]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: fix typos in memcg_test.txt
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
08e552c6 50#include "internal.h"
8cdea7c0 51
8697d331
BS
52#include <asm/uaccess.h>
53
a181b0e8 54struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 55#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 56struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 57
c077719b 58#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 59/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
60int do_swap_account __read_mostly;
61static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62#else
63#define do_swap_account (0)
64#endif
65
d2265e6f
KH
66/*
67 * Per memcg event counter is incremented at every pagein/pageout. This counter
68 * is used for trigger some periodic events. This is straightforward and better
69 * than using jiffies etc. to handle periodic memcg event.
70 *
71 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
72 */
73#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 75
d52aa412
KH
76/*
77 * Statistics for memory cgroup.
78 */
79enum mem_cgroup_stat_index {
80 /*
81 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
82 */
83 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 84 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 85 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
86 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
87 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
d2265e6f 89 MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */
d52aa412
KH
90
91 MEM_CGROUP_STAT_NSTATS,
92};
93
94struct mem_cgroup_stat_cpu {
95 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
96};
97
6d12e2d8
KH
98/*
99 * per-zone information in memory controller.
100 */
6d12e2d8 101struct mem_cgroup_per_zone {
072c56c1
KH
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
b69408e8
CL
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
107
108 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
109 struct rb_node tree_node; /* RB tree node */
110 unsigned long long usage_in_excess;/* Set to the value by which */
111 /* the soft limit is exceeded*/
112 bool on_tree;
4e416953
BS
113 struct mem_cgroup *mem; /* Back pointer, we cannot */
114 /* use container_of */
6d12e2d8
KH
115};
116/* Macro for accessing counter */
117#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
118
119struct mem_cgroup_per_node {
120 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
121};
122
123struct mem_cgroup_lru_info {
124 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
125};
126
f64c3f54
BS
127/*
128 * Cgroups above their limits are maintained in a RB-Tree, independent of
129 * their hierarchy representation
130 */
131
132struct mem_cgroup_tree_per_zone {
133 struct rb_root rb_root;
134 spinlock_t lock;
135};
136
137struct mem_cgroup_tree_per_node {
138 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
139};
140
141struct mem_cgroup_tree {
142 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143};
144
145static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
2e72b634
KS
147struct mem_cgroup_threshold {
148 struct eventfd_ctx *eventfd;
149 u64 threshold;
150};
151
152struct mem_cgroup_threshold_ary {
153 /* An array index points to threshold just below usage. */
154 atomic_t current_threshold;
155 /* Size of entries[] */
156 unsigned int size;
157 /* Array of thresholds */
158 struct mem_cgroup_threshold entries[0];
159};
160
2e72b634
KS
161static void mem_cgroup_threshold(struct mem_cgroup *mem);
162
8cdea7c0
BS
163/*
164 * The memory controller data structure. The memory controller controls both
165 * page cache and RSS per cgroup. We would eventually like to provide
166 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
167 * to help the administrator determine what knobs to tune.
168 *
169 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
170 * we hit the water mark. May be even add a low water mark, such that
171 * no reclaim occurs from a cgroup at it's low water mark, this is
172 * a feature that will be implemented much later in the future.
8cdea7c0
BS
173 */
174struct mem_cgroup {
175 struct cgroup_subsys_state css;
176 /*
177 * the counter to account for memory usage
178 */
179 struct res_counter res;
8c7c6e34
KH
180 /*
181 * the counter to account for mem+swap usage.
182 */
183 struct res_counter memsw;
78fb7466
PE
184 /*
185 * Per cgroup active and inactive list, similar to the
186 * per zone LRU lists.
78fb7466 187 */
6d12e2d8 188 struct mem_cgroup_lru_info info;
072c56c1 189
2733c06a
KM
190 /*
191 protect against reclaim related member.
192 */
193 spinlock_t reclaim_param_lock;
194
6c48a1d0 195 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
196
197 /*
af901ca1 198 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 199 * reclaimed from.
6d61ef40 200 */
04046e1a 201 int last_scanned_child;
18f59ea7
BS
202 /*
203 * Should the accounting and control be hierarchical, per subtree?
204 */
205 bool use_hierarchy;
a636b327 206 unsigned long last_oom_jiffies;
8c7c6e34 207 atomic_t refcnt;
14797e23 208
a7885eb8
KM
209 unsigned int swappiness;
210
22a668d7
KH
211 /* set when res.limit == memsw.limit */
212 bool memsw_is_minimum;
213
2e72b634
KS
214 /* protect arrays of thresholds */
215 struct mutex thresholds_lock;
216
217 /* thresholds for memory usage. RCU-protected */
218 struct mem_cgroup_threshold_ary *thresholds;
219
220 /* thresholds for mem+swap usage. RCU-protected */
221 struct mem_cgroup_threshold_ary *memsw_thresholds;
222
7dc74be0
DN
223 /*
224 * Should we move charges of a task when a task is moved into this
225 * mem_cgroup ? And what type of charges should we move ?
226 */
227 unsigned long move_charge_at_immigrate;
228
d52aa412 229 /*
c62b1a3b 230 * percpu counter.
d52aa412 231 */
c62b1a3b 232 struct mem_cgroup_stat_cpu *stat;
8cdea7c0
BS
233};
234
7dc74be0
DN
235/* Stuffs for move charges at task migration. */
236/*
237 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
238 * left-shifted bitmap of these types.
239 */
240enum move_type {
4ffef5fe 241 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
7dc74be0
DN
242 NR_MOVE_TYPE,
243};
244
4ffef5fe
DN
245/* "mc" and its members are protected by cgroup_mutex */
246static struct move_charge_struct {
247 struct mem_cgroup *from;
248 struct mem_cgroup *to;
249 unsigned long precharge;
854ffa8d 250 unsigned long moved_charge;
483c30b5 251 unsigned long moved_swap;
8033b97c
DN
252 struct task_struct *moving_task; /* a task moving charges */
253 wait_queue_head_t waitq; /* a waitq for other context */
254} mc = {
255 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
256};
4ffef5fe 257
4e416953
BS
258/*
259 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
260 * limit reclaim to prevent infinite loops, if they ever occur.
261 */
262#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
263#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
264
217bc319
KH
265enum charge_type {
266 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
267 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 268 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 269 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 270 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 271 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
272 NR_CHARGE_TYPE,
273};
274
52d4b9ac
KH
275/* only for here (for easy reading.) */
276#define PCGF_CACHE (1UL << PCG_CACHE)
277#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 278#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
279/* Not used, but added here for completeness */
280#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 281
8c7c6e34
KH
282/* for encoding cft->private value on file */
283#define _MEM (0)
284#define _MEMSWAP (1)
285#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
286#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
287#define MEMFILE_ATTR(val) ((val) & 0xffff)
288
75822b44
BS
289/*
290 * Reclaim flags for mem_cgroup_hierarchical_reclaim
291 */
292#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
293#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
294#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
295#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
296#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
297#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 298
8c7c6e34
KH
299static void mem_cgroup_get(struct mem_cgroup *mem);
300static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 301static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 302static void drain_all_stock_async(void);
8c7c6e34 303
f64c3f54
BS
304static struct mem_cgroup_per_zone *
305mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
306{
307 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
308}
309
d324236b
WF
310struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
311{
312 return &mem->css;
313}
314
f64c3f54
BS
315static struct mem_cgroup_per_zone *
316page_cgroup_zoneinfo(struct page_cgroup *pc)
317{
318 struct mem_cgroup *mem = pc->mem_cgroup;
319 int nid = page_cgroup_nid(pc);
320 int zid = page_cgroup_zid(pc);
321
322 if (!mem)
323 return NULL;
324
325 return mem_cgroup_zoneinfo(mem, nid, zid);
326}
327
328static struct mem_cgroup_tree_per_zone *
329soft_limit_tree_node_zone(int nid, int zid)
330{
331 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
332}
333
334static struct mem_cgroup_tree_per_zone *
335soft_limit_tree_from_page(struct page *page)
336{
337 int nid = page_to_nid(page);
338 int zid = page_zonenum(page);
339
340 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
341}
342
343static void
4e416953 344__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 345 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
346 struct mem_cgroup_tree_per_zone *mctz,
347 unsigned long long new_usage_in_excess)
f64c3f54
BS
348{
349 struct rb_node **p = &mctz->rb_root.rb_node;
350 struct rb_node *parent = NULL;
351 struct mem_cgroup_per_zone *mz_node;
352
353 if (mz->on_tree)
354 return;
355
ef8745c1
KH
356 mz->usage_in_excess = new_usage_in_excess;
357 if (!mz->usage_in_excess)
358 return;
f64c3f54
BS
359 while (*p) {
360 parent = *p;
361 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
362 tree_node);
363 if (mz->usage_in_excess < mz_node->usage_in_excess)
364 p = &(*p)->rb_left;
365 /*
366 * We can't avoid mem cgroups that are over their soft
367 * limit by the same amount
368 */
369 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
370 p = &(*p)->rb_right;
371 }
372 rb_link_node(&mz->tree_node, parent, p);
373 rb_insert_color(&mz->tree_node, &mctz->rb_root);
374 mz->on_tree = true;
4e416953
BS
375}
376
377static void
378__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
379 struct mem_cgroup_per_zone *mz,
380 struct mem_cgroup_tree_per_zone *mctz)
381{
382 if (!mz->on_tree)
383 return;
384 rb_erase(&mz->tree_node, &mctz->rb_root);
385 mz->on_tree = false;
386}
387
f64c3f54
BS
388static void
389mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
390 struct mem_cgroup_per_zone *mz,
391 struct mem_cgroup_tree_per_zone *mctz)
392{
393 spin_lock(&mctz->lock);
4e416953 394 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
395 spin_unlock(&mctz->lock);
396}
397
f64c3f54
BS
398
399static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
400{
ef8745c1 401 unsigned long long excess;
f64c3f54
BS
402 struct mem_cgroup_per_zone *mz;
403 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
f64c3f54
BS
406 mctz = soft_limit_tree_from_page(page);
407
408 /*
4e649152
KH
409 * Necessary to update all ancestors when hierarchy is used.
410 * because their event counter is not touched.
f64c3f54 411 */
4e649152
KH
412 for (; mem; mem = parent_mem_cgroup(mem)) {
413 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 414 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
415 /*
416 * We have to update the tree if mz is on RB-tree or
417 * mem is over its softlimit.
418 */
ef8745c1 419 if (excess || mz->on_tree) {
4e649152
KH
420 spin_lock(&mctz->lock);
421 /* if on-tree, remove it */
422 if (mz->on_tree)
423 __mem_cgroup_remove_exceeded(mem, mz, mctz);
424 /*
ef8745c1
KH
425 * Insert again. mz->usage_in_excess will be updated.
426 * If excess is 0, no tree ops.
4e649152 427 */
ef8745c1 428 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
429 spin_unlock(&mctz->lock);
430 }
f64c3f54
BS
431 }
432}
433
434static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
435{
436 int node, zone;
437 struct mem_cgroup_per_zone *mz;
438 struct mem_cgroup_tree_per_zone *mctz;
439
440 for_each_node_state(node, N_POSSIBLE) {
441 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
442 mz = mem_cgroup_zoneinfo(mem, node, zone);
443 mctz = soft_limit_tree_node_zone(node, zone);
444 mem_cgroup_remove_exceeded(mem, mz, mctz);
445 }
446 }
447}
448
4e416953
BS
449static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
450{
451 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
452}
453
454static struct mem_cgroup_per_zone *
455__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
456{
457 struct rb_node *rightmost = NULL;
26251eaf 458 struct mem_cgroup_per_zone *mz;
4e416953
BS
459
460retry:
26251eaf 461 mz = NULL;
4e416953
BS
462 rightmost = rb_last(&mctz->rb_root);
463 if (!rightmost)
464 goto done; /* Nothing to reclaim from */
465
466 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
467 /*
468 * Remove the node now but someone else can add it back,
469 * we will to add it back at the end of reclaim to its correct
470 * position in the tree.
471 */
472 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
473 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
474 !css_tryget(&mz->mem->css))
475 goto retry;
476done:
477 return mz;
478}
479
480static struct mem_cgroup_per_zone *
481mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
482{
483 struct mem_cgroup_per_zone *mz;
484
485 spin_lock(&mctz->lock);
486 mz = __mem_cgroup_largest_soft_limit_node(mctz);
487 spin_unlock(&mctz->lock);
488 return mz;
489}
490
c62b1a3b
KH
491static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
492 enum mem_cgroup_stat_index idx)
493{
494 int cpu;
495 s64 val = 0;
496
497 for_each_possible_cpu(cpu)
498 val += per_cpu(mem->stat->count[idx], cpu);
499 return val;
500}
501
502static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
503{
504 s64 ret;
505
506 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
507 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
508 return ret;
509}
510
0c3e73e8
BS
511static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
512 bool charge)
513{
514 int val = (charge) ? 1 : -1;
c62b1a3b 515 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
516}
517
c05555b5
KH
518static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
519 struct page_cgroup *pc,
520 bool charge)
d52aa412 521{
0c3e73e8 522 int val = (charge) ? 1 : -1;
d52aa412 523
c62b1a3b
KH
524 preempt_disable();
525
c05555b5 526 if (PageCgroupCache(pc))
c62b1a3b 527 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
d52aa412 528 else
c62b1a3b 529 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
55e462b0
BR
530
531 if (charge)
c62b1a3b 532 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
55e462b0 533 else
c62b1a3b 534 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
d2265e6f 535 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
2e72b634 536
c62b1a3b 537 preempt_enable();
6d12e2d8
KH
538}
539
14067bb3 540static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 541 enum lru_list idx)
6d12e2d8
KH
542{
543 int nid, zid;
544 struct mem_cgroup_per_zone *mz;
545 u64 total = 0;
546
547 for_each_online_node(nid)
548 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
549 mz = mem_cgroup_zoneinfo(mem, nid, zid);
550 total += MEM_CGROUP_ZSTAT(mz, idx);
551 }
552 return total;
d52aa412
KH
553}
554
d2265e6f
KH
555static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
556{
557 s64 val;
558
559 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
560
561 return !(val & ((1 << event_mask_shift) - 1));
562}
563
564/*
565 * Check events in order.
566 *
567 */
568static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
569{
570 /* threshold event is triggered in finer grain than soft limit */
571 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
572 mem_cgroup_threshold(mem);
573 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
574 mem_cgroup_update_tree(mem, page);
575 }
576}
577
d5b69e38 578static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
579{
580 return container_of(cgroup_subsys_state(cont,
581 mem_cgroup_subsys_id), struct mem_cgroup,
582 css);
583}
584
cf475ad2 585struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 586{
31a78f23
BS
587 /*
588 * mm_update_next_owner() may clear mm->owner to NULL
589 * if it races with swapoff, page migration, etc.
590 * So this can be called with p == NULL.
591 */
592 if (unlikely(!p))
593 return NULL;
594
78fb7466
PE
595 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
596 struct mem_cgroup, css);
597}
598
54595fe2
KH
599static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
600{
601 struct mem_cgroup *mem = NULL;
0b7f569e
KH
602
603 if (!mm)
604 return NULL;
54595fe2
KH
605 /*
606 * Because we have no locks, mm->owner's may be being moved to other
607 * cgroup. We use css_tryget() here even if this looks
608 * pessimistic (rather than adding locks here).
609 */
610 rcu_read_lock();
611 do {
612 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
613 if (unlikely(!mem))
614 break;
615 } while (!css_tryget(&mem->css));
616 rcu_read_unlock();
617 return mem;
618}
619
14067bb3
KH
620/*
621 * Call callback function against all cgroup under hierarchy tree.
622 */
623static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
624 int (*func)(struct mem_cgroup *, void *))
625{
626 int found, ret, nextid;
627 struct cgroup_subsys_state *css;
628 struct mem_cgroup *mem;
629
630 if (!root->use_hierarchy)
631 return (*func)(root, data);
632
633 nextid = 1;
634 do {
635 ret = 0;
636 mem = NULL;
637
638 rcu_read_lock();
639 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
640 &found);
641 if (css && css_tryget(css))
642 mem = container_of(css, struct mem_cgroup, css);
643 rcu_read_unlock();
644
645 if (mem) {
646 ret = (*func)(mem, data);
647 css_put(&mem->css);
648 }
649 nextid = found + 1;
650 } while (!ret && css);
651
652 return ret;
653}
654
4b3bde4c
BS
655static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
656{
657 return (mem == root_mem_cgroup);
658}
659
08e552c6
KH
660/*
661 * Following LRU functions are allowed to be used without PCG_LOCK.
662 * Operations are called by routine of global LRU independently from memcg.
663 * What we have to take care of here is validness of pc->mem_cgroup.
664 *
665 * Changes to pc->mem_cgroup happens when
666 * 1. charge
667 * 2. moving account
668 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
669 * It is added to LRU before charge.
670 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
671 * When moving account, the page is not on LRU. It's isolated.
672 */
4f98a2fe 673
08e552c6
KH
674void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
675{
676 struct page_cgroup *pc;
08e552c6 677 struct mem_cgroup_per_zone *mz;
6d12e2d8 678
f8d66542 679 if (mem_cgroup_disabled())
08e552c6
KH
680 return;
681 pc = lookup_page_cgroup(page);
682 /* can happen while we handle swapcache. */
4b3bde4c 683 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 684 return;
4b3bde4c 685 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
686 /*
687 * We don't check PCG_USED bit. It's cleared when the "page" is finally
688 * removed from global LRU.
689 */
08e552c6 690 mz = page_cgroup_zoneinfo(pc);
b69408e8 691 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
692 if (mem_cgroup_is_root(pc->mem_cgroup))
693 return;
694 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
695 list_del_init(&pc->lru);
696 return;
6d12e2d8
KH
697}
698
08e552c6 699void mem_cgroup_del_lru(struct page *page)
6d12e2d8 700{
08e552c6
KH
701 mem_cgroup_del_lru_list(page, page_lru(page));
702}
b69408e8 703
08e552c6
KH
704void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
705{
706 struct mem_cgroup_per_zone *mz;
707 struct page_cgroup *pc;
b69408e8 708
f8d66542 709 if (mem_cgroup_disabled())
08e552c6 710 return;
6d12e2d8 711
08e552c6 712 pc = lookup_page_cgroup(page);
bd112db8
DN
713 /*
714 * Used bit is set without atomic ops but after smp_wmb().
715 * For making pc->mem_cgroup visible, insert smp_rmb() here.
716 */
08e552c6 717 smp_rmb();
4b3bde4c
BS
718 /* unused or root page is not rotated. */
719 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
720 return;
721 mz = page_cgroup_zoneinfo(pc);
722 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
723}
724
08e552c6 725void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 726{
08e552c6
KH
727 struct page_cgroup *pc;
728 struct mem_cgroup_per_zone *mz;
6d12e2d8 729
f8d66542 730 if (mem_cgroup_disabled())
08e552c6
KH
731 return;
732 pc = lookup_page_cgroup(page);
4b3bde4c 733 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
734 /*
735 * Used bit is set without atomic ops but after smp_wmb().
736 * For making pc->mem_cgroup visible, insert smp_rmb() here.
737 */
08e552c6
KH
738 smp_rmb();
739 if (!PageCgroupUsed(pc))
894bc310 740 return;
b69408e8 741
08e552c6 742 mz = page_cgroup_zoneinfo(pc);
b69408e8 743 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
744 SetPageCgroupAcctLRU(pc);
745 if (mem_cgroup_is_root(pc->mem_cgroup))
746 return;
08e552c6
KH
747 list_add(&pc->lru, &mz->lists[lru]);
748}
544122e5 749
08e552c6 750/*
544122e5
KH
751 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
752 * lru because the page may.be reused after it's fully uncharged (because of
753 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
754 * it again. This function is only used to charge SwapCache. It's done under
755 * lock_page and expected that zone->lru_lock is never held.
08e552c6 756 */
544122e5 757static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 758{
544122e5
KH
759 unsigned long flags;
760 struct zone *zone = page_zone(page);
761 struct page_cgroup *pc = lookup_page_cgroup(page);
762
763 spin_lock_irqsave(&zone->lru_lock, flags);
764 /*
765 * Forget old LRU when this page_cgroup is *not* used. This Used bit
766 * is guarded by lock_page() because the page is SwapCache.
767 */
768 if (!PageCgroupUsed(pc))
769 mem_cgroup_del_lru_list(page, page_lru(page));
770 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
771}
772
544122e5
KH
773static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
774{
775 unsigned long flags;
776 struct zone *zone = page_zone(page);
777 struct page_cgroup *pc = lookup_page_cgroup(page);
778
779 spin_lock_irqsave(&zone->lru_lock, flags);
780 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 781 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
782 mem_cgroup_add_lru_list(page, page_lru(page));
783 spin_unlock_irqrestore(&zone->lru_lock, flags);
784}
785
786
08e552c6
KH
787void mem_cgroup_move_lists(struct page *page,
788 enum lru_list from, enum lru_list to)
789{
f8d66542 790 if (mem_cgroup_disabled())
08e552c6
KH
791 return;
792 mem_cgroup_del_lru_list(page, from);
793 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
794}
795
4c4a2214
DR
796int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
797{
798 int ret;
0b7f569e 799 struct mem_cgroup *curr = NULL;
4c4a2214
DR
800
801 task_lock(task);
0b7f569e
KH
802 rcu_read_lock();
803 curr = try_get_mem_cgroup_from_mm(task->mm);
804 rcu_read_unlock();
4c4a2214 805 task_unlock(task);
0b7f569e
KH
806 if (!curr)
807 return 0;
d31f56db
DN
808 /*
809 * We should check use_hierarchy of "mem" not "curr". Because checking
810 * use_hierarchy of "curr" here make this function true if hierarchy is
811 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
812 * hierarchy(even if use_hierarchy is disabled in "mem").
813 */
814 if (mem->use_hierarchy)
0b7f569e
KH
815 ret = css_is_ancestor(&curr->css, &mem->css);
816 else
817 ret = (curr == mem);
818 css_put(&curr->css);
4c4a2214
DR
819 return ret;
820}
821
6c48a1d0
KH
822/*
823 * prev_priority control...this will be used in memory reclaim path.
824 */
825int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
826{
2733c06a
KM
827 int prev_priority;
828
829 spin_lock(&mem->reclaim_param_lock);
830 prev_priority = mem->prev_priority;
831 spin_unlock(&mem->reclaim_param_lock);
832
833 return prev_priority;
6c48a1d0
KH
834}
835
836void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
837{
2733c06a 838 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
839 if (priority < mem->prev_priority)
840 mem->prev_priority = priority;
2733c06a 841 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
842}
843
844void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
845{
2733c06a 846 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 847 mem->prev_priority = priority;
2733c06a 848 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
849}
850
c772be93 851static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
852{
853 unsigned long active;
854 unsigned long inactive;
c772be93
KM
855 unsigned long gb;
856 unsigned long inactive_ratio;
14797e23 857
14067bb3
KH
858 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
859 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 860
c772be93
KM
861 gb = (inactive + active) >> (30 - PAGE_SHIFT);
862 if (gb)
863 inactive_ratio = int_sqrt(10 * gb);
864 else
865 inactive_ratio = 1;
866
867 if (present_pages) {
868 present_pages[0] = inactive;
869 present_pages[1] = active;
870 }
871
872 return inactive_ratio;
873}
874
875int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
876{
877 unsigned long active;
878 unsigned long inactive;
879 unsigned long present_pages[2];
880 unsigned long inactive_ratio;
881
882 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
883
884 inactive = present_pages[0];
885 active = present_pages[1];
886
887 if (inactive * inactive_ratio < active)
14797e23
KM
888 return 1;
889
890 return 0;
891}
892
56e49d21
RR
893int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
894{
895 unsigned long active;
896 unsigned long inactive;
897
898 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
899 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
900
901 return (active > inactive);
902}
903
a3d8e054
KM
904unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
905 struct zone *zone,
906 enum lru_list lru)
907{
908 int nid = zone->zone_pgdat->node_id;
909 int zid = zone_idx(zone);
910 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
911
912 return MEM_CGROUP_ZSTAT(mz, lru);
913}
914
3e2f41f1
KM
915struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
916 struct zone *zone)
917{
918 int nid = zone->zone_pgdat->node_id;
919 int zid = zone_idx(zone);
920 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
921
922 return &mz->reclaim_stat;
923}
924
925struct zone_reclaim_stat *
926mem_cgroup_get_reclaim_stat_from_page(struct page *page)
927{
928 struct page_cgroup *pc;
929 struct mem_cgroup_per_zone *mz;
930
931 if (mem_cgroup_disabled())
932 return NULL;
933
934 pc = lookup_page_cgroup(page);
bd112db8
DN
935 /*
936 * Used bit is set without atomic ops but after smp_wmb().
937 * For making pc->mem_cgroup visible, insert smp_rmb() here.
938 */
939 smp_rmb();
940 if (!PageCgroupUsed(pc))
941 return NULL;
942
3e2f41f1
KM
943 mz = page_cgroup_zoneinfo(pc);
944 if (!mz)
945 return NULL;
946
947 return &mz->reclaim_stat;
948}
949
66e1707b
BS
950unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
951 struct list_head *dst,
952 unsigned long *scanned, int order,
953 int mode, struct zone *z,
954 struct mem_cgroup *mem_cont,
4f98a2fe 955 int active, int file)
66e1707b
BS
956{
957 unsigned long nr_taken = 0;
958 struct page *page;
959 unsigned long scan;
960 LIST_HEAD(pc_list);
961 struct list_head *src;
ff7283fa 962 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
963 int nid = z->zone_pgdat->node_id;
964 int zid = zone_idx(z);
965 struct mem_cgroup_per_zone *mz;
b7c46d15 966 int lru = LRU_FILE * file + active;
2ffebca6 967 int ret;
66e1707b 968
cf475ad2 969 BUG_ON(!mem_cont);
1ecaab2b 970 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 971 src = &mz->lists[lru];
66e1707b 972
ff7283fa
KH
973 scan = 0;
974 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 975 if (scan >= nr_to_scan)
ff7283fa 976 break;
08e552c6
KH
977
978 page = pc->page;
52d4b9ac
KH
979 if (unlikely(!PageCgroupUsed(pc)))
980 continue;
436c6541 981 if (unlikely(!PageLRU(page)))
ff7283fa 982 continue;
ff7283fa 983
436c6541 984 scan++;
2ffebca6
KH
985 ret = __isolate_lru_page(page, mode, file);
986 switch (ret) {
987 case 0:
66e1707b 988 list_move(&page->lru, dst);
2ffebca6 989 mem_cgroup_del_lru(page);
66e1707b 990 nr_taken++;
2ffebca6
KH
991 break;
992 case -EBUSY:
993 /* we don't affect global LRU but rotate in our LRU */
994 mem_cgroup_rotate_lru_list(page, page_lru(page));
995 break;
996 default:
997 break;
66e1707b
BS
998 }
999 }
1000
66e1707b
BS
1001 *scanned = scan;
1002 return nr_taken;
1003}
1004
6d61ef40
BS
1005#define mem_cgroup_from_res_counter(counter, member) \
1006 container_of(counter, struct mem_cgroup, member)
1007
b85a96c0
DN
1008static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1009{
1010 if (do_swap_account) {
1011 if (res_counter_check_under_limit(&mem->res) &&
1012 res_counter_check_under_limit(&mem->memsw))
1013 return true;
1014 } else
1015 if (res_counter_check_under_limit(&mem->res))
1016 return true;
1017 return false;
1018}
1019
a7885eb8
KM
1020static unsigned int get_swappiness(struct mem_cgroup *memcg)
1021{
1022 struct cgroup *cgrp = memcg->css.cgroup;
1023 unsigned int swappiness;
1024
1025 /* root ? */
1026 if (cgrp->parent == NULL)
1027 return vm_swappiness;
1028
1029 spin_lock(&memcg->reclaim_param_lock);
1030 swappiness = memcg->swappiness;
1031 spin_unlock(&memcg->reclaim_param_lock);
1032
1033 return swappiness;
1034}
1035
81d39c20
KH
1036static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1037{
1038 int *val = data;
1039 (*val)++;
1040 return 0;
1041}
e222432b
BS
1042
1043/**
6a6135b6 1044 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1045 * @memcg: The memory cgroup that went over limit
1046 * @p: Task that is going to be killed
1047 *
1048 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1049 * enabled
1050 */
1051void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1052{
1053 struct cgroup *task_cgrp;
1054 struct cgroup *mem_cgrp;
1055 /*
1056 * Need a buffer in BSS, can't rely on allocations. The code relies
1057 * on the assumption that OOM is serialized for memory controller.
1058 * If this assumption is broken, revisit this code.
1059 */
1060 static char memcg_name[PATH_MAX];
1061 int ret;
1062
d31f56db 1063 if (!memcg || !p)
e222432b
BS
1064 return;
1065
1066
1067 rcu_read_lock();
1068
1069 mem_cgrp = memcg->css.cgroup;
1070 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1071
1072 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1073 if (ret < 0) {
1074 /*
1075 * Unfortunately, we are unable to convert to a useful name
1076 * But we'll still print out the usage information
1077 */
1078 rcu_read_unlock();
1079 goto done;
1080 }
1081 rcu_read_unlock();
1082
1083 printk(KERN_INFO "Task in %s killed", memcg_name);
1084
1085 rcu_read_lock();
1086 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1087 if (ret < 0) {
1088 rcu_read_unlock();
1089 goto done;
1090 }
1091 rcu_read_unlock();
1092
1093 /*
1094 * Continues from above, so we don't need an KERN_ level
1095 */
1096 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1097done:
1098
1099 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1100 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1101 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1102 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1103 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1104 "failcnt %llu\n",
1105 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1106 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1107 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1108}
1109
81d39c20
KH
1110/*
1111 * This function returns the number of memcg under hierarchy tree. Returns
1112 * 1(self count) if no children.
1113 */
1114static int mem_cgroup_count_children(struct mem_cgroup *mem)
1115{
1116 int num = 0;
1117 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1118 return num;
1119}
1120
6d61ef40 1121/*
04046e1a
KH
1122 * Visit the first child (need not be the first child as per the ordering
1123 * of the cgroup list, since we track last_scanned_child) of @mem and use
1124 * that to reclaim free pages from.
1125 */
1126static struct mem_cgroup *
1127mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1128{
1129 struct mem_cgroup *ret = NULL;
1130 struct cgroup_subsys_state *css;
1131 int nextid, found;
1132
1133 if (!root_mem->use_hierarchy) {
1134 css_get(&root_mem->css);
1135 ret = root_mem;
1136 }
1137
1138 while (!ret) {
1139 rcu_read_lock();
1140 nextid = root_mem->last_scanned_child + 1;
1141 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1142 &found);
1143 if (css && css_tryget(css))
1144 ret = container_of(css, struct mem_cgroup, css);
1145
1146 rcu_read_unlock();
1147 /* Updates scanning parameter */
1148 spin_lock(&root_mem->reclaim_param_lock);
1149 if (!css) {
1150 /* this means start scan from ID:1 */
1151 root_mem->last_scanned_child = 0;
1152 } else
1153 root_mem->last_scanned_child = found;
1154 spin_unlock(&root_mem->reclaim_param_lock);
1155 }
1156
1157 return ret;
1158}
1159
1160/*
1161 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1162 * we reclaimed from, so that we don't end up penalizing one child extensively
1163 * based on its position in the children list.
6d61ef40
BS
1164 *
1165 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1166 *
1167 * We give up and return to the caller when we visit root_mem twice.
1168 * (other groups can be removed while we're walking....)
81d39c20
KH
1169 *
1170 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1171 */
1172static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1173 struct zone *zone,
75822b44
BS
1174 gfp_t gfp_mask,
1175 unsigned long reclaim_options)
6d61ef40 1176{
04046e1a
KH
1177 struct mem_cgroup *victim;
1178 int ret, total = 0;
1179 int loop = 0;
75822b44
BS
1180 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1181 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1182 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1183 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1184
22a668d7
KH
1185 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1186 if (root_mem->memsw_is_minimum)
1187 noswap = true;
1188
4e416953 1189 while (1) {
04046e1a 1190 victim = mem_cgroup_select_victim(root_mem);
4e416953 1191 if (victim == root_mem) {
04046e1a 1192 loop++;
cdec2e42
KH
1193 if (loop >= 1)
1194 drain_all_stock_async();
4e416953
BS
1195 if (loop >= 2) {
1196 /*
1197 * If we have not been able to reclaim
1198 * anything, it might because there are
1199 * no reclaimable pages under this hierarchy
1200 */
1201 if (!check_soft || !total) {
1202 css_put(&victim->css);
1203 break;
1204 }
1205 /*
1206 * We want to do more targetted reclaim.
1207 * excess >> 2 is not to excessive so as to
1208 * reclaim too much, nor too less that we keep
1209 * coming back to reclaim from this cgroup
1210 */
1211 if (total >= (excess >> 2) ||
1212 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1213 css_put(&victim->css);
1214 break;
1215 }
1216 }
1217 }
c62b1a3b 1218 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1219 /* this cgroup's local usage == 0 */
1220 css_put(&victim->css);
6d61ef40
BS
1221 continue;
1222 }
04046e1a 1223 /* we use swappiness of local cgroup */
4e416953
BS
1224 if (check_soft)
1225 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1226 noswap, get_swappiness(victim), zone,
1227 zone->zone_pgdat->node_id);
1228 else
1229 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1230 noswap, get_swappiness(victim));
04046e1a 1231 css_put(&victim->css);
81d39c20
KH
1232 /*
1233 * At shrinking usage, we can't check we should stop here or
1234 * reclaim more. It's depends on callers. last_scanned_child
1235 * will work enough for keeping fairness under tree.
1236 */
1237 if (shrink)
1238 return ret;
04046e1a 1239 total += ret;
4e416953
BS
1240 if (check_soft) {
1241 if (res_counter_check_under_soft_limit(&root_mem->res))
1242 return total;
1243 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1244 return 1 + total;
6d61ef40 1245 }
04046e1a 1246 return total;
6d61ef40
BS
1247}
1248
a636b327
KH
1249bool mem_cgroup_oom_called(struct task_struct *task)
1250{
1251 bool ret = false;
1252 struct mem_cgroup *mem;
1253 struct mm_struct *mm;
1254
1255 rcu_read_lock();
1256 mm = task->mm;
1257 if (!mm)
1258 mm = &init_mm;
1259 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1260 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1261 ret = true;
1262 rcu_read_unlock();
1263 return ret;
1264}
0b7f569e
KH
1265
1266static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1267{
1268 mem->last_oom_jiffies = jiffies;
1269 return 0;
1270}
1271
1272static void record_last_oom(struct mem_cgroup *mem)
1273{
1274 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1275}
1276
d69b042f
BS
1277/*
1278 * Currently used to update mapped file statistics, but the routine can be
1279 * generalized to update other statistics as well.
1280 */
d8046582 1281void mem_cgroup_update_file_mapped(struct page *page, int val)
d69b042f
BS
1282{
1283 struct mem_cgroup *mem;
d69b042f
BS
1284 struct page_cgroup *pc;
1285
d69b042f
BS
1286 pc = lookup_page_cgroup(page);
1287 if (unlikely(!pc))
1288 return;
1289
1290 lock_page_cgroup(pc);
1291 mem = pc->mem_cgroup;
1292 if (!mem)
1293 goto done;
1294
1295 if (!PageCgroupUsed(pc))
1296 goto done;
1297
1298 /*
c62b1a3b 1299 * Preemption is already disabled. We can use __this_cpu_xxx
d69b042f 1300 */
c62b1a3b 1301 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], val);
d69b042f 1302
d69b042f
BS
1303done:
1304 unlock_page_cgroup(pc);
1305}
0b7f569e 1306
cdec2e42
KH
1307/*
1308 * size of first charge trial. "32" comes from vmscan.c's magic value.
1309 * TODO: maybe necessary to use big numbers in big irons.
1310 */
1311#define CHARGE_SIZE (32 * PAGE_SIZE)
1312struct memcg_stock_pcp {
1313 struct mem_cgroup *cached; /* this never be root cgroup */
1314 int charge;
1315 struct work_struct work;
1316};
1317static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1318static atomic_t memcg_drain_count;
1319
1320/*
1321 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1322 * from local stock and true is returned. If the stock is 0 or charges from a
1323 * cgroup which is not current target, returns false. This stock will be
1324 * refilled.
1325 */
1326static bool consume_stock(struct mem_cgroup *mem)
1327{
1328 struct memcg_stock_pcp *stock;
1329 bool ret = true;
1330
1331 stock = &get_cpu_var(memcg_stock);
1332 if (mem == stock->cached && stock->charge)
1333 stock->charge -= PAGE_SIZE;
1334 else /* need to call res_counter_charge */
1335 ret = false;
1336 put_cpu_var(memcg_stock);
1337 return ret;
1338}
1339
1340/*
1341 * Returns stocks cached in percpu to res_counter and reset cached information.
1342 */
1343static void drain_stock(struct memcg_stock_pcp *stock)
1344{
1345 struct mem_cgroup *old = stock->cached;
1346
1347 if (stock->charge) {
1348 res_counter_uncharge(&old->res, stock->charge);
1349 if (do_swap_account)
1350 res_counter_uncharge(&old->memsw, stock->charge);
1351 }
1352 stock->cached = NULL;
1353 stock->charge = 0;
1354}
1355
1356/*
1357 * This must be called under preempt disabled or must be called by
1358 * a thread which is pinned to local cpu.
1359 */
1360static void drain_local_stock(struct work_struct *dummy)
1361{
1362 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1363 drain_stock(stock);
1364}
1365
1366/*
1367 * Cache charges(val) which is from res_counter, to local per_cpu area.
1368 * This will be consumed by consumt_stock() function, later.
1369 */
1370static void refill_stock(struct mem_cgroup *mem, int val)
1371{
1372 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1373
1374 if (stock->cached != mem) { /* reset if necessary */
1375 drain_stock(stock);
1376 stock->cached = mem;
1377 }
1378 stock->charge += val;
1379 put_cpu_var(memcg_stock);
1380}
1381
1382/*
1383 * Tries to drain stocked charges in other cpus. This function is asynchronous
1384 * and just put a work per cpu for draining localy on each cpu. Caller can
1385 * expects some charges will be back to res_counter later but cannot wait for
1386 * it.
1387 */
1388static void drain_all_stock_async(void)
1389{
1390 int cpu;
1391 /* This function is for scheduling "drain" in asynchronous way.
1392 * The result of "drain" is not directly handled by callers. Then,
1393 * if someone is calling drain, we don't have to call drain more.
1394 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1395 * there is a race. We just do loose check here.
1396 */
1397 if (atomic_read(&memcg_drain_count))
1398 return;
1399 /* Notify other cpus that system-wide "drain" is running */
1400 atomic_inc(&memcg_drain_count);
1401 get_online_cpus();
1402 for_each_online_cpu(cpu) {
1403 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1404 schedule_work_on(cpu, &stock->work);
1405 }
1406 put_online_cpus();
1407 atomic_dec(&memcg_drain_count);
1408 /* We don't wait for flush_work */
1409}
1410
1411/* This is a synchronous drain interface. */
1412static void drain_all_stock_sync(void)
1413{
1414 /* called when force_empty is called */
1415 atomic_inc(&memcg_drain_count);
1416 schedule_on_each_cpu(drain_local_stock);
1417 atomic_dec(&memcg_drain_count);
1418}
1419
1420static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1421 unsigned long action,
1422 void *hcpu)
1423{
1424 int cpu = (unsigned long)hcpu;
1425 struct memcg_stock_pcp *stock;
1426
1427 if (action != CPU_DEAD)
1428 return NOTIFY_OK;
1429 stock = &per_cpu(memcg_stock, cpu);
1430 drain_stock(stock);
1431 return NOTIFY_OK;
1432}
1433
f817ed48
KH
1434/*
1435 * Unlike exported interface, "oom" parameter is added. if oom==true,
1436 * oom-killer can be invoked.
8a9f3ccd 1437 */
f817ed48 1438static int __mem_cgroup_try_charge(struct mm_struct *mm,
430e4863 1439 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
8a9f3ccd 1440{
4e649152 1441 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 1442 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4e649152 1443 struct res_counter *fail_res;
cdec2e42 1444 int csize = CHARGE_SIZE;
a636b327
KH
1445
1446 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1447 /* Don't account this! */
1448 *memcg = NULL;
1449 return 0;
1450 }
1451
8a9f3ccd 1452 /*
3be91277
HD
1453 * We always charge the cgroup the mm_struct belongs to.
1454 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1455 * thread group leader migrates. It's possible that mm is not
1456 * set, if so charge the init_mm (happens for pagecache usage).
1457 */
54595fe2
KH
1458 mem = *memcg;
1459 if (likely(!mem)) {
1460 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 1461 *memcg = mem;
e8589cc1 1462 } else {
7a81b88c 1463 css_get(&mem->css);
e8589cc1 1464 }
54595fe2
KH
1465 if (unlikely(!mem))
1466 return 0;
1467
46f7e602 1468 VM_BUG_ON(css_is_removed(&mem->css));
cdec2e42
KH
1469 if (mem_cgroup_is_root(mem))
1470 goto done;
8a9f3ccd 1471
8c7c6e34 1472 while (1) {
0c3e73e8 1473 int ret = 0;
75822b44 1474 unsigned long flags = 0;
7a81b88c 1475
cdec2e42 1476 if (consume_stock(mem))
430e4863 1477 goto done;
cdec2e42
KH
1478
1479 ret = res_counter_charge(&mem->res, csize, &fail_res);
8c7c6e34
KH
1480 if (likely(!ret)) {
1481 if (!do_swap_account)
1482 break;
cdec2e42 1483 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
8c7c6e34
KH
1484 if (likely(!ret))
1485 break;
1486 /* mem+swap counter fails */
cdec2e42 1487 res_counter_uncharge(&mem->res, csize);
75822b44 1488 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
6d61ef40
BS
1489 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1490 memsw);
1491 } else
1492 /* mem counter fails */
1493 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1494 res);
1495
cdec2e42
KH
1496 /* reduce request size and retry */
1497 if (csize > PAGE_SIZE) {
1498 csize = PAGE_SIZE;
1499 continue;
1500 }
3be91277 1501 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1502 goto nomem;
e1a1cd59 1503
4e416953
BS
1504 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1505 gfp_mask, flags);
4d1c6273
DN
1506 if (ret)
1507 continue;
66e1707b
BS
1508
1509 /*
8869b8f6
HD
1510 * try_to_free_mem_cgroup_pages() might not give us a full
1511 * picture of reclaim. Some pages are reclaimed and might be
1512 * moved to swap cache or just unmapped from the cgroup.
1513 * Check the limit again to see if the reclaim reduced the
1514 * current usage of the cgroup before giving up
8c7c6e34 1515 *
8869b8f6 1516 */
b85a96c0
DN
1517 if (mem_cgroup_check_under_limit(mem_over_limit))
1518 continue;
3be91277 1519
8033b97c
DN
1520 /* try to avoid oom while someone is moving charge */
1521 if (mc.moving_task && current != mc.moving_task) {
1522 struct mem_cgroup *from, *to;
1523 bool do_continue = false;
1524 /*
1525 * There is a small race that "from" or "to" can be
1526 * freed by rmdir, so we use css_tryget().
1527 */
1528 rcu_read_lock();
1529 from = mc.from;
1530 to = mc.to;
1531 if (from && css_tryget(&from->css)) {
1532 if (mem_over_limit->use_hierarchy)
1533 do_continue = css_is_ancestor(
1534 &from->css,
1535 &mem_over_limit->css);
1536 else
1537 do_continue = (from == mem_over_limit);
1538 css_put(&from->css);
1539 }
1540 if (!do_continue && to && css_tryget(&to->css)) {
1541 if (mem_over_limit->use_hierarchy)
1542 do_continue = css_is_ancestor(
1543 &to->css,
1544 &mem_over_limit->css);
1545 else
1546 do_continue = (to == mem_over_limit);
1547 css_put(&to->css);
1548 }
1549 rcu_read_unlock();
1550 if (do_continue) {
1551 DEFINE_WAIT(wait);
1552 prepare_to_wait(&mc.waitq, &wait,
1553 TASK_INTERRUPTIBLE);
1554 /* moving charge context might have finished. */
1555 if (mc.moving_task)
1556 schedule();
1557 finish_wait(&mc.waitq, &wait);
1558 continue;
1559 }
1560 }
1561
3be91277 1562 if (!nr_retries--) {
a636b327 1563 if (oom) {
88700756 1564 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
0b7f569e 1565 record_last_oom(mem_over_limit);
a636b327 1566 }
7a81b88c 1567 goto nomem;
66e1707b 1568 }
8a9f3ccd 1569 }
cdec2e42
KH
1570 if (csize > PAGE_SIZE)
1571 refill_stock(mem, csize - PAGE_SIZE);
0c3e73e8 1572done:
7a81b88c
KH
1573 return 0;
1574nomem:
1575 css_put(&mem->css);
1576 return -ENOMEM;
1577}
8a9f3ccd 1578
a3032a2c
DN
1579/*
1580 * Somemtimes we have to undo a charge we got by try_charge().
1581 * This function is for that and do uncharge, put css's refcnt.
1582 * gotten by try_charge().
1583 */
854ffa8d
DN
1584static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1585 unsigned long count)
a3032a2c
DN
1586{
1587 if (!mem_cgroup_is_root(mem)) {
854ffa8d 1588 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 1589 if (do_swap_account)
854ffa8d
DN
1590 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1591 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1592 WARN_ON_ONCE(count > INT_MAX);
1593 __css_put(&mem->css, (int)count);
a3032a2c 1594 }
854ffa8d
DN
1595 /* we don't need css_put for root */
1596}
1597
1598static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1599{
1600 __mem_cgroup_cancel_charge(mem, 1);
a3032a2c
DN
1601}
1602
a3b2d692
KH
1603/*
1604 * A helper function to get mem_cgroup from ID. must be called under
1605 * rcu_read_lock(). The caller must check css_is_removed() or some if
1606 * it's concern. (dropping refcnt from swap can be called against removed
1607 * memcg.)
1608 */
1609static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1610{
1611 struct cgroup_subsys_state *css;
1612
1613 /* ID 0 is unused ID */
1614 if (!id)
1615 return NULL;
1616 css = css_lookup(&mem_cgroup_subsys, id);
1617 if (!css)
1618 return NULL;
1619 return container_of(css, struct mem_cgroup, css);
1620}
1621
e42d9d5d 1622struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 1623{
e42d9d5d 1624 struct mem_cgroup *mem = NULL;
3c776e64 1625 struct page_cgroup *pc;
a3b2d692 1626 unsigned short id;
b5a84319
KH
1627 swp_entry_t ent;
1628
3c776e64
DN
1629 VM_BUG_ON(!PageLocked(page));
1630
3c776e64 1631 pc = lookup_page_cgroup(page);
c0bd3f63 1632 lock_page_cgroup(pc);
a3b2d692 1633 if (PageCgroupUsed(pc)) {
3c776e64 1634 mem = pc->mem_cgroup;
a3b2d692
KH
1635 if (mem && !css_tryget(&mem->css))
1636 mem = NULL;
e42d9d5d 1637 } else if (PageSwapCache(page)) {
3c776e64 1638 ent.val = page_private(page);
a3b2d692
KH
1639 id = lookup_swap_cgroup(ent);
1640 rcu_read_lock();
1641 mem = mem_cgroup_lookup(id);
1642 if (mem && !css_tryget(&mem->css))
1643 mem = NULL;
1644 rcu_read_unlock();
3c776e64 1645 }
c0bd3f63 1646 unlock_page_cgroup(pc);
b5a84319
KH
1647 return mem;
1648}
1649
7a81b88c 1650/*
a5e924f5 1651 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1652 * USED state. If already USED, uncharge and return.
1653 */
1654
1655static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1656 struct page_cgroup *pc,
1657 enum charge_type ctype)
1658{
7a81b88c
KH
1659 /* try_charge() can return NULL to *memcg, taking care of it. */
1660 if (!mem)
1661 return;
52d4b9ac
KH
1662
1663 lock_page_cgroup(pc);
1664 if (unlikely(PageCgroupUsed(pc))) {
1665 unlock_page_cgroup(pc);
a3032a2c 1666 mem_cgroup_cancel_charge(mem);
7a81b88c 1667 return;
52d4b9ac 1668 }
4b3bde4c 1669
8a9f3ccd 1670 pc->mem_cgroup = mem;
261fb61a
KH
1671 /*
1672 * We access a page_cgroup asynchronously without lock_page_cgroup().
1673 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1674 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1675 * before USED bit, we need memory barrier here.
1676 * See mem_cgroup_add_lru_list(), etc.
1677 */
08e552c6 1678 smp_wmb();
4b3bde4c
BS
1679 switch (ctype) {
1680 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1681 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1682 SetPageCgroupCache(pc);
1683 SetPageCgroupUsed(pc);
1684 break;
1685 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1686 ClearPageCgroupCache(pc);
1687 SetPageCgroupUsed(pc);
1688 break;
1689 default:
1690 break;
1691 }
3be91277 1692
08e552c6 1693 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1694
52d4b9ac 1695 unlock_page_cgroup(pc);
430e4863
KH
1696 /*
1697 * "charge_statistics" updated event counter. Then, check it.
1698 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1699 * if they exceeds softlimit.
1700 */
d2265e6f 1701 memcg_check_events(mem, pc->page);
7a81b88c 1702}
66e1707b 1703
f817ed48 1704/**
57f9fd7d 1705 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
1706 * @pc: page_cgroup of the page.
1707 * @from: mem_cgroup which the page is moved from.
1708 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 1709 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
1710 *
1711 * The caller must confirm following.
08e552c6 1712 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 1713 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 1714 *
854ffa8d
DN
1715 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1716 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1717 * true, this function does "uncharge" from old cgroup, but it doesn't if
1718 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
1719 */
1720
57f9fd7d 1721static void __mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 1722 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
f817ed48 1723{
d69b042f 1724 struct page *page;
f817ed48 1725
f817ed48 1726 VM_BUG_ON(from == to);
08e552c6 1727 VM_BUG_ON(PageLRU(pc->page));
57f9fd7d
DN
1728 VM_BUG_ON(!PageCgroupLocked(pc));
1729 VM_BUG_ON(!PageCgroupUsed(pc));
1730 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 1731
d69b042f 1732 page = pc->page;
d8046582 1733 if (page_mapped(page) && !PageAnon(page)) {
c62b1a3b
KH
1734 /* Update mapped_file data for mem_cgroup */
1735 preempt_disable();
1736 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1737 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1738 preempt_enable();
d69b042f 1739 }
854ffa8d
DN
1740 mem_cgroup_charge_statistics(from, pc, false);
1741 if (uncharge)
1742 /* This is not "cancel", but cancel_charge does all we need. */
1743 mem_cgroup_cancel_charge(from);
d69b042f 1744
854ffa8d 1745 /* caller should have done css_get */
08e552c6
KH
1746 pc->mem_cgroup = to;
1747 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
1748 /*
1749 * We charges against "to" which may not have any tasks. Then, "to"
1750 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
1751 * this function is just force_empty() and move charge, so it's
1752 * garanteed that "to" is never removed. So, we don't check rmdir
1753 * status here.
88703267 1754 */
57f9fd7d
DN
1755}
1756
1757/*
1758 * check whether the @pc is valid for moving account and call
1759 * __mem_cgroup_move_account()
1760 */
1761static int mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 1762 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
57f9fd7d
DN
1763{
1764 int ret = -EINVAL;
1765 lock_page_cgroup(pc);
1766 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
854ffa8d 1767 __mem_cgroup_move_account(pc, from, to, uncharge);
57f9fd7d
DN
1768 ret = 0;
1769 }
1770 unlock_page_cgroup(pc);
d2265e6f
KH
1771 /*
1772 * check events
1773 */
1774 memcg_check_events(to, pc->page);
1775 memcg_check_events(from, pc->page);
f817ed48
KH
1776 return ret;
1777}
1778
1779/*
1780 * move charges to its parent.
1781 */
1782
1783static int mem_cgroup_move_parent(struct page_cgroup *pc,
1784 struct mem_cgroup *child,
1785 gfp_t gfp_mask)
1786{
08e552c6 1787 struct page *page = pc->page;
f817ed48
KH
1788 struct cgroup *cg = child->css.cgroup;
1789 struct cgroup *pcg = cg->parent;
1790 struct mem_cgroup *parent;
f817ed48
KH
1791 int ret;
1792
1793 /* Is ROOT ? */
1794 if (!pcg)
1795 return -EINVAL;
1796
57f9fd7d
DN
1797 ret = -EBUSY;
1798 if (!get_page_unless_zero(page))
1799 goto out;
1800 if (isolate_lru_page(page))
1801 goto put;
08e552c6 1802
f817ed48 1803 parent = mem_cgroup_from_cont(pcg);
430e4863 1804 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1805 if (ret || !parent)
57f9fd7d 1806 goto put_back;
f817ed48 1807
854ffa8d
DN
1808 ret = mem_cgroup_move_account(pc, child, parent, true);
1809 if (ret)
1810 mem_cgroup_cancel_charge(parent);
57f9fd7d 1811put_back:
08e552c6 1812 putback_lru_page(page);
57f9fd7d 1813put:
40d58138 1814 put_page(page);
57f9fd7d 1815out:
f817ed48
KH
1816 return ret;
1817}
1818
7a81b88c
KH
1819/*
1820 * Charge the memory controller for page usage.
1821 * Return
1822 * 0 if the charge was successful
1823 * < 0 if the cgroup is over its limit
1824 */
1825static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1826 gfp_t gfp_mask, enum charge_type ctype,
1827 struct mem_cgroup *memcg)
1828{
1829 struct mem_cgroup *mem;
1830 struct page_cgroup *pc;
1831 int ret;
1832
1833 pc = lookup_page_cgroup(page);
1834 /* can happen at boot */
1835 if (unlikely(!pc))
1836 return 0;
1837 prefetchw(pc);
1838
1839 mem = memcg;
430e4863 1840 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1841 if (ret || !mem)
7a81b88c
KH
1842 return ret;
1843
1844 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1845 return 0;
8a9f3ccd
BS
1846}
1847
7a81b88c
KH
1848int mem_cgroup_newpage_charge(struct page *page,
1849 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1850{
f8d66542 1851 if (mem_cgroup_disabled())
cede86ac 1852 return 0;
52d4b9ac
KH
1853 if (PageCompound(page))
1854 return 0;
69029cd5
KH
1855 /*
1856 * If already mapped, we don't have to account.
1857 * If page cache, page->mapping has address_space.
1858 * But page->mapping may have out-of-use anon_vma pointer,
1859 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1860 * is NULL.
1861 */
1862 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1863 return 0;
1864 if (unlikely(!mm))
1865 mm = &init_mm;
217bc319 1866 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1867 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1868}
1869
83aae4c7
DN
1870static void
1871__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1872 enum charge_type ctype);
1873
e1a1cd59
BS
1874int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1875 gfp_t gfp_mask)
8697d331 1876{
b5a84319
KH
1877 struct mem_cgroup *mem = NULL;
1878 int ret;
1879
f8d66542 1880 if (mem_cgroup_disabled())
cede86ac 1881 return 0;
52d4b9ac
KH
1882 if (PageCompound(page))
1883 return 0;
accf163e
KH
1884 /*
1885 * Corner case handling. This is called from add_to_page_cache()
1886 * in usual. But some FS (shmem) precharges this page before calling it
1887 * and call add_to_page_cache() with GFP_NOWAIT.
1888 *
1889 * For GFP_NOWAIT case, the page may be pre-charged before calling
1890 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1891 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1892 * And when the page is SwapCache, it should take swap information
1893 * into account. This is under lock_page() now.
accf163e
KH
1894 */
1895 if (!(gfp_mask & __GFP_WAIT)) {
1896 struct page_cgroup *pc;
1897
52d4b9ac
KH
1898
1899 pc = lookup_page_cgroup(page);
1900 if (!pc)
1901 return 0;
1902 lock_page_cgroup(pc);
1903 if (PageCgroupUsed(pc)) {
1904 unlock_page_cgroup(pc);
accf163e
KH
1905 return 0;
1906 }
52d4b9ac 1907 unlock_page_cgroup(pc);
accf163e
KH
1908 }
1909
b5a84319 1910 if (unlikely(!mm && !mem))
8697d331 1911 mm = &init_mm;
accf163e 1912
c05555b5
KH
1913 if (page_is_file_cache(page))
1914 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1915 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1916
83aae4c7
DN
1917 /* shmem */
1918 if (PageSwapCache(page)) {
1919 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1920 if (!ret)
1921 __mem_cgroup_commit_charge_swapin(page, mem,
1922 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1923 } else
1924 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1925 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1926
b5a84319 1927 return ret;
e8589cc1
KH
1928}
1929
54595fe2
KH
1930/*
1931 * While swap-in, try_charge -> commit or cancel, the page is locked.
1932 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 1933 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
1934 * "commit()" or removed by "cancel()"
1935 */
8c7c6e34
KH
1936int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1937 struct page *page,
1938 gfp_t mask, struct mem_cgroup **ptr)
1939{
1940 struct mem_cgroup *mem;
54595fe2 1941 int ret;
8c7c6e34 1942
f8d66542 1943 if (mem_cgroup_disabled())
8c7c6e34
KH
1944 return 0;
1945
1946 if (!do_swap_account)
1947 goto charge_cur_mm;
8c7c6e34
KH
1948 /*
1949 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
1950 * the pte, and even removed page from swap cache: in those cases
1951 * do_swap_page()'s pte_same() test will fail; but there's also a
1952 * KSM case which does need to charge the page.
8c7c6e34
KH
1953 */
1954 if (!PageSwapCache(page))
407f9c8b 1955 goto charge_cur_mm;
e42d9d5d 1956 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
1957 if (!mem)
1958 goto charge_cur_mm;
8c7c6e34 1959 *ptr = mem;
430e4863 1960 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
54595fe2
KH
1961 /* drop extra refcnt from tryget */
1962 css_put(&mem->css);
1963 return ret;
8c7c6e34
KH
1964charge_cur_mm:
1965 if (unlikely(!mm))
1966 mm = &init_mm;
430e4863 1967 return __mem_cgroup_try_charge(mm, mask, ptr, true);
8c7c6e34
KH
1968}
1969
83aae4c7
DN
1970static void
1971__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1972 enum charge_type ctype)
7a81b88c
KH
1973{
1974 struct page_cgroup *pc;
1975
f8d66542 1976 if (mem_cgroup_disabled())
7a81b88c
KH
1977 return;
1978 if (!ptr)
1979 return;
88703267 1980 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 1981 pc = lookup_page_cgroup(page);
544122e5 1982 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1983 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1984 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1985 /*
1986 * Now swap is on-memory. This means this page may be
1987 * counted both as mem and swap....double count.
03f3c433
KH
1988 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1989 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1990 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1991 */
03f3c433 1992 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1993 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1994 unsigned short id;
8c7c6e34 1995 struct mem_cgroup *memcg;
a3b2d692
KH
1996
1997 id = swap_cgroup_record(ent, 0);
1998 rcu_read_lock();
1999 memcg = mem_cgroup_lookup(id);
8c7c6e34 2000 if (memcg) {
a3b2d692
KH
2001 /*
2002 * This recorded memcg can be obsolete one. So, avoid
2003 * calling css_tryget
2004 */
0c3e73e8 2005 if (!mem_cgroup_is_root(memcg))
4e649152 2006 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2007 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2008 mem_cgroup_put(memcg);
2009 }
a3b2d692 2010 rcu_read_unlock();
8c7c6e34 2011 }
88703267
KH
2012 /*
2013 * At swapin, we may charge account against cgroup which has no tasks.
2014 * So, rmdir()->pre_destroy() can be called while we do this charge.
2015 * In that case, we need to call pre_destroy() again. check it here.
2016 */
2017 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2018}
2019
83aae4c7
DN
2020void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2021{
2022 __mem_cgroup_commit_charge_swapin(page, ptr,
2023 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2024}
2025
7a81b88c
KH
2026void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2027{
f8d66542 2028 if (mem_cgroup_disabled())
7a81b88c
KH
2029 return;
2030 if (!mem)
2031 return;
a3032a2c 2032 mem_cgroup_cancel_charge(mem);
7a81b88c
KH
2033}
2034
569b846d
KH
2035static void
2036__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2037{
2038 struct memcg_batch_info *batch = NULL;
2039 bool uncharge_memsw = true;
2040 /* If swapout, usage of swap doesn't decrease */
2041 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2042 uncharge_memsw = false;
2043 /*
2044 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2045 * In those cases, all pages freed continously can be expected to be in
2046 * the same cgroup and we have chance to coalesce uncharges.
2047 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2048 * because we want to do uncharge as soon as possible.
2049 */
2050 if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
2051 goto direct_uncharge;
2052
2053 batch = &current->memcg_batch;
2054 /*
2055 * In usual, we do css_get() when we remember memcg pointer.
2056 * But in this case, we keep res->usage until end of a series of
2057 * uncharges. Then, it's ok to ignore memcg's refcnt.
2058 */
2059 if (!batch->memcg)
2060 batch->memcg = mem;
2061 /*
2062 * In typical case, batch->memcg == mem. This means we can
2063 * merge a series of uncharges to an uncharge of res_counter.
2064 * If not, we uncharge res_counter ony by one.
2065 */
2066 if (batch->memcg != mem)
2067 goto direct_uncharge;
2068 /* remember freed charge and uncharge it later */
2069 batch->bytes += PAGE_SIZE;
2070 if (uncharge_memsw)
2071 batch->memsw_bytes += PAGE_SIZE;
2072 return;
2073direct_uncharge:
2074 res_counter_uncharge(&mem->res, PAGE_SIZE);
2075 if (uncharge_memsw)
2076 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2077 return;
2078}
7a81b88c 2079
8a9f3ccd 2080/*
69029cd5 2081 * uncharge if !page_mapped(page)
8a9f3ccd 2082 */
8c7c6e34 2083static struct mem_cgroup *
69029cd5 2084__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2085{
8289546e 2086 struct page_cgroup *pc;
8c7c6e34 2087 struct mem_cgroup *mem = NULL;
072c56c1 2088 struct mem_cgroup_per_zone *mz;
8a9f3ccd 2089
f8d66542 2090 if (mem_cgroup_disabled())
8c7c6e34 2091 return NULL;
4077960e 2092
d13d1443 2093 if (PageSwapCache(page))
8c7c6e34 2094 return NULL;
d13d1443 2095
8697d331 2096 /*
3c541e14 2097 * Check if our page_cgroup is valid
8697d331 2098 */
52d4b9ac
KH
2099 pc = lookup_page_cgroup(page);
2100 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2101 return NULL;
b9c565d5 2102
52d4b9ac 2103 lock_page_cgroup(pc);
d13d1443 2104
8c7c6e34
KH
2105 mem = pc->mem_cgroup;
2106
d13d1443
KH
2107 if (!PageCgroupUsed(pc))
2108 goto unlock_out;
2109
2110 switch (ctype) {
2111 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2112 case MEM_CGROUP_CHARGE_TYPE_DROP:
d13d1443
KH
2113 if (page_mapped(page))
2114 goto unlock_out;
2115 break;
2116 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2117 if (!PageAnon(page)) { /* Shared memory */
2118 if (page->mapping && !page_is_file_cache(page))
2119 goto unlock_out;
2120 } else if (page_mapped(page)) /* Anon */
2121 goto unlock_out;
2122 break;
2123 default:
2124 break;
52d4b9ac 2125 }
d13d1443 2126
569b846d
KH
2127 if (!mem_cgroup_is_root(mem))
2128 __do_uncharge(mem, ctype);
0c3e73e8
BS
2129 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2130 mem_cgroup_swap_statistics(mem, true);
08e552c6 2131 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 2132
52d4b9ac 2133 ClearPageCgroupUsed(pc);
544122e5
KH
2134 /*
2135 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2136 * freed from LRU. This is safe because uncharged page is expected not
2137 * to be reused (freed soon). Exception is SwapCache, it's handled by
2138 * special functions.
2139 */
b9c565d5 2140
69029cd5 2141 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 2142 unlock_page_cgroup(pc);
fb59e9f1 2143
d2265e6f 2144 memcg_check_events(mem, page);
a7fe942e
KH
2145 /* at swapout, this memcg will be accessed to record to swap */
2146 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2147 css_put(&mem->css);
6d12e2d8 2148
8c7c6e34 2149 return mem;
d13d1443
KH
2150
2151unlock_out:
2152 unlock_page_cgroup(pc);
8c7c6e34 2153 return NULL;
3c541e14
BS
2154}
2155
69029cd5
KH
2156void mem_cgroup_uncharge_page(struct page *page)
2157{
52d4b9ac
KH
2158 /* early check. */
2159 if (page_mapped(page))
2160 return;
2161 if (page->mapping && !PageAnon(page))
2162 return;
69029cd5
KH
2163 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2164}
2165
2166void mem_cgroup_uncharge_cache_page(struct page *page)
2167{
2168 VM_BUG_ON(page_mapped(page));
b7abea96 2169 VM_BUG_ON(page->mapping);
69029cd5
KH
2170 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2171}
2172
569b846d
KH
2173/*
2174 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2175 * In that cases, pages are freed continuously and we can expect pages
2176 * are in the same memcg. All these calls itself limits the number of
2177 * pages freed at once, then uncharge_start/end() is called properly.
2178 * This may be called prural(2) times in a context,
2179 */
2180
2181void mem_cgroup_uncharge_start(void)
2182{
2183 current->memcg_batch.do_batch++;
2184 /* We can do nest. */
2185 if (current->memcg_batch.do_batch == 1) {
2186 current->memcg_batch.memcg = NULL;
2187 current->memcg_batch.bytes = 0;
2188 current->memcg_batch.memsw_bytes = 0;
2189 }
2190}
2191
2192void mem_cgroup_uncharge_end(void)
2193{
2194 struct memcg_batch_info *batch = &current->memcg_batch;
2195
2196 if (!batch->do_batch)
2197 return;
2198
2199 batch->do_batch--;
2200 if (batch->do_batch) /* If stacked, do nothing. */
2201 return;
2202
2203 if (!batch->memcg)
2204 return;
2205 /*
2206 * This "batch->memcg" is valid without any css_get/put etc...
2207 * bacause we hide charges behind us.
2208 */
2209 if (batch->bytes)
2210 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2211 if (batch->memsw_bytes)
2212 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2213 /* forget this pointer (for sanity check) */
2214 batch->memcg = NULL;
2215}
2216
e767e056 2217#ifdef CONFIG_SWAP
8c7c6e34 2218/*
e767e056 2219 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2220 * memcg information is recorded to swap_cgroup of "ent"
2221 */
8a9478ca
KH
2222void
2223mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2224{
2225 struct mem_cgroup *memcg;
8a9478ca
KH
2226 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2227
2228 if (!swapout) /* this was a swap cache but the swap is unused ! */
2229 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2230
2231 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2232
8c7c6e34 2233 /* record memcg information */
8a9478ca 2234 if (do_swap_account && swapout && memcg) {
a3b2d692 2235 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
2236 mem_cgroup_get(memcg);
2237 }
8a9478ca 2238 if (swapout && memcg)
a7fe942e 2239 css_put(&memcg->css);
8c7c6e34 2240}
e767e056 2241#endif
8c7c6e34
KH
2242
2243#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2244/*
2245 * called from swap_entry_free(). remove record in swap_cgroup and
2246 * uncharge "memsw" account.
2247 */
2248void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2249{
8c7c6e34 2250 struct mem_cgroup *memcg;
a3b2d692 2251 unsigned short id;
8c7c6e34
KH
2252
2253 if (!do_swap_account)
2254 return;
2255
a3b2d692
KH
2256 id = swap_cgroup_record(ent, 0);
2257 rcu_read_lock();
2258 memcg = mem_cgroup_lookup(id);
8c7c6e34 2259 if (memcg) {
a3b2d692
KH
2260 /*
2261 * We uncharge this because swap is freed.
2262 * This memcg can be obsolete one. We avoid calling css_tryget
2263 */
0c3e73e8 2264 if (!mem_cgroup_is_root(memcg))
4e649152 2265 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2266 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2267 mem_cgroup_put(memcg);
2268 }
a3b2d692 2269 rcu_read_unlock();
d13d1443 2270}
02491447
DN
2271
2272/**
2273 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2274 * @entry: swap entry to be moved
2275 * @from: mem_cgroup which the entry is moved from
2276 * @to: mem_cgroup which the entry is moved to
483c30b5 2277 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2278 *
2279 * It succeeds only when the swap_cgroup's record for this entry is the same
2280 * as the mem_cgroup's id of @from.
2281 *
2282 * Returns 0 on success, -EINVAL on failure.
2283 *
2284 * The caller must have charged to @to, IOW, called res_counter_charge() about
2285 * both res and memsw, and called css_get().
2286 */
2287static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2288 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2289{
2290 unsigned short old_id, new_id;
2291
2292 old_id = css_id(&from->css);
2293 new_id = css_id(&to->css);
2294
2295 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2296 mem_cgroup_swap_statistics(from, false);
483c30b5 2297 mem_cgroup_swap_statistics(to, true);
02491447 2298 /*
483c30b5
DN
2299 * This function is only called from task migration context now.
2300 * It postpones res_counter and refcount handling till the end
2301 * of task migration(mem_cgroup_clear_mc()) for performance
2302 * improvement. But we cannot postpone mem_cgroup_get(to)
2303 * because if the process that has been moved to @to does
2304 * swap-in, the refcount of @to might be decreased to 0.
02491447 2305 */
02491447 2306 mem_cgroup_get(to);
483c30b5
DN
2307 if (need_fixup) {
2308 if (!mem_cgroup_is_root(from))
2309 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2310 mem_cgroup_put(from);
2311 /*
2312 * we charged both to->res and to->memsw, so we should
2313 * uncharge to->res.
2314 */
2315 if (!mem_cgroup_is_root(to))
2316 res_counter_uncharge(&to->res, PAGE_SIZE);
2317 css_put(&to->css);
2318 }
02491447
DN
2319 return 0;
2320 }
2321 return -EINVAL;
2322}
2323#else
2324static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2325 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2326{
2327 return -EINVAL;
2328}
8c7c6e34 2329#endif
d13d1443 2330
ae41be37 2331/*
01b1ae63
KH
2332 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2333 * page belongs to.
ae41be37 2334 */
01b1ae63 2335int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
2336{
2337 struct page_cgroup *pc;
e8589cc1 2338 struct mem_cgroup *mem = NULL;
e8589cc1 2339 int ret = 0;
8869b8f6 2340
f8d66542 2341 if (mem_cgroup_disabled())
4077960e
BS
2342 return 0;
2343
52d4b9ac
KH
2344 pc = lookup_page_cgroup(page);
2345 lock_page_cgroup(pc);
2346 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2347 mem = pc->mem_cgroup;
2348 css_get(&mem->css);
e8589cc1 2349 }
52d4b9ac 2350 unlock_page_cgroup(pc);
01b1ae63 2351
e8589cc1 2352 if (mem) {
430e4863 2353 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
2354 css_put(&mem->css);
2355 }
01b1ae63 2356 *ptr = mem;
e8589cc1 2357 return ret;
ae41be37 2358}
8869b8f6 2359
69029cd5 2360/* remove redundant charge if migration failed*/
01b1ae63
KH
2361void mem_cgroup_end_migration(struct mem_cgroup *mem,
2362 struct page *oldpage, struct page *newpage)
ae41be37 2363{
01b1ae63
KH
2364 struct page *target, *unused;
2365 struct page_cgroup *pc;
2366 enum charge_type ctype;
2367
2368 if (!mem)
2369 return;
88703267 2370 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2371 /* at migration success, oldpage->mapping is NULL. */
2372 if (oldpage->mapping) {
2373 target = oldpage;
2374 unused = NULL;
2375 } else {
2376 target = newpage;
2377 unused = oldpage;
2378 }
2379
2380 if (PageAnon(target))
2381 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2382 else if (page_is_file_cache(target))
2383 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2384 else
2385 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2386
2387 /* unused page is not on radix-tree now. */
d13d1443 2388 if (unused)
01b1ae63
KH
2389 __mem_cgroup_uncharge_common(unused, ctype);
2390
2391 pc = lookup_page_cgroup(target);
69029cd5 2392 /*
01b1ae63
KH
2393 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2394 * So, double-counting is effectively avoided.
2395 */
2396 __mem_cgroup_commit_charge(mem, pc, ctype);
2397
2398 /*
2399 * Both of oldpage and newpage are still under lock_page().
2400 * Then, we don't have to care about race in radix-tree.
2401 * But we have to be careful that this page is unmapped or not.
2402 *
2403 * There is a case for !page_mapped(). At the start of
2404 * migration, oldpage was mapped. But now, it's zapped.
2405 * But we know *target* page is not freed/reused under us.
2406 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 2407 */
01b1ae63
KH
2408 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2409 mem_cgroup_uncharge_page(target);
88703267
KH
2410 /*
2411 * At migration, we may charge account against cgroup which has no tasks
2412 * So, rmdir()->pre_destroy() can be called while we do this charge.
2413 * In that case, we need to call pre_destroy() again. check it here.
2414 */
2415 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2416}
78fb7466 2417
c9b0ed51 2418/*
ae3abae6
DN
2419 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2420 * Calling hierarchical_reclaim is not enough because we should update
2421 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2422 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2423 * not from the memcg which this page would be charged to.
2424 * try_charge_swapin does all of these works properly.
c9b0ed51 2425 */
ae3abae6 2426int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2427 struct mm_struct *mm,
2428 gfp_t gfp_mask)
c9b0ed51 2429{
b5a84319 2430 struct mem_cgroup *mem = NULL;
ae3abae6 2431 int ret;
c9b0ed51 2432
f8d66542 2433 if (mem_cgroup_disabled())
cede86ac 2434 return 0;
c9b0ed51 2435
ae3abae6
DN
2436 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2437 if (!ret)
2438 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2439
ae3abae6 2440 return ret;
c9b0ed51
KH
2441}
2442
8c7c6e34
KH
2443static DEFINE_MUTEX(set_limit_mutex);
2444
d38d2a75 2445static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2446 unsigned long long val)
628f4235 2447{
81d39c20 2448 int retry_count;
8c7c6e34 2449 u64 memswlimit;
628f4235 2450 int ret = 0;
81d39c20
KH
2451 int children = mem_cgroup_count_children(memcg);
2452 u64 curusage, oldusage;
2453
2454 /*
2455 * For keeping hierarchical_reclaim simple, how long we should retry
2456 * is depends on callers. We set our retry-count to be function
2457 * of # of children which we should visit in this loop.
2458 */
2459 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2460
2461 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2462
8c7c6e34 2463 while (retry_count) {
628f4235
KH
2464 if (signal_pending(current)) {
2465 ret = -EINTR;
2466 break;
2467 }
8c7c6e34
KH
2468 /*
2469 * Rather than hide all in some function, I do this in
2470 * open coded manner. You see what this really does.
2471 * We have to guarantee mem->res.limit < mem->memsw.limit.
2472 */
2473 mutex_lock(&set_limit_mutex);
2474 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2475 if (memswlimit < val) {
2476 ret = -EINVAL;
2477 mutex_unlock(&set_limit_mutex);
628f4235
KH
2478 break;
2479 }
8c7c6e34 2480 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2481 if (!ret) {
2482 if (memswlimit == val)
2483 memcg->memsw_is_minimum = true;
2484 else
2485 memcg->memsw_is_minimum = false;
2486 }
8c7c6e34
KH
2487 mutex_unlock(&set_limit_mutex);
2488
2489 if (!ret)
2490 break;
2491
aa20d489 2492 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 2493 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2494 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2495 /* Usage is reduced ? */
2496 if (curusage >= oldusage)
2497 retry_count--;
2498 else
2499 oldusage = curusage;
8c7c6e34 2500 }
14797e23 2501
8c7c6e34
KH
2502 return ret;
2503}
2504
338c8431
LZ
2505static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2506 unsigned long long val)
8c7c6e34 2507{
81d39c20 2508 int retry_count;
8c7c6e34 2509 u64 memlimit, oldusage, curusage;
81d39c20
KH
2510 int children = mem_cgroup_count_children(memcg);
2511 int ret = -EBUSY;
8c7c6e34 2512
81d39c20
KH
2513 /* see mem_cgroup_resize_res_limit */
2514 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2515 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2516 while (retry_count) {
2517 if (signal_pending(current)) {
2518 ret = -EINTR;
2519 break;
2520 }
2521 /*
2522 * Rather than hide all in some function, I do this in
2523 * open coded manner. You see what this really does.
2524 * We have to guarantee mem->res.limit < mem->memsw.limit.
2525 */
2526 mutex_lock(&set_limit_mutex);
2527 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2528 if (memlimit > val) {
2529 ret = -EINVAL;
2530 mutex_unlock(&set_limit_mutex);
2531 break;
2532 }
2533 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2534 if (!ret) {
2535 if (memlimit == val)
2536 memcg->memsw_is_minimum = true;
2537 else
2538 memcg->memsw_is_minimum = false;
2539 }
8c7c6e34
KH
2540 mutex_unlock(&set_limit_mutex);
2541
2542 if (!ret)
2543 break;
2544
4e416953 2545 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
2546 MEM_CGROUP_RECLAIM_NOSWAP |
2547 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 2548 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 2549 /* Usage is reduced ? */
8c7c6e34 2550 if (curusage >= oldusage)
628f4235 2551 retry_count--;
81d39c20
KH
2552 else
2553 oldusage = curusage;
628f4235
KH
2554 }
2555 return ret;
2556}
2557
4e416953
BS
2558unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2559 gfp_t gfp_mask, int nid,
2560 int zid)
2561{
2562 unsigned long nr_reclaimed = 0;
2563 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2564 unsigned long reclaimed;
2565 int loop = 0;
2566 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 2567 unsigned long long excess;
4e416953
BS
2568
2569 if (order > 0)
2570 return 0;
2571
2572 mctz = soft_limit_tree_node_zone(nid, zid);
2573 /*
2574 * This loop can run a while, specially if mem_cgroup's continuously
2575 * keep exceeding their soft limit and putting the system under
2576 * pressure
2577 */
2578 do {
2579 if (next_mz)
2580 mz = next_mz;
2581 else
2582 mz = mem_cgroup_largest_soft_limit_node(mctz);
2583 if (!mz)
2584 break;
2585
2586 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2587 gfp_mask,
2588 MEM_CGROUP_RECLAIM_SOFT);
2589 nr_reclaimed += reclaimed;
2590 spin_lock(&mctz->lock);
2591
2592 /*
2593 * If we failed to reclaim anything from this memory cgroup
2594 * it is time to move on to the next cgroup
2595 */
2596 next_mz = NULL;
2597 if (!reclaimed) {
2598 do {
2599 /*
2600 * Loop until we find yet another one.
2601 *
2602 * By the time we get the soft_limit lock
2603 * again, someone might have aded the
2604 * group back on the RB tree. Iterate to
2605 * make sure we get a different mem.
2606 * mem_cgroup_largest_soft_limit_node returns
2607 * NULL if no other cgroup is present on
2608 * the tree
2609 */
2610 next_mz =
2611 __mem_cgroup_largest_soft_limit_node(mctz);
2612 if (next_mz == mz) {
2613 css_put(&next_mz->mem->css);
2614 next_mz = NULL;
2615 } else /* next_mz == NULL or other memcg */
2616 break;
2617 } while (1);
2618 }
4e416953 2619 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 2620 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
2621 /*
2622 * One school of thought says that we should not add
2623 * back the node to the tree if reclaim returns 0.
2624 * But our reclaim could return 0, simply because due
2625 * to priority we are exposing a smaller subset of
2626 * memory to reclaim from. Consider this as a longer
2627 * term TODO.
2628 */
ef8745c1
KH
2629 /* If excess == 0, no tree ops */
2630 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
2631 spin_unlock(&mctz->lock);
2632 css_put(&mz->mem->css);
2633 loop++;
2634 /*
2635 * Could not reclaim anything and there are no more
2636 * mem cgroups to try or we seem to be looping without
2637 * reclaiming anything.
2638 */
2639 if (!nr_reclaimed &&
2640 (next_mz == NULL ||
2641 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2642 break;
2643 } while (!nr_reclaimed);
2644 if (next_mz)
2645 css_put(&next_mz->mem->css);
2646 return nr_reclaimed;
2647}
2648
cc847582
KH
2649/*
2650 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
2651 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2652 */
f817ed48 2653static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 2654 int node, int zid, enum lru_list lru)
cc847582 2655{
08e552c6
KH
2656 struct zone *zone;
2657 struct mem_cgroup_per_zone *mz;
f817ed48 2658 struct page_cgroup *pc, *busy;
08e552c6 2659 unsigned long flags, loop;
072c56c1 2660 struct list_head *list;
f817ed48 2661 int ret = 0;
072c56c1 2662
08e552c6
KH
2663 zone = &NODE_DATA(node)->node_zones[zid];
2664 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 2665 list = &mz->lists[lru];
cc847582 2666
f817ed48
KH
2667 loop = MEM_CGROUP_ZSTAT(mz, lru);
2668 /* give some margin against EBUSY etc...*/
2669 loop += 256;
2670 busy = NULL;
2671 while (loop--) {
2672 ret = 0;
08e552c6 2673 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 2674 if (list_empty(list)) {
08e552c6 2675 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 2676 break;
f817ed48
KH
2677 }
2678 pc = list_entry(list->prev, struct page_cgroup, lru);
2679 if (busy == pc) {
2680 list_move(&pc->lru, list);
648bcc77 2681 busy = NULL;
08e552c6 2682 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
2683 continue;
2684 }
08e552c6 2685 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 2686
2c26fdd7 2687 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 2688 if (ret == -ENOMEM)
52d4b9ac 2689 break;
f817ed48
KH
2690
2691 if (ret == -EBUSY || ret == -EINVAL) {
2692 /* found lock contention or "pc" is obsolete. */
2693 busy = pc;
2694 cond_resched();
2695 } else
2696 busy = NULL;
cc847582 2697 }
08e552c6 2698
f817ed48
KH
2699 if (!ret && !list_empty(list))
2700 return -EBUSY;
2701 return ret;
cc847582
KH
2702}
2703
2704/*
2705 * make mem_cgroup's charge to be 0 if there is no task.
2706 * This enables deleting this mem_cgroup.
2707 */
c1e862c1 2708static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 2709{
f817ed48
KH
2710 int ret;
2711 int node, zid, shrink;
2712 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 2713 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 2714
cc847582 2715 css_get(&mem->css);
f817ed48
KH
2716
2717 shrink = 0;
c1e862c1
KH
2718 /* should free all ? */
2719 if (free_all)
2720 goto try_to_free;
f817ed48 2721move_account:
fce66477 2722 do {
f817ed48 2723 ret = -EBUSY;
c1e862c1
KH
2724 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2725 goto out;
2726 ret = -EINTR;
2727 if (signal_pending(current))
cc847582 2728 goto out;
52d4b9ac
KH
2729 /* This is for making all *used* pages to be on LRU. */
2730 lru_add_drain_all();
cdec2e42 2731 drain_all_stock_sync();
f817ed48 2732 ret = 0;
299b4eaa 2733 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 2734 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 2735 enum lru_list l;
f817ed48
KH
2736 for_each_lru(l) {
2737 ret = mem_cgroup_force_empty_list(mem,
08e552c6 2738 node, zid, l);
f817ed48
KH
2739 if (ret)
2740 break;
2741 }
1ecaab2b 2742 }
f817ed48
KH
2743 if (ret)
2744 break;
2745 }
2746 /* it seems parent cgroup doesn't have enough mem */
2747 if (ret == -ENOMEM)
2748 goto try_to_free;
52d4b9ac 2749 cond_resched();
fce66477
DN
2750 /* "ret" should also be checked to ensure all lists are empty. */
2751 } while (mem->res.usage > 0 || ret);
cc847582
KH
2752out:
2753 css_put(&mem->css);
2754 return ret;
f817ed48
KH
2755
2756try_to_free:
c1e862c1
KH
2757 /* returns EBUSY if there is a task or if we come here twice. */
2758 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
2759 ret = -EBUSY;
2760 goto out;
2761 }
c1e862c1
KH
2762 /* we call try-to-free pages for make this cgroup empty */
2763 lru_add_drain_all();
f817ed48
KH
2764 /* try to free all pages in this cgroup */
2765 shrink = 1;
2766 while (nr_retries && mem->res.usage > 0) {
2767 int progress;
c1e862c1
KH
2768
2769 if (signal_pending(current)) {
2770 ret = -EINTR;
2771 goto out;
2772 }
a7885eb8
KM
2773 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2774 false, get_swappiness(mem));
c1e862c1 2775 if (!progress) {
f817ed48 2776 nr_retries--;
c1e862c1 2777 /* maybe some writeback is necessary */
8aa7e847 2778 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2779 }
f817ed48
KH
2780
2781 }
08e552c6 2782 lru_add_drain();
f817ed48 2783 /* try move_account...there may be some *locked* pages. */
fce66477 2784 goto move_account;
cc847582
KH
2785}
2786
c1e862c1
KH
2787int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2788{
2789 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2790}
2791
2792
18f59ea7
BS
2793static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2794{
2795 return mem_cgroup_from_cont(cont)->use_hierarchy;
2796}
2797
2798static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2799 u64 val)
2800{
2801 int retval = 0;
2802 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2803 struct cgroup *parent = cont->parent;
2804 struct mem_cgroup *parent_mem = NULL;
2805
2806 if (parent)
2807 parent_mem = mem_cgroup_from_cont(parent);
2808
2809 cgroup_lock();
2810 /*
af901ca1 2811 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2812 * in the child subtrees. If it is unset, then the change can
2813 * occur, provided the current cgroup has no children.
2814 *
2815 * For the root cgroup, parent_mem is NULL, we allow value to be
2816 * set if there are no children.
2817 */
2818 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2819 (val == 1 || val == 0)) {
2820 if (list_empty(&cont->children))
2821 mem->use_hierarchy = val;
2822 else
2823 retval = -EBUSY;
2824 } else
2825 retval = -EINVAL;
2826 cgroup_unlock();
2827
2828 return retval;
2829}
2830
0c3e73e8
BS
2831struct mem_cgroup_idx_data {
2832 s64 val;
2833 enum mem_cgroup_stat_index idx;
2834};
2835
2836static int
2837mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2838{
2839 struct mem_cgroup_idx_data *d = data;
c62b1a3b 2840 d->val += mem_cgroup_read_stat(mem, d->idx);
0c3e73e8
BS
2841 return 0;
2842}
2843
2844static void
2845mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2846 enum mem_cgroup_stat_index idx, s64 *val)
2847{
2848 struct mem_cgroup_idx_data d;
2849 d.idx = idx;
2850 d.val = 0;
2851 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2852 *val = d.val;
2853}
2854
104f3928
KS
2855static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
2856{
2857 u64 idx_val, val;
2858
2859 if (!mem_cgroup_is_root(mem)) {
2860 if (!swap)
2861 return res_counter_read_u64(&mem->res, RES_USAGE);
2862 else
2863 return res_counter_read_u64(&mem->memsw, RES_USAGE);
2864 }
2865
2866 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
2867 val = idx_val;
2868 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
2869 val += idx_val;
2870
2871 if (swap) {
2872 mem_cgroup_get_recursive_idx_stat(mem,
2873 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2874 val += idx_val;
2875 }
2876
2877 return val << PAGE_SHIFT;
2878}
2879
2c3daa72 2880static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 2881{
8c7c6e34 2882 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 2883 u64 val;
8c7c6e34
KH
2884 int type, name;
2885
2886 type = MEMFILE_TYPE(cft->private);
2887 name = MEMFILE_ATTR(cft->private);
2888 switch (type) {
2889 case _MEM:
104f3928
KS
2890 if (name == RES_USAGE)
2891 val = mem_cgroup_usage(mem, false);
2892 else
0c3e73e8 2893 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
2894 break;
2895 case _MEMSWAP:
104f3928
KS
2896 if (name == RES_USAGE)
2897 val = mem_cgroup_usage(mem, true);
2898 else
0c3e73e8 2899 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
2900 break;
2901 default:
2902 BUG();
2903 break;
2904 }
2905 return val;
8cdea7c0 2906}
628f4235
KH
2907/*
2908 * The user of this function is...
2909 * RES_LIMIT.
2910 */
856c13aa
PM
2911static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2912 const char *buffer)
8cdea7c0 2913{
628f4235 2914 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 2915 int type, name;
628f4235
KH
2916 unsigned long long val;
2917 int ret;
2918
8c7c6e34
KH
2919 type = MEMFILE_TYPE(cft->private);
2920 name = MEMFILE_ATTR(cft->private);
2921 switch (name) {
628f4235 2922 case RES_LIMIT:
4b3bde4c
BS
2923 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2924 ret = -EINVAL;
2925 break;
2926 }
628f4235
KH
2927 /* This function does all necessary parse...reuse it */
2928 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
2929 if (ret)
2930 break;
2931 if (type == _MEM)
628f4235 2932 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
2933 else
2934 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 2935 break;
296c81d8
BS
2936 case RES_SOFT_LIMIT:
2937 ret = res_counter_memparse_write_strategy(buffer, &val);
2938 if (ret)
2939 break;
2940 /*
2941 * For memsw, soft limits are hard to implement in terms
2942 * of semantics, for now, we support soft limits for
2943 * control without swap
2944 */
2945 if (type == _MEM)
2946 ret = res_counter_set_soft_limit(&memcg->res, val);
2947 else
2948 ret = -EINVAL;
2949 break;
628f4235
KH
2950 default:
2951 ret = -EINVAL; /* should be BUG() ? */
2952 break;
2953 }
2954 return ret;
8cdea7c0
BS
2955}
2956
fee7b548
KH
2957static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2958 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2959{
2960 struct cgroup *cgroup;
2961 unsigned long long min_limit, min_memsw_limit, tmp;
2962
2963 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2964 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2965 cgroup = memcg->css.cgroup;
2966 if (!memcg->use_hierarchy)
2967 goto out;
2968
2969 while (cgroup->parent) {
2970 cgroup = cgroup->parent;
2971 memcg = mem_cgroup_from_cont(cgroup);
2972 if (!memcg->use_hierarchy)
2973 break;
2974 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2975 min_limit = min(min_limit, tmp);
2976 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2977 min_memsw_limit = min(min_memsw_limit, tmp);
2978 }
2979out:
2980 *mem_limit = min_limit;
2981 *memsw_limit = min_memsw_limit;
2982 return;
2983}
2984
29f2a4da 2985static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2986{
2987 struct mem_cgroup *mem;
8c7c6e34 2988 int type, name;
c84872e1
PE
2989
2990 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2991 type = MEMFILE_TYPE(event);
2992 name = MEMFILE_ATTR(event);
2993 switch (name) {
29f2a4da 2994 case RES_MAX_USAGE:
8c7c6e34
KH
2995 if (type == _MEM)
2996 res_counter_reset_max(&mem->res);
2997 else
2998 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2999 break;
3000 case RES_FAILCNT:
8c7c6e34
KH
3001 if (type == _MEM)
3002 res_counter_reset_failcnt(&mem->res);
3003 else
3004 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3005 break;
3006 }
f64c3f54 3007
85cc59db 3008 return 0;
c84872e1
PE
3009}
3010
7dc74be0
DN
3011static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3012 struct cftype *cft)
3013{
3014 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3015}
3016
02491447 3017#ifdef CONFIG_MMU
7dc74be0
DN
3018static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3019 struct cftype *cft, u64 val)
3020{
3021 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3022
3023 if (val >= (1 << NR_MOVE_TYPE))
3024 return -EINVAL;
3025 /*
3026 * We check this value several times in both in can_attach() and
3027 * attach(), so we need cgroup lock to prevent this value from being
3028 * inconsistent.
3029 */
3030 cgroup_lock();
3031 mem->move_charge_at_immigrate = val;
3032 cgroup_unlock();
3033
3034 return 0;
3035}
02491447
DN
3036#else
3037static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3038 struct cftype *cft, u64 val)
3039{
3040 return -ENOSYS;
3041}
3042#endif
7dc74be0 3043
14067bb3
KH
3044
3045/* For read statistics */
3046enum {
3047 MCS_CACHE,
3048 MCS_RSS,
d8046582 3049 MCS_FILE_MAPPED,
14067bb3
KH
3050 MCS_PGPGIN,
3051 MCS_PGPGOUT,
1dd3a273 3052 MCS_SWAP,
14067bb3
KH
3053 MCS_INACTIVE_ANON,
3054 MCS_ACTIVE_ANON,
3055 MCS_INACTIVE_FILE,
3056 MCS_ACTIVE_FILE,
3057 MCS_UNEVICTABLE,
3058 NR_MCS_STAT,
3059};
3060
3061struct mcs_total_stat {
3062 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3063};
3064
14067bb3
KH
3065struct {
3066 char *local_name;
3067 char *total_name;
3068} memcg_stat_strings[NR_MCS_STAT] = {
3069 {"cache", "total_cache"},
3070 {"rss", "total_rss"},
d69b042f 3071 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3072 {"pgpgin", "total_pgpgin"},
3073 {"pgpgout", "total_pgpgout"},
1dd3a273 3074 {"swap", "total_swap"},
14067bb3
KH
3075 {"inactive_anon", "total_inactive_anon"},
3076 {"active_anon", "total_active_anon"},
3077 {"inactive_file", "total_inactive_file"},
3078 {"active_file", "total_active_file"},
3079 {"unevictable", "total_unevictable"}
3080};
3081
3082
3083static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3084{
3085 struct mcs_total_stat *s = data;
3086 s64 val;
3087
3088 /* per cpu stat */
c62b1a3b 3089 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3090 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3091 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3092 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3093 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3094 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3095 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3096 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3097 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3098 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3099 if (do_swap_account) {
c62b1a3b 3100 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3101 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3102 }
14067bb3
KH
3103
3104 /* per zone stat */
3105 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3106 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3107 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3108 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3109 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3110 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3111 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3112 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3113 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3114 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3115 return 0;
3116}
3117
3118static void
3119mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3120{
3121 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3122}
3123
c64745cf
PM
3124static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3125 struct cgroup_map_cb *cb)
d2ceb9b7 3126{
d2ceb9b7 3127 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3128 struct mcs_total_stat mystat;
d2ceb9b7
KH
3129 int i;
3130
14067bb3
KH
3131 memset(&mystat, 0, sizeof(mystat));
3132 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3133
1dd3a273
DN
3134 for (i = 0; i < NR_MCS_STAT; i++) {
3135 if (i == MCS_SWAP && !do_swap_account)
3136 continue;
14067bb3 3137 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3138 }
7b854121 3139
14067bb3 3140 /* Hierarchical information */
fee7b548
KH
3141 {
3142 unsigned long long limit, memsw_limit;
3143 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3144 cb->fill(cb, "hierarchical_memory_limit", limit);
3145 if (do_swap_account)
3146 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3147 }
7f016ee8 3148
14067bb3
KH
3149 memset(&mystat, 0, sizeof(mystat));
3150 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3151 for (i = 0; i < NR_MCS_STAT; i++) {
3152 if (i == MCS_SWAP && !do_swap_account)
3153 continue;
14067bb3 3154 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3155 }
14067bb3 3156
7f016ee8 3157#ifdef CONFIG_DEBUG_VM
c772be93 3158 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3159
3160 {
3161 int nid, zid;
3162 struct mem_cgroup_per_zone *mz;
3163 unsigned long recent_rotated[2] = {0, 0};
3164 unsigned long recent_scanned[2] = {0, 0};
3165
3166 for_each_online_node(nid)
3167 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3168 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3169
3170 recent_rotated[0] +=
3171 mz->reclaim_stat.recent_rotated[0];
3172 recent_rotated[1] +=
3173 mz->reclaim_stat.recent_rotated[1];
3174 recent_scanned[0] +=
3175 mz->reclaim_stat.recent_scanned[0];
3176 recent_scanned[1] +=
3177 mz->reclaim_stat.recent_scanned[1];
3178 }
3179 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3180 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3181 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3182 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3183 }
3184#endif
3185
d2ceb9b7
KH
3186 return 0;
3187}
3188
a7885eb8
KM
3189static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3190{
3191 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3192
3193 return get_swappiness(memcg);
3194}
3195
3196static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3197 u64 val)
3198{
3199 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3200 struct mem_cgroup *parent;
068b38c1 3201
a7885eb8
KM
3202 if (val > 100)
3203 return -EINVAL;
3204
3205 if (cgrp->parent == NULL)
3206 return -EINVAL;
3207
3208 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3209
3210 cgroup_lock();
3211
a7885eb8
KM
3212 /* If under hierarchy, only empty-root can set this value */
3213 if ((parent->use_hierarchy) ||
068b38c1
LZ
3214 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3215 cgroup_unlock();
a7885eb8 3216 return -EINVAL;
068b38c1 3217 }
a7885eb8
KM
3218
3219 spin_lock(&memcg->reclaim_param_lock);
3220 memcg->swappiness = val;
3221 spin_unlock(&memcg->reclaim_param_lock);
3222
068b38c1
LZ
3223 cgroup_unlock();
3224
a7885eb8
KM
3225 return 0;
3226}
3227
2e72b634
KS
3228static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3229{
3230 struct mem_cgroup_threshold_ary *t;
3231 u64 usage;
3232 int i;
3233
3234 rcu_read_lock();
3235 if (!swap)
3236 t = rcu_dereference(memcg->thresholds);
3237 else
3238 t = rcu_dereference(memcg->memsw_thresholds);
3239
3240 if (!t)
3241 goto unlock;
3242
3243 usage = mem_cgroup_usage(memcg, swap);
3244
3245 /*
3246 * current_threshold points to threshold just below usage.
3247 * If it's not true, a threshold was crossed after last
3248 * call of __mem_cgroup_threshold().
3249 */
3250 i = atomic_read(&t->current_threshold);
3251
3252 /*
3253 * Iterate backward over array of thresholds starting from
3254 * current_threshold and check if a threshold is crossed.
3255 * If none of thresholds below usage is crossed, we read
3256 * only one element of the array here.
3257 */
3258 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3259 eventfd_signal(t->entries[i].eventfd, 1);
3260
3261 /* i = current_threshold + 1 */
3262 i++;
3263
3264 /*
3265 * Iterate forward over array of thresholds starting from
3266 * current_threshold+1 and check if a threshold is crossed.
3267 * If none of thresholds above usage is crossed, we read
3268 * only one element of the array here.
3269 */
3270 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3271 eventfd_signal(t->entries[i].eventfd, 1);
3272
3273 /* Update current_threshold */
3274 atomic_set(&t->current_threshold, i - 1);
3275unlock:
3276 rcu_read_unlock();
3277}
3278
3279static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3280{
3281 __mem_cgroup_threshold(memcg, false);
3282 if (do_swap_account)
3283 __mem_cgroup_threshold(memcg, true);
3284}
3285
3286static int compare_thresholds(const void *a, const void *b)
3287{
3288 const struct mem_cgroup_threshold *_a = a;
3289 const struct mem_cgroup_threshold *_b = b;
3290
3291 return _a->threshold - _b->threshold;
3292}
3293
3294static int mem_cgroup_register_event(struct cgroup *cgrp, struct cftype *cft,
3295 struct eventfd_ctx *eventfd, const char *args)
3296{
3297 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3298 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3299 int type = MEMFILE_TYPE(cft->private);
3300 u64 threshold, usage;
3301 int size;
3302 int i, ret;
3303
3304 ret = res_counter_memparse_write_strategy(args, &threshold);
3305 if (ret)
3306 return ret;
3307
3308 mutex_lock(&memcg->thresholds_lock);
3309 if (type == _MEM)
3310 thresholds = memcg->thresholds;
3311 else if (type == _MEMSWAP)
3312 thresholds = memcg->memsw_thresholds;
3313 else
3314 BUG();
3315
3316 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3317
3318 /* Check if a threshold crossed before adding a new one */
3319 if (thresholds)
3320 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3321
3322 if (thresholds)
3323 size = thresholds->size + 1;
3324 else
3325 size = 1;
3326
3327 /* Allocate memory for new array of thresholds */
3328 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3329 size * sizeof(struct mem_cgroup_threshold),
3330 GFP_KERNEL);
3331 if (!thresholds_new) {
3332 ret = -ENOMEM;
3333 goto unlock;
3334 }
3335 thresholds_new->size = size;
3336
3337 /* Copy thresholds (if any) to new array */
3338 if (thresholds)
3339 memcpy(thresholds_new->entries, thresholds->entries,
3340 thresholds->size *
3341 sizeof(struct mem_cgroup_threshold));
3342 /* Add new threshold */
3343 thresholds_new->entries[size - 1].eventfd = eventfd;
3344 thresholds_new->entries[size - 1].threshold = threshold;
3345
3346 /* Sort thresholds. Registering of new threshold isn't time-critical */
3347 sort(thresholds_new->entries, size,
3348 sizeof(struct mem_cgroup_threshold),
3349 compare_thresholds, NULL);
3350
3351 /* Find current threshold */
3352 atomic_set(&thresholds_new->current_threshold, -1);
3353 for (i = 0; i < size; i++) {
3354 if (thresholds_new->entries[i].threshold < usage) {
3355 /*
3356 * thresholds_new->current_threshold will not be used
3357 * until rcu_assign_pointer(), so it's safe to increment
3358 * it here.
3359 */
3360 atomic_inc(&thresholds_new->current_threshold);
3361 }
3362 }
3363
2e72b634
KS
3364 if (type == _MEM)
3365 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3366 else
3367 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3368
3369 /* To be sure that nobody uses thresholds before freeing it */
3370 synchronize_rcu();
3371
3372 kfree(thresholds);
3373unlock:
3374 mutex_unlock(&memcg->thresholds_lock);
3375
3376 return ret;
3377}
3378
3379static int mem_cgroup_unregister_event(struct cgroup *cgrp, struct cftype *cft,
3380 struct eventfd_ctx *eventfd)
3381{
3382 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3383 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3384 int type = MEMFILE_TYPE(cft->private);
3385 u64 usage;
3386 int size = 0;
3387 int i, j, ret;
3388
3389 mutex_lock(&memcg->thresholds_lock);
3390 if (type == _MEM)
3391 thresholds = memcg->thresholds;
3392 else if (type == _MEMSWAP)
3393 thresholds = memcg->memsw_thresholds;
3394 else
3395 BUG();
3396
3397 /*
3398 * Something went wrong if we trying to unregister a threshold
3399 * if we don't have thresholds
3400 */
3401 BUG_ON(!thresholds);
3402
3403 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3404
3405 /* Check if a threshold crossed before removing */
3406 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3407
3408 /* Calculate new number of threshold */
3409 for (i = 0; i < thresholds->size; i++) {
3410 if (thresholds->entries[i].eventfd != eventfd)
3411 size++;
3412 }
3413
3414 /* Set thresholds array to NULL if we don't have thresholds */
3415 if (!size) {
3416 thresholds_new = NULL;
3417 goto assign;
3418 }
3419
3420 /* Allocate memory for new array of thresholds */
3421 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3422 size * sizeof(struct mem_cgroup_threshold),
3423 GFP_KERNEL);
3424 if (!thresholds_new) {
3425 ret = -ENOMEM;
3426 goto unlock;
3427 }
3428 thresholds_new->size = size;
3429
3430 /* Copy thresholds and find current threshold */
3431 atomic_set(&thresholds_new->current_threshold, -1);
3432 for (i = 0, j = 0; i < thresholds->size; i++) {
3433 if (thresholds->entries[i].eventfd == eventfd)
3434 continue;
3435
3436 thresholds_new->entries[j] = thresholds->entries[i];
3437 if (thresholds_new->entries[j].threshold < usage) {
3438 /*
3439 * thresholds_new->current_threshold will not be used
3440 * until rcu_assign_pointer(), so it's safe to increment
3441 * it here.
3442 */
3443 atomic_inc(&thresholds_new->current_threshold);
3444 }
3445 j++;
3446 }
3447
3448assign:
3449 if (type == _MEM)
3450 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3451 else
3452 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3453
3454 /* To be sure that nobody uses thresholds before freeing it */
3455 synchronize_rcu();
3456
2e72b634
KS
3457 kfree(thresholds);
3458unlock:
3459 mutex_unlock(&memcg->thresholds_lock);
3460
3461 return ret;
3462}
c1e862c1 3463
8cdea7c0
BS
3464static struct cftype mem_cgroup_files[] = {
3465 {
0eea1030 3466 .name = "usage_in_bytes",
8c7c6e34 3467 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 3468 .read_u64 = mem_cgroup_read,
2e72b634
KS
3469 .register_event = mem_cgroup_register_event,
3470 .unregister_event = mem_cgroup_unregister_event,
8cdea7c0 3471 },
c84872e1
PE
3472 {
3473 .name = "max_usage_in_bytes",
8c7c6e34 3474 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 3475 .trigger = mem_cgroup_reset,
c84872e1
PE
3476 .read_u64 = mem_cgroup_read,
3477 },
8cdea7c0 3478 {
0eea1030 3479 .name = "limit_in_bytes",
8c7c6e34 3480 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 3481 .write_string = mem_cgroup_write,
2c3daa72 3482 .read_u64 = mem_cgroup_read,
8cdea7c0 3483 },
296c81d8
BS
3484 {
3485 .name = "soft_limit_in_bytes",
3486 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3487 .write_string = mem_cgroup_write,
3488 .read_u64 = mem_cgroup_read,
3489 },
8cdea7c0
BS
3490 {
3491 .name = "failcnt",
8c7c6e34 3492 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 3493 .trigger = mem_cgroup_reset,
2c3daa72 3494 .read_u64 = mem_cgroup_read,
8cdea7c0 3495 },
d2ceb9b7
KH
3496 {
3497 .name = "stat",
c64745cf 3498 .read_map = mem_control_stat_show,
d2ceb9b7 3499 },
c1e862c1
KH
3500 {
3501 .name = "force_empty",
3502 .trigger = mem_cgroup_force_empty_write,
3503 },
18f59ea7
BS
3504 {
3505 .name = "use_hierarchy",
3506 .write_u64 = mem_cgroup_hierarchy_write,
3507 .read_u64 = mem_cgroup_hierarchy_read,
3508 },
a7885eb8
KM
3509 {
3510 .name = "swappiness",
3511 .read_u64 = mem_cgroup_swappiness_read,
3512 .write_u64 = mem_cgroup_swappiness_write,
3513 },
7dc74be0
DN
3514 {
3515 .name = "move_charge_at_immigrate",
3516 .read_u64 = mem_cgroup_move_charge_read,
3517 .write_u64 = mem_cgroup_move_charge_write,
3518 },
8cdea7c0
BS
3519};
3520
8c7c6e34
KH
3521#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3522static struct cftype memsw_cgroup_files[] = {
3523 {
3524 .name = "memsw.usage_in_bytes",
3525 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3526 .read_u64 = mem_cgroup_read,
2e72b634
KS
3527 .register_event = mem_cgroup_register_event,
3528 .unregister_event = mem_cgroup_unregister_event,
8c7c6e34
KH
3529 },
3530 {
3531 .name = "memsw.max_usage_in_bytes",
3532 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3533 .trigger = mem_cgroup_reset,
3534 .read_u64 = mem_cgroup_read,
3535 },
3536 {
3537 .name = "memsw.limit_in_bytes",
3538 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3539 .write_string = mem_cgroup_write,
3540 .read_u64 = mem_cgroup_read,
3541 },
3542 {
3543 .name = "memsw.failcnt",
3544 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3545 .trigger = mem_cgroup_reset,
3546 .read_u64 = mem_cgroup_read,
3547 },
3548};
3549
3550static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3551{
3552 if (!do_swap_account)
3553 return 0;
3554 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3555 ARRAY_SIZE(memsw_cgroup_files));
3556};
3557#else
3558static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3559{
3560 return 0;
3561}
3562#endif
3563
6d12e2d8
KH
3564static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3565{
3566 struct mem_cgroup_per_node *pn;
1ecaab2b 3567 struct mem_cgroup_per_zone *mz;
b69408e8 3568 enum lru_list l;
41e3355d 3569 int zone, tmp = node;
1ecaab2b
KH
3570 /*
3571 * This routine is called against possible nodes.
3572 * But it's BUG to call kmalloc() against offline node.
3573 *
3574 * TODO: this routine can waste much memory for nodes which will
3575 * never be onlined. It's better to use memory hotplug callback
3576 * function.
3577 */
41e3355d
KH
3578 if (!node_state(node, N_NORMAL_MEMORY))
3579 tmp = -1;
3580 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
3581 if (!pn)
3582 return 1;
1ecaab2b 3583
6d12e2d8
KH
3584 mem->info.nodeinfo[node] = pn;
3585 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
3586
3587 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3588 mz = &pn->zoneinfo[zone];
b69408e8
CL
3589 for_each_lru(l)
3590 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 3591 mz->usage_in_excess = 0;
4e416953
BS
3592 mz->on_tree = false;
3593 mz->mem = mem;
1ecaab2b 3594 }
6d12e2d8
KH
3595 return 0;
3596}
3597
1ecaab2b
KH
3598static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3599{
3600 kfree(mem->info.nodeinfo[node]);
3601}
3602
33327948
KH
3603static struct mem_cgroup *mem_cgroup_alloc(void)
3604{
3605 struct mem_cgroup *mem;
c62b1a3b 3606 int size = sizeof(struct mem_cgroup);
33327948 3607
c62b1a3b 3608 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb
JB
3609 if (size < PAGE_SIZE)
3610 mem = kmalloc(size, GFP_KERNEL);
33327948 3611 else
c8dad2bb 3612 mem = vmalloc(size);
33327948
KH
3613
3614 if (mem)
c8dad2bb 3615 memset(mem, 0, size);
c62b1a3b
KH
3616 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3617 if (!mem->stat) {
3618 if (size < PAGE_SIZE)
3619 kfree(mem);
3620 else
3621 vfree(mem);
3622 mem = NULL;
3623 }
33327948
KH
3624 return mem;
3625}
3626
8c7c6e34
KH
3627/*
3628 * At destroying mem_cgroup, references from swap_cgroup can remain.
3629 * (scanning all at force_empty is too costly...)
3630 *
3631 * Instead of clearing all references at force_empty, we remember
3632 * the number of reference from swap_cgroup and free mem_cgroup when
3633 * it goes down to 0.
3634 *
8c7c6e34
KH
3635 * Removal of cgroup itself succeeds regardless of refs from swap.
3636 */
3637
a7ba0eef 3638static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 3639{
08e552c6
KH
3640 int node;
3641
f64c3f54 3642 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
3643 free_css_id(&mem_cgroup_subsys, &mem->css);
3644
08e552c6
KH
3645 for_each_node_state(node, N_POSSIBLE)
3646 free_mem_cgroup_per_zone_info(mem, node);
3647
c62b1a3b
KH
3648 free_percpu(mem->stat);
3649 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
3650 kfree(mem);
3651 else
3652 vfree(mem);
3653}
3654
8c7c6e34
KH
3655static void mem_cgroup_get(struct mem_cgroup *mem)
3656{
3657 atomic_inc(&mem->refcnt);
3658}
3659
483c30b5 3660static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 3661{
483c30b5 3662 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 3663 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 3664 __mem_cgroup_free(mem);
7bcc1bb1
DN
3665 if (parent)
3666 mem_cgroup_put(parent);
3667 }
8c7c6e34
KH
3668}
3669
483c30b5
DN
3670static void mem_cgroup_put(struct mem_cgroup *mem)
3671{
3672 __mem_cgroup_put(mem, 1);
3673}
3674
7bcc1bb1
DN
3675/*
3676 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3677 */
3678static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3679{
3680 if (!mem->res.parent)
3681 return NULL;
3682 return mem_cgroup_from_res_counter(mem->res.parent, res);
3683}
33327948 3684
c077719b
KH
3685#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3686static void __init enable_swap_cgroup(void)
3687{
f8d66542 3688 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
3689 do_swap_account = 1;
3690}
3691#else
3692static void __init enable_swap_cgroup(void)
3693{
3694}
3695#endif
3696
f64c3f54
BS
3697static int mem_cgroup_soft_limit_tree_init(void)
3698{
3699 struct mem_cgroup_tree_per_node *rtpn;
3700 struct mem_cgroup_tree_per_zone *rtpz;
3701 int tmp, node, zone;
3702
3703 for_each_node_state(node, N_POSSIBLE) {
3704 tmp = node;
3705 if (!node_state(node, N_NORMAL_MEMORY))
3706 tmp = -1;
3707 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3708 if (!rtpn)
3709 return 1;
3710
3711 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3712
3713 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3714 rtpz = &rtpn->rb_tree_per_zone[zone];
3715 rtpz->rb_root = RB_ROOT;
3716 spin_lock_init(&rtpz->lock);
3717 }
3718 }
3719 return 0;
3720}
3721
0eb253e2 3722static struct cgroup_subsys_state * __ref
8cdea7c0
BS
3723mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3724{
28dbc4b6 3725 struct mem_cgroup *mem, *parent;
04046e1a 3726 long error = -ENOMEM;
6d12e2d8 3727 int node;
8cdea7c0 3728
c8dad2bb
JB
3729 mem = mem_cgroup_alloc();
3730 if (!mem)
04046e1a 3731 return ERR_PTR(error);
78fb7466 3732
6d12e2d8
KH
3733 for_each_node_state(node, N_POSSIBLE)
3734 if (alloc_mem_cgroup_per_zone_info(mem, node))
3735 goto free_out;
f64c3f54 3736
c077719b 3737 /* root ? */
28dbc4b6 3738 if (cont->parent == NULL) {
cdec2e42 3739 int cpu;
c077719b 3740 enable_swap_cgroup();
28dbc4b6 3741 parent = NULL;
4b3bde4c 3742 root_mem_cgroup = mem;
f64c3f54
BS
3743 if (mem_cgroup_soft_limit_tree_init())
3744 goto free_out;
cdec2e42
KH
3745 for_each_possible_cpu(cpu) {
3746 struct memcg_stock_pcp *stock =
3747 &per_cpu(memcg_stock, cpu);
3748 INIT_WORK(&stock->work, drain_local_stock);
3749 }
3750 hotcpu_notifier(memcg_stock_cpu_callback, 0);
18f59ea7 3751 } else {
28dbc4b6 3752 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
3753 mem->use_hierarchy = parent->use_hierarchy;
3754 }
28dbc4b6 3755
18f59ea7
BS
3756 if (parent && parent->use_hierarchy) {
3757 res_counter_init(&mem->res, &parent->res);
3758 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
3759 /*
3760 * We increment refcnt of the parent to ensure that we can
3761 * safely access it on res_counter_charge/uncharge.
3762 * This refcnt will be decremented when freeing this
3763 * mem_cgroup(see mem_cgroup_put).
3764 */
3765 mem_cgroup_get(parent);
18f59ea7
BS
3766 } else {
3767 res_counter_init(&mem->res, NULL);
3768 res_counter_init(&mem->memsw, NULL);
3769 }
04046e1a 3770 mem->last_scanned_child = 0;
2733c06a 3771 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 3772
a7885eb8
KM
3773 if (parent)
3774 mem->swappiness = get_swappiness(parent);
a7ba0eef 3775 atomic_set(&mem->refcnt, 1);
7dc74be0 3776 mem->move_charge_at_immigrate = 0;
2e72b634 3777 mutex_init(&mem->thresholds_lock);
8cdea7c0 3778 return &mem->css;
6d12e2d8 3779free_out:
a7ba0eef 3780 __mem_cgroup_free(mem);
4b3bde4c 3781 root_mem_cgroup = NULL;
04046e1a 3782 return ERR_PTR(error);
8cdea7c0
BS
3783}
3784
ec64f515 3785static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
3786 struct cgroup *cont)
3787{
3788 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
3789
3790 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
3791}
3792
8cdea7c0
BS
3793static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3794 struct cgroup *cont)
3795{
c268e994 3796 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 3797
c268e994 3798 mem_cgroup_put(mem);
8cdea7c0
BS
3799}
3800
3801static int mem_cgroup_populate(struct cgroup_subsys *ss,
3802 struct cgroup *cont)
3803{
8c7c6e34
KH
3804 int ret;
3805
3806 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3807 ARRAY_SIZE(mem_cgroup_files));
3808
3809 if (!ret)
3810 ret = register_memsw_files(cont, ss);
3811 return ret;
8cdea7c0
BS
3812}
3813
02491447 3814#ifdef CONFIG_MMU
7dc74be0 3815/* Handlers for move charge at task migration. */
854ffa8d
DN
3816#define PRECHARGE_COUNT_AT_ONCE 256
3817static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 3818{
854ffa8d
DN
3819 int ret = 0;
3820 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
3821 struct mem_cgroup *mem = mc.to;
3822
854ffa8d
DN
3823 if (mem_cgroup_is_root(mem)) {
3824 mc.precharge += count;
3825 /* we don't need css_get for root */
3826 return ret;
3827 }
3828 /* try to charge at once */
3829 if (count > 1) {
3830 struct res_counter *dummy;
3831 /*
3832 * "mem" cannot be under rmdir() because we've already checked
3833 * by cgroup_lock_live_cgroup() that it is not removed and we
3834 * are still under the same cgroup_mutex. So we can postpone
3835 * css_get().
3836 */
3837 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
3838 goto one_by_one;
3839 if (do_swap_account && res_counter_charge(&mem->memsw,
3840 PAGE_SIZE * count, &dummy)) {
3841 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
3842 goto one_by_one;
3843 }
3844 mc.precharge += count;
3845 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
3846 WARN_ON_ONCE(count > INT_MAX);
3847 __css_get(&mem->css, (int)count);
3848 return ret;
3849 }
3850one_by_one:
3851 /* fall back to one by one charge */
3852 while (count--) {
3853 if (signal_pending(current)) {
3854 ret = -EINTR;
3855 break;
3856 }
3857 if (!batch_count--) {
3858 batch_count = PRECHARGE_COUNT_AT_ONCE;
3859 cond_resched();
3860 }
430e4863 3861 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
854ffa8d
DN
3862 if (ret || !mem)
3863 /* mem_cgroup_clear_mc() will do uncharge later */
3864 return -ENOMEM;
3865 mc.precharge++;
3866 }
4ffef5fe
DN
3867 return ret;
3868}
02491447
DN
3869#else /* !CONFIG_MMU */
3870static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
3871 struct cgroup *cgroup,
3872 struct task_struct *p,
3873 bool threadgroup)
3874{
3875 return 0;
3876}
3877static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
3878 struct cgroup *cgroup,
3879 struct task_struct *p,
3880 bool threadgroup)
3881{
3882}
3883static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3884 struct cgroup *cont,
3885 struct cgroup *old_cont,
3886 struct task_struct *p,
3887 bool threadgroup)
3888{
3889}
3890#endif
4ffef5fe
DN
3891
3892/**
3893 * is_target_pte_for_mc - check a pte whether it is valid for move charge
3894 * @vma: the vma the pte to be checked belongs
3895 * @addr: the address corresponding to the pte to be checked
3896 * @ptent: the pte to be checked
02491447 3897 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
3898 *
3899 * Returns
3900 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
3901 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
3902 * move charge. if @target is not NULL, the page is stored in target->page
3903 * with extra refcnt got(Callers should handle it).
02491447
DN
3904 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
3905 * target for charge migration. if @target is not NULL, the entry is stored
3906 * in target->ent.
4ffef5fe
DN
3907 *
3908 * Called with pte lock held.
3909 */
4ffef5fe
DN
3910union mc_target {
3911 struct page *page;
02491447 3912 swp_entry_t ent;
4ffef5fe
DN
3913};
3914
4ffef5fe
DN
3915enum mc_target_type {
3916 MC_TARGET_NONE, /* not used */
3917 MC_TARGET_PAGE,
02491447 3918 MC_TARGET_SWAP,
4ffef5fe
DN
3919};
3920
3921static int is_target_pte_for_mc(struct vm_area_struct *vma,
3922 unsigned long addr, pte_t ptent, union mc_target *target)
3923{
02491447 3924 struct page *page = NULL;
4ffef5fe
DN
3925 struct page_cgroup *pc;
3926 int ret = 0;
02491447
DN
3927 swp_entry_t ent = { .val = 0 };
3928 int usage_count = 0;
4ffef5fe
DN
3929 bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
3930 &mc.to->move_charge_at_immigrate);
3931
02491447
DN
3932 if (!pte_present(ptent)) {
3933 /* TODO: handle swap of shmes/tmpfs */
3934 if (pte_none(ptent) || pte_file(ptent))
3935 return 0;
3936 else if (is_swap_pte(ptent)) {
3937 ent = pte_to_swp_entry(ptent);
3938 if (!move_anon || non_swap_entry(ent))
3939 return 0;
3940 usage_count = mem_cgroup_count_swap_user(ent, &page);
3941 }
3942 } else {
3943 page = vm_normal_page(vma, addr, ptent);
3944 if (!page || !page_mapped(page))
3945 return 0;
3946 /*
3947 * TODO: We don't move charges of file(including shmem/tmpfs)
3948 * pages for now.
3949 */
3950 if (!move_anon || !PageAnon(page))
3951 return 0;
3952 if (!get_page_unless_zero(page))
3953 return 0;
3954 usage_count = page_mapcount(page);
3955 }
3956 if (usage_count > 1) {
3957 /*
3958 * TODO: We don't move charges of shared(used by multiple
3959 * processes) pages for now.
3960 */
3961 if (page)
3962 put_page(page);
4ffef5fe 3963 return 0;
02491447
DN
3964 }
3965 if (page) {
3966 pc = lookup_page_cgroup(page);
3967 /*
3968 * Do only loose check w/o page_cgroup lock.
3969 * mem_cgroup_move_account() checks the pc is valid or not under
3970 * the lock.
3971 */
3972 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
3973 ret = MC_TARGET_PAGE;
3974 if (target)
3975 target->page = page;
3976 }
3977 if (!ret || !target)
3978 put_page(page);
3979 }
3980 /* throught */
3981 if (ent.val && do_swap_account && !ret &&
3982 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
3983 ret = MC_TARGET_SWAP;
4ffef5fe 3984 if (target)
02491447 3985 target->ent = ent;
4ffef5fe 3986 }
4ffef5fe
DN
3987 return ret;
3988}
3989
3990static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
3991 unsigned long addr, unsigned long end,
3992 struct mm_walk *walk)
3993{
3994 struct vm_area_struct *vma = walk->private;
3995 pte_t *pte;
3996 spinlock_t *ptl;
3997
3998 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
3999 for (; addr != end; pte++, addr += PAGE_SIZE)
4000 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4001 mc.precharge++; /* increment precharge temporarily */
4002 pte_unmap_unlock(pte - 1, ptl);
4003 cond_resched();
4004
7dc74be0
DN
4005 return 0;
4006}
4007
4ffef5fe
DN
4008static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4009{
4010 unsigned long precharge;
4011 struct vm_area_struct *vma;
4012
4013 down_read(&mm->mmap_sem);
4014 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4015 struct mm_walk mem_cgroup_count_precharge_walk = {
4016 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4017 .mm = mm,
4018 .private = vma,
4019 };
4020 if (is_vm_hugetlb_page(vma))
4021 continue;
4022 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4023 if (vma->vm_flags & VM_SHARED)
4024 continue;
4025 walk_page_range(vma->vm_start, vma->vm_end,
4026 &mem_cgroup_count_precharge_walk);
4027 }
4028 up_read(&mm->mmap_sem);
4029
4030 precharge = mc.precharge;
4031 mc.precharge = 0;
4032
4033 return precharge;
4034}
4035
4ffef5fe
DN
4036static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4037{
854ffa8d 4038 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4ffef5fe
DN
4039}
4040
4041static void mem_cgroup_clear_mc(void)
4042{
4043 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4044 if (mc.precharge) {
4045 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4046 mc.precharge = 0;
4047 }
4048 /*
4049 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4050 * we must uncharge here.
4051 */
4052 if (mc.moved_charge) {
4053 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4054 mc.moved_charge = 0;
4ffef5fe 4055 }
483c30b5
DN
4056 /* we must fixup refcnts and charges */
4057 if (mc.moved_swap) {
4058 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4059 /* uncharge swap account from the old cgroup */
4060 if (!mem_cgroup_is_root(mc.from))
4061 res_counter_uncharge(&mc.from->memsw,
4062 PAGE_SIZE * mc.moved_swap);
4063 __mem_cgroup_put(mc.from, mc.moved_swap);
4064
4065 if (!mem_cgroup_is_root(mc.to)) {
4066 /*
4067 * we charged both to->res and to->memsw, so we should
4068 * uncharge to->res.
4069 */
4070 res_counter_uncharge(&mc.to->res,
4071 PAGE_SIZE * mc.moved_swap);
4072 VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4073 __css_put(&mc.to->css, mc.moved_swap);
4074 }
4075 /* we've already done mem_cgroup_get(mc.to) */
4076
4077 mc.moved_swap = 0;
4078 }
4ffef5fe
DN
4079 mc.from = NULL;
4080 mc.to = NULL;
8033b97c
DN
4081 mc.moving_task = NULL;
4082 wake_up_all(&mc.waitq);
4ffef5fe
DN
4083}
4084
7dc74be0
DN
4085static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4086 struct cgroup *cgroup,
4087 struct task_struct *p,
4088 bool threadgroup)
4089{
4090 int ret = 0;
4091 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4092
4093 if (mem->move_charge_at_immigrate) {
4094 struct mm_struct *mm;
4095 struct mem_cgroup *from = mem_cgroup_from_task(p);
4096
4097 VM_BUG_ON(from == mem);
4098
4099 mm = get_task_mm(p);
4100 if (!mm)
4101 return 0;
7dc74be0 4102 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4103 if (mm->owner == p) {
4104 VM_BUG_ON(mc.from);
4105 VM_BUG_ON(mc.to);
4106 VM_BUG_ON(mc.precharge);
854ffa8d 4107 VM_BUG_ON(mc.moved_charge);
483c30b5 4108 VM_BUG_ON(mc.moved_swap);
8033b97c 4109 VM_BUG_ON(mc.moving_task);
4ffef5fe
DN
4110 mc.from = from;
4111 mc.to = mem;
4112 mc.precharge = 0;
854ffa8d 4113 mc.moved_charge = 0;
483c30b5 4114 mc.moved_swap = 0;
8033b97c 4115 mc.moving_task = current;
4ffef5fe
DN
4116
4117 ret = mem_cgroup_precharge_mc(mm);
4118 if (ret)
4119 mem_cgroup_clear_mc();
4120 }
7dc74be0
DN
4121 mmput(mm);
4122 }
4123 return ret;
4124}
4125
4126static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4127 struct cgroup *cgroup,
4128 struct task_struct *p,
4129 bool threadgroup)
4130{
4ffef5fe 4131 mem_cgroup_clear_mc();
7dc74be0
DN
4132}
4133
4ffef5fe
DN
4134static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4135 unsigned long addr, unsigned long end,
4136 struct mm_walk *walk)
7dc74be0 4137{
4ffef5fe
DN
4138 int ret = 0;
4139 struct vm_area_struct *vma = walk->private;
4140 pte_t *pte;
4141 spinlock_t *ptl;
4142
4143retry:
4144 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4145 for (; addr != end; addr += PAGE_SIZE) {
4146 pte_t ptent = *(pte++);
4147 union mc_target target;
4148 int type;
4149 struct page *page;
4150 struct page_cgroup *pc;
02491447 4151 swp_entry_t ent;
4ffef5fe
DN
4152
4153 if (!mc.precharge)
4154 break;
4155
4156 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4157 switch (type) {
4158 case MC_TARGET_PAGE:
4159 page = target.page;
4160 if (isolate_lru_page(page))
4161 goto put;
4162 pc = lookup_page_cgroup(page);
854ffa8d
DN
4163 if (!mem_cgroup_move_account(pc,
4164 mc.from, mc.to, false)) {
4ffef5fe 4165 mc.precharge--;
854ffa8d
DN
4166 /* we uncharge from mc.from later. */
4167 mc.moved_charge++;
4ffef5fe
DN
4168 }
4169 putback_lru_page(page);
4170put: /* is_target_pte_for_mc() gets the page */
4171 put_page(page);
4172 break;
02491447
DN
4173 case MC_TARGET_SWAP:
4174 ent = target.ent;
483c30b5
DN
4175 if (!mem_cgroup_move_swap_account(ent,
4176 mc.from, mc.to, false)) {
02491447 4177 mc.precharge--;
483c30b5
DN
4178 /* we fixup refcnts and charges later. */
4179 mc.moved_swap++;
4180 }
02491447 4181 break;
4ffef5fe
DN
4182 default:
4183 break;
4184 }
4185 }
4186 pte_unmap_unlock(pte - 1, ptl);
4187 cond_resched();
4188
4189 if (addr != end) {
4190 /*
4191 * We have consumed all precharges we got in can_attach().
4192 * We try charge one by one, but don't do any additional
4193 * charges to mc.to if we have failed in charge once in attach()
4194 * phase.
4195 */
854ffa8d 4196 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4197 if (!ret)
4198 goto retry;
4199 }
4200
4201 return ret;
4202}
4203
4204static void mem_cgroup_move_charge(struct mm_struct *mm)
4205{
4206 struct vm_area_struct *vma;
4207
4208 lru_add_drain_all();
4209 down_read(&mm->mmap_sem);
4210 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4211 int ret;
4212 struct mm_walk mem_cgroup_move_charge_walk = {
4213 .pmd_entry = mem_cgroup_move_charge_pte_range,
4214 .mm = mm,
4215 .private = vma,
4216 };
4217 if (is_vm_hugetlb_page(vma))
4218 continue;
4219 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4220 if (vma->vm_flags & VM_SHARED)
4221 continue;
4222 ret = walk_page_range(vma->vm_start, vma->vm_end,
4223 &mem_cgroup_move_charge_walk);
4224 if (ret)
4225 /*
4226 * means we have consumed all precharges and failed in
4227 * doing additional charge. Just abandon here.
4228 */
4229 break;
4230 }
4231 up_read(&mm->mmap_sem);
7dc74be0
DN
4232}
4233
67e465a7
BS
4234static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4235 struct cgroup *cont,
4236 struct cgroup *old_cont,
be367d09
BB
4237 struct task_struct *p,
4238 bool threadgroup)
67e465a7 4239{
4ffef5fe
DN
4240 struct mm_struct *mm;
4241
4242 if (!mc.to)
4243 /* no need to move charge */
4244 return;
4245
4246 mm = get_task_mm(p);
4247 if (mm) {
4248 mem_cgroup_move_charge(mm);
4249 mmput(mm);
4250 }
4251 mem_cgroup_clear_mc();
67e465a7
BS
4252}
4253
8cdea7c0
BS
4254struct cgroup_subsys mem_cgroup_subsys = {
4255 .name = "memory",
4256 .subsys_id = mem_cgroup_subsys_id,
4257 .create = mem_cgroup_create,
df878fb0 4258 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
4259 .destroy = mem_cgroup_destroy,
4260 .populate = mem_cgroup_populate,
7dc74be0
DN
4261 .can_attach = mem_cgroup_can_attach,
4262 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 4263 .attach = mem_cgroup_move_task,
6d12e2d8 4264 .early_init = 0,
04046e1a 4265 .use_id = 1,
8cdea7c0 4266};
c077719b
KH
4267
4268#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4269
4270static int __init disable_swap_account(char *s)
4271{
4272 really_do_swap_account = 0;
4273 return 1;
4274}
4275__setup("noswapaccount", disable_swap_account);
4276#endif