]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: remove unneeded forward declaration from sched.h
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
e222432b 30#include <linux/limits.h>
8c7c6e34 31#include <linux/mutex.h>
b6ac57d5 32#include <linux/slab.h>
66e1707b
BS
33#include <linux/swap.h>
34#include <linux/spinlock.h>
35#include <linux/fs.h>
d2ceb9b7 36#include <linux/seq_file.h>
33327948 37#include <linux/vmalloc.h>
b69408e8 38#include <linux/mm_inline.h>
52d4b9ac 39#include <linux/page_cgroup.h>
08e552c6 40#include "internal.h"
8cdea7c0 41
8697d331
BS
42#include <asm/uaccess.h>
43
a181b0e8 44struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 45#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 46
c077719b 47#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 48/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
49int do_swap_account __read_mostly;
50static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51#else
52#define do_swap_account (0)
53#endif
54
7f4d454d 55static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 56
d52aa412
KH
57/*
58 * Statistics for memory cgroup.
59 */
60enum mem_cgroup_stat_index {
61 /*
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 */
64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f
BS
65 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
66 MEM_CGROUP_STAT_MAPPED_FILE, /* # of pages charged as file rss */
55e462b0
BR
67 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
68 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
69
70 MEM_CGROUP_STAT_NSTATS,
71};
72
73struct mem_cgroup_stat_cpu {
74 s64 count[MEM_CGROUP_STAT_NSTATS];
75} ____cacheline_aligned_in_smp;
76
77struct mem_cgroup_stat {
c8dad2bb 78 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
79};
80
81/*
82 * For accounting under irq disable, no need for increment preempt count.
83 */
addb9efe 84static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
85 enum mem_cgroup_stat_index idx, int val)
86{
addb9efe 87 stat->count[idx] += val;
d52aa412
KH
88}
89
90static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
91 enum mem_cgroup_stat_index idx)
92{
93 int cpu;
94 s64 ret = 0;
95 for_each_possible_cpu(cpu)
96 ret += stat->cpustat[cpu].count[idx];
97 return ret;
98}
99
04046e1a
KH
100static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
101{
102 s64 ret;
103
104 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
105 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
106 return ret;
107}
108
6d12e2d8
KH
109/*
110 * per-zone information in memory controller.
111 */
6d12e2d8 112struct mem_cgroup_per_zone {
072c56c1
KH
113 /*
114 * spin_lock to protect the per cgroup LRU
115 */
b69408e8
CL
116 struct list_head lists[NR_LRU_LISTS];
117 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
118
119 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
120};
121/* Macro for accessing counter */
122#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
123
124struct mem_cgroup_per_node {
125 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
126};
127
128struct mem_cgroup_lru_info {
129 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
130};
131
8cdea7c0
BS
132/*
133 * The memory controller data structure. The memory controller controls both
134 * page cache and RSS per cgroup. We would eventually like to provide
135 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
136 * to help the administrator determine what knobs to tune.
137 *
138 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
139 * we hit the water mark. May be even add a low water mark, such that
140 * no reclaim occurs from a cgroup at it's low water mark, this is
141 * a feature that will be implemented much later in the future.
8cdea7c0
BS
142 */
143struct mem_cgroup {
144 struct cgroup_subsys_state css;
145 /*
146 * the counter to account for memory usage
147 */
148 struct res_counter res;
8c7c6e34
KH
149 /*
150 * the counter to account for mem+swap usage.
151 */
152 struct res_counter memsw;
78fb7466
PE
153 /*
154 * Per cgroup active and inactive list, similar to the
155 * per zone LRU lists.
78fb7466 156 */
6d12e2d8 157 struct mem_cgroup_lru_info info;
072c56c1 158
2733c06a
KM
159 /*
160 protect against reclaim related member.
161 */
162 spinlock_t reclaim_param_lock;
163
6c48a1d0 164 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
165
166 /*
167 * While reclaiming in a hiearchy, we cache the last child we
04046e1a 168 * reclaimed from.
6d61ef40 169 */
04046e1a 170 int last_scanned_child;
18f59ea7
BS
171 /*
172 * Should the accounting and control be hierarchical, per subtree?
173 */
174 bool use_hierarchy;
a636b327 175 unsigned long last_oom_jiffies;
8c7c6e34 176 atomic_t refcnt;
14797e23 177
a7885eb8
KM
178 unsigned int swappiness;
179
d52aa412 180 /*
c8dad2bb 181 * statistics. This must be placed at the end of memcg.
d52aa412
KH
182 */
183 struct mem_cgroup_stat stat;
8cdea7c0
BS
184};
185
217bc319
KH
186enum charge_type {
187 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
188 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 189 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 190 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 191 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
192 NR_CHARGE_TYPE,
193};
194
52d4b9ac
KH
195/* only for here (for easy reading.) */
196#define PCGF_CACHE (1UL << PCG_CACHE)
197#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 198#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
199static const unsigned long
200pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
201 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
202 PCGF_USED | PCGF_LOCK, /* Anon */
203 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 204 0, /* FORCE */
217bc319
KH
205};
206
8c7c6e34
KH
207/* for encoding cft->private value on file */
208#define _MEM (0)
209#define _MEMSWAP (1)
210#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
211#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
212#define MEMFILE_ATTR(val) ((val) & 0xffff)
213
214static void mem_cgroup_get(struct mem_cgroup *mem);
215static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 216static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
8c7c6e34 217
c05555b5
KH
218static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
219 struct page_cgroup *pc,
220 bool charge)
d52aa412
KH
221{
222 int val = (charge)? 1 : -1;
223 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 224 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 225 int cpu = get_cpu();
d52aa412 226
08e552c6 227 cpustat = &stat->cpustat[cpu];
c05555b5 228 if (PageCgroupCache(pc))
addb9efe 229 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 230 else
addb9efe 231 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
232
233 if (charge)
addb9efe 234 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
235 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
236 else
addb9efe 237 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 238 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 239 put_cpu();
6d12e2d8
KH
240}
241
d5b69e38 242static struct mem_cgroup_per_zone *
6d12e2d8
KH
243mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
244{
6d12e2d8
KH
245 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
246}
247
d5b69e38 248static struct mem_cgroup_per_zone *
6d12e2d8
KH
249page_cgroup_zoneinfo(struct page_cgroup *pc)
250{
251 struct mem_cgroup *mem = pc->mem_cgroup;
252 int nid = page_cgroup_nid(pc);
253 int zid = page_cgroup_zid(pc);
d52aa412 254
54992762
KM
255 if (!mem)
256 return NULL;
257
6d12e2d8
KH
258 return mem_cgroup_zoneinfo(mem, nid, zid);
259}
260
14067bb3 261static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 262 enum lru_list idx)
6d12e2d8
KH
263{
264 int nid, zid;
265 struct mem_cgroup_per_zone *mz;
266 u64 total = 0;
267
268 for_each_online_node(nid)
269 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
270 mz = mem_cgroup_zoneinfo(mem, nid, zid);
271 total += MEM_CGROUP_ZSTAT(mz, idx);
272 }
273 return total;
d52aa412
KH
274}
275
d5b69e38 276static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
277{
278 return container_of(cgroup_subsys_state(cont,
279 mem_cgroup_subsys_id), struct mem_cgroup,
280 css);
281}
282
cf475ad2 283struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 284{
31a78f23
BS
285 /*
286 * mm_update_next_owner() may clear mm->owner to NULL
287 * if it races with swapoff, page migration, etc.
288 * So this can be called with p == NULL.
289 */
290 if (unlikely(!p))
291 return NULL;
292
78fb7466
PE
293 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
294 struct mem_cgroup, css);
295}
296
54595fe2
KH
297static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
298{
299 struct mem_cgroup *mem = NULL;
0b7f569e
KH
300
301 if (!mm)
302 return NULL;
54595fe2
KH
303 /*
304 * Because we have no locks, mm->owner's may be being moved to other
305 * cgroup. We use css_tryget() here even if this looks
306 * pessimistic (rather than adding locks here).
307 */
308 rcu_read_lock();
309 do {
310 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
311 if (unlikely(!mem))
312 break;
313 } while (!css_tryget(&mem->css));
314 rcu_read_unlock();
315 return mem;
316}
317
14067bb3
KH
318/*
319 * Call callback function against all cgroup under hierarchy tree.
320 */
321static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
322 int (*func)(struct mem_cgroup *, void *))
323{
324 int found, ret, nextid;
325 struct cgroup_subsys_state *css;
326 struct mem_cgroup *mem;
327
328 if (!root->use_hierarchy)
329 return (*func)(root, data);
330
331 nextid = 1;
332 do {
333 ret = 0;
334 mem = NULL;
335
336 rcu_read_lock();
337 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
338 &found);
339 if (css && css_tryget(css))
340 mem = container_of(css, struct mem_cgroup, css);
341 rcu_read_unlock();
342
343 if (mem) {
344 ret = (*func)(mem, data);
345 css_put(&mem->css);
346 }
347 nextid = found + 1;
348 } while (!ret && css);
349
350 return ret;
351}
352
08e552c6
KH
353/*
354 * Following LRU functions are allowed to be used without PCG_LOCK.
355 * Operations are called by routine of global LRU independently from memcg.
356 * What we have to take care of here is validness of pc->mem_cgroup.
357 *
358 * Changes to pc->mem_cgroup happens when
359 * 1. charge
360 * 2. moving account
361 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
362 * It is added to LRU before charge.
363 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
364 * When moving account, the page is not on LRU. It's isolated.
365 */
4f98a2fe 366
08e552c6
KH
367void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
368{
369 struct page_cgroup *pc;
370 struct mem_cgroup *mem;
371 struct mem_cgroup_per_zone *mz;
6d12e2d8 372
f8d66542 373 if (mem_cgroup_disabled())
08e552c6
KH
374 return;
375 pc = lookup_page_cgroup(page);
376 /* can happen while we handle swapcache. */
544122e5 377 if (list_empty(&pc->lru) || !pc->mem_cgroup)
08e552c6 378 return;
544122e5
KH
379 /*
380 * We don't check PCG_USED bit. It's cleared when the "page" is finally
381 * removed from global LRU.
382 */
08e552c6
KH
383 mz = page_cgroup_zoneinfo(pc);
384 mem = pc->mem_cgroup;
b69408e8 385 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
386 list_del_init(&pc->lru);
387 return;
6d12e2d8
KH
388}
389
08e552c6 390void mem_cgroup_del_lru(struct page *page)
6d12e2d8 391{
08e552c6
KH
392 mem_cgroup_del_lru_list(page, page_lru(page));
393}
b69408e8 394
08e552c6
KH
395void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
396{
397 struct mem_cgroup_per_zone *mz;
398 struct page_cgroup *pc;
b69408e8 399
f8d66542 400 if (mem_cgroup_disabled())
08e552c6 401 return;
6d12e2d8 402
08e552c6 403 pc = lookup_page_cgroup(page);
bd112db8
DN
404 /*
405 * Used bit is set without atomic ops but after smp_wmb().
406 * For making pc->mem_cgroup visible, insert smp_rmb() here.
407 */
08e552c6
KH
408 smp_rmb();
409 /* unused page is not rotated. */
410 if (!PageCgroupUsed(pc))
411 return;
412 mz = page_cgroup_zoneinfo(pc);
413 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
414}
415
08e552c6 416void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 417{
08e552c6
KH
418 struct page_cgroup *pc;
419 struct mem_cgroup_per_zone *mz;
6d12e2d8 420
f8d66542 421 if (mem_cgroup_disabled())
08e552c6
KH
422 return;
423 pc = lookup_page_cgroup(page);
bd112db8
DN
424 /*
425 * Used bit is set without atomic ops but after smp_wmb().
426 * For making pc->mem_cgroup visible, insert smp_rmb() here.
427 */
08e552c6
KH
428 smp_rmb();
429 if (!PageCgroupUsed(pc))
894bc310 430 return;
b69408e8 431
08e552c6 432 mz = page_cgroup_zoneinfo(pc);
b69408e8 433 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
434 list_add(&pc->lru, &mz->lists[lru]);
435}
544122e5 436
08e552c6 437/*
544122e5
KH
438 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
439 * lru because the page may.be reused after it's fully uncharged (because of
440 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
441 * it again. This function is only used to charge SwapCache. It's done under
442 * lock_page and expected that zone->lru_lock is never held.
08e552c6 443 */
544122e5 444static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 445{
544122e5
KH
446 unsigned long flags;
447 struct zone *zone = page_zone(page);
448 struct page_cgroup *pc = lookup_page_cgroup(page);
449
450 spin_lock_irqsave(&zone->lru_lock, flags);
451 /*
452 * Forget old LRU when this page_cgroup is *not* used. This Used bit
453 * is guarded by lock_page() because the page is SwapCache.
454 */
455 if (!PageCgroupUsed(pc))
456 mem_cgroup_del_lru_list(page, page_lru(page));
457 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
458}
459
544122e5
KH
460static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
461{
462 unsigned long flags;
463 struct zone *zone = page_zone(page);
464 struct page_cgroup *pc = lookup_page_cgroup(page);
465
466 spin_lock_irqsave(&zone->lru_lock, flags);
467 /* link when the page is linked to LRU but page_cgroup isn't */
468 if (PageLRU(page) && list_empty(&pc->lru))
469 mem_cgroup_add_lru_list(page, page_lru(page));
470 spin_unlock_irqrestore(&zone->lru_lock, flags);
471}
472
473
08e552c6
KH
474void mem_cgroup_move_lists(struct page *page,
475 enum lru_list from, enum lru_list to)
476{
f8d66542 477 if (mem_cgroup_disabled())
08e552c6
KH
478 return;
479 mem_cgroup_del_lru_list(page, from);
480 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
481}
482
4c4a2214
DR
483int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
484{
485 int ret;
0b7f569e 486 struct mem_cgroup *curr = NULL;
4c4a2214
DR
487
488 task_lock(task);
0b7f569e
KH
489 rcu_read_lock();
490 curr = try_get_mem_cgroup_from_mm(task->mm);
491 rcu_read_unlock();
4c4a2214 492 task_unlock(task);
0b7f569e
KH
493 if (!curr)
494 return 0;
495 if (curr->use_hierarchy)
496 ret = css_is_ancestor(&curr->css, &mem->css);
497 else
498 ret = (curr == mem);
499 css_put(&curr->css);
4c4a2214
DR
500 return ret;
501}
502
6c48a1d0
KH
503/*
504 * prev_priority control...this will be used in memory reclaim path.
505 */
506int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
507{
2733c06a
KM
508 int prev_priority;
509
510 spin_lock(&mem->reclaim_param_lock);
511 prev_priority = mem->prev_priority;
512 spin_unlock(&mem->reclaim_param_lock);
513
514 return prev_priority;
6c48a1d0
KH
515}
516
517void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
518{
2733c06a 519 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
520 if (priority < mem->prev_priority)
521 mem->prev_priority = priority;
2733c06a 522 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
523}
524
525void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
526{
2733c06a 527 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 528 mem->prev_priority = priority;
2733c06a 529 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
530}
531
c772be93 532static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
533{
534 unsigned long active;
535 unsigned long inactive;
c772be93
KM
536 unsigned long gb;
537 unsigned long inactive_ratio;
14797e23 538
14067bb3
KH
539 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
540 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 541
c772be93
KM
542 gb = (inactive + active) >> (30 - PAGE_SHIFT);
543 if (gb)
544 inactive_ratio = int_sqrt(10 * gb);
545 else
546 inactive_ratio = 1;
547
548 if (present_pages) {
549 present_pages[0] = inactive;
550 present_pages[1] = active;
551 }
552
553 return inactive_ratio;
554}
555
556int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
557{
558 unsigned long active;
559 unsigned long inactive;
560 unsigned long present_pages[2];
561 unsigned long inactive_ratio;
562
563 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
564
565 inactive = present_pages[0];
566 active = present_pages[1];
567
568 if (inactive * inactive_ratio < active)
14797e23
KM
569 return 1;
570
571 return 0;
572}
573
56e49d21
RR
574int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
575{
576 unsigned long active;
577 unsigned long inactive;
578
579 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
580 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
581
582 return (active > inactive);
583}
584
a3d8e054
KM
585unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
586 struct zone *zone,
587 enum lru_list lru)
588{
589 int nid = zone->zone_pgdat->node_id;
590 int zid = zone_idx(zone);
591 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
592
593 return MEM_CGROUP_ZSTAT(mz, lru);
594}
595
3e2f41f1
KM
596struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
597 struct zone *zone)
598{
599 int nid = zone->zone_pgdat->node_id;
600 int zid = zone_idx(zone);
601 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
602
603 return &mz->reclaim_stat;
604}
605
606struct zone_reclaim_stat *
607mem_cgroup_get_reclaim_stat_from_page(struct page *page)
608{
609 struct page_cgroup *pc;
610 struct mem_cgroup_per_zone *mz;
611
612 if (mem_cgroup_disabled())
613 return NULL;
614
615 pc = lookup_page_cgroup(page);
bd112db8
DN
616 /*
617 * Used bit is set without atomic ops but after smp_wmb().
618 * For making pc->mem_cgroup visible, insert smp_rmb() here.
619 */
620 smp_rmb();
621 if (!PageCgroupUsed(pc))
622 return NULL;
623
3e2f41f1
KM
624 mz = page_cgroup_zoneinfo(pc);
625 if (!mz)
626 return NULL;
627
628 return &mz->reclaim_stat;
629}
630
66e1707b
BS
631unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
632 struct list_head *dst,
633 unsigned long *scanned, int order,
634 int mode, struct zone *z,
635 struct mem_cgroup *mem_cont,
4f98a2fe 636 int active, int file)
66e1707b
BS
637{
638 unsigned long nr_taken = 0;
639 struct page *page;
640 unsigned long scan;
641 LIST_HEAD(pc_list);
642 struct list_head *src;
ff7283fa 643 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
644 int nid = z->zone_pgdat->node_id;
645 int zid = zone_idx(z);
646 struct mem_cgroup_per_zone *mz;
4f98a2fe 647 int lru = LRU_FILE * !!file + !!active;
66e1707b 648
cf475ad2 649 BUG_ON(!mem_cont);
1ecaab2b 650 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 651 src = &mz->lists[lru];
66e1707b 652
ff7283fa
KH
653 scan = 0;
654 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 655 if (scan >= nr_to_scan)
ff7283fa 656 break;
08e552c6
KH
657
658 page = pc->page;
52d4b9ac
KH
659 if (unlikely(!PageCgroupUsed(pc)))
660 continue;
436c6541 661 if (unlikely(!PageLRU(page)))
ff7283fa 662 continue;
ff7283fa 663
436c6541 664 scan++;
4f98a2fe 665 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
666 list_move(&page->lru, dst);
667 nr_taken++;
668 }
669 }
670
66e1707b
BS
671 *scanned = scan;
672 return nr_taken;
673}
674
6d61ef40
BS
675#define mem_cgroup_from_res_counter(counter, member) \
676 container_of(counter, struct mem_cgroup, member)
677
b85a96c0
DN
678static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
679{
680 if (do_swap_account) {
681 if (res_counter_check_under_limit(&mem->res) &&
682 res_counter_check_under_limit(&mem->memsw))
683 return true;
684 } else
685 if (res_counter_check_under_limit(&mem->res))
686 return true;
687 return false;
688}
689
a7885eb8
KM
690static unsigned int get_swappiness(struct mem_cgroup *memcg)
691{
692 struct cgroup *cgrp = memcg->css.cgroup;
693 unsigned int swappiness;
694
695 /* root ? */
696 if (cgrp->parent == NULL)
697 return vm_swappiness;
698
699 spin_lock(&memcg->reclaim_param_lock);
700 swappiness = memcg->swappiness;
701 spin_unlock(&memcg->reclaim_param_lock);
702
703 return swappiness;
704}
705
81d39c20
KH
706static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
707{
708 int *val = data;
709 (*val)++;
710 return 0;
711}
e222432b
BS
712
713/**
714 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
715 * @memcg: The memory cgroup that went over limit
716 * @p: Task that is going to be killed
717 *
718 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
719 * enabled
720 */
721void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
722{
723 struct cgroup *task_cgrp;
724 struct cgroup *mem_cgrp;
725 /*
726 * Need a buffer in BSS, can't rely on allocations. The code relies
727 * on the assumption that OOM is serialized for memory controller.
728 * If this assumption is broken, revisit this code.
729 */
730 static char memcg_name[PATH_MAX];
731 int ret;
732
733 if (!memcg)
734 return;
735
736
737 rcu_read_lock();
738
739 mem_cgrp = memcg->css.cgroup;
740 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
741
742 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
743 if (ret < 0) {
744 /*
745 * Unfortunately, we are unable to convert to a useful name
746 * But we'll still print out the usage information
747 */
748 rcu_read_unlock();
749 goto done;
750 }
751 rcu_read_unlock();
752
753 printk(KERN_INFO "Task in %s killed", memcg_name);
754
755 rcu_read_lock();
756 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
757 if (ret < 0) {
758 rcu_read_unlock();
759 goto done;
760 }
761 rcu_read_unlock();
762
763 /*
764 * Continues from above, so we don't need an KERN_ level
765 */
766 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
767done:
768
769 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
770 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
771 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
772 res_counter_read_u64(&memcg->res, RES_FAILCNT));
773 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
774 "failcnt %llu\n",
775 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
776 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
777 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
778}
779
81d39c20
KH
780/*
781 * This function returns the number of memcg under hierarchy tree. Returns
782 * 1(self count) if no children.
783 */
784static int mem_cgroup_count_children(struct mem_cgroup *mem)
785{
786 int num = 0;
787 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
788 return num;
789}
790
6d61ef40 791/*
04046e1a
KH
792 * Visit the first child (need not be the first child as per the ordering
793 * of the cgroup list, since we track last_scanned_child) of @mem and use
794 * that to reclaim free pages from.
795 */
796static struct mem_cgroup *
797mem_cgroup_select_victim(struct mem_cgroup *root_mem)
798{
799 struct mem_cgroup *ret = NULL;
800 struct cgroup_subsys_state *css;
801 int nextid, found;
802
803 if (!root_mem->use_hierarchy) {
804 css_get(&root_mem->css);
805 ret = root_mem;
806 }
807
808 while (!ret) {
809 rcu_read_lock();
810 nextid = root_mem->last_scanned_child + 1;
811 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
812 &found);
813 if (css && css_tryget(css))
814 ret = container_of(css, struct mem_cgroup, css);
815
816 rcu_read_unlock();
817 /* Updates scanning parameter */
818 spin_lock(&root_mem->reclaim_param_lock);
819 if (!css) {
820 /* this means start scan from ID:1 */
821 root_mem->last_scanned_child = 0;
822 } else
823 root_mem->last_scanned_child = found;
824 spin_unlock(&root_mem->reclaim_param_lock);
825 }
826
827 return ret;
828}
829
830/*
831 * Scan the hierarchy if needed to reclaim memory. We remember the last child
832 * we reclaimed from, so that we don't end up penalizing one child extensively
833 * based on its position in the children list.
6d61ef40
BS
834 *
835 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
836 *
837 * We give up and return to the caller when we visit root_mem twice.
838 * (other groups can be removed while we're walking....)
81d39c20
KH
839 *
840 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
841 */
842static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
81d39c20 843 gfp_t gfp_mask, bool noswap, bool shrink)
6d61ef40 844{
04046e1a
KH
845 struct mem_cgroup *victim;
846 int ret, total = 0;
847 int loop = 0;
848
849 while (loop < 2) {
850 victim = mem_cgroup_select_victim(root_mem);
851 if (victim == root_mem)
852 loop++;
853 if (!mem_cgroup_local_usage(&victim->stat)) {
854 /* this cgroup's local usage == 0 */
855 css_put(&victim->css);
6d61ef40
BS
856 continue;
857 }
04046e1a
KH
858 /* we use swappiness of local cgroup */
859 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
860 get_swappiness(victim));
861 css_put(&victim->css);
81d39c20
KH
862 /*
863 * At shrinking usage, we can't check we should stop here or
864 * reclaim more. It's depends on callers. last_scanned_child
865 * will work enough for keeping fairness under tree.
866 */
867 if (shrink)
868 return ret;
04046e1a 869 total += ret;
b85a96c0 870 if (mem_cgroup_check_under_limit(root_mem))
04046e1a 871 return 1 + total;
6d61ef40 872 }
04046e1a 873 return total;
6d61ef40
BS
874}
875
a636b327
KH
876bool mem_cgroup_oom_called(struct task_struct *task)
877{
878 bool ret = false;
879 struct mem_cgroup *mem;
880 struct mm_struct *mm;
881
882 rcu_read_lock();
883 mm = task->mm;
884 if (!mm)
885 mm = &init_mm;
886 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
887 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
888 ret = true;
889 rcu_read_unlock();
890 return ret;
891}
0b7f569e
KH
892
893static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
894{
895 mem->last_oom_jiffies = jiffies;
896 return 0;
897}
898
899static void record_last_oom(struct mem_cgroup *mem)
900{
901 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
902}
903
d69b042f
BS
904/*
905 * Currently used to update mapped file statistics, but the routine can be
906 * generalized to update other statistics as well.
907 */
908void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
909{
910 struct mem_cgroup *mem;
911 struct mem_cgroup_stat *stat;
912 struct mem_cgroup_stat_cpu *cpustat;
913 int cpu;
914 struct page_cgroup *pc;
915
916 if (!page_is_file_cache(page))
917 return;
918
919 pc = lookup_page_cgroup(page);
920 if (unlikely(!pc))
921 return;
922
923 lock_page_cgroup(pc);
924 mem = pc->mem_cgroup;
925 if (!mem)
926 goto done;
927
928 if (!PageCgroupUsed(pc))
929 goto done;
930
931 /*
932 * Preemption is already disabled, we don't need get_cpu()
933 */
934 cpu = smp_processor_id();
935 stat = &mem->stat;
936 cpustat = &stat->cpustat[cpu];
937
938 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
939done:
940 unlock_page_cgroup(pc);
941}
0b7f569e 942
f817ed48
KH
943/*
944 * Unlike exported interface, "oom" parameter is added. if oom==true,
945 * oom-killer can be invoked.
8a9f3ccd 946 */
f817ed48 947static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
948 gfp_t gfp_mask, struct mem_cgroup **memcg,
949 bool oom)
8a9f3ccd 950{
6d61ef40 951 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 952 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 953 struct res_counter *fail_res;
a636b327
KH
954
955 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
956 /* Don't account this! */
957 *memcg = NULL;
958 return 0;
959 }
960
8a9f3ccd 961 /*
3be91277
HD
962 * We always charge the cgroup the mm_struct belongs to.
963 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
964 * thread group leader migrates. It's possible that mm is not
965 * set, if so charge the init_mm (happens for pagecache usage).
966 */
54595fe2
KH
967 mem = *memcg;
968 if (likely(!mem)) {
969 mem = try_get_mem_cgroup_from_mm(mm);
7a81b88c 970 *memcg = mem;
e8589cc1 971 } else {
7a81b88c 972 css_get(&mem->css);
e8589cc1 973 }
54595fe2
KH
974 if (unlikely(!mem))
975 return 0;
976
46f7e602 977 VM_BUG_ON(css_is_removed(&mem->css));
8a9f3ccd 978
8c7c6e34
KH
979 while (1) {
980 int ret;
981 bool noswap = false;
7a81b88c 982
28dbc4b6 983 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
984 if (likely(!ret)) {
985 if (!do_swap_account)
986 break;
28dbc4b6
BS
987 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
988 &fail_res);
8c7c6e34
KH
989 if (likely(!ret))
990 break;
991 /* mem+swap counter fails */
992 res_counter_uncharge(&mem->res, PAGE_SIZE);
993 noswap = true;
6d61ef40
BS
994 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
995 memsw);
996 } else
997 /* mem counter fails */
998 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
999 res);
1000
3be91277 1001 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 1002 goto nomem;
e1a1cd59 1003
6d61ef40 1004 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
81d39c20 1005 noswap, false);
4d1c6273
DN
1006 if (ret)
1007 continue;
66e1707b
BS
1008
1009 /*
8869b8f6
HD
1010 * try_to_free_mem_cgroup_pages() might not give us a full
1011 * picture of reclaim. Some pages are reclaimed and might be
1012 * moved to swap cache or just unmapped from the cgroup.
1013 * Check the limit again to see if the reclaim reduced the
1014 * current usage of the cgroup before giving up
8c7c6e34 1015 *
8869b8f6 1016 */
b85a96c0
DN
1017 if (mem_cgroup_check_under_limit(mem_over_limit))
1018 continue;
3be91277
HD
1019
1020 if (!nr_retries--) {
a636b327 1021 if (oom) {
7f4d454d 1022 mutex_lock(&memcg_tasklist);
88700756 1023 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 1024 mutex_unlock(&memcg_tasklist);
0b7f569e 1025 record_last_oom(mem_over_limit);
a636b327 1026 }
7a81b88c 1027 goto nomem;
66e1707b 1028 }
8a9f3ccd 1029 }
7a81b88c
KH
1030 return 0;
1031nomem:
1032 css_put(&mem->css);
1033 return -ENOMEM;
1034}
8a9f3ccd 1035
a3b2d692
KH
1036
1037/*
1038 * A helper function to get mem_cgroup from ID. must be called under
1039 * rcu_read_lock(). The caller must check css_is_removed() or some if
1040 * it's concern. (dropping refcnt from swap can be called against removed
1041 * memcg.)
1042 */
1043static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1044{
1045 struct cgroup_subsys_state *css;
1046
1047 /* ID 0 is unused ID */
1048 if (!id)
1049 return NULL;
1050 css = css_lookup(&mem_cgroup_subsys, id);
1051 if (!css)
1052 return NULL;
1053 return container_of(css, struct mem_cgroup, css);
1054}
1055
b5a84319
KH
1056static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1057{
1058 struct mem_cgroup *mem;
3c776e64 1059 struct page_cgroup *pc;
a3b2d692 1060 unsigned short id;
b5a84319
KH
1061 swp_entry_t ent;
1062
3c776e64
DN
1063 VM_BUG_ON(!PageLocked(page));
1064
b5a84319
KH
1065 if (!PageSwapCache(page))
1066 return NULL;
1067
3c776e64 1068 pc = lookup_page_cgroup(page);
c0bd3f63 1069 lock_page_cgroup(pc);
a3b2d692 1070 if (PageCgroupUsed(pc)) {
3c776e64 1071 mem = pc->mem_cgroup;
a3b2d692
KH
1072 if (mem && !css_tryget(&mem->css))
1073 mem = NULL;
1074 } else {
3c776e64 1075 ent.val = page_private(page);
a3b2d692
KH
1076 id = lookup_swap_cgroup(ent);
1077 rcu_read_lock();
1078 mem = mem_cgroup_lookup(id);
1079 if (mem && !css_tryget(&mem->css))
1080 mem = NULL;
1081 rcu_read_unlock();
3c776e64 1082 }
c0bd3f63 1083 unlock_page_cgroup(pc);
b5a84319
KH
1084 return mem;
1085}
1086
7a81b88c 1087/*
a5e924f5 1088 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1089 * USED state. If already USED, uncharge and return.
1090 */
1091
1092static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1093 struct page_cgroup *pc,
1094 enum charge_type ctype)
1095{
7a81b88c
KH
1096 /* try_charge() can return NULL to *memcg, taking care of it. */
1097 if (!mem)
1098 return;
52d4b9ac
KH
1099
1100 lock_page_cgroup(pc);
1101 if (unlikely(PageCgroupUsed(pc))) {
1102 unlock_page_cgroup(pc);
1103 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1104 if (do_swap_account)
1105 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 1106 css_put(&mem->css);
7a81b88c 1107 return;
52d4b9ac 1108 }
8a9f3ccd 1109 pc->mem_cgroup = mem;
08e552c6 1110 smp_wmb();
c05555b5 1111 pc->flags = pcg_default_flags[ctype];
3be91277 1112
08e552c6 1113 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 1114
52d4b9ac 1115 unlock_page_cgroup(pc);
7a81b88c 1116}
66e1707b 1117
f817ed48
KH
1118/**
1119 * mem_cgroup_move_account - move account of the page
1120 * @pc: page_cgroup of the page.
1121 * @from: mem_cgroup which the page is moved from.
1122 * @to: mem_cgroup which the page is moved to. @from != @to.
1123 *
1124 * The caller must confirm following.
08e552c6 1125 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
1126 *
1127 * returns 0 at success,
1128 * returns -EBUSY when lock is busy or "pc" is unstable.
1129 *
1130 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1131 * new cgroup. It should be done by a caller.
1132 */
1133
1134static int mem_cgroup_move_account(struct page_cgroup *pc,
1135 struct mem_cgroup *from, struct mem_cgroup *to)
1136{
1137 struct mem_cgroup_per_zone *from_mz, *to_mz;
1138 int nid, zid;
1139 int ret = -EBUSY;
d69b042f
BS
1140 struct page *page;
1141 int cpu;
1142 struct mem_cgroup_stat *stat;
1143 struct mem_cgroup_stat_cpu *cpustat;
f817ed48 1144
f817ed48 1145 VM_BUG_ON(from == to);
08e552c6 1146 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
1147
1148 nid = page_cgroup_nid(pc);
1149 zid = page_cgroup_zid(pc);
1150 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1151 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1152
f817ed48
KH
1153 if (!trylock_page_cgroup(pc))
1154 return ret;
1155
1156 if (!PageCgroupUsed(pc))
1157 goto out;
1158
1159 if (pc->mem_cgroup != from)
1160 goto out;
1161
08e552c6
KH
1162 res_counter_uncharge(&from->res, PAGE_SIZE);
1163 mem_cgroup_charge_statistics(from, pc, false);
d69b042f
BS
1164
1165 page = pc->page;
1166 if (page_is_file_cache(page) && page_mapped(page)) {
1167 cpu = smp_processor_id();
1168 /* Update mapped_file data for mem_cgroup "from" */
1169 stat = &from->stat;
1170 cpustat = &stat->cpustat[cpu];
1171 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1172 -1);
1173
1174 /* Update mapped_file data for mem_cgroup "to" */
1175 stat = &to->stat;
1176 cpustat = &stat->cpustat[cpu];
1177 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1178 1);
1179 }
1180
08e552c6
KH
1181 if (do_swap_account)
1182 res_counter_uncharge(&from->memsw, PAGE_SIZE);
40d58138
DN
1183 css_put(&from->css);
1184
1185 css_get(&to->css);
08e552c6
KH
1186 pc->mem_cgroup = to;
1187 mem_cgroup_charge_statistics(to, pc, true);
08e552c6 1188 ret = 0;
f817ed48
KH
1189out:
1190 unlock_page_cgroup(pc);
1191 return ret;
1192}
1193
1194/*
1195 * move charges to its parent.
1196 */
1197
1198static int mem_cgroup_move_parent(struct page_cgroup *pc,
1199 struct mem_cgroup *child,
1200 gfp_t gfp_mask)
1201{
08e552c6 1202 struct page *page = pc->page;
f817ed48
KH
1203 struct cgroup *cg = child->css.cgroup;
1204 struct cgroup *pcg = cg->parent;
1205 struct mem_cgroup *parent;
f817ed48
KH
1206 int ret;
1207
1208 /* Is ROOT ? */
1209 if (!pcg)
1210 return -EINVAL;
1211
08e552c6 1212
f817ed48
KH
1213 parent = mem_cgroup_from_cont(pcg);
1214
08e552c6 1215
f817ed48 1216 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 1217 if (ret || !parent)
f817ed48
KH
1218 return ret;
1219
40d58138
DN
1220 if (!get_page_unless_zero(page)) {
1221 ret = -EBUSY;
1222 goto uncharge;
1223 }
08e552c6
KH
1224
1225 ret = isolate_lru_page(page);
1226
1227 if (ret)
1228 goto cancel;
f817ed48 1229
f817ed48 1230 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 1231
08e552c6
KH
1232 putback_lru_page(page);
1233 if (!ret) {
1234 put_page(page);
40d58138
DN
1235 /* drop extra refcnt by try_charge() */
1236 css_put(&parent->css);
08e552c6 1237 return 0;
8c7c6e34 1238 }
40d58138 1239
08e552c6 1240cancel:
40d58138
DN
1241 put_page(page);
1242uncharge:
1243 /* drop extra refcnt by try_charge() */
1244 css_put(&parent->css);
1245 /* uncharge if move fails */
08e552c6
KH
1246 res_counter_uncharge(&parent->res, PAGE_SIZE);
1247 if (do_swap_account)
1248 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
f817ed48
KH
1249 return ret;
1250}
1251
7a81b88c
KH
1252/*
1253 * Charge the memory controller for page usage.
1254 * Return
1255 * 0 if the charge was successful
1256 * < 0 if the cgroup is over its limit
1257 */
1258static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1259 gfp_t gfp_mask, enum charge_type ctype,
1260 struct mem_cgroup *memcg)
1261{
1262 struct mem_cgroup *mem;
1263 struct page_cgroup *pc;
1264 int ret;
1265
1266 pc = lookup_page_cgroup(page);
1267 /* can happen at boot */
1268 if (unlikely(!pc))
1269 return 0;
1270 prefetchw(pc);
1271
1272 mem = memcg;
f817ed48 1273 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1274 if (ret || !mem)
7a81b88c
KH
1275 return ret;
1276
1277 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1278 return 0;
8a9f3ccd
BS
1279}
1280
7a81b88c
KH
1281int mem_cgroup_newpage_charge(struct page *page,
1282 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1283{
f8d66542 1284 if (mem_cgroup_disabled())
cede86ac 1285 return 0;
52d4b9ac
KH
1286 if (PageCompound(page))
1287 return 0;
69029cd5
KH
1288 /*
1289 * If already mapped, we don't have to account.
1290 * If page cache, page->mapping has address_space.
1291 * But page->mapping may have out-of-use anon_vma pointer,
1292 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1293 * is NULL.
1294 */
1295 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1296 return 0;
1297 if (unlikely(!mm))
1298 mm = &init_mm;
217bc319 1299 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1300 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1301}
1302
83aae4c7
DN
1303static void
1304__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1305 enum charge_type ctype);
1306
e1a1cd59
BS
1307int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1308 gfp_t gfp_mask)
8697d331 1309{
b5a84319
KH
1310 struct mem_cgroup *mem = NULL;
1311 int ret;
1312
f8d66542 1313 if (mem_cgroup_disabled())
cede86ac 1314 return 0;
52d4b9ac
KH
1315 if (PageCompound(page))
1316 return 0;
accf163e
KH
1317 /*
1318 * Corner case handling. This is called from add_to_page_cache()
1319 * in usual. But some FS (shmem) precharges this page before calling it
1320 * and call add_to_page_cache() with GFP_NOWAIT.
1321 *
1322 * For GFP_NOWAIT case, the page may be pre-charged before calling
1323 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1324 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
1325 * And when the page is SwapCache, it should take swap information
1326 * into account. This is under lock_page() now.
accf163e
KH
1327 */
1328 if (!(gfp_mask & __GFP_WAIT)) {
1329 struct page_cgroup *pc;
1330
52d4b9ac
KH
1331
1332 pc = lookup_page_cgroup(page);
1333 if (!pc)
1334 return 0;
1335 lock_page_cgroup(pc);
1336 if (PageCgroupUsed(pc)) {
1337 unlock_page_cgroup(pc);
accf163e
KH
1338 return 0;
1339 }
52d4b9ac 1340 unlock_page_cgroup(pc);
accf163e
KH
1341 }
1342
b5a84319 1343 if (unlikely(!mm && !mem))
8697d331 1344 mm = &init_mm;
accf163e 1345
c05555b5
KH
1346 if (page_is_file_cache(page))
1347 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1348 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
b5a84319 1349
83aae4c7
DN
1350 /* shmem */
1351 if (PageSwapCache(page)) {
1352 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1353 if (!ret)
1354 __mem_cgroup_commit_charge_swapin(page, mem,
1355 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1356 } else
1357 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1358 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
b5a84319 1359
b5a84319 1360 return ret;
e8589cc1
KH
1361}
1362
54595fe2
KH
1363/*
1364 * While swap-in, try_charge -> commit or cancel, the page is locked.
1365 * And when try_charge() successfully returns, one refcnt to memcg without
1366 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1367 * "commit()" or removed by "cancel()"
1368 */
8c7c6e34
KH
1369int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1370 struct page *page,
1371 gfp_t mask, struct mem_cgroup **ptr)
1372{
1373 struct mem_cgroup *mem;
54595fe2 1374 int ret;
8c7c6e34 1375
f8d66542 1376 if (mem_cgroup_disabled())
8c7c6e34
KH
1377 return 0;
1378
1379 if (!do_swap_account)
1380 goto charge_cur_mm;
8c7c6e34
KH
1381 /*
1382 * A racing thread's fault, or swapoff, may have already updated
1383 * the pte, and even removed page from swap cache: return success
1384 * to go on to do_swap_page()'s pte_same() test, which should fail.
1385 */
1386 if (!PageSwapCache(page))
1387 return 0;
b5a84319 1388 mem = try_get_mem_cgroup_from_swapcache(page);
54595fe2
KH
1389 if (!mem)
1390 goto charge_cur_mm;
8c7c6e34 1391 *ptr = mem;
54595fe2
KH
1392 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1393 /* drop extra refcnt from tryget */
1394 css_put(&mem->css);
1395 return ret;
8c7c6e34
KH
1396charge_cur_mm:
1397 if (unlikely(!mm))
1398 mm = &init_mm;
1399 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1400}
1401
83aae4c7
DN
1402static void
1403__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1404 enum charge_type ctype)
7a81b88c
KH
1405{
1406 struct page_cgroup *pc;
1407
f8d66542 1408 if (mem_cgroup_disabled())
7a81b88c
KH
1409 return;
1410 if (!ptr)
1411 return;
1412 pc = lookup_page_cgroup(page);
544122e5 1413 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 1414 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 1415 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
1416 /*
1417 * Now swap is on-memory. This means this page may be
1418 * counted both as mem and swap....double count.
03f3c433
KH
1419 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1420 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1421 * may call delete_from_swap_cache() before reach here.
8c7c6e34 1422 */
03f3c433 1423 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 1424 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 1425 unsigned short id;
8c7c6e34 1426 struct mem_cgroup *memcg;
a3b2d692
KH
1427
1428 id = swap_cgroup_record(ent, 0);
1429 rcu_read_lock();
1430 memcg = mem_cgroup_lookup(id);
8c7c6e34 1431 if (memcg) {
a3b2d692
KH
1432 /*
1433 * This recorded memcg can be obsolete one. So, avoid
1434 * calling css_tryget
1435 */
8c7c6e34
KH
1436 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1437 mem_cgroup_put(memcg);
1438 }
a3b2d692 1439 rcu_read_unlock();
8c7c6e34 1440 }
08e552c6 1441 /* add this page(page_cgroup) to the LRU we want. */
544122e5 1442
7a81b88c
KH
1443}
1444
83aae4c7
DN
1445void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1446{
1447 __mem_cgroup_commit_charge_swapin(page, ptr,
1448 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1449}
1450
7a81b88c
KH
1451void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1452{
f8d66542 1453 if (mem_cgroup_disabled())
7a81b88c
KH
1454 return;
1455 if (!mem)
1456 return;
1457 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1458 if (do_swap_account)
1459 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1460 css_put(&mem->css);
1461}
1462
1463
8a9f3ccd 1464/*
69029cd5 1465 * uncharge if !page_mapped(page)
8a9f3ccd 1466 */
8c7c6e34 1467static struct mem_cgroup *
69029cd5 1468__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1469{
8289546e 1470 struct page_cgroup *pc;
8c7c6e34 1471 struct mem_cgroup *mem = NULL;
072c56c1 1472 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1473
f8d66542 1474 if (mem_cgroup_disabled())
8c7c6e34 1475 return NULL;
4077960e 1476
d13d1443 1477 if (PageSwapCache(page))
8c7c6e34 1478 return NULL;
d13d1443 1479
8697d331 1480 /*
3c541e14 1481 * Check if our page_cgroup is valid
8697d331 1482 */
52d4b9ac
KH
1483 pc = lookup_page_cgroup(page);
1484 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1485 return NULL;
b9c565d5 1486
52d4b9ac 1487 lock_page_cgroup(pc);
d13d1443 1488
8c7c6e34
KH
1489 mem = pc->mem_cgroup;
1490
d13d1443
KH
1491 if (!PageCgroupUsed(pc))
1492 goto unlock_out;
1493
1494 switch (ctype) {
1495 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1496 if (page_mapped(page))
1497 goto unlock_out;
1498 break;
1499 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1500 if (!PageAnon(page)) { /* Shared memory */
1501 if (page->mapping && !page_is_file_cache(page))
1502 goto unlock_out;
1503 } else if (page_mapped(page)) /* Anon */
1504 goto unlock_out;
1505 break;
1506 default:
1507 break;
52d4b9ac 1508 }
d13d1443 1509
8c7c6e34
KH
1510 res_counter_uncharge(&mem->res, PAGE_SIZE);
1511 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1512 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
08e552c6 1513 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 1514
52d4b9ac 1515 ClearPageCgroupUsed(pc);
544122e5
KH
1516 /*
1517 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1518 * freed from LRU. This is safe because uncharged page is expected not
1519 * to be reused (freed soon). Exception is SwapCache, it's handled by
1520 * special functions.
1521 */
b9c565d5 1522
69029cd5 1523 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1524 unlock_page_cgroup(pc);
fb59e9f1 1525
a7fe942e
KH
1526 /* at swapout, this memcg will be accessed to record to swap */
1527 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1528 css_put(&mem->css);
6d12e2d8 1529
8c7c6e34 1530 return mem;
d13d1443
KH
1531
1532unlock_out:
1533 unlock_page_cgroup(pc);
8c7c6e34 1534 return NULL;
3c541e14
BS
1535}
1536
69029cd5
KH
1537void mem_cgroup_uncharge_page(struct page *page)
1538{
52d4b9ac
KH
1539 /* early check. */
1540 if (page_mapped(page))
1541 return;
1542 if (page->mapping && !PageAnon(page))
1543 return;
69029cd5
KH
1544 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1545}
1546
1547void mem_cgroup_uncharge_cache_page(struct page *page)
1548{
1549 VM_BUG_ON(page_mapped(page));
b7abea96 1550 VM_BUG_ON(page->mapping);
69029cd5
KH
1551 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1552}
1553
e767e056 1554#ifdef CONFIG_SWAP
8c7c6e34 1555/*
e767e056 1556 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
1557 * memcg information is recorded to swap_cgroup of "ent"
1558 */
1559void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1560{
1561 struct mem_cgroup *memcg;
1562
1563 memcg = __mem_cgroup_uncharge_common(page,
1564 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1565 /* record memcg information */
1566 if (do_swap_account && memcg) {
a3b2d692 1567 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34
KH
1568 mem_cgroup_get(memcg);
1569 }
a7fe942e
KH
1570 if (memcg)
1571 css_put(&memcg->css);
8c7c6e34 1572}
e767e056 1573#endif
8c7c6e34
KH
1574
1575#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1576/*
1577 * called from swap_entry_free(). remove record in swap_cgroup and
1578 * uncharge "memsw" account.
1579 */
1580void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1581{
8c7c6e34 1582 struct mem_cgroup *memcg;
a3b2d692 1583 unsigned short id;
8c7c6e34
KH
1584
1585 if (!do_swap_account)
1586 return;
1587
a3b2d692
KH
1588 id = swap_cgroup_record(ent, 0);
1589 rcu_read_lock();
1590 memcg = mem_cgroup_lookup(id);
8c7c6e34 1591 if (memcg) {
a3b2d692
KH
1592 /*
1593 * We uncharge this because swap is freed.
1594 * This memcg can be obsolete one. We avoid calling css_tryget
1595 */
8c7c6e34
KH
1596 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1597 mem_cgroup_put(memcg);
1598 }
a3b2d692 1599 rcu_read_unlock();
d13d1443 1600}
8c7c6e34 1601#endif
d13d1443 1602
ae41be37 1603/*
01b1ae63
KH
1604 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1605 * page belongs to.
ae41be37 1606 */
01b1ae63 1607int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1608{
1609 struct page_cgroup *pc;
e8589cc1 1610 struct mem_cgroup *mem = NULL;
e8589cc1 1611 int ret = 0;
8869b8f6 1612
f8d66542 1613 if (mem_cgroup_disabled())
4077960e
BS
1614 return 0;
1615
52d4b9ac
KH
1616 pc = lookup_page_cgroup(page);
1617 lock_page_cgroup(pc);
1618 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1619 mem = pc->mem_cgroup;
1620 css_get(&mem->css);
e8589cc1 1621 }
52d4b9ac 1622 unlock_page_cgroup(pc);
01b1ae63 1623
e8589cc1 1624 if (mem) {
3bb4edf2 1625 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1626 css_put(&mem->css);
1627 }
01b1ae63 1628 *ptr = mem;
e8589cc1 1629 return ret;
ae41be37 1630}
8869b8f6 1631
69029cd5 1632/* remove redundant charge if migration failed*/
01b1ae63
KH
1633void mem_cgroup_end_migration(struct mem_cgroup *mem,
1634 struct page *oldpage, struct page *newpage)
ae41be37 1635{
01b1ae63
KH
1636 struct page *target, *unused;
1637 struct page_cgroup *pc;
1638 enum charge_type ctype;
1639
1640 if (!mem)
1641 return;
1642
1643 /* at migration success, oldpage->mapping is NULL. */
1644 if (oldpage->mapping) {
1645 target = oldpage;
1646 unused = NULL;
1647 } else {
1648 target = newpage;
1649 unused = oldpage;
1650 }
1651
1652 if (PageAnon(target))
1653 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1654 else if (page_is_file_cache(target))
1655 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1656 else
1657 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1658
1659 /* unused page is not on radix-tree now. */
d13d1443 1660 if (unused)
01b1ae63
KH
1661 __mem_cgroup_uncharge_common(unused, ctype);
1662
1663 pc = lookup_page_cgroup(target);
69029cd5 1664 /*
01b1ae63
KH
1665 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1666 * So, double-counting is effectively avoided.
1667 */
1668 __mem_cgroup_commit_charge(mem, pc, ctype);
1669
1670 /*
1671 * Both of oldpage and newpage are still under lock_page().
1672 * Then, we don't have to care about race in radix-tree.
1673 * But we have to be careful that this page is unmapped or not.
1674 *
1675 * There is a case for !page_mapped(). At the start of
1676 * migration, oldpage was mapped. But now, it's zapped.
1677 * But we know *target* page is not freed/reused under us.
1678 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1679 */
01b1ae63
KH
1680 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1681 mem_cgroup_uncharge_page(target);
ae41be37 1682}
78fb7466 1683
c9b0ed51 1684/*
ae3abae6
DN
1685 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1686 * Calling hierarchical_reclaim is not enough because we should update
1687 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1688 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1689 * not from the memcg which this page would be charged to.
1690 * try_charge_swapin does all of these works properly.
c9b0ed51 1691 */
ae3abae6 1692int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
1693 struct mm_struct *mm,
1694 gfp_t gfp_mask)
c9b0ed51 1695{
b5a84319 1696 struct mem_cgroup *mem = NULL;
ae3abae6 1697 int ret;
c9b0ed51 1698
f8d66542 1699 if (mem_cgroup_disabled())
cede86ac 1700 return 0;
c9b0ed51 1701
ae3abae6
DN
1702 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1703 if (!ret)
1704 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 1705
ae3abae6 1706 return ret;
c9b0ed51
KH
1707}
1708
8c7c6e34
KH
1709static DEFINE_MUTEX(set_limit_mutex);
1710
d38d2a75 1711static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1712 unsigned long long val)
628f4235 1713{
81d39c20 1714 int retry_count;
628f4235 1715 int progress;
8c7c6e34 1716 u64 memswlimit;
628f4235 1717 int ret = 0;
81d39c20
KH
1718 int children = mem_cgroup_count_children(memcg);
1719 u64 curusage, oldusage;
1720
1721 /*
1722 * For keeping hierarchical_reclaim simple, how long we should retry
1723 * is depends on callers. We set our retry-count to be function
1724 * of # of children which we should visit in this loop.
1725 */
1726 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1727
1728 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 1729
8c7c6e34 1730 while (retry_count) {
628f4235
KH
1731 if (signal_pending(current)) {
1732 ret = -EINTR;
1733 break;
1734 }
8c7c6e34
KH
1735 /*
1736 * Rather than hide all in some function, I do this in
1737 * open coded manner. You see what this really does.
1738 * We have to guarantee mem->res.limit < mem->memsw.limit.
1739 */
1740 mutex_lock(&set_limit_mutex);
1741 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1742 if (memswlimit < val) {
1743 ret = -EINVAL;
1744 mutex_unlock(&set_limit_mutex);
628f4235
KH
1745 break;
1746 }
8c7c6e34
KH
1747 ret = res_counter_set_limit(&memcg->res, val);
1748 mutex_unlock(&set_limit_mutex);
1749
1750 if (!ret)
1751 break;
1752
42e9abb6 1753 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
81d39c20
KH
1754 false, true);
1755 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1756 /* Usage is reduced ? */
1757 if (curusage >= oldusage)
1758 retry_count--;
1759 else
1760 oldusage = curusage;
8c7c6e34 1761 }
14797e23 1762
8c7c6e34
KH
1763 return ret;
1764}
1765
338c8431
LZ
1766static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1767 unsigned long long val)
8c7c6e34 1768{
81d39c20 1769 int retry_count;
8c7c6e34 1770 u64 memlimit, oldusage, curusage;
81d39c20
KH
1771 int children = mem_cgroup_count_children(memcg);
1772 int ret = -EBUSY;
8c7c6e34 1773
81d39c20
KH
1774 /* see mem_cgroup_resize_res_limit */
1775 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1776 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
1777 while (retry_count) {
1778 if (signal_pending(current)) {
1779 ret = -EINTR;
1780 break;
1781 }
1782 /*
1783 * Rather than hide all in some function, I do this in
1784 * open coded manner. You see what this really does.
1785 * We have to guarantee mem->res.limit < mem->memsw.limit.
1786 */
1787 mutex_lock(&set_limit_mutex);
1788 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1789 if (memlimit > val) {
1790 ret = -EINVAL;
1791 mutex_unlock(&set_limit_mutex);
1792 break;
1793 }
1794 ret = res_counter_set_limit(&memcg->memsw, val);
1795 mutex_unlock(&set_limit_mutex);
1796
1797 if (!ret)
1798 break;
1799
81d39c20 1800 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
8c7c6e34 1801 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 1802 /* Usage is reduced ? */
8c7c6e34 1803 if (curusage >= oldusage)
628f4235 1804 retry_count--;
81d39c20
KH
1805 else
1806 oldusage = curusage;
628f4235
KH
1807 }
1808 return ret;
1809}
1810
cc847582
KH
1811/*
1812 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1813 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1814 */
f817ed48 1815static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1816 int node, int zid, enum lru_list lru)
cc847582 1817{
08e552c6
KH
1818 struct zone *zone;
1819 struct mem_cgroup_per_zone *mz;
f817ed48 1820 struct page_cgroup *pc, *busy;
08e552c6 1821 unsigned long flags, loop;
072c56c1 1822 struct list_head *list;
f817ed48 1823 int ret = 0;
072c56c1 1824
08e552c6
KH
1825 zone = &NODE_DATA(node)->node_zones[zid];
1826 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1827 list = &mz->lists[lru];
cc847582 1828
f817ed48
KH
1829 loop = MEM_CGROUP_ZSTAT(mz, lru);
1830 /* give some margin against EBUSY etc...*/
1831 loop += 256;
1832 busy = NULL;
1833 while (loop--) {
1834 ret = 0;
08e552c6 1835 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1836 if (list_empty(list)) {
08e552c6 1837 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1838 break;
f817ed48
KH
1839 }
1840 pc = list_entry(list->prev, struct page_cgroup, lru);
1841 if (busy == pc) {
1842 list_move(&pc->lru, list);
1843 busy = 0;
08e552c6 1844 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1845 continue;
1846 }
08e552c6 1847 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1848
2c26fdd7 1849 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1850 if (ret == -ENOMEM)
52d4b9ac 1851 break;
f817ed48
KH
1852
1853 if (ret == -EBUSY || ret == -EINVAL) {
1854 /* found lock contention or "pc" is obsolete. */
1855 busy = pc;
1856 cond_resched();
1857 } else
1858 busy = NULL;
cc847582 1859 }
08e552c6 1860
f817ed48
KH
1861 if (!ret && !list_empty(list))
1862 return -EBUSY;
1863 return ret;
cc847582
KH
1864}
1865
1866/*
1867 * make mem_cgroup's charge to be 0 if there is no task.
1868 * This enables deleting this mem_cgroup.
1869 */
c1e862c1 1870static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1871{
f817ed48
KH
1872 int ret;
1873 int node, zid, shrink;
1874 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1875 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1876
cc847582 1877 css_get(&mem->css);
f817ed48
KH
1878
1879 shrink = 0;
c1e862c1
KH
1880 /* should free all ? */
1881 if (free_all)
1882 goto try_to_free;
f817ed48 1883move_account:
1ecaab2b 1884 while (mem->res.usage > 0) {
f817ed48 1885 ret = -EBUSY;
c1e862c1
KH
1886 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1887 goto out;
1888 ret = -EINTR;
1889 if (signal_pending(current))
cc847582 1890 goto out;
52d4b9ac
KH
1891 /* This is for making all *used* pages to be on LRU. */
1892 lru_add_drain_all();
f817ed48 1893 ret = 0;
299b4eaa 1894 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 1895 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1896 enum lru_list l;
f817ed48
KH
1897 for_each_lru(l) {
1898 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1899 node, zid, l);
f817ed48
KH
1900 if (ret)
1901 break;
1902 }
1ecaab2b 1903 }
f817ed48
KH
1904 if (ret)
1905 break;
1906 }
1907 /* it seems parent cgroup doesn't have enough mem */
1908 if (ret == -ENOMEM)
1909 goto try_to_free;
52d4b9ac 1910 cond_resched();
cc847582
KH
1911 }
1912 ret = 0;
1913out:
1914 css_put(&mem->css);
1915 return ret;
f817ed48
KH
1916
1917try_to_free:
c1e862c1
KH
1918 /* returns EBUSY if there is a task or if we come here twice. */
1919 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1920 ret = -EBUSY;
1921 goto out;
1922 }
c1e862c1
KH
1923 /* we call try-to-free pages for make this cgroup empty */
1924 lru_add_drain_all();
f817ed48
KH
1925 /* try to free all pages in this cgroup */
1926 shrink = 1;
1927 while (nr_retries && mem->res.usage > 0) {
1928 int progress;
c1e862c1
KH
1929
1930 if (signal_pending(current)) {
1931 ret = -EINTR;
1932 goto out;
1933 }
a7885eb8
KM
1934 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1935 false, get_swappiness(mem));
c1e862c1 1936 if (!progress) {
f817ed48 1937 nr_retries--;
c1e862c1
KH
1938 /* maybe some writeback is necessary */
1939 congestion_wait(WRITE, HZ/10);
1940 }
f817ed48
KH
1941
1942 }
08e552c6 1943 lru_add_drain();
f817ed48
KH
1944 /* try move_account...there may be some *locked* pages. */
1945 if (mem->res.usage)
1946 goto move_account;
1947 ret = 0;
1948 goto out;
cc847582
KH
1949}
1950
c1e862c1
KH
1951int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1952{
1953 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1954}
1955
1956
18f59ea7
BS
1957static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1958{
1959 return mem_cgroup_from_cont(cont)->use_hierarchy;
1960}
1961
1962static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1963 u64 val)
1964{
1965 int retval = 0;
1966 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1967 struct cgroup *parent = cont->parent;
1968 struct mem_cgroup *parent_mem = NULL;
1969
1970 if (parent)
1971 parent_mem = mem_cgroup_from_cont(parent);
1972
1973 cgroup_lock();
1974 /*
1975 * If parent's use_hiearchy is set, we can't make any modifications
1976 * in the child subtrees. If it is unset, then the change can
1977 * occur, provided the current cgroup has no children.
1978 *
1979 * For the root cgroup, parent_mem is NULL, we allow value to be
1980 * set if there are no children.
1981 */
1982 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1983 (val == 1 || val == 0)) {
1984 if (list_empty(&cont->children))
1985 mem->use_hierarchy = val;
1986 else
1987 retval = -EBUSY;
1988 } else
1989 retval = -EINVAL;
1990 cgroup_unlock();
1991
1992 return retval;
1993}
1994
2c3daa72 1995static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1996{
8c7c6e34
KH
1997 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1998 u64 val = 0;
1999 int type, name;
2000
2001 type = MEMFILE_TYPE(cft->private);
2002 name = MEMFILE_ATTR(cft->private);
2003 switch (type) {
2004 case _MEM:
2005 val = res_counter_read_u64(&mem->res, name);
2006 break;
2007 case _MEMSWAP:
338c8431 2008 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
2009 break;
2010 default:
2011 BUG();
2012 break;
2013 }
2014 return val;
8cdea7c0 2015}
628f4235
KH
2016/*
2017 * The user of this function is...
2018 * RES_LIMIT.
2019 */
856c13aa
PM
2020static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2021 const char *buffer)
8cdea7c0 2022{
628f4235 2023 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 2024 int type, name;
628f4235
KH
2025 unsigned long long val;
2026 int ret;
2027
8c7c6e34
KH
2028 type = MEMFILE_TYPE(cft->private);
2029 name = MEMFILE_ATTR(cft->private);
2030 switch (name) {
628f4235
KH
2031 case RES_LIMIT:
2032 /* This function does all necessary parse...reuse it */
2033 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
2034 if (ret)
2035 break;
2036 if (type == _MEM)
628f4235 2037 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
2038 else
2039 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
2040 break;
2041 default:
2042 ret = -EINVAL; /* should be BUG() ? */
2043 break;
2044 }
2045 return ret;
8cdea7c0
BS
2046}
2047
fee7b548
KH
2048static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2049 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2050{
2051 struct cgroup *cgroup;
2052 unsigned long long min_limit, min_memsw_limit, tmp;
2053
2054 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2055 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2056 cgroup = memcg->css.cgroup;
2057 if (!memcg->use_hierarchy)
2058 goto out;
2059
2060 while (cgroup->parent) {
2061 cgroup = cgroup->parent;
2062 memcg = mem_cgroup_from_cont(cgroup);
2063 if (!memcg->use_hierarchy)
2064 break;
2065 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2066 min_limit = min(min_limit, tmp);
2067 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2068 min_memsw_limit = min(min_memsw_limit, tmp);
2069 }
2070out:
2071 *mem_limit = min_limit;
2072 *memsw_limit = min_memsw_limit;
2073 return;
2074}
2075
29f2a4da 2076static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
2077{
2078 struct mem_cgroup *mem;
8c7c6e34 2079 int type, name;
c84872e1
PE
2080
2081 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
2082 type = MEMFILE_TYPE(event);
2083 name = MEMFILE_ATTR(event);
2084 switch (name) {
29f2a4da 2085 case RES_MAX_USAGE:
8c7c6e34
KH
2086 if (type == _MEM)
2087 res_counter_reset_max(&mem->res);
2088 else
2089 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
2090 break;
2091 case RES_FAILCNT:
8c7c6e34
KH
2092 if (type == _MEM)
2093 res_counter_reset_failcnt(&mem->res);
2094 else
2095 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
2096 break;
2097 }
85cc59db 2098 return 0;
c84872e1
PE
2099}
2100
14067bb3
KH
2101
2102/* For read statistics */
2103enum {
2104 MCS_CACHE,
2105 MCS_RSS,
d69b042f 2106 MCS_MAPPED_FILE,
14067bb3
KH
2107 MCS_PGPGIN,
2108 MCS_PGPGOUT,
2109 MCS_INACTIVE_ANON,
2110 MCS_ACTIVE_ANON,
2111 MCS_INACTIVE_FILE,
2112 MCS_ACTIVE_FILE,
2113 MCS_UNEVICTABLE,
2114 NR_MCS_STAT,
2115};
2116
2117struct mcs_total_stat {
2118 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
2119};
2120
14067bb3
KH
2121struct {
2122 char *local_name;
2123 char *total_name;
2124} memcg_stat_strings[NR_MCS_STAT] = {
2125 {"cache", "total_cache"},
2126 {"rss", "total_rss"},
d69b042f 2127 {"mapped_file", "total_mapped_file"},
14067bb3
KH
2128 {"pgpgin", "total_pgpgin"},
2129 {"pgpgout", "total_pgpgout"},
2130 {"inactive_anon", "total_inactive_anon"},
2131 {"active_anon", "total_active_anon"},
2132 {"inactive_file", "total_inactive_file"},
2133 {"active_file", "total_active_file"},
2134 {"unevictable", "total_unevictable"}
2135};
2136
2137
2138static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2139{
2140 struct mcs_total_stat *s = data;
2141 s64 val;
2142
2143 /* per cpu stat */
2144 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2145 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2146 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2147 s->stat[MCS_RSS] += val * PAGE_SIZE;
d69b042f
BS
2148 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2149 s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
14067bb3
KH
2150 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2151 s->stat[MCS_PGPGIN] += val;
2152 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2153 s->stat[MCS_PGPGOUT] += val;
2154
2155 /* per zone stat */
2156 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2157 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2158 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2159 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2160 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2161 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2162 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2163 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2164 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2165 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2166 return 0;
2167}
2168
2169static void
2170mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2171{
2172 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2173}
2174
c64745cf
PM
2175static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2176 struct cgroup_map_cb *cb)
d2ceb9b7 2177{
d2ceb9b7 2178 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 2179 struct mcs_total_stat mystat;
d2ceb9b7
KH
2180 int i;
2181
14067bb3
KH
2182 memset(&mystat, 0, sizeof(mystat));
2183 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 2184
14067bb3
KH
2185 for (i = 0; i < NR_MCS_STAT; i++)
2186 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
7b854121 2187
14067bb3 2188 /* Hierarchical information */
fee7b548
KH
2189 {
2190 unsigned long long limit, memsw_limit;
2191 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2192 cb->fill(cb, "hierarchical_memory_limit", limit);
2193 if (do_swap_account)
2194 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2195 }
7f016ee8 2196
14067bb3
KH
2197 memset(&mystat, 0, sizeof(mystat));
2198 mem_cgroup_get_total_stat(mem_cont, &mystat);
2199 for (i = 0; i < NR_MCS_STAT; i++)
2200 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2201
2202
7f016ee8 2203#ifdef CONFIG_DEBUG_VM
c772be93 2204 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
2205
2206 {
2207 int nid, zid;
2208 struct mem_cgroup_per_zone *mz;
2209 unsigned long recent_rotated[2] = {0, 0};
2210 unsigned long recent_scanned[2] = {0, 0};
2211
2212 for_each_online_node(nid)
2213 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2214 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2215
2216 recent_rotated[0] +=
2217 mz->reclaim_stat.recent_rotated[0];
2218 recent_rotated[1] +=
2219 mz->reclaim_stat.recent_rotated[1];
2220 recent_scanned[0] +=
2221 mz->reclaim_stat.recent_scanned[0];
2222 recent_scanned[1] +=
2223 mz->reclaim_stat.recent_scanned[1];
2224 }
2225 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2226 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2227 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2228 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2229 }
2230#endif
2231
d2ceb9b7
KH
2232 return 0;
2233}
2234
a7885eb8
KM
2235static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2236{
2237 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2238
2239 return get_swappiness(memcg);
2240}
2241
2242static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2243 u64 val)
2244{
2245 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2246 struct mem_cgroup *parent;
068b38c1 2247
a7885eb8
KM
2248 if (val > 100)
2249 return -EINVAL;
2250
2251 if (cgrp->parent == NULL)
2252 return -EINVAL;
2253
2254 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
2255
2256 cgroup_lock();
2257
a7885eb8
KM
2258 /* If under hierarchy, only empty-root can set this value */
2259 if ((parent->use_hierarchy) ||
068b38c1
LZ
2260 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2261 cgroup_unlock();
a7885eb8 2262 return -EINVAL;
068b38c1 2263 }
a7885eb8
KM
2264
2265 spin_lock(&memcg->reclaim_param_lock);
2266 memcg->swappiness = val;
2267 spin_unlock(&memcg->reclaim_param_lock);
2268
068b38c1
LZ
2269 cgroup_unlock();
2270
a7885eb8
KM
2271 return 0;
2272}
2273
c1e862c1 2274
8cdea7c0
BS
2275static struct cftype mem_cgroup_files[] = {
2276 {
0eea1030 2277 .name = "usage_in_bytes",
8c7c6e34 2278 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 2279 .read_u64 = mem_cgroup_read,
8cdea7c0 2280 },
c84872e1
PE
2281 {
2282 .name = "max_usage_in_bytes",
8c7c6e34 2283 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 2284 .trigger = mem_cgroup_reset,
c84872e1
PE
2285 .read_u64 = mem_cgroup_read,
2286 },
8cdea7c0 2287 {
0eea1030 2288 .name = "limit_in_bytes",
8c7c6e34 2289 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 2290 .write_string = mem_cgroup_write,
2c3daa72 2291 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
2292 },
2293 {
2294 .name = "failcnt",
8c7c6e34 2295 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 2296 .trigger = mem_cgroup_reset,
2c3daa72 2297 .read_u64 = mem_cgroup_read,
8cdea7c0 2298 },
d2ceb9b7
KH
2299 {
2300 .name = "stat",
c64745cf 2301 .read_map = mem_control_stat_show,
d2ceb9b7 2302 },
c1e862c1
KH
2303 {
2304 .name = "force_empty",
2305 .trigger = mem_cgroup_force_empty_write,
2306 },
18f59ea7
BS
2307 {
2308 .name = "use_hierarchy",
2309 .write_u64 = mem_cgroup_hierarchy_write,
2310 .read_u64 = mem_cgroup_hierarchy_read,
2311 },
a7885eb8
KM
2312 {
2313 .name = "swappiness",
2314 .read_u64 = mem_cgroup_swappiness_read,
2315 .write_u64 = mem_cgroup_swappiness_write,
2316 },
8cdea7c0
BS
2317};
2318
8c7c6e34
KH
2319#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2320static struct cftype memsw_cgroup_files[] = {
2321 {
2322 .name = "memsw.usage_in_bytes",
2323 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2324 .read_u64 = mem_cgroup_read,
2325 },
2326 {
2327 .name = "memsw.max_usage_in_bytes",
2328 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2329 .trigger = mem_cgroup_reset,
2330 .read_u64 = mem_cgroup_read,
2331 },
2332 {
2333 .name = "memsw.limit_in_bytes",
2334 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2335 .write_string = mem_cgroup_write,
2336 .read_u64 = mem_cgroup_read,
2337 },
2338 {
2339 .name = "memsw.failcnt",
2340 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2341 .trigger = mem_cgroup_reset,
2342 .read_u64 = mem_cgroup_read,
2343 },
2344};
2345
2346static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2347{
2348 if (!do_swap_account)
2349 return 0;
2350 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2351 ARRAY_SIZE(memsw_cgroup_files));
2352};
2353#else
2354static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2355{
2356 return 0;
2357}
2358#endif
2359
6d12e2d8
KH
2360static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2361{
2362 struct mem_cgroup_per_node *pn;
1ecaab2b 2363 struct mem_cgroup_per_zone *mz;
b69408e8 2364 enum lru_list l;
41e3355d 2365 int zone, tmp = node;
1ecaab2b
KH
2366 /*
2367 * This routine is called against possible nodes.
2368 * But it's BUG to call kmalloc() against offline node.
2369 *
2370 * TODO: this routine can waste much memory for nodes which will
2371 * never be onlined. It's better to use memory hotplug callback
2372 * function.
2373 */
41e3355d
KH
2374 if (!node_state(node, N_NORMAL_MEMORY))
2375 tmp = -1;
2376 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2377 if (!pn)
2378 return 1;
1ecaab2b 2379
6d12e2d8
KH
2380 mem->info.nodeinfo[node] = pn;
2381 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2382
2383 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2384 mz = &pn->zoneinfo[zone];
b69408e8
CL
2385 for_each_lru(l)
2386 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2387 }
6d12e2d8
KH
2388 return 0;
2389}
2390
1ecaab2b
KH
2391static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2392{
2393 kfree(mem->info.nodeinfo[node]);
2394}
2395
c8dad2bb
JB
2396static int mem_cgroup_size(void)
2397{
2398 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2399 return sizeof(struct mem_cgroup) + cpustat_size;
2400}
2401
33327948
KH
2402static struct mem_cgroup *mem_cgroup_alloc(void)
2403{
2404 struct mem_cgroup *mem;
c8dad2bb 2405 int size = mem_cgroup_size();
33327948 2406
c8dad2bb
JB
2407 if (size < PAGE_SIZE)
2408 mem = kmalloc(size, GFP_KERNEL);
33327948 2409 else
c8dad2bb 2410 mem = vmalloc(size);
33327948
KH
2411
2412 if (mem)
c8dad2bb 2413 memset(mem, 0, size);
33327948
KH
2414 return mem;
2415}
2416
8c7c6e34
KH
2417/*
2418 * At destroying mem_cgroup, references from swap_cgroup can remain.
2419 * (scanning all at force_empty is too costly...)
2420 *
2421 * Instead of clearing all references at force_empty, we remember
2422 * the number of reference from swap_cgroup and free mem_cgroup when
2423 * it goes down to 0.
2424 *
8c7c6e34
KH
2425 * Removal of cgroup itself succeeds regardless of refs from swap.
2426 */
2427
a7ba0eef 2428static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 2429{
08e552c6
KH
2430 int node;
2431
04046e1a
KH
2432 free_css_id(&mem_cgroup_subsys, &mem->css);
2433
08e552c6
KH
2434 for_each_node_state(node, N_POSSIBLE)
2435 free_mem_cgroup_per_zone_info(mem, node);
2436
c8dad2bb 2437 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2438 kfree(mem);
2439 else
2440 vfree(mem);
2441}
2442
8c7c6e34
KH
2443static void mem_cgroup_get(struct mem_cgroup *mem)
2444{
2445 atomic_inc(&mem->refcnt);
2446}
2447
2448static void mem_cgroup_put(struct mem_cgroup *mem)
2449{
7bcc1bb1
DN
2450 if (atomic_dec_and_test(&mem->refcnt)) {
2451 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 2452 __mem_cgroup_free(mem);
7bcc1bb1
DN
2453 if (parent)
2454 mem_cgroup_put(parent);
2455 }
8c7c6e34
KH
2456}
2457
7bcc1bb1
DN
2458/*
2459 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2460 */
2461static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2462{
2463 if (!mem->res.parent)
2464 return NULL;
2465 return mem_cgroup_from_res_counter(mem->res.parent, res);
2466}
33327948 2467
c077719b
KH
2468#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2469static void __init enable_swap_cgroup(void)
2470{
f8d66542 2471 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2472 do_swap_account = 1;
2473}
2474#else
2475static void __init enable_swap_cgroup(void)
2476{
2477}
2478#endif
2479
0eb253e2 2480static struct cgroup_subsys_state * __ref
8cdea7c0
BS
2481mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2482{
28dbc4b6 2483 struct mem_cgroup *mem, *parent;
04046e1a 2484 long error = -ENOMEM;
6d12e2d8 2485 int node;
8cdea7c0 2486
c8dad2bb
JB
2487 mem = mem_cgroup_alloc();
2488 if (!mem)
04046e1a 2489 return ERR_PTR(error);
78fb7466 2490
6d12e2d8
KH
2491 for_each_node_state(node, N_POSSIBLE)
2492 if (alloc_mem_cgroup_per_zone_info(mem, node))
2493 goto free_out;
c077719b 2494 /* root ? */
28dbc4b6 2495 if (cont->parent == NULL) {
c077719b 2496 enable_swap_cgroup();
28dbc4b6 2497 parent = NULL;
18f59ea7 2498 } else {
28dbc4b6 2499 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2500 mem->use_hierarchy = parent->use_hierarchy;
2501 }
28dbc4b6 2502
18f59ea7
BS
2503 if (parent && parent->use_hierarchy) {
2504 res_counter_init(&mem->res, &parent->res);
2505 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
2506 /*
2507 * We increment refcnt of the parent to ensure that we can
2508 * safely access it on res_counter_charge/uncharge.
2509 * This refcnt will be decremented when freeing this
2510 * mem_cgroup(see mem_cgroup_put).
2511 */
2512 mem_cgroup_get(parent);
18f59ea7
BS
2513 } else {
2514 res_counter_init(&mem->res, NULL);
2515 res_counter_init(&mem->memsw, NULL);
2516 }
04046e1a 2517 mem->last_scanned_child = 0;
2733c06a 2518 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2519
a7885eb8
KM
2520 if (parent)
2521 mem->swappiness = get_swappiness(parent);
a7ba0eef 2522 atomic_set(&mem->refcnt, 1);
8cdea7c0 2523 return &mem->css;
6d12e2d8 2524free_out:
a7ba0eef 2525 __mem_cgroup_free(mem);
04046e1a 2526 return ERR_PTR(error);
8cdea7c0
BS
2527}
2528
ec64f515 2529static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
2530 struct cgroup *cont)
2531{
2532 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
2533
2534 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
2535}
2536
8cdea7c0
BS
2537static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2538 struct cgroup *cont)
2539{
c268e994 2540 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 2541
c268e994 2542 mem_cgroup_put(mem);
8cdea7c0
BS
2543}
2544
2545static int mem_cgroup_populate(struct cgroup_subsys *ss,
2546 struct cgroup *cont)
2547{
8c7c6e34
KH
2548 int ret;
2549
2550 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2551 ARRAY_SIZE(mem_cgroup_files));
2552
2553 if (!ret)
2554 ret = register_memsw_files(cont, ss);
2555 return ret;
8cdea7c0
BS
2556}
2557
67e465a7
BS
2558static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2559 struct cgroup *cont,
2560 struct cgroup *old_cont,
2561 struct task_struct *p)
2562{
7f4d454d 2563 mutex_lock(&memcg_tasklist);
67e465a7 2564 /*
f9717d28
NK
2565 * FIXME: It's better to move charges of this process from old
2566 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2567 */
7f4d454d 2568 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2569}
2570
8cdea7c0
BS
2571struct cgroup_subsys mem_cgroup_subsys = {
2572 .name = "memory",
2573 .subsys_id = mem_cgroup_subsys_id,
2574 .create = mem_cgroup_create,
df878fb0 2575 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2576 .destroy = mem_cgroup_destroy,
2577 .populate = mem_cgroup_populate,
67e465a7 2578 .attach = mem_cgroup_move_task,
6d12e2d8 2579 .early_init = 0,
04046e1a 2580 .use_id = 1,
8cdea7c0 2581};
c077719b
KH
2582
2583#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2584
2585static int __init disable_swap_account(char *s)
2586{
2587 really_do_swap_account = 0;
2588 return 1;
2589}
2590__setup("noswapaccount", disable_swap_account);
2591#endif