]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Fix softirq time accounting
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
6aa645ea 494
1da177e4
LT
495 atomic_t nr_iowait;
496
497#ifdef CONFIG_SMP
0eab9146 498 struct root_domain *rd;
1da177e4
LT
499 struct sched_domain *sd;
500
e51fd5e2
PZ
501 unsigned long cpu_power;
502
a0a522ce 503 unsigned char idle_at_tick;
1da177e4 504 /* For active balancing */
3f029d3c 505 int post_schedule;
1da177e4
LT
506 int active_balance;
507 int push_cpu;
969c7921 508 struct cpu_stop_work active_balance_work;
d8016491
IM
509 /* cpu of this runqueue: */
510 int cpu;
1f11eb6a 511 int online;
1da177e4 512
a8a51d5e 513 unsigned long avg_load_per_task;
1da177e4 514
e9e9250b
PZ
515 u64 rt_avg;
516 u64 age_stamp;
1b9508f6
MG
517 u64 idle_stamp;
518 u64 avg_idle;
1da177e4
LT
519#endif
520
dce48a84
TG
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
8f4d37ec 525#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
526#ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529#endif
8f4d37ec
PZ
530 struct hrtimer hrtick_timer;
531#endif
532
1da177e4
LT
533#ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
9c2c4802
KC
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
538
539 /* sys_sched_yield() stats */
480b9434 540 unsigned int yld_count;
1da177e4
LT
541
542 /* schedule() stats */
480b9434
KC
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
1da177e4
LT
546
547 /* try_to_wake_up() stats */
480b9434
KC
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
b8efb561
IM
550
551 /* BKL stats */
480b9434 552 unsigned int bkl_count;
1da177e4
LT
553#endif
554};
555
f34e3b61 556static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 557
7d478721
PZ
558static inline
559void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 560{
7d478721 561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
dd41f596
IM
569}
570
0a2966b4
CL
571static inline int cpu_of(struct rq *rq)
572{
573#ifdef CONFIG_SMP
574 return rq->cpu;
575#else
576 return 0;
577#endif
578}
579
497f0ab3 580#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
674311d5
NP
585/*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 587 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
48f24c4d 592#define for_each_domain(cpu, __sd) \
497f0ab3 593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
594
595#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596#define this_rq() (&__get_cpu_var(runqueues))
597#define task_rq(p) cpu_rq(task_cpu(p))
598#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 599#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 600
dc61b1d6
PZ
601#ifdef CONFIG_CGROUP_SCHED
602
603/*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611static inline struct task_group *task_group(struct task_struct *p)
612{
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618}
619
620/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622{
623#ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626#endif
627
628#ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631#endif
632}
633
634#else /* CONFIG_CGROUP_SCHED */
635
636static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637static inline struct task_group *task_group(struct task_struct *p)
638{
639 return NULL;
640}
641
642#endif /* CONFIG_CGROUP_SCHED */
643
aa9c4c0f 644inline void update_rq_clock(struct rq *rq)
3e51f33f 645{
a64692a3
MG
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
648}
649
bf5c91ba
IM
650/*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653#ifdef CONFIG_SCHED_DEBUG
654# define const_debug __read_mostly
655#else
656# define const_debug static const
657#endif
658
017730c1
IM
659/**
660 * runqueue_is_locked
e17b38bf 661 * @cpu: the processor in question.
017730c1
IM
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
89f19f04 667int runqueue_is_locked(int cpu)
017730c1 668{
05fa785c 669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
670}
671
bf5c91ba
IM
672/*
673 * Debugging: various feature bits
674 */
f00b45c1
PZ
675
676#define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
bf5c91ba 679enum {
f00b45c1 680#include "sched_features.h"
bf5c91ba
IM
681};
682
f00b45c1
PZ
683#undef SCHED_FEAT
684
685#define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
bf5c91ba 688const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
689#include "sched_features.h"
690 0;
691
692#undef SCHED_FEAT
693
694#ifdef CONFIG_SCHED_DEBUG
695#define SCHED_FEAT(name, enabled) \
696 #name ,
697
983ed7a6 698static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
699#include "sched_features.h"
700 NULL
701};
702
703#undef SCHED_FEAT
704
34f3a814 705static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 706{
f00b45c1
PZ
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 713 }
34f3a814 714 seq_puts(m, "\n");
f00b45c1 715
34f3a814 716 return 0;
f00b45c1
PZ
717}
718
719static ssize_t
720sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722{
723 char buf[64];
7740191c 724 char *cmp;
f00b45c1
PZ
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
7740191c 735 cmp = strstrip(buf);
f00b45c1 736
c24b7c52 737 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
7740191c 743 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
744 if (neg)
745 sysctl_sched_features &= ~(1UL << i);
746 else
747 sysctl_sched_features |= (1UL << i);
748 break;
749 }
750 }
751
752 if (!sched_feat_names[i])
753 return -EINVAL;
754
42994724 755 *ppos += cnt;
f00b45c1
PZ
756
757 return cnt;
758}
759
34f3a814
LZ
760static int sched_feat_open(struct inode *inode, struct file *filp)
761{
762 return single_open(filp, sched_feat_show, NULL);
763}
764
828c0950 765static const struct file_operations sched_feat_fops = {
34f3a814
LZ
766 .open = sched_feat_open,
767 .write = sched_feat_write,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
f00b45c1
PZ
771};
772
773static __init int sched_init_debug(void)
774{
f00b45c1
PZ
775 debugfs_create_file("sched_features", 0644, NULL, NULL,
776 &sched_feat_fops);
777
778 return 0;
779}
780late_initcall(sched_init_debug);
781
782#endif
783
784#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 785
b82d9fdd
PZ
786/*
787 * Number of tasks to iterate in a single balance run.
788 * Limited because this is done with IRQs disabled.
789 */
790const_debug unsigned int sysctl_sched_nr_migrate = 32;
791
2398f2c6
PZ
792/*
793 * ratelimit for updating the group shares.
55cd5340 794 * default: 0.25ms
2398f2c6 795 */
55cd5340 796unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 797unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 798
ffda12a1
PZ
799/*
800 * Inject some fuzzyness into changing the per-cpu group shares
801 * this avoids remote rq-locks at the expense of fairness.
802 * default: 4
803 */
804unsigned int sysctl_sched_shares_thresh = 4;
805
e9e9250b
PZ
806/*
807 * period over which we average the RT time consumption, measured
808 * in ms.
809 *
810 * default: 1s
811 */
812const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
813
fa85ae24 814/*
9f0c1e56 815 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
816 * default: 1s
817 */
9f0c1e56 818unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 819
6892b75e
IM
820static __read_mostly int scheduler_running;
821
9f0c1e56
PZ
822/*
823 * part of the period that we allow rt tasks to run in us.
824 * default: 0.95s
825 */
826int sysctl_sched_rt_runtime = 950000;
fa85ae24 827
d0b27fa7
PZ
828static inline u64 global_rt_period(void)
829{
830 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831}
832
833static inline u64 global_rt_runtime(void)
834{
e26873bb 835 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
836 return RUNTIME_INF;
837
838 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839}
fa85ae24 840
1da177e4 841#ifndef prepare_arch_switch
4866cde0
NP
842# define prepare_arch_switch(next) do { } while (0)
843#endif
844#ifndef finish_arch_switch
845# define finish_arch_switch(prev) do { } while (0)
846#endif
847
051a1d1a
DA
848static inline int task_current(struct rq *rq, struct task_struct *p)
849{
850 return rq->curr == p;
851}
852
4866cde0 853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 854static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 855{
051a1d1a 856 return task_current(rq, p);
4866cde0
NP
857}
858
70b97a7f 859static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
860{
861}
862
70b97a7f 863static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 864{
da04c035
IM
865#ifdef CONFIG_DEBUG_SPINLOCK
866 /* this is a valid case when another task releases the spinlock */
867 rq->lock.owner = current;
868#endif
8a25d5de
IM
869 /*
870 * If we are tracking spinlock dependencies then we have to
871 * fix up the runqueue lock - which gets 'carried over' from
872 * prev into current:
873 */
874 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
875
05fa785c 876 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
877}
878
879#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 880static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
881{
882#ifdef CONFIG_SMP
883 return p->oncpu;
884#else
051a1d1a 885 return task_current(rq, p);
4866cde0
NP
886#endif
887}
888
70b97a7f 889static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
890{
891#ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
897 next->oncpu = 1;
898#endif
899#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 900 raw_spin_unlock_irq(&rq->lock);
4866cde0 901#else
05fa785c 902 raw_spin_unlock(&rq->lock);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * After ->oncpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
915 prev->oncpu = 0;
916#endif
917#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
1da177e4 919#endif
4866cde0
NP
920}
921#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 922
0970d299 923/*
65cc8e48
PZ
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
0970d299
PZ
926 */
927static inline int task_is_waking(struct task_struct *p)
928{
0017d735 929 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
930}
931
b29739f9
IM
932/*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
3a5c359a 941 for (;;) {
0970d299 942 rq = task_rq(p);
05fa785c 943 raw_spin_lock(&rq->lock);
65cc8e48 944 if (likely(rq == task_rq(p)))
3a5c359a 945 return rq;
05fa785c 946 raw_spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4
LT
950/*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 952 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
953 * explicitly disabling preemption.
954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4 959
3a5c359a
AK
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
05fa785c 963 raw_spin_lock(&rq->lock);
65cc8e48 964 if (likely(rq == task_rq(p)))
3a5c359a 965 return rq;
05fa785c 966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
70b97a7f 976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
977 __releases(rq->lock)
978{
05fa785c 979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
980}
981
1da177e4 982/*
cc2a73b5 983 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 984 */
a9957449 985static struct rq *this_rq_lock(void)
1da177e4
LT
986 __acquires(rq->lock)
987{
70b97a7f 988 struct rq *rq;
1da177e4
LT
989
990 local_irq_disable();
991 rq = this_rq();
05fa785c 992 raw_spin_lock(&rq->lock);
1da177e4
LT
993
994 return rq;
995}
996
8f4d37ec
PZ
997#ifdef CONFIG_SCHED_HRTICK
998/*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
8f4d37ec
PZ
1008
1009/*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014static inline int hrtick_enabled(struct rq *rq)
1015{
1016 if (!sched_feat(HRTICK))
1017 return 0;
ba42059f 1018 if (!cpu_active(cpu_of(rq)))
b328ca18 1019 return 0;
8f4d37ec
PZ
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021}
1022
8f4d37ec
PZ
1023static void hrtick_clear(struct rq *rq)
1024{
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029/*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034{
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
05fa785c 1039 raw_spin_lock(&rq->lock);
3e51f33f 1040 update_rq_clock(rq);
8f4d37ec 1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1042 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1043
1044 return HRTIMER_NORESTART;
1045}
1046
95e904c7 1047#ifdef CONFIG_SMP
31656519
PZ
1048/*
1049 * called from hardirq (IPI) context
1050 */
1051static void __hrtick_start(void *arg)
b328ca18 1052{
31656519 1053 struct rq *rq = arg;
b328ca18 1054
05fa785c 1055 raw_spin_lock(&rq->lock);
31656519
PZ
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
05fa785c 1058 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1059}
1060
31656519
PZ
1061/*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1067{
31656519
PZ
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1070
cc584b21 1071 hrtimer_set_expires(timer, time);
31656519
PZ
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
6e275637 1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1077 rq->hrtick_csd_pending = 1;
1078 }
b328ca18
PZ
1079}
1080
1081static int
1082hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083{
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
31656519 1093 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098}
1099
fa748203 1100static __init void init_hrtick(void)
b328ca18
PZ
1101{
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103}
31656519
PZ
1104#else
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
1111{
7f1e2ca9 1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1113 HRTIMER_MODE_REL_PINNED, 0);
31656519 1114}
b328ca18 1115
006c75f1 1116static inline void init_hrtick(void)
8f4d37ec 1117{
8f4d37ec 1118}
31656519 1119#endif /* CONFIG_SMP */
8f4d37ec 1120
31656519 1121static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1122{
31656519
PZ
1123#ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
8f4d37ec 1125
31656519
PZ
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129#endif
8f4d37ec 1130
31656519
PZ
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
8f4d37ec 1133}
006c75f1 1134#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
8f4d37ec
PZ
1139static inline void init_rq_hrtick(struct rq *rq)
1140{
1141}
1142
b328ca18
PZ
1143static inline void init_hrtick(void)
1144{
1145}
006c75f1 1146#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1147
c24d20db
IM
1148/*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155#ifdef CONFIG_SMP
1156
1157#ifndef tsk_is_polling
1158#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159#endif
1160
31656519 1161static void resched_task(struct task_struct *p)
c24d20db
IM
1162{
1163 int cpu;
1164
05fa785c 1165 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1166
5ed0cec0 1167 if (test_tsk_need_resched(p))
c24d20db
IM
1168 return;
1169
5ed0cec0 1170 set_tsk_need_resched(p);
c24d20db
IM
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180}
1181
1182static void resched_cpu(int cpu)
1183{
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
05fa785c 1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1188 return;
1189 resched_task(cpu_curr(cpu));
05fa785c 1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1191}
06d8308c
TG
1192
1193#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1194/*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202int get_nohz_timer_target(void)
1203{
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214}
06d8308c
TG
1215/*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225void wake_up_idle_cpu(int cpu)
1226{
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
5ed0cec0 1247 set_tsk_need_resched(rq->idle);
06d8308c
TG
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253}
39c0cbe2 1254
6d6bc0ad 1255#endif /* CONFIG_NO_HZ */
06d8308c 1256
e9e9250b
PZ
1257static u64 sched_avg_period(void)
1258{
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260}
1261
1262static void sched_avg_update(struct rq *rq)
1263{
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276}
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282}
1283
6d6bc0ad 1284#else /* !CONFIG_SMP */
31656519 1285static void resched_task(struct task_struct *p)
c24d20db 1286{
05fa785c 1287 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1288 set_tsk_need_resched(p);
c24d20db 1289}
e9e9250b
PZ
1290
1291static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292{
1293}
da2b71ed
SS
1294
1295static void sched_avg_update(struct rq *rq)
1296{
1297}
6d6bc0ad 1298#endif /* CONFIG_SMP */
c24d20db 1299
45bf76df
IM
1300#if BITS_PER_LONG == 32
1301# define WMULT_CONST (~0UL)
1302#else
1303# define WMULT_CONST (1UL << 32)
1304#endif
1305
1306#define WMULT_SHIFT 32
1307
194081eb
IM
1308/*
1309 * Shift right and round:
1310 */
cf2ab469 1311#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1312
a7be37ac
PZ
1313/*
1314 * delta *= weight / lw
1315 */
cb1c4fc9 1316static unsigned long
45bf76df
IM
1317calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319{
1320 u64 tmp;
1321
7a232e03
LJ
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
45bf76df
IM
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
194081eb 1334 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1336 WMULT_SHIFT/2);
1337 else
cf2ab469 1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1339
ecf691da 1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1344{
1345 lw->weight += inc;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
1091985b 1349static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1350{
1351 lw->weight -= dec;
e89996ae 1352 lw->inv_weight = 0;
45bf76df
IM
1353}
1354
2dd73a4f
PW
1355/*
1356 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1357 * of tasks with abnormal "nice" values across CPUs the contribution that
1358 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1359 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1360 * scaled version of the new time slice allocation that they receive on time
1361 * slice expiry etc.
1362 */
1363
cce7ade8
PZ
1364#define WEIGHT_IDLEPRIO 3
1365#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1366
1367/*
1368 * Nice levels are multiplicative, with a gentle 10% change for every
1369 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1370 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1371 * that remained on nice 0.
1372 *
1373 * The "10% effect" is relative and cumulative: from _any_ nice level,
1374 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1375 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1376 * If a task goes up by ~10% and another task goes down by ~10% then
1377 * the relative distance between them is ~25%.)
dd41f596
IM
1378 */
1379static const int prio_to_weight[40] = {
254753dc
IM
1380 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1381 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1382 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1383 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1384 /* 0 */ 1024, 820, 655, 526, 423,
1385 /* 5 */ 335, 272, 215, 172, 137,
1386 /* 10 */ 110, 87, 70, 56, 45,
1387 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1388};
1389
5714d2de
IM
1390/*
1391 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1392 *
1393 * In cases where the weight does not change often, we can use the
1394 * precalculated inverse to speed up arithmetics by turning divisions
1395 * into multiplications:
1396 */
dd41f596 1397static const u32 prio_to_wmult[40] = {
254753dc
IM
1398 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1399 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1400 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1401 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1402 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1403 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1404 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1405 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1406};
2dd73a4f 1407
ef12fefa
BR
1408/* Time spent by the tasks of the cpu accounting group executing in ... */
1409enum cpuacct_stat_index {
1410 CPUACCT_STAT_USER, /* ... user mode */
1411 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1412
1413 CPUACCT_STAT_NSTATS,
1414};
1415
d842de87
SV
1416#ifdef CONFIG_CGROUP_CPUACCT
1417static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1418static void cpuacct_update_stats(struct task_struct *tsk,
1419 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1420#else
1421static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1422static inline void cpuacct_update_stats(struct task_struct *tsk,
1423 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1424#endif
1425
18d95a28
PZ
1426static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1427{
1428 update_load_add(&rq->load, load);
1429}
1430
1431static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1432{
1433 update_load_sub(&rq->load, load);
1434}
1435
7940ca36 1436#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1437typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1438
1439/*
1440 * Iterate the full tree, calling @down when first entering a node and @up when
1441 * leaving it for the final time.
1442 */
eb755805 1443static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1444{
1445 struct task_group *parent, *child;
eb755805 1446 int ret;
c09595f6
PZ
1447
1448 rcu_read_lock();
1449 parent = &root_task_group;
1450down:
eb755805
PZ
1451 ret = (*down)(parent, data);
1452 if (ret)
1453 goto out_unlock;
c09595f6
PZ
1454 list_for_each_entry_rcu(child, &parent->children, siblings) {
1455 parent = child;
1456 goto down;
1457
1458up:
1459 continue;
1460 }
eb755805
PZ
1461 ret = (*up)(parent, data);
1462 if (ret)
1463 goto out_unlock;
c09595f6
PZ
1464
1465 child = parent;
1466 parent = parent->parent;
1467 if (parent)
1468 goto up;
eb755805 1469out_unlock:
c09595f6 1470 rcu_read_unlock();
eb755805
PZ
1471
1472 return ret;
c09595f6
PZ
1473}
1474
eb755805
PZ
1475static int tg_nop(struct task_group *tg, void *data)
1476{
1477 return 0;
c09595f6 1478}
eb755805
PZ
1479#endif
1480
1481#ifdef CONFIG_SMP
f5f08f39
PZ
1482/* Used instead of source_load when we know the type == 0 */
1483static unsigned long weighted_cpuload(const int cpu)
1484{
1485 return cpu_rq(cpu)->load.weight;
1486}
1487
1488/*
1489 * Return a low guess at the load of a migration-source cpu weighted
1490 * according to the scheduling class and "nice" value.
1491 *
1492 * We want to under-estimate the load of migration sources, to
1493 * balance conservatively.
1494 */
1495static unsigned long source_load(int cpu, int type)
1496{
1497 struct rq *rq = cpu_rq(cpu);
1498 unsigned long total = weighted_cpuload(cpu);
1499
1500 if (type == 0 || !sched_feat(LB_BIAS))
1501 return total;
1502
1503 return min(rq->cpu_load[type-1], total);
1504}
1505
1506/*
1507 * Return a high guess at the load of a migration-target cpu weighted
1508 * according to the scheduling class and "nice" value.
1509 */
1510static unsigned long target_load(int cpu, int type)
1511{
1512 struct rq *rq = cpu_rq(cpu);
1513 unsigned long total = weighted_cpuload(cpu);
1514
1515 if (type == 0 || !sched_feat(LB_BIAS))
1516 return total;
1517
1518 return max(rq->cpu_load[type-1], total);
1519}
1520
ae154be1
PZ
1521static unsigned long power_of(int cpu)
1522{
e51fd5e2 1523 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1524}
1525
eb755805
PZ
1526static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1527
1528static unsigned long cpu_avg_load_per_task(int cpu)
1529{
1530 struct rq *rq = cpu_rq(cpu);
af6d596f 1531 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1532
4cd42620
SR
1533 if (nr_running)
1534 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1535 else
1536 rq->avg_load_per_task = 0;
eb755805
PZ
1537
1538 return rq->avg_load_per_task;
1539}
1540
1541#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1542
43cf38eb 1543static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1544
c09595f6
PZ
1545static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1546
1547/*
1548 * Calculate and set the cpu's group shares.
1549 */
34d76c41
PZ
1550static void update_group_shares_cpu(struct task_group *tg, int cpu,
1551 unsigned long sd_shares,
1552 unsigned long sd_rq_weight,
4a6cc4bd 1553 unsigned long *usd_rq_weight)
18d95a28 1554{
34d76c41 1555 unsigned long shares, rq_weight;
a5004278 1556 int boost = 0;
c09595f6 1557
4a6cc4bd 1558 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1559 if (!rq_weight) {
1560 boost = 1;
1561 rq_weight = NICE_0_LOAD;
1562 }
c8cba857 1563
c09595f6 1564 /*
a8af7246
PZ
1565 * \Sum_j shares_j * rq_weight_i
1566 * shares_i = -----------------------------
1567 * \Sum_j rq_weight_j
c09595f6 1568 */
ec4e0e2f 1569 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1570 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1571
ffda12a1
PZ
1572 if (abs(shares - tg->se[cpu]->load.weight) >
1573 sysctl_sched_shares_thresh) {
1574 struct rq *rq = cpu_rq(cpu);
1575 unsigned long flags;
c09595f6 1576
05fa785c 1577 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1578 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1579 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1580 __set_se_shares(tg->se[cpu], shares);
05fa785c 1581 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1582 }
18d95a28 1583}
c09595f6
PZ
1584
1585/*
c8cba857
PZ
1586 * Re-compute the task group their per cpu shares over the given domain.
1587 * This needs to be done in a bottom-up fashion because the rq weight of a
1588 * parent group depends on the shares of its child groups.
c09595f6 1589 */
eb755805 1590static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1591{
cd8ad40d 1592 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1593 unsigned long *usd_rq_weight;
eb755805 1594 struct sched_domain *sd = data;
34d76c41 1595 unsigned long flags;
c8cba857 1596 int i;
c09595f6 1597
34d76c41
PZ
1598 if (!tg->se[0])
1599 return 0;
1600
1601 local_irq_save(flags);
4a6cc4bd 1602 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1603
758b2cdc 1604 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1605 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1606 usd_rq_weight[i] = weight;
34d76c41 1607
cd8ad40d 1608 rq_weight += weight;
ec4e0e2f
KC
1609 /*
1610 * If there are currently no tasks on the cpu pretend there
1611 * is one of average load so that when a new task gets to
1612 * run here it will not get delayed by group starvation.
1613 */
ec4e0e2f
KC
1614 if (!weight)
1615 weight = NICE_0_LOAD;
1616
cd8ad40d 1617 sum_weight += weight;
c8cba857 1618 shares += tg->cfs_rq[i]->shares;
c09595f6 1619 }
c09595f6 1620
cd8ad40d
PZ
1621 if (!rq_weight)
1622 rq_weight = sum_weight;
1623
c8cba857
PZ
1624 if ((!shares && rq_weight) || shares > tg->shares)
1625 shares = tg->shares;
1626
1627 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1628 shares = tg->shares;
c09595f6 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1631 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1632
1633 local_irq_restore(flags);
eb755805
PZ
1634
1635 return 0;
c09595f6
PZ
1636}
1637
1638/*
c8cba857
PZ
1639 * Compute the cpu's hierarchical load factor for each task group.
1640 * This needs to be done in a top-down fashion because the load of a child
1641 * group is a fraction of its parents load.
c09595f6 1642 */
eb755805 1643static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1644{
c8cba857 1645 unsigned long load;
eb755805 1646 long cpu = (long)data;
c09595f6 1647
c8cba857
PZ
1648 if (!tg->parent) {
1649 load = cpu_rq(cpu)->load.weight;
1650 } else {
1651 load = tg->parent->cfs_rq[cpu]->h_load;
1652 load *= tg->cfs_rq[cpu]->shares;
1653 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1654 }
c09595f6 1655
c8cba857 1656 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1657
eb755805 1658 return 0;
c09595f6
PZ
1659}
1660
c8cba857 1661static void update_shares(struct sched_domain *sd)
4d8d595d 1662{
e7097159
PZ
1663 s64 elapsed;
1664 u64 now;
1665
1666 if (root_task_group_empty())
1667 return;
1668
c676329a 1669 now = local_clock();
e7097159 1670 elapsed = now - sd->last_update;
2398f2c6
PZ
1671
1672 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1673 sd->last_update = now;
eb755805 1674 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1675 }
4d8d595d
PZ
1676}
1677
eb755805 1678static void update_h_load(long cpu)
c09595f6 1679{
eb755805 1680 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1681}
1682
c09595f6
PZ
1683#else
1684
c8cba857 1685static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1686{
1687}
1688
18d95a28
PZ
1689#endif
1690
8f45e2b5
GH
1691#ifdef CONFIG_PREEMPT
1692
b78bb868
PZ
1693static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1694
70574a99 1695/*
8f45e2b5
GH
1696 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1697 * way at the expense of forcing extra atomic operations in all
1698 * invocations. This assures that the double_lock is acquired using the
1699 * same underlying policy as the spinlock_t on this architecture, which
1700 * reduces latency compared to the unfair variant below. However, it
1701 * also adds more overhead and therefore may reduce throughput.
70574a99 1702 */
8f45e2b5
GH
1703static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1704 __releases(this_rq->lock)
1705 __acquires(busiest->lock)
1706 __acquires(this_rq->lock)
1707{
05fa785c 1708 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1709 double_rq_lock(this_rq, busiest);
1710
1711 return 1;
1712}
1713
1714#else
1715/*
1716 * Unfair double_lock_balance: Optimizes throughput at the expense of
1717 * latency by eliminating extra atomic operations when the locks are
1718 * already in proper order on entry. This favors lower cpu-ids and will
1719 * grant the double lock to lower cpus over higher ids under contention,
1720 * regardless of entry order into the function.
1721 */
1722static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1723 __releases(this_rq->lock)
1724 __acquires(busiest->lock)
1725 __acquires(this_rq->lock)
1726{
1727 int ret = 0;
1728
05fa785c 1729 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1730 if (busiest < this_rq) {
05fa785c
TG
1731 raw_spin_unlock(&this_rq->lock);
1732 raw_spin_lock(&busiest->lock);
1733 raw_spin_lock_nested(&this_rq->lock,
1734 SINGLE_DEPTH_NESTING);
70574a99
AD
1735 ret = 1;
1736 } else
05fa785c
TG
1737 raw_spin_lock_nested(&busiest->lock,
1738 SINGLE_DEPTH_NESTING);
70574a99
AD
1739 }
1740 return ret;
1741}
1742
8f45e2b5
GH
1743#endif /* CONFIG_PREEMPT */
1744
1745/*
1746 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1747 */
1748static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749{
1750 if (unlikely(!irqs_disabled())) {
1751 /* printk() doesn't work good under rq->lock */
05fa785c 1752 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1753 BUG_ON(1);
1754 }
1755
1756 return _double_lock_balance(this_rq, busiest);
1757}
1758
70574a99
AD
1759static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1760 __releases(busiest->lock)
1761{
05fa785c 1762 raw_spin_unlock(&busiest->lock);
70574a99
AD
1763 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1764}
1e3c88bd
PZ
1765
1766/*
1767 * double_rq_lock - safely lock two runqueues
1768 *
1769 * Note this does not disable interrupts like task_rq_lock,
1770 * you need to do so manually before calling.
1771 */
1772static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1773 __acquires(rq1->lock)
1774 __acquires(rq2->lock)
1775{
1776 BUG_ON(!irqs_disabled());
1777 if (rq1 == rq2) {
1778 raw_spin_lock(&rq1->lock);
1779 __acquire(rq2->lock); /* Fake it out ;) */
1780 } else {
1781 if (rq1 < rq2) {
1782 raw_spin_lock(&rq1->lock);
1783 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1784 } else {
1785 raw_spin_lock(&rq2->lock);
1786 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1787 }
1788 }
1e3c88bd
PZ
1789}
1790
1791/*
1792 * double_rq_unlock - safely unlock two runqueues
1793 *
1794 * Note this does not restore interrupts like task_rq_unlock,
1795 * you need to do so manually after calling.
1796 */
1797static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1798 __releases(rq1->lock)
1799 __releases(rq2->lock)
1800{
1801 raw_spin_unlock(&rq1->lock);
1802 if (rq1 != rq2)
1803 raw_spin_unlock(&rq2->lock);
1804 else
1805 __release(rq2->lock);
1806}
1807
18d95a28
PZ
1808#endif
1809
30432094 1810#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1811static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812{
30432094 1813#ifdef CONFIG_SMP
34e83e85
IM
1814 cfs_rq->shares = shares;
1815#endif
1816}
30432094 1817#endif
e7693a36 1818
74f5187a 1819static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1820static void update_sysctl(void);
acb4a848 1821static int get_update_sysctl_factor(void);
fdf3e95d 1822static void update_cpu_load(struct rq *this_rq);
dce48a84 1823
cd29fe6f
PZ
1824static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1825{
1826 set_task_rq(p, cpu);
1827#ifdef CONFIG_SMP
1828 /*
1829 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1830 * successfuly executed on another CPU. We must ensure that updates of
1831 * per-task data have been completed by this moment.
1832 */
1833 smp_wmb();
1834 task_thread_info(p)->cpu = cpu;
1835#endif
1836}
dce48a84 1837
1e3c88bd 1838static const struct sched_class rt_sched_class;
dd41f596 1839
34f971f6 1840#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1841#define for_each_class(class) \
1842 for (class = sched_class_highest; class; class = class->next)
dd41f596 1843
1e3c88bd
PZ
1844#include "sched_stats.h"
1845
c09595f6 1846static void inc_nr_running(struct rq *rq)
9c217245
IM
1847{
1848 rq->nr_running++;
9c217245
IM
1849}
1850
c09595f6 1851static void dec_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running--;
9c217245
IM
1854}
1855
45bf76df
IM
1856static void set_load_weight(struct task_struct *p)
1857{
dd41f596
IM
1858 /*
1859 * SCHED_IDLE tasks get minimal weight:
1860 */
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1865 }
71f8bd46 1866
dd41f596
IM
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1869}
1870
371fd7e7 1871static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1872{
a64692a3 1873 update_rq_clock(rq);
dd41f596 1874 sched_info_queued(p);
371fd7e7 1875 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1876 p->se.on_rq = 1;
71f8bd46
IM
1877}
1878
371fd7e7 1879static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1880{
a64692a3 1881 update_rq_clock(rq);
46ac22ba 1882 sched_info_dequeued(p);
371fd7e7 1883 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1884 p->se.on_rq = 0;
71f8bd46
IM
1885}
1886
1e3c88bd
PZ
1887/*
1888 * activate_task - move a task to the runqueue.
1889 */
371fd7e7 1890static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1891{
1892 if (task_contributes_to_load(p))
1893 rq->nr_uninterruptible--;
1894
371fd7e7 1895 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1896 inc_nr_running(rq);
1897}
1898
1899/*
1900 * deactivate_task - remove a task from the runqueue.
1901 */
371fd7e7 1902static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1903{
1904 if (task_contributes_to_load(p))
1905 rq->nr_uninterruptible++;
1906
371fd7e7 1907 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1908 dec_nr_running(rq);
1909}
1910
1911#include "sched_idletask.c"
1912#include "sched_fair.c"
1913#include "sched_rt.c"
34f971f6 1914#include "sched_stoptask.c"
1e3c88bd
PZ
1915#ifdef CONFIG_SCHED_DEBUG
1916# include "sched_debug.c"
1917#endif
1918
34f971f6
PZ
1919void sched_set_stop_task(int cpu, struct task_struct *stop)
1920{
1921 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1922 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1923
1924 if (stop) {
1925 /*
1926 * Make it appear like a SCHED_FIFO task, its something
1927 * userspace knows about and won't get confused about.
1928 *
1929 * Also, it will make PI more or less work without too
1930 * much confusion -- but then, stop work should not
1931 * rely on PI working anyway.
1932 */
1933 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1934
1935 stop->sched_class = &stop_sched_class;
1936 }
1937
1938 cpu_rq(cpu)->stop = stop;
1939
1940 if (old_stop) {
1941 /*
1942 * Reset it back to a normal scheduling class so that
1943 * it can die in pieces.
1944 */
1945 old_stop->sched_class = &rt_sched_class;
1946 }
1947}
1948
14531189 1949/*
dd41f596 1950 * __normal_prio - return the priority that is based on the static prio
14531189 1951 */
14531189
IM
1952static inline int __normal_prio(struct task_struct *p)
1953{
dd41f596 1954 return p->static_prio;
14531189
IM
1955}
1956
b29739f9
IM
1957/*
1958 * Calculate the expected normal priority: i.e. priority
1959 * without taking RT-inheritance into account. Might be
1960 * boosted by interactivity modifiers. Changes upon fork,
1961 * setprio syscalls, and whenever the interactivity
1962 * estimator recalculates.
1963 */
36c8b586 1964static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1965{
1966 int prio;
1967
e05606d3 1968 if (task_has_rt_policy(p))
b29739f9
IM
1969 prio = MAX_RT_PRIO-1 - p->rt_priority;
1970 else
1971 prio = __normal_prio(p);
1972 return prio;
1973}
1974
1975/*
1976 * Calculate the current priority, i.e. the priority
1977 * taken into account by the scheduler. This value might
1978 * be boosted by RT tasks, or might be boosted by
1979 * interactivity modifiers. Will be RT if the task got
1980 * RT-boosted. If not then it returns p->normal_prio.
1981 */
36c8b586 1982static int effective_prio(struct task_struct *p)
b29739f9
IM
1983{
1984 p->normal_prio = normal_prio(p);
1985 /*
1986 * If we are RT tasks or we were boosted to RT priority,
1987 * keep the priority unchanged. Otherwise, update priority
1988 * to the normal priority:
1989 */
1990 if (!rt_prio(p->prio))
1991 return p->normal_prio;
1992 return p->prio;
1993}
1994
1da177e4
LT
1995/**
1996 * task_curr - is this task currently executing on a CPU?
1997 * @p: the task in question.
1998 */
36c8b586 1999inline int task_curr(const struct task_struct *p)
1da177e4
LT
2000{
2001 return cpu_curr(task_cpu(p)) == p;
2002}
2003
cb469845
SR
2004static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2005 const struct sched_class *prev_class,
2006 int oldprio, int running)
2007{
2008 if (prev_class != p->sched_class) {
2009 if (prev_class->switched_from)
2010 prev_class->switched_from(rq, p, running);
2011 p->sched_class->switched_to(rq, p, running);
2012 } else
2013 p->sched_class->prio_changed(rq, p, oldprio, running);
2014}
2015
1da177e4 2016#ifdef CONFIG_SMP
cc367732
IM
2017/*
2018 * Is this task likely cache-hot:
2019 */
e7693a36 2020static int
cc367732
IM
2021task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2022{
2023 s64 delta;
2024
e6c8fba7
PZ
2025 if (p->sched_class != &fair_sched_class)
2026 return 0;
2027
ef8002f6
NR
2028 if (unlikely(p->policy == SCHED_IDLE))
2029 return 0;
2030
f540a608
IM
2031 /*
2032 * Buddy candidates are cache hot:
2033 */
f685ceac 2034 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2035 (&p->se == cfs_rq_of(&p->se)->next ||
2036 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2037 return 1;
2038
6bc1665b
IM
2039 if (sysctl_sched_migration_cost == -1)
2040 return 1;
2041 if (sysctl_sched_migration_cost == 0)
2042 return 0;
2043
cc367732
IM
2044 delta = now - p->se.exec_start;
2045
2046 return delta < (s64)sysctl_sched_migration_cost;
2047}
2048
dd41f596 2049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2050{
e2912009
PZ
2051#ifdef CONFIG_SCHED_DEBUG
2052 /*
2053 * We should never call set_task_cpu() on a blocked task,
2054 * ttwu() will sort out the placement.
2055 */
077614ee
PZ
2056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2057 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2058#endif
2059
de1d7286 2060 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2061
0c69774e
PZ
2062 if (task_cpu(p) != new_cpu) {
2063 p->se.nr_migrations++;
2064 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2065 }
dd41f596
IM
2066
2067 __set_task_cpu(p, new_cpu);
c65cc870
IM
2068}
2069
969c7921 2070struct migration_arg {
36c8b586 2071 struct task_struct *task;
1da177e4 2072 int dest_cpu;
70b97a7f 2073};
1da177e4 2074
969c7921
TH
2075static int migration_cpu_stop(void *data);
2076
1da177e4
LT
2077/*
2078 * The task's runqueue lock must be held.
2079 * Returns true if you have to wait for migration thread.
2080 */
969c7921 2081static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2082{
70b97a7f 2083 struct rq *rq = task_rq(p);
1da177e4
LT
2084
2085 /*
2086 * If the task is not on a runqueue (and not running), then
e2912009 2087 * the next wake-up will properly place the task.
1da177e4 2088 */
969c7921 2089 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2090}
2091
2092/*
2093 * wait_task_inactive - wait for a thread to unschedule.
2094 *
85ba2d86
RM
2095 * If @match_state is nonzero, it's the @p->state value just checked and
2096 * not expected to change. If it changes, i.e. @p might have woken up,
2097 * then return zero. When we succeed in waiting for @p to be off its CPU,
2098 * we return a positive number (its total switch count). If a second call
2099 * a short while later returns the same number, the caller can be sure that
2100 * @p has remained unscheduled the whole time.
2101 *
1da177e4
LT
2102 * The caller must ensure that the task *will* unschedule sometime soon,
2103 * else this function might spin for a *long* time. This function can't
2104 * be called with interrupts off, or it may introduce deadlock with
2105 * smp_call_function() if an IPI is sent by the same process we are
2106 * waiting to become inactive.
2107 */
85ba2d86 2108unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2109{
2110 unsigned long flags;
dd41f596 2111 int running, on_rq;
85ba2d86 2112 unsigned long ncsw;
70b97a7f 2113 struct rq *rq;
1da177e4 2114
3a5c359a
AK
2115 for (;;) {
2116 /*
2117 * We do the initial early heuristics without holding
2118 * any task-queue locks at all. We'll only try to get
2119 * the runqueue lock when things look like they will
2120 * work out!
2121 */
2122 rq = task_rq(p);
fa490cfd 2123
3a5c359a
AK
2124 /*
2125 * If the task is actively running on another CPU
2126 * still, just relax and busy-wait without holding
2127 * any locks.
2128 *
2129 * NOTE! Since we don't hold any locks, it's not
2130 * even sure that "rq" stays as the right runqueue!
2131 * But we don't care, since "task_running()" will
2132 * return false if the runqueue has changed and p
2133 * is actually now running somewhere else!
2134 */
85ba2d86
RM
2135 while (task_running(rq, p)) {
2136 if (match_state && unlikely(p->state != match_state))
2137 return 0;
3a5c359a 2138 cpu_relax();
85ba2d86 2139 }
fa490cfd 2140
3a5c359a
AK
2141 /*
2142 * Ok, time to look more closely! We need the rq
2143 * lock now, to be *sure*. If we're wrong, we'll
2144 * just go back and repeat.
2145 */
2146 rq = task_rq_lock(p, &flags);
27a9da65 2147 trace_sched_wait_task(p);
3a5c359a
AK
2148 running = task_running(rq, p);
2149 on_rq = p->se.on_rq;
85ba2d86 2150 ncsw = 0;
f31e11d8 2151 if (!match_state || p->state == match_state)
93dcf55f 2152 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2153 task_rq_unlock(rq, &flags);
fa490cfd 2154
85ba2d86
RM
2155 /*
2156 * If it changed from the expected state, bail out now.
2157 */
2158 if (unlikely(!ncsw))
2159 break;
2160
3a5c359a
AK
2161 /*
2162 * Was it really running after all now that we
2163 * checked with the proper locks actually held?
2164 *
2165 * Oops. Go back and try again..
2166 */
2167 if (unlikely(running)) {
2168 cpu_relax();
2169 continue;
2170 }
fa490cfd 2171
3a5c359a
AK
2172 /*
2173 * It's not enough that it's not actively running,
2174 * it must be off the runqueue _entirely_, and not
2175 * preempted!
2176 *
80dd99b3 2177 * So if it was still runnable (but just not actively
3a5c359a
AK
2178 * running right now), it's preempted, and we should
2179 * yield - it could be a while.
2180 */
2181 if (unlikely(on_rq)) {
2182 schedule_timeout_uninterruptible(1);
2183 continue;
2184 }
fa490cfd 2185
3a5c359a
AK
2186 /*
2187 * Ahh, all good. It wasn't running, and it wasn't
2188 * runnable, which means that it will never become
2189 * running in the future either. We're all done!
2190 */
2191 break;
2192 }
85ba2d86
RM
2193
2194 return ncsw;
1da177e4
LT
2195}
2196
2197/***
2198 * kick_process - kick a running thread to enter/exit the kernel
2199 * @p: the to-be-kicked thread
2200 *
2201 * Cause a process which is running on another CPU to enter
2202 * kernel-mode, without any delay. (to get signals handled.)
2203 *
2204 * NOTE: this function doesnt have to take the runqueue lock,
2205 * because all it wants to ensure is that the remote task enters
2206 * the kernel. If the IPI races and the task has been migrated
2207 * to another CPU then no harm is done and the purpose has been
2208 * achieved as well.
2209 */
36c8b586 2210void kick_process(struct task_struct *p)
1da177e4
LT
2211{
2212 int cpu;
2213
2214 preempt_disable();
2215 cpu = task_cpu(p);
2216 if ((cpu != smp_processor_id()) && task_curr(p))
2217 smp_send_reschedule(cpu);
2218 preempt_enable();
2219}
b43e3521 2220EXPORT_SYMBOL_GPL(kick_process);
476d139c 2221#endif /* CONFIG_SMP */
1da177e4 2222
0793a61d
TG
2223/**
2224 * task_oncpu_function_call - call a function on the cpu on which a task runs
2225 * @p: the task to evaluate
2226 * @func: the function to be called
2227 * @info: the function call argument
2228 *
2229 * Calls the function @func when the task is currently running. This might
2230 * be on the current CPU, which just calls the function directly
2231 */
2232void task_oncpu_function_call(struct task_struct *p,
2233 void (*func) (void *info), void *info)
2234{
2235 int cpu;
2236
2237 preempt_disable();
2238 cpu = task_cpu(p);
2239 if (task_curr(p))
2240 smp_call_function_single(cpu, func, info, 1);
2241 preempt_enable();
2242}
2243
970b13ba 2244#ifdef CONFIG_SMP
30da688e
ON
2245/*
2246 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2247 */
5da9a0fb
PZ
2248static int select_fallback_rq(int cpu, struct task_struct *p)
2249{
2250 int dest_cpu;
2251 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2252
2253 /* Look for allowed, online CPU in same node. */
2254 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2255 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2256 return dest_cpu;
2257
2258 /* Any allowed, online CPU? */
2259 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2260 if (dest_cpu < nr_cpu_ids)
2261 return dest_cpu;
2262
2263 /* No more Mr. Nice Guy. */
897f0b3c 2264 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2265 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2266 /*
2267 * Don't tell them about moving exiting tasks or
2268 * kernel threads (both mm NULL), since they never
2269 * leave kernel.
2270 */
2271 if (p->mm && printk_ratelimit()) {
2272 printk(KERN_INFO "process %d (%s) no "
2273 "longer affine to cpu%d\n",
2274 task_pid_nr(p), p->comm, cpu);
2275 }
2276 }
2277
2278 return dest_cpu;
2279}
2280
e2912009 2281/*
30da688e 2282 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2283 */
970b13ba 2284static inline
0017d735 2285int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2286{
0017d735 2287 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2288
2289 /*
2290 * In order not to call set_task_cpu() on a blocking task we need
2291 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2292 * cpu.
2293 *
2294 * Since this is common to all placement strategies, this lives here.
2295 *
2296 * [ this allows ->select_task() to simply return task_cpu(p) and
2297 * not worry about this generic constraint ]
2298 */
2299 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2300 !cpu_online(cpu)))
5da9a0fb 2301 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2302
2303 return cpu;
970b13ba 2304}
09a40af5
MG
2305
2306static void update_avg(u64 *avg, u64 sample)
2307{
2308 s64 diff = sample - *avg;
2309 *avg += diff >> 3;
2310}
970b13ba
PZ
2311#endif
2312
9ed3811a
TH
2313static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2314 bool is_sync, bool is_migrate, bool is_local,
2315 unsigned long en_flags)
2316{
2317 schedstat_inc(p, se.statistics.nr_wakeups);
2318 if (is_sync)
2319 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2320 if (is_migrate)
2321 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2322 if (is_local)
2323 schedstat_inc(p, se.statistics.nr_wakeups_local);
2324 else
2325 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2326
2327 activate_task(rq, p, en_flags);
2328}
2329
2330static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2331 int wake_flags, bool success)
2332{
2333 trace_sched_wakeup(p, success);
2334 check_preempt_curr(rq, p, wake_flags);
2335
2336 p->state = TASK_RUNNING;
2337#ifdef CONFIG_SMP
2338 if (p->sched_class->task_woken)
2339 p->sched_class->task_woken(rq, p);
2340
2341 if (unlikely(rq->idle_stamp)) {
2342 u64 delta = rq->clock - rq->idle_stamp;
2343 u64 max = 2*sysctl_sched_migration_cost;
2344
2345 if (delta > max)
2346 rq->avg_idle = max;
2347 else
2348 update_avg(&rq->avg_idle, delta);
2349 rq->idle_stamp = 0;
2350 }
2351#endif
21aa9af0
TH
2352 /* if a worker is waking up, notify workqueue */
2353 if ((p->flags & PF_WQ_WORKER) && success)
2354 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2355}
2356
2357/**
1da177e4 2358 * try_to_wake_up - wake up a thread
9ed3811a 2359 * @p: the thread to be awakened
1da177e4 2360 * @state: the mask of task states that can be woken
9ed3811a 2361 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2362 *
2363 * Put it on the run-queue if it's not already there. The "current"
2364 * thread is always on the run-queue (except when the actual
2365 * re-schedule is in progress), and as such you're allowed to do
2366 * the simpler "current->state = TASK_RUNNING" to mark yourself
2367 * runnable without the overhead of this.
2368 *
9ed3811a
TH
2369 * Returns %true if @p was woken up, %false if it was already running
2370 * or @state didn't match @p's state.
1da177e4 2371 */
7d478721
PZ
2372static int try_to_wake_up(struct task_struct *p, unsigned int state,
2373 int wake_flags)
1da177e4 2374{
cc367732 2375 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2376 unsigned long flags;
371fd7e7 2377 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2378 struct rq *rq;
1da177e4 2379
e9c84311 2380 this_cpu = get_cpu();
2398f2c6 2381
04e2f174 2382 smp_wmb();
ab3b3aa5 2383 rq = task_rq_lock(p, &flags);
e9c84311 2384 if (!(p->state & state))
1da177e4
LT
2385 goto out;
2386
dd41f596 2387 if (p->se.on_rq)
1da177e4
LT
2388 goto out_running;
2389
2390 cpu = task_cpu(p);
cc367732 2391 orig_cpu = cpu;
1da177e4
LT
2392
2393#ifdef CONFIG_SMP
2394 if (unlikely(task_running(rq, p)))
2395 goto out_activate;
2396
e9c84311
PZ
2397 /*
2398 * In order to handle concurrent wakeups and release the rq->lock
2399 * we put the task in TASK_WAKING state.
eb24073b
IM
2400 *
2401 * First fix up the nr_uninterruptible count:
e9c84311 2402 */
cc87f76a
PZ
2403 if (task_contributes_to_load(p)) {
2404 if (likely(cpu_online(orig_cpu)))
2405 rq->nr_uninterruptible--;
2406 else
2407 this_rq()->nr_uninterruptible--;
2408 }
e9c84311 2409 p->state = TASK_WAKING;
efbbd05a 2410
371fd7e7 2411 if (p->sched_class->task_waking) {
efbbd05a 2412 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2413 en_flags |= ENQUEUE_WAKING;
2414 }
efbbd05a 2415
0017d735
PZ
2416 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2417 if (cpu != orig_cpu)
5d2f5a61 2418 set_task_cpu(p, cpu);
0017d735 2419 __task_rq_unlock(rq);
ab19cb23 2420
0970d299
PZ
2421 rq = cpu_rq(cpu);
2422 raw_spin_lock(&rq->lock);
f5dc3753 2423
0970d299
PZ
2424 /*
2425 * We migrated the task without holding either rq->lock, however
2426 * since the task is not on the task list itself, nobody else
2427 * will try and migrate the task, hence the rq should match the
2428 * cpu we just moved it to.
2429 */
2430 WARN_ON(task_cpu(p) != cpu);
e9c84311 2431 WARN_ON(p->state != TASK_WAKING);
1da177e4 2432
e7693a36
GH
2433#ifdef CONFIG_SCHEDSTATS
2434 schedstat_inc(rq, ttwu_count);
2435 if (cpu == this_cpu)
2436 schedstat_inc(rq, ttwu_local);
2437 else {
2438 struct sched_domain *sd;
2439 for_each_domain(this_cpu, sd) {
758b2cdc 2440 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2441 schedstat_inc(sd, ttwu_wake_remote);
2442 break;
2443 }
2444 }
2445 }
6d6bc0ad 2446#endif /* CONFIG_SCHEDSTATS */
e7693a36 2447
1da177e4
LT
2448out_activate:
2449#endif /* CONFIG_SMP */
9ed3811a
TH
2450 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2451 cpu == this_cpu, en_flags);
1da177e4 2452 success = 1;
1da177e4 2453out_running:
9ed3811a 2454 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2455out:
2456 task_rq_unlock(rq, &flags);
e9c84311 2457 put_cpu();
1da177e4
LT
2458
2459 return success;
2460}
2461
21aa9af0
TH
2462/**
2463 * try_to_wake_up_local - try to wake up a local task with rq lock held
2464 * @p: the thread to be awakened
2465 *
2466 * Put @p on the run-queue if it's not alredy there. The caller must
2467 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2468 * the current task. this_rq() stays locked over invocation.
2469 */
2470static void try_to_wake_up_local(struct task_struct *p)
2471{
2472 struct rq *rq = task_rq(p);
2473 bool success = false;
2474
2475 BUG_ON(rq != this_rq());
2476 BUG_ON(p == current);
2477 lockdep_assert_held(&rq->lock);
2478
2479 if (!(p->state & TASK_NORMAL))
2480 return;
2481
2482 if (!p->se.on_rq) {
2483 if (likely(!task_running(rq, p))) {
2484 schedstat_inc(rq, ttwu_count);
2485 schedstat_inc(rq, ttwu_local);
2486 }
2487 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2488 success = true;
2489 }
2490 ttwu_post_activation(p, rq, 0, success);
2491}
2492
50fa610a
DH
2493/**
2494 * wake_up_process - Wake up a specific process
2495 * @p: The process to be woken up.
2496 *
2497 * Attempt to wake up the nominated process and move it to the set of runnable
2498 * processes. Returns 1 if the process was woken up, 0 if it was already
2499 * running.
2500 *
2501 * It may be assumed that this function implies a write memory barrier before
2502 * changing the task state if and only if any tasks are woken up.
2503 */
7ad5b3a5 2504int wake_up_process(struct task_struct *p)
1da177e4 2505{
d9514f6c 2506 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2507}
1da177e4
LT
2508EXPORT_SYMBOL(wake_up_process);
2509
7ad5b3a5 2510int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2511{
2512 return try_to_wake_up(p, state, 0);
2513}
2514
1da177e4
LT
2515/*
2516 * Perform scheduler related setup for a newly forked process p.
2517 * p is forked by current.
dd41f596
IM
2518 *
2519 * __sched_fork() is basic setup used by init_idle() too:
2520 */
2521static void __sched_fork(struct task_struct *p)
2522{
dd41f596
IM
2523 p->se.exec_start = 0;
2524 p->se.sum_exec_runtime = 0;
f6cf891c 2525 p->se.prev_sum_exec_runtime = 0;
6c594c21 2526 p->se.nr_migrations = 0;
6cfb0d5d
IM
2527
2528#ifdef CONFIG_SCHEDSTATS
41acab88 2529 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2530#endif
476d139c 2531
fa717060 2532 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2533 p->se.on_rq = 0;
4a55bd5e 2534 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2535
e107be36
AK
2536#ifdef CONFIG_PREEMPT_NOTIFIERS
2537 INIT_HLIST_HEAD(&p->preempt_notifiers);
2538#endif
dd41f596
IM
2539}
2540
2541/*
2542 * fork()/clone()-time setup:
2543 */
2544void sched_fork(struct task_struct *p, int clone_flags)
2545{
2546 int cpu = get_cpu();
2547
2548 __sched_fork(p);
06b83b5f 2549 /*
0017d735 2550 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2551 * nobody will actually run it, and a signal or other external
2552 * event cannot wake it up and insert it on the runqueue either.
2553 */
0017d735 2554 p->state = TASK_RUNNING;
dd41f596 2555
b9dc29e7
MG
2556 /*
2557 * Revert to default priority/policy on fork if requested.
2558 */
2559 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2560 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2561 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2562 p->normal_prio = p->static_prio;
2563 }
b9dc29e7 2564
6c697bdf
MG
2565 if (PRIO_TO_NICE(p->static_prio) < 0) {
2566 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2567 p->normal_prio = p->static_prio;
6c697bdf
MG
2568 set_load_weight(p);
2569 }
2570
b9dc29e7
MG
2571 /*
2572 * We don't need the reset flag anymore after the fork. It has
2573 * fulfilled its duty:
2574 */
2575 p->sched_reset_on_fork = 0;
2576 }
ca94c442 2577
f83f9ac2
PW
2578 /*
2579 * Make sure we do not leak PI boosting priority to the child.
2580 */
2581 p->prio = current->normal_prio;
2582
2ddbf952
HS
2583 if (!rt_prio(p->prio))
2584 p->sched_class = &fair_sched_class;
b29739f9 2585
cd29fe6f
PZ
2586 if (p->sched_class->task_fork)
2587 p->sched_class->task_fork(p);
2588
86951599
PZ
2589 /*
2590 * The child is not yet in the pid-hash so no cgroup attach races,
2591 * and the cgroup is pinned to this child due to cgroup_fork()
2592 * is ran before sched_fork().
2593 *
2594 * Silence PROVE_RCU.
2595 */
2596 rcu_read_lock();
5f3edc1b 2597 set_task_cpu(p, cpu);
86951599 2598 rcu_read_unlock();
5f3edc1b 2599
52f17b6c 2600#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2601 if (likely(sched_info_on()))
52f17b6c 2602 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2603#endif
d6077cb8 2604#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2605 p->oncpu = 0;
2606#endif
1da177e4 2607#ifdef CONFIG_PREEMPT
4866cde0 2608 /* Want to start with kernel preemption disabled. */
a1261f54 2609 task_thread_info(p)->preempt_count = 1;
1da177e4 2610#endif
917b627d
GH
2611 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2612
476d139c 2613 put_cpu();
1da177e4
LT
2614}
2615
2616/*
2617 * wake_up_new_task - wake up a newly created task for the first time.
2618 *
2619 * This function will do some initial scheduler statistics housekeeping
2620 * that must be done for every newly created context, then puts the task
2621 * on the runqueue and wakes it.
2622 */
7ad5b3a5 2623void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2624{
2625 unsigned long flags;
dd41f596 2626 struct rq *rq;
c890692b 2627 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2628
2629#ifdef CONFIG_SMP
0017d735
PZ
2630 rq = task_rq_lock(p, &flags);
2631 p->state = TASK_WAKING;
2632
fabf318e
PZ
2633 /*
2634 * Fork balancing, do it here and not earlier because:
2635 * - cpus_allowed can change in the fork path
2636 * - any previously selected cpu might disappear through hotplug
2637 *
0017d735
PZ
2638 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2639 * without people poking at ->cpus_allowed.
fabf318e 2640 */
0017d735 2641 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2642 set_task_cpu(p, cpu);
1da177e4 2643
06b83b5f 2644 p->state = TASK_RUNNING;
0017d735
PZ
2645 task_rq_unlock(rq, &flags);
2646#endif
2647
2648 rq = task_rq_lock(p, &flags);
cd29fe6f 2649 activate_task(rq, p, 0);
27a9da65 2650 trace_sched_wakeup_new(p, 1);
a7558e01 2651 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2652#ifdef CONFIG_SMP
efbbd05a
PZ
2653 if (p->sched_class->task_woken)
2654 p->sched_class->task_woken(rq, p);
9a897c5a 2655#endif
dd41f596 2656 task_rq_unlock(rq, &flags);
fabf318e 2657 put_cpu();
1da177e4
LT
2658}
2659
e107be36
AK
2660#ifdef CONFIG_PREEMPT_NOTIFIERS
2661
2662/**
80dd99b3 2663 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2664 * @notifier: notifier struct to register
e107be36
AK
2665 */
2666void preempt_notifier_register(struct preempt_notifier *notifier)
2667{
2668 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2669}
2670EXPORT_SYMBOL_GPL(preempt_notifier_register);
2671
2672/**
2673 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2674 * @notifier: notifier struct to unregister
e107be36
AK
2675 *
2676 * This is safe to call from within a preemption notifier.
2677 */
2678void preempt_notifier_unregister(struct preempt_notifier *notifier)
2679{
2680 hlist_del(&notifier->link);
2681}
2682EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2683
2684static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2685{
2686 struct preempt_notifier *notifier;
2687 struct hlist_node *node;
2688
2689 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2690 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2691}
2692
2693static void
2694fire_sched_out_preempt_notifiers(struct task_struct *curr,
2695 struct task_struct *next)
2696{
2697 struct preempt_notifier *notifier;
2698 struct hlist_node *node;
2699
2700 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2701 notifier->ops->sched_out(notifier, next);
2702}
2703
6d6bc0ad 2704#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2705
2706static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2707{
2708}
2709
2710static void
2711fire_sched_out_preempt_notifiers(struct task_struct *curr,
2712 struct task_struct *next)
2713{
2714}
2715
6d6bc0ad 2716#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2717
4866cde0
NP
2718/**
2719 * prepare_task_switch - prepare to switch tasks
2720 * @rq: the runqueue preparing to switch
421cee29 2721 * @prev: the current task that is being switched out
4866cde0
NP
2722 * @next: the task we are going to switch to.
2723 *
2724 * This is called with the rq lock held and interrupts off. It must
2725 * be paired with a subsequent finish_task_switch after the context
2726 * switch.
2727 *
2728 * prepare_task_switch sets up locking and calls architecture specific
2729 * hooks.
2730 */
e107be36
AK
2731static inline void
2732prepare_task_switch(struct rq *rq, struct task_struct *prev,
2733 struct task_struct *next)
4866cde0 2734{
e107be36 2735 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2736 prepare_lock_switch(rq, next);
2737 prepare_arch_switch(next);
2738}
2739
1da177e4
LT
2740/**
2741 * finish_task_switch - clean up after a task-switch
344babaa 2742 * @rq: runqueue associated with task-switch
1da177e4
LT
2743 * @prev: the thread we just switched away from.
2744 *
4866cde0
NP
2745 * finish_task_switch must be called after the context switch, paired
2746 * with a prepare_task_switch call before the context switch.
2747 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2748 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2749 *
2750 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2751 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2752 * with the lock held can cause deadlocks; see schedule() for
2753 * details.)
2754 */
a9957449 2755static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2756 __releases(rq->lock)
2757{
1da177e4 2758 struct mm_struct *mm = rq->prev_mm;
55a101f8 2759 long prev_state;
1da177e4
LT
2760
2761 rq->prev_mm = NULL;
2762
2763 /*
2764 * A task struct has one reference for the use as "current".
c394cc9f 2765 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2766 * schedule one last time. The schedule call will never return, and
2767 * the scheduled task must drop that reference.
c394cc9f 2768 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2769 * still held, otherwise prev could be scheduled on another cpu, die
2770 * there before we look at prev->state, and then the reference would
2771 * be dropped twice.
2772 * Manfred Spraul <manfred@colorfullife.com>
2773 */
55a101f8 2774 prev_state = prev->state;
4866cde0 2775 finish_arch_switch(prev);
8381f65d
JI
2776#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2777 local_irq_disable();
2778#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2779 perf_event_task_sched_in(current);
8381f65d
JI
2780#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2781 local_irq_enable();
2782#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2783 finish_lock_switch(rq, prev);
e8fa1362 2784
e107be36 2785 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2786 if (mm)
2787 mmdrop(mm);
c394cc9f 2788 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2789 /*
2790 * Remove function-return probe instances associated with this
2791 * task and put them back on the free list.
9761eea8 2792 */
c6fd91f0 2793 kprobe_flush_task(prev);
1da177e4 2794 put_task_struct(prev);
c6fd91f0 2795 }
1da177e4
LT
2796}
2797
3f029d3c
GH
2798#ifdef CONFIG_SMP
2799
2800/* assumes rq->lock is held */
2801static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2802{
2803 if (prev->sched_class->pre_schedule)
2804 prev->sched_class->pre_schedule(rq, prev);
2805}
2806
2807/* rq->lock is NOT held, but preemption is disabled */
2808static inline void post_schedule(struct rq *rq)
2809{
2810 if (rq->post_schedule) {
2811 unsigned long flags;
2812
05fa785c 2813 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2814 if (rq->curr->sched_class->post_schedule)
2815 rq->curr->sched_class->post_schedule(rq);
05fa785c 2816 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2817
2818 rq->post_schedule = 0;
2819 }
2820}
2821
2822#else
da19ab51 2823
3f029d3c
GH
2824static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2825{
2826}
2827
2828static inline void post_schedule(struct rq *rq)
2829{
1da177e4
LT
2830}
2831
3f029d3c
GH
2832#endif
2833
1da177e4
LT
2834/**
2835 * schedule_tail - first thing a freshly forked thread must call.
2836 * @prev: the thread we just switched away from.
2837 */
36c8b586 2838asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2839 __releases(rq->lock)
2840{
70b97a7f
IM
2841 struct rq *rq = this_rq();
2842
4866cde0 2843 finish_task_switch(rq, prev);
da19ab51 2844
3f029d3c
GH
2845 /*
2846 * FIXME: do we need to worry about rq being invalidated by the
2847 * task_switch?
2848 */
2849 post_schedule(rq);
70b97a7f 2850
4866cde0
NP
2851#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2852 /* In this case, finish_task_switch does not reenable preemption */
2853 preempt_enable();
2854#endif
1da177e4 2855 if (current->set_child_tid)
b488893a 2856 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2857}
2858
2859/*
2860 * context_switch - switch to the new MM and the new
2861 * thread's register state.
2862 */
dd41f596 2863static inline void
70b97a7f 2864context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2865 struct task_struct *next)
1da177e4 2866{
dd41f596 2867 struct mm_struct *mm, *oldmm;
1da177e4 2868
e107be36 2869 prepare_task_switch(rq, prev, next);
27a9da65 2870 trace_sched_switch(prev, next);
dd41f596
IM
2871 mm = next->mm;
2872 oldmm = prev->active_mm;
9226d125
ZA
2873 /*
2874 * For paravirt, this is coupled with an exit in switch_to to
2875 * combine the page table reload and the switch backend into
2876 * one hypercall.
2877 */
224101ed 2878 arch_start_context_switch(prev);
9226d125 2879
31915ab4 2880 if (!mm) {
1da177e4
LT
2881 next->active_mm = oldmm;
2882 atomic_inc(&oldmm->mm_count);
2883 enter_lazy_tlb(oldmm, next);
2884 } else
2885 switch_mm(oldmm, mm, next);
2886
31915ab4 2887 if (!prev->mm) {
1da177e4 2888 prev->active_mm = NULL;
1da177e4
LT
2889 rq->prev_mm = oldmm;
2890 }
3a5f5e48
IM
2891 /*
2892 * Since the runqueue lock will be released by the next
2893 * task (which is an invalid locking op but in the case
2894 * of the scheduler it's an obvious special-case), so we
2895 * do an early lockdep release here:
2896 */
2897#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2898 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2899#endif
1da177e4
LT
2900
2901 /* Here we just switch the register state and the stack. */
2902 switch_to(prev, next, prev);
2903
dd41f596
IM
2904 barrier();
2905 /*
2906 * this_rq must be evaluated again because prev may have moved
2907 * CPUs since it called schedule(), thus the 'rq' on its stack
2908 * frame will be invalid.
2909 */
2910 finish_task_switch(this_rq(), prev);
1da177e4
LT
2911}
2912
2913/*
2914 * nr_running, nr_uninterruptible and nr_context_switches:
2915 *
2916 * externally visible scheduler statistics: current number of runnable
2917 * threads, current number of uninterruptible-sleeping threads, total
2918 * number of context switches performed since bootup.
2919 */
2920unsigned long nr_running(void)
2921{
2922 unsigned long i, sum = 0;
2923
2924 for_each_online_cpu(i)
2925 sum += cpu_rq(i)->nr_running;
2926
2927 return sum;
f711f609 2928}
1da177e4
LT
2929
2930unsigned long nr_uninterruptible(void)
f711f609 2931{
1da177e4 2932 unsigned long i, sum = 0;
f711f609 2933
0a945022 2934 for_each_possible_cpu(i)
1da177e4 2935 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2936
2937 /*
1da177e4
LT
2938 * Since we read the counters lockless, it might be slightly
2939 * inaccurate. Do not allow it to go below zero though:
f711f609 2940 */
1da177e4
LT
2941 if (unlikely((long)sum < 0))
2942 sum = 0;
f711f609 2943
1da177e4 2944 return sum;
f711f609 2945}
f711f609 2946
1da177e4 2947unsigned long long nr_context_switches(void)
46cb4b7c 2948{
cc94abfc
SR
2949 int i;
2950 unsigned long long sum = 0;
46cb4b7c 2951
0a945022 2952 for_each_possible_cpu(i)
1da177e4 2953 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2954
1da177e4
LT
2955 return sum;
2956}
483b4ee6 2957
1da177e4
LT
2958unsigned long nr_iowait(void)
2959{
2960 unsigned long i, sum = 0;
483b4ee6 2961
0a945022 2962 for_each_possible_cpu(i)
1da177e4 2963 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2964
1da177e4
LT
2965 return sum;
2966}
483b4ee6 2967
8c215bd3 2968unsigned long nr_iowait_cpu(int cpu)
69d25870 2969{
8c215bd3 2970 struct rq *this = cpu_rq(cpu);
69d25870
AV
2971 return atomic_read(&this->nr_iowait);
2972}
46cb4b7c 2973
69d25870
AV
2974unsigned long this_cpu_load(void)
2975{
2976 struct rq *this = this_rq();
2977 return this->cpu_load[0];
2978}
e790fb0b 2979
46cb4b7c 2980
dce48a84
TG
2981/* Variables and functions for calc_load */
2982static atomic_long_t calc_load_tasks;
2983static unsigned long calc_load_update;
2984unsigned long avenrun[3];
2985EXPORT_SYMBOL(avenrun);
46cb4b7c 2986
74f5187a
PZ
2987static long calc_load_fold_active(struct rq *this_rq)
2988{
2989 long nr_active, delta = 0;
2990
2991 nr_active = this_rq->nr_running;
2992 nr_active += (long) this_rq->nr_uninterruptible;
2993
2994 if (nr_active != this_rq->calc_load_active) {
2995 delta = nr_active - this_rq->calc_load_active;
2996 this_rq->calc_load_active = nr_active;
2997 }
2998
2999 return delta;
3000}
3001
3002#ifdef CONFIG_NO_HZ
3003/*
3004 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3005 *
3006 * When making the ILB scale, we should try to pull this in as well.
3007 */
3008static atomic_long_t calc_load_tasks_idle;
3009
3010static void calc_load_account_idle(struct rq *this_rq)
3011{
3012 long delta;
3013
3014 delta = calc_load_fold_active(this_rq);
3015 if (delta)
3016 atomic_long_add(delta, &calc_load_tasks_idle);
3017}
3018
3019static long calc_load_fold_idle(void)
3020{
3021 long delta = 0;
3022
3023 /*
3024 * Its got a race, we don't care...
3025 */
3026 if (atomic_long_read(&calc_load_tasks_idle))
3027 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3028
3029 return delta;
3030}
3031#else
3032static void calc_load_account_idle(struct rq *this_rq)
3033{
3034}
3035
3036static inline long calc_load_fold_idle(void)
3037{
3038 return 0;
3039}
3040#endif
3041
2d02494f
TG
3042/**
3043 * get_avenrun - get the load average array
3044 * @loads: pointer to dest load array
3045 * @offset: offset to add
3046 * @shift: shift count to shift the result left
3047 *
3048 * These values are estimates at best, so no need for locking.
3049 */
3050void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3051{
3052 loads[0] = (avenrun[0] + offset) << shift;
3053 loads[1] = (avenrun[1] + offset) << shift;
3054 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3055}
46cb4b7c 3056
dce48a84
TG
3057static unsigned long
3058calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3059{
dce48a84
TG
3060 load *= exp;
3061 load += active * (FIXED_1 - exp);
3062 return load >> FSHIFT;
3063}
46cb4b7c
SS
3064
3065/*
dce48a84
TG
3066 * calc_load - update the avenrun load estimates 10 ticks after the
3067 * CPUs have updated calc_load_tasks.
7835b98b 3068 */
dce48a84 3069void calc_global_load(void)
7835b98b 3070{
dce48a84
TG
3071 unsigned long upd = calc_load_update + 10;
3072 long active;
1da177e4 3073
dce48a84
TG
3074 if (time_before(jiffies, upd))
3075 return;
1da177e4 3076
dce48a84
TG
3077 active = atomic_long_read(&calc_load_tasks);
3078 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3079
dce48a84
TG
3080 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3081 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3082 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3083
dce48a84
TG
3084 calc_load_update += LOAD_FREQ;
3085}
1da177e4 3086
dce48a84 3087/*
74f5187a
PZ
3088 * Called from update_cpu_load() to periodically update this CPU's
3089 * active count.
dce48a84
TG
3090 */
3091static void calc_load_account_active(struct rq *this_rq)
3092{
74f5187a 3093 long delta;
08c183f3 3094
74f5187a
PZ
3095 if (time_before(jiffies, this_rq->calc_load_update))
3096 return;
783609c6 3097
74f5187a
PZ
3098 delta = calc_load_fold_active(this_rq);
3099 delta += calc_load_fold_idle();
3100 if (delta)
dce48a84 3101 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3102
3103 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3104}
3105
fdf3e95d
VP
3106/*
3107 * The exact cpuload at various idx values, calculated at every tick would be
3108 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3109 *
3110 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3111 * on nth tick when cpu may be busy, then we have:
3112 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3113 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3114 *
3115 * decay_load_missed() below does efficient calculation of
3116 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3117 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3118 *
3119 * The calculation is approximated on a 128 point scale.
3120 * degrade_zero_ticks is the number of ticks after which load at any
3121 * particular idx is approximated to be zero.
3122 * degrade_factor is a precomputed table, a row for each load idx.
3123 * Each column corresponds to degradation factor for a power of two ticks,
3124 * based on 128 point scale.
3125 * Example:
3126 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3127 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3128 *
3129 * With this power of 2 load factors, we can degrade the load n times
3130 * by looking at 1 bits in n and doing as many mult/shift instead of
3131 * n mult/shifts needed by the exact degradation.
3132 */
3133#define DEGRADE_SHIFT 7
3134static const unsigned char
3135 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3136static const unsigned char
3137 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3138 {0, 0, 0, 0, 0, 0, 0, 0},
3139 {64, 32, 8, 0, 0, 0, 0, 0},
3140 {96, 72, 40, 12, 1, 0, 0},
3141 {112, 98, 75, 43, 15, 1, 0},
3142 {120, 112, 98, 76, 45, 16, 2} };
3143
3144/*
3145 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3146 * would be when CPU is idle and so we just decay the old load without
3147 * adding any new load.
3148 */
3149static unsigned long
3150decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3151{
3152 int j = 0;
3153
3154 if (!missed_updates)
3155 return load;
3156
3157 if (missed_updates >= degrade_zero_ticks[idx])
3158 return 0;
3159
3160 if (idx == 1)
3161 return load >> missed_updates;
3162
3163 while (missed_updates) {
3164 if (missed_updates % 2)
3165 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3166
3167 missed_updates >>= 1;
3168 j++;
3169 }
3170 return load;
3171}
3172
46cb4b7c 3173/*
dd41f596 3174 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3175 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3176 * every tick. We fix it up based on jiffies.
46cb4b7c 3177 */
dd41f596 3178static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3179{
495eca49 3180 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3181 unsigned long curr_jiffies = jiffies;
3182 unsigned long pending_updates;
dd41f596 3183 int i, scale;
46cb4b7c 3184
dd41f596 3185 this_rq->nr_load_updates++;
46cb4b7c 3186
fdf3e95d
VP
3187 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3188 if (curr_jiffies == this_rq->last_load_update_tick)
3189 return;
3190
3191 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3192 this_rq->last_load_update_tick = curr_jiffies;
3193
dd41f596 3194 /* Update our load: */
fdf3e95d
VP
3195 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3196 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3197 unsigned long old_load, new_load;
7d1e6a9b 3198
dd41f596 3199 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3200
dd41f596 3201 old_load = this_rq->cpu_load[i];
fdf3e95d 3202 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3203 new_load = this_load;
a25707f3
IM
3204 /*
3205 * Round up the averaging division if load is increasing. This
3206 * prevents us from getting stuck on 9 if the load is 10, for
3207 * example.
3208 */
3209 if (new_load > old_load)
fdf3e95d
VP
3210 new_load += scale - 1;
3211
3212 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3213 }
da2b71ed
SS
3214
3215 sched_avg_update(this_rq);
fdf3e95d
VP
3216}
3217
3218static void update_cpu_load_active(struct rq *this_rq)
3219{
3220 update_cpu_load(this_rq);
46cb4b7c 3221
74f5187a 3222 calc_load_account_active(this_rq);
46cb4b7c
SS
3223}
3224
dd41f596 3225#ifdef CONFIG_SMP
8a0be9ef 3226
46cb4b7c 3227/*
38022906
PZ
3228 * sched_exec - execve() is a valuable balancing opportunity, because at
3229 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3230 */
38022906 3231void sched_exec(void)
46cb4b7c 3232{
38022906 3233 struct task_struct *p = current;
1da177e4 3234 unsigned long flags;
70b97a7f 3235 struct rq *rq;
0017d735 3236 int dest_cpu;
46cb4b7c 3237
1da177e4 3238 rq = task_rq_lock(p, &flags);
0017d735
PZ
3239 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3240 if (dest_cpu == smp_processor_id())
3241 goto unlock;
38022906 3242
46cb4b7c 3243 /*
38022906 3244 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3245 */
30da688e 3246 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3247 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3248 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3249
1da177e4 3250 task_rq_unlock(rq, &flags);
969c7921 3251 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3252 return;
3253 }
0017d735 3254unlock:
1da177e4 3255 task_rq_unlock(rq, &flags);
1da177e4 3256}
dd41f596 3257
1da177e4
LT
3258#endif
3259
1da177e4
LT
3260DEFINE_PER_CPU(struct kernel_stat, kstat);
3261
3262EXPORT_PER_CPU_SYMBOL(kstat);
3263
3264/*
c5f8d995 3265 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3266 * @p in case that task is currently running.
c5f8d995
HS
3267 *
3268 * Called with task_rq_lock() held on @rq.
1da177e4 3269 */
c5f8d995
HS
3270static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3271{
3272 u64 ns = 0;
3273
3274 if (task_current(rq, p)) {
3275 update_rq_clock(rq);
3276 ns = rq->clock - p->se.exec_start;
3277 if ((s64)ns < 0)
3278 ns = 0;
3279 }
3280
3281 return ns;
3282}
3283
bb34d92f 3284unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3285{
1da177e4 3286 unsigned long flags;
41b86e9c 3287 struct rq *rq;
bb34d92f 3288 u64 ns = 0;
48f24c4d 3289
41b86e9c 3290 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3291 ns = do_task_delta_exec(p, rq);
3292 task_rq_unlock(rq, &flags);
1508487e 3293
c5f8d995
HS
3294 return ns;
3295}
f06febc9 3296
c5f8d995
HS
3297/*
3298 * Return accounted runtime for the task.
3299 * In case the task is currently running, return the runtime plus current's
3300 * pending runtime that have not been accounted yet.
3301 */
3302unsigned long long task_sched_runtime(struct task_struct *p)
3303{
3304 unsigned long flags;
3305 struct rq *rq;
3306 u64 ns = 0;
3307
3308 rq = task_rq_lock(p, &flags);
3309 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3310 task_rq_unlock(rq, &flags);
3311
3312 return ns;
3313}
48f24c4d 3314
c5f8d995
HS
3315/*
3316 * Return sum_exec_runtime for the thread group.
3317 * In case the task is currently running, return the sum plus current's
3318 * pending runtime that have not been accounted yet.
3319 *
3320 * Note that the thread group might have other running tasks as well,
3321 * so the return value not includes other pending runtime that other
3322 * running tasks might have.
3323 */
3324unsigned long long thread_group_sched_runtime(struct task_struct *p)
3325{
3326 struct task_cputime totals;
3327 unsigned long flags;
3328 struct rq *rq;
3329 u64 ns;
3330
3331 rq = task_rq_lock(p, &flags);
3332 thread_group_cputime(p, &totals);
3333 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3334 task_rq_unlock(rq, &flags);
48f24c4d 3335
1da177e4
LT
3336 return ns;
3337}
3338
1da177e4
LT
3339/*
3340 * Account user cpu time to a process.
3341 * @p: the process that the cpu time gets accounted to
1da177e4 3342 * @cputime: the cpu time spent in user space since the last update
457533a7 3343 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3344 */
457533a7
MS
3345void account_user_time(struct task_struct *p, cputime_t cputime,
3346 cputime_t cputime_scaled)
1da177e4
LT
3347{
3348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3349 cputime64_t tmp;
3350
457533a7 3351 /* Add user time to process. */
1da177e4 3352 p->utime = cputime_add(p->utime, cputime);
457533a7 3353 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3354 account_group_user_time(p, cputime);
1da177e4
LT
3355
3356 /* Add user time to cpustat. */
3357 tmp = cputime_to_cputime64(cputime);
3358 if (TASK_NICE(p) > 0)
3359 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3360 else
3361 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3362
3363 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3364 /* Account for user time used */
3365 acct_update_integrals(p);
1da177e4
LT
3366}
3367
94886b84
LV
3368/*
3369 * Account guest cpu time to a process.
3370 * @p: the process that the cpu time gets accounted to
3371 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3372 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3373 */
457533a7
MS
3374static void account_guest_time(struct task_struct *p, cputime_t cputime,
3375 cputime_t cputime_scaled)
94886b84
LV
3376{
3377 cputime64_t tmp;
3378 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3379
3380 tmp = cputime_to_cputime64(cputime);
3381
457533a7 3382 /* Add guest time to process. */
94886b84 3383 p->utime = cputime_add(p->utime, cputime);
457533a7 3384 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3385 account_group_user_time(p, cputime);
94886b84
LV
3386 p->gtime = cputime_add(p->gtime, cputime);
3387
457533a7 3388 /* Add guest time to cpustat. */
ce0e7b28
RO
3389 if (TASK_NICE(p) > 0) {
3390 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3391 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3392 } else {
3393 cpustat->user = cputime64_add(cpustat->user, tmp);
3394 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3395 }
94886b84
LV
3396}
3397
1da177e4
LT
3398/*
3399 * Account system cpu time to a process.
3400 * @p: the process that the cpu time gets accounted to
3401 * @hardirq_offset: the offset to subtract from hardirq_count()
3402 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3403 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3404 */
3405void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3406 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3407{
3408 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3409 cputime64_t tmp;
3410
983ed7a6 3411 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3412 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3413 return;
3414 }
94886b84 3415
457533a7 3416 /* Add system time to process. */
1da177e4 3417 p->stime = cputime_add(p->stime, cputime);
457533a7 3418 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3419 account_group_system_time(p, cputime);
1da177e4
LT
3420
3421 /* Add system time to cpustat. */
3422 tmp = cputime_to_cputime64(cputime);
3423 if (hardirq_count() - hardirq_offset)
3424 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3425 else if (in_serving_softirq())
1da177e4 3426 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3427 else
79741dd3
MS
3428 cpustat->system = cputime64_add(cpustat->system, tmp);
3429
ef12fefa
BR
3430 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3431
1da177e4
LT
3432 /* Account for system time used */
3433 acct_update_integrals(p);
1da177e4
LT
3434}
3435
c66f08be 3436/*
1da177e4 3437 * Account for involuntary wait time.
1da177e4 3438 * @steal: the cpu time spent in involuntary wait
c66f08be 3439 */
79741dd3 3440void account_steal_time(cputime_t cputime)
c66f08be 3441{
79741dd3
MS
3442 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3443 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3444
3445 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3446}
3447
1da177e4 3448/*
79741dd3
MS
3449 * Account for idle time.
3450 * @cputime: the cpu time spent in idle wait
1da177e4 3451 */
79741dd3 3452void account_idle_time(cputime_t cputime)
1da177e4
LT
3453{
3454 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3455 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3456 struct rq *rq = this_rq();
1da177e4 3457
79741dd3
MS
3458 if (atomic_read(&rq->nr_iowait) > 0)
3459 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3460 else
3461 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3462}
3463
79741dd3
MS
3464#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3465
3466/*
3467 * Account a single tick of cpu time.
3468 * @p: the process that the cpu time gets accounted to
3469 * @user_tick: indicates if the tick is a user or a system tick
3470 */
3471void account_process_tick(struct task_struct *p, int user_tick)
3472{
a42548a1 3473 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3474 struct rq *rq = this_rq();
3475
3476 if (user_tick)
a42548a1 3477 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3478 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3479 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3480 one_jiffy_scaled);
3481 else
a42548a1 3482 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3483}
3484
3485/*
3486 * Account multiple ticks of steal time.
3487 * @p: the process from which the cpu time has been stolen
3488 * @ticks: number of stolen ticks
3489 */
3490void account_steal_ticks(unsigned long ticks)
3491{
3492 account_steal_time(jiffies_to_cputime(ticks));
3493}
3494
3495/*
3496 * Account multiple ticks of idle time.
3497 * @ticks: number of stolen ticks
3498 */
3499void account_idle_ticks(unsigned long ticks)
3500{
3501 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3502}
3503
79741dd3
MS
3504#endif
3505
49048622
BS
3506/*
3507 * Use precise platform statistics if available:
3508 */
3509#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3510void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3511{
d99ca3b9
HS
3512 *ut = p->utime;
3513 *st = p->stime;
49048622
BS
3514}
3515
0cf55e1e 3516void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3517{
0cf55e1e
HS
3518 struct task_cputime cputime;
3519
3520 thread_group_cputime(p, &cputime);
3521
3522 *ut = cputime.utime;
3523 *st = cputime.stime;
49048622
BS
3524}
3525#else
761b1d26
HS
3526
3527#ifndef nsecs_to_cputime
b7b20df9 3528# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3529#endif
3530
d180c5bc 3531void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3532{
d99ca3b9 3533 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3534
3535 /*
3536 * Use CFS's precise accounting:
3537 */
d180c5bc 3538 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3539
3540 if (total) {
e75e863d 3541 u64 temp = rtime;
d180c5bc 3542
e75e863d 3543 temp *= utime;
49048622 3544 do_div(temp, total);
d180c5bc
HS
3545 utime = (cputime_t)temp;
3546 } else
3547 utime = rtime;
49048622 3548
d180c5bc
HS
3549 /*
3550 * Compare with previous values, to keep monotonicity:
3551 */
761b1d26 3552 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3553 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3554
d99ca3b9
HS
3555 *ut = p->prev_utime;
3556 *st = p->prev_stime;
49048622
BS
3557}
3558
0cf55e1e
HS
3559/*
3560 * Must be called with siglock held.
3561 */
3562void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3563{
0cf55e1e
HS
3564 struct signal_struct *sig = p->signal;
3565 struct task_cputime cputime;
3566 cputime_t rtime, utime, total;
49048622 3567
0cf55e1e 3568 thread_group_cputime(p, &cputime);
49048622 3569
0cf55e1e
HS
3570 total = cputime_add(cputime.utime, cputime.stime);
3571 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3572
0cf55e1e 3573 if (total) {
e75e863d 3574 u64 temp = rtime;
49048622 3575
e75e863d 3576 temp *= cputime.utime;
0cf55e1e
HS
3577 do_div(temp, total);
3578 utime = (cputime_t)temp;
3579 } else
3580 utime = rtime;
3581
3582 sig->prev_utime = max(sig->prev_utime, utime);
3583 sig->prev_stime = max(sig->prev_stime,
3584 cputime_sub(rtime, sig->prev_utime));
3585
3586 *ut = sig->prev_utime;
3587 *st = sig->prev_stime;
49048622 3588}
49048622 3589#endif
49048622 3590
7835b98b
CL
3591/*
3592 * This function gets called by the timer code, with HZ frequency.
3593 * We call it with interrupts disabled.
3594 *
3595 * It also gets called by the fork code, when changing the parent's
3596 * timeslices.
3597 */
3598void scheduler_tick(void)
3599{
7835b98b
CL
3600 int cpu = smp_processor_id();
3601 struct rq *rq = cpu_rq(cpu);
dd41f596 3602 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3603
3604 sched_clock_tick();
dd41f596 3605
05fa785c 3606 raw_spin_lock(&rq->lock);
3e51f33f 3607 update_rq_clock(rq);
fdf3e95d 3608 update_cpu_load_active(rq);
fa85ae24 3609 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3610 raw_spin_unlock(&rq->lock);
7835b98b 3611
49f47433 3612 perf_event_task_tick(curr);
e220d2dc 3613
e418e1c2 3614#ifdef CONFIG_SMP
dd41f596
IM
3615 rq->idle_at_tick = idle_cpu(cpu);
3616 trigger_load_balance(rq, cpu);
e418e1c2 3617#endif
1da177e4
LT
3618}
3619
132380a0 3620notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3621{
3622 if (in_lock_functions(addr)) {
3623 addr = CALLER_ADDR2;
3624 if (in_lock_functions(addr))
3625 addr = CALLER_ADDR3;
3626 }
3627 return addr;
3628}
1da177e4 3629
7e49fcce
SR
3630#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3631 defined(CONFIG_PREEMPT_TRACER))
3632
43627582 3633void __kprobes add_preempt_count(int val)
1da177e4 3634{
6cd8a4bb 3635#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3636 /*
3637 * Underflow?
3638 */
9a11b49a
IM
3639 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3640 return;
6cd8a4bb 3641#endif
1da177e4 3642 preempt_count() += val;
6cd8a4bb 3643#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3644 /*
3645 * Spinlock count overflowing soon?
3646 */
33859f7f
MOS
3647 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3648 PREEMPT_MASK - 10);
6cd8a4bb
SR
3649#endif
3650 if (preempt_count() == val)
3651 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3652}
3653EXPORT_SYMBOL(add_preempt_count);
3654
43627582 3655void __kprobes sub_preempt_count(int val)
1da177e4 3656{
6cd8a4bb 3657#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3658 /*
3659 * Underflow?
3660 */
01e3eb82 3661 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3662 return;
1da177e4
LT
3663 /*
3664 * Is the spinlock portion underflowing?
3665 */
9a11b49a
IM
3666 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3667 !(preempt_count() & PREEMPT_MASK)))
3668 return;
6cd8a4bb 3669#endif
9a11b49a 3670
6cd8a4bb
SR
3671 if (preempt_count() == val)
3672 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3673 preempt_count() -= val;
3674}
3675EXPORT_SYMBOL(sub_preempt_count);
3676
3677#endif
3678
3679/*
dd41f596 3680 * Print scheduling while atomic bug:
1da177e4 3681 */
dd41f596 3682static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3683{
838225b4
SS
3684 struct pt_regs *regs = get_irq_regs();
3685
3df0fc5b
PZ
3686 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3687 prev->comm, prev->pid, preempt_count());
838225b4 3688
dd41f596 3689 debug_show_held_locks(prev);
e21f5b15 3690 print_modules();
dd41f596
IM
3691 if (irqs_disabled())
3692 print_irqtrace_events(prev);
838225b4
SS
3693
3694 if (regs)
3695 show_regs(regs);
3696 else
3697 dump_stack();
dd41f596 3698}
1da177e4 3699
dd41f596
IM
3700/*
3701 * Various schedule()-time debugging checks and statistics:
3702 */
3703static inline void schedule_debug(struct task_struct *prev)
3704{
1da177e4 3705 /*
41a2d6cf 3706 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3707 * schedule() atomically, we ignore that path for now.
3708 * Otherwise, whine if we are scheduling when we should not be.
3709 */
3f33a7ce 3710 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3711 __schedule_bug(prev);
3712
1da177e4
LT
3713 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3714
2d72376b 3715 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3716#ifdef CONFIG_SCHEDSTATS
3717 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3718 schedstat_inc(this_rq(), bkl_count);
3719 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3720 }
3721#endif
dd41f596
IM
3722}
3723
6cecd084 3724static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3725{
a64692a3
MG
3726 if (prev->se.on_rq)
3727 update_rq_clock(rq);
3728 rq->skip_clock_update = 0;
6cecd084 3729 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3730}
3731
dd41f596
IM
3732/*
3733 * Pick up the highest-prio task:
3734 */
3735static inline struct task_struct *
b67802ea 3736pick_next_task(struct rq *rq)
dd41f596 3737{
5522d5d5 3738 const struct sched_class *class;
dd41f596 3739 struct task_struct *p;
1da177e4
LT
3740
3741 /*
dd41f596
IM
3742 * Optimization: we know that if all tasks are in
3743 * the fair class we can call that function directly:
1da177e4 3744 */
dd41f596 3745 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3746 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3747 if (likely(p))
3748 return p;
1da177e4
LT
3749 }
3750
34f971f6 3751 for_each_class(class) {
fb8d4724 3752 p = class->pick_next_task(rq);
dd41f596
IM
3753 if (p)
3754 return p;
dd41f596 3755 }
34f971f6
PZ
3756
3757 BUG(); /* the idle class will always have a runnable task */
dd41f596 3758}
1da177e4 3759
dd41f596
IM
3760/*
3761 * schedule() is the main scheduler function.
3762 */
ff743345 3763asmlinkage void __sched schedule(void)
dd41f596
IM
3764{
3765 struct task_struct *prev, *next;
67ca7bde 3766 unsigned long *switch_count;
dd41f596 3767 struct rq *rq;
31656519 3768 int cpu;
dd41f596 3769
ff743345
PZ
3770need_resched:
3771 preempt_disable();
dd41f596
IM
3772 cpu = smp_processor_id();
3773 rq = cpu_rq(cpu);
25502a6c 3774 rcu_note_context_switch(cpu);
dd41f596 3775 prev = rq->curr;
dd41f596
IM
3776
3777 release_kernel_lock(prev);
3778need_resched_nonpreemptible:
3779
3780 schedule_debug(prev);
1da177e4 3781
31656519 3782 if (sched_feat(HRTICK))
f333fdc9 3783 hrtick_clear(rq);
8f4d37ec 3784
05fa785c 3785 raw_spin_lock_irq(&rq->lock);
1e819950 3786 clear_tsk_need_resched(prev);
1da177e4 3787
246d86b5 3788 switch_count = &prev->nivcsw;
1da177e4 3789 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3790 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3791 prev->state = TASK_RUNNING;
21aa9af0
TH
3792 } else {
3793 /*
3794 * If a worker is going to sleep, notify and
3795 * ask workqueue whether it wants to wake up a
3796 * task to maintain concurrency. If so, wake
3797 * up the task.
3798 */
3799 if (prev->flags & PF_WQ_WORKER) {
3800 struct task_struct *to_wakeup;
3801
3802 to_wakeup = wq_worker_sleeping(prev, cpu);
3803 if (to_wakeup)
3804 try_to_wake_up_local(to_wakeup);
3805 }
371fd7e7 3806 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3807 }
dd41f596 3808 switch_count = &prev->nvcsw;
1da177e4
LT
3809 }
3810
3f029d3c 3811 pre_schedule(rq, prev);
f65eda4f 3812
dd41f596 3813 if (unlikely(!rq->nr_running))
1da177e4 3814 idle_balance(cpu, rq);
1da177e4 3815
df1c99d4 3816 put_prev_task(rq, prev);
b67802ea 3817 next = pick_next_task(rq);
1da177e4 3818
1da177e4 3819 if (likely(prev != next)) {
673a90a1 3820 sched_info_switch(prev, next);
49f47433 3821 perf_event_task_sched_out(prev, next);
673a90a1 3822
1da177e4
LT
3823 rq->nr_switches++;
3824 rq->curr = next;
3825 ++*switch_count;
3826
dd41f596 3827 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3828 /*
246d86b5
ON
3829 * The context switch have flipped the stack from under us
3830 * and restored the local variables which were saved when
3831 * this task called schedule() in the past. prev == current
3832 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3833 */
3834 cpu = smp_processor_id();
3835 rq = cpu_rq(cpu);
1da177e4 3836 } else
05fa785c 3837 raw_spin_unlock_irq(&rq->lock);
1da177e4 3838
3f029d3c 3839 post_schedule(rq);
1da177e4 3840
246d86b5 3841 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3842 goto need_resched_nonpreemptible;
8f4d37ec 3843
1da177e4 3844 preempt_enable_no_resched();
ff743345 3845 if (need_resched())
1da177e4
LT
3846 goto need_resched;
3847}
1da177e4
LT
3848EXPORT_SYMBOL(schedule);
3849
c08f7829 3850#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3851/*
3852 * Look out! "owner" is an entirely speculative pointer
3853 * access and not reliable.
3854 */
3855int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3856{
3857 unsigned int cpu;
3858 struct rq *rq;
3859
3860 if (!sched_feat(OWNER_SPIN))
3861 return 0;
3862
3863#ifdef CONFIG_DEBUG_PAGEALLOC
3864 /*
3865 * Need to access the cpu field knowing that
3866 * DEBUG_PAGEALLOC could have unmapped it if
3867 * the mutex owner just released it and exited.
3868 */
3869 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3870 return 0;
0d66bf6d
PZ
3871#else
3872 cpu = owner->cpu;
3873#endif
3874
3875 /*
3876 * Even if the access succeeded (likely case),
3877 * the cpu field may no longer be valid.
3878 */
3879 if (cpu >= nr_cpumask_bits)
4b402210 3880 return 0;
0d66bf6d
PZ
3881
3882 /*
3883 * We need to validate that we can do a
3884 * get_cpu() and that we have the percpu area.
3885 */
3886 if (!cpu_online(cpu))
4b402210 3887 return 0;
0d66bf6d
PZ
3888
3889 rq = cpu_rq(cpu);
3890
3891 for (;;) {
3892 /*
3893 * Owner changed, break to re-assess state.
3894 */
9d0f4dcc
TC
3895 if (lock->owner != owner) {
3896 /*
3897 * If the lock has switched to a different owner,
3898 * we likely have heavy contention. Return 0 to quit
3899 * optimistic spinning and not contend further:
3900 */
3901 if (lock->owner)
3902 return 0;
0d66bf6d 3903 break;
9d0f4dcc 3904 }
0d66bf6d
PZ
3905
3906 /*
3907 * Is that owner really running on that cpu?
3908 */
3909 if (task_thread_info(rq->curr) != owner || need_resched())
3910 return 0;
3911
3912 cpu_relax();
3913 }
4b402210 3914
0d66bf6d
PZ
3915 return 1;
3916}
3917#endif
3918
1da177e4
LT
3919#ifdef CONFIG_PREEMPT
3920/*
2ed6e34f 3921 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3922 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3923 * occur there and call schedule directly.
3924 */
d1f74e20 3925asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3926{
3927 struct thread_info *ti = current_thread_info();
6478d880 3928
1da177e4
LT
3929 /*
3930 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3931 * we do not want to preempt the current task. Just return..
1da177e4 3932 */
beed33a8 3933 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3934 return;
3935
3a5c359a 3936 do {
d1f74e20 3937 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 3938 schedule();
d1f74e20 3939 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3940
3a5c359a
AK
3941 /*
3942 * Check again in case we missed a preemption opportunity
3943 * between schedule and now.
3944 */
3945 barrier();
5ed0cec0 3946 } while (need_resched());
1da177e4 3947}
1da177e4
LT
3948EXPORT_SYMBOL(preempt_schedule);
3949
3950/*
2ed6e34f 3951 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3952 * off of irq context.
3953 * Note, that this is called and return with irqs disabled. This will
3954 * protect us against recursive calling from irq.
3955 */
3956asmlinkage void __sched preempt_schedule_irq(void)
3957{
3958 struct thread_info *ti = current_thread_info();
6478d880 3959
2ed6e34f 3960 /* Catch callers which need to be fixed */
1da177e4
LT
3961 BUG_ON(ti->preempt_count || !irqs_disabled());
3962
3a5c359a
AK
3963 do {
3964 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3965 local_irq_enable();
3966 schedule();
3967 local_irq_disable();
3a5c359a 3968 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3969
3a5c359a
AK
3970 /*
3971 * Check again in case we missed a preemption opportunity
3972 * between schedule and now.
3973 */
3974 barrier();
5ed0cec0 3975 } while (need_resched());
1da177e4
LT
3976}
3977
3978#endif /* CONFIG_PREEMPT */
3979
63859d4f 3980int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3981 void *key)
1da177e4 3982{
63859d4f 3983 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3984}
1da177e4
LT
3985EXPORT_SYMBOL(default_wake_function);
3986
3987/*
41a2d6cf
IM
3988 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3989 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3990 * number) then we wake all the non-exclusive tasks and one exclusive task.
3991 *
3992 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3993 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3994 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3995 */
78ddb08f 3996static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3997 int nr_exclusive, int wake_flags, void *key)
1da177e4 3998{
2e45874c 3999 wait_queue_t *curr, *next;
1da177e4 4000
2e45874c 4001 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4002 unsigned flags = curr->flags;
4003
63859d4f 4004 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4005 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4006 break;
4007 }
4008}
4009
4010/**
4011 * __wake_up - wake up threads blocked on a waitqueue.
4012 * @q: the waitqueue
4013 * @mode: which threads
4014 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4015 * @key: is directly passed to the wakeup function
50fa610a
DH
4016 *
4017 * It may be assumed that this function implies a write memory barrier before
4018 * changing the task state if and only if any tasks are woken up.
1da177e4 4019 */
7ad5b3a5 4020void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4021 int nr_exclusive, void *key)
1da177e4
LT
4022{
4023 unsigned long flags;
4024
4025 spin_lock_irqsave(&q->lock, flags);
4026 __wake_up_common(q, mode, nr_exclusive, 0, key);
4027 spin_unlock_irqrestore(&q->lock, flags);
4028}
1da177e4
LT
4029EXPORT_SYMBOL(__wake_up);
4030
4031/*
4032 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4033 */
7ad5b3a5 4034void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4035{
4036 __wake_up_common(q, mode, 1, 0, NULL);
4037}
22c43c81 4038EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4039
4ede816a
DL
4040void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4041{
4042 __wake_up_common(q, mode, 1, 0, key);
4043}
4044
1da177e4 4045/**
4ede816a 4046 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4047 * @q: the waitqueue
4048 * @mode: which threads
4049 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4050 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4051 *
4052 * The sync wakeup differs that the waker knows that it will schedule
4053 * away soon, so while the target thread will be woken up, it will not
4054 * be migrated to another CPU - ie. the two threads are 'synchronized'
4055 * with each other. This can prevent needless bouncing between CPUs.
4056 *
4057 * On UP it can prevent extra preemption.
50fa610a
DH
4058 *
4059 * It may be assumed that this function implies a write memory barrier before
4060 * changing the task state if and only if any tasks are woken up.
1da177e4 4061 */
4ede816a
DL
4062void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4063 int nr_exclusive, void *key)
1da177e4
LT
4064{
4065 unsigned long flags;
7d478721 4066 int wake_flags = WF_SYNC;
1da177e4
LT
4067
4068 if (unlikely(!q))
4069 return;
4070
4071 if (unlikely(!nr_exclusive))
7d478721 4072 wake_flags = 0;
1da177e4
LT
4073
4074 spin_lock_irqsave(&q->lock, flags);
7d478721 4075 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4076 spin_unlock_irqrestore(&q->lock, flags);
4077}
4ede816a
DL
4078EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4079
4080/*
4081 * __wake_up_sync - see __wake_up_sync_key()
4082 */
4083void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4084{
4085 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4086}
1da177e4
LT
4087EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4088
65eb3dc6
KD
4089/**
4090 * complete: - signals a single thread waiting on this completion
4091 * @x: holds the state of this particular completion
4092 *
4093 * This will wake up a single thread waiting on this completion. Threads will be
4094 * awakened in the same order in which they were queued.
4095 *
4096 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4097 *
4098 * It may be assumed that this function implies a write memory barrier before
4099 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4100 */
b15136e9 4101void complete(struct completion *x)
1da177e4
LT
4102{
4103 unsigned long flags;
4104
4105 spin_lock_irqsave(&x->wait.lock, flags);
4106 x->done++;
d9514f6c 4107 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4108 spin_unlock_irqrestore(&x->wait.lock, flags);
4109}
4110EXPORT_SYMBOL(complete);
4111
65eb3dc6
KD
4112/**
4113 * complete_all: - signals all threads waiting on this completion
4114 * @x: holds the state of this particular completion
4115 *
4116 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4117 *
4118 * It may be assumed that this function implies a write memory barrier before
4119 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4120 */
b15136e9 4121void complete_all(struct completion *x)
1da177e4
LT
4122{
4123 unsigned long flags;
4124
4125 spin_lock_irqsave(&x->wait.lock, flags);
4126 x->done += UINT_MAX/2;
d9514f6c 4127 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4128 spin_unlock_irqrestore(&x->wait.lock, flags);
4129}
4130EXPORT_SYMBOL(complete_all);
4131
8cbbe86d
AK
4132static inline long __sched
4133do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4134{
1da177e4
LT
4135 if (!x->done) {
4136 DECLARE_WAITQUEUE(wait, current);
4137
a93d2f17 4138 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4139 do {
94d3d824 4140 if (signal_pending_state(state, current)) {
ea71a546
ON
4141 timeout = -ERESTARTSYS;
4142 break;
8cbbe86d
AK
4143 }
4144 __set_current_state(state);
1da177e4
LT
4145 spin_unlock_irq(&x->wait.lock);
4146 timeout = schedule_timeout(timeout);
4147 spin_lock_irq(&x->wait.lock);
ea71a546 4148 } while (!x->done && timeout);
1da177e4 4149 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4150 if (!x->done)
4151 return timeout;
1da177e4
LT
4152 }
4153 x->done--;
ea71a546 4154 return timeout ?: 1;
1da177e4 4155}
1da177e4 4156
8cbbe86d
AK
4157static long __sched
4158wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4159{
1da177e4
LT
4160 might_sleep();
4161
4162 spin_lock_irq(&x->wait.lock);
8cbbe86d 4163 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4164 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4165 return timeout;
4166}
1da177e4 4167
65eb3dc6
KD
4168/**
4169 * wait_for_completion: - waits for completion of a task
4170 * @x: holds the state of this particular completion
4171 *
4172 * This waits to be signaled for completion of a specific task. It is NOT
4173 * interruptible and there is no timeout.
4174 *
4175 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4176 * and interrupt capability. Also see complete().
4177 */
b15136e9 4178void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4179{
4180 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4181}
8cbbe86d 4182EXPORT_SYMBOL(wait_for_completion);
1da177e4 4183
65eb3dc6
KD
4184/**
4185 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4186 * @x: holds the state of this particular completion
4187 * @timeout: timeout value in jiffies
4188 *
4189 * This waits for either a completion of a specific task to be signaled or for a
4190 * specified timeout to expire. The timeout is in jiffies. It is not
4191 * interruptible.
4192 */
b15136e9 4193unsigned long __sched
8cbbe86d 4194wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4195{
8cbbe86d 4196 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4197}
8cbbe86d 4198EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4199
65eb3dc6
KD
4200/**
4201 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4202 * @x: holds the state of this particular completion
4203 *
4204 * This waits for completion of a specific task to be signaled. It is
4205 * interruptible.
4206 */
8cbbe86d 4207int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4208{
51e97990
AK
4209 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4210 if (t == -ERESTARTSYS)
4211 return t;
4212 return 0;
0fec171c 4213}
8cbbe86d 4214EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4215
65eb3dc6
KD
4216/**
4217 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4218 * @x: holds the state of this particular completion
4219 * @timeout: timeout value in jiffies
4220 *
4221 * This waits for either a completion of a specific task to be signaled or for a
4222 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4223 */
b15136e9 4224unsigned long __sched
8cbbe86d
AK
4225wait_for_completion_interruptible_timeout(struct completion *x,
4226 unsigned long timeout)
0fec171c 4227{
8cbbe86d 4228 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4229}
8cbbe86d 4230EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4231
65eb3dc6
KD
4232/**
4233 * wait_for_completion_killable: - waits for completion of a task (killable)
4234 * @x: holds the state of this particular completion
4235 *
4236 * This waits to be signaled for completion of a specific task. It can be
4237 * interrupted by a kill signal.
4238 */
009e577e
MW
4239int __sched wait_for_completion_killable(struct completion *x)
4240{
4241 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4242 if (t == -ERESTARTSYS)
4243 return t;
4244 return 0;
4245}
4246EXPORT_SYMBOL(wait_for_completion_killable);
4247
0aa12fb4
SW
4248/**
4249 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4250 * @x: holds the state of this particular completion
4251 * @timeout: timeout value in jiffies
4252 *
4253 * This waits for either a completion of a specific task to be
4254 * signaled or for a specified timeout to expire. It can be
4255 * interrupted by a kill signal. The timeout is in jiffies.
4256 */
4257unsigned long __sched
4258wait_for_completion_killable_timeout(struct completion *x,
4259 unsigned long timeout)
4260{
4261 return wait_for_common(x, timeout, TASK_KILLABLE);
4262}
4263EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4264
be4de352
DC
4265/**
4266 * try_wait_for_completion - try to decrement a completion without blocking
4267 * @x: completion structure
4268 *
4269 * Returns: 0 if a decrement cannot be done without blocking
4270 * 1 if a decrement succeeded.
4271 *
4272 * If a completion is being used as a counting completion,
4273 * attempt to decrement the counter without blocking. This
4274 * enables us to avoid waiting if the resource the completion
4275 * is protecting is not available.
4276 */
4277bool try_wait_for_completion(struct completion *x)
4278{
7539a3b3 4279 unsigned long flags;
be4de352
DC
4280 int ret = 1;
4281
7539a3b3 4282 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4283 if (!x->done)
4284 ret = 0;
4285 else
4286 x->done--;
7539a3b3 4287 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4288 return ret;
4289}
4290EXPORT_SYMBOL(try_wait_for_completion);
4291
4292/**
4293 * completion_done - Test to see if a completion has any waiters
4294 * @x: completion structure
4295 *
4296 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4297 * 1 if there are no waiters.
4298 *
4299 */
4300bool completion_done(struct completion *x)
4301{
7539a3b3 4302 unsigned long flags;
be4de352
DC
4303 int ret = 1;
4304
7539a3b3 4305 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4306 if (!x->done)
4307 ret = 0;
7539a3b3 4308 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4309 return ret;
4310}
4311EXPORT_SYMBOL(completion_done);
4312
8cbbe86d
AK
4313static long __sched
4314sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4315{
0fec171c
IM
4316 unsigned long flags;
4317 wait_queue_t wait;
4318
4319 init_waitqueue_entry(&wait, current);
1da177e4 4320
8cbbe86d 4321 __set_current_state(state);
1da177e4 4322
8cbbe86d
AK
4323 spin_lock_irqsave(&q->lock, flags);
4324 __add_wait_queue(q, &wait);
4325 spin_unlock(&q->lock);
4326 timeout = schedule_timeout(timeout);
4327 spin_lock_irq(&q->lock);
4328 __remove_wait_queue(q, &wait);
4329 spin_unlock_irqrestore(&q->lock, flags);
4330
4331 return timeout;
4332}
4333
4334void __sched interruptible_sleep_on(wait_queue_head_t *q)
4335{
4336 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4337}
1da177e4
LT
4338EXPORT_SYMBOL(interruptible_sleep_on);
4339
0fec171c 4340long __sched
95cdf3b7 4341interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4342{
8cbbe86d 4343 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4344}
1da177e4
LT
4345EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4346
0fec171c 4347void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4348{
8cbbe86d 4349 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4350}
1da177e4
LT
4351EXPORT_SYMBOL(sleep_on);
4352
0fec171c 4353long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4354{
8cbbe86d 4355 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4356}
1da177e4
LT
4357EXPORT_SYMBOL(sleep_on_timeout);
4358
b29739f9
IM
4359#ifdef CONFIG_RT_MUTEXES
4360
4361/*
4362 * rt_mutex_setprio - set the current priority of a task
4363 * @p: task
4364 * @prio: prio value (kernel-internal form)
4365 *
4366 * This function changes the 'effective' priority of a task. It does
4367 * not touch ->normal_prio like __setscheduler().
4368 *
4369 * Used by the rt_mutex code to implement priority inheritance logic.
4370 */
36c8b586 4371void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4372{
4373 unsigned long flags;
83b699ed 4374 int oldprio, on_rq, running;
70b97a7f 4375 struct rq *rq;
83ab0aa0 4376 const struct sched_class *prev_class;
b29739f9
IM
4377
4378 BUG_ON(prio < 0 || prio > MAX_PRIO);
4379
4380 rq = task_rq_lock(p, &flags);
4381
a8027073 4382 trace_sched_pi_setprio(p, prio);
d5f9f942 4383 oldprio = p->prio;
83ab0aa0 4384 prev_class = p->sched_class;
dd41f596 4385 on_rq = p->se.on_rq;
051a1d1a 4386 running = task_current(rq, p);
0e1f3483 4387 if (on_rq)
69be72c1 4388 dequeue_task(rq, p, 0);
0e1f3483
HS
4389 if (running)
4390 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4391
4392 if (rt_prio(prio))
4393 p->sched_class = &rt_sched_class;
4394 else
4395 p->sched_class = &fair_sched_class;
4396
b29739f9
IM
4397 p->prio = prio;
4398
0e1f3483
HS
4399 if (running)
4400 p->sched_class->set_curr_task(rq);
dd41f596 4401 if (on_rq) {
371fd7e7 4402 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4403
4404 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4405 }
4406 task_rq_unlock(rq, &flags);
4407}
4408
4409#endif
4410
36c8b586 4411void set_user_nice(struct task_struct *p, long nice)
1da177e4 4412{
dd41f596 4413 int old_prio, delta, on_rq;
1da177e4 4414 unsigned long flags;
70b97a7f 4415 struct rq *rq;
1da177e4
LT
4416
4417 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4418 return;
4419 /*
4420 * We have to be careful, if called from sys_setpriority(),
4421 * the task might be in the middle of scheduling on another CPU.
4422 */
4423 rq = task_rq_lock(p, &flags);
4424 /*
4425 * The RT priorities are set via sched_setscheduler(), but we still
4426 * allow the 'normal' nice value to be set - but as expected
4427 * it wont have any effect on scheduling until the task is
dd41f596 4428 * SCHED_FIFO/SCHED_RR:
1da177e4 4429 */
e05606d3 4430 if (task_has_rt_policy(p)) {
1da177e4
LT
4431 p->static_prio = NICE_TO_PRIO(nice);
4432 goto out_unlock;
4433 }
dd41f596 4434 on_rq = p->se.on_rq;
c09595f6 4435 if (on_rq)
69be72c1 4436 dequeue_task(rq, p, 0);
1da177e4 4437
1da177e4 4438 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4439 set_load_weight(p);
b29739f9
IM
4440 old_prio = p->prio;
4441 p->prio = effective_prio(p);
4442 delta = p->prio - old_prio;
1da177e4 4443
dd41f596 4444 if (on_rq) {
371fd7e7 4445 enqueue_task(rq, p, 0);
1da177e4 4446 /*
d5f9f942
AM
4447 * If the task increased its priority or is running and
4448 * lowered its priority, then reschedule its CPU:
1da177e4 4449 */
d5f9f942 4450 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4451 resched_task(rq->curr);
4452 }
4453out_unlock:
4454 task_rq_unlock(rq, &flags);
4455}
1da177e4
LT
4456EXPORT_SYMBOL(set_user_nice);
4457
e43379f1
MM
4458/*
4459 * can_nice - check if a task can reduce its nice value
4460 * @p: task
4461 * @nice: nice value
4462 */
36c8b586 4463int can_nice(const struct task_struct *p, const int nice)
e43379f1 4464{
024f4747
MM
4465 /* convert nice value [19,-20] to rlimit style value [1,40] */
4466 int nice_rlim = 20 - nice;
48f24c4d 4467
78d7d407 4468 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4469 capable(CAP_SYS_NICE));
4470}
4471
1da177e4
LT
4472#ifdef __ARCH_WANT_SYS_NICE
4473
4474/*
4475 * sys_nice - change the priority of the current process.
4476 * @increment: priority increment
4477 *
4478 * sys_setpriority is a more generic, but much slower function that
4479 * does similar things.
4480 */
5add95d4 4481SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4482{
48f24c4d 4483 long nice, retval;
1da177e4
LT
4484
4485 /*
4486 * Setpriority might change our priority at the same moment.
4487 * We don't have to worry. Conceptually one call occurs first
4488 * and we have a single winner.
4489 */
e43379f1
MM
4490 if (increment < -40)
4491 increment = -40;
1da177e4
LT
4492 if (increment > 40)
4493 increment = 40;
4494
2b8f836f 4495 nice = TASK_NICE(current) + increment;
1da177e4
LT
4496 if (nice < -20)
4497 nice = -20;
4498 if (nice > 19)
4499 nice = 19;
4500
e43379f1
MM
4501 if (increment < 0 && !can_nice(current, nice))
4502 return -EPERM;
4503
1da177e4
LT
4504 retval = security_task_setnice(current, nice);
4505 if (retval)
4506 return retval;
4507
4508 set_user_nice(current, nice);
4509 return 0;
4510}
4511
4512#endif
4513
4514/**
4515 * task_prio - return the priority value of a given task.
4516 * @p: the task in question.
4517 *
4518 * This is the priority value as seen by users in /proc.
4519 * RT tasks are offset by -200. Normal tasks are centered
4520 * around 0, value goes from -16 to +15.
4521 */
36c8b586 4522int task_prio(const struct task_struct *p)
1da177e4
LT
4523{
4524 return p->prio - MAX_RT_PRIO;
4525}
4526
4527/**
4528 * task_nice - return the nice value of a given task.
4529 * @p: the task in question.
4530 */
36c8b586 4531int task_nice(const struct task_struct *p)
1da177e4
LT
4532{
4533 return TASK_NICE(p);
4534}
150d8bed 4535EXPORT_SYMBOL(task_nice);
1da177e4
LT
4536
4537/**
4538 * idle_cpu - is a given cpu idle currently?
4539 * @cpu: the processor in question.
4540 */
4541int idle_cpu(int cpu)
4542{
4543 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4544}
4545
1da177e4
LT
4546/**
4547 * idle_task - return the idle task for a given cpu.
4548 * @cpu: the processor in question.
4549 */
36c8b586 4550struct task_struct *idle_task(int cpu)
1da177e4
LT
4551{
4552 return cpu_rq(cpu)->idle;
4553}
4554
4555/**
4556 * find_process_by_pid - find a process with a matching PID value.
4557 * @pid: the pid in question.
4558 */
a9957449 4559static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4560{
228ebcbe 4561 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4562}
4563
4564/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4565static void
4566__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4567{
dd41f596 4568 BUG_ON(p->se.on_rq);
48f24c4d 4569
1da177e4
LT
4570 p->policy = policy;
4571 p->rt_priority = prio;
b29739f9
IM
4572 p->normal_prio = normal_prio(p);
4573 /* we are holding p->pi_lock already */
4574 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4575 if (rt_prio(p->prio))
4576 p->sched_class = &rt_sched_class;
4577 else
4578 p->sched_class = &fair_sched_class;
2dd73a4f 4579 set_load_weight(p);
1da177e4
LT
4580}
4581
c69e8d9c
DH
4582/*
4583 * check the target process has a UID that matches the current process's
4584 */
4585static bool check_same_owner(struct task_struct *p)
4586{
4587 const struct cred *cred = current_cred(), *pcred;
4588 bool match;
4589
4590 rcu_read_lock();
4591 pcred = __task_cred(p);
4592 match = (cred->euid == pcred->euid ||
4593 cred->euid == pcred->uid);
4594 rcu_read_unlock();
4595 return match;
4596}
4597
961ccddd
RR
4598static int __sched_setscheduler(struct task_struct *p, int policy,
4599 struct sched_param *param, bool user)
1da177e4 4600{
83b699ed 4601 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4602 unsigned long flags;
83ab0aa0 4603 const struct sched_class *prev_class;
70b97a7f 4604 struct rq *rq;
ca94c442 4605 int reset_on_fork;
1da177e4 4606
66e5393a
SR
4607 /* may grab non-irq protected spin_locks */
4608 BUG_ON(in_interrupt());
1da177e4
LT
4609recheck:
4610 /* double check policy once rq lock held */
ca94c442
LP
4611 if (policy < 0) {
4612 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4613 policy = oldpolicy = p->policy;
ca94c442
LP
4614 } else {
4615 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4616 policy &= ~SCHED_RESET_ON_FORK;
4617
4618 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4619 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4620 policy != SCHED_IDLE)
4621 return -EINVAL;
4622 }
4623
1da177e4
LT
4624 /*
4625 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4626 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4627 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4628 */
4629 if (param->sched_priority < 0 ||
95cdf3b7 4630 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4631 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4632 return -EINVAL;
e05606d3 4633 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4634 return -EINVAL;
4635
37e4ab3f
OC
4636 /*
4637 * Allow unprivileged RT tasks to decrease priority:
4638 */
961ccddd 4639 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4640 if (rt_policy(policy)) {
a44702e8
ON
4641 unsigned long rlim_rtprio =
4642 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4643
4644 /* can't set/change the rt policy */
4645 if (policy != p->policy && !rlim_rtprio)
4646 return -EPERM;
4647
4648 /* can't increase priority */
4649 if (param->sched_priority > p->rt_priority &&
4650 param->sched_priority > rlim_rtprio)
4651 return -EPERM;
4652 }
dd41f596
IM
4653 /*
4654 * Like positive nice levels, dont allow tasks to
4655 * move out of SCHED_IDLE either:
4656 */
4657 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4658 return -EPERM;
5fe1d75f 4659
37e4ab3f 4660 /* can't change other user's priorities */
c69e8d9c 4661 if (!check_same_owner(p))
37e4ab3f 4662 return -EPERM;
ca94c442
LP
4663
4664 /* Normal users shall not reset the sched_reset_on_fork flag */
4665 if (p->sched_reset_on_fork && !reset_on_fork)
4666 return -EPERM;
37e4ab3f 4667 }
1da177e4 4668
725aad24 4669 if (user) {
725aad24
JF
4670 retval = security_task_setscheduler(p, policy, param);
4671 if (retval)
4672 return retval;
4673 }
4674
b29739f9
IM
4675 /*
4676 * make sure no PI-waiters arrive (or leave) while we are
4677 * changing the priority of the task:
4678 */
1d615482 4679 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4680 /*
4681 * To be able to change p->policy safely, the apropriate
4682 * runqueue lock must be held.
4683 */
b29739f9 4684 rq = __task_rq_lock(p);
dc61b1d6 4685
34f971f6
PZ
4686 /*
4687 * Changing the policy of the stop threads its a very bad idea
4688 */
4689 if (p == rq->stop) {
4690 __task_rq_unlock(rq);
4691 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4692 return -EINVAL;
4693 }
4694
dc61b1d6
PZ
4695#ifdef CONFIG_RT_GROUP_SCHED
4696 if (user) {
4697 /*
4698 * Do not allow realtime tasks into groups that have no runtime
4699 * assigned.
4700 */
4701 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4702 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4703 __task_rq_unlock(rq);
4704 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4705 return -EPERM;
4706 }
4707 }
4708#endif
4709
1da177e4
LT
4710 /* recheck policy now with rq lock held */
4711 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4712 policy = oldpolicy = -1;
b29739f9 4713 __task_rq_unlock(rq);
1d615482 4714 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4715 goto recheck;
4716 }
dd41f596 4717 on_rq = p->se.on_rq;
051a1d1a 4718 running = task_current(rq, p);
0e1f3483 4719 if (on_rq)
2e1cb74a 4720 deactivate_task(rq, p, 0);
0e1f3483
HS
4721 if (running)
4722 p->sched_class->put_prev_task(rq, p);
f6b53205 4723
ca94c442
LP
4724 p->sched_reset_on_fork = reset_on_fork;
4725
1da177e4 4726 oldprio = p->prio;
83ab0aa0 4727 prev_class = p->sched_class;
dd41f596 4728 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4729
0e1f3483
HS
4730 if (running)
4731 p->sched_class->set_curr_task(rq);
dd41f596
IM
4732 if (on_rq) {
4733 activate_task(rq, p, 0);
cb469845
SR
4734
4735 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4736 }
b29739f9 4737 __task_rq_unlock(rq);
1d615482 4738 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4739
95e02ca9
TG
4740 rt_mutex_adjust_pi(p);
4741
1da177e4
LT
4742 return 0;
4743}
961ccddd
RR
4744
4745/**
4746 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4747 * @p: the task in question.
4748 * @policy: new policy.
4749 * @param: structure containing the new RT priority.
4750 *
4751 * NOTE that the task may be already dead.
4752 */
4753int sched_setscheduler(struct task_struct *p, int policy,
4754 struct sched_param *param)
4755{
4756 return __sched_setscheduler(p, policy, param, true);
4757}
1da177e4
LT
4758EXPORT_SYMBOL_GPL(sched_setscheduler);
4759
961ccddd
RR
4760/**
4761 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4762 * @p: the task in question.
4763 * @policy: new policy.
4764 * @param: structure containing the new RT priority.
4765 *
4766 * Just like sched_setscheduler, only don't bother checking if the
4767 * current context has permission. For example, this is needed in
4768 * stop_machine(): we create temporary high priority worker threads,
4769 * but our caller might not have that capability.
4770 */
4771int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4772 struct sched_param *param)
4773{
4774 return __sched_setscheduler(p, policy, param, false);
4775}
4776
95cdf3b7
IM
4777static int
4778do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4779{
1da177e4
LT
4780 struct sched_param lparam;
4781 struct task_struct *p;
36c8b586 4782 int retval;
1da177e4
LT
4783
4784 if (!param || pid < 0)
4785 return -EINVAL;
4786 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4787 return -EFAULT;
5fe1d75f
ON
4788
4789 rcu_read_lock();
4790 retval = -ESRCH;
1da177e4 4791 p = find_process_by_pid(pid);
5fe1d75f
ON
4792 if (p != NULL)
4793 retval = sched_setscheduler(p, policy, &lparam);
4794 rcu_read_unlock();
36c8b586 4795
1da177e4
LT
4796 return retval;
4797}
4798
4799/**
4800 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4801 * @pid: the pid in question.
4802 * @policy: new policy.
4803 * @param: structure containing the new RT priority.
4804 */
5add95d4
HC
4805SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4806 struct sched_param __user *, param)
1da177e4 4807{
c21761f1
JB
4808 /* negative values for policy are not valid */
4809 if (policy < 0)
4810 return -EINVAL;
4811
1da177e4
LT
4812 return do_sched_setscheduler(pid, policy, param);
4813}
4814
4815/**
4816 * sys_sched_setparam - set/change the RT priority of a thread
4817 * @pid: the pid in question.
4818 * @param: structure containing the new RT priority.
4819 */
5add95d4 4820SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4821{
4822 return do_sched_setscheduler(pid, -1, param);
4823}
4824
4825/**
4826 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4827 * @pid: the pid in question.
4828 */
5add95d4 4829SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4830{
36c8b586 4831 struct task_struct *p;
3a5c359a 4832 int retval;
1da177e4
LT
4833
4834 if (pid < 0)
3a5c359a 4835 return -EINVAL;
1da177e4
LT
4836
4837 retval = -ESRCH;
5fe85be0 4838 rcu_read_lock();
1da177e4
LT
4839 p = find_process_by_pid(pid);
4840 if (p) {
4841 retval = security_task_getscheduler(p);
4842 if (!retval)
ca94c442
LP
4843 retval = p->policy
4844 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4845 }
5fe85be0 4846 rcu_read_unlock();
1da177e4
LT
4847 return retval;
4848}
4849
4850/**
ca94c442 4851 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4852 * @pid: the pid in question.
4853 * @param: structure containing the RT priority.
4854 */
5add95d4 4855SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4856{
4857 struct sched_param lp;
36c8b586 4858 struct task_struct *p;
3a5c359a 4859 int retval;
1da177e4
LT
4860
4861 if (!param || pid < 0)
3a5c359a 4862 return -EINVAL;
1da177e4 4863
5fe85be0 4864 rcu_read_lock();
1da177e4
LT
4865 p = find_process_by_pid(pid);
4866 retval = -ESRCH;
4867 if (!p)
4868 goto out_unlock;
4869
4870 retval = security_task_getscheduler(p);
4871 if (retval)
4872 goto out_unlock;
4873
4874 lp.sched_priority = p->rt_priority;
5fe85be0 4875 rcu_read_unlock();
1da177e4
LT
4876
4877 /*
4878 * This one might sleep, we cannot do it with a spinlock held ...
4879 */
4880 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4881
1da177e4
LT
4882 return retval;
4883
4884out_unlock:
5fe85be0 4885 rcu_read_unlock();
1da177e4
LT
4886 return retval;
4887}
4888
96f874e2 4889long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4890{
5a16f3d3 4891 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4892 struct task_struct *p;
4893 int retval;
1da177e4 4894
95402b38 4895 get_online_cpus();
23f5d142 4896 rcu_read_lock();
1da177e4
LT
4897
4898 p = find_process_by_pid(pid);
4899 if (!p) {
23f5d142 4900 rcu_read_unlock();
95402b38 4901 put_online_cpus();
1da177e4
LT
4902 return -ESRCH;
4903 }
4904
23f5d142 4905 /* Prevent p going away */
1da177e4 4906 get_task_struct(p);
23f5d142 4907 rcu_read_unlock();
1da177e4 4908
5a16f3d3
RR
4909 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4910 retval = -ENOMEM;
4911 goto out_put_task;
4912 }
4913 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4914 retval = -ENOMEM;
4915 goto out_free_cpus_allowed;
4916 }
1da177e4 4917 retval = -EPERM;
c69e8d9c 4918 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4919 goto out_unlock;
4920
e7834f8f
DQ
4921 retval = security_task_setscheduler(p, 0, NULL);
4922 if (retval)
4923 goto out_unlock;
4924
5a16f3d3
RR
4925 cpuset_cpus_allowed(p, cpus_allowed);
4926 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4927again:
5a16f3d3 4928 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4929
8707d8b8 4930 if (!retval) {
5a16f3d3
RR
4931 cpuset_cpus_allowed(p, cpus_allowed);
4932 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4933 /*
4934 * We must have raced with a concurrent cpuset
4935 * update. Just reset the cpus_allowed to the
4936 * cpuset's cpus_allowed
4937 */
5a16f3d3 4938 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4939 goto again;
4940 }
4941 }
1da177e4 4942out_unlock:
5a16f3d3
RR
4943 free_cpumask_var(new_mask);
4944out_free_cpus_allowed:
4945 free_cpumask_var(cpus_allowed);
4946out_put_task:
1da177e4 4947 put_task_struct(p);
95402b38 4948 put_online_cpus();
1da177e4
LT
4949 return retval;
4950}
4951
4952static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4953 struct cpumask *new_mask)
1da177e4 4954{
96f874e2
RR
4955 if (len < cpumask_size())
4956 cpumask_clear(new_mask);
4957 else if (len > cpumask_size())
4958 len = cpumask_size();
4959
1da177e4
LT
4960 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4961}
4962
4963/**
4964 * sys_sched_setaffinity - set the cpu affinity of a process
4965 * @pid: pid of the process
4966 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4967 * @user_mask_ptr: user-space pointer to the new cpu mask
4968 */
5add95d4
HC
4969SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4970 unsigned long __user *, user_mask_ptr)
1da177e4 4971{
5a16f3d3 4972 cpumask_var_t new_mask;
1da177e4
LT
4973 int retval;
4974
5a16f3d3
RR
4975 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4976 return -ENOMEM;
1da177e4 4977
5a16f3d3
RR
4978 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4979 if (retval == 0)
4980 retval = sched_setaffinity(pid, new_mask);
4981 free_cpumask_var(new_mask);
4982 return retval;
1da177e4
LT
4983}
4984
96f874e2 4985long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4986{
36c8b586 4987 struct task_struct *p;
31605683
TG
4988 unsigned long flags;
4989 struct rq *rq;
1da177e4 4990 int retval;
1da177e4 4991
95402b38 4992 get_online_cpus();
23f5d142 4993 rcu_read_lock();
1da177e4
LT
4994
4995 retval = -ESRCH;
4996 p = find_process_by_pid(pid);
4997 if (!p)
4998 goto out_unlock;
4999
e7834f8f
DQ
5000 retval = security_task_getscheduler(p);
5001 if (retval)
5002 goto out_unlock;
5003
31605683 5004 rq = task_rq_lock(p, &flags);
96f874e2 5005 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5006 task_rq_unlock(rq, &flags);
1da177e4
LT
5007
5008out_unlock:
23f5d142 5009 rcu_read_unlock();
95402b38 5010 put_online_cpus();
1da177e4 5011
9531b62f 5012 return retval;
1da177e4
LT
5013}
5014
5015/**
5016 * sys_sched_getaffinity - get the cpu affinity of a process
5017 * @pid: pid of the process
5018 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5019 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5020 */
5add95d4
HC
5021SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5022 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5023{
5024 int ret;
f17c8607 5025 cpumask_var_t mask;
1da177e4 5026
84fba5ec 5027 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5028 return -EINVAL;
5029 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5030 return -EINVAL;
5031
f17c8607
RR
5032 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5033 return -ENOMEM;
1da177e4 5034
f17c8607
RR
5035 ret = sched_getaffinity(pid, mask);
5036 if (ret == 0) {
8bc037fb 5037 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5038
5039 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5040 ret = -EFAULT;
5041 else
cd3d8031 5042 ret = retlen;
f17c8607
RR
5043 }
5044 free_cpumask_var(mask);
1da177e4 5045
f17c8607 5046 return ret;
1da177e4
LT
5047}
5048
5049/**
5050 * sys_sched_yield - yield the current processor to other threads.
5051 *
dd41f596
IM
5052 * This function yields the current CPU to other tasks. If there are no
5053 * other threads running on this CPU then this function will return.
1da177e4 5054 */
5add95d4 5055SYSCALL_DEFINE0(sched_yield)
1da177e4 5056{
70b97a7f 5057 struct rq *rq = this_rq_lock();
1da177e4 5058
2d72376b 5059 schedstat_inc(rq, yld_count);
4530d7ab 5060 current->sched_class->yield_task(rq);
1da177e4
LT
5061
5062 /*
5063 * Since we are going to call schedule() anyway, there's
5064 * no need to preempt or enable interrupts:
5065 */
5066 __release(rq->lock);
8a25d5de 5067 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5068 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5069 preempt_enable_no_resched();
5070
5071 schedule();
5072
5073 return 0;
5074}
5075
d86ee480
PZ
5076static inline int should_resched(void)
5077{
5078 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5079}
5080
e7b38404 5081static void __cond_resched(void)
1da177e4 5082{
e7aaaa69
FW
5083 add_preempt_count(PREEMPT_ACTIVE);
5084 schedule();
5085 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5086}
5087
02b67cc3 5088int __sched _cond_resched(void)
1da177e4 5089{
d86ee480 5090 if (should_resched()) {
1da177e4
LT
5091 __cond_resched();
5092 return 1;
5093 }
5094 return 0;
5095}
02b67cc3 5096EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5097
5098/*
613afbf8 5099 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5100 * call schedule, and on return reacquire the lock.
5101 *
41a2d6cf 5102 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5103 * operations here to prevent schedule() from being called twice (once via
5104 * spin_unlock(), once by hand).
5105 */
613afbf8 5106int __cond_resched_lock(spinlock_t *lock)
1da177e4 5107{
d86ee480 5108 int resched = should_resched();
6df3cecb
JK
5109 int ret = 0;
5110
f607c668
PZ
5111 lockdep_assert_held(lock);
5112
95c354fe 5113 if (spin_needbreak(lock) || resched) {
1da177e4 5114 spin_unlock(lock);
d86ee480 5115 if (resched)
95c354fe
NP
5116 __cond_resched();
5117 else
5118 cpu_relax();
6df3cecb 5119 ret = 1;
1da177e4 5120 spin_lock(lock);
1da177e4 5121 }
6df3cecb 5122 return ret;
1da177e4 5123}
613afbf8 5124EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5125
613afbf8 5126int __sched __cond_resched_softirq(void)
1da177e4
LT
5127{
5128 BUG_ON(!in_softirq());
5129
d86ee480 5130 if (should_resched()) {
98d82567 5131 local_bh_enable();
1da177e4
LT
5132 __cond_resched();
5133 local_bh_disable();
5134 return 1;
5135 }
5136 return 0;
5137}
613afbf8 5138EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5139
1da177e4
LT
5140/**
5141 * yield - yield the current processor to other threads.
5142 *
72fd4a35 5143 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5144 * thread runnable and calls sys_sched_yield().
5145 */
5146void __sched yield(void)
5147{
5148 set_current_state(TASK_RUNNING);
5149 sys_sched_yield();
5150}
1da177e4
LT
5151EXPORT_SYMBOL(yield);
5152
5153/*
41a2d6cf 5154 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5155 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5156 */
5157void __sched io_schedule(void)
5158{
54d35f29 5159 struct rq *rq = raw_rq();
1da177e4 5160
0ff92245 5161 delayacct_blkio_start();
1da177e4 5162 atomic_inc(&rq->nr_iowait);
8f0dfc34 5163 current->in_iowait = 1;
1da177e4 5164 schedule();
8f0dfc34 5165 current->in_iowait = 0;
1da177e4 5166 atomic_dec(&rq->nr_iowait);
0ff92245 5167 delayacct_blkio_end();
1da177e4 5168}
1da177e4
LT
5169EXPORT_SYMBOL(io_schedule);
5170
5171long __sched io_schedule_timeout(long timeout)
5172{
54d35f29 5173 struct rq *rq = raw_rq();
1da177e4
LT
5174 long ret;
5175
0ff92245 5176 delayacct_blkio_start();
1da177e4 5177 atomic_inc(&rq->nr_iowait);
8f0dfc34 5178 current->in_iowait = 1;
1da177e4 5179 ret = schedule_timeout(timeout);
8f0dfc34 5180 current->in_iowait = 0;
1da177e4 5181 atomic_dec(&rq->nr_iowait);
0ff92245 5182 delayacct_blkio_end();
1da177e4
LT
5183 return ret;
5184}
5185
5186/**
5187 * sys_sched_get_priority_max - return maximum RT priority.
5188 * @policy: scheduling class.
5189 *
5190 * this syscall returns the maximum rt_priority that can be used
5191 * by a given scheduling class.
5192 */
5add95d4 5193SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5194{
5195 int ret = -EINVAL;
5196
5197 switch (policy) {
5198 case SCHED_FIFO:
5199 case SCHED_RR:
5200 ret = MAX_USER_RT_PRIO-1;
5201 break;
5202 case SCHED_NORMAL:
b0a9499c 5203 case SCHED_BATCH:
dd41f596 5204 case SCHED_IDLE:
1da177e4
LT
5205 ret = 0;
5206 break;
5207 }
5208 return ret;
5209}
5210
5211/**
5212 * sys_sched_get_priority_min - return minimum RT priority.
5213 * @policy: scheduling class.
5214 *
5215 * this syscall returns the minimum rt_priority that can be used
5216 * by a given scheduling class.
5217 */
5add95d4 5218SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5219{
5220 int ret = -EINVAL;
5221
5222 switch (policy) {
5223 case SCHED_FIFO:
5224 case SCHED_RR:
5225 ret = 1;
5226 break;
5227 case SCHED_NORMAL:
b0a9499c 5228 case SCHED_BATCH:
dd41f596 5229 case SCHED_IDLE:
1da177e4
LT
5230 ret = 0;
5231 }
5232 return ret;
5233}
5234
5235/**
5236 * sys_sched_rr_get_interval - return the default timeslice of a process.
5237 * @pid: pid of the process.
5238 * @interval: userspace pointer to the timeslice value.
5239 *
5240 * this syscall writes the default timeslice value of a given process
5241 * into the user-space timespec buffer. A value of '0' means infinity.
5242 */
17da2bd9 5243SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5244 struct timespec __user *, interval)
1da177e4 5245{
36c8b586 5246 struct task_struct *p;
a4ec24b4 5247 unsigned int time_slice;
dba091b9
TG
5248 unsigned long flags;
5249 struct rq *rq;
3a5c359a 5250 int retval;
1da177e4 5251 struct timespec t;
1da177e4
LT
5252
5253 if (pid < 0)
3a5c359a 5254 return -EINVAL;
1da177e4
LT
5255
5256 retval = -ESRCH;
1a551ae7 5257 rcu_read_lock();
1da177e4
LT
5258 p = find_process_by_pid(pid);
5259 if (!p)
5260 goto out_unlock;
5261
5262 retval = security_task_getscheduler(p);
5263 if (retval)
5264 goto out_unlock;
5265
dba091b9
TG
5266 rq = task_rq_lock(p, &flags);
5267 time_slice = p->sched_class->get_rr_interval(rq, p);
5268 task_rq_unlock(rq, &flags);
a4ec24b4 5269
1a551ae7 5270 rcu_read_unlock();
a4ec24b4 5271 jiffies_to_timespec(time_slice, &t);
1da177e4 5272 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5273 return retval;
3a5c359a 5274
1da177e4 5275out_unlock:
1a551ae7 5276 rcu_read_unlock();
1da177e4
LT
5277 return retval;
5278}
5279
7c731e0a 5280static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5281
82a1fcb9 5282void sched_show_task(struct task_struct *p)
1da177e4 5283{
1da177e4 5284 unsigned long free = 0;
36c8b586 5285 unsigned state;
1da177e4 5286
1da177e4 5287 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5288 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5289 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5290#if BITS_PER_LONG == 32
1da177e4 5291 if (state == TASK_RUNNING)
3df0fc5b 5292 printk(KERN_CONT " running ");
1da177e4 5293 else
3df0fc5b 5294 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5295#else
5296 if (state == TASK_RUNNING)
3df0fc5b 5297 printk(KERN_CONT " running task ");
1da177e4 5298 else
3df0fc5b 5299 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5300#endif
5301#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5302 free = stack_not_used(p);
1da177e4 5303#endif
3df0fc5b 5304 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5305 task_pid_nr(p), task_pid_nr(p->real_parent),
5306 (unsigned long)task_thread_info(p)->flags);
1da177e4 5307
5fb5e6de 5308 show_stack(p, NULL);
1da177e4
LT
5309}
5310
e59e2ae2 5311void show_state_filter(unsigned long state_filter)
1da177e4 5312{
36c8b586 5313 struct task_struct *g, *p;
1da177e4 5314
4bd77321 5315#if BITS_PER_LONG == 32
3df0fc5b
PZ
5316 printk(KERN_INFO
5317 " task PC stack pid father\n");
1da177e4 5318#else
3df0fc5b
PZ
5319 printk(KERN_INFO
5320 " task PC stack pid father\n");
1da177e4
LT
5321#endif
5322 read_lock(&tasklist_lock);
5323 do_each_thread(g, p) {
5324 /*
5325 * reset the NMI-timeout, listing all files on a slow
5326 * console might take alot of time:
5327 */
5328 touch_nmi_watchdog();
39bc89fd 5329 if (!state_filter || (p->state & state_filter))
82a1fcb9 5330 sched_show_task(p);
1da177e4
LT
5331 } while_each_thread(g, p);
5332
04c9167f
JF
5333 touch_all_softlockup_watchdogs();
5334
dd41f596
IM
5335#ifdef CONFIG_SCHED_DEBUG
5336 sysrq_sched_debug_show();
5337#endif
1da177e4 5338 read_unlock(&tasklist_lock);
e59e2ae2
IM
5339 /*
5340 * Only show locks if all tasks are dumped:
5341 */
93335a21 5342 if (!state_filter)
e59e2ae2 5343 debug_show_all_locks();
1da177e4
LT
5344}
5345
1df21055
IM
5346void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5347{
dd41f596 5348 idle->sched_class = &idle_sched_class;
1df21055
IM
5349}
5350
f340c0d1
IM
5351/**
5352 * init_idle - set up an idle thread for a given CPU
5353 * @idle: task in question
5354 * @cpu: cpu the idle task belongs to
5355 *
5356 * NOTE: this function does not set the idle thread's NEED_RESCHED
5357 * flag, to make booting more robust.
5358 */
5c1e1767 5359void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5360{
70b97a7f 5361 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5362 unsigned long flags;
5363
05fa785c 5364 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5365
dd41f596 5366 __sched_fork(idle);
06b83b5f 5367 idle->state = TASK_RUNNING;
dd41f596
IM
5368 idle->se.exec_start = sched_clock();
5369
96f874e2 5370 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5371 __set_task_cpu(idle, cpu);
1da177e4 5372
1da177e4 5373 rq->curr = rq->idle = idle;
4866cde0
NP
5374#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5375 idle->oncpu = 1;
5376#endif
05fa785c 5377 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5378
5379 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5380#if defined(CONFIG_PREEMPT)
5381 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5382#else
a1261f54 5383 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5384#endif
dd41f596
IM
5385 /*
5386 * The idle tasks have their own, simple scheduling class:
5387 */
5388 idle->sched_class = &idle_sched_class;
fb52607a 5389 ftrace_graph_init_task(idle);
1da177e4
LT
5390}
5391
5392/*
5393 * In a system that switches off the HZ timer nohz_cpu_mask
5394 * indicates which cpus entered this state. This is used
5395 * in the rcu update to wait only for active cpus. For system
5396 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5397 * always be CPU_BITS_NONE.
1da177e4 5398 */
6a7b3dc3 5399cpumask_var_t nohz_cpu_mask;
1da177e4 5400
19978ca6
IM
5401/*
5402 * Increase the granularity value when there are more CPUs,
5403 * because with more CPUs the 'effective latency' as visible
5404 * to users decreases. But the relationship is not linear,
5405 * so pick a second-best guess by going with the log2 of the
5406 * number of CPUs.
5407 *
5408 * This idea comes from the SD scheduler of Con Kolivas:
5409 */
acb4a848 5410static int get_update_sysctl_factor(void)
19978ca6 5411{
4ca3ef71 5412 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5413 unsigned int factor;
5414
5415 switch (sysctl_sched_tunable_scaling) {
5416 case SCHED_TUNABLESCALING_NONE:
5417 factor = 1;
5418 break;
5419 case SCHED_TUNABLESCALING_LINEAR:
5420 factor = cpus;
5421 break;
5422 case SCHED_TUNABLESCALING_LOG:
5423 default:
5424 factor = 1 + ilog2(cpus);
5425 break;
5426 }
19978ca6 5427
acb4a848
CE
5428 return factor;
5429}
19978ca6 5430
acb4a848
CE
5431static void update_sysctl(void)
5432{
5433 unsigned int factor = get_update_sysctl_factor();
19978ca6 5434
0bcdcf28
CE
5435#define SET_SYSCTL(name) \
5436 (sysctl_##name = (factor) * normalized_sysctl_##name)
5437 SET_SYSCTL(sched_min_granularity);
5438 SET_SYSCTL(sched_latency);
5439 SET_SYSCTL(sched_wakeup_granularity);
5440 SET_SYSCTL(sched_shares_ratelimit);
5441#undef SET_SYSCTL
5442}
55cd5340 5443
0bcdcf28
CE
5444static inline void sched_init_granularity(void)
5445{
5446 update_sysctl();
19978ca6
IM
5447}
5448
1da177e4
LT
5449#ifdef CONFIG_SMP
5450/*
5451 * This is how migration works:
5452 *
969c7921
TH
5453 * 1) we invoke migration_cpu_stop() on the target CPU using
5454 * stop_one_cpu().
5455 * 2) stopper starts to run (implicitly forcing the migrated thread
5456 * off the CPU)
5457 * 3) it checks whether the migrated task is still in the wrong runqueue.
5458 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5459 * it and puts it into the right queue.
969c7921
TH
5460 * 5) stopper completes and stop_one_cpu() returns and the migration
5461 * is done.
1da177e4
LT
5462 */
5463
5464/*
5465 * Change a given task's CPU affinity. Migrate the thread to a
5466 * proper CPU and schedule it away if the CPU it's executing on
5467 * is removed from the allowed bitmask.
5468 *
5469 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5470 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5471 * call is not atomic; no spinlocks may be held.
5472 */
96f874e2 5473int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5474{
5475 unsigned long flags;
70b97a7f 5476 struct rq *rq;
969c7921 5477 unsigned int dest_cpu;
48f24c4d 5478 int ret = 0;
1da177e4 5479
65cc8e48
PZ
5480 /*
5481 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5482 * drop the rq->lock and still rely on ->cpus_allowed.
5483 */
5484again:
5485 while (task_is_waking(p))
5486 cpu_relax();
1da177e4 5487 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5488 if (task_is_waking(p)) {
5489 task_rq_unlock(rq, &flags);
5490 goto again;
5491 }
e2912009 5492
6ad4c188 5493 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5494 ret = -EINVAL;
5495 goto out;
5496 }
5497
9985b0ba 5498 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5499 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5500 ret = -EINVAL;
5501 goto out;
5502 }
5503
73fe6aae 5504 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5505 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5506 else {
96f874e2
RR
5507 cpumask_copy(&p->cpus_allowed, new_mask);
5508 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5509 }
5510
1da177e4 5511 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5512 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5513 goto out;
5514
969c7921
TH
5515 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5516 if (migrate_task(p, dest_cpu)) {
5517 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5518 /* Need help from migration thread: drop lock and wait. */
5519 task_rq_unlock(rq, &flags);
969c7921 5520 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5521 tlb_migrate_finish(p->mm);
5522 return 0;
5523 }
5524out:
5525 task_rq_unlock(rq, &flags);
48f24c4d 5526
1da177e4
LT
5527 return ret;
5528}
cd8ba7cd 5529EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5530
5531/*
41a2d6cf 5532 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5533 * this because either it can't run here any more (set_cpus_allowed()
5534 * away from this CPU, or CPU going down), or because we're
5535 * attempting to rebalance this task on exec (sched_exec).
5536 *
5537 * So we race with normal scheduler movements, but that's OK, as long
5538 * as the task is no longer on this CPU.
efc30814
KK
5539 *
5540 * Returns non-zero if task was successfully migrated.
1da177e4 5541 */
efc30814 5542static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5543{
70b97a7f 5544 struct rq *rq_dest, *rq_src;
e2912009 5545 int ret = 0;
1da177e4 5546
e761b772 5547 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5548 return ret;
1da177e4
LT
5549
5550 rq_src = cpu_rq(src_cpu);
5551 rq_dest = cpu_rq(dest_cpu);
5552
5553 double_rq_lock(rq_src, rq_dest);
5554 /* Already moved. */
5555 if (task_cpu(p) != src_cpu)
b1e38734 5556 goto done;
1da177e4 5557 /* Affinity changed (again). */
96f874e2 5558 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5559 goto fail;
1da177e4 5560
e2912009
PZ
5561 /*
5562 * If we're not on a rq, the next wake-up will ensure we're
5563 * placed properly.
5564 */
5565 if (p->se.on_rq) {
2e1cb74a 5566 deactivate_task(rq_src, p, 0);
e2912009 5567 set_task_cpu(p, dest_cpu);
dd41f596 5568 activate_task(rq_dest, p, 0);
15afe09b 5569 check_preempt_curr(rq_dest, p, 0);
1da177e4 5570 }
b1e38734 5571done:
efc30814 5572 ret = 1;
b1e38734 5573fail:
1da177e4 5574 double_rq_unlock(rq_src, rq_dest);
efc30814 5575 return ret;
1da177e4
LT
5576}
5577
5578/*
969c7921
TH
5579 * migration_cpu_stop - this will be executed by a highprio stopper thread
5580 * and performs thread migration by bumping thread off CPU then
5581 * 'pushing' onto another runqueue.
1da177e4 5582 */
969c7921 5583static int migration_cpu_stop(void *data)
1da177e4 5584{
969c7921 5585 struct migration_arg *arg = data;
f7b4cddc 5586
969c7921
TH
5587 /*
5588 * The original target cpu might have gone down and we might
5589 * be on another cpu but it doesn't matter.
5590 */
f7b4cddc 5591 local_irq_disable();
969c7921 5592 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5593 local_irq_enable();
1da177e4 5594 return 0;
f7b4cddc
ON
5595}
5596
1da177e4 5597#ifdef CONFIG_HOTPLUG_CPU
054b9108 5598/*
3a4fa0a2 5599 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5600 */
6a1bdc1b 5601void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5602{
1445c08d
ON
5603 struct rq *rq = cpu_rq(dead_cpu);
5604 int needs_cpu, uninitialized_var(dest_cpu);
5605 unsigned long flags;
e76bd8d9 5606
1445c08d 5607 local_irq_save(flags);
e76bd8d9 5608
1445c08d
ON
5609 raw_spin_lock(&rq->lock);
5610 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5611 if (needs_cpu)
5612 dest_cpu = select_fallback_rq(dead_cpu, p);
5613 raw_spin_unlock(&rq->lock);
c1804d54
ON
5614 /*
5615 * It can only fail if we race with set_cpus_allowed(),
5616 * in the racer should migrate the task anyway.
5617 */
1445c08d 5618 if (needs_cpu)
c1804d54 5619 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5620 local_irq_restore(flags);
1da177e4
LT
5621}
5622
5623/*
5624 * While a dead CPU has no uninterruptible tasks queued at this point,
5625 * it might still have a nonzero ->nr_uninterruptible counter, because
5626 * for performance reasons the counter is not stricly tracking tasks to
5627 * their home CPUs. So we just add the counter to another CPU's counter,
5628 * to keep the global sum constant after CPU-down:
5629 */
70b97a7f 5630static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5631{
6ad4c188 5632 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5633 unsigned long flags;
5634
5635 local_irq_save(flags);
5636 double_rq_lock(rq_src, rq_dest);
5637 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5638 rq_src->nr_uninterruptible = 0;
5639 double_rq_unlock(rq_src, rq_dest);
5640 local_irq_restore(flags);
5641}
5642
5643/* Run through task list and migrate tasks from the dead cpu. */
5644static void migrate_live_tasks(int src_cpu)
5645{
48f24c4d 5646 struct task_struct *p, *t;
1da177e4 5647
f7b4cddc 5648 read_lock(&tasklist_lock);
1da177e4 5649
48f24c4d
IM
5650 do_each_thread(t, p) {
5651 if (p == current)
1da177e4
LT
5652 continue;
5653
48f24c4d
IM
5654 if (task_cpu(p) == src_cpu)
5655 move_task_off_dead_cpu(src_cpu, p);
5656 } while_each_thread(t, p);
1da177e4 5657
f7b4cddc 5658 read_unlock(&tasklist_lock);
1da177e4
LT
5659}
5660
dd41f596
IM
5661/*
5662 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5663 * It does so by boosting its priority to highest possible.
5664 * Used by CPU offline code.
1da177e4
LT
5665 */
5666void sched_idle_next(void)
5667{
48f24c4d 5668 int this_cpu = smp_processor_id();
70b97a7f 5669 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5670 struct task_struct *p = rq->idle;
5671 unsigned long flags;
5672
5673 /* cpu has to be offline */
48f24c4d 5674 BUG_ON(cpu_online(this_cpu));
1da177e4 5675
48f24c4d
IM
5676 /*
5677 * Strictly not necessary since rest of the CPUs are stopped by now
5678 * and interrupts disabled on the current cpu.
1da177e4 5679 */
05fa785c 5680 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5681
dd41f596 5682 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5683
94bc9a7b 5684 activate_task(rq, p, 0);
1da177e4 5685
05fa785c 5686 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5687}
5688
48f24c4d
IM
5689/*
5690 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5691 * offline.
5692 */
5693void idle_task_exit(void)
5694{
5695 struct mm_struct *mm = current->active_mm;
5696
5697 BUG_ON(cpu_online(smp_processor_id()));
5698
5699 if (mm != &init_mm)
5700 switch_mm(mm, &init_mm, current);
5701 mmdrop(mm);
5702}
5703
054b9108 5704/* called under rq->lock with disabled interrupts */
36c8b586 5705static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5706{
70b97a7f 5707 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5708
5709 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5710 BUG_ON(!p->exit_state);
1da177e4
LT
5711
5712 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5713 BUG_ON(p->state == TASK_DEAD);
1da177e4 5714
48f24c4d 5715 get_task_struct(p);
1da177e4
LT
5716
5717 /*
5718 * Drop lock around migration; if someone else moves it,
41a2d6cf 5719 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5720 * fine.
5721 */
05fa785c 5722 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5723 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5724 raw_spin_lock_irq(&rq->lock);
1da177e4 5725
48f24c4d 5726 put_task_struct(p);
1da177e4
LT
5727}
5728
5729/* release_task() removes task from tasklist, so we won't find dead tasks. */
5730static void migrate_dead_tasks(unsigned int dead_cpu)
5731{
70b97a7f 5732 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5733 struct task_struct *next;
48f24c4d 5734
dd41f596
IM
5735 for ( ; ; ) {
5736 if (!rq->nr_running)
5737 break;
b67802ea 5738 next = pick_next_task(rq);
dd41f596
IM
5739 if (!next)
5740 break;
79c53799 5741 next->sched_class->put_prev_task(rq, next);
dd41f596 5742 migrate_dead(dead_cpu, next);
e692ab53 5743
1da177e4
LT
5744 }
5745}
dce48a84
TG
5746
5747/*
5748 * remove the tasks which were accounted by rq from calc_load_tasks.
5749 */
5750static void calc_global_load_remove(struct rq *rq)
5751{
5752 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5753 rq->calc_load_active = 0;
dce48a84 5754}
1da177e4
LT
5755#endif /* CONFIG_HOTPLUG_CPU */
5756
e692ab53
NP
5757#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5758
5759static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5760 {
5761 .procname = "sched_domain",
c57baf1e 5762 .mode = 0555,
e0361851 5763 },
56992309 5764 {}
e692ab53
NP
5765};
5766
5767static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5768 {
5769 .procname = "kernel",
c57baf1e 5770 .mode = 0555,
e0361851
AD
5771 .child = sd_ctl_dir,
5772 },
56992309 5773 {}
e692ab53
NP
5774};
5775
5776static struct ctl_table *sd_alloc_ctl_entry(int n)
5777{
5778 struct ctl_table *entry =
5cf9f062 5779 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5780
e692ab53
NP
5781 return entry;
5782}
5783
6382bc90
MM
5784static void sd_free_ctl_entry(struct ctl_table **tablep)
5785{
cd790076 5786 struct ctl_table *entry;
6382bc90 5787
cd790076
MM
5788 /*
5789 * In the intermediate directories, both the child directory and
5790 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5791 * will always be set. In the lowest directory the names are
cd790076
MM
5792 * static strings and all have proc handlers.
5793 */
5794 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5795 if (entry->child)
5796 sd_free_ctl_entry(&entry->child);
cd790076
MM
5797 if (entry->proc_handler == NULL)
5798 kfree(entry->procname);
5799 }
6382bc90
MM
5800
5801 kfree(*tablep);
5802 *tablep = NULL;
5803}
5804
e692ab53 5805static void
e0361851 5806set_table_entry(struct ctl_table *entry,
e692ab53
NP
5807 const char *procname, void *data, int maxlen,
5808 mode_t mode, proc_handler *proc_handler)
5809{
e692ab53
NP
5810 entry->procname = procname;
5811 entry->data = data;
5812 entry->maxlen = maxlen;
5813 entry->mode = mode;
5814 entry->proc_handler = proc_handler;
5815}
5816
5817static struct ctl_table *
5818sd_alloc_ctl_domain_table(struct sched_domain *sd)
5819{
a5d8c348 5820 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5821
ad1cdc1d
MM
5822 if (table == NULL)
5823 return NULL;
5824
e0361851 5825 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5826 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5827 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5828 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5829 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5830 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5831 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5832 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5833 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5834 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5835 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5836 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5837 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5838 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5839 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5840 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5841 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5842 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5843 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5844 &sd->cache_nice_tries,
5845 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5846 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5847 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5848 set_table_entry(&table[11], "name", sd->name,
5849 CORENAME_MAX_SIZE, 0444, proc_dostring);
5850 /* &table[12] is terminator */
e692ab53
NP
5851
5852 return table;
5853}
5854
9a4e7159 5855static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5856{
5857 struct ctl_table *entry, *table;
5858 struct sched_domain *sd;
5859 int domain_num = 0, i;
5860 char buf[32];
5861
5862 for_each_domain(cpu, sd)
5863 domain_num++;
5864 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5865 if (table == NULL)
5866 return NULL;
e692ab53
NP
5867
5868 i = 0;
5869 for_each_domain(cpu, sd) {
5870 snprintf(buf, 32, "domain%d", i);
e692ab53 5871 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5872 entry->mode = 0555;
e692ab53
NP
5873 entry->child = sd_alloc_ctl_domain_table(sd);
5874 entry++;
5875 i++;
5876 }
5877 return table;
5878}
5879
5880static struct ctl_table_header *sd_sysctl_header;
6382bc90 5881static void register_sched_domain_sysctl(void)
e692ab53 5882{
6ad4c188 5883 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5884 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5885 char buf[32];
5886
7378547f
MM
5887 WARN_ON(sd_ctl_dir[0].child);
5888 sd_ctl_dir[0].child = entry;
5889
ad1cdc1d
MM
5890 if (entry == NULL)
5891 return;
5892
6ad4c188 5893 for_each_possible_cpu(i) {
e692ab53 5894 snprintf(buf, 32, "cpu%d", i);
e692ab53 5895 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5896 entry->mode = 0555;
e692ab53 5897 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5898 entry++;
e692ab53 5899 }
7378547f
MM
5900
5901 WARN_ON(sd_sysctl_header);
e692ab53
NP
5902 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5903}
6382bc90 5904
7378547f 5905/* may be called multiple times per register */
6382bc90
MM
5906static void unregister_sched_domain_sysctl(void)
5907{
7378547f
MM
5908 if (sd_sysctl_header)
5909 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5910 sd_sysctl_header = NULL;
7378547f
MM
5911 if (sd_ctl_dir[0].child)
5912 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5913}
e692ab53 5914#else
6382bc90
MM
5915static void register_sched_domain_sysctl(void)
5916{
5917}
5918static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5919{
5920}
5921#endif
5922
1f11eb6a
GH
5923static void set_rq_online(struct rq *rq)
5924{
5925 if (!rq->online) {
5926 const struct sched_class *class;
5927
c6c4927b 5928 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5929 rq->online = 1;
5930
5931 for_each_class(class) {
5932 if (class->rq_online)
5933 class->rq_online(rq);
5934 }
5935 }
5936}
5937
5938static void set_rq_offline(struct rq *rq)
5939{
5940 if (rq->online) {
5941 const struct sched_class *class;
5942
5943 for_each_class(class) {
5944 if (class->rq_offline)
5945 class->rq_offline(rq);
5946 }
5947
c6c4927b 5948 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5949 rq->online = 0;
5950 }
5951}
5952
1da177e4
LT
5953/*
5954 * migration_call - callback that gets triggered when a CPU is added.
5955 * Here we can start up the necessary migration thread for the new CPU.
5956 */
48f24c4d
IM
5957static int __cpuinit
5958migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5959{
48f24c4d 5960 int cpu = (long)hcpu;
1da177e4 5961 unsigned long flags;
969c7921 5962 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5963
5964 switch (action) {
5be9361c 5965
1da177e4 5966 case CPU_UP_PREPARE:
8bb78442 5967 case CPU_UP_PREPARE_FROZEN:
a468d389 5968 rq->calc_load_update = calc_load_update;
1da177e4 5969 break;
48f24c4d 5970
1da177e4 5971 case CPU_ONLINE:
8bb78442 5972 case CPU_ONLINE_FROZEN:
1f94ef59 5973 /* Update our root-domain */
05fa785c 5974 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5975 if (rq->rd) {
c6c4927b 5976 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5977
5978 set_rq_online(rq);
1f94ef59 5979 }
05fa785c 5980 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5981 break;
48f24c4d 5982
1da177e4 5983#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5984 case CPU_DEAD:
8bb78442 5985 case CPU_DEAD_FROZEN:
1da177e4 5986 migrate_live_tasks(cpu);
1da177e4 5987 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5988 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5989 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5990 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5991 rq->idle->sched_class = &idle_sched_class;
1da177e4 5992 migrate_dead_tasks(cpu);
05fa785c 5993 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5994 migrate_nr_uninterruptible(rq);
5995 BUG_ON(rq->nr_running != 0);
dce48a84 5996 calc_global_load_remove(rq);
1da177e4 5997 break;
57d885fe 5998
08f503b0
GH
5999 case CPU_DYING:
6000 case CPU_DYING_FROZEN:
57d885fe 6001 /* Update our root-domain */
05fa785c 6002 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6003 if (rq->rd) {
c6c4927b 6004 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6005 set_rq_offline(rq);
57d885fe 6006 }
05fa785c 6007 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 6008 break;
1da177e4
LT
6009#endif
6010 }
6011 return NOTIFY_OK;
6012}
6013
f38b0820
PM
6014/*
6015 * Register at high priority so that task migration (migrate_all_tasks)
6016 * happens before everything else. This has to be lower priority than
cdd6c482 6017 * the notifier in the perf_event subsystem, though.
1da177e4 6018 */
26c2143b 6019static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6020 .notifier_call = migration_call,
50a323b7 6021 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6022};
6023
3a101d05
TH
6024static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6025 unsigned long action, void *hcpu)
6026{
6027 switch (action & ~CPU_TASKS_FROZEN) {
6028 case CPU_ONLINE:
6029 case CPU_DOWN_FAILED:
6030 set_cpu_active((long)hcpu, true);
6031 return NOTIFY_OK;
6032 default:
6033 return NOTIFY_DONE;
6034 }
6035}
6036
6037static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6038 unsigned long action, void *hcpu)
6039{
6040 switch (action & ~CPU_TASKS_FROZEN) {
6041 case CPU_DOWN_PREPARE:
6042 set_cpu_active((long)hcpu, false);
6043 return NOTIFY_OK;
6044 default:
6045 return NOTIFY_DONE;
6046 }
6047}
6048
7babe8db 6049static int __init migration_init(void)
1da177e4
LT
6050{
6051 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6052 int err;
48f24c4d 6053
3a101d05 6054 /* Initialize migration for the boot CPU */
07dccf33
AM
6055 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6056 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6057 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6058 register_cpu_notifier(&migration_notifier);
7babe8db 6059
3a101d05
TH
6060 /* Register cpu active notifiers */
6061 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6062 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6063
a004cd42 6064 return 0;
1da177e4 6065}
7babe8db 6066early_initcall(migration_init);
1da177e4
LT
6067#endif
6068
6069#ifdef CONFIG_SMP
476f3534 6070
3e9830dc 6071#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6072
f6630114
MT
6073static __read_mostly int sched_domain_debug_enabled;
6074
6075static int __init sched_domain_debug_setup(char *str)
6076{
6077 sched_domain_debug_enabled = 1;
6078
6079 return 0;
6080}
6081early_param("sched_debug", sched_domain_debug_setup);
6082
7c16ec58 6083static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6084 struct cpumask *groupmask)
1da177e4 6085{
4dcf6aff 6086 struct sched_group *group = sd->groups;
434d53b0 6087 char str[256];
1da177e4 6088
968ea6d8 6089 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6090 cpumask_clear(groupmask);
4dcf6aff
IM
6091
6092 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6093
6094 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6095 printk("does not load-balance\n");
4dcf6aff 6096 if (sd->parent)
3df0fc5b
PZ
6097 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6098 " has parent");
4dcf6aff 6099 return -1;
41c7ce9a
NP
6100 }
6101
3df0fc5b 6102 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6103
758b2cdc 6104 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6105 printk(KERN_ERR "ERROR: domain->span does not contain "
6106 "CPU%d\n", cpu);
4dcf6aff 6107 }
758b2cdc 6108 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6109 printk(KERN_ERR "ERROR: domain->groups does not contain"
6110 " CPU%d\n", cpu);
4dcf6aff 6111 }
1da177e4 6112
4dcf6aff 6113 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6114 do {
4dcf6aff 6115 if (!group) {
3df0fc5b
PZ
6116 printk("\n");
6117 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6118 break;
6119 }
6120
18a3885f 6121 if (!group->cpu_power) {
3df0fc5b
PZ
6122 printk(KERN_CONT "\n");
6123 printk(KERN_ERR "ERROR: domain->cpu_power not "
6124 "set\n");
4dcf6aff
IM
6125 break;
6126 }
1da177e4 6127
758b2cdc 6128 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6129 printk(KERN_CONT "\n");
6130 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6131 break;
6132 }
1da177e4 6133
758b2cdc 6134 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6135 printk(KERN_CONT "\n");
6136 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6137 break;
6138 }
1da177e4 6139
758b2cdc 6140 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6141
968ea6d8 6142 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6143
3df0fc5b 6144 printk(KERN_CONT " %s", str);
18a3885f 6145 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6146 printk(KERN_CONT " (cpu_power = %d)",
6147 group->cpu_power);
381512cf 6148 }
1da177e4 6149
4dcf6aff
IM
6150 group = group->next;
6151 } while (group != sd->groups);
3df0fc5b 6152 printk(KERN_CONT "\n");
1da177e4 6153
758b2cdc 6154 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6155 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6156
758b2cdc
RR
6157 if (sd->parent &&
6158 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6159 printk(KERN_ERR "ERROR: parent span is not a superset "
6160 "of domain->span\n");
4dcf6aff
IM
6161 return 0;
6162}
1da177e4 6163
4dcf6aff
IM
6164static void sched_domain_debug(struct sched_domain *sd, int cpu)
6165{
d5dd3db1 6166 cpumask_var_t groupmask;
4dcf6aff 6167 int level = 0;
1da177e4 6168
f6630114
MT
6169 if (!sched_domain_debug_enabled)
6170 return;
6171
4dcf6aff
IM
6172 if (!sd) {
6173 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6174 return;
6175 }
1da177e4 6176
4dcf6aff
IM
6177 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6178
d5dd3db1 6179 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6180 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6181 return;
6182 }
6183
4dcf6aff 6184 for (;;) {
7c16ec58 6185 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6186 break;
1da177e4
LT
6187 level++;
6188 sd = sd->parent;
33859f7f 6189 if (!sd)
4dcf6aff
IM
6190 break;
6191 }
d5dd3db1 6192 free_cpumask_var(groupmask);
1da177e4 6193}
6d6bc0ad 6194#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6195# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6196#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6197
1a20ff27 6198static int sd_degenerate(struct sched_domain *sd)
245af2c7 6199{
758b2cdc 6200 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6201 return 1;
6202
6203 /* Following flags need at least 2 groups */
6204 if (sd->flags & (SD_LOAD_BALANCE |
6205 SD_BALANCE_NEWIDLE |
6206 SD_BALANCE_FORK |
89c4710e
SS
6207 SD_BALANCE_EXEC |
6208 SD_SHARE_CPUPOWER |
6209 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6210 if (sd->groups != sd->groups->next)
6211 return 0;
6212 }
6213
6214 /* Following flags don't use groups */
c88d5910 6215 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6216 return 0;
6217
6218 return 1;
6219}
6220
48f24c4d
IM
6221static int
6222sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6223{
6224 unsigned long cflags = sd->flags, pflags = parent->flags;
6225
6226 if (sd_degenerate(parent))
6227 return 1;
6228
758b2cdc 6229 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6230 return 0;
6231
245af2c7
SS
6232 /* Flags needing groups don't count if only 1 group in parent */
6233 if (parent->groups == parent->groups->next) {
6234 pflags &= ~(SD_LOAD_BALANCE |
6235 SD_BALANCE_NEWIDLE |
6236 SD_BALANCE_FORK |
89c4710e
SS
6237 SD_BALANCE_EXEC |
6238 SD_SHARE_CPUPOWER |
6239 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6240 if (nr_node_ids == 1)
6241 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6242 }
6243 if (~cflags & pflags)
6244 return 0;
6245
6246 return 1;
6247}
6248
c6c4927b
RR
6249static void free_rootdomain(struct root_domain *rd)
6250{
047106ad
PZ
6251 synchronize_sched();
6252
68e74568
RR
6253 cpupri_cleanup(&rd->cpupri);
6254
c6c4927b
RR
6255 free_cpumask_var(rd->rto_mask);
6256 free_cpumask_var(rd->online);
6257 free_cpumask_var(rd->span);
6258 kfree(rd);
6259}
6260
57d885fe
GH
6261static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6262{
a0490fa3 6263 struct root_domain *old_rd = NULL;
57d885fe 6264 unsigned long flags;
57d885fe 6265
05fa785c 6266 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6267
6268 if (rq->rd) {
a0490fa3 6269 old_rd = rq->rd;
57d885fe 6270
c6c4927b 6271 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6272 set_rq_offline(rq);
57d885fe 6273
c6c4927b 6274 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6275
a0490fa3
IM
6276 /*
6277 * If we dont want to free the old_rt yet then
6278 * set old_rd to NULL to skip the freeing later
6279 * in this function:
6280 */
6281 if (!atomic_dec_and_test(&old_rd->refcount))
6282 old_rd = NULL;
57d885fe
GH
6283 }
6284
6285 atomic_inc(&rd->refcount);
6286 rq->rd = rd;
6287
c6c4927b 6288 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6289 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6290 set_rq_online(rq);
57d885fe 6291
05fa785c 6292 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6293
6294 if (old_rd)
6295 free_rootdomain(old_rd);
57d885fe
GH
6296}
6297
68c38fc3 6298static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6299{
6300 memset(rd, 0, sizeof(*rd));
6301
68c38fc3 6302 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6303 goto out;
68c38fc3 6304 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6305 goto free_span;
68c38fc3 6306 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6307 goto free_online;
6e0534f2 6308
68c38fc3 6309 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6310 goto free_rto_mask;
c6c4927b 6311 return 0;
6e0534f2 6312
68e74568
RR
6313free_rto_mask:
6314 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6315free_online:
6316 free_cpumask_var(rd->online);
6317free_span:
6318 free_cpumask_var(rd->span);
0c910d28 6319out:
c6c4927b 6320 return -ENOMEM;
57d885fe
GH
6321}
6322
6323static void init_defrootdomain(void)
6324{
68c38fc3 6325 init_rootdomain(&def_root_domain);
c6c4927b 6326
57d885fe
GH
6327 atomic_set(&def_root_domain.refcount, 1);
6328}
6329
dc938520 6330static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6331{
6332 struct root_domain *rd;
6333
6334 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6335 if (!rd)
6336 return NULL;
6337
68c38fc3 6338 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6339 kfree(rd);
6340 return NULL;
6341 }
57d885fe
GH
6342
6343 return rd;
6344}
6345
1da177e4 6346/*
0eab9146 6347 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6348 * hold the hotplug lock.
6349 */
0eab9146
IM
6350static void
6351cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6352{
70b97a7f 6353 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6354 struct sched_domain *tmp;
6355
669c55e9
PZ
6356 for (tmp = sd; tmp; tmp = tmp->parent)
6357 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6358
245af2c7 6359 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6360 for (tmp = sd; tmp; ) {
245af2c7
SS
6361 struct sched_domain *parent = tmp->parent;
6362 if (!parent)
6363 break;
f29c9b1c 6364
1a848870 6365 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6366 tmp->parent = parent->parent;
1a848870
SS
6367 if (parent->parent)
6368 parent->parent->child = tmp;
f29c9b1c
LZ
6369 } else
6370 tmp = tmp->parent;
245af2c7
SS
6371 }
6372
1a848870 6373 if (sd && sd_degenerate(sd)) {
245af2c7 6374 sd = sd->parent;
1a848870
SS
6375 if (sd)
6376 sd->child = NULL;
6377 }
1da177e4
LT
6378
6379 sched_domain_debug(sd, cpu);
6380
57d885fe 6381 rq_attach_root(rq, rd);
674311d5 6382 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6383}
6384
6385/* cpus with isolated domains */
dcc30a35 6386static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6387
6388/* Setup the mask of cpus configured for isolated domains */
6389static int __init isolated_cpu_setup(char *str)
6390{
bdddd296 6391 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6392 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6393 return 1;
6394}
6395
8927f494 6396__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6397
6398/*
6711cab4
SS
6399 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6400 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6401 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6402 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6403 *
6404 * init_sched_build_groups will build a circular linked list of the groups
6405 * covered by the given span, and will set each group's ->cpumask correctly,
6406 * and ->cpu_power to 0.
6407 */
a616058b 6408static void
96f874e2
RR
6409init_sched_build_groups(const struct cpumask *span,
6410 const struct cpumask *cpu_map,
6411 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6412 struct sched_group **sg,
96f874e2
RR
6413 struct cpumask *tmpmask),
6414 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6415{
6416 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6417 int i;
6418
96f874e2 6419 cpumask_clear(covered);
7c16ec58 6420
abcd083a 6421 for_each_cpu(i, span) {
6711cab4 6422 struct sched_group *sg;
7c16ec58 6423 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6424 int j;
6425
758b2cdc 6426 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6427 continue;
6428
758b2cdc 6429 cpumask_clear(sched_group_cpus(sg));
18a3885f 6430 sg->cpu_power = 0;
1da177e4 6431
abcd083a 6432 for_each_cpu(j, span) {
7c16ec58 6433 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6434 continue;
6435
96f874e2 6436 cpumask_set_cpu(j, covered);
758b2cdc 6437 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6438 }
6439 if (!first)
6440 first = sg;
6441 if (last)
6442 last->next = sg;
6443 last = sg;
6444 }
6445 last->next = first;
6446}
6447
9c1cfda2 6448#define SD_NODES_PER_DOMAIN 16
1da177e4 6449
9c1cfda2 6450#ifdef CONFIG_NUMA
198e2f18 6451
9c1cfda2
JH
6452/**
6453 * find_next_best_node - find the next node to include in a sched_domain
6454 * @node: node whose sched_domain we're building
6455 * @used_nodes: nodes already in the sched_domain
6456 *
41a2d6cf 6457 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6458 * finds the closest node not already in the @used_nodes map.
6459 *
6460 * Should use nodemask_t.
6461 */
c5f59f08 6462static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6463{
6464 int i, n, val, min_val, best_node = 0;
6465
6466 min_val = INT_MAX;
6467
076ac2af 6468 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6469 /* Start at @node */
076ac2af 6470 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6471
6472 if (!nr_cpus_node(n))
6473 continue;
6474
6475 /* Skip already used nodes */
c5f59f08 6476 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6477 continue;
6478
6479 /* Simple min distance search */
6480 val = node_distance(node, n);
6481
6482 if (val < min_val) {
6483 min_val = val;
6484 best_node = n;
6485 }
6486 }
6487
c5f59f08 6488 node_set(best_node, *used_nodes);
9c1cfda2
JH
6489 return best_node;
6490}
6491
6492/**
6493 * sched_domain_node_span - get a cpumask for a node's sched_domain
6494 * @node: node whose cpumask we're constructing
73486722 6495 * @span: resulting cpumask
9c1cfda2 6496 *
41a2d6cf 6497 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6498 * should be one that prevents unnecessary balancing, but also spreads tasks
6499 * out optimally.
6500 */
96f874e2 6501static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6502{
c5f59f08 6503 nodemask_t used_nodes;
48f24c4d 6504 int i;
9c1cfda2 6505
6ca09dfc 6506 cpumask_clear(span);
c5f59f08 6507 nodes_clear(used_nodes);
9c1cfda2 6508
6ca09dfc 6509 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6510 node_set(node, used_nodes);
9c1cfda2
JH
6511
6512 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6513 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6514
6ca09dfc 6515 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6516 }
9c1cfda2 6517}
6d6bc0ad 6518#endif /* CONFIG_NUMA */
9c1cfda2 6519
5c45bf27 6520int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6521
6c99e9ad
RR
6522/*
6523 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6524 *
6525 * ( See the the comments in include/linux/sched.h:struct sched_group
6526 * and struct sched_domain. )
6c99e9ad
RR
6527 */
6528struct static_sched_group {
6529 struct sched_group sg;
6530 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6531};
6532
6533struct static_sched_domain {
6534 struct sched_domain sd;
6535 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6536};
6537
49a02c51
AH
6538struct s_data {
6539#ifdef CONFIG_NUMA
6540 int sd_allnodes;
6541 cpumask_var_t domainspan;
6542 cpumask_var_t covered;
6543 cpumask_var_t notcovered;
6544#endif
6545 cpumask_var_t nodemask;
6546 cpumask_var_t this_sibling_map;
6547 cpumask_var_t this_core_map;
01a08546 6548 cpumask_var_t this_book_map;
49a02c51
AH
6549 cpumask_var_t send_covered;
6550 cpumask_var_t tmpmask;
6551 struct sched_group **sched_group_nodes;
6552 struct root_domain *rd;
6553};
6554
2109b99e
AH
6555enum s_alloc {
6556 sa_sched_groups = 0,
6557 sa_rootdomain,
6558 sa_tmpmask,
6559 sa_send_covered,
01a08546 6560 sa_this_book_map,
2109b99e
AH
6561 sa_this_core_map,
6562 sa_this_sibling_map,
6563 sa_nodemask,
6564 sa_sched_group_nodes,
6565#ifdef CONFIG_NUMA
6566 sa_notcovered,
6567 sa_covered,
6568 sa_domainspan,
6569#endif
6570 sa_none,
6571};
6572
9c1cfda2 6573/*
48f24c4d 6574 * SMT sched-domains:
9c1cfda2 6575 */
1da177e4 6576#ifdef CONFIG_SCHED_SMT
6c99e9ad 6577static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6578static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6579
41a2d6cf 6580static int
96f874e2
RR
6581cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6582 struct sched_group **sg, struct cpumask *unused)
1da177e4 6583{
6711cab4 6584 if (sg)
1871e52c 6585 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6586 return cpu;
6587}
6d6bc0ad 6588#endif /* CONFIG_SCHED_SMT */
1da177e4 6589
48f24c4d
IM
6590/*
6591 * multi-core sched-domains:
6592 */
1e9f28fa 6593#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6594static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6595static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6596
41a2d6cf 6597static int
96f874e2
RR
6598cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6599 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6600{
6711cab4 6601 int group;
f269893c 6602#ifdef CONFIG_SCHED_SMT
c69fc56d 6603 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6604 group = cpumask_first(mask);
f269893c
HC
6605#else
6606 group = cpu;
6607#endif
6711cab4 6608 if (sg)
6c99e9ad 6609 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6610 return group;
1e9f28fa 6611}
f269893c 6612#endif /* CONFIG_SCHED_MC */
1e9f28fa 6613
01a08546
HC
6614/*
6615 * book sched-domains:
6616 */
6617#ifdef CONFIG_SCHED_BOOK
6618static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6619static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6620
6621static int
6622cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6623 struct sched_group **sg, struct cpumask *mask)
6624{
6625 int group = cpu;
6626#ifdef CONFIG_SCHED_MC
6627 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6628 group = cpumask_first(mask);
6629#elif defined(CONFIG_SCHED_SMT)
6630 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6631 group = cpumask_first(mask);
6632#endif
6633 if (sg)
6634 *sg = &per_cpu(sched_group_book, group).sg;
6635 return group;
6636}
6637#endif /* CONFIG_SCHED_BOOK */
6638
6c99e9ad
RR
6639static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6640static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6641
41a2d6cf 6642static int
96f874e2
RR
6643cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6644 struct sched_group **sg, struct cpumask *mask)
1da177e4 6645{
6711cab4 6646 int group;
01a08546
HC
6647#ifdef CONFIG_SCHED_BOOK
6648 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6649 group = cpumask_first(mask);
6650#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6651 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6652 group = cpumask_first(mask);
1e9f28fa 6653#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6654 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6655 group = cpumask_first(mask);
1da177e4 6656#else
6711cab4 6657 group = cpu;
1da177e4 6658#endif
6711cab4 6659 if (sg)
6c99e9ad 6660 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6661 return group;
1da177e4
LT
6662}
6663
6664#ifdef CONFIG_NUMA
1da177e4 6665/*
9c1cfda2
JH
6666 * The init_sched_build_groups can't handle what we want to do with node
6667 * groups, so roll our own. Now each node has its own list of groups which
6668 * gets dynamically allocated.
1da177e4 6669 */
62ea9ceb 6670static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6671static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6672
62ea9ceb 6673static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6674static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6675
96f874e2
RR
6676static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6677 struct sched_group **sg,
6678 struct cpumask *nodemask)
9c1cfda2 6679{
6711cab4
SS
6680 int group;
6681
6ca09dfc 6682 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6683 group = cpumask_first(nodemask);
6711cab4
SS
6684
6685 if (sg)
6c99e9ad 6686 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6687 return group;
1da177e4 6688}
6711cab4 6689
08069033
SS
6690static void init_numa_sched_groups_power(struct sched_group *group_head)
6691{
6692 struct sched_group *sg = group_head;
6693 int j;
6694
6695 if (!sg)
6696 return;
3a5c359a 6697 do {
758b2cdc 6698 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6699 struct sched_domain *sd;
08069033 6700
6c99e9ad 6701 sd = &per_cpu(phys_domains, j).sd;
13318a71 6702 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6703 /*
6704 * Only add "power" once for each
6705 * physical package.
6706 */
6707 continue;
6708 }
08069033 6709
18a3885f 6710 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6711 }
6712 sg = sg->next;
6713 } while (sg != group_head);
08069033 6714}
0601a88d
AH
6715
6716static int build_numa_sched_groups(struct s_data *d,
6717 const struct cpumask *cpu_map, int num)
6718{
6719 struct sched_domain *sd;
6720 struct sched_group *sg, *prev;
6721 int n, j;
6722
6723 cpumask_clear(d->covered);
6724 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6725 if (cpumask_empty(d->nodemask)) {
6726 d->sched_group_nodes[num] = NULL;
6727 goto out;
6728 }
6729
6730 sched_domain_node_span(num, d->domainspan);
6731 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6732
6733 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6734 GFP_KERNEL, num);
6735 if (!sg) {
3df0fc5b
PZ
6736 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6737 num);
0601a88d
AH
6738 return -ENOMEM;
6739 }
6740 d->sched_group_nodes[num] = sg;
6741
6742 for_each_cpu(j, d->nodemask) {
6743 sd = &per_cpu(node_domains, j).sd;
6744 sd->groups = sg;
6745 }
6746
18a3885f 6747 sg->cpu_power = 0;
0601a88d
AH
6748 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6749 sg->next = sg;
6750 cpumask_or(d->covered, d->covered, d->nodemask);
6751
6752 prev = sg;
6753 for (j = 0; j < nr_node_ids; j++) {
6754 n = (num + j) % nr_node_ids;
6755 cpumask_complement(d->notcovered, d->covered);
6756 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6757 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6758 if (cpumask_empty(d->tmpmask))
6759 break;
6760 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6761 if (cpumask_empty(d->tmpmask))
6762 continue;
6763 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6764 GFP_KERNEL, num);
6765 if (!sg) {
3df0fc5b
PZ
6766 printk(KERN_WARNING
6767 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6768 return -ENOMEM;
6769 }
18a3885f 6770 sg->cpu_power = 0;
0601a88d
AH
6771 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6772 sg->next = prev->next;
6773 cpumask_or(d->covered, d->covered, d->tmpmask);
6774 prev->next = sg;
6775 prev = sg;
6776 }
6777out:
6778 return 0;
6779}
6d6bc0ad 6780#endif /* CONFIG_NUMA */
1da177e4 6781
a616058b 6782#ifdef CONFIG_NUMA
51888ca2 6783/* Free memory allocated for various sched_group structures */
96f874e2
RR
6784static void free_sched_groups(const struct cpumask *cpu_map,
6785 struct cpumask *nodemask)
51888ca2 6786{
a616058b 6787 int cpu, i;
51888ca2 6788
abcd083a 6789 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6790 struct sched_group **sched_group_nodes
6791 = sched_group_nodes_bycpu[cpu];
6792
51888ca2
SV
6793 if (!sched_group_nodes)
6794 continue;
6795
076ac2af 6796 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6797 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6798
6ca09dfc 6799 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6800 if (cpumask_empty(nodemask))
51888ca2
SV
6801 continue;
6802
6803 if (sg == NULL)
6804 continue;
6805 sg = sg->next;
6806next_sg:
6807 oldsg = sg;
6808 sg = sg->next;
6809 kfree(oldsg);
6810 if (oldsg != sched_group_nodes[i])
6811 goto next_sg;
6812 }
6813 kfree(sched_group_nodes);
6814 sched_group_nodes_bycpu[cpu] = NULL;
6815 }
51888ca2 6816}
6d6bc0ad 6817#else /* !CONFIG_NUMA */
96f874e2
RR
6818static void free_sched_groups(const struct cpumask *cpu_map,
6819 struct cpumask *nodemask)
a616058b
SS
6820{
6821}
6d6bc0ad 6822#endif /* CONFIG_NUMA */
51888ca2 6823
89c4710e
SS
6824/*
6825 * Initialize sched groups cpu_power.
6826 *
6827 * cpu_power indicates the capacity of sched group, which is used while
6828 * distributing the load between different sched groups in a sched domain.
6829 * Typically cpu_power for all the groups in a sched domain will be same unless
6830 * there are asymmetries in the topology. If there are asymmetries, group
6831 * having more cpu_power will pickup more load compared to the group having
6832 * less cpu_power.
89c4710e
SS
6833 */
6834static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6835{
6836 struct sched_domain *child;
6837 struct sched_group *group;
f93e65c1
PZ
6838 long power;
6839 int weight;
89c4710e
SS
6840
6841 WARN_ON(!sd || !sd->groups);
6842
13318a71 6843 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6844 return;
6845
6846 child = sd->child;
6847
18a3885f 6848 sd->groups->cpu_power = 0;
5517d86b 6849
f93e65c1
PZ
6850 if (!child) {
6851 power = SCHED_LOAD_SCALE;
6852 weight = cpumask_weight(sched_domain_span(sd));
6853 /*
6854 * SMT siblings share the power of a single core.
a52bfd73
PZ
6855 * Usually multiple threads get a better yield out of
6856 * that one core than a single thread would have,
6857 * reflect that in sd->smt_gain.
f93e65c1 6858 */
a52bfd73
PZ
6859 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6860 power *= sd->smt_gain;
f93e65c1 6861 power /= weight;
a52bfd73
PZ
6862 power >>= SCHED_LOAD_SHIFT;
6863 }
18a3885f 6864 sd->groups->cpu_power += power;
89c4710e
SS
6865 return;
6866 }
6867
89c4710e 6868 /*
f93e65c1 6869 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6870 */
6871 group = child->groups;
6872 do {
18a3885f 6873 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6874 group = group->next;
6875 } while (group != child->groups);
6876}
6877
7c16ec58
MT
6878/*
6879 * Initializers for schedule domains
6880 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6881 */
6882
a5d8c348
IM
6883#ifdef CONFIG_SCHED_DEBUG
6884# define SD_INIT_NAME(sd, type) sd->name = #type
6885#else
6886# define SD_INIT_NAME(sd, type) do { } while (0)
6887#endif
6888
7c16ec58 6889#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6890
7c16ec58
MT
6891#define SD_INIT_FUNC(type) \
6892static noinline void sd_init_##type(struct sched_domain *sd) \
6893{ \
6894 memset(sd, 0, sizeof(*sd)); \
6895 *sd = SD_##type##_INIT; \
1d3504fc 6896 sd->level = SD_LV_##type; \
a5d8c348 6897 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6898}
6899
6900SD_INIT_FUNC(CPU)
6901#ifdef CONFIG_NUMA
6902 SD_INIT_FUNC(ALLNODES)
6903 SD_INIT_FUNC(NODE)
6904#endif
6905#ifdef CONFIG_SCHED_SMT
6906 SD_INIT_FUNC(SIBLING)
6907#endif
6908#ifdef CONFIG_SCHED_MC
6909 SD_INIT_FUNC(MC)
6910#endif
01a08546
HC
6911#ifdef CONFIG_SCHED_BOOK
6912 SD_INIT_FUNC(BOOK)
6913#endif
7c16ec58 6914
1d3504fc
HS
6915static int default_relax_domain_level = -1;
6916
6917static int __init setup_relax_domain_level(char *str)
6918{
30e0e178
LZ
6919 unsigned long val;
6920
6921 val = simple_strtoul(str, NULL, 0);
6922 if (val < SD_LV_MAX)
6923 default_relax_domain_level = val;
6924
1d3504fc
HS
6925 return 1;
6926}
6927__setup("relax_domain_level=", setup_relax_domain_level);
6928
6929static void set_domain_attribute(struct sched_domain *sd,
6930 struct sched_domain_attr *attr)
6931{
6932 int request;
6933
6934 if (!attr || attr->relax_domain_level < 0) {
6935 if (default_relax_domain_level < 0)
6936 return;
6937 else
6938 request = default_relax_domain_level;
6939 } else
6940 request = attr->relax_domain_level;
6941 if (request < sd->level) {
6942 /* turn off idle balance on this domain */
c88d5910 6943 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6944 } else {
6945 /* turn on idle balance on this domain */
c88d5910 6946 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6947 }
6948}
6949
2109b99e
AH
6950static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6951 const struct cpumask *cpu_map)
6952{
6953 switch (what) {
6954 case sa_sched_groups:
6955 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6956 d->sched_group_nodes = NULL;
6957 case sa_rootdomain:
6958 free_rootdomain(d->rd); /* fall through */
6959 case sa_tmpmask:
6960 free_cpumask_var(d->tmpmask); /* fall through */
6961 case sa_send_covered:
6962 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
6963 case sa_this_book_map:
6964 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
6965 case sa_this_core_map:
6966 free_cpumask_var(d->this_core_map); /* fall through */
6967 case sa_this_sibling_map:
6968 free_cpumask_var(d->this_sibling_map); /* fall through */
6969 case sa_nodemask:
6970 free_cpumask_var(d->nodemask); /* fall through */
6971 case sa_sched_group_nodes:
d1b55138 6972#ifdef CONFIG_NUMA
2109b99e
AH
6973 kfree(d->sched_group_nodes); /* fall through */
6974 case sa_notcovered:
6975 free_cpumask_var(d->notcovered); /* fall through */
6976 case sa_covered:
6977 free_cpumask_var(d->covered); /* fall through */
6978 case sa_domainspan:
6979 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6980#endif
2109b99e
AH
6981 case sa_none:
6982 break;
6983 }
6984}
3404c8d9 6985
2109b99e
AH
6986static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6987 const struct cpumask *cpu_map)
6988{
3404c8d9 6989#ifdef CONFIG_NUMA
2109b99e
AH
6990 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6991 return sa_none;
6992 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6993 return sa_domainspan;
6994 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6995 return sa_covered;
6996 /* Allocate the per-node list of sched groups */
6997 d->sched_group_nodes = kcalloc(nr_node_ids,
6998 sizeof(struct sched_group *), GFP_KERNEL);
6999 if (!d->sched_group_nodes) {
3df0fc5b 7000 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7001 return sa_notcovered;
d1b55138 7002 }
2109b99e 7003 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7004#endif
2109b99e
AH
7005 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7006 return sa_sched_group_nodes;
7007 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7008 return sa_nodemask;
7009 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7010 return sa_this_sibling_map;
01a08546 7011 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7012 return sa_this_core_map;
01a08546
HC
7013 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7014 return sa_this_book_map;
2109b99e
AH
7015 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7016 return sa_send_covered;
7017 d->rd = alloc_rootdomain();
7018 if (!d->rd) {
3df0fc5b 7019 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7020 return sa_tmpmask;
57d885fe 7021 }
2109b99e
AH
7022 return sa_rootdomain;
7023}
57d885fe 7024
7f4588f3
AH
7025static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7026 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7027{
7028 struct sched_domain *sd = NULL;
7c16ec58 7029#ifdef CONFIG_NUMA
7f4588f3 7030 struct sched_domain *parent;
1da177e4 7031
7f4588f3
AH
7032 d->sd_allnodes = 0;
7033 if (cpumask_weight(cpu_map) >
7034 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7035 sd = &per_cpu(allnodes_domains, i).sd;
7036 SD_INIT(sd, ALLNODES);
1d3504fc 7037 set_domain_attribute(sd, attr);
7f4588f3
AH
7038 cpumask_copy(sched_domain_span(sd), cpu_map);
7039 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7040 d->sd_allnodes = 1;
7041 }
7042 parent = sd;
7043
7044 sd = &per_cpu(node_domains, i).sd;
7045 SD_INIT(sd, NODE);
7046 set_domain_attribute(sd, attr);
7047 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7048 sd->parent = parent;
7049 if (parent)
7050 parent->child = sd;
7051 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7052#endif
7f4588f3
AH
7053 return sd;
7054}
1da177e4 7055
87cce662
AH
7056static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7057 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7058 struct sched_domain *parent, int i)
7059{
7060 struct sched_domain *sd;
7061 sd = &per_cpu(phys_domains, i).sd;
7062 SD_INIT(sd, CPU);
7063 set_domain_attribute(sd, attr);
7064 cpumask_copy(sched_domain_span(sd), d->nodemask);
7065 sd->parent = parent;
7066 if (parent)
7067 parent->child = sd;
7068 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7069 return sd;
7070}
1da177e4 7071
01a08546
HC
7072static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7073 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7074 struct sched_domain *parent, int i)
7075{
7076 struct sched_domain *sd = parent;
7077#ifdef CONFIG_SCHED_BOOK
7078 sd = &per_cpu(book_domains, i).sd;
7079 SD_INIT(sd, BOOK);
7080 set_domain_attribute(sd, attr);
7081 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7082 sd->parent = parent;
7083 parent->child = sd;
7084 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7085#endif
7086 return sd;
7087}
7088
410c4081
AH
7089static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7090 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7091 struct sched_domain *parent, int i)
7092{
7093 struct sched_domain *sd = parent;
1e9f28fa 7094#ifdef CONFIG_SCHED_MC
410c4081
AH
7095 sd = &per_cpu(core_domains, i).sd;
7096 SD_INIT(sd, MC);
7097 set_domain_attribute(sd, attr);
7098 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7099 sd->parent = parent;
7100 parent->child = sd;
7101 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7102#endif
410c4081
AH
7103 return sd;
7104}
1e9f28fa 7105
d8173535
AH
7106static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7107 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7108 struct sched_domain *parent, int i)
7109{
7110 struct sched_domain *sd = parent;
1da177e4 7111#ifdef CONFIG_SCHED_SMT
d8173535
AH
7112 sd = &per_cpu(cpu_domains, i).sd;
7113 SD_INIT(sd, SIBLING);
7114 set_domain_attribute(sd, attr);
7115 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7116 sd->parent = parent;
7117 parent->child = sd;
7118 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7119#endif
d8173535
AH
7120 return sd;
7121}
1da177e4 7122
0e8e85c9
AH
7123static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7124 const struct cpumask *cpu_map, int cpu)
7125{
7126 switch (l) {
1da177e4 7127#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7128 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7129 cpumask_and(d->this_sibling_map, cpu_map,
7130 topology_thread_cpumask(cpu));
7131 if (cpu == cpumask_first(d->this_sibling_map))
7132 init_sched_build_groups(d->this_sibling_map, cpu_map,
7133 &cpu_to_cpu_group,
7134 d->send_covered, d->tmpmask);
7135 break;
1da177e4 7136#endif
1e9f28fa 7137#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7138 case SD_LV_MC: /* set up multi-core groups */
7139 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7140 if (cpu == cpumask_first(d->this_core_map))
7141 init_sched_build_groups(d->this_core_map, cpu_map,
7142 &cpu_to_core_group,
7143 d->send_covered, d->tmpmask);
7144 break;
01a08546
HC
7145#endif
7146#ifdef CONFIG_SCHED_BOOK
7147 case SD_LV_BOOK: /* set up book groups */
7148 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7149 if (cpu == cpumask_first(d->this_book_map))
7150 init_sched_build_groups(d->this_book_map, cpu_map,
7151 &cpu_to_book_group,
7152 d->send_covered, d->tmpmask);
7153 break;
1e9f28fa 7154#endif
86548096
AH
7155 case SD_LV_CPU: /* set up physical groups */
7156 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7157 if (!cpumask_empty(d->nodemask))
7158 init_sched_build_groups(d->nodemask, cpu_map,
7159 &cpu_to_phys_group,
7160 d->send_covered, d->tmpmask);
7161 break;
1da177e4 7162#ifdef CONFIG_NUMA
de616e36
AH
7163 case SD_LV_ALLNODES:
7164 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7165 d->send_covered, d->tmpmask);
7166 break;
7167#endif
0e8e85c9
AH
7168 default:
7169 break;
7c16ec58 7170 }
0e8e85c9 7171}
9c1cfda2 7172
2109b99e
AH
7173/*
7174 * Build sched domains for a given set of cpus and attach the sched domains
7175 * to the individual cpus
7176 */
7177static int __build_sched_domains(const struct cpumask *cpu_map,
7178 struct sched_domain_attr *attr)
7179{
7180 enum s_alloc alloc_state = sa_none;
7181 struct s_data d;
294b0c96 7182 struct sched_domain *sd;
2109b99e 7183 int i;
7c16ec58 7184#ifdef CONFIG_NUMA
2109b99e 7185 d.sd_allnodes = 0;
7c16ec58 7186#endif
9c1cfda2 7187
2109b99e
AH
7188 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7189 if (alloc_state != sa_rootdomain)
7190 goto error;
7191 alloc_state = sa_sched_groups;
9c1cfda2 7192
1da177e4 7193 /*
1a20ff27 7194 * Set up domains for cpus specified by the cpu_map.
1da177e4 7195 */
abcd083a 7196 for_each_cpu(i, cpu_map) {
49a02c51
AH
7197 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7198 cpu_map);
9761eea8 7199
7f4588f3 7200 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7201 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7202 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7203 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7204 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7205 }
9c1cfda2 7206
abcd083a 7207 for_each_cpu(i, cpu_map) {
0e8e85c9 7208 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7209 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7210 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7211 }
9c1cfda2 7212
1da177e4 7213 /* Set up physical groups */
86548096
AH
7214 for (i = 0; i < nr_node_ids; i++)
7215 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7216
1da177e4
LT
7217#ifdef CONFIG_NUMA
7218 /* Set up node groups */
de616e36
AH
7219 if (d.sd_allnodes)
7220 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7221
0601a88d
AH
7222 for (i = 0; i < nr_node_ids; i++)
7223 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7224 goto error;
1da177e4
LT
7225#endif
7226
7227 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7228#ifdef CONFIG_SCHED_SMT
abcd083a 7229 for_each_cpu(i, cpu_map) {
294b0c96 7230 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7231 init_sched_groups_power(i, sd);
5c45bf27 7232 }
1da177e4 7233#endif
1e9f28fa 7234#ifdef CONFIG_SCHED_MC
abcd083a 7235 for_each_cpu(i, cpu_map) {
294b0c96 7236 sd = &per_cpu(core_domains, i).sd;
89c4710e 7237 init_sched_groups_power(i, sd);
5c45bf27
SS
7238 }
7239#endif
01a08546
HC
7240#ifdef CONFIG_SCHED_BOOK
7241 for_each_cpu(i, cpu_map) {
7242 sd = &per_cpu(book_domains, i).sd;
7243 init_sched_groups_power(i, sd);
7244 }
7245#endif
1e9f28fa 7246
abcd083a 7247 for_each_cpu(i, cpu_map) {
294b0c96 7248 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7249 init_sched_groups_power(i, sd);
1da177e4
LT
7250 }
7251
9c1cfda2 7252#ifdef CONFIG_NUMA
076ac2af 7253 for (i = 0; i < nr_node_ids; i++)
49a02c51 7254 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7255
49a02c51 7256 if (d.sd_allnodes) {
6711cab4 7257 struct sched_group *sg;
f712c0c7 7258
96f874e2 7259 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7260 d.tmpmask);
f712c0c7
SS
7261 init_numa_sched_groups_power(sg);
7262 }
9c1cfda2
JH
7263#endif
7264
1da177e4 7265 /* Attach the domains */
abcd083a 7266 for_each_cpu(i, cpu_map) {
1da177e4 7267#ifdef CONFIG_SCHED_SMT
6c99e9ad 7268 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7269#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7270 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7271#elif defined(CONFIG_SCHED_BOOK)
7272 sd = &per_cpu(book_domains, i).sd;
1da177e4 7273#else
6c99e9ad 7274 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7275#endif
49a02c51 7276 cpu_attach_domain(sd, d.rd, i);
1da177e4 7277 }
51888ca2 7278
2109b99e
AH
7279 d.sched_group_nodes = NULL; /* don't free this we still need it */
7280 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7281 return 0;
51888ca2 7282
51888ca2 7283error:
2109b99e
AH
7284 __free_domain_allocs(&d, alloc_state, cpu_map);
7285 return -ENOMEM;
1da177e4 7286}
029190c5 7287
96f874e2 7288static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7289{
7290 return __build_sched_domains(cpu_map, NULL);
7291}
7292
acc3f5d7 7293static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7294static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7295static struct sched_domain_attr *dattr_cur;
7296 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7297
7298/*
7299 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7300 * cpumask) fails, then fallback to a single sched domain,
7301 * as determined by the single cpumask fallback_doms.
029190c5 7302 */
4212823f 7303static cpumask_var_t fallback_doms;
029190c5 7304
ee79d1bd
HC
7305/*
7306 * arch_update_cpu_topology lets virtualized architectures update the
7307 * cpu core maps. It is supposed to return 1 if the topology changed
7308 * or 0 if it stayed the same.
7309 */
7310int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7311{
ee79d1bd 7312 return 0;
22e52b07
HC
7313}
7314
acc3f5d7
RR
7315cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7316{
7317 int i;
7318 cpumask_var_t *doms;
7319
7320 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7321 if (!doms)
7322 return NULL;
7323 for (i = 0; i < ndoms; i++) {
7324 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7325 free_sched_domains(doms, i);
7326 return NULL;
7327 }
7328 }
7329 return doms;
7330}
7331
7332void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7333{
7334 unsigned int i;
7335 for (i = 0; i < ndoms; i++)
7336 free_cpumask_var(doms[i]);
7337 kfree(doms);
7338}
7339
1a20ff27 7340/*
41a2d6cf 7341 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7342 * For now this just excludes isolated cpus, but could be used to
7343 * exclude other special cases in the future.
1a20ff27 7344 */
96f874e2 7345static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7346{
7378547f
MM
7347 int err;
7348
22e52b07 7349 arch_update_cpu_topology();
029190c5 7350 ndoms_cur = 1;
acc3f5d7 7351 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7352 if (!doms_cur)
acc3f5d7
RR
7353 doms_cur = &fallback_doms;
7354 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7355 dattr_cur = NULL;
acc3f5d7 7356 err = build_sched_domains(doms_cur[0]);
6382bc90 7357 register_sched_domain_sysctl();
7378547f
MM
7358
7359 return err;
1a20ff27
DG
7360}
7361
96f874e2
RR
7362static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7363 struct cpumask *tmpmask)
1da177e4 7364{
7c16ec58 7365 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7366}
1da177e4 7367
1a20ff27
DG
7368/*
7369 * Detach sched domains from a group of cpus specified in cpu_map
7370 * These cpus will now be attached to the NULL domain
7371 */
96f874e2 7372static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7373{
96f874e2
RR
7374 /* Save because hotplug lock held. */
7375 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7376 int i;
7377
abcd083a 7378 for_each_cpu(i, cpu_map)
57d885fe 7379 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7380 synchronize_sched();
96f874e2 7381 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7382}
7383
1d3504fc
HS
7384/* handle null as "default" */
7385static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7386 struct sched_domain_attr *new, int idx_new)
7387{
7388 struct sched_domain_attr tmp;
7389
7390 /* fast path */
7391 if (!new && !cur)
7392 return 1;
7393
7394 tmp = SD_ATTR_INIT;
7395 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7396 new ? (new + idx_new) : &tmp,
7397 sizeof(struct sched_domain_attr));
7398}
7399
029190c5
PJ
7400/*
7401 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7402 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7403 * doms_new[] to the current sched domain partitioning, doms_cur[].
7404 * It destroys each deleted domain and builds each new domain.
7405 *
acc3f5d7 7406 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7407 * The masks don't intersect (don't overlap.) We should setup one
7408 * sched domain for each mask. CPUs not in any of the cpumasks will
7409 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7410 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7411 * it as it is.
7412 *
acc3f5d7
RR
7413 * The passed in 'doms_new' should be allocated using
7414 * alloc_sched_domains. This routine takes ownership of it and will
7415 * free_sched_domains it when done with it. If the caller failed the
7416 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7417 * and partition_sched_domains() will fallback to the single partition
7418 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7419 *
96f874e2 7420 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7421 * ndoms_new == 0 is a special case for destroying existing domains,
7422 * and it will not create the default domain.
dfb512ec 7423 *
029190c5
PJ
7424 * Call with hotplug lock held
7425 */
acc3f5d7 7426void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7427 struct sched_domain_attr *dattr_new)
029190c5 7428{
dfb512ec 7429 int i, j, n;
d65bd5ec 7430 int new_topology;
029190c5 7431
712555ee 7432 mutex_lock(&sched_domains_mutex);
a1835615 7433
7378547f
MM
7434 /* always unregister in case we don't destroy any domains */
7435 unregister_sched_domain_sysctl();
7436
d65bd5ec
HC
7437 /* Let architecture update cpu core mappings. */
7438 new_topology = arch_update_cpu_topology();
7439
dfb512ec 7440 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7441
7442 /* Destroy deleted domains */
7443 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7444 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7445 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7446 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7447 goto match1;
7448 }
7449 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7450 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7451match1:
7452 ;
7453 }
7454
e761b772
MK
7455 if (doms_new == NULL) {
7456 ndoms_cur = 0;
acc3f5d7 7457 doms_new = &fallback_doms;
6ad4c188 7458 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7459 WARN_ON_ONCE(dattr_new);
e761b772
MK
7460 }
7461
029190c5
PJ
7462 /* Build new domains */
7463 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7464 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7465 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7466 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7467 goto match2;
7468 }
7469 /* no match - add a new doms_new */
acc3f5d7 7470 __build_sched_domains(doms_new[i],
1d3504fc 7471 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7472match2:
7473 ;
7474 }
7475
7476 /* Remember the new sched domains */
acc3f5d7
RR
7477 if (doms_cur != &fallback_doms)
7478 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7479 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7480 doms_cur = doms_new;
1d3504fc 7481 dattr_cur = dattr_new;
029190c5 7482 ndoms_cur = ndoms_new;
7378547f
MM
7483
7484 register_sched_domain_sysctl();
a1835615 7485
712555ee 7486 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7487}
7488
5c45bf27 7489#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7490static void arch_reinit_sched_domains(void)
5c45bf27 7491{
95402b38 7492 get_online_cpus();
dfb512ec
MK
7493
7494 /* Destroy domains first to force the rebuild */
7495 partition_sched_domains(0, NULL, NULL);
7496
e761b772 7497 rebuild_sched_domains();
95402b38 7498 put_online_cpus();
5c45bf27
SS
7499}
7500
7501static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7502{
afb8a9b7 7503 unsigned int level = 0;
5c45bf27 7504
afb8a9b7
GS
7505 if (sscanf(buf, "%u", &level) != 1)
7506 return -EINVAL;
7507
7508 /*
7509 * level is always be positive so don't check for
7510 * level < POWERSAVINGS_BALANCE_NONE which is 0
7511 * What happens on 0 or 1 byte write,
7512 * need to check for count as well?
7513 */
7514
7515 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7516 return -EINVAL;
7517
7518 if (smt)
afb8a9b7 7519 sched_smt_power_savings = level;
5c45bf27 7520 else
afb8a9b7 7521 sched_mc_power_savings = level;
5c45bf27 7522
c70f22d2 7523 arch_reinit_sched_domains();
5c45bf27 7524
c70f22d2 7525 return count;
5c45bf27
SS
7526}
7527
5c45bf27 7528#ifdef CONFIG_SCHED_MC
f718cd4a 7529static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7530 struct sysdev_class_attribute *attr,
f718cd4a 7531 char *page)
5c45bf27
SS
7532{
7533 return sprintf(page, "%u\n", sched_mc_power_savings);
7534}
f718cd4a 7535static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7536 struct sysdev_class_attribute *attr,
48f24c4d 7537 const char *buf, size_t count)
5c45bf27
SS
7538{
7539 return sched_power_savings_store(buf, count, 0);
7540}
f718cd4a
AK
7541static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7542 sched_mc_power_savings_show,
7543 sched_mc_power_savings_store);
5c45bf27
SS
7544#endif
7545
7546#ifdef CONFIG_SCHED_SMT
f718cd4a 7547static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7548 struct sysdev_class_attribute *attr,
f718cd4a 7549 char *page)
5c45bf27
SS
7550{
7551 return sprintf(page, "%u\n", sched_smt_power_savings);
7552}
f718cd4a 7553static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7554 struct sysdev_class_attribute *attr,
48f24c4d 7555 const char *buf, size_t count)
5c45bf27
SS
7556{
7557 return sched_power_savings_store(buf, count, 1);
7558}
f718cd4a
AK
7559static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7560 sched_smt_power_savings_show,
6707de00
AB
7561 sched_smt_power_savings_store);
7562#endif
7563
39aac648 7564int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7565{
7566 int err = 0;
7567
7568#ifdef CONFIG_SCHED_SMT
7569 if (smt_capable())
7570 err = sysfs_create_file(&cls->kset.kobj,
7571 &attr_sched_smt_power_savings.attr);
7572#endif
7573#ifdef CONFIG_SCHED_MC
7574 if (!err && mc_capable())
7575 err = sysfs_create_file(&cls->kset.kobj,
7576 &attr_sched_mc_power_savings.attr);
7577#endif
7578 return err;
7579}
6d6bc0ad 7580#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7581
1da177e4 7582/*
3a101d05
TH
7583 * Update cpusets according to cpu_active mask. If cpusets are
7584 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7585 * around partition_sched_domains().
1da177e4 7586 */
0b2e918a
TH
7587static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7588 void *hcpu)
e761b772 7589{
3a101d05 7590 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7591 case CPU_ONLINE:
6ad4c188 7592 case CPU_DOWN_FAILED:
3a101d05 7593 cpuset_update_active_cpus();
e761b772 7594 return NOTIFY_OK;
3a101d05
TH
7595 default:
7596 return NOTIFY_DONE;
7597 }
7598}
e761b772 7599
0b2e918a
TH
7600static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7601 void *hcpu)
3a101d05
TH
7602{
7603 switch (action & ~CPU_TASKS_FROZEN) {
7604 case CPU_DOWN_PREPARE:
7605 cpuset_update_active_cpus();
7606 return NOTIFY_OK;
e761b772
MK
7607 default:
7608 return NOTIFY_DONE;
7609 }
7610}
e761b772
MK
7611
7612static int update_runtime(struct notifier_block *nfb,
7613 unsigned long action, void *hcpu)
1da177e4 7614{
7def2be1
PZ
7615 int cpu = (int)(long)hcpu;
7616
1da177e4 7617 switch (action) {
1da177e4 7618 case CPU_DOWN_PREPARE:
8bb78442 7619 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7620 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7621 return NOTIFY_OK;
7622
1da177e4 7623 case CPU_DOWN_FAILED:
8bb78442 7624 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7625 case CPU_ONLINE:
8bb78442 7626 case CPU_ONLINE_FROZEN:
7def2be1 7627 enable_runtime(cpu_rq(cpu));
e761b772
MK
7628 return NOTIFY_OK;
7629
1da177e4
LT
7630 default:
7631 return NOTIFY_DONE;
7632 }
1da177e4 7633}
1da177e4
LT
7634
7635void __init sched_init_smp(void)
7636{
dcc30a35
RR
7637 cpumask_var_t non_isolated_cpus;
7638
7639 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7640 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7641
434d53b0
MT
7642#if defined(CONFIG_NUMA)
7643 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7644 GFP_KERNEL);
7645 BUG_ON(sched_group_nodes_bycpu == NULL);
7646#endif
95402b38 7647 get_online_cpus();
712555ee 7648 mutex_lock(&sched_domains_mutex);
6ad4c188 7649 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7650 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7651 if (cpumask_empty(non_isolated_cpus))
7652 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7653 mutex_unlock(&sched_domains_mutex);
95402b38 7654 put_online_cpus();
e761b772 7655
3a101d05
TH
7656 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7657 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7658
7659 /* RT runtime code needs to handle some hotplug events */
7660 hotcpu_notifier(update_runtime, 0);
7661
b328ca18 7662 init_hrtick();
5c1e1767
NP
7663
7664 /* Move init over to a non-isolated CPU */
dcc30a35 7665 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7666 BUG();
19978ca6 7667 sched_init_granularity();
dcc30a35 7668 free_cpumask_var(non_isolated_cpus);
4212823f 7669
0e3900e6 7670 init_sched_rt_class();
1da177e4
LT
7671}
7672#else
7673void __init sched_init_smp(void)
7674{
19978ca6 7675 sched_init_granularity();
1da177e4
LT
7676}
7677#endif /* CONFIG_SMP */
7678
cd1bb94b
AB
7679const_debug unsigned int sysctl_timer_migration = 1;
7680
1da177e4
LT
7681int in_sched_functions(unsigned long addr)
7682{
1da177e4
LT
7683 return in_lock_functions(addr) ||
7684 (addr >= (unsigned long)__sched_text_start
7685 && addr < (unsigned long)__sched_text_end);
7686}
7687
a9957449 7688static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7689{
7690 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7691 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7692#ifdef CONFIG_FAIR_GROUP_SCHED
7693 cfs_rq->rq = rq;
7694#endif
67e9fb2a 7695 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7696}
7697
fa85ae24
PZ
7698static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7699{
7700 struct rt_prio_array *array;
7701 int i;
7702
7703 array = &rt_rq->active;
7704 for (i = 0; i < MAX_RT_PRIO; i++) {
7705 INIT_LIST_HEAD(array->queue + i);
7706 __clear_bit(i, array->bitmap);
7707 }
7708 /* delimiter for bitsearch: */
7709 __set_bit(MAX_RT_PRIO, array->bitmap);
7710
052f1dc7 7711#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7712 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7713#ifdef CONFIG_SMP
e864c499 7714 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7715#endif
48d5e258 7716#endif
fa85ae24
PZ
7717#ifdef CONFIG_SMP
7718 rt_rq->rt_nr_migratory = 0;
fa85ae24 7719 rt_rq->overloaded = 0;
05fa785c 7720 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7721#endif
7722
7723 rt_rq->rt_time = 0;
7724 rt_rq->rt_throttled = 0;
ac086bc2 7725 rt_rq->rt_runtime = 0;
0986b11b 7726 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7727
052f1dc7 7728#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7729 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7730 rt_rq->rq = rq;
7731#endif
fa85ae24
PZ
7732}
7733
6f505b16 7734#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7735static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7736 struct sched_entity *se, int cpu, int add,
7737 struct sched_entity *parent)
6f505b16 7738{
ec7dc8ac 7739 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7740 tg->cfs_rq[cpu] = cfs_rq;
7741 init_cfs_rq(cfs_rq, rq);
7742 cfs_rq->tg = tg;
7743 if (add)
7744 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7745
7746 tg->se[cpu] = se;
354d60c2
DG
7747 /* se could be NULL for init_task_group */
7748 if (!se)
7749 return;
7750
ec7dc8ac
DG
7751 if (!parent)
7752 se->cfs_rq = &rq->cfs;
7753 else
7754 se->cfs_rq = parent->my_q;
7755
6f505b16
PZ
7756 se->my_q = cfs_rq;
7757 se->load.weight = tg->shares;
e05510d0 7758 se->load.inv_weight = 0;
ec7dc8ac 7759 se->parent = parent;
6f505b16 7760}
052f1dc7 7761#endif
6f505b16 7762
052f1dc7 7763#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7764static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7765 struct sched_rt_entity *rt_se, int cpu, int add,
7766 struct sched_rt_entity *parent)
6f505b16 7767{
ec7dc8ac
DG
7768 struct rq *rq = cpu_rq(cpu);
7769
6f505b16
PZ
7770 tg->rt_rq[cpu] = rt_rq;
7771 init_rt_rq(rt_rq, rq);
7772 rt_rq->tg = tg;
ac086bc2 7773 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7774 if (add)
7775 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7776
7777 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7778 if (!rt_se)
7779 return;
7780
ec7dc8ac
DG
7781 if (!parent)
7782 rt_se->rt_rq = &rq->rt;
7783 else
7784 rt_se->rt_rq = parent->my_q;
7785
6f505b16 7786 rt_se->my_q = rt_rq;
ec7dc8ac 7787 rt_se->parent = parent;
6f505b16
PZ
7788 INIT_LIST_HEAD(&rt_se->run_list);
7789}
7790#endif
7791
1da177e4
LT
7792void __init sched_init(void)
7793{
dd41f596 7794 int i, j;
434d53b0
MT
7795 unsigned long alloc_size = 0, ptr;
7796
7797#ifdef CONFIG_FAIR_GROUP_SCHED
7798 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7799#endif
7800#ifdef CONFIG_RT_GROUP_SCHED
7801 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7802#endif
df7c8e84 7803#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7804 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7805#endif
434d53b0 7806 if (alloc_size) {
36b7b6d4 7807 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7808
7809#ifdef CONFIG_FAIR_GROUP_SCHED
7810 init_task_group.se = (struct sched_entity **)ptr;
7811 ptr += nr_cpu_ids * sizeof(void **);
7812
7813 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7814 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7815
6d6bc0ad 7816#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7817#ifdef CONFIG_RT_GROUP_SCHED
7818 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7819 ptr += nr_cpu_ids * sizeof(void **);
7820
7821 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7822 ptr += nr_cpu_ids * sizeof(void **);
7823
6d6bc0ad 7824#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7825#ifdef CONFIG_CPUMASK_OFFSTACK
7826 for_each_possible_cpu(i) {
7827 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7828 ptr += cpumask_size();
7829 }
7830#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7831 }
dd41f596 7832
57d885fe
GH
7833#ifdef CONFIG_SMP
7834 init_defrootdomain();
7835#endif
7836
d0b27fa7
PZ
7837 init_rt_bandwidth(&def_rt_bandwidth,
7838 global_rt_period(), global_rt_runtime());
7839
7840#ifdef CONFIG_RT_GROUP_SCHED
7841 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7842 global_rt_period(), global_rt_runtime());
6d6bc0ad 7843#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7844
7c941438 7845#ifdef CONFIG_CGROUP_SCHED
6f505b16 7846 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7847 INIT_LIST_HEAD(&init_task_group.children);
7848
7c941438 7849#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7850
4a6cc4bd
JK
7851#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7852 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7853 __alignof__(unsigned long));
7854#endif
0a945022 7855 for_each_possible_cpu(i) {
70b97a7f 7856 struct rq *rq;
1da177e4
LT
7857
7858 rq = cpu_rq(i);
05fa785c 7859 raw_spin_lock_init(&rq->lock);
7897986b 7860 rq->nr_running = 0;
dce48a84
TG
7861 rq->calc_load_active = 0;
7862 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7863 init_cfs_rq(&rq->cfs, rq);
6f505b16 7864 init_rt_rq(&rq->rt, rq);
dd41f596 7865#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7866 init_task_group.shares = init_task_group_load;
6f505b16 7867 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7868#ifdef CONFIG_CGROUP_SCHED
7869 /*
7870 * How much cpu bandwidth does init_task_group get?
7871 *
7872 * In case of task-groups formed thr' the cgroup filesystem, it
7873 * gets 100% of the cpu resources in the system. This overall
7874 * system cpu resource is divided among the tasks of
7875 * init_task_group and its child task-groups in a fair manner,
7876 * based on each entity's (task or task-group's) weight
7877 * (se->load.weight).
7878 *
7879 * In other words, if init_task_group has 10 tasks of weight
7880 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7881 * then A0's share of the cpu resource is:
7882 *
0d905bca 7883 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7884 *
7885 * We achieve this by letting init_task_group's tasks sit
7886 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7887 */
ec7dc8ac 7888 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7889#endif
354d60c2
DG
7890#endif /* CONFIG_FAIR_GROUP_SCHED */
7891
7892 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7893#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7894 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7895#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7896 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7897#endif
dd41f596 7898#endif
1da177e4 7899
dd41f596
IM
7900 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7901 rq->cpu_load[j] = 0;
fdf3e95d
VP
7902
7903 rq->last_load_update_tick = jiffies;
7904
1da177e4 7905#ifdef CONFIG_SMP
41c7ce9a 7906 rq->sd = NULL;
57d885fe 7907 rq->rd = NULL;
e51fd5e2 7908 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7909 rq->post_schedule = 0;
1da177e4 7910 rq->active_balance = 0;
dd41f596 7911 rq->next_balance = jiffies;
1da177e4 7912 rq->push_cpu = 0;
0a2966b4 7913 rq->cpu = i;
1f11eb6a 7914 rq->online = 0;
eae0c9df
MG
7915 rq->idle_stamp = 0;
7916 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7917 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7918#ifdef CONFIG_NO_HZ
7919 rq->nohz_balance_kick = 0;
7920 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7921#endif
1da177e4 7922#endif
8f4d37ec 7923 init_rq_hrtick(rq);
1da177e4 7924 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7925 }
7926
2dd73a4f 7927 set_load_weight(&init_task);
b50f60ce 7928
e107be36
AK
7929#ifdef CONFIG_PREEMPT_NOTIFIERS
7930 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7931#endif
7932
c9819f45 7933#ifdef CONFIG_SMP
962cf36c 7934 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7935#endif
7936
b50f60ce 7937#ifdef CONFIG_RT_MUTEXES
1d615482 7938 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7939#endif
7940
1da177e4
LT
7941 /*
7942 * The boot idle thread does lazy MMU switching as well:
7943 */
7944 atomic_inc(&init_mm.mm_count);
7945 enter_lazy_tlb(&init_mm, current);
7946
7947 /*
7948 * Make us the idle thread. Technically, schedule() should not be
7949 * called from this thread, however somewhere below it might be,
7950 * but because we are the idle thread, we just pick up running again
7951 * when this runqueue becomes "idle".
7952 */
7953 init_idle(current, smp_processor_id());
dce48a84
TG
7954
7955 calc_load_update = jiffies + LOAD_FREQ;
7956
dd41f596
IM
7957 /*
7958 * During early bootup we pretend to be a normal task:
7959 */
7960 current->sched_class = &fair_sched_class;
6892b75e 7961
6a7b3dc3 7962 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7963 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7964#ifdef CONFIG_SMP
7d1e6a9b 7965#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7966 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7967 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7968 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7969 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7970 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7971#endif
bdddd296
RR
7972 /* May be allocated at isolcpus cmdline parse time */
7973 if (cpu_isolated_map == NULL)
7974 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7975#endif /* SMP */
6a7b3dc3 7976
cdd6c482 7977 perf_event_init();
0d905bca 7978
6892b75e 7979 scheduler_running = 1;
1da177e4
LT
7980}
7981
7982#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7983static inline int preempt_count_equals(int preempt_offset)
7984{
234da7bc 7985 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7986
7987 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7988}
7989
d894837f 7990void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7991{
48f24c4d 7992#ifdef in_atomic
1da177e4
LT
7993 static unsigned long prev_jiffy; /* ratelimiting */
7994
e4aafea2
FW
7995 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7996 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7997 return;
7998 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7999 return;
8000 prev_jiffy = jiffies;
8001
3df0fc5b
PZ
8002 printk(KERN_ERR
8003 "BUG: sleeping function called from invalid context at %s:%d\n",
8004 file, line);
8005 printk(KERN_ERR
8006 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8007 in_atomic(), irqs_disabled(),
8008 current->pid, current->comm);
aef745fc
IM
8009
8010 debug_show_held_locks(current);
8011 if (irqs_disabled())
8012 print_irqtrace_events(current);
8013 dump_stack();
1da177e4
LT
8014#endif
8015}
8016EXPORT_SYMBOL(__might_sleep);
8017#endif
8018
8019#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8020static void normalize_task(struct rq *rq, struct task_struct *p)
8021{
8022 int on_rq;
3e51f33f 8023
3a5e4dc1
AK
8024 on_rq = p->se.on_rq;
8025 if (on_rq)
8026 deactivate_task(rq, p, 0);
8027 __setscheduler(rq, p, SCHED_NORMAL, 0);
8028 if (on_rq) {
8029 activate_task(rq, p, 0);
8030 resched_task(rq->curr);
8031 }
8032}
8033
1da177e4
LT
8034void normalize_rt_tasks(void)
8035{
a0f98a1c 8036 struct task_struct *g, *p;
1da177e4 8037 unsigned long flags;
70b97a7f 8038 struct rq *rq;
1da177e4 8039
4cf5d77a 8040 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8041 do_each_thread(g, p) {
178be793
IM
8042 /*
8043 * Only normalize user tasks:
8044 */
8045 if (!p->mm)
8046 continue;
8047
6cfb0d5d 8048 p->se.exec_start = 0;
6cfb0d5d 8049#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8050 p->se.statistics.wait_start = 0;
8051 p->se.statistics.sleep_start = 0;
8052 p->se.statistics.block_start = 0;
6cfb0d5d 8053#endif
dd41f596
IM
8054
8055 if (!rt_task(p)) {
8056 /*
8057 * Renice negative nice level userspace
8058 * tasks back to 0:
8059 */
8060 if (TASK_NICE(p) < 0 && p->mm)
8061 set_user_nice(p, 0);
1da177e4 8062 continue;
dd41f596 8063 }
1da177e4 8064
1d615482 8065 raw_spin_lock(&p->pi_lock);
b29739f9 8066 rq = __task_rq_lock(p);
1da177e4 8067
178be793 8068 normalize_task(rq, p);
3a5e4dc1 8069
b29739f9 8070 __task_rq_unlock(rq);
1d615482 8071 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8072 } while_each_thread(g, p);
8073
4cf5d77a 8074 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8075}
8076
8077#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8078
67fc4e0c 8079#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8080/*
67fc4e0c 8081 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8082 *
8083 * They can only be called when the whole system has been
8084 * stopped - every CPU needs to be quiescent, and no scheduling
8085 * activity can take place. Using them for anything else would
8086 * be a serious bug, and as a result, they aren't even visible
8087 * under any other configuration.
8088 */
8089
8090/**
8091 * curr_task - return the current task for a given cpu.
8092 * @cpu: the processor in question.
8093 *
8094 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8095 */
36c8b586 8096struct task_struct *curr_task(int cpu)
1df5c10a
LT
8097{
8098 return cpu_curr(cpu);
8099}
8100
67fc4e0c
JW
8101#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8102
8103#ifdef CONFIG_IA64
1df5c10a
LT
8104/**
8105 * set_curr_task - set the current task for a given cpu.
8106 * @cpu: the processor in question.
8107 * @p: the task pointer to set.
8108 *
8109 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8110 * are serviced on a separate stack. It allows the architecture to switch the
8111 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8112 * must be called with all CPU's synchronized, and interrupts disabled, the
8113 * and caller must save the original value of the current task (see
8114 * curr_task() above) and restore that value before reenabling interrupts and
8115 * re-starting the system.
8116 *
8117 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8118 */
36c8b586 8119void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8120{
8121 cpu_curr(cpu) = p;
8122}
8123
8124#endif
29f59db3 8125
bccbe08a
PZ
8126#ifdef CONFIG_FAIR_GROUP_SCHED
8127static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8128{
8129 int i;
8130
8131 for_each_possible_cpu(i) {
8132 if (tg->cfs_rq)
8133 kfree(tg->cfs_rq[i]);
8134 if (tg->se)
8135 kfree(tg->se[i]);
6f505b16
PZ
8136 }
8137
8138 kfree(tg->cfs_rq);
8139 kfree(tg->se);
6f505b16
PZ
8140}
8141
ec7dc8ac
DG
8142static
8143int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8144{
29f59db3 8145 struct cfs_rq *cfs_rq;
eab17229 8146 struct sched_entity *se;
9b5b7751 8147 struct rq *rq;
29f59db3
SV
8148 int i;
8149
434d53b0 8150 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8151 if (!tg->cfs_rq)
8152 goto err;
434d53b0 8153 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8154 if (!tg->se)
8155 goto err;
052f1dc7
PZ
8156
8157 tg->shares = NICE_0_LOAD;
29f59db3
SV
8158
8159 for_each_possible_cpu(i) {
9b5b7751 8160 rq = cpu_rq(i);
29f59db3 8161
eab17229
LZ
8162 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8163 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8164 if (!cfs_rq)
8165 goto err;
8166
eab17229
LZ
8167 se = kzalloc_node(sizeof(struct sched_entity),
8168 GFP_KERNEL, cpu_to_node(i));
29f59db3 8169 if (!se)
dfc12eb2 8170 goto err_free_rq;
29f59db3 8171
eab17229 8172 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8173 }
8174
8175 return 1;
8176
49246274 8177err_free_rq:
dfc12eb2 8178 kfree(cfs_rq);
49246274 8179err:
bccbe08a
PZ
8180 return 0;
8181}
8182
8183static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8184{
8185 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8186 &cpu_rq(cpu)->leaf_cfs_rq_list);
8187}
8188
8189static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8190{
8191 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8192}
6d6bc0ad 8193#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8194static inline void free_fair_sched_group(struct task_group *tg)
8195{
8196}
8197
ec7dc8ac
DG
8198static inline
8199int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8200{
8201 return 1;
8202}
8203
8204static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8205{
8206}
8207
8208static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8209{
8210}
6d6bc0ad 8211#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8212
8213#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8214static void free_rt_sched_group(struct task_group *tg)
8215{
8216 int i;
8217
d0b27fa7
PZ
8218 destroy_rt_bandwidth(&tg->rt_bandwidth);
8219
bccbe08a
PZ
8220 for_each_possible_cpu(i) {
8221 if (tg->rt_rq)
8222 kfree(tg->rt_rq[i]);
8223 if (tg->rt_se)
8224 kfree(tg->rt_se[i]);
8225 }
8226
8227 kfree(tg->rt_rq);
8228 kfree(tg->rt_se);
8229}
8230
ec7dc8ac
DG
8231static
8232int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8233{
8234 struct rt_rq *rt_rq;
eab17229 8235 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8236 struct rq *rq;
8237 int i;
8238
434d53b0 8239 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8240 if (!tg->rt_rq)
8241 goto err;
434d53b0 8242 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8243 if (!tg->rt_se)
8244 goto err;
8245
d0b27fa7
PZ
8246 init_rt_bandwidth(&tg->rt_bandwidth,
8247 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8248
8249 for_each_possible_cpu(i) {
8250 rq = cpu_rq(i);
8251
eab17229
LZ
8252 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8253 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8254 if (!rt_rq)
8255 goto err;
29f59db3 8256
eab17229
LZ
8257 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8258 GFP_KERNEL, cpu_to_node(i));
6f505b16 8259 if (!rt_se)
dfc12eb2 8260 goto err_free_rq;
29f59db3 8261
eab17229 8262 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8263 }
8264
bccbe08a
PZ
8265 return 1;
8266
49246274 8267err_free_rq:
dfc12eb2 8268 kfree(rt_rq);
49246274 8269err:
bccbe08a
PZ
8270 return 0;
8271}
8272
8273static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8274{
8275 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8276 &cpu_rq(cpu)->leaf_rt_rq_list);
8277}
8278
8279static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8280{
8281 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8282}
6d6bc0ad 8283#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8284static inline void free_rt_sched_group(struct task_group *tg)
8285{
8286}
8287
ec7dc8ac
DG
8288static inline
8289int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8290{
8291 return 1;
8292}
8293
8294static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8295{
8296}
8297
8298static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8299{
8300}
6d6bc0ad 8301#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8302
7c941438 8303#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8304static void free_sched_group(struct task_group *tg)
8305{
8306 free_fair_sched_group(tg);
8307 free_rt_sched_group(tg);
8308 kfree(tg);
8309}
8310
8311/* allocate runqueue etc for a new task group */
ec7dc8ac 8312struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8313{
8314 struct task_group *tg;
8315 unsigned long flags;
8316 int i;
8317
8318 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8319 if (!tg)
8320 return ERR_PTR(-ENOMEM);
8321
ec7dc8ac 8322 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8323 goto err;
8324
ec7dc8ac 8325 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8326 goto err;
8327
8ed36996 8328 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8329 for_each_possible_cpu(i) {
bccbe08a
PZ
8330 register_fair_sched_group(tg, i);
8331 register_rt_sched_group(tg, i);
9b5b7751 8332 }
6f505b16 8333 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8334
8335 WARN_ON(!parent); /* root should already exist */
8336
8337 tg->parent = parent;
f473aa5e 8338 INIT_LIST_HEAD(&tg->children);
09f2724a 8339 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8340 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8341
9b5b7751 8342 return tg;
29f59db3
SV
8343
8344err:
6f505b16 8345 free_sched_group(tg);
29f59db3
SV
8346 return ERR_PTR(-ENOMEM);
8347}
8348
9b5b7751 8349/* rcu callback to free various structures associated with a task group */
6f505b16 8350static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8351{
29f59db3 8352 /* now it should be safe to free those cfs_rqs */
6f505b16 8353 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8354}
8355
9b5b7751 8356/* Destroy runqueue etc associated with a task group */
4cf86d77 8357void sched_destroy_group(struct task_group *tg)
29f59db3 8358{
8ed36996 8359 unsigned long flags;
9b5b7751 8360 int i;
29f59db3 8361
8ed36996 8362 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8363 for_each_possible_cpu(i) {
bccbe08a
PZ
8364 unregister_fair_sched_group(tg, i);
8365 unregister_rt_sched_group(tg, i);
9b5b7751 8366 }
6f505b16 8367 list_del_rcu(&tg->list);
f473aa5e 8368 list_del_rcu(&tg->siblings);
8ed36996 8369 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8370
9b5b7751 8371 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8372 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8373}
8374
9b5b7751 8375/* change task's runqueue when it moves between groups.
3a252015
IM
8376 * The caller of this function should have put the task in its new group
8377 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8378 * reflect its new group.
9b5b7751
SV
8379 */
8380void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8381{
8382 int on_rq, running;
8383 unsigned long flags;
8384 struct rq *rq;
8385
8386 rq = task_rq_lock(tsk, &flags);
8387
051a1d1a 8388 running = task_current(rq, tsk);
29f59db3
SV
8389 on_rq = tsk->se.on_rq;
8390
0e1f3483 8391 if (on_rq)
29f59db3 8392 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8393 if (unlikely(running))
8394 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8395
6f505b16 8396 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8397
810b3817
PZ
8398#ifdef CONFIG_FAIR_GROUP_SCHED
8399 if (tsk->sched_class->moved_group)
88ec22d3 8400 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8401#endif
8402
0e1f3483
HS
8403 if (unlikely(running))
8404 tsk->sched_class->set_curr_task(rq);
8405 if (on_rq)
371fd7e7 8406 enqueue_task(rq, tsk, 0);
29f59db3 8407
29f59db3
SV
8408 task_rq_unlock(rq, &flags);
8409}
7c941438 8410#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8411
052f1dc7 8412#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8413static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8414{
8415 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8416 int on_rq;
8417
29f59db3 8418 on_rq = se->on_rq;
62fb1851 8419 if (on_rq)
29f59db3
SV
8420 dequeue_entity(cfs_rq, se, 0);
8421
8422 se->load.weight = shares;
e05510d0 8423 se->load.inv_weight = 0;
29f59db3 8424
62fb1851 8425 if (on_rq)
29f59db3 8426 enqueue_entity(cfs_rq, se, 0);
c09595f6 8427}
62fb1851 8428
c09595f6
PZ
8429static void set_se_shares(struct sched_entity *se, unsigned long shares)
8430{
8431 struct cfs_rq *cfs_rq = se->cfs_rq;
8432 struct rq *rq = cfs_rq->rq;
8433 unsigned long flags;
8434
05fa785c 8435 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8436 __set_se_shares(se, shares);
05fa785c 8437 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8438}
8439
8ed36996
PZ
8440static DEFINE_MUTEX(shares_mutex);
8441
4cf86d77 8442int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8443{
8444 int i;
8ed36996 8445 unsigned long flags;
c61935fd 8446
ec7dc8ac
DG
8447 /*
8448 * We can't change the weight of the root cgroup.
8449 */
8450 if (!tg->se[0])
8451 return -EINVAL;
8452
18d95a28
PZ
8453 if (shares < MIN_SHARES)
8454 shares = MIN_SHARES;
cb4ad1ff
MX
8455 else if (shares > MAX_SHARES)
8456 shares = MAX_SHARES;
62fb1851 8457
8ed36996 8458 mutex_lock(&shares_mutex);
9b5b7751 8459 if (tg->shares == shares)
5cb350ba 8460 goto done;
29f59db3 8461
8ed36996 8462 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8463 for_each_possible_cpu(i)
8464 unregister_fair_sched_group(tg, i);
f473aa5e 8465 list_del_rcu(&tg->siblings);
8ed36996 8466 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8467
8468 /* wait for any ongoing reference to this group to finish */
8469 synchronize_sched();
8470
8471 /*
8472 * Now we are free to modify the group's share on each cpu
8473 * w/o tripping rebalance_share or load_balance_fair.
8474 */
9b5b7751 8475 tg->shares = shares;
c09595f6
PZ
8476 for_each_possible_cpu(i) {
8477 /*
8478 * force a rebalance
8479 */
8480 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8481 set_se_shares(tg->se[i], shares);
c09595f6 8482 }
29f59db3 8483
6b2d7700
SV
8484 /*
8485 * Enable load balance activity on this group, by inserting it back on
8486 * each cpu's rq->leaf_cfs_rq_list.
8487 */
8ed36996 8488 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8489 for_each_possible_cpu(i)
8490 register_fair_sched_group(tg, i);
f473aa5e 8491 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8492 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8493done:
8ed36996 8494 mutex_unlock(&shares_mutex);
9b5b7751 8495 return 0;
29f59db3
SV
8496}
8497
5cb350ba
DG
8498unsigned long sched_group_shares(struct task_group *tg)
8499{
8500 return tg->shares;
8501}
052f1dc7 8502#endif
5cb350ba 8503
052f1dc7 8504#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8505/*
9f0c1e56 8506 * Ensure that the real time constraints are schedulable.
6f505b16 8507 */
9f0c1e56
PZ
8508static DEFINE_MUTEX(rt_constraints_mutex);
8509
8510static unsigned long to_ratio(u64 period, u64 runtime)
8511{
8512 if (runtime == RUNTIME_INF)
9a7e0b18 8513 return 1ULL << 20;
9f0c1e56 8514
9a7e0b18 8515 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8516}
8517
9a7e0b18
PZ
8518/* Must be called with tasklist_lock held */
8519static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8520{
9a7e0b18 8521 struct task_struct *g, *p;
b40b2e8e 8522
9a7e0b18
PZ
8523 do_each_thread(g, p) {
8524 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8525 return 1;
8526 } while_each_thread(g, p);
b40b2e8e 8527
9a7e0b18
PZ
8528 return 0;
8529}
b40b2e8e 8530
9a7e0b18
PZ
8531struct rt_schedulable_data {
8532 struct task_group *tg;
8533 u64 rt_period;
8534 u64 rt_runtime;
8535};
b40b2e8e 8536
9a7e0b18
PZ
8537static int tg_schedulable(struct task_group *tg, void *data)
8538{
8539 struct rt_schedulable_data *d = data;
8540 struct task_group *child;
8541 unsigned long total, sum = 0;
8542 u64 period, runtime;
b40b2e8e 8543
9a7e0b18
PZ
8544 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8545 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8546
9a7e0b18
PZ
8547 if (tg == d->tg) {
8548 period = d->rt_period;
8549 runtime = d->rt_runtime;
b40b2e8e 8550 }
b40b2e8e 8551
4653f803
PZ
8552 /*
8553 * Cannot have more runtime than the period.
8554 */
8555 if (runtime > period && runtime != RUNTIME_INF)
8556 return -EINVAL;
6f505b16 8557
4653f803
PZ
8558 /*
8559 * Ensure we don't starve existing RT tasks.
8560 */
9a7e0b18
PZ
8561 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8562 return -EBUSY;
6f505b16 8563
9a7e0b18 8564 total = to_ratio(period, runtime);
6f505b16 8565
4653f803
PZ
8566 /*
8567 * Nobody can have more than the global setting allows.
8568 */
8569 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8570 return -EINVAL;
6f505b16 8571
4653f803
PZ
8572 /*
8573 * The sum of our children's runtime should not exceed our own.
8574 */
9a7e0b18
PZ
8575 list_for_each_entry_rcu(child, &tg->children, siblings) {
8576 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8577 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8578
9a7e0b18
PZ
8579 if (child == d->tg) {
8580 period = d->rt_period;
8581 runtime = d->rt_runtime;
8582 }
6f505b16 8583
9a7e0b18 8584 sum += to_ratio(period, runtime);
9f0c1e56 8585 }
6f505b16 8586
9a7e0b18
PZ
8587 if (sum > total)
8588 return -EINVAL;
8589
8590 return 0;
6f505b16
PZ
8591}
8592
9a7e0b18 8593static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8594{
9a7e0b18
PZ
8595 struct rt_schedulable_data data = {
8596 .tg = tg,
8597 .rt_period = period,
8598 .rt_runtime = runtime,
8599 };
8600
8601 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8602}
8603
d0b27fa7
PZ
8604static int tg_set_bandwidth(struct task_group *tg,
8605 u64 rt_period, u64 rt_runtime)
6f505b16 8606{
ac086bc2 8607 int i, err = 0;
9f0c1e56 8608
9f0c1e56 8609 mutex_lock(&rt_constraints_mutex);
521f1a24 8610 read_lock(&tasklist_lock);
9a7e0b18
PZ
8611 err = __rt_schedulable(tg, rt_period, rt_runtime);
8612 if (err)
9f0c1e56 8613 goto unlock;
ac086bc2 8614
0986b11b 8615 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8616 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8617 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8618
8619 for_each_possible_cpu(i) {
8620 struct rt_rq *rt_rq = tg->rt_rq[i];
8621
0986b11b 8622 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8623 rt_rq->rt_runtime = rt_runtime;
0986b11b 8624 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8625 }
0986b11b 8626 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8627unlock:
521f1a24 8628 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8629 mutex_unlock(&rt_constraints_mutex);
8630
8631 return err;
6f505b16
PZ
8632}
8633
d0b27fa7
PZ
8634int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8635{
8636 u64 rt_runtime, rt_period;
8637
8638 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8639 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8640 if (rt_runtime_us < 0)
8641 rt_runtime = RUNTIME_INF;
8642
8643 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8644}
8645
9f0c1e56
PZ
8646long sched_group_rt_runtime(struct task_group *tg)
8647{
8648 u64 rt_runtime_us;
8649
d0b27fa7 8650 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8651 return -1;
8652
d0b27fa7 8653 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8654 do_div(rt_runtime_us, NSEC_PER_USEC);
8655 return rt_runtime_us;
8656}
d0b27fa7
PZ
8657
8658int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8659{
8660 u64 rt_runtime, rt_period;
8661
8662 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8663 rt_runtime = tg->rt_bandwidth.rt_runtime;
8664
619b0488
R
8665 if (rt_period == 0)
8666 return -EINVAL;
8667
d0b27fa7
PZ
8668 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8669}
8670
8671long sched_group_rt_period(struct task_group *tg)
8672{
8673 u64 rt_period_us;
8674
8675 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8676 do_div(rt_period_us, NSEC_PER_USEC);
8677 return rt_period_us;
8678}
8679
8680static int sched_rt_global_constraints(void)
8681{
4653f803 8682 u64 runtime, period;
d0b27fa7
PZ
8683 int ret = 0;
8684
ec5d4989
HS
8685 if (sysctl_sched_rt_period <= 0)
8686 return -EINVAL;
8687
4653f803
PZ
8688 runtime = global_rt_runtime();
8689 period = global_rt_period();
8690
8691 /*
8692 * Sanity check on the sysctl variables.
8693 */
8694 if (runtime > period && runtime != RUNTIME_INF)
8695 return -EINVAL;
10b612f4 8696
d0b27fa7 8697 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8698 read_lock(&tasklist_lock);
4653f803 8699 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8700 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8701 mutex_unlock(&rt_constraints_mutex);
8702
8703 return ret;
8704}
54e99124
DG
8705
8706int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8707{
8708 /* Don't accept realtime tasks when there is no way for them to run */
8709 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8710 return 0;
8711
8712 return 1;
8713}
8714
6d6bc0ad 8715#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8716static int sched_rt_global_constraints(void)
8717{
ac086bc2
PZ
8718 unsigned long flags;
8719 int i;
8720
ec5d4989
HS
8721 if (sysctl_sched_rt_period <= 0)
8722 return -EINVAL;
8723
60aa605d
PZ
8724 /*
8725 * There's always some RT tasks in the root group
8726 * -- migration, kstopmachine etc..
8727 */
8728 if (sysctl_sched_rt_runtime == 0)
8729 return -EBUSY;
8730
0986b11b 8731 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8732 for_each_possible_cpu(i) {
8733 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8734
0986b11b 8735 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8736 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8737 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8738 }
0986b11b 8739 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8740
d0b27fa7
PZ
8741 return 0;
8742}
6d6bc0ad 8743#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8744
8745int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8746 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8747 loff_t *ppos)
8748{
8749 int ret;
8750 int old_period, old_runtime;
8751 static DEFINE_MUTEX(mutex);
8752
8753 mutex_lock(&mutex);
8754 old_period = sysctl_sched_rt_period;
8755 old_runtime = sysctl_sched_rt_runtime;
8756
8d65af78 8757 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8758
8759 if (!ret && write) {
8760 ret = sched_rt_global_constraints();
8761 if (ret) {
8762 sysctl_sched_rt_period = old_period;
8763 sysctl_sched_rt_runtime = old_runtime;
8764 } else {
8765 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8766 def_rt_bandwidth.rt_period =
8767 ns_to_ktime(global_rt_period());
8768 }
8769 }
8770 mutex_unlock(&mutex);
8771
8772 return ret;
8773}
68318b8e 8774
052f1dc7 8775#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8776
8777/* return corresponding task_group object of a cgroup */
2b01dfe3 8778static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8779{
2b01dfe3
PM
8780 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8781 struct task_group, css);
68318b8e
SV
8782}
8783
8784static struct cgroup_subsys_state *
2b01dfe3 8785cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8786{
ec7dc8ac 8787 struct task_group *tg, *parent;
68318b8e 8788
2b01dfe3 8789 if (!cgrp->parent) {
68318b8e 8790 /* This is early initialization for the top cgroup */
68318b8e
SV
8791 return &init_task_group.css;
8792 }
8793
ec7dc8ac
DG
8794 parent = cgroup_tg(cgrp->parent);
8795 tg = sched_create_group(parent);
68318b8e
SV
8796 if (IS_ERR(tg))
8797 return ERR_PTR(-ENOMEM);
8798
68318b8e
SV
8799 return &tg->css;
8800}
8801
41a2d6cf
IM
8802static void
8803cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8804{
2b01dfe3 8805 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8806
8807 sched_destroy_group(tg);
8808}
8809
41a2d6cf 8810static int
be367d09 8811cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8812{
b68aa230 8813#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8814 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8815 return -EINVAL;
8816#else
68318b8e
SV
8817 /* We don't support RT-tasks being in separate groups */
8818 if (tsk->sched_class != &fair_sched_class)
8819 return -EINVAL;
b68aa230 8820#endif
be367d09
BB
8821 return 0;
8822}
68318b8e 8823
be367d09
BB
8824static int
8825cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8826 struct task_struct *tsk, bool threadgroup)
8827{
8828 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8829 if (retval)
8830 return retval;
8831 if (threadgroup) {
8832 struct task_struct *c;
8833 rcu_read_lock();
8834 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8835 retval = cpu_cgroup_can_attach_task(cgrp, c);
8836 if (retval) {
8837 rcu_read_unlock();
8838 return retval;
8839 }
8840 }
8841 rcu_read_unlock();
8842 }
68318b8e
SV
8843 return 0;
8844}
8845
8846static void
2b01dfe3 8847cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8848 struct cgroup *old_cont, struct task_struct *tsk,
8849 bool threadgroup)
68318b8e
SV
8850{
8851 sched_move_task(tsk);
be367d09
BB
8852 if (threadgroup) {
8853 struct task_struct *c;
8854 rcu_read_lock();
8855 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8856 sched_move_task(c);
8857 }
8858 rcu_read_unlock();
8859 }
68318b8e
SV
8860}
8861
052f1dc7 8862#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8863static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8864 u64 shareval)
68318b8e 8865{
2b01dfe3 8866 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8867}
8868
f4c753b7 8869static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8870{
2b01dfe3 8871 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8872
8873 return (u64) tg->shares;
8874}
6d6bc0ad 8875#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8876
052f1dc7 8877#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8878static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8879 s64 val)
6f505b16 8880{
06ecb27c 8881 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8882}
8883
06ecb27c 8884static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8885{
06ecb27c 8886 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8887}
d0b27fa7
PZ
8888
8889static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8890 u64 rt_period_us)
8891{
8892 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8893}
8894
8895static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8896{
8897 return sched_group_rt_period(cgroup_tg(cgrp));
8898}
6d6bc0ad 8899#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8900
fe5c7cc2 8901static struct cftype cpu_files[] = {
052f1dc7 8902#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8903 {
8904 .name = "shares",
f4c753b7
PM
8905 .read_u64 = cpu_shares_read_u64,
8906 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8907 },
052f1dc7
PZ
8908#endif
8909#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8910 {
9f0c1e56 8911 .name = "rt_runtime_us",
06ecb27c
PM
8912 .read_s64 = cpu_rt_runtime_read,
8913 .write_s64 = cpu_rt_runtime_write,
6f505b16 8914 },
d0b27fa7
PZ
8915 {
8916 .name = "rt_period_us",
f4c753b7
PM
8917 .read_u64 = cpu_rt_period_read_uint,
8918 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8919 },
052f1dc7 8920#endif
68318b8e
SV
8921};
8922
8923static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8924{
fe5c7cc2 8925 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8926}
8927
8928struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8929 .name = "cpu",
8930 .create = cpu_cgroup_create,
8931 .destroy = cpu_cgroup_destroy,
8932 .can_attach = cpu_cgroup_can_attach,
8933 .attach = cpu_cgroup_attach,
8934 .populate = cpu_cgroup_populate,
8935 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8936 .early_init = 1,
8937};
8938
052f1dc7 8939#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8940
8941#ifdef CONFIG_CGROUP_CPUACCT
8942
8943/*
8944 * CPU accounting code for task groups.
8945 *
8946 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8947 * (balbir@in.ibm.com).
8948 */
8949
934352f2 8950/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8951struct cpuacct {
8952 struct cgroup_subsys_state css;
8953 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8954 u64 __percpu *cpuusage;
ef12fefa 8955 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8956 struct cpuacct *parent;
d842de87
SV
8957};
8958
8959struct cgroup_subsys cpuacct_subsys;
8960
8961/* return cpu accounting group corresponding to this container */
32cd756a 8962static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8963{
32cd756a 8964 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8965 struct cpuacct, css);
8966}
8967
8968/* return cpu accounting group to which this task belongs */
8969static inline struct cpuacct *task_ca(struct task_struct *tsk)
8970{
8971 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8972 struct cpuacct, css);
8973}
8974
8975/* create a new cpu accounting group */
8976static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8977 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8978{
8979 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8980 int i;
d842de87
SV
8981
8982 if (!ca)
ef12fefa 8983 goto out;
d842de87
SV
8984
8985 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8986 if (!ca->cpuusage)
8987 goto out_free_ca;
8988
8989 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8990 if (percpu_counter_init(&ca->cpustat[i], 0))
8991 goto out_free_counters;
d842de87 8992
934352f2
BR
8993 if (cgrp->parent)
8994 ca->parent = cgroup_ca(cgrp->parent);
8995
d842de87 8996 return &ca->css;
ef12fefa
BR
8997
8998out_free_counters:
8999 while (--i >= 0)
9000 percpu_counter_destroy(&ca->cpustat[i]);
9001 free_percpu(ca->cpuusage);
9002out_free_ca:
9003 kfree(ca);
9004out:
9005 return ERR_PTR(-ENOMEM);
d842de87
SV
9006}
9007
9008/* destroy an existing cpu accounting group */
41a2d6cf 9009static void
32cd756a 9010cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9011{
32cd756a 9012 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9013 int i;
d842de87 9014
ef12fefa
BR
9015 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9016 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9017 free_percpu(ca->cpuusage);
9018 kfree(ca);
9019}
9020
720f5498
KC
9021static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9022{
b36128c8 9023 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9024 u64 data;
9025
9026#ifndef CONFIG_64BIT
9027 /*
9028 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9029 */
05fa785c 9030 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9031 data = *cpuusage;
05fa785c 9032 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9033#else
9034 data = *cpuusage;
9035#endif
9036
9037 return data;
9038}
9039
9040static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9041{
b36128c8 9042 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9043
9044#ifndef CONFIG_64BIT
9045 /*
9046 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9047 */
05fa785c 9048 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9049 *cpuusage = val;
05fa785c 9050 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9051#else
9052 *cpuusage = val;
9053#endif
9054}
9055
d842de87 9056/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9057static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9058{
32cd756a 9059 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9060 u64 totalcpuusage = 0;
9061 int i;
9062
720f5498
KC
9063 for_each_present_cpu(i)
9064 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9065
9066 return totalcpuusage;
9067}
9068
0297b803
DG
9069static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9070 u64 reset)
9071{
9072 struct cpuacct *ca = cgroup_ca(cgrp);
9073 int err = 0;
9074 int i;
9075
9076 if (reset) {
9077 err = -EINVAL;
9078 goto out;
9079 }
9080
720f5498
KC
9081 for_each_present_cpu(i)
9082 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9083
0297b803
DG
9084out:
9085 return err;
9086}
9087
e9515c3c
KC
9088static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9089 struct seq_file *m)
9090{
9091 struct cpuacct *ca = cgroup_ca(cgroup);
9092 u64 percpu;
9093 int i;
9094
9095 for_each_present_cpu(i) {
9096 percpu = cpuacct_cpuusage_read(ca, i);
9097 seq_printf(m, "%llu ", (unsigned long long) percpu);
9098 }
9099 seq_printf(m, "\n");
9100 return 0;
9101}
9102
ef12fefa
BR
9103static const char *cpuacct_stat_desc[] = {
9104 [CPUACCT_STAT_USER] = "user",
9105 [CPUACCT_STAT_SYSTEM] = "system",
9106};
9107
9108static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9109 struct cgroup_map_cb *cb)
9110{
9111 struct cpuacct *ca = cgroup_ca(cgrp);
9112 int i;
9113
9114 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9115 s64 val = percpu_counter_read(&ca->cpustat[i]);
9116 val = cputime64_to_clock_t(val);
9117 cb->fill(cb, cpuacct_stat_desc[i], val);
9118 }
9119 return 0;
9120}
9121
d842de87
SV
9122static struct cftype files[] = {
9123 {
9124 .name = "usage",
f4c753b7
PM
9125 .read_u64 = cpuusage_read,
9126 .write_u64 = cpuusage_write,
d842de87 9127 },
e9515c3c
KC
9128 {
9129 .name = "usage_percpu",
9130 .read_seq_string = cpuacct_percpu_seq_read,
9131 },
ef12fefa
BR
9132 {
9133 .name = "stat",
9134 .read_map = cpuacct_stats_show,
9135 },
d842de87
SV
9136};
9137
32cd756a 9138static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9139{
32cd756a 9140 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9141}
9142
9143/*
9144 * charge this task's execution time to its accounting group.
9145 *
9146 * called with rq->lock held.
9147 */
9148static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9149{
9150 struct cpuacct *ca;
934352f2 9151 int cpu;
d842de87 9152
c40c6f85 9153 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9154 return;
9155
934352f2 9156 cpu = task_cpu(tsk);
a18b83b7
BR
9157
9158 rcu_read_lock();
9159
d842de87 9160 ca = task_ca(tsk);
d842de87 9161
934352f2 9162 for (; ca; ca = ca->parent) {
b36128c8 9163 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9164 *cpuusage += cputime;
9165 }
a18b83b7
BR
9166
9167 rcu_read_unlock();
d842de87
SV
9168}
9169
fa535a77
AB
9170/*
9171 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9172 * in cputime_t units. As a result, cpuacct_update_stats calls
9173 * percpu_counter_add with values large enough to always overflow the
9174 * per cpu batch limit causing bad SMP scalability.
9175 *
9176 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9177 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9178 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9179 */
9180#ifdef CONFIG_SMP
9181#define CPUACCT_BATCH \
9182 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9183#else
9184#define CPUACCT_BATCH 0
9185#endif
9186
ef12fefa
BR
9187/*
9188 * Charge the system/user time to the task's accounting group.
9189 */
9190static void cpuacct_update_stats(struct task_struct *tsk,
9191 enum cpuacct_stat_index idx, cputime_t val)
9192{
9193 struct cpuacct *ca;
fa535a77 9194 int batch = CPUACCT_BATCH;
ef12fefa
BR
9195
9196 if (unlikely(!cpuacct_subsys.active))
9197 return;
9198
9199 rcu_read_lock();
9200 ca = task_ca(tsk);
9201
9202 do {
fa535a77 9203 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9204 ca = ca->parent;
9205 } while (ca);
9206 rcu_read_unlock();
9207}
9208
d842de87
SV
9209struct cgroup_subsys cpuacct_subsys = {
9210 .name = "cpuacct",
9211 .create = cpuacct_create,
9212 .destroy = cpuacct_destroy,
9213 .populate = cpuacct_populate,
9214 .subsys_id = cpuacct_subsys_id,
9215};
9216#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9217
9218#ifndef CONFIG_SMP
9219
03b042bf
PM
9220void synchronize_sched_expedited(void)
9221{
fc390cde 9222 barrier();
03b042bf
PM
9223}
9224EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9225
9226#else /* #ifndef CONFIG_SMP */
9227
cc631fb7 9228static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9229
cc631fb7 9230static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9231{
969c7921
TH
9232 /*
9233 * There must be a full memory barrier on each affected CPU
9234 * between the time that try_stop_cpus() is called and the
9235 * time that it returns.
9236 *
9237 * In the current initial implementation of cpu_stop, the
9238 * above condition is already met when the control reaches
9239 * this point and the following smp_mb() is not strictly
9240 * necessary. Do smp_mb() anyway for documentation and
9241 * robustness against future implementation changes.
9242 */
cc631fb7 9243 smp_mb(); /* See above comment block. */
969c7921 9244 return 0;
03b042bf 9245}
03b042bf
PM
9246
9247/*
9248 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9249 * approach to force grace period to end quickly. This consumes
9250 * significant time on all CPUs, and is thus not recommended for
9251 * any sort of common-case code.
9252 *
9253 * Note that it is illegal to call this function while holding any
9254 * lock that is acquired by a CPU-hotplug notifier. Failing to
9255 * observe this restriction will result in deadlock.
9256 */
9257void synchronize_sched_expedited(void)
9258{
969c7921 9259 int snap, trycount = 0;
03b042bf
PM
9260
9261 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9262 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9263 get_online_cpus();
969c7921
TH
9264 while (try_stop_cpus(cpu_online_mask,
9265 synchronize_sched_expedited_cpu_stop,
94458d5e 9266 NULL) == -EAGAIN) {
03b042bf
PM
9267 put_online_cpus();
9268 if (trycount++ < 10)
9269 udelay(trycount * num_online_cpus());
9270 else {
9271 synchronize_sched();
9272 return;
9273 }
969c7921 9274 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9275 smp_mb(); /* ensure test happens before caller kfree */
9276 return;
9277 }
9278 get_online_cpus();
9279 }
969c7921 9280 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9281 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9282 put_online_cpus();
03b042bf
PM
9283}
9284EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9285
9286#endif /* #else #ifndef CONFIG_SMP */