]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: oom notifier
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
08e552c6 50#include "internal.h"
8cdea7c0 51
8697d331
BS
52#include <asm/uaccess.h>
53
a181b0e8 54struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 55#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 56struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 57
c077719b 58#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 59/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
60int do_swap_account __read_mostly;
61static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62#else
63#define do_swap_account (0)
64#endif
65
d2265e6f
KH
66/*
67 * Per memcg event counter is incremented at every pagein/pageout. This counter
68 * is used for trigger some periodic events. This is straightforward and better
69 * than using jiffies etc. to handle periodic memcg event.
70 *
71 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
72 */
73#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 75
d52aa412
KH
76/*
77 * Statistics for memory cgroup.
78 */
79enum mem_cgroup_stat_index {
80 /*
81 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
82 */
83 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 84 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 85 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
86 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
87 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
d2265e6f 89 MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */
d52aa412
KH
90
91 MEM_CGROUP_STAT_NSTATS,
92};
93
94struct mem_cgroup_stat_cpu {
95 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
96};
97
6d12e2d8
KH
98/*
99 * per-zone information in memory controller.
100 */
6d12e2d8 101struct mem_cgroup_per_zone {
072c56c1
KH
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
b69408e8
CL
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
107
108 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
109 struct rb_node tree_node; /* RB tree node */
110 unsigned long long usage_in_excess;/* Set to the value by which */
111 /* the soft limit is exceeded*/
112 bool on_tree;
4e416953
BS
113 struct mem_cgroup *mem; /* Back pointer, we cannot */
114 /* use container_of */
6d12e2d8
KH
115};
116/* Macro for accessing counter */
117#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
118
119struct mem_cgroup_per_node {
120 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
121};
122
123struct mem_cgroup_lru_info {
124 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
125};
126
f64c3f54
BS
127/*
128 * Cgroups above their limits are maintained in a RB-Tree, independent of
129 * their hierarchy representation
130 */
131
132struct mem_cgroup_tree_per_zone {
133 struct rb_root rb_root;
134 spinlock_t lock;
135};
136
137struct mem_cgroup_tree_per_node {
138 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
139};
140
141struct mem_cgroup_tree {
142 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143};
144
145static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
2e72b634
KS
147struct mem_cgroup_threshold {
148 struct eventfd_ctx *eventfd;
149 u64 threshold;
150};
151
9490ff27 152/* For threshold */
2e72b634
KS
153struct mem_cgroup_threshold_ary {
154 /* An array index points to threshold just below usage. */
155 atomic_t current_threshold;
156 /* Size of entries[] */
157 unsigned int size;
158 /* Array of thresholds */
159 struct mem_cgroup_threshold entries[0];
160};
9490ff27
KH
161/* for OOM */
162struct mem_cgroup_eventfd_list {
163 struct list_head list;
164 struct eventfd_ctx *eventfd;
165};
2e72b634 166
2e72b634 167static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 168static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 169
8cdea7c0
BS
170/*
171 * The memory controller data structure. The memory controller controls both
172 * page cache and RSS per cgroup. We would eventually like to provide
173 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
174 * to help the administrator determine what knobs to tune.
175 *
176 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
177 * we hit the water mark. May be even add a low water mark, such that
178 * no reclaim occurs from a cgroup at it's low water mark, this is
179 * a feature that will be implemented much later in the future.
8cdea7c0
BS
180 */
181struct mem_cgroup {
182 struct cgroup_subsys_state css;
183 /*
184 * the counter to account for memory usage
185 */
186 struct res_counter res;
8c7c6e34
KH
187 /*
188 * the counter to account for mem+swap usage.
189 */
190 struct res_counter memsw;
78fb7466
PE
191 /*
192 * Per cgroup active and inactive list, similar to the
193 * per zone LRU lists.
78fb7466 194 */
6d12e2d8 195 struct mem_cgroup_lru_info info;
072c56c1 196
2733c06a
KM
197 /*
198 protect against reclaim related member.
199 */
200 spinlock_t reclaim_param_lock;
201
6c48a1d0 202 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
203
204 /*
af901ca1 205 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 206 * reclaimed from.
6d61ef40 207 */
04046e1a 208 int last_scanned_child;
18f59ea7
BS
209 /*
210 * Should the accounting and control be hierarchical, per subtree?
211 */
212 bool use_hierarchy;
867578cb 213 atomic_t oom_lock;
8c7c6e34 214 atomic_t refcnt;
14797e23 215
a7885eb8
KM
216 unsigned int swappiness;
217
22a668d7
KH
218 /* set when res.limit == memsw.limit */
219 bool memsw_is_minimum;
220
2e72b634
KS
221 /* protect arrays of thresholds */
222 struct mutex thresholds_lock;
223
224 /* thresholds for memory usage. RCU-protected */
225 struct mem_cgroup_threshold_ary *thresholds;
226
227 /* thresholds for mem+swap usage. RCU-protected */
228 struct mem_cgroup_threshold_ary *memsw_thresholds;
229
9490ff27
KH
230 /* For oom notifier event fd */
231 struct list_head oom_notify;
232
7dc74be0
DN
233 /*
234 * Should we move charges of a task when a task is moved into this
235 * mem_cgroup ? And what type of charges should we move ?
236 */
237 unsigned long move_charge_at_immigrate;
238
d52aa412 239 /*
c62b1a3b 240 * percpu counter.
d52aa412 241 */
c62b1a3b 242 struct mem_cgroup_stat_cpu *stat;
8cdea7c0
BS
243};
244
7dc74be0
DN
245/* Stuffs for move charges at task migration. */
246/*
247 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
248 * left-shifted bitmap of these types.
249 */
250enum move_type {
4ffef5fe 251 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
7dc74be0
DN
252 NR_MOVE_TYPE,
253};
254
4ffef5fe
DN
255/* "mc" and its members are protected by cgroup_mutex */
256static struct move_charge_struct {
257 struct mem_cgroup *from;
258 struct mem_cgroup *to;
259 unsigned long precharge;
854ffa8d 260 unsigned long moved_charge;
483c30b5 261 unsigned long moved_swap;
8033b97c
DN
262 struct task_struct *moving_task; /* a task moving charges */
263 wait_queue_head_t waitq; /* a waitq for other context */
264} mc = {
265 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
266};
4ffef5fe 267
4e416953
BS
268/*
269 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
270 * limit reclaim to prevent infinite loops, if they ever occur.
271 */
272#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
273#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
274
217bc319
KH
275enum charge_type {
276 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
277 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 278 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 279 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 280 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 281 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
282 NR_CHARGE_TYPE,
283};
284
52d4b9ac
KH
285/* only for here (for easy reading.) */
286#define PCGF_CACHE (1UL << PCG_CACHE)
287#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 288#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
289/* Not used, but added here for completeness */
290#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 291
8c7c6e34
KH
292/* for encoding cft->private value on file */
293#define _MEM (0)
294#define _MEMSWAP (1)
9490ff27 295#define _OOM_TYPE (2)
8c7c6e34
KH
296#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
297#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
298#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
299/* Used for OOM nofiier */
300#define OOM_CONTROL (0)
8c7c6e34 301
75822b44
BS
302/*
303 * Reclaim flags for mem_cgroup_hierarchical_reclaim
304 */
305#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
306#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
307#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
308#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
309#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
310#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 311
8c7c6e34
KH
312static void mem_cgroup_get(struct mem_cgroup *mem);
313static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 314static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 315static void drain_all_stock_async(void);
8c7c6e34 316
f64c3f54
BS
317static struct mem_cgroup_per_zone *
318mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
319{
320 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
321}
322
d324236b
WF
323struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
324{
325 return &mem->css;
326}
327
f64c3f54
BS
328static struct mem_cgroup_per_zone *
329page_cgroup_zoneinfo(struct page_cgroup *pc)
330{
331 struct mem_cgroup *mem = pc->mem_cgroup;
332 int nid = page_cgroup_nid(pc);
333 int zid = page_cgroup_zid(pc);
334
335 if (!mem)
336 return NULL;
337
338 return mem_cgroup_zoneinfo(mem, nid, zid);
339}
340
341static struct mem_cgroup_tree_per_zone *
342soft_limit_tree_node_zone(int nid, int zid)
343{
344 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
345}
346
347static struct mem_cgroup_tree_per_zone *
348soft_limit_tree_from_page(struct page *page)
349{
350 int nid = page_to_nid(page);
351 int zid = page_zonenum(page);
352
353 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
354}
355
356static void
4e416953 357__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 358 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
359 struct mem_cgroup_tree_per_zone *mctz,
360 unsigned long long new_usage_in_excess)
f64c3f54
BS
361{
362 struct rb_node **p = &mctz->rb_root.rb_node;
363 struct rb_node *parent = NULL;
364 struct mem_cgroup_per_zone *mz_node;
365
366 if (mz->on_tree)
367 return;
368
ef8745c1
KH
369 mz->usage_in_excess = new_usage_in_excess;
370 if (!mz->usage_in_excess)
371 return;
f64c3f54
BS
372 while (*p) {
373 parent = *p;
374 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
375 tree_node);
376 if (mz->usage_in_excess < mz_node->usage_in_excess)
377 p = &(*p)->rb_left;
378 /*
379 * We can't avoid mem cgroups that are over their soft
380 * limit by the same amount
381 */
382 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
383 p = &(*p)->rb_right;
384 }
385 rb_link_node(&mz->tree_node, parent, p);
386 rb_insert_color(&mz->tree_node, &mctz->rb_root);
387 mz->on_tree = true;
4e416953
BS
388}
389
390static void
391__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
392 struct mem_cgroup_per_zone *mz,
393 struct mem_cgroup_tree_per_zone *mctz)
394{
395 if (!mz->on_tree)
396 return;
397 rb_erase(&mz->tree_node, &mctz->rb_root);
398 mz->on_tree = false;
399}
400
f64c3f54
BS
401static void
402mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
403 struct mem_cgroup_per_zone *mz,
404 struct mem_cgroup_tree_per_zone *mctz)
405{
406 spin_lock(&mctz->lock);
4e416953 407 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
408 spin_unlock(&mctz->lock);
409}
410
f64c3f54
BS
411
412static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
413{
ef8745c1 414 unsigned long long excess;
f64c3f54
BS
415 struct mem_cgroup_per_zone *mz;
416 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
417 int nid = page_to_nid(page);
418 int zid = page_zonenum(page);
f64c3f54
BS
419 mctz = soft_limit_tree_from_page(page);
420
421 /*
4e649152
KH
422 * Necessary to update all ancestors when hierarchy is used.
423 * because their event counter is not touched.
f64c3f54 424 */
4e649152
KH
425 for (; mem; mem = parent_mem_cgroup(mem)) {
426 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 427 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
428 /*
429 * We have to update the tree if mz is on RB-tree or
430 * mem is over its softlimit.
431 */
ef8745c1 432 if (excess || mz->on_tree) {
4e649152
KH
433 spin_lock(&mctz->lock);
434 /* if on-tree, remove it */
435 if (mz->on_tree)
436 __mem_cgroup_remove_exceeded(mem, mz, mctz);
437 /*
ef8745c1
KH
438 * Insert again. mz->usage_in_excess will be updated.
439 * If excess is 0, no tree ops.
4e649152 440 */
ef8745c1 441 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
442 spin_unlock(&mctz->lock);
443 }
f64c3f54
BS
444 }
445}
446
447static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
448{
449 int node, zone;
450 struct mem_cgroup_per_zone *mz;
451 struct mem_cgroup_tree_per_zone *mctz;
452
453 for_each_node_state(node, N_POSSIBLE) {
454 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
455 mz = mem_cgroup_zoneinfo(mem, node, zone);
456 mctz = soft_limit_tree_node_zone(node, zone);
457 mem_cgroup_remove_exceeded(mem, mz, mctz);
458 }
459 }
460}
461
4e416953
BS
462static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
463{
464 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
465}
466
467static struct mem_cgroup_per_zone *
468__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
469{
470 struct rb_node *rightmost = NULL;
26251eaf 471 struct mem_cgroup_per_zone *mz;
4e416953
BS
472
473retry:
26251eaf 474 mz = NULL;
4e416953
BS
475 rightmost = rb_last(&mctz->rb_root);
476 if (!rightmost)
477 goto done; /* Nothing to reclaim from */
478
479 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
480 /*
481 * Remove the node now but someone else can add it back,
482 * we will to add it back at the end of reclaim to its correct
483 * position in the tree.
484 */
485 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
486 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
487 !css_tryget(&mz->mem->css))
488 goto retry;
489done:
490 return mz;
491}
492
493static struct mem_cgroup_per_zone *
494mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
495{
496 struct mem_cgroup_per_zone *mz;
497
498 spin_lock(&mctz->lock);
499 mz = __mem_cgroup_largest_soft_limit_node(mctz);
500 spin_unlock(&mctz->lock);
501 return mz;
502}
503
c62b1a3b
KH
504static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
505 enum mem_cgroup_stat_index idx)
506{
507 int cpu;
508 s64 val = 0;
509
510 for_each_possible_cpu(cpu)
511 val += per_cpu(mem->stat->count[idx], cpu);
512 return val;
513}
514
515static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
516{
517 s64 ret;
518
519 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
520 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
521 return ret;
522}
523
0c3e73e8
BS
524static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
525 bool charge)
526{
527 int val = (charge) ? 1 : -1;
c62b1a3b 528 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
529}
530
c05555b5
KH
531static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
532 struct page_cgroup *pc,
533 bool charge)
d52aa412 534{
0c3e73e8 535 int val = (charge) ? 1 : -1;
d52aa412 536
c62b1a3b
KH
537 preempt_disable();
538
c05555b5 539 if (PageCgroupCache(pc))
c62b1a3b 540 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
d52aa412 541 else
c62b1a3b 542 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
55e462b0
BR
543
544 if (charge)
c62b1a3b 545 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
55e462b0 546 else
c62b1a3b 547 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
d2265e6f 548 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
2e72b634 549
c62b1a3b 550 preempt_enable();
6d12e2d8
KH
551}
552
14067bb3 553static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 554 enum lru_list idx)
6d12e2d8
KH
555{
556 int nid, zid;
557 struct mem_cgroup_per_zone *mz;
558 u64 total = 0;
559
560 for_each_online_node(nid)
561 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
562 mz = mem_cgroup_zoneinfo(mem, nid, zid);
563 total += MEM_CGROUP_ZSTAT(mz, idx);
564 }
565 return total;
d52aa412
KH
566}
567
d2265e6f
KH
568static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
569{
570 s64 val;
571
572 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
573
574 return !(val & ((1 << event_mask_shift) - 1));
575}
576
577/*
578 * Check events in order.
579 *
580 */
581static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
582{
583 /* threshold event is triggered in finer grain than soft limit */
584 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
585 mem_cgroup_threshold(mem);
586 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
587 mem_cgroup_update_tree(mem, page);
588 }
589}
590
d5b69e38 591static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
592{
593 return container_of(cgroup_subsys_state(cont,
594 mem_cgroup_subsys_id), struct mem_cgroup,
595 css);
596}
597
cf475ad2 598struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 599{
31a78f23
BS
600 /*
601 * mm_update_next_owner() may clear mm->owner to NULL
602 * if it races with swapoff, page migration, etc.
603 * So this can be called with p == NULL.
604 */
605 if (unlikely(!p))
606 return NULL;
607
78fb7466
PE
608 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
609 struct mem_cgroup, css);
610}
611
54595fe2
KH
612static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
613{
614 struct mem_cgroup *mem = NULL;
0b7f569e
KH
615
616 if (!mm)
617 return NULL;
54595fe2
KH
618 /*
619 * Because we have no locks, mm->owner's may be being moved to other
620 * cgroup. We use css_tryget() here even if this looks
621 * pessimistic (rather than adding locks here).
622 */
623 rcu_read_lock();
624 do {
625 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
626 if (unlikely(!mem))
627 break;
628 } while (!css_tryget(&mem->css));
629 rcu_read_unlock();
630 return mem;
631}
632
14067bb3
KH
633/*
634 * Call callback function against all cgroup under hierarchy tree.
635 */
636static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
637 int (*func)(struct mem_cgroup *, void *))
638{
639 int found, ret, nextid;
640 struct cgroup_subsys_state *css;
641 struct mem_cgroup *mem;
642
643 if (!root->use_hierarchy)
644 return (*func)(root, data);
645
646 nextid = 1;
647 do {
648 ret = 0;
649 mem = NULL;
650
651 rcu_read_lock();
652 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
653 &found);
654 if (css && css_tryget(css))
655 mem = container_of(css, struct mem_cgroup, css);
656 rcu_read_unlock();
657
658 if (mem) {
659 ret = (*func)(mem, data);
660 css_put(&mem->css);
661 }
662 nextid = found + 1;
663 } while (!ret && css);
664
665 return ret;
666}
667
4b3bde4c
BS
668static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
669{
670 return (mem == root_mem_cgroup);
671}
672
08e552c6
KH
673/*
674 * Following LRU functions are allowed to be used without PCG_LOCK.
675 * Operations are called by routine of global LRU independently from memcg.
676 * What we have to take care of here is validness of pc->mem_cgroup.
677 *
678 * Changes to pc->mem_cgroup happens when
679 * 1. charge
680 * 2. moving account
681 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
682 * It is added to LRU before charge.
683 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
684 * When moving account, the page is not on LRU. It's isolated.
685 */
4f98a2fe 686
08e552c6
KH
687void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
688{
689 struct page_cgroup *pc;
08e552c6 690 struct mem_cgroup_per_zone *mz;
6d12e2d8 691
f8d66542 692 if (mem_cgroup_disabled())
08e552c6
KH
693 return;
694 pc = lookup_page_cgroup(page);
695 /* can happen while we handle swapcache. */
4b3bde4c 696 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 697 return;
4b3bde4c 698 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
699 /*
700 * We don't check PCG_USED bit. It's cleared when the "page" is finally
701 * removed from global LRU.
702 */
08e552c6 703 mz = page_cgroup_zoneinfo(pc);
b69408e8 704 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
705 if (mem_cgroup_is_root(pc->mem_cgroup))
706 return;
707 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
708 list_del_init(&pc->lru);
709 return;
6d12e2d8
KH
710}
711
08e552c6 712void mem_cgroup_del_lru(struct page *page)
6d12e2d8 713{
08e552c6
KH
714 mem_cgroup_del_lru_list(page, page_lru(page));
715}
b69408e8 716
08e552c6
KH
717void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
718{
719 struct mem_cgroup_per_zone *mz;
720 struct page_cgroup *pc;
b69408e8 721
f8d66542 722 if (mem_cgroup_disabled())
08e552c6 723 return;
6d12e2d8 724
08e552c6 725 pc = lookup_page_cgroup(page);
bd112db8
DN
726 /*
727 * Used bit is set without atomic ops but after smp_wmb().
728 * For making pc->mem_cgroup visible, insert smp_rmb() here.
729 */
08e552c6 730 smp_rmb();
4b3bde4c
BS
731 /* unused or root page is not rotated. */
732 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
733 return;
734 mz = page_cgroup_zoneinfo(pc);
735 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
736}
737
08e552c6 738void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 739{
08e552c6
KH
740 struct page_cgroup *pc;
741 struct mem_cgroup_per_zone *mz;
6d12e2d8 742
f8d66542 743 if (mem_cgroup_disabled())
08e552c6
KH
744 return;
745 pc = lookup_page_cgroup(page);
4b3bde4c 746 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
747 /*
748 * Used bit is set without atomic ops but after smp_wmb().
749 * For making pc->mem_cgroup visible, insert smp_rmb() here.
750 */
08e552c6
KH
751 smp_rmb();
752 if (!PageCgroupUsed(pc))
894bc310 753 return;
b69408e8 754
08e552c6 755 mz = page_cgroup_zoneinfo(pc);
b69408e8 756 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
757 SetPageCgroupAcctLRU(pc);
758 if (mem_cgroup_is_root(pc->mem_cgroup))
759 return;
08e552c6
KH
760 list_add(&pc->lru, &mz->lists[lru]);
761}
544122e5 762
08e552c6 763/*
544122e5
KH
764 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
765 * lru because the page may.be reused after it's fully uncharged (because of
766 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
767 * it again. This function is only used to charge SwapCache. It's done under
768 * lock_page and expected that zone->lru_lock is never held.
08e552c6 769 */
544122e5 770static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 771{
544122e5
KH
772 unsigned long flags;
773 struct zone *zone = page_zone(page);
774 struct page_cgroup *pc = lookup_page_cgroup(page);
775
776 spin_lock_irqsave(&zone->lru_lock, flags);
777 /*
778 * Forget old LRU when this page_cgroup is *not* used. This Used bit
779 * is guarded by lock_page() because the page is SwapCache.
780 */
781 if (!PageCgroupUsed(pc))
782 mem_cgroup_del_lru_list(page, page_lru(page));
783 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
784}
785
544122e5
KH
786static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
787{
788 unsigned long flags;
789 struct zone *zone = page_zone(page);
790 struct page_cgroup *pc = lookup_page_cgroup(page);
791
792 spin_lock_irqsave(&zone->lru_lock, flags);
793 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 794 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
795 mem_cgroup_add_lru_list(page, page_lru(page));
796 spin_unlock_irqrestore(&zone->lru_lock, flags);
797}
798
799
08e552c6
KH
800void mem_cgroup_move_lists(struct page *page,
801 enum lru_list from, enum lru_list to)
802{
f8d66542 803 if (mem_cgroup_disabled())
08e552c6
KH
804 return;
805 mem_cgroup_del_lru_list(page, from);
806 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
807}
808
4c4a2214
DR
809int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
810{
811 int ret;
0b7f569e 812 struct mem_cgroup *curr = NULL;
4c4a2214
DR
813
814 task_lock(task);
0b7f569e
KH
815 rcu_read_lock();
816 curr = try_get_mem_cgroup_from_mm(task->mm);
817 rcu_read_unlock();
4c4a2214 818 task_unlock(task);
0b7f569e
KH
819 if (!curr)
820 return 0;
d31f56db
DN
821 /*
822 * We should check use_hierarchy of "mem" not "curr". Because checking
823 * use_hierarchy of "curr" here make this function true if hierarchy is
824 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
825 * hierarchy(even if use_hierarchy is disabled in "mem").
826 */
827 if (mem->use_hierarchy)
0b7f569e
KH
828 ret = css_is_ancestor(&curr->css, &mem->css);
829 else
830 ret = (curr == mem);
831 css_put(&curr->css);
4c4a2214
DR
832 return ret;
833}
834
6c48a1d0
KH
835/*
836 * prev_priority control...this will be used in memory reclaim path.
837 */
838int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
839{
2733c06a
KM
840 int prev_priority;
841
842 spin_lock(&mem->reclaim_param_lock);
843 prev_priority = mem->prev_priority;
844 spin_unlock(&mem->reclaim_param_lock);
845
846 return prev_priority;
6c48a1d0
KH
847}
848
849void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
850{
2733c06a 851 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
852 if (priority < mem->prev_priority)
853 mem->prev_priority = priority;
2733c06a 854 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
855}
856
857void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
858{
2733c06a 859 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 860 mem->prev_priority = priority;
2733c06a 861 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
862}
863
c772be93 864static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
865{
866 unsigned long active;
867 unsigned long inactive;
c772be93
KM
868 unsigned long gb;
869 unsigned long inactive_ratio;
14797e23 870
14067bb3
KH
871 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
872 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 873
c772be93
KM
874 gb = (inactive + active) >> (30 - PAGE_SHIFT);
875 if (gb)
876 inactive_ratio = int_sqrt(10 * gb);
877 else
878 inactive_ratio = 1;
879
880 if (present_pages) {
881 present_pages[0] = inactive;
882 present_pages[1] = active;
883 }
884
885 return inactive_ratio;
886}
887
888int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
889{
890 unsigned long active;
891 unsigned long inactive;
892 unsigned long present_pages[2];
893 unsigned long inactive_ratio;
894
895 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
896
897 inactive = present_pages[0];
898 active = present_pages[1];
899
900 if (inactive * inactive_ratio < active)
14797e23
KM
901 return 1;
902
903 return 0;
904}
905
56e49d21
RR
906int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
907{
908 unsigned long active;
909 unsigned long inactive;
910
911 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
912 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
913
914 return (active > inactive);
915}
916
a3d8e054
KM
917unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
918 struct zone *zone,
919 enum lru_list lru)
920{
921 int nid = zone->zone_pgdat->node_id;
922 int zid = zone_idx(zone);
923 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
924
925 return MEM_CGROUP_ZSTAT(mz, lru);
926}
927
3e2f41f1
KM
928struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
929 struct zone *zone)
930{
931 int nid = zone->zone_pgdat->node_id;
932 int zid = zone_idx(zone);
933 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
934
935 return &mz->reclaim_stat;
936}
937
938struct zone_reclaim_stat *
939mem_cgroup_get_reclaim_stat_from_page(struct page *page)
940{
941 struct page_cgroup *pc;
942 struct mem_cgroup_per_zone *mz;
943
944 if (mem_cgroup_disabled())
945 return NULL;
946
947 pc = lookup_page_cgroup(page);
bd112db8
DN
948 /*
949 * Used bit is set without atomic ops but after smp_wmb().
950 * For making pc->mem_cgroup visible, insert smp_rmb() here.
951 */
952 smp_rmb();
953 if (!PageCgroupUsed(pc))
954 return NULL;
955
3e2f41f1
KM
956 mz = page_cgroup_zoneinfo(pc);
957 if (!mz)
958 return NULL;
959
960 return &mz->reclaim_stat;
961}
962
66e1707b
BS
963unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
964 struct list_head *dst,
965 unsigned long *scanned, int order,
966 int mode, struct zone *z,
967 struct mem_cgroup *mem_cont,
4f98a2fe 968 int active, int file)
66e1707b
BS
969{
970 unsigned long nr_taken = 0;
971 struct page *page;
972 unsigned long scan;
973 LIST_HEAD(pc_list);
974 struct list_head *src;
ff7283fa 975 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
976 int nid = z->zone_pgdat->node_id;
977 int zid = zone_idx(z);
978 struct mem_cgroup_per_zone *mz;
b7c46d15 979 int lru = LRU_FILE * file + active;
2ffebca6 980 int ret;
66e1707b 981
cf475ad2 982 BUG_ON(!mem_cont);
1ecaab2b 983 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 984 src = &mz->lists[lru];
66e1707b 985
ff7283fa
KH
986 scan = 0;
987 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 988 if (scan >= nr_to_scan)
ff7283fa 989 break;
08e552c6
KH
990
991 page = pc->page;
52d4b9ac
KH
992 if (unlikely(!PageCgroupUsed(pc)))
993 continue;
436c6541 994 if (unlikely(!PageLRU(page)))
ff7283fa 995 continue;
ff7283fa 996
436c6541 997 scan++;
2ffebca6
KH
998 ret = __isolate_lru_page(page, mode, file);
999 switch (ret) {
1000 case 0:
66e1707b 1001 list_move(&page->lru, dst);
2ffebca6 1002 mem_cgroup_del_lru(page);
66e1707b 1003 nr_taken++;
2ffebca6
KH
1004 break;
1005 case -EBUSY:
1006 /* we don't affect global LRU but rotate in our LRU */
1007 mem_cgroup_rotate_lru_list(page, page_lru(page));
1008 break;
1009 default:
1010 break;
66e1707b
BS
1011 }
1012 }
1013
66e1707b
BS
1014 *scanned = scan;
1015 return nr_taken;
1016}
1017
6d61ef40
BS
1018#define mem_cgroup_from_res_counter(counter, member) \
1019 container_of(counter, struct mem_cgroup, member)
1020
b85a96c0
DN
1021static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1022{
1023 if (do_swap_account) {
1024 if (res_counter_check_under_limit(&mem->res) &&
1025 res_counter_check_under_limit(&mem->memsw))
1026 return true;
1027 } else
1028 if (res_counter_check_under_limit(&mem->res))
1029 return true;
1030 return false;
1031}
1032
a7885eb8
KM
1033static unsigned int get_swappiness(struct mem_cgroup *memcg)
1034{
1035 struct cgroup *cgrp = memcg->css.cgroup;
1036 unsigned int swappiness;
1037
1038 /* root ? */
1039 if (cgrp->parent == NULL)
1040 return vm_swappiness;
1041
1042 spin_lock(&memcg->reclaim_param_lock);
1043 swappiness = memcg->swappiness;
1044 spin_unlock(&memcg->reclaim_param_lock);
1045
1046 return swappiness;
1047}
1048
81d39c20
KH
1049static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1050{
1051 int *val = data;
1052 (*val)++;
1053 return 0;
1054}
e222432b
BS
1055
1056/**
6a6135b6 1057 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1058 * @memcg: The memory cgroup that went over limit
1059 * @p: Task that is going to be killed
1060 *
1061 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1062 * enabled
1063 */
1064void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1065{
1066 struct cgroup *task_cgrp;
1067 struct cgroup *mem_cgrp;
1068 /*
1069 * Need a buffer in BSS, can't rely on allocations. The code relies
1070 * on the assumption that OOM is serialized for memory controller.
1071 * If this assumption is broken, revisit this code.
1072 */
1073 static char memcg_name[PATH_MAX];
1074 int ret;
1075
d31f56db 1076 if (!memcg || !p)
e222432b
BS
1077 return;
1078
1079
1080 rcu_read_lock();
1081
1082 mem_cgrp = memcg->css.cgroup;
1083 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1084
1085 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1086 if (ret < 0) {
1087 /*
1088 * Unfortunately, we are unable to convert to a useful name
1089 * But we'll still print out the usage information
1090 */
1091 rcu_read_unlock();
1092 goto done;
1093 }
1094 rcu_read_unlock();
1095
1096 printk(KERN_INFO "Task in %s killed", memcg_name);
1097
1098 rcu_read_lock();
1099 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1100 if (ret < 0) {
1101 rcu_read_unlock();
1102 goto done;
1103 }
1104 rcu_read_unlock();
1105
1106 /*
1107 * Continues from above, so we don't need an KERN_ level
1108 */
1109 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1110done:
1111
1112 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1113 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1114 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1115 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1116 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1117 "failcnt %llu\n",
1118 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1119 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1120 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1121}
1122
81d39c20
KH
1123/*
1124 * This function returns the number of memcg under hierarchy tree. Returns
1125 * 1(self count) if no children.
1126 */
1127static int mem_cgroup_count_children(struct mem_cgroup *mem)
1128{
1129 int num = 0;
1130 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1131 return num;
1132}
1133
6d61ef40 1134/*
04046e1a
KH
1135 * Visit the first child (need not be the first child as per the ordering
1136 * of the cgroup list, since we track last_scanned_child) of @mem and use
1137 * that to reclaim free pages from.
1138 */
1139static struct mem_cgroup *
1140mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1141{
1142 struct mem_cgroup *ret = NULL;
1143 struct cgroup_subsys_state *css;
1144 int nextid, found;
1145
1146 if (!root_mem->use_hierarchy) {
1147 css_get(&root_mem->css);
1148 ret = root_mem;
1149 }
1150
1151 while (!ret) {
1152 rcu_read_lock();
1153 nextid = root_mem->last_scanned_child + 1;
1154 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1155 &found);
1156 if (css && css_tryget(css))
1157 ret = container_of(css, struct mem_cgroup, css);
1158
1159 rcu_read_unlock();
1160 /* Updates scanning parameter */
1161 spin_lock(&root_mem->reclaim_param_lock);
1162 if (!css) {
1163 /* this means start scan from ID:1 */
1164 root_mem->last_scanned_child = 0;
1165 } else
1166 root_mem->last_scanned_child = found;
1167 spin_unlock(&root_mem->reclaim_param_lock);
1168 }
1169
1170 return ret;
1171}
1172
1173/*
1174 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1175 * we reclaimed from, so that we don't end up penalizing one child extensively
1176 * based on its position in the children list.
6d61ef40
BS
1177 *
1178 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1179 *
1180 * We give up and return to the caller when we visit root_mem twice.
1181 * (other groups can be removed while we're walking....)
81d39c20
KH
1182 *
1183 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1184 */
1185static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1186 struct zone *zone,
75822b44
BS
1187 gfp_t gfp_mask,
1188 unsigned long reclaim_options)
6d61ef40 1189{
04046e1a
KH
1190 struct mem_cgroup *victim;
1191 int ret, total = 0;
1192 int loop = 0;
75822b44
BS
1193 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1194 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1195 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1196 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1197
22a668d7
KH
1198 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1199 if (root_mem->memsw_is_minimum)
1200 noswap = true;
1201
4e416953 1202 while (1) {
04046e1a 1203 victim = mem_cgroup_select_victim(root_mem);
4e416953 1204 if (victim == root_mem) {
04046e1a 1205 loop++;
cdec2e42
KH
1206 if (loop >= 1)
1207 drain_all_stock_async();
4e416953
BS
1208 if (loop >= 2) {
1209 /*
1210 * If we have not been able to reclaim
1211 * anything, it might because there are
1212 * no reclaimable pages under this hierarchy
1213 */
1214 if (!check_soft || !total) {
1215 css_put(&victim->css);
1216 break;
1217 }
1218 /*
1219 * We want to do more targetted reclaim.
1220 * excess >> 2 is not to excessive so as to
1221 * reclaim too much, nor too less that we keep
1222 * coming back to reclaim from this cgroup
1223 */
1224 if (total >= (excess >> 2) ||
1225 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1226 css_put(&victim->css);
1227 break;
1228 }
1229 }
1230 }
c62b1a3b 1231 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1232 /* this cgroup's local usage == 0 */
1233 css_put(&victim->css);
6d61ef40
BS
1234 continue;
1235 }
04046e1a 1236 /* we use swappiness of local cgroup */
4e416953
BS
1237 if (check_soft)
1238 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1239 noswap, get_swappiness(victim), zone,
1240 zone->zone_pgdat->node_id);
1241 else
1242 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1243 noswap, get_swappiness(victim));
04046e1a 1244 css_put(&victim->css);
81d39c20
KH
1245 /*
1246 * At shrinking usage, we can't check we should stop here or
1247 * reclaim more. It's depends on callers. last_scanned_child
1248 * will work enough for keeping fairness under tree.
1249 */
1250 if (shrink)
1251 return ret;
04046e1a 1252 total += ret;
4e416953
BS
1253 if (check_soft) {
1254 if (res_counter_check_under_soft_limit(&root_mem->res))
1255 return total;
1256 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1257 return 1 + total;
6d61ef40 1258 }
04046e1a 1259 return total;
6d61ef40
BS
1260}
1261
867578cb 1262static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
a636b327 1263{
867578cb
KH
1264 int *val = (int *)data;
1265 int x;
1266 /*
1267 * Logically, we can stop scanning immediately when we find
1268 * a memcg is already locked. But condidering unlock ops and
1269 * creation/removal of memcg, scan-all is simple operation.
1270 */
1271 x = atomic_inc_return(&mem->oom_lock);
1272 *val = max(x, *val);
1273 return 0;
1274}
1275/*
1276 * Check OOM-Killer is already running under our hierarchy.
1277 * If someone is running, return false.
1278 */
1279static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1280{
1281 int lock_count = 0;
a636b327 1282
867578cb
KH
1283 mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1284
1285 if (lock_count == 1)
1286 return true;
1287 return false;
a636b327 1288}
0b7f569e 1289
867578cb 1290static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
0b7f569e 1291{
867578cb
KH
1292 /*
1293 * When a new child is created while the hierarchy is under oom,
1294 * mem_cgroup_oom_lock() may not be called. We have to use
1295 * atomic_add_unless() here.
1296 */
1297 atomic_add_unless(&mem->oom_lock, -1, 0);
0b7f569e
KH
1298 return 0;
1299}
1300
867578cb
KH
1301static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1302{
1303 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1304}
1305
1306static DEFINE_MUTEX(memcg_oom_mutex);
1307static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1308
dc98df5a
KH
1309struct oom_wait_info {
1310 struct mem_cgroup *mem;
1311 wait_queue_t wait;
1312};
1313
1314static int memcg_oom_wake_function(wait_queue_t *wait,
1315 unsigned mode, int sync, void *arg)
1316{
1317 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1318 struct oom_wait_info *oom_wait_info;
1319
1320 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1321
1322 if (oom_wait_info->mem == wake_mem)
1323 goto wakeup;
1324 /* if no hierarchy, no match */
1325 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1326 return 0;
1327 /*
1328 * Both of oom_wait_info->mem and wake_mem are stable under us.
1329 * Then we can use css_is_ancestor without taking care of RCU.
1330 */
1331 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1332 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1333 return 0;
1334
1335wakeup:
1336 return autoremove_wake_function(wait, mode, sync, arg);
1337}
1338
1339static void memcg_wakeup_oom(struct mem_cgroup *mem)
1340{
1341 /* for filtering, pass "mem" as argument. */
1342 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1343}
1344
867578cb
KH
1345/*
1346 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1347 */
1348bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1349{
dc98df5a 1350 struct oom_wait_info owait;
867578cb
KH
1351 bool locked;
1352
dc98df5a
KH
1353 owait.mem = mem;
1354 owait.wait.flags = 0;
1355 owait.wait.func = memcg_oom_wake_function;
1356 owait.wait.private = current;
1357 INIT_LIST_HEAD(&owait.wait.task_list);
1358
867578cb
KH
1359 /* At first, try to OOM lock hierarchy under mem.*/
1360 mutex_lock(&memcg_oom_mutex);
1361 locked = mem_cgroup_oom_lock(mem);
1362 /*
1363 * Even if signal_pending(), we can't quit charge() loop without
1364 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1365 * under OOM is always welcomed, use TASK_KILLABLE here.
1366 */
1367 if (!locked)
dc98df5a 1368 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
9490ff27
KH
1369 else
1370 mem_cgroup_oom_notify(mem);
867578cb
KH
1371 mutex_unlock(&memcg_oom_mutex);
1372
1373 if (locked)
1374 mem_cgroup_out_of_memory(mem, mask);
1375 else {
1376 schedule();
dc98df5a 1377 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1378 }
1379 mutex_lock(&memcg_oom_mutex);
1380 mem_cgroup_oom_unlock(mem);
dc98df5a 1381 memcg_wakeup_oom(mem);
867578cb
KH
1382 mutex_unlock(&memcg_oom_mutex);
1383
1384 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1385 return false;
1386 /* Give chance to dying process */
1387 schedule_timeout(1);
1388 return true;
0b7f569e
KH
1389}
1390
d69b042f
BS
1391/*
1392 * Currently used to update mapped file statistics, but the routine can be
1393 * generalized to update other statistics as well.
1394 */
d8046582 1395void mem_cgroup_update_file_mapped(struct page *page, int val)
d69b042f
BS
1396{
1397 struct mem_cgroup *mem;
d69b042f
BS
1398 struct page_cgroup *pc;
1399
d69b042f
BS
1400 pc = lookup_page_cgroup(page);
1401 if (unlikely(!pc))
1402 return;
1403
1404 lock_page_cgroup(pc);
1405 mem = pc->mem_cgroup;
8725d541 1406 if (!mem || !PageCgroupUsed(pc))
d69b042f
BS
1407 goto done;
1408
1409 /*
c62b1a3b 1410 * Preemption is already disabled. We can use __this_cpu_xxx
d69b042f 1411 */
8725d541
KH
1412 if (val > 0) {
1413 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1414 SetPageCgroupFileMapped(pc);
1415 } else {
1416 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1417 ClearPageCgroupFileMapped(pc);
1418 }
d69b042f 1419
d69b042f
BS
1420done:
1421 unlock_page_cgroup(pc);
1422}
0b7f569e 1423
cdec2e42
KH
1424/*
1425 * size of first charge trial. "32" comes from vmscan.c's magic value.
1426 * TODO: maybe necessary to use big numbers in big irons.
1427 */
1428#define CHARGE_SIZE (32 * PAGE_SIZE)
1429struct memcg_stock_pcp {
1430 struct mem_cgroup *cached; /* this never be root cgroup */
1431 int charge;
1432 struct work_struct work;
1433};
1434static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1435static atomic_t memcg_drain_count;
1436
1437/*
1438 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1439 * from local stock and true is returned. If the stock is 0 or charges from a
1440 * cgroup which is not current target, returns false. This stock will be
1441 * refilled.
1442 */
1443static bool consume_stock(struct mem_cgroup *mem)
1444{
1445 struct memcg_stock_pcp *stock;
1446 bool ret = true;
1447
1448 stock = &get_cpu_var(memcg_stock);
1449 if (mem == stock->cached && stock->charge)
1450 stock->charge -= PAGE_SIZE;
1451 else /* need to call res_counter_charge */
1452 ret = false;
1453 put_cpu_var(memcg_stock);
1454 return ret;
1455}
1456
1457/*
1458 * Returns stocks cached in percpu to res_counter and reset cached information.
1459 */
1460static void drain_stock(struct memcg_stock_pcp *stock)
1461{
1462 struct mem_cgroup *old = stock->cached;
1463
1464 if (stock->charge) {
1465 res_counter_uncharge(&old->res, stock->charge);
1466 if (do_swap_account)
1467 res_counter_uncharge(&old->memsw, stock->charge);
1468 }
1469 stock->cached = NULL;
1470 stock->charge = 0;
1471}
1472
1473/*
1474 * This must be called under preempt disabled or must be called by
1475 * a thread which is pinned to local cpu.
1476 */
1477static void drain_local_stock(struct work_struct *dummy)
1478{
1479 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1480 drain_stock(stock);
1481}
1482
1483/*
1484 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1485 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1486 */
1487static void refill_stock(struct mem_cgroup *mem, int val)
1488{
1489 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1490
1491 if (stock->cached != mem) { /* reset if necessary */
1492 drain_stock(stock);
1493 stock->cached = mem;
1494 }
1495 stock->charge += val;
1496 put_cpu_var(memcg_stock);
1497}
1498
1499/*
1500 * Tries to drain stocked charges in other cpus. This function is asynchronous
1501 * and just put a work per cpu for draining localy on each cpu. Caller can
1502 * expects some charges will be back to res_counter later but cannot wait for
1503 * it.
1504 */
1505static void drain_all_stock_async(void)
1506{
1507 int cpu;
1508 /* This function is for scheduling "drain" in asynchronous way.
1509 * The result of "drain" is not directly handled by callers. Then,
1510 * if someone is calling drain, we don't have to call drain more.
1511 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1512 * there is a race. We just do loose check here.
1513 */
1514 if (atomic_read(&memcg_drain_count))
1515 return;
1516 /* Notify other cpus that system-wide "drain" is running */
1517 atomic_inc(&memcg_drain_count);
1518 get_online_cpus();
1519 for_each_online_cpu(cpu) {
1520 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1521 schedule_work_on(cpu, &stock->work);
1522 }
1523 put_online_cpus();
1524 atomic_dec(&memcg_drain_count);
1525 /* We don't wait for flush_work */
1526}
1527
1528/* This is a synchronous drain interface. */
1529static void drain_all_stock_sync(void)
1530{
1531 /* called when force_empty is called */
1532 atomic_inc(&memcg_drain_count);
1533 schedule_on_each_cpu(drain_local_stock);
1534 atomic_dec(&memcg_drain_count);
1535}
1536
1537static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1538 unsigned long action,
1539 void *hcpu)
1540{
1541 int cpu = (unsigned long)hcpu;
1542 struct memcg_stock_pcp *stock;
1543
1544 if (action != CPU_DEAD)
1545 return NOTIFY_OK;
1546 stock = &per_cpu(memcg_stock, cpu);
1547 drain_stock(stock);
1548 return NOTIFY_OK;
1549}
1550
f817ed48
KH
1551/*
1552 * Unlike exported interface, "oom" parameter is added. if oom==true,
1553 * oom-killer can be invoked.
8a9f3ccd 1554 */
f817ed48 1555static int __mem_cgroup_try_charge(struct mm_struct *mm,
430e4863 1556 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
8a9f3ccd 1557{
4e649152 1558 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 1559 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4e649152 1560 struct res_counter *fail_res;
cdec2e42 1561 int csize = CHARGE_SIZE;
a636b327 1562
867578cb
KH
1563 /*
1564 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1565 * in system level. So, allow to go ahead dying process in addition to
1566 * MEMDIE process.
1567 */
1568 if (unlikely(test_thread_flag(TIF_MEMDIE)
1569 || fatal_signal_pending(current)))
1570 goto bypass;
a636b327 1571
8a9f3ccd 1572 /*
3be91277
HD
1573 * We always charge the cgroup the mm_struct belongs to.
1574 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1575 * thread group leader migrates. It's possible that mm is not
1576 * set, if so charge the init_mm (happens for pagecache usage).
1577 */
54595fe2
KH
1578 mem = *memcg;
1579 if (likely(!mem)) {
1580 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 1581 *memcg = mem;
e8589cc1 1582 } else {
7a81b88c 1583 css_get(&mem->css);
e8589cc1 1584 }
54595fe2
KH
1585 if (unlikely(!mem))
1586 return 0;
1587
46f7e602 1588 VM_BUG_ON(css_is_removed(&mem->css));
cdec2e42
KH
1589 if (mem_cgroup_is_root(mem))
1590 goto done;
8a9f3ccd 1591
8c7c6e34 1592 while (1) {
0c3e73e8 1593 int ret = 0;
75822b44 1594 unsigned long flags = 0;
7a81b88c 1595
cdec2e42 1596 if (consume_stock(mem))
430e4863 1597 goto done;
cdec2e42
KH
1598
1599 ret = res_counter_charge(&mem->res, csize, &fail_res);
8c7c6e34
KH
1600 if (likely(!ret)) {
1601 if (!do_swap_account)
1602 break;
cdec2e42 1603 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
8c7c6e34
KH
1604 if (likely(!ret))
1605 break;
1606 /* mem+swap counter fails */
cdec2e42 1607 res_counter_uncharge(&mem->res, csize);
75822b44 1608 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
6d61ef40
BS
1609 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1610 memsw);
1611 } else
1612 /* mem counter fails */
1613 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1614 res);
1615
cdec2e42
KH
1616 /* reduce request size and retry */
1617 if (csize > PAGE_SIZE) {
1618 csize = PAGE_SIZE;
1619 continue;
1620 }
3be91277 1621 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1622 goto nomem;
e1a1cd59 1623
4e416953
BS
1624 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1625 gfp_mask, flags);
4d1c6273
DN
1626 if (ret)
1627 continue;
66e1707b
BS
1628
1629 /*
8869b8f6
HD
1630 * try_to_free_mem_cgroup_pages() might not give us a full
1631 * picture of reclaim. Some pages are reclaimed and might be
1632 * moved to swap cache or just unmapped from the cgroup.
1633 * Check the limit again to see if the reclaim reduced the
1634 * current usage of the cgroup before giving up
8c7c6e34 1635 *
8869b8f6 1636 */
b85a96c0
DN
1637 if (mem_cgroup_check_under_limit(mem_over_limit))
1638 continue;
3be91277 1639
8033b97c
DN
1640 /* try to avoid oom while someone is moving charge */
1641 if (mc.moving_task && current != mc.moving_task) {
1642 struct mem_cgroup *from, *to;
1643 bool do_continue = false;
1644 /*
1645 * There is a small race that "from" or "to" can be
1646 * freed by rmdir, so we use css_tryget().
1647 */
8033b97c
DN
1648 from = mc.from;
1649 to = mc.to;
1650 if (from && css_tryget(&from->css)) {
1651 if (mem_over_limit->use_hierarchy)
1652 do_continue = css_is_ancestor(
1653 &from->css,
1654 &mem_over_limit->css);
1655 else
1656 do_continue = (from == mem_over_limit);
1657 css_put(&from->css);
1658 }
1659 if (!do_continue && to && css_tryget(&to->css)) {
1660 if (mem_over_limit->use_hierarchy)
1661 do_continue = css_is_ancestor(
1662 &to->css,
1663 &mem_over_limit->css);
1664 else
1665 do_continue = (to == mem_over_limit);
1666 css_put(&to->css);
1667 }
8033b97c
DN
1668 if (do_continue) {
1669 DEFINE_WAIT(wait);
1670 prepare_to_wait(&mc.waitq, &wait,
1671 TASK_INTERRUPTIBLE);
1672 /* moving charge context might have finished. */
1673 if (mc.moving_task)
1674 schedule();
1675 finish_wait(&mc.waitq, &wait);
1676 continue;
1677 }
1678 }
1679
3be91277 1680 if (!nr_retries--) {
867578cb
KH
1681 if (!oom)
1682 goto nomem;
1683 if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1684 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1685 continue;
a636b327 1686 }
867578cb
KH
1687 /* When we reach here, current task is dying .*/
1688 css_put(&mem->css);
1689 goto bypass;
66e1707b 1690 }
8a9f3ccd 1691 }
cdec2e42
KH
1692 if (csize > PAGE_SIZE)
1693 refill_stock(mem, csize - PAGE_SIZE);
0c3e73e8 1694done:
7a81b88c
KH
1695 return 0;
1696nomem:
1697 css_put(&mem->css);
1698 return -ENOMEM;
867578cb
KH
1699bypass:
1700 *memcg = NULL;
1701 return 0;
7a81b88c 1702}
8a9f3ccd 1703
a3032a2c
DN
1704/*
1705 * Somemtimes we have to undo a charge we got by try_charge().
1706 * This function is for that and do uncharge, put css's refcnt.
1707 * gotten by try_charge().
1708 */
854ffa8d
DN
1709static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1710 unsigned long count)
a3032a2c
DN
1711{
1712 if (!mem_cgroup_is_root(mem)) {
854ffa8d 1713 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 1714 if (do_swap_account)
854ffa8d
DN
1715 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1716 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1717 WARN_ON_ONCE(count > INT_MAX);
1718 __css_put(&mem->css, (int)count);
a3032a2c 1719 }
854ffa8d
DN
1720 /* we don't need css_put for root */
1721}
1722
1723static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1724{
1725 __mem_cgroup_cancel_charge(mem, 1);
a3032a2c
DN
1726}
1727
a3b2d692
KH
1728/*
1729 * A helper function to get mem_cgroup from ID. must be called under
1730 * rcu_read_lock(). The caller must check css_is_removed() or some if
1731 * it's concern. (dropping refcnt from swap can be called against removed
1732 * memcg.)
1733 */
1734static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1735{
1736 struct cgroup_subsys_state *css;
1737
1738 /* ID 0 is unused ID */
1739 if (!id)
1740 return NULL;
1741 css = css_lookup(&mem_cgroup_subsys, id);
1742 if (!css)
1743 return NULL;
1744 return container_of(css, struct mem_cgroup, css);
1745}
1746
e42d9d5d 1747struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 1748{
e42d9d5d 1749 struct mem_cgroup *mem = NULL;
3c776e64 1750 struct page_cgroup *pc;
a3b2d692 1751 unsigned short id;
b5a84319
KH
1752 swp_entry_t ent;
1753
3c776e64
DN
1754 VM_BUG_ON(!PageLocked(page));
1755
3c776e64 1756 pc = lookup_page_cgroup(page);
c0bd3f63 1757 lock_page_cgroup(pc);
a3b2d692 1758 if (PageCgroupUsed(pc)) {
3c776e64 1759 mem = pc->mem_cgroup;
a3b2d692
KH
1760 if (mem && !css_tryget(&mem->css))
1761 mem = NULL;
e42d9d5d 1762 } else if (PageSwapCache(page)) {
3c776e64 1763 ent.val = page_private(page);
a3b2d692
KH
1764 id = lookup_swap_cgroup(ent);
1765 rcu_read_lock();
1766 mem = mem_cgroup_lookup(id);
1767 if (mem && !css_tryget(&mem->css))
1768 mem = NULL;
1769 rcu_read_unlock();
3c776e64 1770 }
c0bd3f63 1771 unlock_page_cgroup(pc);
b5a84319
KH
1772 return mem;
1773}
1774
7a81b88c 1775/*
a5e924f5 1776 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1777 * USED state. If already USED, uncharge and return.
1778 */
1779
1780static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1781 struct page_cgroup *pc,
1782 enum charge_type ctype)
1783{
7a81b88c
KH
1784 /* try_charge() can return NULL to *memcg, taking care of it. */
1785 if (!mem)
1786 return;
52d4b9ac
KH
1787
1788 lock_page_cgroup(pc);
1789 if (unlikely(PageCgroupUsed(pc))) {
1790 unlock_page_cgroup(pc);
a3032a2c 1791 mem_cgroup_cancel_charge(mem);
7a81b88c 1792 return;
52d4b9ac 1793 }
4b3bde4c 1794
8a9f3ccd 1795 pc->mem_cgroup = mem;
261fb61a
KH
1796 /*
1797 * We access a page_cgroup asynchronously without lock_page_cgroup().
1798 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1799 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1800 * before USED bit, we need memory barrier here.
1801 * See mem_cgroup_add_lru_list(), etc.
1802 */
08e552c6 1803 smp_wmb();
4b3bde4c
BS
1804 switch (ctype) {
1805 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1806 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1807 SetPageCgroupCache(pc);
1808 SetPageCgroupUsed(pc);
1809 break;
1810 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1811 ClearPageCgroupCache(pc);
1812 SetPageCgroupUsed(pc);
1813 break;
1814 default:
1815 break;
1816 }
3be91277 1817
08e552c6 1818 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1819
52d4b9ac 1820 unlock_page_cgroup(pc);
430e4863
KH
1821 /*
1822 * "charge_statistics" updated event counter. Then, check it.
1823 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1824 * if they exceeds softlimit.
1825 */
d2265e6f 1826 memcg_check_events(mem, pc->page);
7a81b88c 1827}
66e1707b 1828
f817ed48 1829/**
57f9fd7d 1830 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
1831 * @pc: page_cgroup of the page.
1832 * @from: mem_cgroup which the page is moved from.
1833 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 1834 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
1835 *
1836 * The caller must confirm following.
08e552c6 1837 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 1838 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 1839 *
854ffa8d
DN
1840 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1841 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1842 * true, this function does "uncharge" from old cgroup, but it doesn't if
1843 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
1844 */
1845
57f9fd7d 1846static void __mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 1847 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
f817ed48 1848{
f817ed48 1849 VM_BUG_ON(from == to);
08e552c6 1850 VM_BUG_ON(PageLRU(pc->page));
57f9fd7d
DN
1851 VM_BUG_ON(!PageCgroupLocked(pc));
1852 VM_BUG_ON(!PageCgroupUsed(pc));
1853 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 1854
8725d541 1855 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
1856 /* Update mapped_file data for mem_cgroup */
1857 preempt_disable();
1858 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1859 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1860 preempt_enable();
d69b042f 1861 }
854ffa8d
DN
1862 mem_cgroup_charge_statistics(from, pc, false);
1863 if (uncharge)
1864 /* This is not "cancel", but cancel_charge does all we need. */
1865 mem_cgroup_cancel_charge(from);
d69b042f 1866
854ffa8d 1867 /* caller should have done css_get */
08e552c6
KH
1868 pc->mem_cgroup = to;
1869 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
1870 /*
1871 * We charges against "to" which may not have any tasks. Then, "to"
1872 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
1873 * this function is just force_empty() and move charge, so it's
1874 * garanteed that "to" is never removed. So, we don't check rmdir
1875 * status here.
88703267 1876 */
57f9fd7d
DN
1877}
1878
1879/*
1880 * check whether the @pc is valid for moving account and call
1881 * __mem_cgroup_move_account()
1882 */
1883static int mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 1884 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
57f9fd7d
DN
1885{
1886 int ret = -EINVAL;
1887 lock_page_cgroup(pc);
1888 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
854ffa8d 1889 __mem_cgroup_move_account(pc, from, to, uncharge);
57f9fd7d
DN
1890 ret = 0;
1891 }
1892 unlock_page_cgroup(pc);
d2265e6f
KH
1893 /*
1894 * check events
1895 */
1896 memcg_check_events(to, pc->page);
1897 memcg_check_events(from, pc->page);
f817ed48
KH
1898 return ret;
1899}
1900
1901/*
1902 * move charges to its parent.
1903 */
1904
1905static int mem_cgroup_move_parent(struct page_cgroup *pc,
1906 struct mem_cgroup *child,
1907 gfp_t gfp_mask)
1908{
08e552c6 1909 struct page *page = pc->page;
f817ed48
KH
1910 struct cgroup *cg = child->css.cgroup;
1911 struct cgroup *pcg = cg->parent;
1912 struct mem_cgroup *parent;
f817ed48
KH
1913 int ret;
1914
1915 /* Is ROOT ? */
1916 if (!pcg)
1917 return -EINVAL;
1918
57f9fd7d
DN
1919 ret = -EBUSY;
1920 if (!get_page_unless_zero(page))
1921 goto out;
1922 if (isolate_lru_page(page))
1923 goto put;
08e552c6 1924
f817ed48 1925 parent = mem_cgroup_from_cont(pcg);
430e4863 1926 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1927 if (ret || !parent)
57f9fd7d 1928 goto put_back;
f817ed48 1929
854ffa8d
DN
1930 ret = mem_cgroup_move_account(pc, child, parent, true);
1931 if (ret)
1932 mem_cgroup_cancel_charge(parent);
57f9fd7d 1933put_back:
08e552c6 1934 putback_lru_page(page);
57f9fd7d 1935put:
40d58138 1936 put_page(page);
57f9fd7d 1937out:
f817ed48
KH
1938 return ret;
1939}
1940
7a81b88c
KH
1941/*
1942 * Charge the memory controller for page usage.
1943 * Return
1944 * 0 if the charge was successful
1945 * < 0 if the cgroup is over its limit
1946 */
1947static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1948 gfp_t gfp_mask, enum charge_type ctype,
1949 struct mem_cgroup *memcg)
1950{
1951 struct mem_cgroup *mem;
1952 struct page_cgroup *pc;
1953 int ret;
1954
1955 pc = lookup_page_cgroup(page);
1956 /* can happen at boot */
1957 if (unlikely(!pc))
1958 return 0;
1959 prefetchw(pc);
1960
1961 mem = memcg;
430e4863 1962 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1963 if (ret || !mem)
7a81b88c
KH
1964 return ret;
1965
1966 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1967 return 0;
8a9f3ccd
BS
1968}
1969
7a81b88c
KH
1970int mem_cgroup_newpage_charge(struct page *page,
1971 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1972{
f8d66542 1973 if (mem_cgroup_disabled())
cede86ac 1974 return 0;
52d4b9ac
KH
1975 if (PageCompound(page))
1976 return 0;
69029cd5
KH
1977 /*
1978 * If already mapped, we don't have to account.
1979 * If page cache, page->mapping has address_space.
1980 * But page->mapping may have out-of-use anon_vma pointer,
1981 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1982 * is NULL.
1983 */
1984 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1985 return 0;
1986 if (unlikely(!mm))
1987 mm = &init_mm;
217bc319 1988 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1989 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1990}
1991
83aae4c7
DN
1992static void
1993__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1994 enum charge_type ctype);
1995
e1a1cd59
BS
1996int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1997 gfp_t gfp_mask)
8697d331 1998{
b5a84319
KH
1999 struct mem_cgroup *mem = NULL;
2000 int ret;
2001
f8d66542 2002 if (mem_cgroup_disabled())
cede86ac 2003 return 0;
52d4b9ac
KH
2004 if (PageCompound(page))
2005 return 0;
accf163e
KH
2006 /*
2007 * Corner case handling. This is called from add_to_page_cache()
2008 * in usual. But some FS (shmem) precharges this page before calling it
2009 * and call add_to_page_cache() with GFP_NOWAIT.
2010 *
2011 * For GFP_NOWAIT case, the page may be pre-charged before calling
2012 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2013 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2014 * And when the page is SwapCache, it should take swap information
2015 * into account. This is under lock_page() now.
accf163e
KH
2016 */
2017 if (!(gfp_mask & __GFP_WAIT)) {
2018 struct page_cgroup *pc;
2019
52d4b9ac
KH
2020
2021 pc = lookup_page_cgroup(page);
2022 if (!pc)
2023 return 0;
2024 lock_page_cgroup(pc);
2025 if (PageCgroupUsed(pc)) {
2026 unlock_page_cgroup(pc);
accf163e
KH
2027 return 0;
2028 }
52d4b9ac 2029 unlock_page_cgroup(pc);
accf163e
KH
2030 }
2031
b5a84319 2032 if (unlikely(!mm && !mem))
8697d331 2033 mm = &init_mm;
accf163e 2034
c05555b5
KH
2035 if (page_is_file_cache(page))
2036 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 2037 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 2038
83aae4c7
DN
2039 /* shmem */
2040 if (PageSwapCache(page)) {
2041 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2042 if (!ret)
2043 __mem_cgroup_commit_charge_swapin(page, mem,
2044 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2045 } else
2046 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2047 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 2048
b5a84319 2049 return ret;
e8589cc1
KH
2050}
2051
54595fe2
KH
2052/*
2053 * While swap-in, try_charge -> commit or cancel, the page is locked.
2054 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2055 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2056 * "commit()" or removed by "cancel()"
2057 */
8c7c6e34
KH
2058int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2059 struct page *page,
2060 gfp_t mask, struct mem_cgroup **ptr)
2061{
2062 struct mem_cgroup *mem;
54595fe2 2063 int ret;
8c7c6e34 2064
f8d66542 2065 if (mem_cgroup_disabled())
8c7c6e34
KH
2066 return 0;
2067
2068 if (!do_swap_account)
2069 goto charge_cur_mm;
8c7c6e34
KH
2070 /*
2071 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2072 * the pte, and even removed page from swap cache: in those cases
2073 * do_swap_page()'s pte_same() test will fail; but there's also a
2074 * KSM case which does need to charge the page.
8c7c6e34
KH
2075 */
2076 if (!PageSwapCache(page))
407f9c8b 2077 goto charge_cur_mm;
e42d9d5d 2078 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2079 if (!mem)
2080 goto charge_cur_mm;
8c7c6e34 2081 *ptr = mem;
430e4863 2082 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
54595fe2
KH
2083 /* drop extra refcnt from tryget */
2084 css_put(&mem->css);
2085 return ret;
8c7c6e34
KH
2086charge_cur_mm:
2087 if (unlikely(!mm))
2088 mm = &init_mm;
430e4863 2089 return __mem_cgroup_try_charge(mm, mask, ptr, true);
8c7c6e34
KH
2090}
2091
83aae4c7
DN
2092static void
2093__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2094 enum charge_type ctype)
7a81b88c
KH
2095{
2096 struct page_cgroup *pc;
2097
f8d66542 2098 if (mem_cgroup_disabled())
7a81b88c
KH
2099 return;
2100 if (!ptr)
2101 return;
88703267 2102 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2103 pc = lookup_page_cgroup(page);
544122e5 2104 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 2105 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 2106 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2107 /*
2108 * Now swap is on-memory. This means this page may be
2109 * counted both as mem and swap....double count.
03f3c433
KH
2110 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2111 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2112 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2113 */
03f3c433 2114 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2115 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2116 unsigned short id;
8c7c6e34 2117 struct mem_cgroup *memcg;
a3b2d692
KH
2118
2119 id = swap_cgroup_record(ent, 0);
2120 rcu_read_lock();
2121 memcg = mem_cgroup_lookup(id);
8c7c6e34 2122 if (memcg) {
a3b2d692
KH
2123 /*
2124 * This recorded memcg can be obsolete one. So, avoid
2125 * calling css_tryget
2126 */
0c3e73e8 2127 if (!mem_cgroup_is_root(memcg))
4e649152 2128 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2129 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2130 mem_cgroup_put(memcg);
2131 }
a3b2d692 2132 rcu_read_unlock();
8c7c6e34 2133 }
88703267
KH
2134 /*
2135 * At swapin, we may charge account against cgroup which has no tasks.
2136 * So, rmdir()->pre_destroy() can be called while we do this charge.
2137 * In that case, we need to call pre_destroy() again. check it here.
2138 */
2139 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2140}
2141
83aae4c7
DN
2142void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2143{
2144 __mem_cgroup_commit_charge_swapin(page, ptr,
2145 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2146}
2147
7a81b88c
KH
2148void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2149{
f8d66542 2150 if (mem_cgroup_disabled())
7a81b88c
KH
2151 return;
2152 if (!mem)
2153 return;
a3032a2c 2154 mem_cgroup_cancel_charge(mem);
7a81b88c
KH
2155}
2156
569b846d
KH
2157static void
2158__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2159{
2160 struct memcg_batch_info *batch = NULL;
2161 bool uncharge_memsw = true;
2162 /* If swapout, usage of swap doesn't decrease */
2163 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2164 uncharge_memsw = false;
2165 /*
2166 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2167 * In those cases, all pages freed continously can be expected to be in
2168 * the same cgroup and we have chance to coalesce uncharges.
2169 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2170 * because we want to do uncharge as soon as possible.
2171 */
2172 if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
2173 goto direct_uncharge;
2174
2175 batch = &current->memcg_batch;
2176 /*
2177 * In usual, we do css_get() when we remember memcg pointer.
2178 * But in this case, we keep res->usage until end of a series of
2179 * uncharges. Then, it's ok to ignore memcg's refcnt.
2180 */
2181 if (!batch->memcg)
2182 batch->memcg = mem;
2183 /*
2184 * In typical case, batch->memcg == mem. This means we can
2185 * merge a series of uncharges to an uncharge of res_counter.
2186 * If not, we uncharge res_counter ony by one.
2187 */
2188 if (batch->memcg != mem)
2189 goto direct_uncharge;
2190 /* remember freed charge and uncharge it later */
2191 batch->bytes += PAGE_SIZE;
2192 if (uncharge_memsw)
2193 batch->memsw_bytes += PAGE_SIZE;
2194 return;
2195direct_uncharge:
2196 res_counter_uncharge(&mem->res, PAGE_SIZE);
2197 if (uncharge_memsw)
2198 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2199 return;
2200}
7a81b88c 2201
8a9f3ccd 2202/*
69029cd5 2203 * uncharge if !page_mapped(page)
8a9f3ccd 2204 */
8c7c6e34 2205static struct mem_cgroup *
69029cd5 2206__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2207{
8289546e 2208 struct page_cgroup *pc;
8c7c6e34 2209 struct mem_cgroup *mem = NULL;
072c56c1 2210 struct mem_cgroup_per_zone *mz;
8a9f3ccd 2211
f8d66542 2212 if (mem_cgroup_disabled())
8c7c6e34 2213 return NULL;
4077960e 2214
d13d1443 2215 if (PageSwapCache(page))
8c7c6e34 2216 return NULL;
d13d1443 2217
8697d331 2218 /*
3c541e14 2219 * Check if our page_cgroup is valid
8697d331 2220 */
52d4b9ac
KH
2221 pc = lookup_page_cgroup(page);
2222 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2223 return NULL;
b9c565d5 2224
52d4b9ac 2225 lock_page_cgroup(pc);
d13d1443 2226
8c7c6e34
KH
2227 mem = pc->mem_cgroup;
2228
d13d1443
KH
2229 if (!PageCgroupUsed(pc))
2230 goto unlock_out;
2231
2232 switch (ctype) {
2233 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2234 case MEM_CGROUP_CHARGE_TYPE_DROP:
d13d1443
KH
2235 if (page_mapped(page))
2236 goto unlock_out;
2237 break;
2238 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2239 if (!PageAnon(page)) { /* Shared memory */
2240 if (page->mapping && !page_is_file_cache(page))
2241 goto unlock_out;
2242 } else if (page_mapped(page)) /* Anon */
2243 goto unlock_out;
2244 break;
2245 default:
2246 break;
52d4b9ac 2247 }
d13d1443 2248
569b846d
KH
2249 if (!mem_cgroup_is_root(mem))
2250 __do_uncharge(mem, ctype);
0c3e73e8
BS
2251 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2252 mem_cgroup_swap_statistics(mem, true);
08e552c6 2253 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 2254
52d4b9ac 2255 ClearPageCgroupUsed(pc);
544122e5
KH
2256 /*
2257 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2258 * freed from LRU. This is safe because uncharged page is expected not
2259 * to be reused (freed soon). Exception is SwapCache, it's handled by
2260 * special functions.
2261 */
b9c565d5 2262
69029cd5 2263 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 2264 unlock_page_cgroup(pc);
fb59e9f1 2265
d2265e6f 2266 memcg_check_events(mem, page);
a7fe942e
KH
2267 /* at swapout, this memcg will be accessed to record to swap */
2268 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2269 css_put(&mem->css);
6d12e2d8 2270
8c7c6e34 2271 return mem;
d13d1443
KH
2272
2273unlock_out:
2274 unlock_page_cgroup(pc);
8c7c6e34 2275 return NULL;
3c541e14
BS
2276}
2277
69029cd5
KH
2278void mem_cgroup_uncharge_page(struct page *page)
2279{
52d4b9ac
KH
2280 /* early check. */
2281 if (page_mapped(page))
2282 return;
2283 if (page->mapping && !PageAnon(page))
2284 return;
69029cd5
KH
2285 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2286}
2287
2288void mem_cgroup_uncharge_cache_page(struct page *page)
2289{
2290 VM_BUG_ON(page_mapped(page));
b7abea96 2291 VM_BUG_ON(page->mapping);
69029cd5
KH
2292 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2293}
2294
569b846d
KH
2295/*
2296 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2297 * In that cases, pages are freed continuously and we can expect pages
2298 * are in the same memcg. All these calls itself limits the number of
2299 * pages freed at once, then uncharge_start/end() is called properly.
2300 * This may be called prural(2) times in a context,
2301 */
2302
2303void mem_cgroup_uncharge_start(void)
2304{
2305 current->memcg_batch.do_batch++;
2306 /* We can do nest. */
2307 if (current->memcg_batch.do_batch == 1) {
2308 current->memcg_batch.memcg = NULL;
2309 current->memcg_batch.bytes = 0;
2310 current->memcg_batch.memsw_bytes = 0;
2311 }
2312}
2313
2314void mem_cgroup_uncharge_end(void)
2315{
2316 struct memcg_batch_info *batch = &current->memcg_batch;
2317
2318 if (!batch->do_batch)
2319 return;
2320
2321 batch->do_batch--;
2322 if (batch->do_batch) /* If stacked, do nothing. */
2323 return;
2324
2325 if (!batch->memcg)
2326 return;
2327 /*
2328 * This "batch->memcg" is valid without any css_get/put etc...
2329 * bacause we hide charges behind us.
2330 */
2331 if (batch->bytes)
2332 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2333 if (batch->memsw_bytes)
2334 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2335 /* forget this pointer (for sanity check) */
2336 batch->memcg = NULL;
2337}
2338
e767e056 2339#ifdef CONFIG_SWAP
8c7c6e34 2340/*
e767e056 2341 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2342 * memcg information is recorded to swap_cgroup of "ent"
2343 */
8a9478ca
KH
2344void
2345mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2346{
2347 struct mem_cgroup *memcg;
8a9478ca
KH
2348 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2349
2350 if (!swapout) /* this was a swap cache but the swap is unused ! */
2351 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2352
2353 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2354
8c7c6e34 2355 /* record memcg information */
8a9478ca 2356 if (do_swap_account && swapout && memcg) {
a3b2d692 2357 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
2358 mem_cgroup_get(memcg);
2359 }
8a9478ca 2360 if (swapout && memcg)
a7fe942e 2361 css_put(&memcg->css);
8c7c6e34 2362}
e767e056 2363#endif
8c7c6e34
KH
2364
2365#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2366/*
2367 * called from swap_entry_free(). remove record in swap_cgroup and
2368 * uncharge "memsw" account.
2369 */
2370void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2371{
8c7c6e34 2372 struct mem_cgroup *memcg;
a3b2d692 2373 unsigned short id;
8c7c6e34
KH
2374
2375 if (!do_swap_account)
2376 return;
2377
a3b2d692
KH
2378 id = swap_cgroup_record(ent, 0);
2379 rcu_read_lock();
2380 memcg = mem_cgroup_lookup(id);
8c7c6e34 2381 if (memcg) {
a3b2d692
KH
2382 /*
2383 * We uncharge this because swap is freed.
2384 * This memcg can be obsolete one. We avoid calling css_tryget
2385 */
0c3e73e8 2386 if (!mem_cgroup_is_root(memcg))
4e649152 2387 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2388 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2389 mem_cgroup_put(memcg);
2390 }
a3b2d692 2391 rcu_read_unlock();
d13d1443 2392}
02491447
DN
2393
2394/**
2395 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2396 * @entry: swap entry to be moved
2397 * @from: mem_cgroup which the entry is moved from
2398 * @to: mem_cgroup which the entry is moved to
483c30b5 2399 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2400 *
2401 * It succeeds only when the swap_cgroup's record for this entry is the same
2402 * as the mem_cgroup's id of @from.
2403 *
2404 * Returns 0 on success, -EINVAL on failure.
2405 *
2406 * The caller must have charged to @to, IOW, called res_counter_charge() about
2407 * both res and memsw, and called css_get().
2408 */
2409static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2410 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2411{
2412 unsigned short old_id, new_id;
2413
2414 old_id = css_id(&from->css);
2415 new_id = css_id(&to->css);
2416
2417 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2418 mem_cgroup_swap_statistics(from, false);
483c30b5 2419 mem_cgroup_swap_statistics(to, true);
02491447 2420 /*
483c30b5
DN
2421 * This function is only called from task migration context now.
2422 * It postpones res_counter and refcount handling till the end
2423 * of task migration(mem_cgroup_clear_mc()) for performance
2424 * improvement. But we cannot postpone mem_cgroup_get(to)
2425 * because if the process that has been moved to @to does
2426 * swap-in, the refcount of @to might be decreased to 0.
02491447 2427 */
02491447 2428 mem_cgroup_get(to);
483c30b5
DN
2429 if (need_fixup) {
2430 if (!mem_cgroup_is_root(from))
2431 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2432 mem_cgroup_put(from);
2433 /*
2434 * we charged both to->res and to->memsw, so we should
2435 * uncharge to->res.
2436 */
2437 if (!mem_cgroup_is_root(to))
2438 res_counter_uncharge(&to->res, PAGE_SIZE);
2439 css_put(&to->css);
2440 }
02491447
DN
2441 return 0;
2442 }
2443 return -EINVAL;
2444}
2445#else
2446static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2447 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2448{
2449 return -EINVAL;
2450}
8c7c6e34 2451#endif
d13d1443 2452
ae41be37 2453/*
01b1ae63
KH
2454 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2455 * page belongs to.
ae41be37 2456 */
01b1ae63 2457int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
2458{
2459 struct page_cgroup *pc;
e8589cc1 2460 struct mem_cgroup *mem = NULL;
e8589cc1 2461 int ret = 0;
8869b8f6 2462
f8d66542 2463 if (mem_cgroup_disabled())
4077960e
BS
2464 return 0;
2465
52d4b9ac
KH
2466 pc = lookup_page_cgroup(page);
2467 lock_page_cgroup(pc);
2468 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2469 mem = pc->mem_cgroup;
2470 css_get(&mem->css);
e8589cc1 2471 }
52d4b9ac 2472 unlock_page_cgroup(pc);
01b1ae63 2473
93d5c9be 2474 *ptr = mem;
e8589cc1 2475 if (mem) {
93d5c9be 2476 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
e8589cc1
KH
2477 css_put(&mem->css);
2478 }
2479 return ret;
ae41be37 2480}
8869b8f6 2481
69029cd5 2482/* remove redundant charge if migration failed*/
01b1ae63
KH
2483void mem_cgroup_end_migration(struct mem_cgroup *mem,
2484 struct page *oldpage, struct page *newpage)
ae41be37 2485{
01b1ae63
KH
2486 struct page *target, *unused;
2487 struct page_cgroup *pc;
2488 enum charge_type ctype;
2489
2490 if (!mem)
2491 return;
88703267 2492 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2493 /* at migration success, oldpage->mapping is NULL. */
2494 if (oldpage->mapping) {
2495 target = oldpage;
2496 unused = NULL;
2497 } else {
2498 target = newpage;
2499 unused = oldpage;
2500 }
2501
2502 if (PageAnon(target))
2503 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2504 else if (page_is_file_cache(target))
2505 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2506 else
2507 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2508
2509 /* unused page is not on radix-tree now. */
d13d1443 2510 if (unused)
01b1ae63
KH
2511 __mem_cgroup_uncharge_common(unused, ctype);
2512
2513 pc = lookup_page_cgroup(target);
69029cd5 2514 /*
01b1ae63
KH
2515 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2516 * So, double-counting is effectively avoided.
2517 */
2518 __mem_cgroup_commit_charge(mem, pc, ctype);
2519
2520 /*
2521 * Both of oldpage and newpage are still under lock_page().
2522 * Then, we don't have to care about race in radix-tree.
2523 * But we have to be careful that this page is unmapped or not.
2524 *
2525 * There is a case for !page_mapped(). At the start of
2526 * migration, oldpage was mapped. But now, it's zapped.
2527 * But we know *target* page is not freed/reused under us.
2528 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 2529 */
01b1ae63
KH
2530 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2531 mem_cgroup_uncharge_page(target);
88703267
KH
2532 /*
2533 * At migration, we may charge account against cgroup which has no tasks
2534 * So, rmdir()->pre_destroy() can be called while we do this charge.
2535 * In that case, we need to call pre_destroy() again. check it here.
2536 */
2537 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2538}
78fb7466 2539
c9b0ed51 2540/*
ae3abae6
DN
2541 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2542 * Calling hierarchical_reclaim is not enough because we should update
2543 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2544 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2545 * not from the memcg which this page would be charged to.
2546 * try_charge_swapin does all of these works properly.
c9b0ed51 2547 */
ae3abae6 2548int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2549 struct mm_struct *mm,
2550 gfp_t gfp_mask)
c9b0ed51 2551{
b5a84319 2552 struct mem_cgroup *mem = NULL;
ae3abae6 2553 int ret;
c9b0ed51 2554
f8d66542 2555 if (mem_cgroup_disabled())
cede86ac 2556 return 0;
c9b0ed51 2557
ae3abae6
DN
2558 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2559 if (!ret)
2560 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2561
ae3abae6 2562 return ret;
c9b0ed51
KH
2563}
2564
8c7c6e34
KH
2565static DEFINE_MUTEX(set_limit_mutex);
2566
d38d2a75 2567static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2568 unsigned long long val)
628f4235 2569{
81d39c20 2570 int retry_count;
8c7c6e34 2571 u64 memswlimit;
628f4235 2572 int ret = 0;
81d39c20
KH
2573 int children = mem_cgroup_count_children(memcg);
2574 u64 curusage, oldusage;
2575
2576 /*
2577 * For keeping hierarchical_reclaim simple, how long we should retry
2578 * is depends on callers. We set our retry-count to be function
2579 * of # of children which we should visit in this loop.
2580 */
2581 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2582
2583 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2584
8c7c6e34 2585 while (retry_count) {
628f4235
KH
2586 if (signal_pending(current)) {
2587 ret = -EINTR;
2588 break;
2589 }
8c7c6e34
KH
2590 /*
2591 * Rather than hide all in some function, I do this in
2592 * open coded manner. You see what this really does.
2593 * We have to guarantee mem->res.limit < mem->memsw.limit.
2594 */
2595 mutex_lock(&set_limit_mutex);
2596 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2597 if (memswlimit < val) {
2598 ret = -EINVAL;
2599 mutex_unlock(&set_limit_mutex);
628f4235
KH
2600 break;
2601 }
8c7c6e34 2602 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2603 if (!ret) {
2604 if (memswlimit == val)
2605 memcg->memsw_is_minimum = true;
2606 else
2607 memcg->memsw_is_minimum = false;
2608 }
8c7c6e34
KH
2609 mutex_unlock(&set_limit_mutex);
2610
2611 if (!ret)
2612 break;
2613
aa20d489 2614 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 2615 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2616 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2617 /* Usage is reduced ? */
2618 if (curusage >= oldusage)
2619 retry_count--;
2620 else
2621 oldusage = curusage;
8c7c6e34 2622 }
14797e23 2623
8c7c6e34
KH
2624 return ret;
2625}
2626
338c8431
LZ
2627static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2628 unsigned long long val)
8c7c6e34 2629{
81d39c20 2630 int retry_count;
8c7c6e34 2631 u64 memlimit, oldusage, curusage;
81d39c20
KH
2632 int children = mem_cgroup_count_children(memcg);
2633 int ret = -EBUSY;
8c7c6e34 2634
81d39c20
KH
2635 /* see mem_cgroup_resize_res_limit */
2636 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2637 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2638 while (retry_count) {
2639 if (signal_pending(current)) {
2640 ret = -EINTR;
2641 break;
2642 }
2643 /*
2644 * Rather than hide all in some function, I do this in
2645 * open coded manner. You see what this really does.
2646 * We have to guarantee mem->res.limit < mem->memsw.limit.
2647 */
2648 mutex_lock(&set_limit_mutex);
2649 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2650 if (memlimit > val) {
2651 ret = -EINVAL;
2652 mutex_unlock(&set_limit_mutex);
2653 break;
2654 }
2655 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2656 if (!ret) {
2657 if (memlimit == val)
2658 memcg->memsw_is_minimum = true;
2659 else
2660 memcg->memsw_is_minimum = false;
2661 }
8c7c6e34
KH
2662 mutex_unlock(&set_limit_mutex);
2663
2664 if (!ret)
2665 break;
2666
4e416953 2667 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
2668 MEM_CGROUP_RECLAIM_NOSWAP |
2669 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 2670 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 2671 /* Usage is reduced ? */
8c7c6e34 2672 if (curusage >= oldusage)
628f4235 2673 retry_count--;
81d39c20
KH
2674 else
2675 oldusage = curusage;
628f4235
KH
2676 }
2677 return ret;
2678}
2679
4e416953
BS
2680unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2681 gfp_t gfp_mask, int nid,
2682 int zid)
2683{
2684 unsigned long nr_reclaimed = 0;
2685 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2686 unsigned long reclaimed;
2687 int loop = 0;
2688 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 2689 unsigned long long excess;
4e416953
BS
2690
2691 if (order > 0)
2692 return 0;
2693
2694 mctz = soft_limit_tree_node_zone(nid, zid);
2695 /*
2696 * This loop can run a while, specially if mem_cgroup's continuously
2697 * keep exceeding their soft limit and putting the system under
2698 * pressure
2699 */
2700 do {
2701 if (next_mz)
2702 mz = next_mz;
2703 else
2704 mz = mem_cgroup_largest_soft_limit_node(mctz);
2705 if (!mz)
2706 break;
2707
2708 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2709 gfp_mask,
2710 MEM_CGROUP_RECLAIM_SOFT);
2711 nr_reclaimed += reclaimed;
2712 spin_lock(&mctz->lock);
2713
2714 /*
2715 * If we failed to reclaim anything from this memory cgroup
2716 * it is time to move on to the next cgroup
2717 */
2718 next_mz = NULL;
2719 if (!reclaimed) {
2720 do {
2721 /*
2722 * Loop until we find yet another one.
2723 *
2724 * By the time we get the soft_limit lock
2725 * again, someone might have aded the
2726 * group back on the RB tree. Iterate to
2727 * make sure we get a different mem.
2728 * mem_cgroup_largest_soft_limit_node returns
2729 * NULL if no other cgroup is present on
2730 * the tree
2731 */
2732 next_mz =
2733 __mem_cgroup_largest_soft_limit_node(mctz);
2734 if (next_mz == mz) {
2735 css_put(&next_mz->mem->css);
2736 next_mz = NULL;
2737 } else /* next_mz == NULL or other memcg */
2738 break;
2739 } while (1);
2740 }
4e416953 2741 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 2742 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
2743 /*
2744 * One school of thought says that we should not add
2745 * back the node to the tree if reclaim returns 0.
2746 * But our reclaim could return 0, simply because due
2747 * to priority we are exposing a smaller subset of
2748 * memory to reclaim from. Consider this as a longer
2749 * term TODO.
2750 */
ef8745c1
KH
2751 /* If excess == 0, no tree ops */
2752 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
2753 spin_unlock(&mctz->lock);
2754 css_put(&mz->mem->css);
2755 loop++;
2756 /*
2757 * Could not reclaim anything and there are no more
2758 * mem cgroups to try or we seem to be looping without
2759 * reclaiming anything.
2760 */
2761 if (!nr_reclaimed &&
2762 (next_mz == NULL ||
2763 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2764 break;
2765 } while (!nr_reclaimed);
2766 if (next_mz)
2767 css_put(&next_mz->mem->css);
2768 return nr_reclaimed;
2769}
2770
cc847582
KH
2771/*
2772 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
2773 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2774 */
f817ed48 2775static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 2776 int node, int zid, enum lru_list lru)
cc847582 2777{
08e552c6
KH
2778 struct zone *zone;
2779 struct mem_cgroup_per_zone *mz;
f817ed48 2780 struct page_cgroup *pc, *busy;
08e552c6 2781 unsigned long flags, loop;
072c56c1 2782 struct list_head *list;
f817ed48 2783 int ret = 0;
072c56c1 2784
08e552c6
KH
2785 zone = &NODE_DATA(node)->node_zones[zid];
2786 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 2787 list = &mz->lists[lru];
cc847582 2788
f817ed48
KH
2789 loop = MEM_CGROUP_ZSTAT(mz, lru);
2790 /* give some margin against EBUSY etc...*/
2791 loop += 256;
2792 busy = NULL;
2793 while (loop--) {
2794 ret = 0;
08e552c6 2795 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 2796 if (list_empty(list)) {
08e552c6 2797 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 2798 break;
f817ed48
KH
2799 }
2800 pc = list_entry(list->prev, struct page_cgroup, lru);
2801 if (busy == pc) {
2802 list_move(&pc->lru, list);
648bcc77 2803 busy = NULL;
08e552c6 2804 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
2805 continue;
2806 }
08e552c6 2807 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 2808
2c26fdd7 2809 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 2810 if (ret == -ENOMEM)
52d4b9ac 2811 break;
f817ed48
KH
2812
2813 if (ret == -EBUSY || ret == -EINVAL) {
2814 /* found lock contention or "pc" is obsolete. */
2815 busy = pc;
2816 cond_resched();
2817 } else
2818 busy = NULL;
cc847582 2819 }
08e552c6 2820
f817ed48
KH
2821 if (!ret && !list_empty(list))
2822 return -EBUSY;
2823 return ret;
cc847582
KH
2824}
2825
2826/*
2827 * make mem_cgroup's charge to be 0 if there is no task.
2828 * This enables deleting this mem_cgroup.
2829 */
c1e862c1 2830static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 2831{
f817ed48
KH
2832 int ret;
2833 int node, zid, shrink;
2834 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 2835 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 2836
cc847582 2837 css_get(&mem->css);
f817ed48
KH
2838
2839 shrink = 0;
c1e862c1
KH
2840 /* should free all ? */
2841 if (free_all)
2842 goto try_to_free;
f817ed48 2843move_account:
fce66477 2844 do {
f817ed48 2845 ret = -EBUSY;
c1e862c1
KH
2846 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2847 goto out;
2848 ret = -EINTR;
2849 if (signal_pending(current))
cc847582 2850 goto out;
52d4b9ac
KH
2851 /* This is for making all *used* pages to be on LRU. */
2852 lru_add_drain_all();
cdec2e42 2853 drain_all_stock_sync();
f817ed48 2854 ret = 0;
299b4eaa 2855 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 2856 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 2857 enum lru_list l;
f817ed48
KH
2858 for_each_lru(l) {
2859 ret = mem_cgroup_force_empty_list(mem,
08e552c6 2860 node, zid, l);
f817ed48
KH
2861 if (ret)
2862 break;
2863 }
1ecaab2b 2864 }
f817ed48
KH
2865 if (ret)
2866 break;
2867 }
2868 /* it seems parent cgroup doesn't have enough mem */
2869 if (ret == -ENOMEM)
2870 goto try_to_free;
52d4b9ac 2871 cond_resched();
fce66477
DN
2872 /* "ret" should also be checked to ensure all lists are empty. */
2873 } while (mem->res.usage > 0 || ret);
cc847582
KH
2874out:
2875 css_put(&mem->css);
2876 return ret;
f817ed48
KH
2877
2878try_to_free:
c1e862c1
KH
2879 /* returns EBUSY if there is a task or if we come here twice. */
2880 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
2881 ret = -EBUSY;
2882 goto out;
2883 }
c1e862c1
KH
2884 /* we call try-to-free pages for make this cgroup empty */
2885 lru_add_drain_all();
f817ed48
KH
2886 /* try to free all pages in this cgroup */
2887 shrink = 1;
2888 while (nr_retries && mem->res.usage > 0) {
2889 int progress;
c1e862c1
KH
2890
2891 if (signal_pending(current)) {
2892 ret = -EINTR;
2893 goto out;
2894 }
a7885eb8
KM
2895 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2896 false, get_swappiness(mem));
c1e862c1 2897 if (!progress) {
f817ed48 2898 nr_retries--;
c1e862c1 2899 /* maybe some writeback is necessary */
8aa7e847 2900 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2901 }
f817ed48
KH
2902
2903 }
08e552c6 2904 lru_add_drain();
f817ed48 2905 /* try move_account...there may be some *locked* pages. */
fce66477 2906 goto move_account;
cc847582
KH
2907}
2908
c1e862c1
KH
2909int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2910{
2911 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2912}
2913
2914
18f59ea7
BS
2915static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2916{
2917 return mem_cgroup_from_cont(cont)->use_hierarchy;
2918}
2919
2920static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2921 u64 val)
2922{
2923 int retval = 0;
2924 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2925 struct cgroup *parent = cont->parent;
2926 struct mem_cgroup *parent_mem = NULL;
2927
2928 if (parent)
2929 parent_mem = mem_cgroup_from_cont(parent);
2930
2931 cgroup_lock();
2932 /*
af901ca1 2933 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2934 * in the child subtrees. If it is unset, then the change can
2935 * occur, provided the current cgroup has no children.
2936 *
2937 * For the root cgroup, parent_mem is NULL, we allow value to be
2938 * set if there are no children.
2939 */
2940 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2941 (val == 1 || val == 0)) {
2942 if (list_empty(&cont->children))
2943 mem->use_hierarchy = val;
2944 else
2945 retval = -EBUSY;
2946 } else
2947 retval = -EINVAL;
2948 cgroup_unlock();
2949
2950 return retval;
2951}
2952
0c3e73e8
BS
2953struct mem_cgroup_idx_data {
2954 s64 val;
2955 enum mem_cgroup_stat_index idx;
2956};
2957
2958static int
2959mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2960{
2961 struct mem_cgroup_idx_data *d = data;
c62b1a3b 2962 d->val += mem_cgroup_read_stat(mem, d->idx);
0c3e73e8
BS
2963 return 0;
2964}
2965
2966static void
2967mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2968 enum mem_cgroup_stat_index idx, s64 *val)
2969{
2970 struct mem_cgroup_idx_data d;
2971 d.idx = idx;
2972 d.val = 0;
2973 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2974 *val = d.val;
2975}
2976
104f3928
KS
2977static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
2978{
2979 u64 idx_val, val;
2980
2981 if (!mem_cgroup_is_root(mem)) {
2982 if (!swap)
2983 return res_counter_read_u64(&mem->res, RES_USAGE);
2984 else
2985 return res_counter_read_u64(&mem->memsw, RES_USAGE);
2986 }
2987
2988 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
2989 val = idx_val;
2990 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
2991 val += idx_val;
2992
2993 if (swap) {
2994 mem_cgroup_get_recursive_idx_stat(mem,
2995 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2996 val += idx_val;
2997 }
2998
2999 return val << PAGE_SHIFT;
3000}
3001
2c3daa72 3002static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3003{
8c7c6e34 3004 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3005 u64 val;
8c7c6e34
KH
3006 int type, name;
3007
3008 type = MEMFILE_TYPE(cft->private);
3009 name = MEMFILE_ATTR(cft->private);
3010 switch (type) {
3011 case _MEM:
104f3928
KS
3012 if (name == RES_USAGE)
3013 val = mem_cgroup_usage(mem, false);
3014 else
0c3e73e8 3015 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3016 break;
3017 case _MEMSWAP:
104f3928
KS
3018 if (name == RES_USAGE)
3019 val = mem_cgroup_usage(mem, true);
3020 else
0c3e73e8 3021 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3022 break;
3023 default:
3024 BUG();
3025 break;
3026 }
3027 return val;
8cdea7c0 3028}
628f4235
KH
3029/*
3030 * The user of this function is...
3031 * RES_LIMIT.
3032 */
856c13aa
PM
3033static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3034 const char *buffer)
8cdea7c0 3035{
628f4235 3036 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3037 int type, name;
628f4235
KH
3038 unsigned long long val;
3039 int ret;
3040
8c7c6e34
KH
3041 type = MEMFILE_TYPE(cft->private);
3042 name = MEMFILE_ATTR(cft->private);
3043 switch (name) {
628f4235 3044 case RES_LIMIT:
4b3bde4c
BS
3045 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3046 ret = -EINVAL;
3047 break;
3048 }
628f4235
KH
3049 /* This function does all necessary parse...reuse it */
3050 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3051 if (ret)
3052 break;
3053 if (type == _MEM)
628f4235 3054 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3055 else
3056 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3057 break;
296c81d8
BS
3058 case RES_SOFT_LIMIT:
3059 ret = res_counter_memparse_write_strategy(buffer, &val);
3060 if (ret)
3061 break;
3062 /*
3063 * For memsw, soft limits are hard to implement in terms
3064 * of semantics, for now, we support soft limits for
3065 * control without swap
3066 */
3067 if (type == _MEM)
3068 ret = res_counter_set_soft_limit(&memcg->res, val);
3069 else
3070 ret = -EINVAL;
3071 break;
628f4235
KH
3072 default:
3073 ret = -EINVAL; /* should be BUG() ? */
3074 break;
3075 }
3076 return ret;
8cdea7c0
BS
3077}
3078
fee7b548
KH
3079static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3080 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3081{
3082 struct cgroup *cgroup;
3083 unsigned long long min_limit, min_memsw_limit, tmp;
3084
3085 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3086 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3087 cgroup = memcg->css.cgroup;
3088 if (!memcg->use_hierarchy)
3089 goto out;
3090
3091 while (cgroup->parent) {
3092 cgroup = cgroup->parent;
3093 memcg = mem_cgroup_from_cont(cgroup);
3094 if (!memcg->use_hierarchy)
3095 break;
3096 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3097 min_limit = min(min_limit, tmp);
3098 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3099 min_memsw_limit = min(min_memsw_limit, tmp);
3100 }
3101out:
3102 *mem_limit = min_limit;
3103 *memsw_limit = min_memsw_limit;
3104 return;
3105}
3106
29f2a4da 3107static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3108{
3109 struct mem_cgroup *mem;
8c7c6e34 3110 int type, name;
c84872e1
PE
3111
3112 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3113 type = MEMFILE_TYPE(event);
3114 name = MEMFILE_ATTR(event);
3115 switch (name) {
29f2a4da 3116 case RES_MAX_USAGE:
8c7c6e34
KH
3117 if (type == _MEM)
3118 res_counter_reset_max(&mem->res);
3119 else
3120 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3121 break;
3122 case RES_FAILCNT:
8c7c6e34
KH
3123 if (type == _MEM)
3124 res_counter_reset_failcnt(&mem->res);
3125 else
3126 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3127 break;
3128 }
f64c3f54 3129
85cc59db 3130 return 0;
c84872e1
PE
3131}
3132
7dc74be0
DN
3133static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3134 struct cftype *cft)
3135{
3136 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3137}
3138
02491447 3139#ifdef CONFIG_MMU
7dc74be0
DN
3140static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3141 struct cftype *cft, u64 val)
3142{
3143 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3144
3145 if (val >= (1 << NR_MOVE_TYPE))
3146 return -EINVAL;
3147 /*
3148 * We check this value several times in both in can_attach() and
3149 * attach(), so we need cgroup lock to prevent this value from being
3150 * inconsistent.
3151 */
3152 cgroup_lock();
3153 mem->move_charge_at_immigrate = val;
3154 cgroup_unlock();
3155
3156 return 0;
3157}
02491447
DN
3158#else
3159static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3160 struct cftype *cft, u64 val)
3161{
3162 return -ENOSYS;
3163}
3164#endif
7dc74be0 3165
14067bb3
KH
3166
3167/* For read statistics */
3168enum {
3169 MCS_CACHE,
3170 MCS_RSS,
d8046582 3171 MCS_FILE_MAPPED,
14067bb3
KH
3172 MCS_PGPGIN,
3173 MCS_PGPGOUT,
1dd3a273 3174 MCS_SWAP,
14067bb3
KH
3175 MCS_INACTIVE_ANON,
3176 MCS_ACTIVE_ANON,
3177 MCS_INACTIVE_FILE,
3178 MCS_ACTIVE_FILE,
3179 MCS_UNEVICTABLE,
3180 NR_MCS_STAT,
3181};
3182
3183struct mcs_total_stat {
3184 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3185};
3186
14067bb3
KH
3187struct {
3188 char *local_name;
3189 char *total_name;
3190} memcg_stat_strings[NR_MCS_STAT] = {
3191 {"cache", "total_cache"},
3192 {"rss", "total_rss"},
d69b042f 3193 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3194 {"pgpgin", "total_pgpgin"},
3195 {"pgpgout", "total_pgpgout"},
1dd3a273 3196 {"swap", "total_swap"},
14067bb3
KH
3197 {"inactive_anon", "total_inactive_anon"},
3198 {"active_anon", "total_active_anon"},
3199 {"inactive_file", "total_inactive_file"},
3200 {"active_file", "total_active_file"},
3201 {"unevictable", "total_unevictable"}
3202};
3203
3204
3205static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3206{
3207 struct mcs_total_stat *s = data;
3208 s64 val;
3209
3210 /* per cpu stat */
c62b1a3b 3211 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3212 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3213 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3214 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3215 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3216 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3217 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3218 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3219 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3220 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3221 if (do_swap_account) {
c62b1a3b 3222 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3223 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3224 }
14067bb3
KH
3225
3226 /* per zone stat */
3227 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3228 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3229 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3230 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3231 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3232 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3233 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3234 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3235 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3236 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3237 return 0;
3238}
3239
3240static void
3241mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3242{
3243 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3244}
3245
c64745cf
PM
3246static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3247 struct cgroup_map_cb *cb)
d2ceb9b7 3248{
d2ceb9b7 3249 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3250 struct mcs_total_stat mystat;
d2ceb9b7
KH
3251 int i;
3252
14067bb3
KH
3253 memset(&mystat, 0, sizeof(mystat));
3254 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3255
1dd3a273
DN
3256 for (i = 0; i < NR_MCS_STAT; i++) {
3257 if (i == MCS_SWAP && !do_swap_account)
3258 continue;
14067bb3 3259 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3260 }
7b854121 3261
14067bb3 3262 /* Hierarchical information */
fee7b548
KH
3263 {
3264 unsigned long long limit, memsw_limit;
3265 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3266 cb->fill(cb, "hierarchical_memory_limit", limit);
3267 if (do_swap_account)
3268 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3269 }
7f016ee8 3270
14067bb3
KH
3271 memset(&mystat, 0, sizeof(mystat));
3272 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3273 for (i = 0; i < NR_MCS_STAT; i++) {
3274 if (i == MCS_SWAP && !do_swap_account)
3275 continue;
14067bb3 3276 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3277 }
14067bb3 3278
7f016ee8 3279#ifdef CONFIG_DEBUG_VM
c772be93 3280 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3281
3282 {
3283 int nid, zid;
3284 struct mem_cgroup_per_zone *mz;
3285 unsigned long recent_rotated[2] = {0, 0};
3286 unsigned long recent_scanned[2] = {0, 0};
3287
3288 for_each_online_node(nid)
3289 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3290 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3291
3292 recent_rotated[0] +=
3293 mz->reclaim_stat.recent_rotated[0];
3294 recent_rotated[1] +=
3295 mz->reclaim_stat.recent_rotated[1];
3296 recent_scanned[0] +=
3297 mz->reclaim_stat.recent_scanned[0];
3298 recent_scanned[1] +=
3299 mz->reclaim_stat.recent_scanned[1];
3300 }
3301 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3302 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3303 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3304 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3305 }
3306#endif
3307
d2ceb9b7
KH
3308 return 0;
3309}
3310
a7885eb8
KM
3311static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3312{
3313 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3314
3315 return get_swappiness(memcg);
3316}
3317
3318static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3319 u64 val)
3320{
3321 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3322 struct mem_cgroup *parent;
068b38c1 3323
a7885eb8
KM
3324 if (val > 100)
3325 return -EINVAL;
3326
3327 if (cgrp->parent == NULL)
3328 return -EINVAL;
3329
3330 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3331
3332 cgroup_lock();
3333
a7885eb8
KM
3334 /* If under hierarchy, only empty-root can set this value */
3335 if ((parent->use_hierarchy) ||
068b38c1
LZ
3336 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3337 cgroup_unlock();
a7885eb8 3338 return -EINVAL;
068b38c1 3339 }
a7885eb8
KM
3340
3341 spin_lock(&memcg->reclaim_param_lock);
3342 memcg->swappiness = val;
3343 spin_unlock(&memcg->reclaim_param_lock);
3344
068b38c1
LZ
3345 cgroup_unlock();
3346
a7885eb8
KM
3347 return 0;
3348}
3349
2e72b634
KS
3350static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3351{
3352 struct mem_cgroup_threshold_ary *t;
3353 u64 usage;
3354 int i;
3355
3356 rcu_read_lock();
3357 if (!swap)
3358 t = rcu_dereference(memcg->thresholds);
3359 else
3360 t = rcu_dereference(memcg->memsw_thresholds);
3361
3362 if (!t)
3363 goto unlock;
3364
3365 usage = mem_cgroup_usage(memcg, swap);
3366
3367 /*
3368 * current_threshold points to threshold just below usage.
3369 * If it's not true, a threshold was crossed after last
3370 * call of __mem_cgroup_threshold().
3371 */
3372 i = atomic_read(&t->current_threshold);
3373
3374 /*
3375 * Iterate backward over array of thresholds starting from
3376 * current_threshold and check if a threshold is crossed.
3377 * If none of thresholds below usage is crossed, we read
3378 * only one element of the array here.
3379 */
3380 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3381 eventfd_signal(t->entries[i].eventfd, 1);
3382
3383 /* i = current_threshold + 1 */
3384 i++;
3385
3386 /*
3387 * Iterate forward over array of thresholds starting from
3388 * current_threshold+1 and check if a threshold is crossed.
3389 * If none of thresholds above usage is crossed, we read
3390 * only one element of the array here.
3391 */
3392 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3393 eventfd_signal(t->entries[i].eventfd, 1);
3394
3395 /* Update current_threshold */
3396 atomic_set(&t->current_threshold, i - 1);
3397unlock:
3398 rcu_read_unlock();
3399}
3400
3401static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3402{
3403 __mem_cgroup_threshold(memcg, false);
3404 if (do_swap_account)
3405 __mem_cgroup_threshold(memcg, true);
3406}
3407
3408static int compare_thresholds(const void *a, const void *b)
3409{
3410 const struct mem_cgroup_threshold *_a = a;
3411 const struct mem_cgroup_threshold *_b = b;
3412
3413 return _a->threshold - _b->threshold;
3414}
3415
9490ff27
KH
3416static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3417{
3418 struct mem_cgroup_eventfd_list *ev;
3419
3420 list_for_each_entry(ev, &mem->oom_notify, list)
3421 eventfd_signal(ev->eventfd, 1);
3422 return 0;
3423}
3424
3425static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3426{
3427 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3428}
3429
3430static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3431 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3432{
3433 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3434 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3435 int type = MEMFILE_TYPE(cft->private);
3436 u64 threshold, usage;
3437 int size;
3438 int i, ret;
3439
3440 ret = res_counter_memparse_write_strategy(args, &threshold);
3441 if (ret)
3442 return ret;
3443
3444 mutex_lock(&memcg->thresholds_lock);
3445 if (type == _MEM)
3446 thresholds = memcg->thresholds;
3447 else if (type == _MEMSWAP)
3448 thresholds = memcg->memsw_thresholds;
3449 else
3450 BUG();
3451
3452 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3453
3454 /* Check if a threshold crossed before adding a new one */
3455 if (thresholds)
3456 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3457
3458 if (thresholds)
3459 size = thresholds->size + 1;
3460 else
3461 size = 1;
3462
3463 /* Allocate memory for new array of thresholds */
3464 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3465 size * sizeof(struct mem_cgroup_threshold),
3466 GFP_KERNEL);
3467 if (!thresholds_new) {
3468 ret = -ENOMEM;
3469 goto unlock;
3470 }
3471 thresholds_new->size = size;
3472
3473 /* Copy thresholds (if any) to new array */
3474 if (thresholds)
3475 memcpy(thresholds_new->entries, thresholds->entries,
3476 thresholds->size *
3477 sizeof(struct mem_cgroup_threshold));
3478 /* Add new threshold */
3479 thresholds_new->entries[size - 1].eventfd = eventfd;
3480 thresholds_new->entries[size - 1].threshold = threshold;
3481
3482 /* Sort thresholds. Registering of new threshold isn't time-critical */
3483 sort(thresholds_new->entries, size,
3484 sizeof(struct mem_cgroup_threshold),
3485 compare_thresholds, NULL);
3486
3487 /* Find current threshold */
3488 atomic_set(&thresholds_new->current_threshold, -1);
3489 for (i = 0; i < size; i++) {
3490 if (thresholds_new->entries[i].threshold < usage) {
3491 /*
3492 * thresholds_new->current_threshold will not be used
3493 * until rcu_assign_pointer(), so it's safe to increment
3494 * it here.
3495 */
3496 atomic_inc(&thresholds_new->current_threshold);
3497 }
3498 }
3499
2e72b634
KS
3500 if (type == _MEM)
3501 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3502 else
3503 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3504
3505 /* To be sure that nobody uses thresholds before freeing it */
3506 synchronize_rcu();
3507
3508 kfree(thresholds);
3509unlock:
3510 mutex_unlock(&memcg->thresholds_lock);
3511
3512 return ret;
3513}
3514
9490ff27
KH
3515static int mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3516 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
3517{
3518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3519 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3520 int type = MEMFILE_TYPE(cft->private);
3521 u64 usage;
3522 int size = 0;
3523 int i, j, ret;
3524
3525 mutex_lock(&memcg->thresholds_lock);
3526 if (type == _MEM)
3527 thresholds = memcg->thresholds;
3528 else if (type == _MEMSWAP)
3529 thresholds = memcg->memsw_thresholds;
3530 else
3531 BUG();
3532
3533 /*
3534 * Something went wrong if we trying to unregister a threshold
3535 * if we don't have thresholds
3536 */
3537 BUG_ON(!thresholds);
3538
3539 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3540
3541 /* Check if a threshold crossed before removing */
3542 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3543
3544 /* Calculate new number of threshold */
3545 for (i = 0; i < thresholds->size; i++) {
3546 if (thresholds->entries[i].eventfd != eventfd)
3547 size++;
3548 }
3549
3550 /* Set thresholds array to NULL if we don't have thresholds */
3551 if (!size) {
3552 thresholds_new = NULL;
3553 goto assign;
3554 }
3555
3556 /* Allocate memory for new array of thresholds */
3557 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3558 size * sizeof(struct mem_cgroup_threshold),
3559 GFP_KERNEL);
3560 if (!thresholds_new) {
3561 ret = -ENOMEM;
3562 goto unlock;
3563 }
3564 thresholds_new->size = size;
3565
3566 /* Copy thresholds and find current threshold */
3567 atomic_set(&thresholds_new->current_threshold, -1);
3568 for (i = 0, j = 0; i < thresholds->size; i++) {
3569 if (thresholds->entries[i].eventfd == eventfd)
3570 continue;
3571
3572 thresholds_new->entries[j] = thresholds->entries[i];
3573 if (thresholds_new->entries[j].threshold < usage) {
3574 /*
3575 * thresholds_new->current_threshold will not be used
3576 * until rcu_assign_pointer(), so it's safe to increment
3577 * it here.
3578 */
3579 atomic_inc(&thresholds_new->current_threshold);
3580 }
3581 j++;
3582 }
3583
3584assign:
3585 if (type == _MEM)
3586 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3587 else
3588 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3589
3590 /* To be sure that nobody uses thresholds before freeing it */
3591 synchronize_rcu();
3592
2e72b634
KS
3593 kfree(thresholds);
3594unlock:
3595 mutex_unlock(&memcg->thresholds_lock);
3596
3597 return ret;
3598}
c1e862c1 3599
9490ff27
KH
3600static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3601 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3602{
3603 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3604 struct mem_cgroup_eventfd_list *event;
3605 int type = MEMFILE_TYPE(cft->private);
3606
3607 BUG_ON(type != _OOM_TYPE);
3608 event = kmalloc(sizeof(*event), GFP_KERNEL);
3609 if (!event)
3610 return -ENOMEM;
3611
3612 mutex_lock(&memcg_oom_mutex);
3613
3614 event->eventfd = eventfd;
3615 list_add(&event->list, &memcg->oom_notify);
3616
3617 /* already in OOM ? */
3618 if (atomic_read(&memcg->oom_lock))
3619 eventfd_signal(eventfd, 1);
3620 mutex_unlock(&memcg_oom_mutex);
3621
3622 return 0;
3623}
3624
3625static int mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3626 struct cftype *cft, struct eventfd_ctx *eventfd)
3627{
3628 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3629 struct mem_cgroup_eventfd_list *ev, *tmp;
3630 int type = MEMFILE_TYPE(cft->private);
3631
3632 BUG_ON(type != _OOM_TYPE);
3633
3634 mutex_lock(&memcg_oom_mutex);
3635
3636 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3637 if (ev->eventfd == eventfd) {
3638 list_del(&ev->list);
3639 kfree(ev);
3640 }
3641 }
3642
3643 mutex_unlock(&memcg_oom_mutex);
3644
3645 return 0;
3646}
3647
8cdea7c0
BS
3648static struct cftype mem_cgroup_files[] = {
3649 {
0eea1030 3650 .name = "usage_in_bytes",
8c7c6e34 3651 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 3652 .read_u64 = mem_cgroup_read,
9490ff27
KH
3653 .register_event = mem_cgroup_usage_register_event,
3654 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 3655 },
c84872e1
PE
3656 {
3657 .name = "max_usage_in_bytes",
8c7c6e34 3658 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 3659 .trigger = mem_cgroup_reset,
c84872e1
PE
3660 .read_u64 = mem_cgroup_read,
3661 },
8cdea7c0 3662 {
0eea1030 3663 .name = "limit_in_bytes",
8c7c6e34 3664 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 3665 .write_string = mem_cgroup_write,
2c3daa72 3666 .read_u64 = mem_cgroup_read,
8cdea7c0 3667 },
296c81d8
BS
3668 {
3669 .name = "soft_limit_in_bytes",
3670 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3671 .write_string = mem_cgroup_write,
3672 .read_u64 = mem_cgroup_read,
3673 },
8cdea7c0
BS
3674 {
3675 .name = "failcnt",
8c7c6e34 3676 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 3677 .trigger = mem_cgroup_reset,
2c3daa72 3678 .read_u64 = mem_cgroup_read,
8cdea7c0 3679 },
d2ceb9b7
KH
3680 {
3681 .name = "stat",
c64745cf 3682 .read_map = mem_control_stat_show,
d2ceb9b7 3683 },
c1e862c1
KH
3684 {
3685 .name = "force_empty",
3686 .trigger = mem_cgroup_force_empty_write,
3687 },
18f59ea7
BS
3688 {
3689 .name = "use_hierarchy",
3690 .write_u64 = mem_cgroup_hierarchy_write,
3691 .read_u64 = mem_cgroup_hierarchy_read,
3692 },
a7885eb8
KM
3693 {
3694 .name = "swappiness",
3695 .read_u64 = mem_cgroup_swappiness_read,
3696 .write_u64 = mem_cgroup_swappiness_write,
3697 },
7dc74be0
DN
3698 {
3699 .name = "move_charge_at_immigrate",
3700 .read_u64 = mem_cgroup_move_charge_read,
3701 .write_u64 = mem_cgroup_move_charge_write,
3702 },
9490ff27
KH
3703 {
3704 .name = "oom_control",
3705 .register_event = mem_cgroup_oom_register_event,
3706 .unregister_event = mem_cgroup_oom_unregister_event,
3707 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3708 },
8cdea7c0
BS
3709};
3710
8c7c6e34
KH
3711#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3712static struct cftype memsw_cgroup_files[] = {
3713 {
3714 .name = "memsw.usage_in_bytes",
3715 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3716 .read_u64 = mem_cgroup_read,
9490ff27
KH
3717 .register_event = mem_cgroup_usage_register_event,
3718 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
3719 },
3720 {
3721 .name = "memsw.max_usage_in_bytes",
3722 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3723 .trigger = mem_cgroup_reset,
3724 .read_u64 = mem_cgroup_read,
3725 },
3726 {
3727 .name = "memsw.limit_in_bytes",
3728 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3729 .write_string = mem_cgroup_write,
3730 .read_u64 = mem_cgroup_read,
3731 },
3732 {
3733 .name = "memsw.failcnt",
3734 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3735 .trigger = mem_cgroup_reset,
3736 .read_u64 = mem_cgroup_read,
3737 },
3738};
3739
3740static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3741{
3742 if (!do_swap_account)
3743 return 0;
3744 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3745 ARRAY_SIZE(memsw_cgroup_files));
3746};
3747#else
3748static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3749{
3750 return 0;
3751}
3752#endif
3753
6d12e2d8
KH
3754static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3755{
3756 struct mem_cgroup_per_node *pn;
1ecaab2b 3757 struct mem_cgroup_per_zone *mz;
b69408e8 3758 enum lru_list l;
41e3355d 3759 int zone, tmp = node;
1ecaab2b
KH
3760 /*
3761 * This routine is called against possible nodes.
3762 * But it's BUG to call kmalloc() against offline node.
3763 *
3764 * TODO: this routine can waste much memory for nodes which will
3765 * never be onlined. It's better to use memory hotplug callback
3766 * function.
3767 */
41e3355d
KH
3768 if (!node_state(node, N_NORMAL_MEMORY))
3769 tmp = -1;
3770 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
3771 if (!pn)
3772 return 1;
1ecaab2b 3773
6d12e2d8
KH
3774 mem->info.nodeinfo[node] = pn;
3775 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
3776
3777 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3778 mz = &pn->zoneinfo[zone];
b69408e8
CL
3779 for_each_lru(l)
3780 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 3781 mz->usage_in_excess = 0;
4e416953
BS
3782 mz->on_tree = false;
3783 mz->mem = mem;
1ecaab2b 3784 }
6d12e2d8
KH
3785 return 0;
3786}
3787
1ecaab2b
KH
3788static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3789{
3790 kfree(mem->info.nodeinfo[node]);
3791}
3792
33327948
KH
3793static struct mem_cgroup *mem_cgroup_alloc(void)
3794{
3795 struct mem_cgroup *mem;
c62b1a3b 3796 int size = sizeof(struct mem_cgroup);
33327948 3797
c62b1a3b 3798 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb
JB
3799 if (size < PAGE_SIZE)
3800 mem = kmalloc(size, GFP_KERNEL);
33327948 3801 else
c8dad2bb 3802 mem = vmalloc(size);
33327948 3803
e7bbcdf3
DC
3804 if (!mem)
3805 return NULL;
3806
3807 memset(mem, 0, size);
c62b1a3b
KH
3808 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3809 if (!mem->stat) {
3810 if (size < PAGE_SIZE)
3811 kfree(mem);
3812 else
3813 vfree(mem);
3814 mem = NULL;
3815 }
33327948
KH
3816 return mem;
3817}
3818
8c7c6e34
KH
3819/*
3820 * At destroying mem_cgroup, references from swap_cgroup can remain.
3821 * (scanning all at force_empty is too costly...)
3822 *
3823 * Instead of clearing all references at force_empty, we remember
3824 * the number of reference from swap_cgroup and free mem_cgroup when
3825 * it goes down to 0.
3826 *
8c7c6e34
KH
3827 * Removal of cgroup itself succeeds regardless of refs from swap.
3828 */
3829
a7ba0eef 3830static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 3831{
08e552c6
KH
3832 int node;
3833
f64c3f54 3834 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
3835 free_css_id(&mem_cgroup_subsys, &mem->css);
3836
08e552c6
KH
3837 for_each_node_state(node, N_POSSIBLE)
3838 free_mem_cgroup_per_zone_info(mem, node);
3839
c62b1a3b
KH
3840 free_percpu(mem->stat);
3841 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
3842 kfree(mem);
3843 else
3844 vfree(mem);
3845}
3846
8c7c6e34
KH
3847static void mem_cgroup_get(struct mem_cgroup *mem)
3848{
3849 atomic_inc(&mem->refcnt);
3850}
3851
483c30b5 3852static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 3853{
483c30b5 3854 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 3855 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 3856 __mem_cgroup_free(mem);
7bcc1bb1
DN
3857 if (parent)
3858 mem_cgroup_put(parent);
3859 }
8c7c6e34
KH
3860}
3861
483c30b5
DN
3862static void mem_cgroup_put(struct mem_cgroup *mem)
3863{
3864 __mem_cgroup_put(mem, 1);
3865}
3866
7bcc1bb1
DN
3867/*
3868 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3869 */
3870static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3871{
3872 if (!mem->res.parent)
3873 return NULL;
3874 return mem_cgroup_from_res_counter(mem->res.parent, res);
3875}
33327948 3876
c077719b
KH
3877#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3878static void __init enable_swap_cgroup(void)
3879{
f8d66542 3880 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
3881 do_swap_account = 1;
3882}
3883#else
3884static void __init enable_swap_cgroup(void)
3885{
3886}
3887#endif
3888
f64c3f54
BS
3889static int mem_cgroup_soft_limit_tree_init(void)
3890{
3891 struct mem_cgroup_tree_per_node *rtpn;
3892 struct mem_cgroup_tree_per_zone *rtpz;
3893 int tmp, node, zone;
3894
3895 for_each_node_state(node, N_POSSIBLE) {
3896 tmp = node;
3897 if (!node_state(node, N_NORMAL_MEMORY))
3898 tmp = -1;
3899 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3900 if (!rtpn)
3901 return 1;
3902
3903 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3904
3905 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3906 rtpz = &rtpn->rb_tree_per_zone[zone];
3907 rtpz->rb_root = RB_ROOT;
3908 spin_lock_init(&rtpz->lock);
3909 }
3910 }
3911 return 0;
3912}
3913
0eb253e2 3914static struct cgroup_subsys_state * __ref
8cdea7c0
BS
3915mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3916{
28dbc4b6 3917 struct mem_cgroup *mem, *parent;
04046e1a 3918 long error = -ENOMEM;
6d12e2d8 3919 int node;
8cdea7c0 3920
c8dad2bb
JB
3921 mem = mem_cgroup_alloc();
3922 if (!mem)
04046e1a 3923 return ERR_PTR(error);
78fb7466 3924
6d12e2d8
KH
3925 for_each_node_state(node, N_POSSIBLE)
3926 if (alloc_mem_cgroup_per_zone_info(mem, node))
3927 goto free_out;
f64c3f54 3928
c077719b 3929 /* root ? */
28dbc4b6 3930 if (cont->parent == NULL) {
cdec2e42 3931 int cpu;
c077719b 3932 enable_swap_cgroup();
28dbc4b6 3933 parent = NULL;
4b3bde4c 3934 root_mem_cgroup = mem;
f64c3f54
BS
3935 if (mem_cgroup_soft_limit_tree_init())
3936 goto free_out;
cdec2e42
KH
3937 for_each_possible_cpu(cpu) {
3938 struct memcg_stock_pcp *stock =
3939 &per_cpu(memcg_stock, cpu);
3940 INIT_WORK(&stock->work, drain_local_stock);
3941 }
3942 hotcpu_notifier(memcg_stock_cpu_callback, 0);
18f59ea7 3943 } else {
28dbc4b6 3944 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
3945 mem->use_hierarchy = parent->use_hierarchy;
3946 }
28dbc4b6 3947
18f59ea7
BS
3948 if (parent && parent->use_hierarchy) {
3949 res_counter_init(&mem->res, &parent->res);
3950 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
3951 /*
3952 * We increment refcnt of the parent to ensure that we can
3953 * safely access it on res_counter_charge/uncharge.
3954 * This refcnt will be decremented when freeing this
3955 * mem_cgroup(see mem_cgroup_put).
3956 */
3957 mem_cgroup_get(parent);
18f59ea7
BS
3958 } else {
3959 res_counter_init(&mem->res, NULL);
3960 res_counter_init(&mem->memsw, NULL);
3961 }
04046e1a 3962 mem->last_scanned_child = 0;
2733c06a 3963 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 3964 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 3965
a7885eb8
KM
3966 if (parent)
3967 mem->swappiness = get_swappiness(parent);
a7ba0eef 3968 atomic_set(&mem->refcnt, 1);
7dc74be0 3969 mem->move_charge_at_immigrate = 0;
2e72b634 3970 mutex_init(&mem->thresholds_lock);
8cdea7c0 3971 return &mem->css;
6d12e2d8 3972free_out:
a7ba0eef 3973 __mem_cgroup_free(mem);
4b3bde4c 3974 root_mem_cgroup = NULL;
04046e1a 3975 return ERR_PTR(error);
8cdea7c0
BS
3976}
3977
ec64f515 3978static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
3979 struct cgroup *cont)
3980{
3981 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
3982
3983 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
3984}
3985
8cdea7c0
BS
3986static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3987 struct cgroup *cont)
3988{
c268e994 3989 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 3990
c268e994 3991 mem_cgroup_put(mem);
8cdea7c0
BS
3992}
3993
3994static int mem_cgroup_populate(struct cgroup_subsys *ss,
3995 struct cgroup *cont)
3996{
8c7c6e34
KH
3997 int ret;
3998
3999 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4000 ARRAY_SIZE(mem_cgroup_files));
4001
4002 if (!ret)
4003 ret = register_memsw_files(cont, ss);
4004 return ret;
8cdea7c0
BS
4005}
4006
02491447 4007#ifdef CONFIG_MMU
7dc74be0 4008/* Handlers for move charge at task migration. */
854ffa8d
DN
4009#define PRECHARGE_COUNT_AT_ONCE 256
4010static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4011{
854ffa8d
DN
4012 int ret = 0;
4013 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4014 struct mem_cgroup *mem = mc.to;
4015
854ffa8d
DN
4016 if (mem_cgroup_is_root(mem)) {
4017 mc.precharge += count;
4018 /* we don't need css_get for root */
4019 return ret;
4020 }
4021 /* try to charge at once */
4022 if (count > 1) {
4023 struct res_counter *dummy;
4024 /*
4025 * "mem" cannot be under rmdir() because we've already checked
4026 * by cgroup_lock_live_cgroup() that it is not removed and we
4027 * are still under the same cgroup_mutex. So we can postpone
4028 * css_get().
4029 */
4030 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4031 goto one_by_one;
4032 if (do_swap_account && res_counter_charge(&mem->memsw,
4033 PAGE_SIZE * count, &dummy)) {
4034 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4035 goto one_by_one;
4036 }
4037 mc.precharge += count;
4038 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4039 WARN_ON_ONCE(count > INT_MAX);
4040 __css_get(&mem->css, (int)count);
4041 return ret;
4042 }
4043one_by_one:
4044 /* fall back to one by one charge */
4045 while (count--) {
4046 if (signal_pending(current)) {
4047 ret = -EINTR;
4048 break;
4049 }
4050 if (!batch_count--) {
4051 batch_count = PRECHARGE_COUNT_AT_ONCE;
4052 cond_resched();
4053 }
430e4863 4054 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
854ffa8d
DN
4055 if (ret || !mem)
4056 /* mem_cgroup_clear_mc() will do uncharge later */
4057 return -ENOMEM;
4058 mc.precharge++;
4059 }
4ffef5fe
DN
4060 return ret;
4061}
4062
4063/**
4064 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4065 * @vma: the vma the pte to be checked belongs
4066 * @addr: the address corresponding to the pte to be checked
4067 * @ptent: the pte to be checked
02491447 4068 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4069 *
4070 * Returns
4071 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4072 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4073 * move charge. if @target is not NULL, the page is stored in target->page
4074 * with extra refcnt got(Callers should handle it).
02491447
DN
4075 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4076 * target for charge migration. if @target is not NULL, the entry is stored
4077 * in target->ent.
4ffef5fe
DN
4078 *
4079 * Called with pte lock held.
4080 */
4ffef5fe
DN
4081union mc_target {
4082 struct page *page;
02491447 4083 swp_entry_t ent;
4ffef5fe
DN
4084};
4085
4ffef5fe
DN
4086enum mc_target_type {
4087 MC_TARGET_NONE, /* not used */
4088 MC_TARGET_PAGE,
02491447 4089 MC_TARGET_SWAP,
4ffef5fe
DN
4090};
4091
4092static int is_target_pte_for_mc(struct vm_area_struct *vma,
4093 unsigned long addr, pte_t ptent, union mc_target *target)
4094{
02491447 4095 struct page *page = NULL;
4ffef5fe
DN
4096 struct page_cgroup *pc;
4097 int ret = 0;
02491447
DN
4098 swp_entry_t ent = { .val = 0 };
4099 int usage_count = 0;
4ffef5fe
DN
4100 bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
4101 &mc.to->move_charge_at_immigrate);
4102
02491447
DN
4103 if (!pte_present(ptent)) {
4104 /* TODO: handle swap of shmes/tmpfs */
4105 if (pte_none(ptent) || pte_file(ptent))
4106 return 0;
4107 else if (is_swap_pte(ptent)) {
4108 ent = pte_to_swp_entry(ptent);
4109 if (!move_anon || non_swap_entry(ent))
4110 return 0;
4111 usage_count = mem_cgroup_count_swap_user(ent, &page);
4112 }
4113 } else {
4114 page = vm_normal_page(vma, addr, ptent);
4115 if (!page || !page_mapped(page))
4116 return 0;
4117 /*
4118 * TODO: We don't move charges of file(including shmem/tmpfs)
4119 * pages for now.
4120 */
4121 if (!move_anon || !PageAnon(page))
4122 return 0;
4123 if (!get_page_unless_zero(page))
4124 return 0;
4125 usage_count = page_mapcount(page);
4126 }
4127 if (usage_count > 1) {
4128 /*
4129 * TODO: We don't move charges of shared(used by multiple
4130 * processes) pages for now.
4131 */
4132 if (page)
4133 put_page(page);
4ffef5fe 4134 return 0;
02491447
DN
4135 }
4136 if (page) {
4137 pc = lookup_page_cgroup(page);
4138 /*
4139 * Do only loose check w/o page_cgroup lock.
4140 * mem_cgroup_move_account() checks the pc is valid or not under
4141 * the lock.
4142 */
4143 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4144 ret = MC_TARGET_PAGE;
4145 if (target)
4146 target->page = page;
4147 }
4148 if (!ret || !target)
4149 put_page(page);
4150 }
4151 /* throught */
7f0f1546
KH
4152 if (ent.val && do_swap_account && !ret &&
4153 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4154 ret = MC_TARGET_SWAP;
4155 if (target)
4156 target->ent = ent;
4ffef5fe 4157 }
4ffef5fe
DN
4158 return ret;
4159}
4160
4161static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4162 unsigned long addr, unsigned long end,
4163 struct mm_walk *walk)
4164{
4165 struct vm_area_struct *vma = walk->private;
4166 pte_t *pte;
4167 spinlock_t *ptl;
4168
4169 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4170 for (; addr != end; pte++, addr += PAGE_SIZE)
4171 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4172 mc.precharge++; /* increment precharge temporarily */
4173 pte_unmap_unlock(pte - 1, ptl);
4174 cond_resched();
4175
7dc74be0
DN
4176 return 0;
4177}
4178
4ffef5fe
DN
4179static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4180{
4181 unsigned long precharge;
4182 struct vm_area_struct *vma;
4183
4184 down_read(&mm->mmap_sem);
4185 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4186 struct mm_walk mem_cgroup_count_precharge_walk = {
4187 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4188 .mm = mm,
4189 .private = vma,
4190 };
4191 if (is_vm_hugetlb_page(vma))
4192 continue;
4193 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4194 if (vma->vm_flags & VM_SHARED)
4195 continue;
4196 walk_page_range(vma->vm_start, vma->vm_end,
4197 &mem_cgroup_count_precharge_walk);
4198 }
4199 up_read(&mm->mmap_sem);
4200
4201 precharge = mc.precharge;
4202 mc.precharge = 0;
4203
4204 return precharge;
4205}
4206
4ffef5fe
DN
4207static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4208{
854ffa8d 4209 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4ffef5fe
DN
4210}
4211
4212static void mem_cgroup_clear_mc(void)
4213{
4214 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4215 if (mc.precharge) {
4216 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4217 mc.precharge = 0;
4218 }
4219 /*
4220 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4221 * we must uncharge here.
4222 */
4223 if (mc.moved_charge) {
4224 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4225 mc.moved_charge = 0;
4ffef5fe 4226 }
483c30b5
DN
4227 /* we must fixup refcnts and charges */
4228 if (mc.moved_swap) {
4229 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4230 /* uncharge swap account from the old cgroup */
4231 if (!mem_cgroup_is_root(mc.from))
4232 res_counter_uncharge(&mc.from->memsw,
4233 PAGE_SIZE * mc.moved_swap);
4234 __mem_cgroup_put(mc.from, mc.moved_swap);
4235
4236 if (!mem_cgroup_is_root(mc.to)) {
4237 /*
4238 * we charged both to->res and to->memsw, so we should
4239 * uncharge to->res.
4240 */
4241 res_counter_uncharge(&mc.to->res,
4242 PAGE_SIZE * mc.moved_swap);
4243 VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4244 __css_put(&mc.to->css, mc.moved_swap);
4245 }
4246 /* we've already done mem_cgroup_get(mc.to) */
4247
4248 mc.moved_swap = 0;
4249 }
4ffef5fe
DN
4250 mc.from = NULL;
4251 mc.to = NULL;
8033b97c
DN
4252 mc.moving_task = NULL;
4253 wake_up_all(&mc.waitq);
4ffef5fe
DN
4254}
4255
7dc74be0
DN
4256static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4257 struct cgroup *cgroup,
4258 struct task_struct *p,
4259 bool threadgroup)
4260{
4261 int ret = 0;
4262 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4263
4264 if (mem->move_charge_at_immigrate) {
4265 struct mm_struct *mm;
4266 struct mem_cgroup *from = mem_cgroup_from_task(p);
4267
4268 VM_BUG_ON(from == mem);
4269
4270 mm = get_task_mm(p);
4271 if (!mm)
4272 return 0;
7dc74be0 4273 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4274 if (mm->owner == p) {
4275 VM_BUG_ON(mc.from);
4276 VM_BUG_ON(mc.to);
4277 VM_BUG_ON(mc.precharge);
854ffa8d 4278 VM_BUG_ON(mc.moved_charge);
483c30b5 4279 VM_BUG_ON(mc.moved_swap);
8033b97c 4280 VM_BUG_ON(mc.moving_task);
4ffef5fe
DN
4281 mc.from = from;
4282 mc.to = mem;
4283 mc.precharge = 0;
854ffa8d 4284 mc.moved_charge = 0;
483c30b5 4285 mc.moved_swap = 0;
8033b97c 4286 mc.moving_task = current;
4ffef5fe
DN
4287
4288 ret = mem_cgroup_precharge_mc(mm);
4289 if (ret)
4290 mem_cgroup_clear_mc();
4291 }
7dc74be0
DN
4292 mmput(mm);
4293 }
4294 return ret;
4295}
4296
4297static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4298 struct cgroup *cgroup,
4299 struct task_struct *p,
4300 bool threadgroup)
4301{
4ffef5fe 4302 mem_cgroup_clear_mc();
7dc74be0
DN
4303}
4304
4ffef5fe
DN
4305static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4306 unsigned long addr, unsigned long end,
4307 struct mm_walk *walk)
7dc74be0 4308{
4ffef5fe
DN
4309 int ret = 0;
4310 struct vm_area_struct *vma = walk->private;
4311 pte_t *pte;
4312 spinlock_t *ptl;
4313
4314retry:
4315 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4316 for (; addr != end; addr += PAGE_SIZE) {
4317 pte_t ptent = *(pte++);
4318 union mc_target target;
4319 int type;
4320 struct page *page;
4321 struct page_cgroup *pc;
02491447 4322 swp_entry_t ent;
4ffef5fe
DN
4323
4324 if (!mc.precharge)
4325 break;
4326
4327 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4328 switch (type) {
4329 case MC_TARGET_PAGE:
4330 page = target.page;
4331 if (isolate_lru_page(page))
4332 goto put;
4333 pc = lookup_page_cgroup(page);
854ffa8d
DN
4334 if (!mem_cgroup_move_account(pc,
4335 mc.from, mc.to, false)) {
4ffef5fe 4336 mc.precharge--;
854ffa8d
DN
4337 /* we uncharge from mc.from later. */
4338 mc.moved_charge++;
4ffef5fe
DN
4339 }
4340 putback_lru_page(page);
4341put: /* is_target_pte_for_mc() gets the page */
4342 put_page(page);
4343 break;
02491447
DN
4344 case MC_TARGET_SWAP:
4345 ent = target.ent;
483c30b5
DN
4346 if (!mem_cgroup_move_swap_account(ent,
4347 mc.from, mc.to, false)) {
02491447 4348 mc.precharge--;
483c30b5
DN
4349 /* we fixup refcnts and charges later. */
4350 mc.moved_swap++;
4351 }
02491447 4352 break;
4ffef5fe
DN
4353 default:
4354 break;
4355 }
4356 }
4357 pte_unmap_unlock(pte - 1, ptl);
4358 cond_resched();
4359
4360 if (addr != end) {
4361 /*
4362 * We have consumed all precharges we got in can_attach().
4363 * We try charge one by one, but don't do any additional
4364 * charges to mc.to if we have failed in charge once in attach()
4365 * phase.
4366 */
854ffa8d 4367 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4368 if (!ret)
4369 goto retry;
4370 }
4371
4372 return ret;
4373}
4374
4375static void mem_cgroup_move_charge(struct mm_struct *mm)
4376{
4377 struct vm_area_struct *vma;
4378
4379 lru_add_drain_all();
4380 down_read(&mm->mmap_sem);
4381 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4382 int ret;
4383 struct mm_walk mem_cgroup_move_charge_walk = {
4384 .pmd_entry = mem_cgroup_move_charge_pte_range,
4385 .mm = mm,
4386 .private = vma,
4387 };
4388 if (is_vm_hugetlb_page(vma))
4389 continue;
4390 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4391 if (vma->vm_flags & VM_SHARED)
4392 continue;
4393 ret = walk_page_range(vma->vm_start, vma->vm_end,
4394 &mem_cgroup_move_charge_walk);
4395 if (ret)
4396 /*
4397 * means we have consumed all precharges and failed in
4398 * doing additional charge. Just abandon here.
4399 */
4400 break;
4401 }
4402 up_read(&mm->mmap_sem);
7dc74be0
DN
4403}
4404
67e465a7
BS
4405static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4406 struct cgroup *cont,
4407 struct cgroup *old_cont,
be367d09
BB
4408 struct task_struct *p,
4409 bool threadgroup)
67e465a7 4410{
4ffef5fe
DN
4411 struct mm_struct *mm;
4412
4413 if (!mc.to)
4414 /* no need to move charge */
4415 return;
4416
4417 mm = get_task_mm(p);
4418 if (mm) {
4419 mem_cgroup_move_charge(mm);
4420 mmput(mm);
4421 }
4422 mem_cgroup_clear_mc();
67e465a7 4423}
5cfb80a7
DN
4424#else /* !CONFIG_MMU */
4425static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4426 struct cgroup *cgroup,
4427 struct task_struct *p,
4428 bool threadgroup)
4429{
4430 return 0;
4431}
4432static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4433 struct cgroup *cgroup,
4434 struct task_struct *p,
4435 bool threadgroup)
4436{
4437}
4438static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4439 struct cgroup *cont,
4440 struct cgroup *old_cont,
4441 struct task_struct *p,
4442 bool threadgroup)
4443{
4444}
4445#endif
67e465a7 4446
8cdea7c0
BS
4447struct cgroup_subsys mem_cgroup_subsys = {
4448 .name = "memory",
4449 .subsys_id = mem_cgroup_subsys_id,
4450 .create = mem_cgroup_create,
df878fb0 4451 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
4452 .destroy = mem_cgroup_destroy,
4453 .populate = mem_cgroup_populate,
7dc74be0
DN
4454 .can_attach = mem_cgroup_can_attach,
4455 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 4456 .attach = mem_cgroup_move_task,
6d12e2d8 4457 .early_init = 0,
04046e1a 4458 .use_id = 1,
8cdea7c0 4459};
c077719b
KH
4460
4461#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4462
4463static int __init disable_swap_account(char *s)
4464{
4465 really_do_swap_account = 0;
4466 return 1;
4467}
4468__setup("noswapaccount", disable_swap_account);
4469#endif