroup_files));
4180
4181 if (!ret)
4182 ret = register_memsw_files(cont, ss);
4183 return ret;
8cdea7c0
BS
4184}
4185
02491447 4186#ifdef CONFIG_MMU
7dc74be0 4187/* Handlers for move charge at task migration. */
854ffa8d
DN
4188#define PRECHARGE_COUNT_AT_ONCE 256
4189static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4190{
854ffa8d
DN
4191 int ret = 0;
4192 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4193 struct mem_cgroup *mem = mc.to;
4194
854ffa8d
DN
4195 if (mem_cgroup_is_root(mem)) {
4196 mc.precharge += count;
4197 /* we don't need css_get for root */
4198 return ret;
4199 }
4200 /* try to charge at once */
4201 if (count > 1) {
4202 struct res_counter *dummy;
4203 /*
4204 * "mem" cannot be under rmdir() because we've already checked
4205 * by cgroup_lock_live_cgroup() that it is not removed and we
4206 * are still under the same cgroup_mutex. So we can postpone
4207 * css_get().
4208 */
4209 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4210 goto one_by_one;
4211 if (do_swap_account && res_counter_charge(&mem->memsw,
4212 PAGE_SIZE * count, &dummy)) {
4213 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4214 goto one_by_one;
4215 }
4216 mc.precharge += count;
4217 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4218 WARN_ON_ONCE(count > INT_MAX);
4219 __css_get(&mem->css, (int)count);
4220 return ret;
4221 }
4222one_by_one:
4223 /* fall back to one by one charge */
4224 while (count--) {
4225 if (signal_pending(current)) {
4226 ret = -EINTR;
4227 break;
4228 }
4229 if (!batch_count--) {
4230 batch_count = PRECHARGE_COUNT_AT_ONCE;
4231 cond_resched();
4232 }
430e4863 4233 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
854ffa8d
DN
4234 if (ret || !mem)
4235 /* mem_cgroup_clear_mc() will do uncharge later */
4236 return -ENOMEM;
4237 mc.precharge++;
4238 }
4ffef5fe
DN
4239 return ret;
4240}
4241
4242/**
4243 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4244 * @vma: the vma the pte to be checked belongs
4245 * @addr: the address corresponding to the pte to be checked
4246 * @ptent: the pte to be checked
02491447 4247 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4248 *
4249 * Returns
4250 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4251 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4252 * move charge. if @target is not NULL, the page is stored in target->page
4253 * with extra refcnt got(Callers should handle it).
02491447
DN
4254 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4255 * target for charge migration. if @target is not NULL, the entry is stored
4256 * in target->ent.
4ffef5fe
DN
4257 *
4258 * Called with pte lock held.
4259 */
4ffef5fe
DN
4260union mc_target {
4261 struct page *page;
02491447 4262 swp_entry_t ent;
4ffef5fe
DN
4263};
4264
4ffef5fe
DN
4265enum mc_target_type {
4266 MC_TARGET_NONE, /* not used */
4267 MC_TARGET_PAGE,
02491447 4268 MC_TARGET_SWAP,
4ffef5fe
DN
4269};
4270
90254a65
DN
4271static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4272 unsigned long addr, pte_t ptent)
4ffef5fe 4273{
90254a65 4274 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4275
90254a65
DN
4276 if (!page || !page_mapped(page))
4277 return NULL;
4278 if (PageAnon(page)) {
4279 /* we don't move shared anon */
4280 if (!move_anon() || page_mapcount(page) > 2)
4281 return NULL;
87946a72
DN
4282 } else if (!move_file())
4283 /* we ignore mapcount for file pages */
90254a65
DN
4284 return NULL;
4285 if (!get_page_unless_zero(page))
4286 return NULL;
4287
4288 return page;
4289}
4290
4291static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4292 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4293{
4294 int usage_count;
4295 struct page *page = NULL;
4296 swp_entry_t ent = pte_to_swp_entry(ptent);
4297
4298 if (!move_anon() || non_swap_entry(ent))
4299 return NULL;
4300 usage_count = mem_cgroup_count_swap_user(ent, &page);
4301 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4302 if (page)
4303 put_page(page);
90254a65 4304 return NULL;
02491447 4305 }
90254a65
DN
4306 if (do_swap_account)
4307 entry->val = ent.val;
4308
4309 return page;
4310}
4311
87946a72
DN
4312static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4313 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4314{
4315 struct page *page = NULL;
4316 struct inode *inode;
4317 struct address_space *mapping;
4318 pgoff_t pgoff;
4319
4320 if (!vma->vm_file) /* anonymous vma */
4321 return NULL;
4322 if (!move_file())
4323 return NULL;
4324
4325 inode = vma->vm_file->f_path.dentry->d_inode;
4326 mapping = vma->vm_file->f_mapping;
4327 if (pte_none(ptent))
4328 pgoff = linear_page_index(vma, addr);
4329 else /* pte_file(ptent) is true */
4330 pgoff = pte_to_pgoff(ptent);
4331
4332 /* page is moved even if it's not RSS of this task(page-faulted). */
4333 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4334 page = find_get_page(mapping, pgoff);
4335 } else { /* shmem/tmpfs file. we should take account of swap too. */
4336 swp_entry_t ent;
4337 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4338 if (do_swap_account)
4339 entry->val = ent.val;
4340 }
4341
4342 return page;
4343}
4344
90254a65
DN
4345static int is_target_pte_for_mc(struct vm_area_struct *vma,
4346 unsigned long addr, pte_t ptent, union mc_target *target)
4347{
4348 struct page *page = NULL;
4349 struct page_cgroup *pc;
4350 int ret = 0;
4351 swp_entry_t ent = { .val = 0 };
4352
4353 if (pte_present(ptent))
4354 page = mc_handle_present_pte(vma, addr, ptent);
4355 else if (is_swap_pte(ptent))
4356 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4357 else if (pte_none(ptent) || pte_file(ptent))
4358 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4359
4360 if (!page && !ent.val)
4361 return 0;
02491447
DN
4362 if (page) {
4363 pc = lookup_page_cgroup(page);
4364 /*
4365 * Do only loose check w/o page_cgroup lock.
4366 * mem_cgroup_move_account() checks the pc is valid or not under
4367 * the lock.
4368 */
4369 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4370 ret = MC_TARGET_PAGE;
4371 if (target)
4372 target->page = page;
4373 }
4374 if (!ret || !target)
4375 put_page(page);
4376 }
90254a65
DN
4377 /* There is a swap entry and a page doesn't exist or isn't charged */
4378 if (ent.val && !ret &&
7f0f1546
KH
4379 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4380 ret = MC_TARGET_SWAP;
4381 if (target)
4382 target->ent = ent;
4ffef5fe 4383 }
4ffef5fe
DN
4384 return ret;
4385}
4386
4387static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4388 unsigned long addr, unsigned long end,
4389 struct mm_walk *walk)
4390{
4391 struct vm_area_struct *vma = walk->private;
4392 pte_t *pte;
4393 spinlock_t *ptl;
4394
4395 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4396 for (; addr != end; pte++, addr += PAGE_SIZE)
4397 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4398 mc.precharge++; /* increment precharge temporarily */
4399 pte_unmap_unlock(pte - 1, ptl);
4400 cond_resched();
4401
7dc74be0
DN
4402 return 0;
4403}
4404
4ffef5fe
DN
4405static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4406{
4407 unsigned long precharge;
4408 struct vm_area_struct *vma;
4409
4410 down_read(&mm->mmap_sem);
4411 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4412 struct mm_walk mem_cgroup_count_precharge_walk = {
4413 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4414 .mm = mm,
4415 .private = vma,
4416 };
4417 if (is_vm_hugetlb_page(vma))
4418 continue;
4ffef5fe
DN
4419 walk_page_range(vma->vm_start, vma->vm_end,
4420 &mem_cgroup_count_precharge_walk);
4421 }
4422 up_read(&mm->mmap_sem);
4423
4424 precharge = mc.precharge;
4425 mc.precharge = 0;
4426
4427 return precharge;
4428}
4429
4ffef5fe
DN
4430static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4431{
854ffa8d 4432 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4ffef5fe
DN
4433}
4434
4435static void mem_cgroup_clear_mc(void)
4436{
2bd9bb20
KH
4437 struct mem_cgroup *from = mc.from;
4438 struct mem_cgroup *to = mc.to;
4439
4ffef5fe 4440 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4441 if (mc.precharge) {
4442 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4443 mc.precharge = 0;
4444 }
4445 /*
4446 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4447 * we must uncharge here.
4448 */
4449 if (mc.moved_charge) {
4450 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4451 mc.moved_charge = 0;
4ffef5fe 4452 }
483c30b5
DN
4453 /* we must fixup refcnts and charges */
4454 if (mc.moved_swap) {
4455 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4456 /* uncharge swap account from the old cgroup */
4457 if (!mem_cgroup_is_root(mc.from))
4458 res_counter_uncharge(&mc.from->memsw,
4459 PAGE_SIZE * mc.moved_swap);
4460 __mem_cgroup_put(mc.from, mc.moved_swap);
4461
4462 if (!mem_cgroup_is_root(mc.to)) {
4463 /*
4464 * we charged both to->res and to->memsw, so we should
4465 * uncharge to->res.
4466 */
4467 res_counter_uncharge(&mc.to->res,
4468 PAGE_SIZE * mc.moved_swap);
4469 VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4470 __css_put(&mc.to->css, mc.moved_swap);
4471 }
4472 /* we've already done mem_cgroup_get(mc.to) */
4473
4474 mc.moved_swap = 0;
4475 }
2bd9bb20 4476 spin_lock(&mc.lock);
4ffef5fe
DN
4477 mc.from = NULL;
4478 mc.to = NULL;
8033b97c 4479 mc.moving_task = NULL;
2bd9bb20
KH
4480 spin_unlock(&mc.lock);
4481 memcg_oom_recover(from);
4482 memcg_oom_recover(to);
8033b97c 4483 wake_up_all(&mc.waitq);
4ffef5fe
DN
4484}
4485
7dc74be0
DN
4486static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4487 struct cgroup *cgroup,
4488 struct task_struct *p,
4489 bool threadgroup)
4490{
4491 int ret = 0;
4492 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4493
4494 if (mem->move_charge_at_immigrate) {
4495 struct mm_struct *mm;
4496 struct mem_cgroup *from = mem_cgroup_from_task(p);
4497
4498 VM_BUG_ON(from == mem);
4499
4500 mm = get_task_mm(p);
4501 if (!mm)
4502 return 0;
7dc74be0 4503 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4504 if (mm->owner == p) {
4505 VM_BUG_ON(mc.from);
4506 VM_BUG_ON(mc.to);
4507 VM_BUG_ON(mc.precharge);
854ffa8d 4508 VM_BUG_ON(mc.moved_charge);
483c30b5 4509 VM_BUG_ON(mc.moved_swap);
8033b97c 4510 VM_BUG_ON(mc.moving_task);
2bd9bb20 4511 spin_lock(&mc.lock);
4ffef5fe
DN
4512 mc.from = from;
4513 mc.to = mem;
4514 mc.precharge = 0;
854ffa8d 4515 mc.moved_charge = 0;
483c30b5 4516 mc.moved_swap = 0;
8033b97c 4517 mc.moving_task = current;
2bd9bb20 4518 spin_unlock(&mc.lock);
4ffef5fe
DN
4519
4520 ret = mem_cgroup_precharge_mc(mm);
4521 if (ret)
4522 mem_cgroup_clear_mc();
4523 }
7dc74be0
DN
4524 mmput(mm);
4525 }
4526 return ret;
4527}
4528
4529static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4530 struct cgroup *cgroup,
4531 struct task_struct *p,
4532 bool threadgroup)
4533{
4ffef5fe 4534 mem_cgroup_clear_mc();
7dc74be0
DN
4535}
4536
4ffef5fe
DN
4537static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4538 unsigned long addr, unsigned long end,
4539 struct mm_walk *walk)
7dc74be0 4540{
4ffef5fe
DN
4541 int ret = 0;
4542 struct vm_area_struct *vma = walk->private;
4543 pte_t *pte;
4544 spinlock_t *ptl;
4545
4546retry:
4547 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4548 for (; addr != end; addr += PAGE_SIZE) {
4549 pte_t ptent = *(pte++);
4550 union mc_target target;
4551 int type;
4552 struct page *page;
4553 struct page_cgroup *pc;
02491447 4554 swp_entry_t ent;
4ffef5fe
DN
4555
4556 if (!mc.precharge)
4557 break;
4558
4559 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4560 switch (type) {
4561 case MC_TARGET_PAGE:
4562 page = target.page;
4563 if (isolate_lru_page(page))
4564 goto put;
4565 pc = lookup_page_cgroup(page);
854ffa8d
DN
4566 if (!mem_cgroup_move_account(pc,
4567 mc.from, mc.to, false)) {
4ffef5fe 4568 mc.precharge--;
854ffa8d
DN
4569 /* we uncharge from mc.from later. */
4570 mc.moved_charge++;
4ffef5fe
DN
4571 }
4572 putback_lru_page(page);
4573put: /* is_target_pte_for_mc() gets the page */
4574 put_page(page);
4575 break;
02491447
DN
4576 case MC_TARGET_SWAP:
4577 ent = target.ent;
483c30b5
DN
4578 if (!mem_cgroup_move_swap_account(ent,
4579 mc.from, mc.to, false)) {
02491447 4580 mc.precharge--;
483c30b5
DN
4581 /* we fixup refcnts and charges later. */
4582 mc.moved_swap++;
4583 }
02491447 4584 break;
4ffef5fe
DN
4585 default:
4586 break;
4587 }
4588 }
4589 pte_unmap_unlock(pte - 1, ptl);
4590 cond_resched();
4591
4592 if (addr != end) {
4593 /*
4594 * We have consumed all precharges we got in can_attach().
4595 * We try charge one by one, but don't do any additional
4596 * charges to mc.to if we have failed in charge once in attach()
4597 * phase.
4598 */
854ffa8d 4599 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4600 if (!ret)
4601 goto retry;
4602 }
4603
4604 return ret;
4605}
4606
4607static void mem_cgroup_move_charge(struct mm_struct *mm)
4608{
4609 struct vm_area_struct *vma;
4610
4611 lru_add_drain_all();
4612 down_read(&mm->mmap_sem);
4613 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4614 int ret;
4615 struct mm_walk mem_cgroup_move_charge_walk = {
4616 .pmd_entry = mem_cgroup_move_charge_pte_range,
4617 .mm = mm,
4618 .private = vma,
4619 };
4620 if (is_vm_hugetlb_page(vma))
4621 continue;
4ffef5fe
DN
4622 ret = walk_page_range(vma->vm_start, vma->vm_end,
4623 &mem_cgroup_move_charge_walk);
4624 if (ret)
4625 /*
4626 * means we have consumed all precharges and failed in
4627 * doing additional charge. Just abandon here.
4628 */
4629 break;
4630 }
4631 up_read(&mm->mmap_sem);
7dc74be0
DN
4632}
4633
67e465a7
BS
4634static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4635 struct cgroup *cont,
4636 struct cgroup *old_cont,
be367d09
BB
4637 struct task_struct *p,
4638 bool threadgroup)
67e465a7 4639{
4ffef5fe
DN
4640 struct mm_struct *mm;
4641
4642 if (!mc.to)
4643 /* no need to move charge */
4644 return;
4645
4646 mm = get_task_mm(p);
4647 if (mm) {
4648 mem_cgroup_move_charge(mm);
4649 mmput(mm);
4650 }
4651 mem_cgroup_clear_mc();
67e465a7 4652}
5cfb80a7
DN
4653#else /* !CONFIG_MMU */
4654static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4655 struct cgroup *cgroup,
4656 struct task_struct *p,
4657 bool threadgroup)
4658{
4659 return 0;
4660}
4661static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4662 struct cgroup *cgroup,
4663 struct task_struct *p,
4664 bool threadgroup)
4665{
4666}
4667static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4668 struct cgroup *cont,
4669 struct cgroup *old_cont,
4670 struct task_struct *p,
4671 bool threadgroup)
4672{
4673}
4674#endif
67e465a7 4675
8cdea7c0
BS
4676struct cgroup_subsys mem_cgroup_subsys = {
4677 .name = "memory",
4678 .subsys_id = mem_cgroup_subsys_id,
4679 .create = mem_cgroup_create,
df878fb0 4680 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
4681 .destroy = mem_cgroup_destroy,
4682 .populate = mem_cgroup_populate,
7dc74be0
DN
4683 .can_attach = mem_cgroup_can_attach,
4684 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 4685 .attach = mem_cgroup_move_task,
6d12e2d8 4686 .early_init = 0,
04046e1a 4687 .use_id = 1,
8cdea7c0 4688};
c077719b
KH
4689
4690#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4691
4692static int __init disable_swap_account(char *s)
4693{
4694 really_do_swap_account = 0;
4695 return 1;
4696}
4697__setup("noswapaccount", disable_swap_account);
4698#endif