]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: fix wait_for_completion_timeout() spurious failure under heavy load
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4
LT
76
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
d7876a08 96 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 97 */
d6322faf 98#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 99
6aa645ea
IM
100#define NICE_0_LOAD SCHED_LOAD_SCALE
101#define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
1da177e4
LT
103/*
104 * These are the 'tuning knobs' of the scheduler:
105 *
a4ec24b4 106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
107 * Timeslices get refilled after they expire.
108 */
1da177e4 109#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 110
d0b27fa7
PZ
111/*
112 * single value that denotes runtime == period, ie unlimited time.
113 */
114#define RUNTIME_INF ((u64)~0ULL)
115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
3f33a7ce 139 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
d0b27fa7 157struct rt_bandwidth {
ea736ed5
IM
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock;
160 ktime_t rt_period;
161 u64 rt_runtime;
162 struct hrtimer rt_period_timer;
d0b27fa7
PZ
163};
164
165static struct rt_bandwidth def_rt_bandwidth;
166
167static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
168
169static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
170{
171 struct rt_bandwidth *rt_b =
172 container_of(timer, struct rt_bandwidth, rt_period_timer);
173 ktime_t now;
174 int overrun;
175 int idle = 0;
176
177 for (;;) {
178 now = hrtimer_cb_get_time(timer);
179 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
180
181 if (!overrun)
182 break;
183
184 idle = do_sched_rt_period_timer(rt_b, overrun);
185 }
186
187 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
188}
189
190static
191void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
192{
193 rt_b->rt_period = ns_to_ktime(period);
194 rt_b->rt_runtime = runtime;
195
ac086bc2
PZ
196 spin_lock_init(&rt_b->rt_runtime_lock);
197
d0b27fa7
PZ
198 hrtimer_init(&rt_b->rt_period_timer,
199 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200 rt_b->rt_period_timer.function = sched_rt_period_timer;
201 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
202}
203
204static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
205{
206 ktime_t now;
207
208 if (rt_b->rt_runtime == RUNTIME_INF)
209 return;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 return;
213
214 spin_lock(&rt_b->rt_runtime_lock);
215 for (;;) {
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 break;
218
219 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221 hrtimer_start(&rt_b->rt_period_timer,
222 rt_b->rt_period_timer.expires,
223 HRTIMER_MODE_ABS);
224 }
225 spin_unlock(&rt_b->rt_runtime_lock);
226}
227
228#ifdef CONFIG_RT_GROUP_SCHED
229static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
230{
231 hrtimer_cancel(&rt_b->rt_period_timer);
232}
233#endif
234
712555ee
HC
235/*
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
238 */
239static DEFINE_MUTEX(sched_domains_mutex);
240
052f1dc7 241#ifdef CONFIG_GROUP_SCHED
29f59db3 242
68318b8e
SV
243#include <linux/cgroup.h>
244
29f59db3
SV
245struct cfs_rq;
246
6f505b16
PZ
247static LIST_HEAD(task_groups);
248
29f59db3 249/* task group related information */
4cf86d77 250struct task_group {
052f1dc7 251#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
252 struct cgroup_subsys_state css;
253#endif
052f1dc7
PZ
254
255#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
052f1dc7
PZ
261#endif
262
263#ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
266
d0b27fa7 267 struct rt_bandwidth rt_bandwidth;
052f1dc7 268#endif
6b2d7700 269
ae8393e5 270 struct rcu_head rcu;
6f505b16 271 struct list_head list;
f473aa5e
PZ
272
273 struct task_group *parent;
274 struct list_head siblings;
275 struct list_head children;
29f59db3
SV
276};
277
354d60c2 278#ifdef CONFIG_USER_SCHED
eff766a6
PZ
279
280/*
281 * Root task group.
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
284 */
285struct task_group root_task_group;
286
052f1dc7 287#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
288/* Default task group's sched entity on each cpu */
289static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290/* Default task group's cfs_rq on each cpu */
291static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
292#endif
293
294#ifdef CONFIG_RT_GROUP_SCHED
295static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 297#endif
eff766a6
PZ
298#else
299#define root_task_group init_task_group
354d60c2 300#endif
6f505b16 301
8ed36996 302/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
303 * a task group's cpu shares.
304 */
8ed36996 305static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 306
052f1dc7 307#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
308#ifdef CONFIG_USER_SCHED
309# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
310#else
311# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
312#endif
313
cb4ad1ff 314/*
2e084786
LJ
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
cb4ad1ff
MX
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
321 */
18d95a28 322#define MIN_SHARES 2
2e084786 323#define MAX_SHARES (1UL << 18)
18d95a28 324
052f1dc7
PZ
325static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326#endif
327
29f59db3 328/* Default task group.
3a252015 329 * Every task in system belong to this group at bootup.
29f59db3 330 */
434d53b0 331struct task_group init_task_group;
29f59db3
SV
332
333/* return group to which a task belongs */
4cf86d77 334static inline struct task_group *task_group(struct task_struct *p)
29f59db3 335{
4cf86d77 336 struct task_group *tg;
9b5b7751 337
052f1dc7 338#ifdef CONFIG_USER_SCHED
24e377a8 339 tg = p->user->tg;
052f1dc7 340#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
24e377a8 343#else
41a2d6cf 344 tg = &init_task_group;
24e377a8 345#endif
9b5b7751 346 return tg;
29f59db3
SV
347}
348
349/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 350static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 351{
052f1dc7 352#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
052f1dc7 355#endif
6f505b16 356
052f1dc7 357#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 360#endif
29f59db3
SV
361}
362
363#else
364
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 366
052f1dc7 367#endif /* CONFIG_GROUP_SCHED */
29f59db3 368
6aa645ea
IM
369/* CFS-related fields in a runqueue */
370struct cfs_rq {
371 struct load_weight load;
372 unsigned long nr_running;
373
6aa645ea 374 u64 exec_clock;
e9acbff6 375 u64 min_vruntime;
6aa645ea
IM
376
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
4a55bd5e
PZ
379
380 struct list_head tasks;
381 struct list_head *balance_iterator;
382
383 /*
384 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
385 * It is set to NULL otherwise (i.e when none are currently running).
386 */
aa2ac252 387 struct sched_entity *curr, *next;
ddc97297
PZ
388
389 unsigned long nr_spread_over;
390
62160e3f 391#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
393
41a2d6cf
IM
394 /*
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
398 *
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
401 */
41a2d6cf
IM
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
404#endif
405};
1da177e4 406
6aa645ea
IM
407/* Real-Time classes' related field in a runqueue: */
408struct rt_rq {
409 struct rt_prio_array active;
63489e45 410 unsigned long rt_nr_running;
052f1dc7 411#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
412 int highest_prio; /* highest queued rt task prio */
413#endif
fa85ae24 414#ifdef CONFIG_SMP
73fe6aae 415 unsigned long rt_nr_migratory;
a22d7fc1 416 int overloaded;
fa85ae24 417#endif
6f505b16 418 int rt_throttled;
fa85ae24 419 u64 rt_time;
ac086bc2 420 u64 rt_runtime;
ea736ed5 421 /* Nests inside the rq lock: */
ac086bc2 422 spinlock_t rt_runtime_lock;
6f505b16 423
052f1dc7 424#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
425 unsigned long rt_nr_boosted;
426
6f505b16
PZ
427 struct rq *rq;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
431#endif
6aa645ea
IM
432};
433
57d885fe
GH
434#ifdef CONFIG_SMP
435
436/*
437 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
440 * exclusive cpuset is created, we also create and attach a new root-domain
441 * object.
442 *
57d885fe
GH
443 */
444struct root_domain {
445 atomic_t refcount;
446 cpumask_t span;
447 cpumask_t online;
637f5085 448
0eab9146 449 /*
637f5085
GH
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
452 */
453 cpumask_t rto_mask;
0eab9146 454 atomic_t rto_count;
57d885fe
GH
455};
456
dc938520
GH
457/*
458 * By default the system creates a single root-domain with all cpus as
459 * members (mimicking the global state we have today).
460 */
57d885fe
GH
461static struct root_domain def_root_domain;
462
463#endif
464
1da177e4
LT
465/*
466 * This is the main, per-CPU runqueue data structure.
467 *
468 * Locking rule: those places that want to lock multiple runqueues
469 * (such as the load balancing or the thread migration code), lock
470 * acquire operations must be ordered by ascending &runqueue.
471 */
70b97a7f 472struct rq {
d8016491
IM
473 /* runqueue lock: */
474 spinlock_t lock;
1da177e4
LT
475
476 /*
477 * nr_running and cpu_load should be in the same cacheline because
478 * remote CPUs use both these fields when doing load calculation.
479 */
480 unsigned long nr_running;
6aa645ea
IM
481 #define CPU_LOAD_IDX_MAX 5
482 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 483 unsigned char idle_at_tick;
46cb4b7c 484#ifdef CONFIG_NO_HZ
15934a37 485 unsigned long last_tick_seen;
46cb4b7c
SS
486 unsigned char in_nohz_recently;
487#endif
d8016491
IM
488 /* capture load from *all* tasks on this cpu: */
489 struct load_weight load;
6aa645ea
IM
490 unsigned long nr_load_updates;
491 u64 nr_switches;
492
493 struct cfs_rq cfs;
6f505b16 494 struct rt_rq rt;
6f505b16 495
6aa645ea 496#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
497 /* list of leaf cfs_rq on this cpu: */
498 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
499#endif
500#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 501 struct list_head leaf_rt_rq_list;
1da177e4 502#endif
1da177e4
LT
503
504 /*
505 * This is part of a global counter where only the total sum
506 * over all CPUs matters. A task can increase this counter on
507 * one CPU and if it got migrated afterwards it may decrease
508 * it on another CPU. Always updated under the runqueue lock:
509 */
510 unsigned long nr_uninterruptible;
511
36c8b586 512 struct task_struct *curr, *idle;
c9819f45 513 unsigned long next_balance;
1da177e4 514 struct mm_struct *prev_mm;
6aa645ea 515
3e51f33f 516 u64 clock;
6aa645ea 517
1da177e4
LT
518 atomic_t nr_iowait;
519
520#ifdef CONFIG_SMP
0eab9146 521 struct root_domain *rd;
1da177e4
LT
522 struct sched_domain *sd;
523
524 /* For active balancing */
525 int active_balance;
526 int push_cpu;
d8016491
IM
527 /* cpu of this runqueue: */
528 int cpu;
1da177e4 529
36c8b586 530 struct task_struct *migration_thread;
1da177e4
LT
531 struct list_head migration_queue;
532#endif
533
8f4d37ec
PZ
534#ifdef CONFIG_SCHED_HRTICK
535 unsigned long hrtick_flags;
536 ktime_t hrtick_expire;
537 struct hrtimer hrtick_timer;
538#endif
539
1da177e4
LT
540#ifdef CONFIG_SCHEDSTATS
541 /* latency stats */
542 struct sched_info rq_sched_info;
543
544 /* sys_sched_yield() stats */
480b9434
KC
545 unsigned int yld_exp_empty;
546 unsigned int yld_act_empty;
547 unsigned int yld_both_empty;
548 unsigned int yld_count;
1da177e4
LT
549
550 /* schedule() stats */
480b9434
KC
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
1da177e4
LT
554
555 /* try_to_wake_up() stats */
480b9434
KC
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
b8efb561
IM
558
559 /* BKL stats */
480b9434 560 unsigned int bkl_count;
1da177e4 561#endif
fcb99371 562 struct lock_class_key rq_lock_key;
1da177e4
LT
563};
564
f34e3b61 565static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 566
dd41f596
IM
567static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
568{
569 rq->curr->sched_class->check_preempt_curr(rq, p);
570}
571
0a2966b4
CL
572static inline int cpu_of(struct rq *rq)
573{
574#ifdef CONFIG_SMP
575 return rq->cpu;
576#else
577 return 0;
578#endif
579}
580
674311d5
NP
581/*
582 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 583 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
584 *
585 * The domain tree of any CPU may only be accessed from within
586 * preempt-disabled sections.
587 */
48f24c4d
IM
588#define for_each_domain(cpu, __sd) \
589 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
590
591#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
592#define this_rq() (&__get_cpu_var(runqueues))
593#define task_rq(p) cpu_rq(task_cpu(p))
594#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
595
3e51f33f
PZ
596static inline void update_rq_clock(struct rq *rq)
597{
598 rq->clock = sched_clock_cpu(cpu_of(rq));
599}
600
bf5c91ba
IM
601/*
602 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
603 */
604#ifdef CONFIG_SCHED_DEBUG
605# define const_debug __read_mostly
606#else
607# define const_debug static const
608#endif
609
610/*
611 * Debugging: various feature bits
612 */
f00b45c1
PZ
613
614#define SCHED_FEAT(name, enabled) \
615 __SCHED_FEAT_##name ,
616
bf5c91ba 617enum {
f00b45c1 618#include "sched_features.h"
bf5c91ba
IM
619};
620
f00b45c1
PZ
621#undef SCHED_FEAT
622
623#define SCHED_FEAT(name, enabled) \
624 (1UL << __SCHED_FEAT_##name) * enabled |
625
bf5c91ba 626const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
627#include "sched_features.h"
628 0;
629
630#undef SCHED_FEAT
631
632#ifdef CONFIG_SCHED_DEBUG
633#define SCHED_FEAT(name, enabled) \
634 #name ,
635
983ed7a6 636static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
637#include "sched_features.h"
638 NULL
639};
640
641#undef SCHED_FEAT
642
983ed7a6 643static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
644{
645 filp->private_data = inode->i_private;
646 return 0;
647}
648
649static ssize_t
650sched_feat_read(struct file *filp, char __user *ubuf,
651 size_t cnt, loff_t *ppos)
652{
653 char *buf;
654 int r = 0;
655 int len = 0;
656 int i;
657
658 for (i = 0; sched_feat_names[i]; i++) {
659 len += strlen(sched_feat_names[i]);
660 len += 4;
661 }
662
663 buf = kmalloc(len + 2, GFP_KERNEL);
664 if (!buf)
665 return -ENOMEM;
666
667 for (i = 0; sched_feat_names[i]; i++) {
668 if (sysctl_sched_features & (1UL << i))
669 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
670 else
c24b7c52 671 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
672 }
673
674 r += sprintf(buf + r, "\n");
675 WARN_ON(r >= len + 2);
676
677 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
678
679 kfree(buf);
680
681 return r;
682}
683
684static ssize_t
685sched_feat_write(struct file *filp, const char __user *ubuf,
686 size_t cnt, loff_t *ppos)
687{
688 char buf[64];
689 char *cmp = buf;
690 int neg = 0;
691 int i;
692
693 if (cnt > 63)
694 cnt = 63;
695
696 if (copy_from_user(&buf, ubuf, cnt))
697 return -EFAULT;
698
699 buf[cnt] = 0;
700
c24b7c52 701 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
702 neg = 1;
703 cmp += 3;
704 }
705
706 for (i = 0; sched_feat_names[i]; i++) {
707 int len = strlen(sched_feat_names[i]);
708
709 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
710 if (neg)
711 sysctl_sched_features &= ~(1UL << i);
712 else
713 sysctl_sched_features |= (1UL << i);
714 break;
715 }
716 }
717
718 if (!sched_feat_names[i])
719 return -EINVAL;
720
721 filp->f_pos += cnt;
722
723 return cnt;
724}
725
726static struct file_operations sched_feat_fops = {
727 .open = sched_feat_open,
728 .read = sched_feat_read,
729 .write = sched_feat_write,
730};
731
732static __init int sched_init_debug(void)
733{
f00b45c1
PZ
734 debugfs_create_file("sched_features", 0644, NULL, NULL,
735 &sched_feat_fops);
736
737 return 0;
738}
739late_initcall(sched_init_debug);
740
741#endif
742
743#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 744
b82d9fdd
PZ
745/*
746 * Number of tasks to iterate in a single balance run.
747 * Limited because this is done with IRQs disabled.
748 */
749const_debug unsigned int sysctl_sched_nr_migrate = 32;
750
fa85ae24 751/*
9f0c1e56 752 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
753 * default: 1s
754 */
9f0c1e56 755unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 756
6892b75e
IM
757static __read_mostly int scheduler_running;
758
9f0c1e56
PZ
759/*
760 * part of the period that we allow rt tasks to run in us.
761 * default: 0.95s
762 */
763int sysctl_sched_rt_runtime = 950000;
fa85ae24 764
d0b27fa7
PZ
765static inline u64 global_rt_period(void)
766{
767 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
768}
769
770static inline u64 global_rt_runtime(void)
771{
772 if (sysctl_sched_rt_period < 0)
773 return RUNTIME_INF;
774
775 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
776}
fa85ae24 777
690229a0 778unsigned long long time_sync_thresh = 100000;
27ec4407
IM
779
780static DEFINE_PER_CPU(unsigned long long, time_offset);
781static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
782
e436d800 783/*
27ec4407
IM
784 * Global lock which we take every now and then to synchronize
785 * the CPUs time. This method is not warp-safe, but it's good
786 * enough to synchronize slowly diverging time sources and thus
787 * it's good enough for tracing:
e436d800 788 */
27ec4407
IM
789static DEFINE_SPINLOCK(time_sync_lock);
790static unsigned long long prev_global_time;
791
dfbf4a1b 792static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 793{
dfbf4a1b
IM
794 /*
795 * We want this inlined, to not get tracer function calls
796 * in this critical section:
797 */
798 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
799 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
800
801 if (time < prev_global_time) {
802 per_cpu(time_offset, cpu) += prev_global_time - time;
803 time = prev_global_time;
804 } else {
805 prev_global_time = time;
806 }
807
dfbf4a1b
IM
808 __raw_spin_unlock(&time_sync_lock.raw_lock);
809 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
810
811 return time;
812}
813
814static unsigned long long __cpu_clock(int cpu)
e436d800 815{
e436d800 816 unsigned long long now;
e436d800 817
8ced5f69
IM
818 /*
819 * Only call sched_clock() if the scheduler has already been
820 * initialized (some code might call cpu_clock() very early):
821 */
6892b75e
IM
822 if (unlikely(!scheduler_running))
823 return 0;
824
3e51f33f 825 now = sched_clock_cpu(cpu);
e436d800
IM
826
827 return now;
828}
27ec4407
IM
829
830/*
831 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
832 * clock constructed from sched_clock():
833 */
834unsigned long long cpu_clock(int cpu)
835{
836 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 837 unsigned long flags;
27ec4407 838
dfbf4a1b 839 local_irq_save(flags);
27ec4407
IM
840 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
841 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
842 delta_time = time-prev_cpu_time;
843
dfbf4a1b 844 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 845 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
846 per_cpu(prev_cpu_time, cpu) = time;
847 }
848 local_irq_restore(flags);
27ec4407
IM
849
850 return time;
851}
a58f6f25 852EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 853
1da177e4 854#ifndef prepare_arch_switch
4866cde0
NP
855# define prepare_arch_switch(next) do { } while (0)
856#endif
857#ifndef finish_arch_switch
858# define finish_arch_switch(prev) do { } while (0)
859#endif
860
051a1d1a
DA
861static inline int task_current(struct rq *rq, struct task_struct *p)
862{
863 return rq->curr == p;
864}
865
4866cde0 866#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 867static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 868{
051a1d1a 869 return task_current(rq, p);
4866cde0
NP
870}
871
70b97a7f 872static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
873{
874}
875
70b97a7f 876static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 877{
da04c035
IM
878#ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881#endif
8a25d5de
IM
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
4866cde0
NP
889 spin_unlock_irq(&rq->lock);
890}
891
892#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 893static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
894{
895#ifdef CONFIG_SMP
896 return p->oncpu;
897#else
051a1d1a 898 return task_current(rq, p);
4866cde0
NP
899#endif
900}
901
70b97a7f 902static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911#endif
912#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914#else
915 spin_unlock(&rq->lock);
916#endif
917}
918
70b97a7f 919static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
920{
921#ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929#endif
930#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
1da177e4 932#endif
4866cde0
NP
933}
934#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 935
b29739f9
IM
936/*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
70b97a7f 940static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
941 __acquires(rq->lock)
942{
3a5c359a
AK
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
b29739f9 948 spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4
LT
952/*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 954 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
955 * explicitly disabling preemption.
956 */
70b97a7f 957static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a
AK
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
1da177e4 968 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
975 spin_unlock(&rq->lock);
976}
977
70b97a7f 978static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
979 __releases(rq->lock)
980{
981 spin_unlock_irqrestore(&rq->lock, *flags);
982}
983
1da177e4 984/*
cc2a73b5 985 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 986 */
a9957449 987static struct rq *this_rq_lock(void)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4
LT
991
992 local_irq_disable();
993 rq = this_rq();
994 spin_lock(&rq->lock);
995
996 return rq;
997}
998
8f4d37ec
PZ
999static void __resched_task(struct task_struct *p, int tif_bit);
1000
1001static inline void resched_task(struct task_struct *p)
1002{
1003 __resched_task(p, TIF_NEED_RESCHED);
1004}
1005
1006#ifdef CONFIG_SCHED_HRTICK
1007/*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
1017static inline void resched_hrt(struct task_struct *p)
1018{
1019 __resched_task(p, TIF_HRTICK_RESCHED);
1020}
1021
1022static inline void resched_rq(struct rq *rq)
1023{
1024 unsigned long flags;
1025
1026 spin_lock_irqsave(&rq->lock, flags);
1027 resched_task(rq->curr);
1028 spin_unlock_irqrestore(&rq->lock, flags);
1029}
1030
1031enum {
1032 HRTICK_SET, /* re-programm hrtick_timer */
1033 HRTICK_RESET, /* not a new slice */
b328ca18 1034 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1035};
1036
1037/*
1038 * Use hrtick when:
1039 * - enabled by features
1040 * - hrtimer is actually high res
1041 */
1042static inline int hrtick_enabled(struct rq *rq)
1043{
1044 if (!sched_feat(HRTICK))
1045 return 0;
b328ca18
PZ
1046 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1047 return 0;
8f4d37ec
PZ
1048 return hrtimer_is_hres_active(&rq->hrtick_timer);
1049}
1050
1051/*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056static void hrtick_start(struct rq *rq, u64 delay, int reset)
1057{
1058 assert_spin_locked(&rq->lock);
1059
1060 /*
1061 * preempt at: now + delay
1062 */
1063 rq->hrtick_expire =
1064 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1065 /*
1066 * indicate we need to program the timer
1067 */
1068 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1069 if (reset)
1070 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1071
1072 /*
1073 * New slices are called from the schedule path and don't need a
1074 * forced reschedule.
1075 */
1076 if (reset)
1077 resched_hrt(rq->curr);
1078}
1079
1080static void hrtick_clear(struct rq *rq)
1081{
1082 if (hrtimer_active(&rq->hrtick_timer))
1083 hrtimer_cancel(&rq->hrtick_timer);
1084}
1085
1086/*
1087 * Update the timer from the possible pending state.
1088 */
1089static void hrtick_set(struct rq *rq)
1090{
1091 ktime_t time;
1092 int set, reset;
1093 unsigned long flags;
1094
1095 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1096
1097 spin_lock_irqsave(&rq->lock, flags);
1098 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1099 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1100 time = rq->hrtick_expire;
1101 clear_thread_flag(TIF_HRTICK_RESCHED);
1102 spin_unlock_irqrestore(&rq->lock, flags);
1103
1104 if (set) {
1105 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1106 if (reset && !hrtimer_active(&rq->hrtick_timer))
1107 resched_rq(rq);
1108 } else
1109 hrtick_clear(rq);
1110}
1111
1112/*
1113 * High-resolution timer tick.
1114 * Runs from hardirq context with interrupts disabled.
1115 */
1116static enum hrtimer_restart hrtick(struct hrtimer *timer)
1117{
1118 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1119
1120 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1121
1122 spin_lock(&rq->lock);
3e51f33f 1123 update_rq_clock(rq);
8f4d37ec
PZ
1124 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1125 spin_unlock(&rq->lock);
1126
1127 return HRTIMER_NORESTART;
1128}
1129
95e904c7 1130#ifdef CONFIG_SMP
b328ca18
PZ
1131static void hotplug_hrtick_disable(int cpu)
1132{
1133 struct rq *rq = cpu_rq(cpu);
1134 unsigned long flags;
1135
1136 spin_lock_irqsave(&rq->lock, flags);
1137 rq->hrtick_flags = 0;
1138 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1139 spin_unlock_irqrestore(&rq->lock, flags);
1140
1141 hrtick_clear(rq);
1142}
1143
1144static void hotplug_hrtick_enable(int cpu)
1145{
1146 struct rq *rq = cpu_rq(cpu);
1147 unsigned long flags;
1148
1149 spin_lock_irqsave(&rq->lock, flags);
1150 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1151 spin_unlock_irqrestore(&rq->lock, flags);
1152}
1153
1154static int
1155hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1156{
1157 int cpu = (int)(long)hcpu;
1158
1159 switch (action) {
1160 case CPU_UP_CANCELED:
1161 case CPU_UP_CANCELED_FROZEN:
1162 case CPU_DOWN_PREPARE:
1163 case CPU_DOWN_PREPARE_FROZEN:
1164 case CPU_DEAD:
1165 case CPU_DEAD_FROZEN:
1166 hotplug_hrtick_disable(cpu);
1167 return NOTIFY_OK;
1168
1169 case CPU_UP_PREPARE:
1170 case CPU_UP_PREPARE_FROZEN:
1171 case CPU_DOWN_FAILED:
1172 case CPU_DOWN_FAILED_FROZEN:
1173 case CPU_ONLINE:
1174 case CPU_ONLINE_FROZEN:
1175 hotplug_hrtick_enable(cpu);
1176 return NOTIFY_OK;
1177 }
1178
1179 return NOTIFY_DONE;
1180}
1181
1182static void init_hrtick(void)
1183{
1184 hotcpu_notifier(hotplug_hrtick, 0);
1185}
95e904c7 1186#endif /* CONFIG_SMP */
b328ca18
PZ
1187
1188static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1189{
1190 rq->hrtick_flags = 0;
1191 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1192 rq->hrtick_timer.function = hrtick;
1193 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1194}
1195
1196void hrtick_resched(void)
1197{
1198 struct rq *rq;
1199 unsigned long flags;
1200
1201 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1202 return;
1203
1204 local_irq_save(flags);
1205 rq = cpu_rq(smp_processor_id());
1206 hrtick_set(rq);
1207 local_irq_restore(flags);
1208}
1209#else
1210static inline void hrtick_clear(struct rq *rq)
1211{
1212}
1213
1214static inline void hrtick_set(struct rq *rq)
1215{
1216}
1217
1218static inline void init_rq_hrtick(struct rq *rq)
1219{
1220}
1221
1222void hrtick_resched(void)
1223{
1224}
b328ca18
PZ
1225
1226static inline void init_hrtick(void)
1227{
1228}
8f4d37ec
PZ
1229#endif
1230
c24d20db
IM
1231/*
1232 * resched_task - mark a task 'to be rescheduled now'.
1233 *
1234 * On UP this means the setting of the need_resched flag, on SMP it
1235 * might also involve a cross-CPU call to trigger the scheduler on
1236 * the target CPU.
1237 */
1238#ifdef CONFIG_SMP
1239
1240#ifndef tsk_is_polling
1241#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1242#endif
1243
8f4d37ec 1244static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1245{
1246 int cpu;
1247
1248 assert_spin_locked(&task_rq(p)->lock);
1249
8f4d37ec 1250 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1251 return;
1252
8f4d37ec 1253 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1254
1255 cpu = task_cpu(p);
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /* NEED_RESCHED must be visible before we test polling */
1260 smp_mb();
1261 if (!tsk_is_polling(p))
1262 smp_send_reschedule(cpu);
1263}
1264
1265static void resched_cpu(int cpu)
1266{
1267 struct rq *rq = cpu_rq(cpu);
1268 unsigned long flags;
1269
1270 if (!spin_trylock_irqsave(&rq->lock, flags))
1271 return;
1272 resched_task(cpu_curr(cpu));
1273 spin_unlock_irqrestore(&rq->lock, flags);
1274}
06d8308c
TG
1275
1276#ifdef CONFIG_NO_HZ
1277/*
1278 * When add_timer_on() enqueues a timer into the timer wheel of an
1279 * idle CPU then this timer might expire before the next timer event
1280 * which is scheduled to wake up that CPU. In case of a completely
1281 * idle system the next event might even be infinite time into the
1282 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1283 * leaves the inner idle loop so the newly added timer is taken into
1284 * account when the CPU goes back to idle and evaluates the timer
1285 * wheel for the next timer event.
1286 */
1287void wake_up_idle_cpu(int cpu)
1288{
1289 struct rq *rq = cpu_rq(cpu);
1290
1291 if (cpu == smp_processor_id())
1292 return;
1293
1294 /*
1295 * This is safe, as this function is called with the timer
1296 * wheel base lock of (cpu) held. When the CPU is on the way
1297 * to idle and has not yet set rq->curr to idle then it will
1298 * be serialized on the timer wheel base lock and take the new
1299 * timer into account automatically.
1300 */
1301 if (rq->curr != rq->idle)
1302 return;
1303
1304 /*
1305 * We can set TIF_RESCHED on the idle task of the other CPU
1306 * lockless. The worst case is that the other CPU runs the
1307 * idle task through an additional NOOP schedule()
1308 */
1309 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1310
1311 /* NEED_RESCHED must be visible before we test polling */
1312 smp_mb();
1313 if (!tsk_is_polling(rq->idle))
1314 smp_send_reschedule(cpu);
1315}
1316#endif
1317
c24d20db 1318#else
8f4d37ec 1319static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1320{
1321 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1322 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1323}
1324#endif
1325
45bf76df
IM
1326#if BITS_PER_LONG == 32
1327# define WMULT_CONST (~0UL)
1328#else
1329# define WMULT_CONST (1UL << 32)
1330#endif
1331
1332#define WMULT_SHIFT 32
1333
194081eb
IM
1334/*
1335 * Shift right and round:
1336 */
cf2ab469 1337#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1338
cb1c4fc9 1339static unsigned long
45bf76df
IM
1340calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1341 struct load_weight *lw)
1342{
1343 u64 tmp;
1344
7a232e03
LJ
1345 if (!lw->inv_weight) {
1346 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1347 lw->inv_weight = 1;
1348 else
1349 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1350 / (lw->weight+1);
1351 }
45bf76df
IM
1352
1353 tmp = (u64)delta_exec * weight;
1354 /*
1355 * Check whether we'd overflow the 64-bit multiplication:
1356 */
194081eb 1357 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1358 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1359 WMULT_SHIFT/2);
1360 else
cf2ab469 1361 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1362
ecf691da 1363 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1364}
1365
f9305d4a
IM
1366static inline unsigned long
1367calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1368{
1369 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1370}
1371
1091985b 1372static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1373{
1374 lw->weight += inc;
e89996ae 1375 lw->inv_weight = 0;
45bf76df
IM
1376}
1377
1091985b 1378static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1379{
1380 lw->weight -= dec;
e89996ae 1381 lw->inv_weight = 0;
45bf76df
IM
1382}
1383
2dd73a4f
PW
1384/*
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1389 * scaled version of the new time slice allocation that they receive on time
1390 * slice expiry etc.
1391 */
1392
dd41f596
IM
1393#define WEIGHT_IDLEPRIO 2
1394#define WMULT_IDLEPRIO (1 << 31)
1395
1396/*
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1401 *
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
dd41f596
IM
1407 */
1408static const int prio_to_weight[40] = {
254753dc
IM
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1417};
1418
5714d2de
IM
1419/*
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1421 *
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1425 */
dd41f596 1426static const u32 prio_to_wmult[40] = {
254753dc
IM
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1435};
2dd73a4f 1436
dd41f596
IM
1437static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1438
1439/*
1440 * runqueue iterator, to support SMP load-balancing between different
1441 * scheduling classes, without having to expose their internal data
1442 * structures to the load-balancing proper:
1443 */
1444struct rq_iterator {
1445 void *arg;
1446 struct task_struct *(*start)(void *);
1447 struct task_struct *(*next)(void *);
1448};
1449
e1d1484f
PW
1450#ifdef CONFIG_SMP
1451static unsigned long
1452balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1453 unsigned long max_load_move, struct sched_domain *sd,
1454 enum cpu_idle_type idle, int *all_pinned,
1455 int *this_best_prio, struct rq_iterator *iterator);
1456
1457static int
1458iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1459 struct sched_domain *sd, enum cpu_idle_type idle,
1460 struct rq_iterator *iterator);
e1d1484f 1461#endif
dd41f596 1462
d842de87
SV
1463#ifdef CONFIG_CGROUP_CPUACCT
1464static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1465#else
1466static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1467#endif
1468
18d95a28
PZ
1469static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1470{
1471 update_load_add(&rq->load, load);
1472}
1473
1474static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1475{
1476 update_load_sub(&rq->load, load);
1477}
1478
e7693a36
GH
1479#ifdef CONFIG_SMP
1480static unsigned long source_load(int cpu, int type);
1481static unsigned long target_load(int cpu, int type);
1482static unsigned long cpu_avg_load_per_task(int cpu);
1483static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1484#else /* CONFIG_SMP */
1485
1486#ifdef CONFIG_FAIR_GROUP_SCHED
1487static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1488{
1489}
1490#endif
1491
e7693a36
GH
1492#endif /* CONFIG_SMP */
1493
dd41f596 1494#include "sched_stats.h"
dd41f596 1495#include "sched_idletask.c"
5522d5d5
IM
1496#include "sched_fair.c"
1497#include "sched_rt.c"
dd41f596
IM
1498#ifdef CONFIG_SCHED_DEBUG
1499# include "sched_debug.c"
1500#endif
1501
1502#define sched_class_highest (&rt_sched_class)
1503
6363ca57
IM
1504static inline void inc_load(struct rq *rq, const struct task_struct *p)
1505{
1506 update_load_add(&rq->load, p->se.load.weight);
1507}
1508
1509static inline void dec_load(struct rq *rq, const struct task_struct *p)
1510{
1511 update_load_sub(&rq->load, p->se.load.weight);
1512}
1513
1514static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1515{
1516 rq->nr_running++;
6363ca57 1517 inc_load(rq, p);
9c217245
IM
1518}
1519
6363ca57 1520static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1521{
1522 rq->nr_running--;
6363ca57 1523 dec_load(rq, p);
9c217245
IM
1524}
1525
45bf76df
IM
1526static void set_load_weight(struct task_struct *p)
1527{
1528 if (task_has_rt_policy(p)) {
dd41f596
IM
1529 p->se.load.weight = prio_to_weight[0] * 2;
1530 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1531 return;
1532 }
45bf76df 1533
dd41f596
IM
1534 /*
1535 * SCHED_IDLE tasks get minimal weight:
1536 */
1537 if (p->policy == SCHED_IDLE) {
1538 p->se.load.weight = WEIGHT_IDLEPRIO;
1539 p->se.load.inv_weight = WMULT_IDLEPRIO;
1540 return;
1541 }
71f8bd46 1542
dd41f596
IM
1543 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1544 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1545}
1546
8159f87e 1547static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1548{
dd41f596 1549 sched_info_queued(p);
fd390f6a 1550 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1551 p->se.on_rq = 1;
71f8bd46
IM
1552}
1553
69be72c1 1554static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1555{
f02231e5 1556 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1557 p->se.on_rq = 0;
71f8bd46
IM
1558}
1559
14531189 1560/*
dd41f596 1561 * __normal_prio - return the priority that is based on the static prio
14531189 1562 */
14531189
IM
1563static inline int __normal_prio(struct task_struct *p)
1564{
dd41f596 1565 return p->static_prio;
14531189
IM
1566}
1567
b29739f9
IM
1568/*
1569 * Calculate the expected normal priority: i.e. priority
1570 * without taking RT-inheritance into account. Might be
1571 * boosted by interactivity modifiers. Changes upon fork,
1572 * setprio syscalls, and whenever the interactivity
1573 * estimator recalculates.
1574 */
36c8b586 1575static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1576{
1577 int prio;
1578
e05606d3 1579 if (task_has_rt_policy(p))
b29739f9
IM
1580 prio = MAX_RT_PRIO-1 - p->rt_priority;
1581 else
1582 prio = __normal_prio(p);
1583 return prio;
1584}
1585
1586/*
1587 * Calculate the current priority, i.e. the priority
1588 * taken into account by the scheduler. This value might
1589 * be boosted by RT tasks, or might be boosted by
1590 * interactivity modifiers. Will be RT if the task got
1591 * RT-boosted. If not then it returns p->normal_prio.
1592 */
36c8b586 1593static int effective_prio(struct task_struct *p)
b29739f9
IM
1594{
1595 p->normal_prio = normal_prio(p);
1596 /*
1597 * If we are RT tasks or we were boosted to RT priority,
1598 * keep the priority unchanged. Otherwise, update priority
1599 * to the normal priority:
1600 */
1601 if (!rt_prio(p->prio))
1602 return p->normal_prio;
1603 return p->prio;
1604}
1605
1da177e4 1606/*
dd41f596 1607 * activate_task - move a task to the runqueue.
1da177e4 1608 */
dd41f596 1609static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1610{
d9514f6c 1611 if (task_contributes_to_load(p))
dd41f596 1612 rq->nr_uninterruptible--;
1da177e4 1613
8159f87e 1614 enqueue_task(rq, p, wakeup);
6363ca57 1615 inc_nr_running(p, rq);
1da177e4
LT
1616}
1617
1da177e4
LT
1618/*
1619 * deactivate_task - remove a task from the runqueue.
1620 */
2e1cb74a 1621static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1622{
d9514f6c 1623 if (task_contributes_to_load(p))
dd41f596
IM
1624 rq->nr_uninterruptible++;
1625
69be72c1 1626 dequeue_task(rq, p, sleep);
6363ca57 1627 dec_nr_running(p, rq);
1da177e4
LT
1628}
1629
1da177e4
LT
1630/**
1631 * task_curr - is this task currently executing on a CPU?
1632 * @p: the task in question.
1633 */
36c8b586 1634inline int task_curr(const struct task_struct *p)
1da177e4
LT
1635{
1636 return cpu_curr(task_cpu(p)) == p;
1637}
1638
2dd73a4f
PW
1639/* Used instead of source_load when we know the type == 0 */
1640unsigned long weighted_cpuload(const int cpu)
1641{
495eca49 1642 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1643}
1644
1645static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1646{
6f505b16 1647 set_task_rq(p, cpu);
dd41f596 1648#ifdef CONFIG_SMP
ce96b5ac
DA
1649 /*
1650 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1651 * successfuly executed on another CPU. We must ensure that updates of
1652 * per-task data have been completed by this moment.
1653 */
1654 smp_wmb();
dd41f596 1655 task_thread_info(p)->cpu = cpu;
dd41f596 1656#endif
2dd73a4f
PW
1657}
1658
cb469845
SR
1659static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1660 const struct sched_class *prev_class,
1661 int oldprio, int running)
1662{
1663 if (prev_class != p->sched_class) {
1664 if (prev_class->switched_from)
1665 prev_class->switched_from(rq, p, running);
1666 p->sched_class->switched_to(rq, p, running);
1667 } else
1668 p->sched_class->prio_changed(rq, p, oldprio, running);
1669}
1670
1da177e4 1671#ifdef CONFIG_SMP
c65cc870 1672
cc367732
IM
1673/*
1674 * Is this task likely cache-hot:
1675 */
e7693a36 1676static int
cc367732
IM
1677task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1678{
1679 s64 delta;
1680
f540a608
IM
1681 /*
1682 * Buddy candidates are cache hot:
1683 */
d25ce4cd 1684 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1685 return 1;
1686
cc367732
IM
1687 if (p->sched_class != &fair_sched_class)
1688 return 0;
1689
6bc1665b
IM
1690 if (sysctl_sched_migration_cost == -1)
1691 return 1;
1692 if (sysctl_sched_migration_cost == 0)
1693 return 0;
1694
cc367732
IM
1695 delta = now - p->se.exec_start;
1696
1697 return delta < (s64)sysctl_sched_migration_cost;
1698}
1699
1700
dd41f596 1701void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1702{
dd41f596
IM
1703 int old_cpu = task_cpu(p);
1704 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1705 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1706 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1707 u64 clock_offset;
dd41f596
IM
1708
1709 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1710
1711#ifdef CONFIG_SCHEDSTATS
1712 if (p->se.wait_start)
1713 p->se.wait_start -= clock_offset;
dd41f596
IM
1714 if (p->se.sleep_start)
1715 p->se.sleep_start -= clock_offset;
1716 if (p->se.block_start)
1717 p->se.block_start -= clock_offset;
cc367732
IM
1718 if (old_cpu != new_cpu) {
1719 schedstat_inc(p, se.nr_migrations);
1720 if (task_hot(p, old_rq->clock, NULL))
1721 schedstat_inc(p, se.nr_forced2_migrations);
1722 }
6cfb0d5d 1723#endif
2830cf8c
SV
1724 p->se.vruntime -= old_cfsrq->min_vruntime -
1725 new_cfsrq->min_vruntime;
dd41f596
IM
1726
1727 __set_task_cpu(p, new_cpu);
c65cc870
IM
1728}
1729
70b97a7f 1730struct migration_req {
1da177e4 1731 struct list_head list;
1da177e4 1732
36c8b586 1733 struct task_struct *task;
1da177e4
LT
1734 int dest_cpu;
1735
1da177e4 1736 struct completion done;
70b97a7f 1737};
1da177e4
LT
1738
1739/*
1740 * The task's runqueue lock must be held.
1741 * Returns true if you have to wait for migration thread.
1742 */
36c8b586 1743static int
70b97a7f 1744migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1745{
70b97a7f 1746 struct rq *rq = task_rq(p);
1da177e4
LT
1747
1748 /*
1749 * If the task is not on a runqueue (and not running), then
1750 * it is sufficient to simply update the task's cpu field.
1751 */
dd41f596 1752 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1753 set_task_cpu(p, dest_cpu);
1754 return 0;
1755 }
1756
1757 init_completion(&req->done);
1da177e4
LT
1758 req->task = p;
1759 req->dest_cpu = dest_cpu;
1760 list_add(&req->list, &rq->migration_queue);
48f24c4d 1761
1da177e4
LT
1762 return 1;
1763}
1764
1765/*
1766 * wait_task_inactive - wait for a thread to unschedule.
1767 *
1768 * The caller must ensure that the task *will* unschedule sometime soon,
1769 * else this function might spin for a *long* time. This function can't
1770 * be called with interrupts off, or it may introduce deadlock with
1771 * smp_call_function() if an IPI is sent by the same process we are
1772 * waiting to become inactive.
1773 */
36c8b586 1774void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1775{
1776 unsigned long flags;
dd41f596 1777 int running, on_rq;
70b97a7f 1778 struct rq *rq;
1da177e4 1779
3a5c359a
AK
1780 for (;;) {
1781 /*
1782 * We do the initial early heuristics without holding
1783 * any task-queue locks at all. We'll only try to get
1784 * the runqueue lock when things look like they will
1785 * work out!
1786 */
1787 rq = task_rq(p);
fa490cfd 1788
3a5c359a
AK
1789 /*
1790 * If the task is actively running on another CPU
1791 * still, just relax and busy-wait without holding
1792 * any locks.
1793 *
1794 * NOTE! Since we don't hold any locks, it's not
1795 * even sure that "rq" stays as the right runqueue!
1796 * But we don't care, since "task_running()" will
1797 * return false if the runqueue has changed and p
1798 * is actually now running somewhere else!
1799 */
1800 while (task_running(rq, p))
1801 cpu_relax();
fa490cfd 1802
3a5c359a
AK
1803 /*
1804 * Ok, time to look more closely! We need the rq
1805 * lock now, to be *sure*. If we're wrong, we'll
1806 * just go back and repeat.
1807 */
1808 rq = task_rq_lock(p, &flags);
1809 running = task_running(rq, p);
1810 on_rq = p->se.on_rq;
1811 task_rq_unlock(rq, &flags);
fa490cfd 1812
3a5c359a
AK
1813 /*
1814 * Was it really running after all now that we
1815 * checked with the proper locks actually held?
1816 *
1817 * Oops. Go back and try again..
1818 */
1819 if (unlikely(running)) {
1820 cpu_relax();
1821 continue;
1822 }
fa490cfd 1823
3a5c359a
AK
1824 /*
1825 * It's not enough that it's not actively running,
1826 * it must be off the runqueue _entirely_, and not
1827 * preempted!
1828 *
1829 * So if it wa still runnable (but just not actively
1830 * running right now), it's preempted, and we should
1831 * yield - it could be a while.
1832 */
1833 if (unlikely(on_rq)) {
1834 schedule_timeout_uninterruptible(1);
1835 continue;
1836 }
fa490cfd 1837
3a5c359a
AK
1838 /*
1839 * Ahh, all good. It wasn't running, and it wasn't
1840 * runnable, which means that it will never become
1841 * running in the future either. We're all done!
1842 */
1843 break;
1844 }
1da177e4
LT
1845}
1846
1847/***
1848 * kick_process - kick a running thread to enter/exit the kernel
1849 * @p: the to-be-kicked thread
1850 *
1851 * Cause a process which is running on another CPU to enter
1852 * kernel-mode, without any delay. (to get signals handled.)
1853 *
1854 * NOTE: this function doesnt have to take the runqueue lock,
1855 * because all it wants to ensure is that the remote task enters
1856 * the kernel. If the IPI races and the task has been migrated
1857 * to another CPU then no harm is done and the purpose has been
1858 * achieved as well.
1859 */
36c8b586 1860void kick_process(struct task_struct *p)
1da177e4
LT
1861{
1862 int cpu;
1863
1864 preempt_disable();
1865 cpu = task_cpu(p);
1866 if ((cpu != smp_processor_id()) && task_curr(p))
1867 smp_send_reschedule(cpu);
1868 preempt_enable();
1869}
1870
1871/*
2dd73a4f
PW
1872 * Return a low guess at the load of a migration-source cpu weighted
1873 * according to the scheduling class and "nice" value.
1da177e4
LT
1874 *
1875 * We want to under-estimate the load of migration sources, to
1876 * balance conservatively.
1877 */
a9957449 1878static unsigned long source_load(int cpu, int type)
1da177e4 1879{
70b97a7f 1880 struct rq *rq = cpu_rq(cpu);
dd41f596 1881 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1882
3b0bd9bc 1883 if (type == 0)
dd41f596 1884 return total;
b910472d 1885
dd41f596 1886 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1887}
1888
1889/*
2dd73a4f
PW
1890 * Return a high guess at the load of a migration-target cpu weighted
1891 * according to the scheduling class and "nice" value.
1da177e4 1892 */
a9957449 1893static unsigned long target_load(int cpu, int type)
1da177e4 1894{
70b97a7f 1895 struct rq *rq = cpu_rq(cpu);
dd41f596 1896 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1897
7897986b 1898 if (type == 0)
dd41f596 1899 return total;
3b0bd9bc 1900
dd41f596 1901 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1902}
1903
1904/*
1905 * Return the average load per task on the cpu's run queue
1906 */
e7693a36 1907static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1908{
70b97a7f 1909 struct rq *rq = cpu_rq(cpu);
dd41f596 1910 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1911 unsigned long n = rq->nr_running;
1912
dd41f596 1913 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1914}
1915
147cbb4b
NP
1916/*
1917 * find_idlest_group finds and returns the least busy CPU group within the
1918 * domain.
1919 */
1920static struct sched_group *
1921find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1922{
1923 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1924 unsigned long min_load = ULONG_MAX, this_load = 0;
1925 int load_idx = sd->forkexec_idx;
1926 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1927
1928 do {
1929 unsigned long load, avg_load;
1930 int local_group;
1931 int i;
1932
da5a5522
BD
1933 /* Skip over this group if it has no CPUs allowed */
1934 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1935 continue;
da5a5522 1936
147cbb4b 1937 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1938
1939 /* Tally up the load of all CPUs in the group */
1940 avg_load = 0;
1941
1942 for_each_cpu_mask(i, group->cpumask) {
1943 /* Bias balancing toward cpus of our domain */
1944 if (local_group)
1945 load = source_load(i, load_idx);
1946 else
1947 load = target_load(i, load_idx);
1948
1949 avg_load += load;
1950 }
1951
1952 /* Adjust by relative CPU power of the group */
5517d86b
ED
1953 avg_load = sg_div_cpu_power(group,
1954 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1955
1956 if (local_group) {
1957 this_load = avg_load;
1958 this = group;
1959 } else if (avg_load < min_load) {
1960 min_load = avg_load;
1961 idlest = group;
1962 }
3a5c359a 1963 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1964
1965 if (!idlest || 100*this_load < imbalance*min_load)
1966 return NULL;
1967 return idlest;
1968}
1969
1970/*
0feaece9 1971 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1972 */
95cdf3b7 1973static int
7c16ec58
MT
1974find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1975 cpumask_t *tmp)
147cbb4b
NP
1976{
1977 unsigned long load, min_load = ULONG_MAX;
1978 int idlest = -1;
1979 int i;
1980
da5a5522 1981 /* Traverse only the allowed CPUs */
7c16ec58 1982 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1983
7c16ec58 1984 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1985 load = weighted_cpuload(i);
147cbb4b
NP
1986
1987 if (load < min_load || (load == min_load && i == this_cpu)) {
1988 min_load = load;
1989 idlest = i;
1990 }
1991 }
1992
1993 return idlest;
1994}
1995
476d139c
NP
1996/*
1997 * sched_balance_self: balance the current task (running on cpu) in domains
1998 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1999 * SD_BALANCE_EXEC.
2000 *
2001 * Balance, ie. select the least loaded group.
2002 *
2003 * Returns the target CPU number, or the same CPU if no balancing is needed.
2004 *
2005 * preempt must be disabled.
2006 */
2007static int sched_balance_self(int cpu, int flag)
2008{
2009 struct task_struct *t = current;
2010 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2011
c96d145e 2012 for_each_domain(cpu, tmp) {
9761eea8
IM
2013 /*
2014 * If power savings logic is enabled for a domain, stop there.
2015 */
5c45bf27
SS
2016 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2017 break;
476d139c
NP
2018 if (tmp->flags & flag)
2019 sd = tmp;
c96d145e 2020 }
476d139c
NP
2021
2022 while (sd) {
7c16ec58 2023 cpumask_t span, tmpmask;
476d139c 2024 struct sched_group *group;
1a848870
SS
2025 int new_cpu, weight;
2026
2027 if (!(sd->flags & flag)) {
2028 sd = sd->child;
2029 continue;
2030 }
476d139c
NP
2031
2032 span = sd->span;
2033 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2034 if (!group) {
2035 sd = sd->child;
2036 continue;
2037 }
476d139c 2038
7c16ec58 2039 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2040 if (new_cpu == -1 || new_cpu == cpu) {
2041 /* Now try balancing at a lower domain level of cpu */
2042 sd = sd->child;
2043 continue;
2044 }
476d139c 2045
1a848870 2046 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2047 cpu = new_cpu;
476d139c
NP
2048 sd = NULL;
2049 weight = cpus_weight(span);
2050 for_each_domain(cpu, tmp) {
2051 if (weight <= cpus_weight(tmp->span))
2052 break;
2053 if (tmp->flags & flag)
2054 sd = tmp;
2055 }
2056 /* while loop will break here if sd == NULL */
2057 }
2058
2059 return cpu;
2060}
2061
2062#endif /* CONFIG_SMP */
1da177e4 2063
1da177e4
LT
2064/***
2065 * try_to_wake_up - wake up a thread
2066 * @p: the to-be-woken-up thread
2067 * @state: the mask of task states that can be woken
2068 * @sync: do a synchronous wakeup?
2069 *
2070 * Put it on the run-queue if it's not already there. The "current"
2071 * thread is always on the run-queue (except when the actual
2072 * re-schedule is in progress), and as such you're allowed to do
2073 * the simpler "current->state = TASK_RUNNING" to mark yourself
2074 * runnable without the overhead of this.
2075 *
2076 * returns failure only if the task is already active.
2077 */
36c8b586 2078static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2079{
cc367732 2080 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2081 unsigned long flags;
2082 long old_state;
70b97a7f 2083 struct rq *rq;
1da177e4 2084
b85d0667
IM
2085 if (!sched_feat(SYNC_WAKEUPS))
2086 sync = 0;
2087
04e2f174 2088 smp_wmb();
1da177e4
LT
2089 rq = task_rq_lock(p, &flags);
2090 old_state = p->state;
2091 if (!(old_state & state))
2092 goto out;
2093
dd41f596 2094 if (p->se.on_rq)
1da177e4
LT
2095 goto out_running;
2096
2097 cpu = task_cpu(p);
cc367732 2098 orig_cpu = cpu;
1da177e4
LT
2099 this_cpu = smp_processor_id();
2100
2101#ifdef CONFIG_SMP
2102 if (unlikely(task_running(rq, p)))
2103 goto out_activate;
2104
5d2f5a61
DA
2105 cpu = p->sched_class->select_task_rq(p, sync);
2106 if (cpu != orig_cpu) {
2107 set_task_cpu(p, cpu);
1da177e4
LT
2108 task_rq_unlock(rq, &flags);
2109 /* might preempt at this point */
2110 rq = task_rq_lock(p, &flags);
2111 old_state = p->state;
2112 if (!(old_state & state))
2113 goto out;
dd41f596 2114 if (p->se.on_rq)
1da177e4
LT
2115 goto out_running;
2116
2117 this_cpu = smp_processor_id();
2118 cpu = task_cpu(p);
2119 }
2120
e7693a36
GH
2121#ifdef CONFIG_SCHEDSTATS
2122 schedstat_inc(rq, ttwu_count);
2123 if (cpu == this_cpu)
2124 schedstat_inc(rq, ttwu_local);
2125 else {
2126 struct sched_domain *sd;
2127 for_each_domain(this_cpu, sd) {
2128 if (cpu_isset(cpu, sd->span)) {
2129 schedstat_inc(sd, ttwu_wake_remote);
2130 break;
2131 }
2132 }
2133 }
e7693a36
GH
2134#endif
2135
1da177e4
LT
2136out_activate:
2137#endif /* CONFIG_SMP */
cc367732
IM
2138 schedstat_inc(p, se.nr_wakeups);
2139 if (sync)
2140 schedstat_inc(p, se.nr_wakeups_sync);
2141 if (orig_cpu != cpu)
2142 schedstat_inc(p, se.nr_wakeups_migrate);
2143 if (cpu == this_cpu)
2144 schedstat_inc(p, se.nr_wakeups_local);
2145 else
2146 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2147 update_rq_clock(rq);
dd41f596 2148 activate_task(rq, p, 1);
1da177e4
LT
2149 success = 1;
2150
2151out_running:
4ae7d5ce
IM
2152 check_preempt_curr(rq, p);
2153
1da177e4 2154 p->state = TASK_RUNNING;
9a897c5a
SR
2155#ifdef CONFIG_SMP
2156 if (p->sched_class->task_wake_up)
2157 p->sched_class->task_wake_up(rq, p);
2158#endif
1da177e4
LT
2159out:
2160 task_rq_unlock(rq, &flags);
2161
2162 return success;
2163}
2164
7ad5b3a5 2165int wake_up_process(struct task_struct *p)
1da177e4 2166{
d9514f6c 2167 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2168}
1da177e4
LT
2169EXPORT_SYMBOL(wake_up_process);
2170
7ad5b3a5 2171int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2172{
2173 return try_to_wake_up(p, state, 0);
2174}
2175
1da177e4
LT
2176/*
2177 * Perform scheduler related setup for a newly forked process p.
2178 * p is forked by current.
dd41f596
IM
2179 *
2180 * __sched_fork() is basic setup used by init_idle() too:
2181 */
2182static void __sched_fork(struct task_struct *p)
2183{
dd41f596
IM
2184 p->se.exec_start = 0;
2185 p->se.sum_exec_runtime = 0;
f6cf891c 2186 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2187 p->se.last_wakeup = 0;
2188 p->se.avg_overlap = 0;
6cfb0d5d
IM
2189
2190#ifdef CONFIG_SCHEDSTATS
2191 p->se.wait_start = 0;
dd41f596
IM
2192 p->se.sum_sleep_runtime = 0;
2193 p->se.sleep_start = 0;
dd41f596
IM
2194 p->se.block_start = 0;
2195 p->se.sleep_max = 0;
2196 p->se.block_max = 0;
2197 p->se.exec_max = 0;
eba1ed4b 2198 p->se.slice_max = 0;
dd41f596 2199 p->se.wait_max = 0;
6cfb0d5d 2200#endif
476d139c 2201
fa717060 2202 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2203 p->se.on_rq = 0;
4a55bd5e 2204 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2205
e107be36
AK
2206#ifdef CONFIG_PREEMPT_NOTIFIERS
2207 INIT_HLIST_HEAD(&p->preempt_notifiers);
2208#endif
2209
1da177e4
LT
2210 /*
2211 * We mark the process as running here, but have not actually
2212 * inserted it onto the runqueue yet. This guarantees that
2213 * nobody will actually run it, and a signal or other external
2214 * event cannot wake it up and insert it on the runqueue either.
2215 */
2216 p->state = TASK_RUNNING;
dd41f596
IM
2217}
2218
2219/*
2220 * fork()/clone()-time setup:
2221 */
2222void sched_fork(struct task_struct *p, int clone_flags)
2223{
2224 int cpu = get_cpu();
2225
2226 __sched_fork(p);
2227
2228#ifdef CONFIG_SMP
2229 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2230#endif
02e4bac2 2231 set_task_cpu(p, cpu);
b29739f9
IM
2232
2233 /*
2234 * Make sure we do not leak PI boosting priority to the child:
2235 */
2236 p->prio = current->normal_prio;
2ddbf952
HS
2237 if (!rt_prio(p->prio))
2238 p->sched_class = &fair_sched_class;
b29739f9 2239
52f17b6c 2240#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2241 if (likely(sched_info_on()))
52f17b6c 2242 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2243#endif
d6077cb8 2244#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2245 p->oncpu = 0;
2246#endif
1da177e4 2247#ifdef CONFIG_PREEMPT
4866cde0 2248 /* Want to start with kernel preemption disabled. */
a1261f54 2249 task_thread_info(p)->preempt_count = 1;
1da177e4 2250#endif
476d139c 2251 put_cpu();
1da177e4
LT
2252}
2253
2254/*
2255 * wake_up_new_task - wake up a newly created task for the first time.
2256 *
2257 * This function will do some initial scheduler statistics housekeeping
2258 * that must be done for every newly created context, then puts the task
2259 * on the runqueue and wakes it.
2260 */
7ad5b3a5 2261void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2262{
2263 unsigned long flags;
dd41f596 2264 struct rq *rq;
1da177e4
LT
2265
2266 rq = task_rq_lock(p, &flags);
147cbb4b 2267 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2268 update_rq_clock(rq);
1da177e4
LT
2269
2270 p->prio = effective_prio(p);
2271
b9dca1e0 2272 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2273 activate_task(rq, p, 0);
1da177e4 2274 } else {
1da177e4 2275 /*
dd41f596
IM
2276 * Let the scheduling class do new task startup
2277 * management (if any):
1da177e4 2278 */
ee0827d8 2279 p->sched_class->task_new(rq, p);
6363ca57 2280 inc_nr_running(p, rq);
1da177e4 2281 }
dd41f596 2282 check_preempt_curr(rq, p);
9a897c5a
SR
2283#ifdef CONFIG_SMP
2284 if (p->sched_class->task_wake_up)
2285 p->sched_class->task_wake_up(rq, p);
2286#endif
dd41f596 2287 task_rq_unlock(rq, &flags);
1da177e4
LT
2288}
2289
e107be36
AK
2290#ifdef CONFIG_PREEMPT_NOTIFIERS
2291
2292/**
421cee29
RD
2293 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2294 * @notifier: notifier struct to register
e107be36
AK
2295 */
2296void preempt_notifier_register(struct preempt_notifier *notifier)
2297{
2298 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2299}
2300EXPORT_SYMBOL_GPL(preempt_notifier_register);
2301
2302/**
2303 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2304 * @notifier: notifier struct to unregister
e107be36
AK
2305 *
2306 * This is safe to call from within a preemption notifier.
2307 */
2308void preempt_notifier_unregister(struct preempt_notifier *notifier)
2309{
2310 hlist_del(&notifier->link);
2311}
2312EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2313
2314static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2315{
2316 struct preempt_notifier *notifier;
2317 struct hlist_node *node;
2318
2319 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2320 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2321}
2322
2323static void
2324fire_sched_out_preempt_notifiers(struct task_struct *curr,
2325 struct task_struct *next)
2326{
2327 struct preempt_notifier *notifier;
2328 struct hlist_node *node;
2329
2330 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2331 notifier->ops->sched_out(notifier, next);
2332}
2333
2334#else
2335
2336static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2337{
2338}
2339
2340static void
2341fire_sched_out_preempt_notifiers(struct task_struct *curr,
2342 struct task_struct *next)
2343{
2344}
2345
2346#endif
2347
4866cde0
NP
2348/**
2349 * prepare_task_switch - prepare to switch tasks
2350 * @rq: the runqueue preparing to switch
421cee29 2351 * @prev: the current task that is being switched out
4866cde0
NP
2352 * @next: the task we are going to switch to.
2353 *
2354 * This is called with the rq lock held and interrupts off. It must
2355 * be paired with a subsequent finish_task_switch after the context
2356 * switch.
2357 *
2358 * prepare_task_switch sets up locking and calls architecture specific
2359 * hooks.
2360 */
e107be36
AK
2361static inline void
2362prepare_task_switch(struct rq *rq, struct task_struct *prev,
2363 struct task_struct *next)
4866cde0 2364{
e107be36 2365 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2366 prepare_lock_switch(rq, next);
2367 prepare_arch_switch(next);
2368}
2369
1da177e4
LT
2370/**
2371 * finish_task_switch - clean up after a task-switch
344babaa 2372 * @rq: runqueue associated with task-switch
1da177e4
LT
2373 * @prev: the thread we just switched away from.
2374 *
4866cde0
NP
2375 * finish_task_switch must be called after the context switch, paired
2376 * with a prepare_task_switch call before the context switch.
2377 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2378 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2379 *
2380 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2381 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2382 * with the lock held can cause deadlocks; see schedule() for
2383 * details.)
2384 */
a9957449 2385static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2386 __releases(rq->lock)
2387{
1da177e4 2388 struct mm_struct *mm = rq->prev_mm;
55a101f8 2389 long prev_state;
1da177e4
LT
2390
2391 rq->prev_mm = NULL;
2392
2393 /*
2394 * A task struct has one reference for the use as "current".
c394cc9f 2395 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2396 * schedule one last time. The schedule call will never return, and
2397 * the scheduled task must drop that reference.
c394cc9f 2398 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2399 * still held, otherwise prev could be scheduled on another cpu, die
2400 * there before we look at prev->state, and then the reference would
2401 * be dropped twice.
2402 * Manfred Spraul <manfred@colorfullife.com>
2403 */
55a101f8 2404 prev_state = prev->state;
4866cde0
NP
2405 finish_arch_switch(prev);
2406 finish_lock_switch(rq, prev);
9a897c5a
SR
2407#ifdef CONFIG_SMP
2408 if (current->sched_class->post_schedule)
2409 current->sched_class->post_schedule(rq);
2410#endif
e8fa1362 2411
e107be36 2412 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2413 if (mm)
2414 mmdrop(mm);
c394cc9f 2415 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2416 /*
2417 * Remove function-return probe instances associated with this
2418 * task and put them back on the free list.
9761eea8 2419 */
c6fd91f0 2420 kprobe_flush_task(prev);
1da177e4 2421 put_task_struct(prev);
c6fd91f0 2422 }
1da177e4
LT
2423}
2424
2425/**
2426 * schedule_tail - first thing a freshly forked thread must call.
2427 * @prev: the thread we just switched away from.
2428 */
36c8b586 2429asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2430 __releases(rq->lock)
2431{
70b97a7f
IM
2432 struct rq *rq = this_rq();
2433
4866cde0
NP
2434 finish_task_switch(rq, prev);
2435#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2436 /* In this case, finish_task_switch does not reenable preemption */
2437 preempt_enable();
2438#endif
1da177e4 2439 if (current->set_child_tid)
b488893a 2440 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2441}
2442
2443/*
2444 * context_switch - switch to the new MM and the new
2445 * thread's register state.
2446 */
dd41f596 2447static inline void
70b97a7f 2448context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2449 struct task_struct *next)
1da177e4 2450{
dd41f596 2451 struct mm_struct *mm, *oldmm;
1da177e4 2452
e107be36 2453 prepare_task_switch(rq, prev, next);
dd41f596
IM
2454 mm = next->mm;
2455 oldmm = prev->active_mm;
9226d125
ZA
2456 /*
2457 * For paravirt, this is coupled with an exit in switch_to to
2458 * combine the page table reload and the switch backend into
2459 * one hypercall.
2460 */
2461 arch_enter_lazy_cpu_mode();
2462
dd41f596 2463 if (unlikely(!mm)) {
1da177e4
LT
2464 next->active_mm = oldmm;
2465 atomic_inc(&oldmm->mm_count);
2466 enter_lazy_tlb(oldmm, next);
2467 } else
2468 switch_mm(oldmm, mm, next);
2469
dd41f596 2470 if (unlikely(!prev->mm)) {
1da177e4 2471 prev->active_mm = NULL;
1da177e4
LT
2472 rq->prev_mm = oldmm;
2473 }
3a5f5e48
IM
2474 /*
2475 * Since the runqueue lock will be released by the next
2476 * task (which is an invalid locking op but in the case
2477 * of the scheduler it's an obvious special-case), so we
2478 * do an early lockdep release here:
2479 */
2480#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2481 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2482#endif
1da177e4
LT
2483
2484 /* Here we just switch the register state and the stack. */
2485 switch_to(prev, next, prev);
2486
dd41f596
IM
2487 barrier();
2488 /*
2489 * this_rq must be evaluated again because prev may have moved
2490 * CPUs since it called schedule(), thus the 'rq' on its stack
2491 * frame will be invalid.
2492 */
2493 finish_task_switch(this_rq(), prev);
1da177e4
LT
2494}
2495
2496/*
2497 * nr_running, nr_uninterruptible and nr_context_switches:
2498 *
2499 * externally visible scheduler statistics: current number of runnable
2500 * threads, current number of uninterruptible-sleeping threads, total
2501 * number of context switches performed since bootup.
2502 */
2503unsigned long nr_running(void)
2504{
2505 unsigned long i, sum = 0;
2506
2507 for_each_online_cpu(i)
2508 sum += cpu_rq(i)->nr_running;
2509
2510 return sum;
2511}
2512
2513unsigned long nr_uninterruptible(void)
2514{
2515 unsigned long i, sum = 0;
2516
0a945022 2517 for_each_possible_cpu(i)
1da177e4
LT
2518 sum += cpu_rq(i)->nr_uninterruptible;
2519
2520 /*
2521 * Since we read the counters lockless, it might be slightly
2522 * inaccurate. Do not allow it to go below zero though:
2523 */
2524 if (unlikely((long)sum < 0))
2525 sum = 0;
2526
2527 return sum;
2528}
2529
2530unsigned long long nr_context_switches(void)
2531{
cc94abfc
SR
2532 int i;
2533 unsigned long long sum = 0;
1da177e4 2534
0a945022 2535 for_each_possible_cpu(i)
1da177e4
LT
2536 sum += cpu_rq(i)->nr_switches;
2537
2538 return sum;
2539}
2540
2541unsigned long nr_iowait(void)
2542{
2543 unsigned long i, sum = 0;
2544
0a945022 2545 for_each_possible_cpu(i)
1da177e4
LT
2546 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2547
2548 return sum;
2549}
2550
db1b1fef
JS
2551unsigned long nr_active(void)
2552{
2553 unsigned long i, running = 0, uninterruptible = 0;
2554
2555 for_each_online_cpu(i) {
2556 running += cpu_rq(i)->nr_running;
2557 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2558 }
2559
2560 if (unlikely((long)uninterruptible < 0))
2561 uninterruptible = 0;
2562
2563 return running + uninterruptible;
2564}
2565
48f24c4d 2566/*
dd41f596
IM
2567 * Update rq->cpu_load[] statistics. This function is usually called every
2568 * scheduler tick (TICK_NSEC).
48f24c4d 2569 */
dd41f596 2570static void update_cpu_load(struct rq *this_rq)
48f24c4d 2571{
495eca49 2572 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2573 int i, scale;
2574
2575 this_rq->nr_load_updates++;
dd41f596
IM
2576
2577 /* Update our load: */
2578 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2579 unsigned long old_load, new_load;
2580
2581 /* scale is effectively 1 << i now, and >> i divides by scale */
2582
2583 old_load = this_rq->cpu_load[i];
2584 new_load = this_load;
a25707f3
IM
2585 /*
2586 * Round up the averaging division if load is increasing. This
2587 * prevents us from getting stuck on 9 if the load is 10, for
2588 * example.
2589 */
2590 if (new_load > old_load)
2591 new_load += scale-1;
dd41f596
IM
2592 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2593 }
48f24c4d
IM
2594}
2595
dd41f596
IM
2596#ifdef CONFIG_SMP
2597
1da177e4
LT
2598/*
2599 * double_rq_lock - safely lock two runqueues
2600 *
2601 * Note this does not disable interrupts like task_rq_lock,
2602 * you need to do so manually before calling.
2603 */
70b97a7f 2604static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2605 __acquires(rq1->lock)
2606 __acquires(rq2->lock)
2607{
054b9108 2608 BUG_ON(!irqs_disabled());
1da177e4
LT
2609 if (rq1 == rq2) {
2610 spin_lock(&rq1->lock);
2611 __acquire(rq2->lock); /* Fake it out ;) */
2612 } else {
c96d145e 2613 if (rq1 < rq2) {
1da177e4
LT
2614 spin_lock(&rq1->lock);
2615 spin_lock(&rq2->lock);
2616 } else {
2617 spin_lock(&rq2->lock);
2618 spin_lock(&rq1->lock);
2619 }
2620 }
6e82a3be
IM
2621 update_rq_clock(rq1);
2622 update_rq_clock(rq2);
1da177e4
LT
2623}
2624
2625/*
2626 * double_rq_unlock - safely unlock two runqueues
2627 *
2628 * Note this does not restore interrupts like task_rq_unlock,
2629 * you need to do so manually after calling.
2630 */
70b97a7f 2631static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2632 __releases(rq1->lock)
2633 __releases(rq2->lock)
2634{
2635 spin_unlock(&rq1->lock);
2636 if (rq1 != rq2)
2637 spin_unlock(&rq2->lock);
2638 else
2639 __release(rq2->lock);
2640}
2641
2642/*
2643 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2644 */
e8fa1362 2645static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2646 __releases(this_rq->lock)
2647 __acquires(busiest->lock)
2648 __acquires(this_rq->lock)
2649{
e8fa1362
SR
2650 int ret = 0;
2651
054b9108
KK
2652 if (unlikely(!irqs_disabled())) {
2653 /* printk() doesn't work good under rq->lock */
2654 spin_unlock(&this_rq->lock);
2655 BUG_ON(1);
2656 }
1da177e4 2657 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2658 if (busiest < this_rq) {
1da177e4
LT
2659 spin_unlock(&this_rq->lock);
2660 spin_lock(&busiest->lock);
2661 spin_lock(&this_rq->lock);
e8fa1362 2662 ret = 1;
1da177e4
LT
2663 } else
2664 spin_lock(&busiest->lock);
2665 }
e8fa1362 2666 return ret;
1da177e4
LT
2667}
2668
1da177e4
LT
2669/*
2670 * If dest_cpu is allowed for this process, migrate the task to it.
2671 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2672 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2673 * the cpu_allowed mask is restored.
2674 */
36c8b586 2675static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2676{
70b97a7f 2677 struct migration_req req;
1da177e4 2678 unsigned long flags;
70b97a7f 2679 struct rq *rq;
1da177e4
LT
2680
2681 rq = task_rq_lock(p, &flags);
2682 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2683 || unlikely(cpu_is_offline(dest_cpu)))
2684 goto out;
2685
2686 /* force the process onto the specified CPU */
2687 if (migrate_task(p, dest_cpu, &req)) {
2688 /* Need to wait for migration thread (might exit: take ref). */
2689 struct task_struct *mt = rq->migration_thread;
36c8b586 2690
1da177e4
LT
2691 get_task_struct(mt);
2692 task_rq_unlock(rq, &flags);
2693 wake_up_process(mt);
2694 put_task_struct(mt);
2695 wait_for_completion(&req.done);
36c8b586 2696
1da177e4
LT
2697 return;
2698 }
2699out:
2700 task_rq_unlock(rq, &flags);
2701}
2702
2703/*
476d139c
NP
2704 * sched_exec - execve() is a valuable balancing opportunity, because at
2705 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2706 */
2707void sched_exec(void)
2708{
1da177e4 2709 int new_cpu, this_cpu = get_cpu();
476d139c 2710 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2711 put_cpu();
476d139c
NP
2712 if (new_cpu != this_cpu)
2713 sched_migrate_task(current, new_cpu);
1da177e4
LT
2714}
2715
2716/*
2717 * pull_task - move a task from a remote runqueue to the local runqueue.
2718 * Both runqueues must be locked.
2719 */
dd41f596
IM
2720static void pull_task(struct rq *src_rq, struct task_struct *p,
2721 struct rq *this_rq, int this_cpu)
1da177e4 2722{
2e1cb74a 2723 deactivate_task(src_rq, p, 0);
1da177e4 2724 set_task_cpu(p, this_cpu);
dd41f596 2725 activate_task(this_rq, p, 0);
1da177e4
LT
2726 /*
2727 * Note that idle threads have a prio of MAX_PRIO, for this test
2728 * to be always true for them.
2729 */
dd41f596 2730 check_preempt_curr(this_rq, p);
1da177e4
LT
2731}
2732
2733/*
2734 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2735 */
858119e1 2736static
70b97a7f 2737int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2738 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2739 int *all_pinned)
1da177e4
LT
2740{
2741 /*
2742 * We do not migrate tasks that are:
2743 * 1) running (obviously), or
2744 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2745 * 3) are cache-hot on their current CPU.
2746 */
cc367732
IM
2747 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2748 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2749 return 0;
cc367732 2750 }
81026794
NP
2751 *all_pinned = 0;
2752
cc367732
IM
2753 if (task_running(rq, p)) {
2754 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2755 return 0;
cc367732 2756 }
1da177e4 2757
da84d961
IM
2758 /*
2759 * Aggressive migration if:
2760 * 1) task is cache cold, or
2761 * 2) too many balance attempts have failed.
2762 */
2763
6bc1665b
IM
2764 if (!task_hot(p, rq->clock, sd) ||
2765 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2766#ifdef CONFIG_SCHEDSTATS
cc367732 2767 if (task_hot(p, rq->clock, sd)) {
da84d961 2768 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2769 schedstat_inc(p, se.nr_forced_migrations);
2770 }
da84d961
IM
2771#endif
2772 return 1;
2773 }
2774
cc367732
IM
2775 if (task_hot(p, rq->clock, sd)) {
2776 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2777 return 0;
cc367732 2778 }
1da177e4
LT
2779 return 1;
2780}
2781
e1d1484f
PW
2782static unsigned long
2783balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2784 unsigned long max_load_move, struct sched_domain *sd,
2785 enum cpu_idle_type idle, int *all_pinned,
2786 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2787{
b82d9fdd 2788 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2789 struct task_struct *p;
2790 long rem_load_move = max_load_move;
1da177e4 2791
e1d1484f 2792 if (max_load_move == 0)
1da177e4
LT
2793 goto out;
2794
81026794
NP
2795 pinned = 1;
2796
1da177e4 2797 /*
dd41f596 2798 * Start the load-balancing iterator:
1da177e4 2799 */
dd41f596
IM
2800 p = iterator->start(iterator->arg);
2801next:
b82d9fdd 2802 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2803 goto out;
50ddd969 2804 /*
b82d9fdd 2805 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2806 * skip a task if it will be the highest priority task (i.e. smallest
2807 * prio value) on its new queue regardless of its load weight
2808 */
dd41f596
IM
2809 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2810 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2811 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2812 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2813 p = iterator->next(iterator->arg);
2814 goto next;
1da177e4
LT
2815 }
2816
dd41f596 2817 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2818 pulled++;
dd41f596 2819 rem_load_move -= p->se.load.weight;
1da177e4 2820
2dd73a4f 2821 /*
b82d9fdd 2822 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2823 */
e1d1484f 2824 if (rem_load_move > 0) {
a4ac01c3
PW
2825 if (p->prio < *this_best_prio)
2826 *this_best_prio = p->prio;
dd41f596
IM
2827 p = iterator->next(iterator->arg);
2828 goto next;
1da177e4
LT
2829 }
2830out:
2831 /*
e1d1484f 2832 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2833 * so we can safely collect pull_task() stats here rather than
2834 * inside pull_task().
2835 */
2836 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2837
2838 if (all_pinned)
2839 *all_pinned = pinned;
e1d1484f
PW
2840
2841 return max_load_move - rem_load_move;
1da177e4
LT
2842}
2843
dd41f596 2844/*
43010659
PW
2845 * move_tasks tries to move up to max_load_move weighted load from busiest to
2846 * this_rq, as part of a balancing operation within domain "sd".
2847 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2848 *
2849 * Called with both runqueues locked.
2850 */
2851static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2852 unsigned long max_load_move,
dd41f596
IM
2853 struct sched_domain *sd, enum cpu_idle_type idle,
2854 int *all_pinned)
2855{
5522d5d5 2856 const struct sched_class *class = sched_class_highest;
43010659 2857 unsigned long total_load_moved = 0;
a4ac01c3 2858 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2859
2860 do {
43010659
PW
2861 total_load_moved +=
2862 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2863 max_load_move - total_load_moved,
a4ac01c3 2864 sd, idle, all_pinned, &this_best_prio);
dd41f596 2865 class = class->next;
43010659 2866 } while (class && max_load_move > total_load_moved);
dd41f596 2867
43010659
PW
2868 return total_load_moved > 0;
2869}
2870
e1d1484f
PW
2871static int
2872iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2873 struct sched_domain *sd, enum cpu_idle_type idle,
2874 struct rq_iterator *iterator)
2875{
2876 struct task_struct *p = iterator->start(iterator->arg);
2877 int pinned = 0;
2878
2879 while (p) {
2880 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2881 pull_task(busiest, p, this_rq, this_cpu);
2882 /*
2883 * Right now, this is only the second place pull_task()
2884 * is called, so we can safely collect pull_task()
2885 * stats here rather than inside pull_task().
2886 */
2887 schedstat_inc(sd, lb_gained[idle]);
2888
2889 return 1;
2890 }
2891 p = iterator->next(iterator->arg);
2892 }
2893
2894 return 0;
2895}
2896
43010659
PW
2897/*
2898 * move_one_task tries to move exactly one task from busiest to this_rq, as
2899 * part of active balancing operations within "domain".
2900 * Returns 1 if successful and 0 otherwise.
2901 *
2902 * Called with both runqueues locked.
2903 */
2904static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2905 struct sched_domain *sd, enum cpu_idle_type idle)
2906{
5522d5d5 2907 const struct sched_class *class;
43010659
PW
2908
2909 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2910 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2911 return 1;
2912
2913 return 0;
dd41f596
IM
2914}
2915
1da177e4
LT
2916/*
2917 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2918 * domain. It calculates and returns the amount of weighted load which
2919 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2920 */
2921static struct sched_group *
2922find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2923 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2924 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2925{
2926 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2927 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2928 unsigned long max_pull;
2dd73a4f
PW
2929 unsigned long busiest_load_per_task, busiest_nr_running;
2930 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2931 int load_idx, group_imb = 0;
5c45bf27
SS
2932#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2933 int power_savings_balance = 1;
2934 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2935 unsigned long min_nr_running = ULONG_MAX;
2936 struct sched_group *group_min = NULL, *group_leader = NULL;
2937#endif
1da177e4
LT
2938
2939 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2940 busiest_load_per_task = busiest_nr_running = 0;
2941 this_load_per_task = this_nr_running = 0;
d15bcfdb 2942 if (idle == CPU_NOT_IDLE)
7897986b 2943 load_idx = sd->busy_idx;
d15bcfdb 2944 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2945 load_idx = sd->newidle_idx;
2946 else
2947 load_idx = sd->idle_idx;
1da177e4
LT
2948
2949 do {
908a7c1b 2950 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2951 int local_group;
2952 int i;
908a7c1b 2953 int __group_imb = 0;
783609c6 2954 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2955 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2956
2957 local_group = cpu_isset(this_cpu, group->cpumask);
2958
783609c6
SS
2959 if (local_group)
2960 balance_cpu = first_cpu(group->cpumask);
2961
1da177e4 2962 /* Tally up the load of all CPUs in the group */
2dd73a4f 2963 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2964 max_cpu_load = 0;
2965 min_cpu_load = ~0UL;
1da177e4
LT
2966
2967 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2968 struct rq *rq;
2969
2970 if (!cpu_isset(i, *cpus))
2971 continue;
2972
2973 rq = cpu_rq(i);
2dd73a4f 2974
9439aab8 2975 if (*sd_idle && rq->nr_running)
5969fe06
NP
2976 *sd_idle = 0;
2977
1da177e4 2978 /* Bias balancing toward cpus of our domain */
783609c6
SS
2979 if (local_group) {
2980 if (idle_cpu(i) && !first_idle_cpu) {
2981 first_idle_cpu = 1;
2982 balance_cpu = i;
2983 }
2984
a2000572 2985 load = target_load(i, load_idx);
908a7c1b 2986 } else {
a2000572 2987 load = source_load(i, load_idx);
908a7c1b
KC
2988 if (load > max_cpu_load)
2989 max_cpu_load = load;
2990 if (min_cpu_load > load)
2991 min_cpu_load = load;
2992 }
1da177e4
LT
2993
2994 avg_load += load;
2dd73a4f 2995 sum_nr_running += rq->nr_running;
dd41f596 2996 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2997 }
2998
783609c6
SS
2999 /*
3000 * First idle cpu or the first cpu(busiest) in this sched group
3001 * is eligible for doing load balancing at this and above
9439aab8
SS
3002 * domains. In the newly idle case, we will allow all the cpu's
3003 * to do the newly idle load balance.
783609c6 3004 */
9439aab8
SS
3005 if (idle != CPU_NEWLY_IDLE && local_group &&
3006 balance_cpu != this_cpu && balance) {
783609c6
SS
3007 *balance = 0;
3008 goto ret;
3009 }
3010
1da177e4 3011 total_load += avg_load;
5517d86b 3012 total_pwr += group->__cpu_power;
1da177e4
LT
3013
3014 /* Adjust by relative CPU power of the group */
5517d86b
ED
3015 avg_load = sg_div_cpu_power(group,
3016 avg_load * SCHED_LOAD_SCALE);
1da177e4 3017
908a7c1b
KC
3018 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3019 __group_imb = 1;
3020
5517d86b 3021 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3022
1da177e4
LT
3023 if (local_group) {
3024 this_load = avg_load;
3025 this = group;
2dd73a4f
PW
3026 this_nr_running = sum_nr_running;
3027 this_load_per_task = sum_weighted_load;
3028 } else if (avg_load > max_load &&
908a7c1b 3029 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3030 max_load = avg_load;
3031 busiest = group;
2dd73a4f
PW
3032 busiest_nr_running = sum_nr_running;
3033 busiest_load_per_task = sum_weighted_load;
908a7c1b 3034 group_imb = __group_imb;
1da177e4 3035 }
5c45bf27
SS
3036
3037#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3038 /*
3039 * Busy processors will not participate in power savings
3040 * balance.
3041 */
dd41f596
IM
3042 if (idle == CPU_NOT_IDLE ||
3043 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3044 goto group_next;
5c45bf27
SS
3045
3046 /*
3047 * If the local group is idle or completely loaded
3048 * no need to do power savings balance at this domain
3049 */
3050 if (local_group && (this_nr_running >= group_capacity ||
3051 !this_nr_running))
3052 power_savings_balance = 0;
3053
dd41f596 3054 /*
5c45bf27
SS
3055 * If a group is already running at full capacity or idle,
3056 * don't include that group in power savings calculations
dd41f596
IM
3057 */
3058 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3059 || !sum_nr_running)
dd41f596 3060 goto group_next;
5c45bf27 3061
dd41f596 3062 /*
5c45bf27 3063 * Calculate the group which has the least non-idle load.
dd41f596
IM
3064 * This is the group from where we need to pick up the load
3065 * for saving power
3066 */
3067 if ((sum_nr_running < min_nr_running) ||
3068 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3069 first_cpu(group->cpumask) <
3070 first_cpu(group_min->cpumask))) {
dd41f596
IM
3071 group_min = group;
3072 min_nr_running = sum_nr_running;
5c45bf27
SS
3073 min_load_per_task = sum_weighted_load /
3074 sum_nr_running;
dd41f596 3075 }
5c45bf27 3076
dd41f596 3077 /*
5c45bf27 3078 * Calculate the group which is almost near its
dd41f596
IM
3079 * capacity but still has some space to pick up some load
3080 * from other group and save more power
3081 */
3082 if (sum_nr_running <= group_capacity - 1) {
3083 if (sum_nr_running > leader_nr_running ||
3084 (sum_nr_running == leader_nr_running &&
3085 first_cpu(group->cpumask) >
3086 first_cpu(group_leader->cpumask))) {
3087 group_leader = group;
3088 leader_nr_running = sum_nr_running;
3089 }
48f24c4d 3090 }
5c45bf27
SS
3091group_next:
3092#endif
1da177e4
LT
3093 group = group->next;
3094 } while (group != sd->groups);
3095
2dd73a4f 3096 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3097 goto out_balanced;
3098
3099 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3100
3101 if (this_load >= avg_load ||
3102 100*max_load <= sd->imbalance_pct*this_load)
3103 goto out_balanced;
3104
2dd73a4f 3105 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3106 if (group_imb)
3107 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3108
1da177e4
LT
3109 /*
3110 * We're trying to get all the cpus to the average_load, so we don't
3111 * want to push ourselves above the average load, nor do we wish to
3112 * reduce the max loaded cpu below the average load, as either of these
3113 * actions would just result in more rebalancing later, and ping-pong
3114 * tasks around. Thus we look for the minimum possible imbalance.
3115 * Negative imbalances (*we* are more loaded than anyone else) will
3116 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3117 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3118 * appear as very large values with unsigned longs.
3119 */
2dd73a4f
PW
3120 if (max_load <= busiest_load_per_task)
3121 goto out_balanced;
3122
3123 /*
3124 * In the presence of smp nice balancing, certain scenarios can have
3125 * max load less than avg load(as we skip the groups at or below
3126 * its cpu_power, while calculating max_load..)
3127 */
3128 if (max_load < avg_load) {
3129 *imbalance = 0;
3130 goto small_imbalance;
3131 }
0c117f1b
SS
3132
3133 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3134 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3135
1da177e4 3136 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3137 *imbalance = min(max_pull * busiest->__cpu_power,
3138 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3139 / SCHED_LOAD_SCALE;
3140
2dd73a4f
PW
3141 /*
3142 * if *imbalance is less than the average load per runnable task
3143 * there is no gaurantee that any tasks will be moved so we'll have
3144 * a think about bumping its value to force at least one task to be
3145 * moved
3146 */
7fd0d2dd 3147 if (*imbalance < busiest_load_per_task) {
48f24c4d 3148 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3149 unsigned int imbn;
3150
3151small_imbalance:
3152 pwr_move = pwr_now = 0;
3153 imbn = 2;
3154 if (this_nr_running) {
3155 this_load_per_task /= this_nr_running;
3156 if (busiest_load_per_task > this_load_per_task)
3157 imbn = 1;
3158 } else
3159 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3160
dd41f596
IM
3161 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3162 busiest_load_per_task * imbn) {
2dd73a4f 3163 *imbalance = busiest_load_per_task;
1da177e4
LT
3164 return busiest;
3165 }
3166
3167 /*
3168 * OK, we don't have enough imbalance to justify moving tasks,
3169 * however we may be able to increase total CPU power used by
3170 * moving them.
3171 */
3172
5517d86b
ED
3173 pwr_now += busiest->__cpu_power *
3174 min(busiest_load_per_task, max_load);
3175 pwr_now += this->__cpu_power *
3176 min(this_load_per_task, this_load);
1da177e4
LT
3177 pwr_now /= SCHED_LOAD_SCALE;
3178
3179 /* Amount of load we'd subtract */
5517d86b
ED
3180 tmp = sg_div_cpu_power(busiest,
3181 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3182 if (max_load > tmp)
5517d86b 3183 pwr_move += busiest->__cpu_power *
2dd73a4f 3184 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3185
3186 /* Amount of load we'd add */
5517d86b 3187 if (max_load * busiest->__cpu_power <
33859f7f 3188 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3189 tmp = sg_div_cpu_power(this,
3190 max_load * busiest->__cpu_power);
1da177e4 3191 else
5517d86b
ED
3192 tmp = sg_div_cpu_power(this,
3193 busiest_load_per_task * SCHED_LOAD_SCALE);
3194 pwr_move += this->__cpu_power *
3195 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3196 pwr_move /= SCHED_LOAD_SCALE;
3197
3198 /* Move if we gain throughput */
7fd0d2dd
SS
3199 if (pwr_move > pwr_now)
3200 *imbalance = busiest_load_per_task;
1da177e4
LT
3201 }
3202
1da177e4
LT
3203 return busiest;
3204
3205out_balanced:
5c45bf27 3206#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3207 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3208 goto ret;
1da177e4 3209
5c45bf27
SS
3210 if (this == group_leader && group_leader != group_min) {
3211 *imbalance = min_load_per_task;
3212 return group_min;
3213 }
5c45bf27 3214#endif
783609c6 3215ret:
1da177e4
LT
3216 *imbalance = 0;
3217 return NULL;
3218}
3219
3220/*
3221 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3222 */
70b97a7f 3223static struct rq *
d15bcfdb 3224find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3225 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3226{
70b97a7f 3227 struct rq *busiest = NULL, *rq;
2dd73a4f 3228 unsigned long max_load = 0;
1da177e4
LT
3229 int i;
3230
3231 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3232 unsigned long wl;
0a2966b4
CL
3233
3234 if (!cpu_isset(i, *cpus))
3235 continue;
3236
48f24c4d 3237 rq = cpu_rq(i);
dd41f596 3238 wl = weighted_cpuload(i);
2dd73a4f 3239
dd41f596 3240 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3241 continue;
1da177e4 3242
dd41f596
IM
3243 if (wl > max_load) {
3244 max_load = wl;
48f24c4d 3245 busiest = rq;
1da177e4
LT
3246 }
3247 }
3248
3249 return busiest;
3250}
3251
77391d71
NP
3252/*
3253 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3254 * so long as it is large enough.
3255 */
3256#define MAX_PINNED_INTERVAL 512
3257
1da177e4
LT
3258/*
3259 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3260 * tasks if there is an imbalance.
1da177e4 3261 */
70b97a7f 3262static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3263 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3264 int *balance, cpumask_t *cpus)
1da177e4 3265{
43010659 3266 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3267 struct sched_group *group;
1da177e4 3268 unsigned long imbalance;
70b97a7f 3269 struct rq *busiest;
fe2eea3f 3270 unsigned long flags;
5969fe06 3271
7c16ec58
MT
3272 cpus_setall(*cpus);
3273
89c4710e
SS
3274 /*
3275 * When power savings policy is enabled for the parent domain, idle
3276 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3277 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3278 * portraying it as CPU_NOT_IDLE.
89c4710e 3279 */
d15bcfdb 3280 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3281 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3282 sd_idle = 1;
1da177e4 3283
2d72376b 3284 schedstat_inc(sd, lb_count[idle]);
1da177e4 3285
0a2966b4
CL
3286redo:
3287 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3288 cpus, balance);
783609c6 3289
06066714 3290 if (*balance == 0)
783609c6 3291 goto out_balanced;
783609c6 3292
1da177e4
LT
3293 if (!group) {
3294 schedstat_inc(sd, lb_nobusyg[idle]);
3295 goto out_balanced;
3296 }
3297
7c16ec58 3298 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3299 if (!busiest) {
3300 schedstat_inc(sd, lb_nobusyq[idle]);
3301 goto out_balanced;
3302 }
3303
db935dbd 3304 BUG_ON(busiest == this_rq);
1da177e4
LT
3305
3306 schedstat_add(sd, lb_imbalance[idle], imbalance);
3307
43010659 3308 ld_moved = 0;
1da177e4
LT
3309 if (busiest->nr_running > 1) {
3310 /*
3311 * Attempt to move tasks. If find_busiest_group has found
3312 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3313 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3314 * correctly treated as an imbalance.
3315 */
fe2eea3f 3316 local_irq_save(flags);
e17224bf 3317 double_rq_lock(this_rq, busiest);
43010659 3318 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3319 imbalance, sd, idle, &all_pinned);
e17224bf 3320 double_rq_unlock(this_rq, busiest);
fe2eea3f 3321 local_irq_restore(flags);
81026794 3322
46cb4b7c
SS
3323 /*
3324 * some other cpu did the load balance for us.
3325 */
43010659 3326 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3327 resched_cpu(this_cpu);
3328
81026794 3329 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3330 if (unlikely(all_pinned)) {
7c16ec58
MT
3331 cpu_clear(cpu_of(busiest), *cpus);
3332 if (!cpus_empty(*cpus))
0a2966b4 3333 goto redo;
81026794 3334 goto out_balanced;
0a2966b4 3335 }
1da177e4 3336 }
81026794 3337
43010659 3338 if (!ld_moved) {
1da177e4
LT
3339 schedstat_inc(sd, lb_failed[idle]);
3340 sd->nr_balance_failed++;
3341
3342 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3343
fe2eea3f 3344 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3345
3346 /* don't kick the migration_thread, if the curr
3347 * task on busiest cpu can't be moved to this_cpu
3348 */
3349 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3350 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3351 all_pinned = 1;
3352 goto out_one_pinned;
3353 }
3354
1da177e4
LT
3355 if (!busiest->active_balance) {
3356 busiest->active_balance = 1;
3357 busiest->push_cpu = this_cpu;
81026794 3358 active_balance = 1;
1da177e4 3359 }
fe2eea3f 3360 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3361 if (active_balance)
1da177e4
LT
3362 wake_up_process(busiest->migration_thread);
3363
3364 /*
3365 * We've kicked active balancing, reset the failure
3366 * counter.
3367 */
39507451 3368 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3369 }
81026794 3370 } else
1da177e4
LT
3371 sd->nr_balance_failed = 0;
3372
81026794 3373 if (likely(!active_balance)) {
1da177e4
LT
3374 /* We were unbalanced, so reset the balancing interval */
3375 sd->balance_interval = sd->min_interval;
81026794
NP
3376 } else {
3377 /*
3378 * If we've begun active balancing, start to back off. This
3379 * case may not be covered by the all_pinned logic if there
3380 * is only 1 task on the busy runqueue (because we don't call
3381 * move_tasks).
3382 */
3383 if (sd->balance_interval < sd->max_interval)
3384 sd->balance_interval *= 2;
1da177e4
LT
3385 }
3386
43010659 3387 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3388 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3389 return -1;
3390 return ld_moved;
1da177e4
LT
3391
3392out_balanced:
1da177e4
LT
3393 schedstat_inc(sd, lb_balanced[idle]);
3394
16cfb1c0 3395 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3396
3397out_one_pinned:
1da177e4 3398 /* tune up the balancing interval */
77391d71
NP
3399 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3400 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3401 sd->balance_interval *= 2;
3402
48f24c4d 3403 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3404 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3405 return -1;
3406 return 0;
1da177e4
LT
3407}
3408
3409/*
3410 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3411 * tasks if there is an imbalance.
3412 *
d15bcfdb 3413 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3414 * this_rq is locked.
3415 */
48f24c4d 3416static int
7c16ec58
MT
3417load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3418 cpumask_t *cpus)
1da177e4
LT
3419{
3420 struct sched_group *group;
70b97a7f 3421 struct rq *busiest = NULL;
1da177e4 3422 unsigned long imbalance;
43010659 3423 int ld_moved = 0;
5969fe06 3424 int sd_idle = 0;
969bb4e4 3425 int all_pinned = 0;
7c16ec58
MT
3426
3427 cpus_setall(*cpus);
5969fe06 3428
89c4710e
SS
3429 /*
3430 * When power savings policy is enabled for the parent domain, idle
3431 * sibling can pick up load irrespective of busy siblings. In this case,
3432 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3433 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3434 */
3435 if (sd->flags & SD_SHARE_CPUPOWER &&
3436 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3437 sd_idle = 1;
1da177e4 3438
2d72376b 3439 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3440redo:
d15bcfdb 3441 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3442 &sd_idle, cpus, NULL);
1da177e4 3443 if (!group) {
d15bcfdb 3444 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3445 goto out_balanced;
1da177e4
LT
3446 }
3447
7c16ec58 3448 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3449 if (!busiest) {
d15bcfdb 3450 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3451 goto out_balanced;
1da177e4
LT
3452 }
3453
db935dbd
NP
3454 BUG_ON(busiest == this_rq);
3455
d15bcfdb 3456 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3457
43010659 3458 ld_moved = 0;
d6d5cfaf
NP
3459 if (busiest->nr_running > 1) {
3460 /* Attempt to move tasks */
3461 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3462 /* this_rq->clock is already updated */
3463 update_rq_clock(busiest);
43010659 3464 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3465 imbalance, sd, CPU_NEWLY_IDLE,
3466 &all_pinned);
d6d5cfaf 3467 spin_unlock(&busiest->lock);
0a2966b4 3468
969bb4e4 3469 if (unlikely(all_pinned)) {
7c16ec58
MT
3470 cpu_clear(cpu_of(busiest), *cpus);
3471 if (!cpus_empty(*cpus))
0a2966b4
CL
3472 goto redo;
3473 }
d6d5cfaf
NP
3474 }
3475
43010659 3476 if (!ld_moved) {
d15bcfdb 3477 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3478 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3480 return -1;
3481 } else
16cfb1c0 3482 sd->nr_balance_failed = 0;
1da177e4 3483
43010659 3484 return ld_moved;
16cfb1c0
NP
3485
3486out_balanced:
d15bcfdb 3487 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3488 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3489 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3490 return -1;
16cfb1c0 3491 sd->nr_balance_failed = 0;
48f24c4d 3492
16cfb1c0 3493 return 0;
1da177e4
LT
3494}
3495
3496/*
3497 * idle_balance is called by schedule() if this_cpu is about to become
3498 * idle. Attempts to pull tasks from other CPUs.
3499 */
70b97a7f 3500static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3501{
3502 struct sched_domain *sd;
dd41f596
IM
3503 int pulled_task = -1;
3504 unsigned long next_balance = jiffies + HZ;
7c16ec58 3505 cpumask_t tmpmask;
1da177e4
LT
3506
3507 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3508 unsigned long interval;
3509
3510 if (!(sd->flags & SD_LOAD_BALANCE))
3511 continue;
3512
3513 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3514 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3515 pulled_task = load_balance_newidle(this_cpu, this_rq,
3516 sd, &tmpmask);
92c4ca5c
CL
3517
3518 interval = msecs_to_jiffies(sd->balance_interval);
3519 if (time_after(next_balance, sd->last_balance + interval))
3520 next_balance = sd->last_balance + interval;
3521 if (pulled_task)
3522 break;
1da177e4 3523 }
dd41f596 3524 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3525 /*
3526 * We are going idle. next_balance may be set based on
3527 * a busy processor. So reset next_balance.
3528 */
3529 this_rq->next_balance = next_balance;
dd41f596 3530 }
1da177e4
LT
3531}
3532
3533/*
3534 * active_load_balance is run by migration threads. It pushes running tasks
3535 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3536 * running on each physical CPU where possible, and avoids physical /
3537 * logical imbalances.
3538 *
3539 * Called with busiest_rq locked.
3540 */
70b97a7f 3541static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3542{
39507451 3543 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3544 struct sched_domain *sd;
3545 struct rq *target_rq;
39507451 3546
48f24c4d 3547 /* Is there any task to move? */
39507451 3548 if (busiest_rq->nr_running <= 1)
39507451
NP
3549 return;
3550
3551 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3552
3553 /*
39507451 3554 * This condition is "impossible", if it occurs
41a2d6cf 3555 * we need to fix it. Originally reported by
39507451 3556 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3557 */
39507451 3558 BUG_ON(busiest_rq == target_rq);
1da177e4 3559
39507451
NP
3560 /* move a task from busiest_rq to target_rq */
3561 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3562 update_rq_clock(busiest_rq);
3563 update_rq_clock(target_rq);
39507451
NP
3564
3565 /* Search for an sd spanning us and the target CPU. */
c96d145e 3566 for_each_domain(target_cpu, sd) {
39507451 3567 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3568 cpu_isset(busiest_cpu, sd->span))
39507451 3569 break;
c96d145e 3570 }
39507451 3571
48f24c4d 3572 if (likely(sd)) {
2d72376b 3573 schedstat_inc(sd, alb_count);
39507451 3574
43010659
PW
3575 if (move_one_task(target_rq, target_cpu, busiest_rq,
3576 sd, CPU_IDLE))
48f24c4d
IM
3577 schedstat_inc(sd, alb_pushed);
3578 else
3579 schedstat_inc(sd, alb_failed);
3580 }
39507451 3581 spin_unlock(&target_rq->lock);
1da177e4
LT
3582}
3583
46cb4b7c
SS
3584#ifdef CONFIG_NO_HZ
3585static struct {
3586 atomic_t load_balancer;
41a2d6cf 3587 cpumask_t cpu_mask;
46cb4b7c
SS
3588} nohz ____cacheline_aligned = {
3589 .load_balancer = ATOMIC_INIT(-1),
3590 .cpu_mask = CPU_MASK_NONE,
3591};
3592
7835b98b 3593/*
46cb4b7c
SS
3594 * This routine will try to nominate the ilb (idle load balancing)
3595 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3596 * load balancing on behalf of all those cpus. If all the cpus in the system
3597 * go into this tickless mode, then there will be no ilb owner (as there is
3598 * no need for one) and all the cpus will sleep till the next wakeup event
3599 * arrives...
3600 *
3601 * For the ilb owner, tick is not stopped. And this tick will be used
3602 * for idle load balancing. ilb owner will still be part of
3603 * nohz.cpu_mask..
7835b98b 3604 *
46cb4b7c
SS
3605 * While stopping the tick, this cpu will become the ilb owner if there
3606 * is no other owner. And will be the owner till that cpu becomes busy
3607 * or if all cpus in the system stop their ticks at which point
3608 * there is no need for ilb owner.
3609 *
3610 * When the ilb owner becomes busy, it nominates another owner, during the
3611 * next busy scheduler_tick()
3612 */
3613int select_nohz_load_balancer(int stop_tick)
3614{
3615 int cpu = smp_processor_id();
3616
3617 if (stop_tick) {
3618 cpu_set(cpu, nohz.cpu_mask);
3619 cpu_rq(cpu)->in_nohz_recently = 1;
3620
3621 /*
3622 * If we are going offline and still the leader, give up!
3623 */
3624 if (cpu_is_offline(cpu) &&
3625 atomic_read(&nohz.load_balancer) == cpu) {
3626 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3627 BUG();
3628 return 0;
3629 }
3630
3631 /* time for ilb owner also to sleep */
3632 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3633 if (atomic_read(&nohz.load_balancer) == cpu)
3634 atomic_set(&nohz.load_balancer, -1);
3635 return 0;
3636 }
3637
3638 if (atomic_read(&nohz.load_balancer) == -1) {
3639 /* make me the ilb owner */
3640 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3641 return 1;
3642 } else if (atomic_read(&nohz.load_balancer) == cpu)
3643 return 1;
3644 } else {
3645 if (!cpu_isset(cpu, nohz.cpu_mask))
3646 return 0;
3647
3648 cpu_clear(cpu, nohz.cpu_mask);
3649
3650 if (atomic_read(&nohz.load_balancer) == cpu)
3651 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3652 BUG();
3653 }
3654 return 0;
3655}
3656#endif
3657
3658static DEFINE_SPINLOCK(balancing);
3659
3660/*
7835b98b
CL
3661 * It checks each scheduling domain to see if it is due to be balanced,
3662 * and initiates a balancing operation if so.
3663 *
3664 * Balancing parameters are set up in arch_init_sched_domains.
3665 */
a9957449 3666static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3667{
46cb4b7c
SS
3668 int balance = 1;
3669 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3670 unsigned long interval;
3671 struct sched_domain *sd;
46cb4b7c 3672 /* Earliest time when we have to do rebalance again */
c9819f45 3673 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3674 int update_next_balance = 0;
7c16ec58 3675 cpumask_t tmp;
1da177e4 3676
46cb4b7c 3677 for_each_domain(cpu, sd) {
1da177e4
LT
3678 if (!(sd->flags & SD_LOAD_BALANCE))
3679 continue;
3680
3681 interval = sd->balance_interval;
d15bcfdb 3682 if (idle != CPU_IDLE)
1da177e4
LT
3683 interval *= sd->busy_factor;
3684
3685 /* scale ms to jiffies */
3686 interval = msecs_to_jiffies(interval);
3687 if (unlikely(!interval))
3688 interval = 1;
dd41f596
IM
3689 if (interval > HZ*NR_CPUS/10)
3690 interval = HZ*NR_CPUS/10;
3691
1da177e4 3692
08c183f3
CL
3693 if (sd->flags & SD_SERIALIZE) {
3694 if (!spin_trylock(&balancing))
3695 goto out;
3696 }
3697
c9819f45 3698 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3699 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3700 /*
3701 * We've pulled tasks over so either we're no
5969fe06
NP
3702 * longer idle, or one of our SMT siblings is
3703 * not idle.
3704 */
d15bcfdb 3705 idle = CPU_NOT_IDLE;
1da177e4 3706 }
1bd77f2d 3707 sd->last_balance = jiffies;
1da177e4 3708 }
08c183f3
CL
3709 if (sd->flags & SD_SERIALIZE)
3710 spin_unlock(&balancing);
3711out:
f549da84 3712 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3713 next_balance = sd->last_balance + interval;
f549da84
SS
3714 update_next_balance = 1;
3715 }
783609c6
SS
3716
3717 /*
3718 * Stop the load balance at this level. There is another
3719 * CPU in our sched group which is doing load balancing more
3720 * actively.
3721 */
3722 if (!balance)
3723 break;
1da177e4 3724 }
f549da84
SS
3725
3726 /*
3727 * next_balance will be updated only when there is a need.
3728 * When the cpu is attached to null domain for ex, it will not be
3729 * updated.
3730 */
3731 if (likely(update_next_balance))
3732 rq->next_balance = next_balance;
46cb4b7c
SS
3733}
3734
3735/*
3736 * run_rebalance_domains is triggered when needed from the scheduler tick.
3737 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3738 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3739 */
3740static void run_rebalance_domains(struct softirq_action *h)
3741{
dd41f596
IM
3742 int this_cpu = smp_processor_id();
3743 struct rq *this_rq = cpu_rq(this_cpu);
3744 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3745 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3746
dd41f596 3747 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3748
3749#ifdef CONFIG_NO_HZ
3750 /*
3751 * If this cpu is the owner for idle load balancing, then do the
3752 * balancing on behalf of the other idle cpus whose ticks are
3753 * stopped.
3754 */
dd41f596
IM
3755 if (this_rq->idle_at_tick &&
3756 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3757 cpumask_t cpus = nohz.cpu_mask;
3758 struct rq *rq;
3759 int balance_cpu;
3760
dd41f596 3761 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3762 for_each_cpu_mask(balance_cpu, cpus) {
3763 /*
3764 * If this cpu gets work to do, stop the load balancing
3765 * work being done for other cpus. Next load
3766 * balancing owner will pick it up.
3767 */
3768 if (need_resched())
3769 break;
3770
de0cf899 3771 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3772
3773 rq = cpu_rq(balance_cpu);
dd41f596
IM
3774 if (time_after(this_rq->next_balance, rq->next_balance))
3775 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3776 }
3777 }
3778#endif
3779}
3780
3781/*
3782 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3783 *
3784 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3785 * idle load balancing owner or decide to stop the periodic load balancing,
3786 * if the whole system is idle.
3787 */
dd41f596 3788static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3789{
46cb4b7c
SS
3790#ifdef CONFIG_NO_HZ
3791 /*
3792 * If we were in the nohz mode recently and busy at the current
3793 * scheduler tick, then check if we need to nominate new idle
3794 * load balancer.
3795 */
3796 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3797 rq->in_nohz_recently = 0;
3798
3799 if (atomic_read(&nohz.load_balancer) == cpu) {
3800 cpu_clear(cpu, nohz.cpu_mask);
3801 atomic_set(&nohz.load_balancer, -1);
3802 }
3803
3804 if (atomic_read(&nohz.load_balancer) == -1) {
3805 /*
3806 * simple selection for now: Nominate the
3807 * first cpu in the nohz list to be the next
3808 * ilb owner.
3809 *
3810 * TBD: Traverse the sched domains and nominate
3811 * the nearest cpu in the nohz.cpu_mask.
3812 */
3813 int ilb = first_cpu(nohz.cpu_mask);
3814
434d53b0 3815 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3816 resched_cpu(ilb);
3817 }
3818 }
3819
3820 /*
3821 * If this cpu is idle and doing idle load balancing for all the
3822 * cpus with ticks stopped, is it time for that to stop?
3823 */
3824 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3825 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3826 resched_cpu(cpu);
3827 return;
3828 }
3829
3830 /*
3831 * If this cpu is idle and the idle load balancing is done by
3832 * someone else, then no need raise the SCHED_SOFTIRQ
3833 */
3834 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3835 cpu_isset(cpu, nohz.cpu_mask))
3836 return;
3837#endif
3838 if (time_after_eq(jiffies, rq->next_balance))
3839 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3840}
dd41f596
IM
3841
3842#else /* CONFIG_SMP */
3843
1da177e4
LT
3844/*
3845 * on UP we do not need to balance between CPUs:
3846 */
70b97a7f 3847static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3848{
3849}
dd41f596 3850
1da177e4
LT
3851#endif
3852
1da177e4
LT
3853DEFINE_PER_CPU(struct kernel_stat, kstat);
3854
3855EXPORT_PER_CPU_SYMBOL(kstat);
3856
3857/*
41b86e9c
IM
3858 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3859 * that have not yet been banked in case the task is currently running.
1da177e4 3860 */
41b86e9c 3861unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3862{
1da177e4 3863 unsigned long flags;
41b86e9c
IM
3864 u64 ns, delta_exec;
3865 struct rq *rq;
48f24c4d 3866
41b86e9c
IM
3867 rq = task_rq_lock(p, &flags);
3868 ns = p->se.sum_exec_runtime;
051a1d1a 3869 if (task_current(rq, p)) {
a8e504d2
IM
3870 update_rq_clock(rq);
3871 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3872 if ((s64)delta_exec > 0)
3873 ns += delta_exec;
3874 }
3875 task_rq_unlock(rq, &flags);
48f24c4d 3876
1da177e4
LT
3877 return ns;
3878}
3879
1da177e4
LT
3880/*
3881 * Account user cpu time to a process.
3882 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3883 * @cputime: the cpu time spent in user space since the last update
3884 */
3885void account_user_time(struct task_struct *p, cputime_t cputime)
3886{
3887 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3888 cputime64_t tmp;
3889
3890 p->utime = cputime_add(p->utime, cputime);
3891
3892 /* Add user time to cpustat. */
3893 tmp = cputime_to_cputime64(cputime);
3894 if (TASK_NICE(p) > 0)
3895 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3896 else
3897 cpustat->user = cputime64_add(cpustat->user, tmp);
3898}
3899
94886b84
LV
3900/*
3901 * Account guest cpu time to a process.
3902 * @p: the process that the cpu time gets accounted to
3903 * @cputime: the cpu time spent in virtual machine since the last update
3904 */
f7402e03 3905static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3906{
3907 cputime64_t tmp;
3908 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3909
3910 tmp = cputime_to_cputime64(cputime);
3911
3912 p->utime = cputime_add(p->utime, cputime);
3913 p->gtime = cputime_add(p->gtime, cputime);
3914
3915 cpustat->user = cputime64_add(cpustat->user, tmp);
3916 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3917}
3918
c66f08be
MN
3919/*
3920 * Account scaled user cpu time to a process.
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in user space since the last update
3923 */
3924void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3925{
3926 p->utimescaled = cputime_add(p->utimescaled, cputime);
3927}
3928
1da177e4
LT
3929/*
3930 * Account system cpu time to a process.
3931 * @p: the process that the cpu time gets accounted to
3932 * @hardirq_offset: the offset to subtract from hardirq_count()
3933 * @cputime: the cpu time spent in kernel space since the last update
3934 */
3935void account_system_time(struct task_struct *p, int hardirq_offset,
3936 cputime_t cputime)
3937{
3938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3939 struct rq *rq = this_rq();
1da177e4
LT
3940 cputime64_t tmp;
3941
983ed7a6
HH
3942 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3943 account_guest_time(p, cputime);
3944 return;
3945 }
94886b84 3946
1da177e4
LT
3947 p->stime = cputime_add(p->stime, cputime);
3948
3949 /* Add system time to cpustat. */
3950 tmp = cputime_to_cputime64(cputime);
3951 if (hardirq_count() - hardirq_offset)
3952 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3953 else if (softirq_count())
3954 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3955 else if (p != rq->idle)
1da177e4 3956 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3957 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3958 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3959 else
3960 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3961 /* Account for system time used */
3962 acct_update_integrals(p);
1da177e4
LT
3963}
3964
c66f08be
MN
3965/*
3966 * Account scaled system cpu time to a process.
3967 * @p: the process that the cpu time gets accounted to
3968 * @hardirq_offset: the offset to subtract from hardirq_count()
3969 * @cputime: the cpu time spent in kernel space since the last update
3970 */
3971void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3972{
3973 p->stimescaled = cputime_add(p->stimescaled, cputime);
3974}
3975
1da177e4
LT
3976/*
3977 * Account for involuntary wait time.
3978 * @p: the process from which the cpu time has been stolen
3979 * @steal: the cpu time spent in involuntary wait
3980 */
3981void account_steal_time(struct task_struct *p, cputime_t steal)
3982{
3983 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3984 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3985 struct rq *rq = this_rq();
1da177e4
LT
3986
3987 if (p == rq->idle) {
3988 p->stime = cputime_add(p->stime, steal);
3989 if (atomic_read(&rq->nr_iowait) > 0)
3990 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3991 else
3992 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3993 } else
1da177e4
LT
3994 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3995}
3996
7835b98b
CL
3997/*
3998 * This function gets called by the timer code, with HZ frequency.
3999 * We call it with interrupts disabled.
4000 *
4001 * It also gets called by the fork code, when changing the parent's
4002 * timeslices.
4003 */
4004void scheduler_tick(void)
4005{
7835b98b
CL
4006 int cpu = smp_processor_id();
4007 struct rq *rq = cpu_rq(cpu);
dd41f596 4008 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4009
4010 sched_clock_tick();
dd41f596
IM
4011
4012 spin_lock(&rq->lock);
3e51f33f 4013 update_rq_clock(rq);
f1a438d8 4014 update_cpu_load(rq);
fa85ae24 4015 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4016 spin_unlock(&rq->lock);
7835b98b 4017
e418e1c2 4018#ifdef CONFIG_SMP
dd41f596
IM
4019 rq->idle_at_tick = idle_cpu(cpu);
4020 trigger_load_balance(rq, cpu);
e418e1c2 4021#endif
1da177e4
LT
4022}
4023
1da177e4
LT
4024#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4025
43627582 4026void __kprobes add_preempt_count(int val)
1da177e4
LT
4027{
4028 /*
4029 * Underflow?
4030 */
9a11b49a
IM
4031 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4032 return;
1da177e4
LT
4033 preempt_count() += val;
4034 /*
4035 * Spinlock count overflowing soon?
4036 */
33859f7f
MOS
4037 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4038 PREEMPT_MASK - 10);
1da177e4
LT
4039}
4040EXPORT_SYMBOL(add_preempt_count);
4041
43627582 4042void __kprobes sub_preempt_count(int val)
1da177e4
LT
4043{
4044 /*
4045 * Underflow?
4046 */
9a11b49a
IM
4047 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4048 return;
1da177e4
LT
4049 /*
4050 * Is the spinlock portion underflowing?
4051 */
9a11b49a
IM
4052 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4053 !(preempt_count() & PREEMPT_MASK)))
4054 return;
4055
1da177e4
LT
4056 preempt_count() -= val;
4057}
4058EXPORT_SYMBOL(sub_preempt_count);
4059
4060#endif
4061
4062/*
dd41f596 4063 * Print scheduling while atomic bug:
1da177e4 4064 */
dd41f596 4065static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4066{
838225b4
SS
4067 struct pt_regs *regs = get_irq_regs();
4068
4069 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4070 prev->comm, prev->pid, preempt_count());
4071
dd41f596
IM
4072 debug_show_held_locks(prev);
4073 if (irqs_disabled())
4074 print_irqtrace_events(prev);
838225b4
SS
4075
4076 if (regs)
4077 show_regs(regs);
4078 else
4079 dump_stack();
dd41f596 4080}
1da177e4 4081
dd41f596
IM
4082/*
4083 * Various schedule()-time debugging checks and statistics:
4084 */
4085static inline void schedule_debug(struct task_struct *prev)
4086{
1da177e4 4087 /*
41a2d6cf 4088 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4089 * schedule() atomically, we ignore that path for now.
4090 * Otherwise, whine if we are scheduling when we should not be.
4091 */
3f33a7ce 4092 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4093 __schedule_bug(prev);
4094
1da177e4
LT
4095 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4096
2d72376b 4097 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4098#ifdef CONFIG_SCHEDSTATS
4099 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4100 schedstat_inc(this_rq(), bkl_count);
4101 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4102 }
4103#endif
dd41f596
IM
4104}
4105
4106/*
4107 * Pick up the highest-prio task:
4108 */
4109static inline struct task_struct *
ff95f3df 4110pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4111{
5522d5d5 4112 const struct sched_class *class;
dd41f596 4113 struct task_struct *p;
1da177e4
LT
4114
4115 /*
dd41f596
IM
4116 * Optimization: we know that if all tasks are in
4117 * the fair class we can call that function directly:
1da177e4 4118 */
dd41f596 4119 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4120 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4121 if (likely(p))
4122 return p;
1da177e4
LT
4123 }
4124
dd41f596
IM
4125 class = sched_class_highest;
4126 for ( ; ; ) {
fb8d4724 4127 p = class->pick_next_task(rq);
dd41f596
IM
4128 if (p)
4129 return p;
4130 /*
4131 * Will never be NULL as the idle class always
4132 * returns a non-NULL p:
4133 */
4134 class = class->next;
4135 }
4136}
1da177e4 4137
dd41f596
IM
4138/*
4139 * schedule() is the main scheduler function.
4140 */
4141asmlinkage void __sched schedule(void)
4142{
4143 struct task_struct *prev, *next;
67ca7bde 4144 unsigned long *switch_count;
dd41f596 4145 struct rq *rq;
dd41f596
IM
4146 int cpu;
4147
4148need_resched:
4149 preempt_disable();
4150 cpu = smp_processor_id();
4151 rq = cpu_rq(cpu);
4152 rcu_qsctr_inc(cpu);
4153 prev = rq->curr;
4154 switch_count = &prev->nivcsw;
4155
4156 release_kernel_lock(prev);
4157need_resched_nonpreemptible:
4158
4159 schedule_debug(prev);
1da177e4 4160
8f4d37ec
PZ
4161 hrtick_clear(rq);
4162
1e819950
IM
4163 /*
4164 * Do the rq-clock update outside the rq lock:
4165 */
4166 local_irq_disable();
3e51f33f 4167 update_rq_clock(rq);
1e819950
IM
4168 spin_lock(&rq->lock);
4169 clear_tsk_need_resched(prev);
1da177e4 4170
1da177e4 4171 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4172 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4173 prev->state = TASK_RUNNING;
16882c1e 4174 else
2e1cb74a 4175 deactivate_task(rq, prev, 1);
dd41f596 4176 switch_count = &prev->nvcsw;
1da177e4
LT
4177 }
4178
9a897c5a
SR
4179#ifdef CONFIG_SMP
4180 if (prev->sched_class->pre_schedule)
4181 prev->sched_class->pre_schedule(rq, prev);
4182#endif
f65eda4f 4183
dd41f596 4184 if (unlikely(!rq->nr_running))
1da177e4 4185 idle_balance(cpu, rq);
1da177e4 4186
31ee529c 4187 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4188 next = pick_next_task(rq, prev);
1da177e4 4189
1da177e4 4190 if (likely(prev != next)) {
673a90a1
DS
4191 sched_info_switch(prev, next);
4192
1da177e4
LT
4193 rq->nr_switches++;
4194 rq->curr = next;
4195 ++*switch_count;
4196
dd41f596 4197 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4198 /*
4199 * the context switch might have flipped the stack from under
4200 * us, hence refresh the local variables.
4201 */
4202 cpu = smp_processor_id();
4203 rq = cpu_rq(cpu);
1da177e4
LT
4204 } else
4205 spin_unlock_irq(&rq->lock);
4206
8f4d37ec
PZ
4207 hrtick_set(rq);
4208
4209 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4210 goto need_resched_nonpreemptible;
8f4d37ec 4211
1da177e4
LT
4212 preempt_enable_no_resched();
4213 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4214 goto need_resched;
4215}
1da177e4
LT
4216EXPORT_SYMBOL(schedule);
4217
4218#ifdef CONFIG_PREEMPT
4219/*
2ed6e34f 4220 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4221 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4222 * occur there and call schedule directly.
4223 */
4224asmlinkage void __sched preempt_schedule(void)
4225{
4226 struct thread_info *ti = current_thread_info();
6478d880 4227
1da177e4
LT
4228 /*
4229 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4230 * we do not want to preempt the current task. Just return..
1da177e4 4231 */
beed33a8 4232 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4233 return;
4234
3a5c359a
AK
4235 do {
4236 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4237 schedule();
3a5c359a 4238 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4239
3a5c359a
AK
4240 /*
4241 * Check again in case we missed a preemption opportunity
4242 * between schedule and now.
4243 */
4244 barrier();
4245 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4246}
1da177e4
LT
4247EXPORT_SYMBOL(preempt_schedule);
4248
4249/*
2ed6e34f 4250 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4251 * off of irq context.
4252 * Note, that this is called and return with irqs disabled. This will
4253 * protect us against recursive calling from irq.
4254 */
4255asmlinkage void __sched preempt_schedule_irq(void)
4256{
4257 struct thread_info *ti = current_thread_info();
6478d880 4258
2ed6e34f 4259 /* Catch callers which need to be fixed */
1da177e4
LT
4260 BUG_ON(ti->preempt_count || !irqs_disabled());
4261
3a5c359a
AK
4262 do {
4263 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4264 local_irq_enable();
4265 schedule();
4266 local_irq_disable();
3a5c359a 4267 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4268
3a5c359a
AK
4269 /*
4270 * Check again in case we missed a preemption opportunity
4271 * between schedule and now.
4272 */
4273 barrier();
4274 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4275}
4276
4277#endif /* CONFIG_PREEMPT */
4278
95cdf3b7
IM
4279int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4280 void *key)
1da177e4 4281{
48f24c4d 4282 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4283}
1da177e4
LT
4284EXPORT_SYMBOL(default_wake_function);
4285
4286/*
41a2d6cf
IM
4287 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4288 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4289 * number) then we wake all the non-exclusive tasks and one exclusive task.
4290 *
4291 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4292 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4293 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4294 */
4295static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4296 int nr_exclusive, int sync, void *key)
4297{
2e45874c 4298 wait_queue_t *curr, *next;
1da177e4 4299
2e45874c 4300 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4301 unsigned flags = curr->flags;
4302
1da177e4 4303 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4304 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4305 break;
4306 }
4307}
4308
4309/**
4310 * __wake_up - wake up threads blocked on a waitqueue.
4311 * @q: the waitqueue
4312 * @mode: which threads
4313 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4314 * @key: is directly passed to the wakeup function
1da177e4 4315 */
7ad5b3a5 4316void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4317 int nr_exclusive, void *key)
1da177e4
LT
4318{
4319 unsigned long flags;
4320
4321 spin_lock_irqsave(&q->lock, flags);
4322 __wake_up_common(q, mode, nr_exclusive, 0, key);
4323 spin_unlock_irqrestore(&q->lock, flags);
4324}
1da177e4
LT
4325EXPORT_SYMBOL(__wake_up);
4326
4327/*
4328 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4329 */
7ad5b3a5 4330void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4331{
4332 __wake_up_common(q, mode, 1, 0, NULL);
4333}
4334
4335/**
67be2dd1 4336 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4337 * @q: the waitqueue
4338 * @mode: which threads
4339 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4340 *
4341 * The sync wakeup differs that the waker knows that it will schedule
4342 * away soon, so while the target thread will be woken up, it will not
4343 * be migrated to another CPU - ie. the two threads are 'synchronized'
4344 * with each other. This can prevent needless bouncing between CPUs.
4345 *
4346 * On UP it can prevent extra preemption.
4347 */
7ad5b3a5 4348void
95cdf3b7 4349__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4350{
4351 unsigned long flags;
4352 int sync = 1;
4353
4354 if (unlikely(!q))
4355 return;
4356
4357 if (unlikely(!nr_exclusive))
4358 sync = 0;
4359
4360 spin_lock_irqsave(&q->lock, flags);
4361 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4362 spin_unlock_irqrestore(&q->lock, flags);
4363}
4364EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4365
b15136e9 4366void complete(struct completion *x)
1da177e4
LT
4367{
4368 unsigned long flags;
4369
4370 spin_lock_irqsave(&x->wait.lock, flags);
4371 x->done++;
d9514f6c 4372 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4373 spin_unlock_irqrestore(&x->wait.lock, flags);
4374}
4375EXPORT_SYMBOL(complete);
4376
b15136e9 4377void complete_all(struct completion *x)
1da177e4
LT
4378{
4379 unsigned long flags;
4380
4381 spin_lock_irqsave(&x->wait.lock, flags);
4382 x->done += UINT_MAX/2;
d9514f6c 4383 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4384 spin_unlock_irqrestore(&x->wait.lock, flags);
4385}
4386EXPORT_SYMBOL(complete_all);
4387
8cbbe86d
AK
4388static inline long __sched
4389do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4390{
1da177e4
LT
4391 if (!x->done) {
4392 DECLARE_WAITQUEUE(wait, current);
4393
4394 wait.flags |= WQ_FLAG_EXCLUSIVE;
4395 __add_wait_queue_tail(&x->wait, &wait);
4396 do {
009e577e
MW
4397 if ((state == TASK_INTERRUPTIBLE &&
4398 signal_pending(current)) ||
4399 (state == TASK_KILLABLE &&
4400 fatal_signal_pending(current))) {
8cbbe86d
AK
4401 __remove_wait_queue(&x->wait, &wait);
4402 return -ERESTARTSYS;
4403 }
4404 __set_current_state(state);
1da177e4
LT
4405 spin_unlock_irq(&x->wait.lock);
4406 timeout = schedule_timeout(timeout);
4407 spin_lock_irq(&x->wait.lock);
bb10ed09
RD
4408
4409 /*
4410 * If the completion has arrived meanwhile
4411 * then return 1 jiffy time left:
4412 */
4413 if (x->done && !timeout) {
4414 timeout = 1;
4415 break;
4416 }
4417
1da177e4
LT
4418 if (!timeout) {
4419 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4420 return timeout;
1da177e4
LT
4421 }
4422 } while (!x->done);
4423 __remove_wait_queue(&x->wait, &wait);
4424 }
4425 x->done--;
1da177e4
LT
4426 return timeout;
4427}
1da177e4 4428
8cbbe86d
AK
4429static long __sched
4430wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4431{
1da177e4
LT
4432 might_sleep();
4433
4434 spin_lock_irq(&x->wait.lock);
8cbbe86d 4435 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4436 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4437 return timeout;
4438}
1da177e4 4439
b15136e9 4440void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4441{
4442 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4443}
8cbbe86d 4444EXPORT_SYMBOL(wait_for_completion);
1da177e4 4445
b15136e9 4446unsigned long __sched
8cbbe86d 4447wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4448{
8cbbe86d 4449 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4450}
8cbbe86d 4451EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4452
8cbbe86d 4453int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4454{
51e97990
AK
4455 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4456 if (t == -ERESTARTSYS)
4457 return t;
4458 return 0;
0fec171c 4459}
8cbbe86d 4460EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4461
b15136e9 4462unsigned long __sched
8cbbe86d
AK
4463wait_for_completion_interruptible_timeout(struct completion *x,
4464 unsigned long timeout)
0fec171c 4465{
8cbbe86d 4466 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4467}
8cbbe86d 4468EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4469
009e577e
MW
4470int __sched wait_for_completion_killable(struct completion *x)
4471{
4472 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4473 if (t == -ERESTARTSYS)
4474 return t;
4475 return 0;
4476}
4477EXPORT_SYMBOL(wait_for_completion_killable);
4478
8cbbe86d
AK
4479static long __sched
4480sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4481{
0fec171c
IM
4482 unsigned long flags;
4483 wait_queue_t wait;
4484
4485 init_waitqueue_entry(&wait, current);
1da177e4 4486
8cbbe86d 4487 __set_current_state(state);
1da177e4 4488
8cbbe86d
AK
4489 spin_lock_irqsave(&q->lock, flags);
4490 __add_wait_queue(q, &wait);
4491 spin_unlock(&q->lock);
4492 timeout = schedule_timeout(timeout);
4493 spin_lock_irq(&q->lock);
4494 __remove_wait_queue(q, &wait);
4495 spin_unlock_irqrestore(&q->lock, flags);
4496
4497 return timeout;
4498}
4499
4500void __sched interruptible_sleep_on(wait_queue_head_t *q)
4501{
4502 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4503}
1da177e4
LT
4504EXPORT_SYMBOL(interruptible_sleep_on);
4505
0fec171c 4506long __sched
95cdf3b7 4507interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4508{
8cbbe86d 4509 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4510}
1da177e4
LT
4511EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4512
0fec171c 4513void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4514{
8cbbe86d 4515 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4516}
1da177e4
LT
4517EXPORT_SYMBOL(sleep_on);
4518
0fec171c 4519long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4520{
8cbbe86d 4521 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4522}
1da177e4
LT
4523EXPORT_SYMBOL(sleep_on_timeout);
4524
b29739f9
IM
4525#ifdef CONFIG_RT_MUTEXES
4526
4527/*
4528 * rt_mutex_setprio - set the current priority of a task
4529 * @p: task
4530 * @prio: prio value (kernel-internal form)
4531 *
4532 * This function changes the 'effective' priority of a task. It does
4533 * not touch ->normal_prio like __setscheduler().
4534 *
4535 * Used by the rt_mutex code to implement priority inheritance logic.
4536 */
36c8b586 4537void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4538{
4539 unsigned long flags;
83b699ed 4540 int oldprio, on_rq, running;
70b97a7f 4541 struct rq *rq;
cb469845 4542 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4543
4544 BUG_ON(prio < 0 || prio > MAX_PRIO);
4545
4546 rq = task_rq_lock(p, &flags);
a8e504d2 4547 update_rq_clock(rq);
b29739f9 4548
d5f9f942 4549 oldprio = p->prio;
dd41f596 4550 on_rq = p->se.on_rq;
051a1d1a 4551 running = task_current(rq, p);
0e1f3483 4552 if (on_rq)
69be72c1 4553 dequeue_task(rq, p, 0);
0e1f3483
HS
4554 if (running)
4555 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4556
4557 if (rt_prio(prio))
4558 p->sched_class = &rt_sched_class;
4559 else
4560 p->sched_class = &fair_sched_class;
4561
b29739f9
IM
4562 p->prio = prio;
4563
0e1f3483
HS
4564 if (running)
4565 p->sched_class->set_curr_task(rq);
dd41f596 4566 if (on_rq) {
8159f87e 4567 enqueue_task(rq, p, 0);
cb469845
SR
4568
4569 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4570 }
4571 task_rq_unlock(rq, &flags);
4572}
4573
4574#endif
4575
36c8b586 4576void set_user_nice(struct task_struct *p, long nice)
1da177e4 4577{
dd41f596 4578 int old_prio, delta, on_rq;
1da177e4 4579 unsigned long flags;
70b97a7f 4580 struct rq *rq;
1da177e4
LT
4581
4582 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4583 return;
4584 /*
4585 * We have to be careful, if called from sys_setpriority(),
4586 * the task might be in the middle of scheduling on another CPU.
4587 */
4588 rq = task_rq_lock(p, &flags);
a8e504d2 4589 update_rq_clock(rq);
1da177e4
LT
4590 /*
4591 * The RT priorities are set via sched_setscheduler(), but we still
4592 * allow the 'normal' nice value to be set - but as expected
4593 * it wont have any effect on scheduling until the task is
dd41f596 4594 * SCHED_FIFO/SCHED_RR:
1da177e4 4595 */
e05606d3 4596 if (task_has_rt_policy(p)) {
1da177e4
LT
4597 p->static_prio = NICE_TO_PRIO(nice);
4598 goto out_unlock;
4599 }
dd41f596 4600 on_rq = p->se.on_rq;
6363ca57 4601 if (on_rq) {
69be72c1 4602 dequeue_task(rq, p, 0);
6363ca57
IM
4603 dec_load(rq, p);
4604 }
1da177e4 4605
1da177e4 4606 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4607 set_load_weight(p);
b29739f9
IM
4608 old_prio = p->prio;
4609 p->prio = effective_prio(p);
4610 delta = p->prio - old_prio;
1da177e4 4611
dd41f596 4612 if (on_rq) {
8159f87e 4613 enqueue_task(rq, p, 0);
6363ca57 4614 inc_load(rq, p);
1da177e4 4615 /*
d5f9f942
AM
4616 * If the task increased its priority or is running and
4617 * lowered its priority, then reschedule its CPU:
1da177e4 4618 */
d5f9f942 4619 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4620 resched_task(rq->curr);
4621 }
4622out_unlock:
4623 task_rq_unlock(rq, &flags);
4624}
1da177e4
LT
4625EXPORT_SYMBOL(set_user_nice);
4626
e43379f1
MM
4627/*
4628 * can_nice - check if a task can reduce its nice value
4629 * @p: task
4630 * @nice: nice value
4631 */
36c8b586 4632int can_nice(const struct task_struct *p, const int nice)
e43379f1 4633{
024f4747
MM
4634 /* convert nice value [19,-20] to rlimit style value [1,40] */
4635 int nice_rlim = 20 - nice;
48f24c4d 4636
e43379f1
MM
4637 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4638 capable(CAP_SYS_NICE));
4639}
4640
1da177e4
LT
4641#ifdef __ARCH_WANT_SYS_NICE
4642
4643/*
4644 * sys_nice - change the priority of the current process.
4645 * @increment: priority increment
4646 *
4647 * sys_setpriority is a more generic, but much slower function that
4648 * does similar things.
4649 */
4650asmlinkage long sys_nice(int increment)
4651{
48f24c4d 4652 long nice, retval;
1da177e4
LT
4653
4654 /*
4655 * Setpriority might change our priority at the same moment.
4656 * We don't have to worry. Conceptually one call occurs first
4657 * and we have a single winner.
4658 */
e43379f1
MM
4659 if (increment < -40)
4660 increment = -40;
1da177e4
LT
4661 if (increment > 40)
4662 increment = 40;
4663
4664 nice = PRIO_TO_NICE(current->static_prio) + increment;
4665 if (nice < -20)
4666 nice = -20;
4667 if (nice > 19)
4668 nice = 19;
4669
e43379f1
MM
4670 if (increment < 0 && !can_nice(current, nice))
4671 return -EPERM;
4672
1da177e4
LT
4673 retval = security_task_setnice(current, nice);
4674 if (retval)
4675 return retval;
4676
4677 set_user_nice(current, nice);
4678 return 0;
4679}
4680
4681#endif
4682
4683/**
4684 * task_prio - return the priority value of a given task.
4685 * @p: the task in question.
4686 *
4687 * This is the priority value as seen by users in /proc.
4688 * RT tasks are offset by -200. Normal tasks are centered
4689 * around 0, value goes from -16 to +15.
4690 */
36c8b586 4691int task_prio(const struct task_struct *p)
1da177e4
LT
4692{
4693 return p->prio - MAX_RT_PRIO;
4694}
4695
4696/**
4697 * task_nice - return the nice value of a given task.
4698 * @p: the task in question.
4699 */
36c8b586 4700int task_nice(const struct task_struct *p)
1da177e4
LT
4701{
4702 return TASK_NICE(p);
4703}
150d8bed 4704EXPORT_SYMBOL(task_nice);
1da177e4
LT
4705
4706/**
4707 * idle_cpu - is a given cpu idle currently?
4708 * @cpu: the processor in question.
4709 */
4710int idle_cpu(int cpu)
4711{
4712 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4713}
4714
1da177e4
LT
4715/**
4716 * idle_task - return the idle task for a given cpu.
4717 * @cpu: the processor in question.
4718 */
36c8b586 4719struct task_struct *idle_task(int cpu)
1da177e4
LT
4720{
4721 return cpu_rq(cpu)->idle;
4722}
4723
4724/**
4725 * find_process_by_pid - find a process with a matching PID value.
4726 * @pid: the pid in question.
4727 */
a9957449 4728static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4729{
228ebcbe 4730 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4731}
4732
4733/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4734static void
4735__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4736{
dd41f596 4737 BUG_ON(p->se.on_rq);
48f24c4d 4738
1da177e4 4739 p->policy = policy;
dd41f596
IM
4740 switch (p->policy) {
4741 case SCHED_NORMAL:
4742 case SCHED_BATCH:
4743 case SCHED_IDLE:
4744 p->sched_class = &fair_sched_class;
4745 break;
4746 case SCHED_FIFO:
4747 case SCHED_RR:
4748 p->sched_class = &rt_sched_class;
4749 break;
4750 }
4751
1da177e4 4752 p->rt_priority = prio;
b29739f9
IM
4753 p->normal_prio = normal_prio(p);
4754 /* we are holding p->pi_lock already */
4755 p->prio = rt_mutex_getprio(p);
2dd73a4f 4756 set_load_weight(p);
1da177e4
LT
4757}
4758
4759/**
72fd4a35 4760 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4761 * @p: the task in question.
4762 * @policy: new policy.
4763 * @param: structure containing the new RT priority.
5fe1d75f 4764 *
72fd4a35 4765 * NOTE that the task may be already dead.
1da177e4 4766 */
95cdf3b7
IM
4767int sched_setscheduler(struct task_struct *p, int policy,
4768 struct sched_param *param)
1da177e4 4769{
83b699ed 4770 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4771 unsigned long flags;
cb469845 4772 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4773 struct rq *rq;
1da177e4 4774
66e5393a
SR
4775 /* may grab non-irq protected spin_locks */
4776 BUG_ON(in_interrupt());
1da177e4
LT
4777recheck:
4778 /* double check policy once rq lock held */
4779 if (policy < 0)
4780 policy = oldpolicy = p->policy;
4781 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4782 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4783 policy != SCHED_IDLE)
b0a9499c 4784 return -EINVAL;
1da177e4
LT
4785 /*
4786 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4787 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4788 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4789 */
4790 if (param->sched_priority < 0 ||
95cdf3b7 4791 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4792 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4793 return -EINVAL;
e05606d3 4794 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4795 return -EINVAL;
4796
37e4ab3f
OC
4797 /*
4798 * Allow unprivileged RT tasks to decrease priority:
4799 */
4800 if (!capable(CAP_SYS_NICE)) {
e05606d3 4801 if (rt_policy(policy)) {
8dc3e909 4802 unsigned long rlim_rtprio;
8dc3e909
ON
4803
4804 if (!lock_task_sighand(p, &flags))
4805 return -ESRCH;
4806 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4807 unlock_task_sighand(p, &flags);
4808
4809 /* can't set/change the rt policy */
4810 if (policy != p->policy && !rlim_rtprio)
4811 return -EPERM;
4812
4813 /* can't increase priority */
4814 if (param->sched_priority > p->rt_priority &&
4815 param->sched_priority > rlim_rtprio)
4816 return -EPERM;
4817 }
dd41f596
IM
4818 /*
4819 * Like positive nice levels, dont allow tasks to
4820 * move out of SCHED_IDLE either:
4821 */
4822 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4823 return -EPERM;
5fe1d75f 4824
37e4ab3f
OC
4825 /* can't change other user's priorities */
4826 if ((current->euid != p->euid) &&
4827 (current->euid != p->uid))
4828 return -EPERM;
4829 }
1da177e4 4830
b68aa230
PZ
4831#ifdef CONFIG_RT_GROUP_SCHED
4832 /*
4833 * Do not allow realtime tasks into groups that have no runtime
4834 * assigned.
4835 */
d0b27fa7 4836 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4837 return -EPERM;
4838#endif
4839
1da177e4
LT
4840 retval = security_task_setscheduler(p, policy, param);
4841 if (retval)
4842 return retval;
b29739f9
IM
4843 /*
4844 * make sure no PI-waiters arrive (or leave) while we are
4845 * changing the priority of the task:
4846 */
4847 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4848 /*
4849 * To be able to change p->policy safely, the apropriate
4850 * runqueue lock must be held.
4851 */
b29739f9 4852 rq = __task_rq_lock(p);
1da177e4
LT
4853 /* recheck policy now with rq lock held */
4854 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4855 policy = oldpolicy = -1;
b29739f9
IM
4856 __task_rq_unlock(rq);
4857 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4858 goto recheck;
4859 }
2daa3577 4860 update_rq_clock(rq);
dd41f596 4861 on_rq = p->se.on_rq;
051a1d1a 4862 running = task_current(rq, p);
0e1f3483 4863 if (on_rq)
2e1cb74a 4864 deactivate_task(rq, p, 0);
0e1f3483
HS
4865 if (running)
4866 p->sched_class->put_prev_task(rq, p);
f6b53205 4867
1da177e4 4868 oldprio = p->prio;
dd41f596 4869 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4870
0e1f3483
HS
4871 if (running)
4872 p->sched_class->set_curr_task(rq);
dd41f596
IM
4873 if (on_rq) {
4874 activate_task(rq, p, 0);
cb469845
SR
4875
4876 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4877 }
b29739f9
IM
4878 __task_rq_unlock(rq);
4879 spin_unlock_irqrestore(&p->pi_lock, flags);
4880
95e02ca9
TG
4881 rt_mutex_adjust_pi(p);
4882
1da177e4
LT
4883 return 0;
4884}
4885EXPORT_SYMBOL_GPL(sched_setscheduler);
4886
95cdf3b7
IM
4887static int
4888do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4889{
1da177e4
LT
4890 struct sched_param lparam;
4891 struct task_struct *p;
36c8b586 4892 int retval;
1da177e4
LT
4893
4894 if (!param || pid < 0)
4895 return -EINVAL;
4896 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4897 return -EFAULT;
5fe1d75f
ON
4898
4899 rcu_read_lock();
4900 retval = -ESRCH;
1da177e4 4901 p = find_process_by_pid(pid);
5fe1d75f
ON
4902 if (p != NULL)
4903 retval = sched_setscheduler(p, policy, &lparam);
4904 rcu_read_unlock();
36c8b586 4905
1da177e4
LT
4906 return retval;
4907}
4908
4909/**
4910 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4911 * @pid: the pid in question.
4912 * @policy: new policy.
4913 * @param: structure containing the new RT priority.
4914 */
41a2d6cf
IM
4915asmlinkage long
4916sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4917{
c21761f1
JB
4918 /* negative values for policy are not valid */
4919 if (policy < 0)
4920 return -EINVAL;
4921
1da177e4
LT
4922 return do_sched_setscheduler(pid, policy, param);
4923}
4924
4925/**
4926 * sys_sched_setparam - set/change the RT priority of a thread
4927 * @pid: the pid in question.
4928 * @param: structure containing the new RT priority.
4929 */
4930asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4931{
4932 return do_sched_setscheduler(pid, -1, param);
4933}
4934
4935/**
4936 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4937 * @pid: the pid in question.
4938 */
4939asmlinkage long sys_sched_getscheduler(pid_t pid)
4940{
36c8b586 4941 struct task_struct *p;
3a5c359a 4942 int retval;
1da177e4
LT
4943
4944 if (pid < 0)
3a5c359a 4945 return -EINVAL;
1da177e4
LT
4946
4947 retval = -ESRCH;
4948 read_lock(&tasklist_lock);
4949 p = find_process_by_pid(pid);
4950 if (p) {
4951 retval = security_task_getscheduler(p);
4952 if (!retval)
4953 retval = p->policy;
4954 }
4955 read_unlock(&tasklist_lock);
1da177e4
LT
4956 return retval;
4957}
4958
4959/**
4960 * sys_sched_getscheduler - get the RT priority of a thread
4961 * @pid: the pid in question.
4962 * @param: structure containing the RT priority.
4963 */
4964asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4965{
4966 struct sched_param lp;
36c8b586 4967 struct task_struct *p;
3a5c359a 4968 int retval;
1da177e4
LT
4969
4970 if (!param || pid < 0)
3a5c359a 4971 return -EINVAL;
1da177e4
LT
4972
4973 read_lock(&tasklist_lock);
4974 p = find_process_by_pid(pid);
4975 retval = -ESRCH;
4976 if (!p)
4977 goto out_unlock;
4978
4979 retval = security_task_getscheduler(p);
4980 if (retval)
4981 goto out_unlock;
4982
4983 lp.sched_priority = p->rt_priority;
4984 read_unlock(&tasklist_lock);
4985
4986 /*
4987 * This one might sleep, we cannot do it with a spinlock held ...
4988 */
4989 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4990
1da177e4
LT
4991 return retval;
4992
4993out_unlock:
4994 read_unlock(&tasklist_lock);
4995 return retval;
4996}
4997
b53e921b 4998long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4999{
1da177e4 5000 cpumask_t cpus_allowed;
b53e921b 5001 cpumask_t new_mask = *in_mask;
36c8b586
IM
5002 struct task_struct *p;
5003 int retval;
1da177e4 5004
95402b38 5005 get_online_cpus();
1da177e4
LT
5006 read_lock(&tasklist_lock);
5007
5008 p = find_process_by_pid(pid);
5009 if (!p) {
5010 read_unlock(&tasklist_lock);
95402b38 5011 put_online_cpus();
1da177e4
LT
5012 return -ESRCH;
5013 }
5014
5015 /*
5016 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5017 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5018 * usage count and then drop tasklist_lock.
5019 */
5020 get_task_struct(p);
5021 read_unlock(&tasklist_lock);
5022
5023 retval = -EPERM;
5024 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5025 !capable(CAP_SYS_NICE))
5026 goto out_unlock;
5027
e7834f8f
DQ
5028 retval = security_task_setscheduler(p, 0, NULL);
5029 if (retval)
5030 goto out_unlock;
5031
f9a86fcb 5032 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5033 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5034 again:
7c16ec58 5035 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5036
8707d8b8 5037 if (!retval) {
f9a86fcb 5038 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5039 if (!cpus_subset(new_mask, cpus_allowed)) {
5040 /*
5041 * We must have raced with a concurrent cpuset
5042 * update. Just reset the cpus_allowed to the
5043 * cpuset's cpus_allowed
5044 */
5045 new_mask = cpus_allowed;
5046 goto again;
5047 }
5048 }
1da177e4
LT
5049out_unlock:
5050 put_task_struct(p);
95402b38 5051 put_online_cpus();
1da177e4
LT
5052 return retval;
5053}
5054
5055static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5056 cpumask_t *new_mask)
5057{
5058 if (len < sizeof(cpumask_t)) {
5059 memset(new_mask, 0, sizeof(cpumask_t));
5060 } else if (len > sizeof(cpumask_t)) {
5061 len = sizeof(cpumask_t);
5062 }
5063 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5064}
5065
5066/**
5067 * sys_sched_setaffinity - set the cpu affinity of a process
5068 * @pid: pid of the process
5069 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5070 * @user_mask_ptr: user-space pointer to the new cpu mask
5071 */
5072asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5073 unsigned long __user *user_mask_ptr)
5074{
5075 cpumask_t new_mask;
5076 int retval;
5077
5078 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5079 if (retval)
5080 return retval;
5081
b53e921b 5082 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5083}
5084
5085/*
5086 * Represents all cpu's present in the system
5087 * In systems capable of hotplug, this map could dynamically grow
5088 * as new cpu's are detected in the system via any platform specific
5089 * method, such as ACPI for e.g.
5090 */
5091
4cef0c61 5092cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5093EXPORT_SYMBOL(cpu_present_map);
5094
5095#ifndef CONFIG_SMP
4cef0c61 5096cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5097EXPORT_SYMBOL(cpu_online_map);
5098
4cef0c61 5099cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5100EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5101#endif
5102
5103long sched_getaffinity(pid_t pid, cpumask_t *mask)
5104{
36c8b586 5105 struct task_struct *p;
1da177e4 5106 int retval;
1da177e4 5107
95402b38 5108 get_online_cpus();
1da177e4
LT
5109 read_lock(&tasklist_lock);
5110
5111 retval = -ESRCH;
5112 p = find_process_by_pid(pid);
5113 if (!p)
5114 goto out_unlock;
5115
e7834f8f
DQ
5116 retval = security_task_getscheduler(p);
5117 if (retval)
5118 goto out_unlock;
5119
2f7016d9 5120 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5121
5122out_unlock:
5123 read_unlock(&tasklist_lock);
95402b38 5124 put_online_cpus();
1da177e4 5125
9531b62f 5126 return retval;
1da177e4
LT
5127}
5128
5129/**
5130 * sys_sched_getaffinity - get the cpu affinity of a process
5131 * @pid: pid of the process
5132 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5133 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5134 */
5135asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5136 unsigned long __user *user_mask_ptr)
5137{
5138 int ret;
5139 cpumask_t mask;
5140
5141 if (len < sizeof(cpumask_t))
5142 return -EINVAL;
5143
5144 ret = sched_getaffinity(pid, &mask);
5145 if (ret < 0)
5146 return ret;
5147
5148 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5149 return -EFAULT;
5150
5151 return sizeof(cpumask_t);
5152}
5153
5154/**
5155 * sys_sched_yield - yield the current processor to other threads.
5156 *
dd41f596
IM
5157 * This function yields the current CPU to other tasks. If there are no
5158 * other threads running on this CPU then this function will return.
1da177e4
LT
5159 */
5160asmlinkage long sys_sched_yield(void)
5161{
70b97a7f 5162 struct rq *rq = this_rq_lock();
1da177e4 5163
2d72376b 5164 schedstat_inc(rq, yld_count);
4530d7ab 5165 current->sched_class->yield_task(rq);
1da177e4
LT
5166
5167 /*
5168 * Since we are going to call schedule() anyway, there's
5169 * no need to preempt or enable interrupts:
5170 */
5171 __release(rq->lock);
8a25d5de 5172 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5173 _raw_spin_unlock(&rq->lock);
5174 preempt_enable_no_resched();
5175
5176 schedule();
5177
5178 return 0;
5179}
5180
e7b38404 5181static void __cond_resched(void)
1da177e4 5182{
8e0a43d8
IM
5183#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5184 __might_sleep(__FILE__, __LINE__);
5185#endif
5bbcfd90
IM
5186 /*
5187 * The BKS might be reacquired before we have dropped
5188 * PREEMPT_ACTIVE, which could trigger a second
5189 * cond_resched() call.
5190 */
1da177e4
LT
5191 do {
5192 add_preempt_count(PREEMPT_ACTIVE);
5193 schedule();
5194 sub_preempt_count(PREEMPT_ACTIVE);
5195 } while (need_resched());
5196}
5197
02b67cc3 5198int __sched _cond_resched(void)
1da177e4 5199{
9414232f
IM
5200 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5201 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5202 __cond_resched();
5203 return 1;
5204 }
5205 return 0;
5206}
02b67cc3 5207EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5208
5209/*
5210 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5211 * call schedule, and on return reacquire the lock.
5212 *
41a2d6cf 5213 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5214 * operations here to prevent schedule() from being called twice (once via
5215 * spin_unlock(), once by hand).
5216 */
95cdf3b7 5217int cond_resched_lock(spinlock_t *lock)
1da177e4 5218{
95c354fe 5219 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5220 int ret = 0;
5221
95c354fe 5222 if (spin_needbreak(lock) || resched) {
1da177e4 5223 spin_unlock(lock);
95c354fe
NP
5224 if (resched && need_resched())
5225 __cond_resched();
5226 else
5227 cpu_relax();
6df3cecb 5228 ret = 1;
1da177e4 5229 spin_lock(lock);
1da177e4 5230 }
6df3cecb 5231 return ret;
1da177e4 5232}
1da177e4
LT
5233EXPORT_SYMBOL(cond_resched_lock);
5234
5235int __sched cond_resched_softirq(void)
5236{
5237 BUG_ON(!in_softirq());
5238
9414232f 5239 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5240 local_bh_enable();
1da177e4
LT
5241 __cond_resched();
5242 local_bh_disable();
5243 return 1;
5244 }
5245 return 0;
5246}
1da177e4
LT
5247EXPORT_SYMBOL(cond_resched_softirq);
5248
1da177e4
LT
5249/**
5250 * yield - yield the current processor to other threads.
5251 *
72fd4a35 5252 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5253 * thread runnable and calls sys_sched_yield().
5254 */
5255void __sched yield(void)
5256{
5257 set_current_state(TASK_RUNNING);
5258 sys_sched_yield();
5259}
1da177e4
LT
5260EXPORT_SYMBOL(yield);
5261
5262/*
41a2d6cf 5263 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5264 * that process accounting knows that this is a task in IO wait state.
5265 *
5266 * But don't do that if it is a deliberate, throttling IO wait (this task
5267 * has set its backing_dev_info: the queue against which it should throttle)
5268 */
5269void __sched io_schedule(void)
5270{
70b97a7f 5271 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5272
0ff92245 5273 delayacct_blkio_start();
1da177e4
LT
5274 atomic_inc(&rq->nr_iowait);
5275 schedule();
5276 atomic_dec(&rq->nr_iowait);
0ff92245 5277 delayacct_blkio_end();
1da177e4 5278}
1da177e4
LT
5279EXPORT_SYMBOL(io_schedule);
5280
5281long __sched io_schedule_timeout(long timeout)
5282{
70b97a7f 5283 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5284 long ret;
5285
0ff92245 5286 delayacct_blkio_start();
1da177e4
LT
5287 atomic_inc(&rq->nr_iowait);
5288 ret = schedule_timeout(timeout);
5289 atomic_dec(&rq->nr_iowait);
0ff92245 5290 delayacct_blkio_end();
1da177e4
LT
5291 return ret;
5292}
5293
5294/**
5295 * sys_sched_get_priority_max - return maximum RT priority.
5296 * @policy: scheduling class.
5297 *
5298 * this syscall returns the maximum rt_priority that can be used
5299 * by a given scheduling class.
5300 */
5301asmlinkage long sys_sched_get_priority_max(int policy)
5302{
5303 int ret = -EINVAL;
5304
5305 switch (policy) {
5306 case SCHED_FIFO:
5307 case SCHED_RR:
5308 ret = MAX_USER_RT_PRIO-1;
5309 break;
5310 case SCHED_NORMAL:
b0a9499c 5311 case SCHED_BATCH:
dd41f596 5312 case SCHED_IDLE:
1da177e4
LT
5313 ret = 0;
5314 break;
5315 }
5316 return ret;
5317}
5318
5319/**
5320 * sys_sched_get_priority_min - return minimum RT priority.
5321 * @policy: scheduling class.
5322 *
5323 * this syscall returns the minimum rt_priority that can be used
5324 * by a given scheduling class.
5325 */
5326asmlinkage long sys_sched_get_priority_min(int policy)
5327{
5328 int ret = -EINVAL;
5329
5330 switch (policy) {
5331 case SCHED_FIFO:
5332 case SCHED_RR:
5333 ret = 1;
5334 break;
5335 case SCHED_NORMAL:
b0a9499c 5336 case SCHED_BATCH:
dd41f596 5337 case SCHED_IDLE:
1da177e4
LT
5338 ret = 0;
5339 }
5340 return ret;
5341}
5342
5343/**
5344 * sys_sched_rr_get_interval - return the default timeslice of a process.
5345 * @pid: pid of the process.
5346 * @interval: userspace pointer to the timeslice value.
5347 *
5348 * this syscall writes the default timeslice value of a given process
5349 * into the user-space timespec buffer. A value of '0' means infinity.
5350 */
5351asmlinkage
5352long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5353{
36c8b586 5354 struct task_struct *p;
a4ec24b4 5355 unsigned int time_slice;
3a5c359a 5356 int retval;
1da177e4 5357 struct timespec t;
1da177e4
LT
5358
5359 if (pid < 0)
3a5c359a 5360 return -EINVAL;
1da177e4
LT
5361
5362 retval = -ESRCH;
5363 read_lock(&tasklist_lock);
5364 p = find_process_by_pid(pid);
5365 if (!p)
5366 goto out_unlock;
5367
5368 retval = security_task_getscheduler(p);
5369 if (retval)
5370 goto out_unlock;
5371
77034937
IM
5372 /*
5373 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5374 * tasks that are on an otherwise idle runqueue:
5375 */
5376 time_slice = 0;
5377 if (p->policy == SCHED_RR) {
a4ec24b4 5378 time_slice = DEF_TIMESLICE;
1868f958 5379 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5380 struct sched_entity *se = &p->se;
5381 unsigned long flags;
5382 struct rq *rq;
5383
5384 rq = task_rq_lock(p, &flags);
77034937
IM
5385 if (rq->cfs.load.weight)
5386 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5387 task_rq_unlock(rq, &flags);
5388 }
1da177e4 5389 read_unlock(&tasklist_lock);
a4ec24b4 5390 jiffies_to_timespec(time_slice, &t);
1da177e4 5391 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5392 return retval;
3a5c359a 5393
1da177e4
LT
5394out_unlock:
5395 read_unlock(&tasklist_lock);
5396 return retval;
5397}
5398
2ed6e34f 5399static const char stat_nam[] = "RSDTtZX";
36c8b586 5400
82a1fcb9 5401void sched_show_task(struct task_struct *p)
1da177e4 5402{
1da177e4 5403 unsigned long free = 0;
36c8b586 5404 unsigned state;
1da177e4 5405
1da177e4 5406 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5407 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5408 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5409#if BITS_PER_LONG == 32
1da177e4 5410 if (state == TASK_RUNNING)
cc4ea795 5411 printk(KERN_CONT " running ");
1da177e4 5412 else
cc4ea795 5413 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5414#else
5415 if (state == TASK_RUNNING)
cc4ea795 5416 printk(KERN_CONT " running task ");
1da177e4 5417 else
cc4ea795 5418 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5419#endif
5420#ifdef CONFIG_DEBUG_STACK_USAGE
5421 {
10ebffde 5422 unsigned long *n = end_of_stack(p);
1da177e4
LT
5423 while (!*n)
5424 n++;
10ebffde 5425 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5426 }
5427#endif
ba25f9dc 5428 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5429 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5430
5fb5e6de 5431 show_stack(p, NULL);
1da177e4
LT
5432}
5433
e59e2ae2 5434void show_state_filter(unsigned long state_filter)
1da177e4 5435{
36c8b586 5436 struct task_struct *g, *p;
1da177e4 5437
4bd77321
IM
5438#if BITS_PER_LONG == 32
5439 printk(KERN_INFO
5440 " task PC stack pid father\n");
1da177e4 5441#else
4bd77321
IM
5442 printk(KERN_INFO
5443 " task PC stack pid father\n");
1da177e4
LT
5444#endif
5445 read_lock(&tasklist_lock);
5446 do_each_thread(g, p) {
5447 /*
5448 * reset the NMI-timeout, listing all files on a slow
5449 * console might take alot of time:
5450 */
5451 touch_nmi_watchdog();
39bc89fd 5452 if (!state_filter || (p->state & state_filter))
82a1fcb9 5453 sched_show_task(p);
1da177e4
LT
5454 } while_each_thread(g, p);
5455
04c9167f
JF
5456 touch_all_softlockup_watchdogs();
5457
dd41f596
IM
5458#ifdef CONFIG_SCHED_DEBUG
5459 sysrq_sched_debug_show();
5460#endif
1da177e4 5461 read_unlock(&tasklist_lock);
e59e2ae2
IM
5462 /*
5463 * Only show locks if all tasks are dumped:
5464 */
5465 if (state_filter == -1)
5466 debug_show_all_locks();
1da177e4
LT
5467}
5468
1df21055
IM
5469void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5470{
dd41f596 5471 idle->sched_class = &idle_sched_class;
1df21055
IM
5472}
5473
f340c0d1
IM
5474/**
5475 * init_idle - set up an idle thread for a given CPU
5476 * @idle: task in question
5477 * @cpu: cpu the idle task belongs to
5478 *
5479 * NOTE: this function does not set the idle thread's NEED_RESCHED
5480 * flag, to make booting more robust.
5481 */
5c1e1767 5482void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5483{
70b97a7f 5484 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5485 unsigned long flags;
5486
dd41f596
IM
5487 __sched_fork(idle);
5488 idle->se.exec_start = sched_clock();
5489
b29739f9 5490 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5491 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5492 __set_task_cpu(idle, cpu);
1da177e4
LT
5493
5494 spin_lock_irqsave(&rq->lock, flags);
5495 rq->curr = rq->idle = idle;
4866cde0
NP
5496#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5497 idle->oncpu = 1;
5498#endif
1da177e4
LT
5499 spin_unlock_irqrestore(&rq->lock, flags);
5500
5501 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5502#if defined(CONFIG_PREEMPT)
5503 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5504#else
a1261f54 5505 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5506#endif
dd41f596
IM
5507 /*
5508 * The idle tasks have their own, simple scheduling class:
5509 */
5510 idle->sched_class = &idle_sched_class;
1da177e4
LT
5511}
5512
5513/*
5514 * In a system that switches off the HZ timer nohz_cpu_mask
5515 * indicates which cpus entered this state. This is used
5516 * in the rcu update to wait only for active cpus. For system
5517 * which do not switch off the HZ timer nohz_cpu_mask should
5518 * always be CPU_MASK_NONE.
5519 */
5520cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5521
19978ca6
IM
5522/*
5523 * Increase the granularity value when there are more CPUs,
5524 * because with more CPUs the 'effective latency' as visible
5525 * to users decreases. But the relationship is not linear,
5526 * so pick a second-best guess by going with the log2 of the
5527 * number of CPUs.
5528 *
5529 * This idea comes from the SD scheduler of Con Kolivas:
5530 */
5531static inline void sched_init_granularity(void)
5532{
5533 unsigned int factor = 1 + ilog2(num_online_cpus());
5534 const unsigned long limit = 200000000;
5535
5536 sysctl_sched_min_granularity *= factor;
5537 if (sysctl_sched_min_granularity > limit)
5538 sysctl_sched_min_granularity = limit;
5539
5540 sysctl_sched_latency *= factor;
5541 if (sysctl_sched_latency > limit)
5542 sysctl_sched_latency = limit;
5543
5544 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5545}
5546
1da177e4
LT
5547#ifdef CONFIG_SMP
5548/*
5549 * This is how migration works:
5550 *
70b97a7f 5551 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5552 * runqueue and wake up that CPU's migration thread.
5553 * 2) we down() the locked semaphore => thread blocks.
5554 * 3) migration thread wakes up (implicitly it forces the migrated
5555 * thread off the CPU)
5556 * 4) it gets the migration request and checks whether the migrated
5557 * task is still in the wrong runqueue.
5558 * 5) if it's in the wrong runqueue then the migration thread removes
5559 * it and puts it into the right queue.
5560 * 6) migration thread up()s the semaphore.
5561 * 7) we wake up and the migration is done.
5562 */
5563
5564/*
5565 * Change a given task's CPU affinity. Migrate the thread to a
5566 * proper CPU and schedule it away if the CPU it's executing on
5567 * is removed from the allowed bitmask.
5568 *
5569 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5570 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5571 * call is not atomic; no spinlocks may be held.
5572 */
cd8ba7cd 5573int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5574{
70b97a7f 5575 struct migration_req req;
1da177e4 5576 unsigned long flags;
70b97a7f 5577 struct rq *rq;
48f24c4d 5578 int ret = 0;
1da177e4
LT
5579
5580 rq = task_rq_lock(p, &flags);
cd8ba7cd 5581 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5582 ret = -EINVAL;
5583 goto out;
5584 }
5585
73fe6aae 5586 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5587 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5588 else {
cd8ba7cd
MT
5589 p->cpus_allowed = *new_mask;
5590 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5591 }
5592
1da177e4 5593 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5594 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5595 goto out;
5596
cd8ba7cd 5597 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5598 /* Need help from migration thread: drop lock and wait. */
5599 task_rq_unlock(rq, &flags);
5600 wake_up_process(rq->migration_thread);
5601 wait_for_completion(&req.done);
5602 tlb_migrate_finish(p->mm);
5603 return 0;
5604 }
5605out:
5606 task_rq_unlock(rq, &flags);
48f24c4d 5607
1da177e4
LT
5608 return ret;
5609}
cd8ba7cd 5610EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5611
5612/*
41a2d6cf 5613 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5614 * this because either it can't run here any more (set_cpus_allowed()
5615 * away from this CPU, or CPU going down), or because we're
5616 * attempting to rebalance this task on exec (sched_exec).
5617 *
5618 * So we race with normal scheduler movements, but that's OK, as long
5619 * as the task is no longer on this CPU.
efc30814
KK
5620 *
5621 * Returns non-zero if task was successfully migrated.
1da177e4 5622 */
efc30814 5623static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5624{
70b97a7f 5625 struct rq *rq_dest, *rq_src;
dd41f596 5626 int ret = 0, on_rq;
1da177e4
LT
5627
5628 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5629 return ret;
1da177e4
LT
5630
5631 rq_src = cpu_rq(src_cpu);
5632 rq_dest = cpu_rq(dest_cpu);
5633
5634 double_rq_lock(rq_src, rq_dest);
5635 /* Already moved. */
5636 if (task_cpu(p) != src_cpu)
5637 goto out;
5638 /* Affinity changed (again). */
5639 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5640 goto out;
5641
dd41f596 5642 on_rq = p->se.on_rq;
6e82a3be 5643 if (on_rq)
2e1cb74a 5644 deactivate_task(rq_src, p, 0);
6e82a3be 5645
1da177e4 5646 set_task_cpu(p, dest_cpu);
dd41f596
IM
5647 if (on_rq) {
5648 activate_task(rq_dest, p, 0);
5649 check_preempt_curr(rq_dest, p);
1da177e4 5650 }
efc30814 5651 ret = 1;
1da177e4
LT
5652out:
5653 double_rq_unlock(rq_src, rq_dest);
efc30814 5654 return ret;
1da177e4
LT
5655}
5656
5657/*
5658 * migration_thread - this is a highprio system thread that performs
5659 * thread migration by bumping thread off CPU then 'pushing' onto
5660 * another runqueue.
5661 */
95cdf3b7 5662static int migration_thread(void *data)
1da177e4 5663{
1da177e4 5664 int cpu = (long)data;
70b97a7f 5665 struct rq *rq;
1da177e4
LT
5666
5667 rq = cpu_rq(cpu);
5668 BUG_ON(rq->migration_thread != current);
5669
5670 set_current_state(TASK_INTERRUPTIBLE);
5671 while (!kthread_should_stop()) {
70b97a7f 5672 struct migration_req *req;
1da177e4 5673 struct list_head *head;
1da177e4 5674
1da177e4
LT
5675 spin_lock_irq(&rq->lock);
5676
5677 if (cpu_is_offline(cpu)) {
5678 spin_unlock_irq(&rq->lock);
5679 goto wait_to_die;
5680 }
5681
5682 if (rq->active_balance) {
5683 active_load_balance(rq, cpu);
5684 rq->active_balance = 0;
5685 }
5686
5687 head = &rq->migration_queue;
5688
5689 if (list_empty(head)) {
5690 spin_unlock_irq(&rq->lock);
5691 schedule();
5692 set_current_state(TASK_INTERRUPTIBLE);
5693 continue;
5694 }
70b97a7f 5695 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5696 list_del_init(head->next);
5697
674311d5
NP
5698 spin_unlock(&rq->lock);
5699 __migrate_task(req->task, cpu, req->dest_cpu);
5700 local_irq_enable();
1da177e4
LT
5701
5702 complete(&req->done);
5703 }
5704 __set_current_state(TASK_RUNNING);
5705 return 0;
5706
5707wait_to_die:
5708 /* Wait for kthread_stop */
5709 set_current_state(TASK_INTERRUPTIBLE);
5710 while (!kthread_should_stop()) {
5711 schedule();
5712 set_current_state(TASK_INTERRUPTIBLE);
5713 }
5714 __set_current_state(TASK_RUNNING);
5715 return 0;
5716}
5717
5718#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5719
5720static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5721{
5722 int ret;
5723
5724 local_irq_disable();
5725 ret = __migrate_task(p, src_cpu, dest_cpu);
5726 local_irq_enable();
5727 return ret;
5728}
5729
054b9108 5730/*
3a4fa0a2 5731 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5732 * NOTE: interrupts should be disabled by the caller
5733 */
48f24c4d 5734static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5735{
efc30814 5736 unsigned long flags;
1da177e4 5737 cpumask_t mask;
70b97a7f
IM
5738 struct rq *rq;
5739 int dest_cpu;
1da177e4 5740
3a5c359a
AK
5741 do {
5742 /* On same node? */
5743 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5744 cpus_and(mask, mask, p->cpus_allowed);
5745 dest_cpu = any_online_cpu(mask);
5746
5747 /* On any allowed CPU? */
434d53b0 5748 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5749 dest_cpu = any_online_cpu(p->cpus_allowed);
5750
5751 /* No more Mr. Nice Guy. */
434d53b0 5752 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5753 cpumask_t cpus_allowed;
5754
5755 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5756 /*
5757 * Try to stay on the same cpuset, where the
5758 * current cpuset may be a subset of all cpus.
5759 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5760 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5761 * called within calls to cpuset_lock/cpuset_unlock.
5762 */
3a5c359a 5763 rq = task_rq_lock(p, &flags);
470fd646 5764 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5765 dest_cpu = any_online_cpu(p->cpus_allowed);
5766 task_rq_unlock(rq, &flags);
1da177e4 5767
3a5c359a
AK
5768 /*
5769 * Don't tell them about moving exiting tasks or
5770 * kernel threads (both mm NULL), since they never
5771 * leave kernel.
5772 */
41a2d6cf 5773 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5774 printk(KERN_INFO "process %d (%s) no "
5775 "longer affine to cpu%d\n",
41a2d6cf
IM
5776 task_pid_nr(p), p->comm, dead_cpu);
5777 }
3a5c359a 5778 }
f7b4cddc 5779 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5780}
5781
5782/*
5783 * While a dead CPU has no uninterruptible tasks queued at this point,
5784 * it might still have a nonzero ->nr_uninterruptible counter, because
5785 * for performance reasons the counter is not stricly tracking tasks to
5786 * their home CPUs. So we just add the counter to another CPU's counter,
5787 * to keep the global sum constant after CPU-down:
5788 */
70b97a7f 5789static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5790{
7c16ec58 5791 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5792 unsigned long flags;
5793
5794 local_irq_save(flags);
5795 double_rq_lock(rq_src, rq_dest);
5796 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5797 rq_src->nr_uninterruptible = 0;
5798 double_rq_unlock(rq_src, rq_dest);
5799 local_irq_restore(flags);
5800}
5801
5802/* Run through task list and migrate tasks from the dead cpu. */
5803static void migrate_live_tasks(int src_cpu)
5804{
48f24c4d 5805 struct task_struct *p, *t;
1da177e4 5806
f7b4cddc 5807 read_lock(&tasklist_lock);
1da177e4 5808
48f24c4d
IM
5809 do_each_thread(t, p) {
5810 if (p == current)
1da177e4
LT
5811 continue;
5812
48f24c4d
IM
5813 if (task_cpu(p) == src_cpu)
5814 move_task_off_dead_cpu(src_cpu, p);
5815 } while_each_thread(t, p);
1da177e4 5816
f7b4cddc 5817 read_unlock(&tasklist_lock);
1da177e4
LT
5818}
5819
dd41f596
IM
5820/*
5821 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5822 * It does so by boosting its priority to highest possible.
5823 * Used by CPU offline code.
1da177e4
LT
5824 */
5825void sched_idle_next(void)
5826{
48f24c4d 5827 int this_cpu = smp_processor_id();
70b97a7f 5828 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5829 struct task_struct *p = rq->idle;
5830 unsigned long flags;
5831
5832 /* cpu has to be offline */
48f24c4d 5833 BUG_ON(cpu_online(this_cpu));
1da177e4 5834
48f24c4d
IM
5835 /*
5836 * Strictly not necessary since rest of the CPUs are stopped by now
5837 * and interrupts disabled on the current cpu.
1da177e4
LT
5838 */
5839 spin_lock_irqsave(&rq->lock, flags);
5840
dd41f596 5841 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5842
94bc9a7b
DA
5843 update_rq_clock(rq);
5844 activate_task(rq, p, 0);
1da177e4
LT
5845
5846 spin_unlock_irqrestore(&rq->lock, flags);
5847}
5848
48f24c4d
IM
5849/*
5850 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5851 * offline.
5852 */
5853void idle_task_exit(void)
5854{
5855 struct mm_struct *mm = current->active_mm;
5856
5857 BUG_ON(cpu_online(smp_processor_id()));
5858
5859 if (mm != &init_mm)
5860 switch_mm(mm, &init_mm, current);
5861 mmdrop(mm);
5862}
5863
054b9108 5864/* called under rq->lock with disabled interrupts */
36c8b586 5865static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5866{
70b97a7f 5867 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5868
5869 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5870 BUG_ON(!p->exit_state);
1da177e4
LT
5871
5872 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5873 BUG_ON(p->state == TASK_DEAD);
1da177e4 5874
48f24c4d 5875 get_task_struct(p);
1da177e4
LT
5876
5877 /*
5878 * Drop lock around migration; if someone else moves it,
41a2d6cf 5879 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5880 * fine.
5881 */
f7b4cddc 5882 spin_unlock_irq(&rq->lock);
48f24c4d 5883 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5884 spin_lock_irq(&rq->lock);
1da177e4 5885
48f24c4d 5886 put_task_struct(p);
1da177e4
LT
5887}
5888
5889/* release_task() removes task from tasklist, so we won't find dead tasks. */
5890static void migrate_dead_tasks(unsigned int dead_cpu)
5891{
70b97a7f 5892 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5893 struct task_struct *next;
48f24c4d 5894
dd41f596
IM
5895 for ( ; ; ) {
5896 if (!rq->nr_running)
5897 break;
a8e504d2 5898 update_rq_clock(rq);
ff95f3df 5899 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5900 if (!next)
5901 break;
5902 migrate_dead(dead_cpu, next);
e692ab53 5903
1da177e4
LT
5904 }
5905}
5906#endif /* CONFIG_HOTPLUG_CPU */
5907
e692ab53
NP
5908#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5909
5910static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5911 {
5912 .procname = "sched_domain",
c57baf1e 5913 .mode = 0555,
e0361851 5914 },
38605cae 5915 {0, },
e692ab53
NP
5916};
5917
5918static struct ctl_table sd_ctl_root[] = {
e0361851 5919 {
c57baf1e 5920 .ctl_name = CTL_KERN,
e0361851 5921 .procname = "kernel",
c57baf1e 5922 .mode = 0555,
e0361851
AD
5923 .child = sd_ctl_dir,
5924 },
38605cae 5925 {0, },
e692ab53
NP
5926};
5927
5928static struct ctl_table *sd_alloc_ctl_entry(int n)
5929{
5930 struct ctl_table *entry =
5cf9f062 5931 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5932
e692ab53
NP
5933 return entry;
5934}
5935
6382bc90
MM
5936static void sd_free_ctl_entry(struct ctl_table **tablep)
5937{
cd790076 5938 struct ctl_table *entry;
6382bc90 5939
cd790076
MM
5940 /*
5941 * In the intermediate directories, both the child directory and
5942 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5943 * will always be set. In the lowest directory the names are
cd790076
MM
5944 * static strings and all have proc handlers.
5945 */
5946 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5947 if (entry->child)
5948 sd_free_ctl_entry(&entry->child);
cd790076
MM
5949 if (entry->proc_handler == NULL)
5950 kfree(entry->procname);
5951 }
6382bc90
MM
5952
5953 kfree(*tablep);
5954 *tablep = NULL;
5955}
5956
e692ab53 5957static void
e0361851 5958set_table_entry(struct ctl_table *entry,
e692ab53
NP
5959 const char *procname, void *data, int maxlen,
5960 mode_t mode, proc_handler *proc_handler)
5961{
e692ab53
NP
5962 entry->procname = procname;
5963 entry->data = data;
5964 entry->maxlen = maxlen;
5965 entry->mode = mode;
5966 entry->proc_handler = proc_handler;
5967}
5968
5969static struct ctl_table *
5970sd_alloc_ctl_domain_table(struct sched_domain *sd)
5971{
ace8b3d6 5972 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5973
ad1cdc1d
MM
5974 if (table == NULL)
5975 return NULL;
5976
e0361851 5977 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5978 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5979 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5980 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5981 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5982 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5983 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5984 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5985 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5986 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5987 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5988 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5989 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5990 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5991 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5992 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5993 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5994 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5995 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5996 &sd->cache_nice_tries,
5997 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5998 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5999 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6000 /* &table[11] is terminator */
e692ab53
NP
6001
6002 return table;
6003}
6004
9a4e7159 6005static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6006{
6007 struct ctl_table *entry, *table;
6008 struct sched_domain *sd;
6009 int domain_num = 0, i;
6010 char buf[32];
6011
6012 for_each_domain(cpu, sd)
6013 domain_num++;
6014 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6015 if (table == NULL)
6016 return NULL;
e692ab53
NP
6017
6018 i = 0;
6019 for_each_domain(cpu, sd) {
6020 snprintf(buf, 32, "domain%d", i);
e692ab53 6021 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6022 entry->mode = 0555;
e692ab53
NP
6023 entry->child = sd_alloc_ctl_domain_table(sd);
6024 entry++;
6025 i++;
6026 }
6027 return table;
6028}
6029
6030static struct ctl_table_header *sd_sysctl_header;
6382bc90 6031static void register_sched_domain_sysctl(void)
e692ab53
NP
6032{
6033 int i, cpu_num = num_online_cpus();
6034 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6035 char buf[32];
6036
7378547f
MM
6037 WARN_ON(sd_ctl_dir[0].child);
6038 sd_ctl_dir[0].child = entry;
6039
ad1cdc1d
MM
6040 if (entry == NULL)
6041 return;
6042
97b6ea7b 6043 for_each_online_cpu(i) {
e692ab53 6044 snprintf(buf, 32, "cpu%d", i);
e692ab53 6045 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6046 entry->mode = 0555;
e692ab53 6047 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6048 entry++;
e692ab53 6049 }
7378547f
MM
6050
6051 WARN_ON(sd_sysctl_header);
e692ab53
NP
6052 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6053}
6382bc90 6054
7378547f 6055/* may be called multiple times per register */
6382bc90
MM
6056static void unregister_sched_domain_sysctl(void)
6057{
7378547f
MM
6058 if (sd_sysctl_header)
6059 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6060 sd_sysctl_header = NULL;
7378547f
MM
6061 if (sd_ctl_dir[0].child)
6062 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6063}
e692ab53 6064#else
6382bc90
MM
6065static void register_sched_domain_sysctl(void)
6066{
6067}
6068static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6069{
6070}
6071#endif
6072
1da177e4
LT
6073/*
6074 * migration_call - callback that gets triggered when a CPU is added.
6075 * Here we can start up the necessary migration thread for the new CPU.
6076 */
48f24c4d
IM
6077static int __cpuinit
6078migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6079{
1da177e4 6080 struct task_struct *p;
48f24c4d 6081 int cpu = (long)hcpu;
1da177e4 6082 unsigned long flags;
70b97a7f 6083 struct rq *rq;
1da177e4
LT
6084
6085 switch (action) {
5be9361c 6086
1da177e4 6087 case CPU_UP_PREPARE:
8bb78442 6088 case CPU_UP_PREPARE_FROZEN:
dd41f596 6089 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6090 if (IS_ERR(p))
6091 return NOTIFY_BAD;
1da177e4
LT
6092 kthread_bind(p, cpu);
6093 /* Must be high prio: stop_machine expects to yield to it. */
6094 rq = task_rq_lock(p, &flags);
dd41f596 6095 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6096 task_rq_unlock(rq, &flags);
6097 cpu_rq(cpu)->migration_thread = p;
6098 break;
48f24c4d 6099
1da177e4 6100 case CPU_ONLINE:
8bb78442 6101 case CPU_ONLINE_FROZEN:
3a4fa0a2 6102 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6103 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6104
6105 /* Update our root-domain */
6106 rq = cpu_rq(cpu);
6107 spin_lock_irqsave(&rq->lock, flags);
6108 if (rq->rd) {
6109 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6110 cpu_set(cpu, rq->rd->online);
6111 }
6112 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6113 break;
48f24c4d 6114
1da177e4
LT
6115#ifdef CONFIG_HOTPLUG_CPU
6116 case CPU_UP_CANCELED:
8bb78442 6117 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6118 if (!cpu_rq(cpu)->migration_thread)
6119 break;
41a2d6cf 6120 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6121 kthread_bind(cpu_rq(cpu)->migration_thread,
6122 any_online_cpu(cpu_online_map));
1da177e4
LT
6123 kthread_stop(cpu_rq(cpu)->migration_thread);
6124 cpu_rq(cpu)->migration_thread = NULL;
6125 break;
48f24c4d 6126
1da177e4 6127 case CPU_DEAD:
8bb78442 6128 case CPU_DEAD_FROZEN:
470fd646 6129 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6130 migrate_live_tasks(cpu);
6131 rq = cpu_rq(cpu);
6132 kthread_stop(rq->migration_thread);
6133 rq->migration_thread = NULL;
6134 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6135 spin_lock_irq(&rq->lock);
a8e504d2 6136 update_rq_clock(rq);
2e1cb74a 6137 deactivate_task(rq, rq->idle, 0);
1da177e4 6138 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6139 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6140 rq->idle->sched_class = &idle_sched_class;
1da177e4 6141 migrate_dead_tasks(cpu);
d2da272a 6142 spin_unlock_irq(&rq->lock);
470fd646 6143 cpuset_unlock();
1da177e4
LT
6144 migrate_nr_uninterruptible(rq);
6145 BUG_ON(rq->nr_running != 0);
6146
41a2d6cf
IM
6147 /*
6148 * No need to migrate the tasks: it was best-effort if
6149 * they didn't take sched_hotcpu_mutex. Just wake up
6150 * the requestors.
6151 */
1da177e4
LT
6152 spin_lock_irq(&rq->lock);
6153 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6154 struct migration_req *req;
6155
1da177e4 6156 req = list_entry(rq->migration_queue.next,
70b97a7f 6157 struct migration_req, list);
1da177e4
LT
6158 list_del_init(&req->list);
6159 complete(&req->done);
6160 }
6161 spin_unlock_irq(&rq->lock);
6162 break;
57d885fe 6163
08f503b0
GH
6164 case CPU_DYING:
6165 case CPU_DYING_FROZEN:
57d885fe
GH
6166 /* Update our root-domain */
6167 rq = cpu_rq(cpu);
6168 spin_lock_irqsave(&rq->lock, flags);
6169 if (rq->rd) {
6170 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6171 cpu_clear(cpu, rq->rd->online);
6172 }
6173 spin_unlock_irqrestore(&rq->lock, flags);
6174 break;
1da177e4
LT
6175#endif
6176 }
6177 return NOTIFY_OK;
6178}
6179
6180/* Register at highest priority so that task migration (migrate_all_tasks)
6181 * happens before everything else.
6182 */
26c2143b 6183static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6184 .notifier_call = migration_call,
6185 .priority = 10
6186};
6187
e6fe6649 6188void __init migration_init(void)
1da177e4
LT
6189{
6190 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6191 int err;
48f24c4d
IM
6192
6193 /* Start one for the boot CPU: */
07dccf33
AM
6194 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6195 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6196 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6197 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6198}
6199#endif
6200
6201#ifdef CONFIG_SMP
476f3534 6202
3e9830dc 6203#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6204
7c16ec58
MT
6205static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6206 cpumask_t *groupmask)
1da177e4 6207{
4dcf6aff 6208 struct sched_group *group = sd->groups;
434d53b0 6209 char str[256];
1da177e4 6210
434d53b0 6211 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6212 cpus_clear(*groupmask);
4dcf6aff
IM
6213
6214 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6215
6216 if (!(sd->flags & SD_LOAD_BALANCE)) {
6217 printk("does not load-balance\n");
6218 if (sd->parent)
6219 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6220 " has parent");
6221 return -1;
41c7ce9a
NP
6222 }
6223
4dcf6aff
IM
6224 printk(KERN_CONT "span %s\n", str);
6225
6226 if (!cpu_isset(cpu, sd->span)) {
6227 printk(KERN_ERR "ERROR: domain->span does not contain "
6228 "CPU%d\n", cpu);
6229 }
6230 if (!cpu_isset(cpu, group->cpumask)) {
6231 printk(KERN_ERR "ERROR: domain->groups does not contain"
6232 " CPU%d\n", cpu);
6233 }
1da177e4 6234
4dcf6aff 6235 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6236 do {
4dcf6aff
IM
6237 if (!group) {
6238 printk("\n");
6239 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6240 break;
6241 }
6242
4dcf6aff
IM
6243 if (!group->__cpu_power) {
6244 printk(KERN_CONT "\n");
6245 printk(KERN_ERR "ERROR: domain->cpu_power not "
6246 "set\n");
6247 break;
6248 }
1da177e4 6249
4dcf6aff
IM
6250 if (!cpus_weight(group->cpumask)) {
6251 printk(KERN_CONT "\n");
6252 printk(KERN_ERR "ERROR: empty group\n");
6253 break;
6254 }
1da177e4 6255
7c16ec58 6256 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6257 printk(KERN_CONT "\n");
6258 printk(KERN_ERR "ERROR: repeated CPUs\n");
6259 break;
6260 }
1da177e4 6261
7c16ec58 6262 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6263
434d53b0 6264 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6265 printk(KERN_CONT " %s", str);
1da177e4 6266
4dcf6aff
IM
6267 group = group->next;
6268 } while (group != sd->groups);
6269 printk(KERN_CONT "\n");
1da177e4 6270
7c16ec58 6271 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6272 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6273
7c16ec58 6274 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6275 printk(KERN_ERR "ERROR: parent span is not a superset "
6276 "of domain->span\n");
6277 return 0;
6278}
1da177e4 6279
4dcf6aff
IM
6280static void sched_domain_debug(struct sched_domain *sd, int cpu)
6281{
7c16ec58 6282 cpumask_t *groupmask;
4dcf6aff 6283 int level = 0;
1da177e4 6284
4dcf6aff
IM
6285 if (!sd) {
6286 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6287 return;
6288 }
1da177e4 6289
4dcf6aff
IM
6290 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6291
7c16ec58
MT
6292 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6293 if (!groupmask) {
6294 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6295 return;
6296 }
6297
4dcf6aff 6298 for (;;) {
7c16ec58 6299 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6300 break;
1da177e4
LT
6301 level++;
6302 sd = sd->parent;
33859f7f 6303 if (!sd)
4dcf6aff
IM
6304 break;
6305 }
7c16ec58 6306 kfree(groupmask);
1da177e4
LT
6307}
6308#else
48f24c4d 6309# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6310#endif
6311
1a20ff27 6312static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6313{
6314 if (cpus_weight(sd->span) == 1)
6315 return 1;
6316
6317 /* Following flags need at least 2 groups */
6318 if (sd->flags & (SD_LOAD_BALANCE |
6319 SD_BALANCE_NEWIDLE |
6320 SD_BALANCE_FORK |
89c4710e
SS
6321 SD_BALANCE_EXEC |
6322 SD_SHARE_CPUPOWER |
6323 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6324 if (sd->groups != sd->groups->next)
6325 return 0;
6326 }
6327
6328 /* Following flags don't use groups */
6329 if (sd->flags & (SD_WAKE_IDLE |
6330 SD_WAKE_AFFINE |
6331 SD_WAKE_BALANCE))
6332 return 0;
6333
6334 return 1;
6335}
6336
48f24c4d
IM
6337static int
6338sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6339{
6340 unsigned long cflags = sd->flags, pflags = parent->flags;
6341
6342 if (sd_degenerate(parent))
6343 return 1;
6344
6345 if (!cpus_equal(sd->span, parent->span))
6346 return 0;
6347
6348 /* Does parent contain flags not in child? */
6349 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6350 if (cflags & SD_WAKE_AFFINE)
6351 pflags &= ~SD_WAKE_BALANCE;
6352 /* Flags needing groups don't count if only 1 group in parent */
6353 if (parent->groups == parent->groups->next) {
6354 pflags &= ~(SD_LOAD_BALANCE |
6355 SD_BALANCE_NEWIDLE |
6356 SD_BALANCE_FORK |
89c4710e
SS
6357 SD_BALANCE_EXEC |
6358 SD_SHARE_CPUPOWER |
6359 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6360 }
6361 if (~cflags & pflags)
6362 return 0;
6363
6364 return 1;
6365}
6366
57d885fe
GH
6367static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6368{
6369 unsigned long flags;
6370 const struct sched_class *class;
6371
6372 spin_lock_irqsave(&rq->lock, flags);
6373
6374 if (rq->rd) {
6375 struct root_domain *old_rd = rq->rd;
6376
0eab9146 6377 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6378 if (class->leave_domain)
6379 class->leave_domain(rq);
0eab9146 6380 }
57d885fe 6381
dc938520
GH
6382 cpu_clear(rq->cpu, old_rd->span);
6383 cpu_clear(rq->cpu, old_rd->online);
6384
57d885fe
GH
6385 if (atomic_dec_and_test(&old_rd->refcount))
6386 kfree(old_rd);
6387 }
6388
6389 atomic_inc(&rd->refcount);
6390 rq->rd = rd;
6391
dc938520 6392 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6393 if (cpu_isset(rq->cpu, cpu_online_map))
6394 cpu_set(rq->cpu, rd->online);
dc938520 6395
0eab9146 6396 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6397 if (class->join_domain)
6398 class->join_domain(rq);
0eab9146 6399 }
57d885fe
GH
6400
6401 spin_unlock_irqrestore(&rq->lock, flags);
6402}
6403
dc938520 6404static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6405{
6406 memset(rd, 0, sizeof(*rd));
6407
dc938520
GH
6408 cpus_clear(rd->span);
6409 cpus_clear(rd->online);
57d885fe
GH
6410}
6411
6412static void init_defrootdomain(void)
6413{
dc938520 6414 init_rootdomain(&def_root_domain);
57d885fe
GH
6415 atomic_set(&def_root_domain.refcount, 1);
6416}
6417
dc938520 6418static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6419{
6420 struct root_domain *rd;
6421
6422 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6423 if (!rd)
6424 return NULL;
6425
dc938520 6426 init_rootdomain(rd);
57d885fe
GH
6427
6428 return rd;
6429}
6430
1da177e4 6431/*
0eab9146 6432 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6433 * hold the hotplug lock.
6434 */
0eab9146
IM
6435static void
6436cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6437{
70b97a7f 6438 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6439 struct sched_domain *tmp;
6440
6441 /* Remove the sched domains which do not contribute to scheduling. */
6442 for (tmp = sd; tmp; tmp = tmp->parent) {
6443 struct sched_domain *parent = tmp->parent;
6444 if (!parent)
6445 break;
1a848870 6446 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6447 tmp->parent = parent->parent;
1a848870
SS
6448 if (parent->parent)
6449 parent->parent->child = tmp;
6450 }
245af2c7
SS
6451 }
6452
1a848870 6453 if (sd && sd_degenerate(sd)) {
245af2c7 6454 sd = sd->parent;
1a848870
SS
6455 if (sd)
6456 sd->child = NULL;
6457 }
1da177e4
LT
6458
6459 sched_domain_debug(sd, cpu);
6460
57d885fe 6461 rq_attach_root(rq, rd);
674311d5 6462 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6463}
6464
6465/* cpus with isolated domains */
67af63a6 6466static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6467
6468/* Setup the mask of cpus configured for isolated domains */
6469static int __init isolated_cpu_setup(char *str)
6470{
6471 int ints[NR_CPUS], i;
6472
6473 str = get_options(str, ARRAY_SIZE(ints), ints);
6474 cpus_clear(cpu_isolated_map);
6475 for (i = 1; i <= ints[0]; i++)
6476 if (ints[i] < NR_CPUS)
6477 cpu_set(ints[i], cpu_isolated_map);
6478 return 1;
6479}
6480
8927f494 6481__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6482
6483/*
6711cab4
SS
6484 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6485 * to a function which identifies what group(along with sched group) a CPU
6486 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6487 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6488 *
6489 * init_sched_build_groups will build a circular linked list of the groups
6490 * covered by the given span, and will set each group's ->cpumask correctly,
6491 * and ->cpu_power to 0.
6492 */
a616058b 6493static void
7c16ec58 6494init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6495 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6496 struct sched_group **sg,
6497 cpumask_t *tmpmask),
6498 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6499{
6500 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6501 int i;
6502
7c16ec58
MT
6503 cpus_clear(*covered);
6504
6505 for_each_cpu_mask(i, *span) {
6711cab4 6506 struct sched_group *sg;
7c16ec58 6507 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6508 int j;
6509
7c16ec58 6510 if (cpu_isset(i, *covered))
1da177e4
LT
6511 continue;
6512
7c16ec58 6513 cpus_clear(sg->cpumask);
5517d86b 6514 sg->__cpu_power = 0;
1da177e4 6515
7c16ec58
MT
6516 for_each_cpu_mask(j, *span) {
6517 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6518 continue;
6519
7c16ec58 6520 cpu_set(j, *covered);
1da177e4
LT
6521 cpu_set(j, sg->cpumask);
6522 }
6523 if (!first)
6524 first = sg;
6525 if (last)
6526 last->next = sg;
6527 last = sg;
6528 }
6529 last->next = first;
6530}
6531
9c1cfda2 6532#define SD_NODES_PER_DOMAIN 16
1da177e4 6533
9c1cfda2 6534#ifdef CONFIG_NUMA
198e2f18 6535
9c1cfda2
JH
6536/**
6537 * find_next_best_node - find the next node to include in a sched_domain
6538 * @node: node whose sched_domain we're building
6539 * @used_nodes: nodes already in the sched_domain
6540 *
41a2d6cf 6541 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6542 * finds the closest node not already in the @used_nodes map.
6543 *
6544 * Should use nodemask_t.
6545 */
c5f59f08 6546static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6547{
6548 int i, n, val, min_val, best_node = 0;
6549
6550 min_val = INT_MAX;
6551
6552 for (i = 0; i < MAX_NUMNODES; i++) {
6553 /* Start at @node */
6554 n = (node + i) % MAX_NUMNODES;
6555
6556 if (!nr_cpus_node(n))
6557 continue;
6558
6559 /* Skip already used nodes */
c5f59f08 6560 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6561 continue;
6562
6563 /* Simple min distance search */
6564 val = node_distance(node, n);
6565
6566 if (val < min_val) {
6567 min_val = val;
6568 best_node = n;
6569 }
6570 }
6571
c5f59f08 6572 node_set(best_node, *used_nodes);
9c1cfda2
JH
6573 return best_node;
6574}
6575
6576/**
6577 * sched_domain_node_span - get a cpumask for a node's sched_domain
6578 * @node: node whose cpumask we're constructing
73486722 6579 * @span: resulting cpumask
9c1cfda2 6580 *
41a2d6cf 6581 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6582 * should be one that prevents unnecessary balancing, but also spreads tasks
6583 * out optimally.
6584 */
4bdbaad3 6585static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6586{
c5f59f08 6587 nodemask_t used_nodes;
c5f59f08 6588 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6589 int i;
9c1cfda2 6590
4bdbaad3 6591 cpus_clear(*span);
c5f59f08 6592 nodes_clear(used_nodes);
9c1cfda2 6593
4bdbaad3 6594 cpus_or(*span, *span, *nodemask);
c5f59f08 6595 node_set(node, used_nodes);
9c1cfda2
JH
6596
6597 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6598 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6599
c5f59f08 6600 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6601 cpus_or(*span, *span, *nodemask);
9c1cfda2 6602 }
9c1cfda2
JH
6603}
6604#endif
6605
5c45bf27 6606int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6607
9c1cfda2 6608/*
48f24c4d 6609 * SMT sched-domains:
9c1cfda2 6610 */
1da177e4
LT
6611#ifdef CONFIG_SCHED_SMT
6612static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6613static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6614
41a2d6cf 6615static int
7c16ec58
MT
6616cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6617 cpumask_t *unused)
1da177e4 6618{
6711cab4
SS
6619 if (sg)
6620 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6621 return cpu;
6622}
6623#endif
6624
48f24c4d
IM
6625/*
6626 * multi-core sched-domains:
6627 */
1e9f28fa
SS
6628#ifdef CONFIG_SCHED_MC
6629static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6630static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6631#endif
6632
6633#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6634static int
7c16ec58
MT
6635cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6636 cpumask_t *mask)
1e9f28fa 6637{
6711cab4 6638 int group;
7c16ec58
MT
6639
6640 *mask = per_cpu(cpu_sibling_map, cpu);
6641 cpus_and(*mask, *mask, *cpu_map);
6642 group = first_cpu(*mask);
6711cab4
SS
6643 if (sg)
6644 *sg = &per_cpu(sched_group_core, group);
6645 return group;
1e9f28fa
SS
6646}
6647#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6648static int
7c16ec58
MT
6649cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6650 cpumask_t *unused)
1e9f28fa 6651{
6711cab4
SS
6652 if (sg)
6653 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6654 return cpu;
6655}
6656#endif
6657
1da177e4 6658static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6659static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6660
41a2d6cf 6661static int
7c16ec58
MT
6662cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6663 cpumask_t *mask)
1da177e4 6664{
6711cab4 6665 int group;
48f24c4d 6666#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6667 *mask = cpu_coregroup_map(cpu);
6668 cpus_and(*mask, *mask, *cpu_map);
6669 group = first_cpu(*mask);
1e9f28fa 6670#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6671 *mask = per_cpu(cpu_sibling_map, cpu);
6672 cpus_and(*mask, *mask, *cpu_map);
6673 group = first_cpu(*mask);
1da177e4 6674#else
6711cab4 6675 group = cpu;
1da177e4 6676#endif
6711cab4
SS
6677 if (sg)
6678 *sg = &per_cpu(sched_group_phys, group);
6679 return group;
1da177e4
LT
6680}
6681
6682#ifdef CONFIG_NUMA
1da177e4 6683/*
9c1cfda2
JH
6684 * The init_sched_build_groups can't handle what we want to do with node
6685 * groups, so roll our own. Now each node has its own list of groups which
6686 * gets dynamically allocated.
1da177e4 6687 */
9c1cfda2 6688static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6689static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6690
9c1cfda2 6691static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6692static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6693
6711cab4 6694static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6695 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6696{
6711cab4
SS
6697 int group;
6698
7c16ec58
MT
6699 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6700 cpus_and(*nodemask, *nodemask, *cpu_map);
6701 group = first_cpu(*nodemask);
6711cab4
SS
6702
6703 if (sg)
6704 *sg = &per_cpu(sched_group_allnodes, group);
6705 return group;
1da177e4 6706}
6711cab4 6707
08069033
SS
6708static void init_numa_sched_groups_power(struct sched_group *group_head)
6709{
6710 struct sched_group *sg = group_head;
6711 int j;
6712
6713 if (!sg)
6714 return;
3a5c359a
AK
6715 do {
6716 for_each_cpu_mask(j, sg->cpumask) {
6717 struct sched_domain *sd;
08069033 6718
3a5c359a
AK
6719 sd = &per_cpu(phys_domains, j);
6720 if (j != first_cpu(sd->groups->cpumask)) {
6721 /*
6722 * Only add "power" once for each
6723 * physical package.
6724 */
6725 continue;
6726 }
08069033 6727
3a5c359a
AK
6728 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6729 }
6730 sg = sg->next;
6731 } while (sg != group_head);
08069033 6732}
1da177e4
LT
6733#endif
6734
a616058b 6735#ifdef CONFIG_NUMA
51888ca2 6736/* Free memory allocated for various sched_group structures */
7c16ec58 6737static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6738{
a616058b 6739 int cpu, i;
51888ca2
SV
6740
6741 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6742 struct sched_group **sched_group_nodes
6743 = sched_group_nodes_bycpu[cpu];
6744
51888ca2
SV
6745 if (!sched_group_nodes)
6746 continue;
6747
6748 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6749 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6750
7c16ec58
MT
6751 *nodemask = node_to_cpumask(i);
6752 cpus_and(*nodemask, *nodemask, *cpu_map);
6753 if (cpus_empty(*nodemask))
51888ca2
SV
6754 continue;
6755
6756 if (sg == NULL)
6757 continue;
6758 sg = sg->next;
6759next_sg:
6760 oldsg = sg;
6761 sg = sg->next;
6762 kfree(oldsg);
6763 if (oldsg != sched_group_nodes[i])
6764 goto next_sg;
6765 }
6766 kfree(sched_group_nodes);
6767 sched_group_nodes_bycpu[cpu] = NULL;
6768 }
51888ca2 6769}
a616058b 6770#else
7c16ec58 6771static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6772{
6773}
6774#endif
51888ca2 6775
89c4710e
SS
6776/*
6777 * Initialize sched groups cpu_power.
6778 *
6779 * cpu_power indicates the capacity of sched group, which is used while
6780 * distributing the load between different sched groups in a sched domain.
6781 * Typically cpu_power for all the groups in a sched domain will be same unless
6782 * there are asymmetries in the topology. If there are asymmetries, group
6783 * having more cpu_power will pickup more load compared to the group having
6784 * less cpu_power.
6785 *
6786 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6787 * the maximum number of tasks a group can handle in the presence of other idle
6788 * or lightly loaded groups in the same sched domain.
6789 */
6790static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6791{
6792 struct sched_domain *child;
6793 struct sched_group *group;
6794
6795 WARN_ON(!sd || !sd->groups);
6796
6797 if (cpu != first_cpu(sd->groups->cpumask))
6798 return;
6799
6800 child = sd->child;
6801
5517d86b
ED
6802 sd->groups->__cpu_power = 0;
6803
89c4710e
SS
6804 /*
6805 * For perf policy, if the groups in child domain share resources
6806 * (for example cores sharing some portions of the cache hierarchy
6807 * or SMT), then set this domain groups cpu_power such that each group
6808 * can handle only one task, when there are other idle groups in the
6809 * same sched domain.
6810 */
6811 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6812 (child->flags &
6813 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6814 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6815 return;
6816 }
6817
89c4710e
SS
6818 /*
6819 * add cpu_power of each child group to this groups cpu_power
6820 */
6821 group = child->groups;
6822 do {
5517d86b 6823 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6824 group = group->next;
6825 } while (group != child->groups);
6826}
6827
7c16ec58
MT
6828/*
6829 * Initializers for schedule domains
6830 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6831 */
6832
6833#define SD_INIT(sd, type) sd_init_##type(sd)
6834#define SD_INIT_FUNC(type) \
6835static noinline void sd_init_##type(struct sched_domain *sd) \
6836{ \
6837 memset(sd, 0, sizeof(*sd)); \
6838 *sd = SD_##type##_INIT; \
1d3504fc 6839 sd->level = SD_LV_##type; \
7c16ec58
MT
6840}
6841
6842SD_INIT_FUNC(CPU)
6843#ifdef CONFIG_NUMA
6844 SD_INIT_FUNC(ALLNODES)
6845 SD_INIT_FUNC(NODE)
6846#endif
6847#ifdef CONFIG_SCHED_SMT
6848 SD_INIT_FUNC(SIBLING)
6849#endif
6850#ifdef CONFIG_SCHED_MC
6851 SD_INIT_FUNC(MC)
6852#endif
6853
6854/*
6855 * To minimize stack usage kmalloc room for cpumasks and share the
6856 * space as the usage in build_sched_domains() dictates. Used only
6857 * if the amount of space is significant.
6858 */
6859struct allmasks {
6860 cpumask_t tmpmask; /* make this one first */
6861 union {
6862 cpumask_t nodemask;
6863 cpumask_t this_sibling_map;
6864 cpumask_t this_core_map;
6865 };
6866 cpumask_t send_covered;
6867
6868#ifdef CONFIG_NUMA
6869 cpumask_t domainspan;
6870 cpumask_t covered;
6871 cpumask_t notcovered;
6872#endif
6873};
6874
6875#if NR_CPUS > 128
6876#define SCHED_CPUMASK_ALLOC 1
6877#define SCHED_CPUMASK_FREE(v) kfree(v)
6878#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6879#else
6880#define SCHED_CPUMASK_ALLOC 0
6881#define SCHED_CPUMASK_FREE(v)
6882#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6883#endif
6884
6885#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6886 ((unsigned long)(a) + offsetof(struct allmasks, v))
6887
1d3504fc
HS
6888static int default_relax_domain_level = -1;
6889
6890static int __init setup_relax_domain_level(char *str)
6891{
6892 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6893 return 1;
6894}
6895__setup("relax_domain_level=", setup_relax_domain_level);
6896
6897static void set_domain_attribute(struct sched_domain *sd,
6898 struct sched_domain_attr *attr)
6899{
6900 int request;
6901
6902 if (!attr || attr->relax_domain_level < 0) {
6903 if (default_relax_domain_level < 0)
6904 return;
6905 else
6906 request = default_relax_domain_level;
6907 } else
6908 request = attr->relax_domain_level;
6909 if (request < sd->level) {
6910 /* turn off idle balance on this domain */
6911 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6912 } else {
6913 /* turn on idle balance on this domain */
6914 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6915 }
6916}
6917
1da177e4 6918/*
1a20ff27
DG
6919 * Build sched domains for a given set of cpus and attach the sched domains
6920 * to the individual cpus
1da177e4 6921 */
1d3504fc
HS
6922static int __build_sched_domains(const cpumask_t *cpu_map,
6923 struct sched_domain_attr *attr)
1da177e4
LT
6924{
6925 int i;
57d885fe 6926 struct root_domain *rd;
7c16ec58
MT
6927 SCHED_CPUMASK_DECLARE(allmasks);
6928 cpumask_t *tmpmask;
d1b55138
JH
6929#ifdef CONFIG_NUMA
6930 struct sched_group **sched_group_nodes = NULL;
6711cab4 6931 int sd_allnodes = 0;
d1b55138
JH
6932
6933 /*
6934 * Allocate the per-node list of sched groups
6935 */
5cf9f062 6936 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6937 GFP_KERNEL);
d1b55138
JH
6938 if (!sched_group_nodes) {
6939 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6940 return -ENOMEM;
d1b55138 6941 }
d1b55138 6942#endif
1da177e4 6943
dc938520 6944 rd = alloc_rootdomain();
57d885fe
GH
6945 if (!rd) {
6946 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6947#ifdef CONFIG_NUMA
6948 kfree(sched_group_nodes);
6949#endif
57d885fe
GH
6950 return -ENOMEM;
6951 }
6952
7c16ec58
MT
6953#if SCHED_CPUMASK_ALLOC
6954 /* get space for all scratch cpumask variables */
6955 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6956 if (!allmasks) {
6957 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6958 kfree(rd);
6959#ifdef CONFIG_NUMA
6960 kfree(sched_group_nodes);
6961#endif
6962 return -ENOMEM;
6963 }
6964#endif
6965 tmpmask = (cpumask_t *)allmasks;
6966
6967
6968#ifdef CONFIG_NUMA
6969 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6970#endif
6971
1da177e4 6972 /*
1a20ff27 6973 * Set up domains for cpus specified by the cpu_map.
1da177e4 6974 */
1a20ff27 6975 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6976 struct sched_domain *sd = NULL, *p;
7c16ec58 6977 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 6978
7c16ec58
MT
6979 *nodemask = node_to_cpumask(cpu_to_node(i));
6980 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
6981
6982#ifdef CONFIG_NUMA
dd41f596 6983 if (cpus_weight(*cpu_map) >
7c16ec58 6984 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 6985 sd = &per_cpu(allnodes_domains, i);
7c16ec58 6986 SD_INIT(sd, ALLNODES);
1d3504fc 6987 set_domain_attribute(sd, attr);
9c1cfda2 6988 sd->span = *cpu_map;
7c16ec58 6989 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 6990 p = sd;
6711cab4 6991 sd_allnodes = 1;
9c1cfda2
JH
6992 } else
6993 p = NULL;
6994
1da177e4 6995 sd = &per_cpu(node_domains, i);
7c16ec58 6996 SD_INIT(sd, NODE);
1d3504fc 6997 set_domain_attribute(sd, attr);
4bdbaad3 6998 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 6999 sd->parent = p;
1a848870
SS
7000 if (p)
7001 p->child = sd;
9c1cfda2 7002 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7003#endif
7004
7005 p = sd;
7006 sd = &per_cpu(phys_domains, i);
7c16ec58 7007 SD_INIT(sd, CPU);
1d3504fc 7008 set_domain_attribute(sd, attr);
7c16ec58 7009 sd->span = *nodemask;
1da177e4 7010 sd->parent = p;
1a848870
SS
7011 if (p)
7012 p->child = sd;
7c16ec58 7013 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7014
1e9f28fa
SS
7015#ifdef CONFIG_SCHED_MC
7016 p = sd;
7017 sd = &per_cpu(core_domains, i);
7c16ec58 7018 SD_INIT(sd, MC);
1d3504fc 7019 set_domain_attribute(sd, attr);
1e9f28fa
SS
7020 sd->span = cpu_coregroup_map(i);
7021 cpus_and(sd->span, sd->span, *cpu_map);
7022 sd->parent = p;
1a848870 7023 p->child = sd;
7c16ec58 7024 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7025#endif
7026
1da177e4
LT
7027#ifdef CONFIG_SCHED_SMT
7028 p = sd;
7029 sd = &per_cpu(cpu_domains, i);
7c16ec58 7030 SD_INIT(sd, SIBLING);
1d3504fc 7031 set_domain_attribute(sd, attr);
d5a7430d 7032 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7033 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7034 sd->parent = p;
1a848870 7035 p->child = sd;
7c16ec58 7036 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7037#endif
7038 }
7039
7040#ifdef CONFIG_SCHED_SMT
7041 /* Set up CPU (sibling) groups */
9c1cfda2 7042 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7043 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7044 SCHED_CPUMASK_VAR(send_covered, allmasks);
7045
7046 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7047 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7048 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7049 continue;
7050
dd41f596 7051 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7052 &cpu_to_cpu_group,
7053 send_covered, tmpmask);
1da177e4
LT
7054 }
7055#endif
7056
1e9f28fa
SS
7057#ifdef CONFIG_SCHED_MC
7058 /* Set up multi-core groups */
7059 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7060 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7061 SCHED_CPUMASK_VAR(send_covered, allmasks);
7062
7063 *this_core_map = cpu_coregroup_map(i);
7064 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7065 if (i != first_cpu(*this_core_map))
1e9f28fa 7066 continue;
7c16ec58 7067
dd41f596 7068 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7069 &cpu_to_core_group,
7070 send_covered, tmpmask);
1e9f28fa
SS
7071 }
7072#endif
7073
1da177e4
LT
7074 /* Set up physical groups */
7075 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7076 SCHED_CPUMASK_VAR(nodemask, allmasks);
7077 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7078
7c16ec58
MT
7079 *nodemask = node_to_cpumask(i);
7080 cpus_and(*nodemask, *nodemask, *cpu_map);
7081 if (cpus_empty(*nodemask))
1da177e4
LT
7082 continue;
7083
7c16ec58
MT
7084 init_sched_build_groups(nodemask, cpu_map,
7085 &cpu_to_phys_group,
7086 send_covered, tmpmask);
1da177e4
LT
7087 }
7088
7089#ifdef CONFIG_NUMA
7090 /* Set up node groups */
7c16ec58
MT
7091 if (sd_allnodes) {
7092 SCHED_CPUMASK_VAR(send_covered, allmasks);
7093
7094 init_sched_build_groups(cpu_map, cpu_map,
7095 &cpu_to_allnodes_group,
7096 send_covered, tmpmask);
7097 }
9c1cfda2
JH
7098
7099 for (i = 0; i < MAX_NUMNODES; i++) {
7100 /* Set up node groups */
7101 struct sched_group *sg, *prev;
7c16ec58
MT
7102 SCHED_CPUMASK_VAR(nodemask, allmasks);
7103 SCHED_CPUMASK_VAR(domainspan, allmasks);
7104 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7105 int j;
7106
7c16ec58
MT
7107 *nodemask = node_to_cpumask(i);
7108 cpus_clear(*covered);
7109
7110 cpus_and(*nodemask, *nodemask, *cpu_map);
7111 if (cpus_empty(*nodemask)) {
d1b55138 7112 sched_group_nodes[i] = NULL;
9c1cfda2 7113 continue;
d1b55138 7114 }
9c1cfda2 7115
4bdbaad3 7116 sched_domain_node_span(i, domainspan);
7c16ec58 7117 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7118
15f0b676 7119 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7120 if (!sg) {
7121 printk(KERN_WARNING "Can not alloc domain group for "
7122 "node %d\n", i);
7123 goto error;
7124 }
9c1cfda2 7125 sched_group_nodes[i] = sg;
7c16ec58 7126 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7127 struct sched_domain *sd;
9761eea8 7128
9c1cfda2
JH
7129 sd = &per_cpu(node_domains, j);
7130 sd->groups = sg;
9c1cfda2 7131 }
5517d86b 7132 sg->__cpu_power = 0;
7c16ec58 7133 sg->cpumask = *nodemask;
51888ca2 7134 sg->next = sg;
7c16ec58 7135 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7136 prev = sg;
7137
7138 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7139 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7140 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7141 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7142
7c16ec58
MT
7143 cpus_complement(*notcovered, *covered);
7144 cpus_and(*tmpmask, *notcovered, *cpu_map);
7145 cpus_and(*tmpmask, *tmpmask, *domainspan);
7146 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7147 break;
7148
7c16ec58
MT
7149 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7150 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7151 continue;
7152
15f0b676
SV
7153 sg = kmalloc_node(sizeof(struct sched_group),
7154 GFP_KERNEL, i);
9c1cfda2
JH
7155 if (!sg) {
7156 printk(KERN_WARNING
7157 "Can not alloc domain group for node %d\n", j);
51888ca2 7158 goto error;
9c1cfda2 7159 }
5517d86b 7160 sg->__cpu_power = 0;
7c16ec58 7161 sg->cpumask = *tmpmask;
51888ca2 7162 sg->next = prev->next;
7c16ec58 7163 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7164 prev->next = sg;
7165 prev = sg;
7166 }
9c1cfda2 7167 }
1da177e4
LT
7168#endif
7169
7170 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7171#ifdef CONFIG_SCHED_SMT
1a20ff27 7172 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7173 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7174
89c4710e 7175 init_sched_groups_power(i, sd);
5c45bf27 7176 }
1da177e4 7177#endif
1e9f28fa 7178#ifdef CONFIG_SCHED_MC
5c45bf27 7179 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7180 struct sched_domain *sd = &per_cpu(core_domains, i);
7181
89c4710e 7182 init_sched_groups_power(i, sd);
5c45bf27
SS
7183 }
7184#endif
1e9f28fa 7185
5c45bf27 7186 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7187 struct sched_domain *sd = &per_cpu(phys_domains, i);
7188
89c4710e 7189 init_sched_groups_power(i, sd);
1da177e4
LT
7190 }
7191
9c1cfda2 7192#ifdef CONFIG_NUMA
08069033
SS
7193 for (i = 0; i < MAX_NUMNODES; i++)
7194 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7195
6711cab4
SS
7196 if (sd_allnodes) {
7197 struct sched_group *sg;
f712c0c7 7198
7c16ec58
MT
7199 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7200 tmpmask);
f712c0c7
SS
7201 init_numa_sched_groups_power(sg);
7202 }
9c1cfda2
JH
7203#endif
7204
1da177e4 7205 /* Attach the domains */
1a20ff27 7206 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7207 struct sched_domain *sd;
7208#ifdef CONFIG_SCHED_SMT
7209 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7210#elif defined(CONFIG_SCHED_MC)
7211 sd = &per_cpu(core_domains, i);
1da177e4
LT
7212#else
7213 sd = &per_cpu(phys_domains, i);
7214#endif
57d885fe 7215 cpu_attach_domain(sd, rd, i);
1da177e4 7216 }
51888ca2 7217
7c16ec58 7218 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7219 return 0;
7220
a616058b 7221#ifdef CONFIG_NUMA
51888ca2 7222error:
7c16ec58
MT
7223 free_sched_groups(cpu_map, tmpmask);
7224 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7225 return -ENOMEM;
a616058b 7226#endif
1da177e4 7227}
029190c5 7228
1d3504fc
HS
7229static int build_sched_domains(const cpumask_t *cpu_map)
7230{
7231 return __build_sched_domains(cpu_map, NULL);
7232}
7233
029190c5
PJ
7234static cpumask_t *doms_cur; /* current sched domains */
7235static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7236static struct sched_domain_attr *dattr_cur;
7237 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7238
7239/*
7240 * Special case: If a kmalloc of a doms_cur partition (array of
7241 * cpumask_t) fails, then fallback to a single sched domain,
7242 * as determined by the single cpumask_t fallback_doms.
7243 */
7244static cpumask_t fallback_doms;
7245
22e52b07
HC
7246void __attribute__((weak)) arch_update_cpu_topology(void)
7247{
7248}
7249
f18f982a
MK
7250/*
7251 * Free current domain masks.
7252 * Called after all cpus are attached to NULL domain.
7253 */
7254static void free_sched_domains(void)
7255{
7256 ndoms_cur = 0;
7257 if (doms_cur != &fallback_doms)
7258 kfree(doms_cur);
7259 doms_cur = &fallback_doms;
7260}
7261
1a20ff27 7262/*
41a2d6cf 7263 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7264 * For now this just excludes isolated cpus, but could be used to
7265 * exclude other special cases in the future.
1a20ff27 7266 */
51888ca2 7267static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7268{
7378547f
MM
7269 int err;
7270
22e52b07 7271 arch_update_cpu_topology();
029190c5
PJ
7272 ndoms_cur = 1;
7273 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7274 if (!doms_cur)
7275 doms_cur = &fallback_doms;
7276 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7277 dattr_cur = NULL;
7378547f 7278 err = build_sched_domains(doms_cur);
6382bc90 7279 register_sched_domain_sysctl();
7378547f
MM
7280
7281 return err;
1a20ff27
DG
7282}
7283
7c16ec58
MT
7284static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7285 cpumask_t *tmpmask)
1da177e4 7286{
7c16ec58 7287 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7288}
1da177e4 7289
1a20ff27
DG
7290/*
7291 * Detach sched domains from a group of cpus specified in cpu_map
7292 * These cpus will now be attached to the NULL domain
7293 */
858119e1 7294static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7295{
7c16ec58 7296 cpumask_t tmpmask;
1a20ff27
DG
7297 int i;
7298
6382bc90
MM
7299 unregister_sched_domain_sysctl();
7300
1a20ff27 7301 for_each_cpu_mask(i, *cpu_map)
57d885fe 7302 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7303 synchronize_sched();
7c16ec58 7304 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7305}
7306
1d3504fc
HS
7307/* handle null as "default" */
7308static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7309 struct sched_domain_attr *new, int idx_new)
7310{
7311 struct sched_domain_attr tmp;
7312
7313 /* fast path */
7314 if (!new && !cur)
7315 return 1;
7316
7317 tmp = SD_ATTR_INIT;
7318 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7319 new ? (new + idx_new) : &tmp,
7320 sizeof(struct sched_domain_attr));
7321}
7322
029190c5
PJ
7323/*
7324 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7325 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7326 * doms_new[] to the current sched domain partitioning, doms_cur[].
7327 * It destroys each deleted domain and builds each new domain.
7328 *
7329 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7330 * The masks don't intersect (don't overlap.) We should setup one
7331 * sched domain for each mask. CPUs not in any of the cpumasks will
7332 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7333 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7334 * it as it is.
7335 *
41a2d6cf
IM
7336 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7337 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7338 * failed the kmalloc call, then it can pass in doms_new == NULL,
7339 * and partition_sched_domains() will fallback to the single partition
7340 * 'fallback_doms'.
7341 *
7342 * Call with hotplug lock held
7343 */
1d3504fc
HS
7344void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7345 struct sched_domain_attr *dattr_new)
029190c5
PJ
7346{
7347 int i, j;
7348
712555ee 7349 mutex_lock(&sched_domains_mutex);
a1835615 7350
7378547f
MM
7351 /* always unregister in case we don't destroy any domains */
7352 unregister_sched_domain_sysctl();
7353
029190c5
PJ
7354 if (doms_new == NULL) {
7355 ndoms_new = 1;
7356 doms_new = &fallback_doms;
7357 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7358 dattr_new = NULL;
029190c5
PJ
7359 }
7360
7361 /* Destroy deleted domains */
7362 for (i = 0; i < ndoms_cur; i++) {
7363 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7364 if (cpus_equal(doms_cur[i], doms_new[j])
7365 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7366 goto match1;
7367 }
7368 /* no match - a current sched domain not in new doms_new[] */
7369 detach_destroy_domains(doms_cur + i);
7370match1:
7371 ;
7372 }
7373
7374 /* Build new domains */
7375 for (i = 0; i < ndoms_new; i++) {
7376 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7377 if (cpus_equal(doms_new[i], doms_cur[j])
7378 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7379 goto match2;
7380 }
7381 /* no match - add a new doms_new */
1d3504fc
HS
7382 __build_sched_domains(doms_new + i,
7383 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7384match2:
7385 ;
7386 }
7387
7388 /* Remember the new sched domains */
7389 if (doms_cur != &fallback_doms)
7390 kfree(doms_cur);
1d3504fc 7391 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7392 doms_cur = doms_new;
1d3504fc 7393 dattr_cur = dattr_new;
029190c5 7394 ndoms_cur = ndoms_new;
7378547f
MM
7395
7396 register_sched_domain_sysctl();
a1835615 7397
712555ee 7398 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7399}
7400
5c45bf27 7401#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7402int arch_reinit_sched_domains(void)
5c45bf27
SS
7403{
7404 int err;
7405
95402b38 7406 get_online_cpus();
712555ee 7407 mutex_lock(&sched_domains_mutex);
5c45bf27 7408 detach_destroy_domains(&cpu_online_map);
f18f982a 7409 free_sched_domains();
5c45bf27 7410 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7411 mutex_unlock(&sched_domains_mutex);
95402b38 7412 put_online_cpus();
5c45bf27
SS
7413
7414 return err;
7415}
7416
7417static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7418{
7419 int ret;
7420
7421 if (buf[0] != '0' && buf[0] != '1')
7422 return -EINVAL;
7423
7424 if (smt)
7425 sched_smt_power_savings = (buf[0] == '1');
7426 else
7427 sched_mc_power_savings = (buf[0] == '1');
7428
7429 ret = arch_reinit_sched_domains();
7430
7431 return ret ? ret : count;
7432}
7433
5c45bf27
SS
7434#ifdef CONFIG_SCHED_MC
7435static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7436{
7437 return sprintf(page, "%u\n", sched_mc_power_savings);
7438}
48f24c4d
IM
7439static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7440 const char *buf, size_t count)
5c45bf27
SS
7441{
7442 return sched_power_savings_store(buf, count, 0);
7443}
6707de00
AB
7444static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7445 sched_mc_power_savings_store);
5c45bf27
SS
7446#endif
7447
7448#ifdef CONFIG_SCHED_SMT
7449static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7450{
7451 return sprintf(page, "%u\n", sched_smt_power_savings);
7452}
48f24c4d
IM
7453static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7454 const char *buf, size_t count)
5c45bf27
SS
7455{
7456 return sched_power_savings_store(buf, count, 1);
7457}
6707de00
AB
7458static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7459 sched_smt_power_savings_store);
7460#endif
7461
7462int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7463{
7464 int err = 0;
7465
7466#ifdef CONFIG_SCHED_SMT
7467 if (smt_capable())
7468 err = sysfs_create_file(&cls->kset.kobj,
7469 &attr_sched_smt_power_savings.attr);
7470#endif
7471#ifdef CONFIG_SCHED_MC
7472 if (!err && mc_capable())
7473 err = sysfs_create_file(&cls->kset.kobj,
7474 &attr_sched_mc_power_savings.attr);
7475#endif
7476 return err;
7477}
5c45bf27
SS
7478#endif
7479
1da177e4 7480/*
41a2d6cf 7481 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7482 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7483 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7484 * which will prevent rebalancing while the sched domains are recalculated.
7485 */
7486static int update_sched_domains(struct notifier_block *nfb,
7487 unsigned long action, void *hcpu)
7488{
1da177e4
LT
7489 switch (action) {
7490 case CPU_UP_PREPARE:
8bb78442 7491 case CPU_UP_PREPARE_FROZEN:
1da177e4 7492 case CPU_DOWN_PREPARE:
8bb78442 7493 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7494 detach_destroy_domains(&cpu_online_map);
f18f982a 7495 free_sched_domains();
1da177e4
LT
7496 return NOTIFY_OK;
7497
7498 case CPU_UP_CANCELED:
8bb78442 7499 case CPU_UP_CANCELED_FROZEN:
1da177e4 7500 case CPU_DOWN_FAILED:
8bb78442 7501 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7502 case CPU_ONLINE:
8bb78442 7503 case CPU_ONLINE_FROZEN:
1da177e4 7504 case CPU_DEAD:
8bb78442 7505 case CPU_DEAD_FROZEN:
1da177e4
LT
7506 /*
7507 * Fall through and re-initialise the domains.
7508 */
7509 break;
7510 default:
7511 return NOTIFY_DONE;
7512 }
7513
f18f982a
MK
7514#ifndef CONFIG_CPUSETS
7515 /*
7516 * Create default domain partitioning if cpusets are disabled.
7517 * Otherwise we let cpusets rebuild the domains based on the
7518 * current setup.
7519 */
7520
1da177e4 7521 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7522 arch_init_sched_domains(&cpu_online_map);
f18f982a 7523#endif
1da177e4
LT
7524
7525 return NOTIFY_OK;
7526}
1da177e4
LT
7527
7528void __init sched_init_smp(void)
7529{
5c1e1767
NP
7530 cpumask_t non_isolated_cpus;
7531
434d53b0
MT
7532#if defined(CONFIG_NUMA)
7533 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7534 GFP_KERNEL);
7535 BUG_ON(sched_group_nodes_bycpu == NULL);
7536#endif
95402b38 7537 get_online_cpus();
712555ee 7538 mutex_lock(&sched_domains_mutex);
1a20ff27 7539 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7540 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7541 if (cpus_empty(non_isolated_cpus))
7542 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7543 mutex_unlock(&sched_domains_mutex);
95402b38 7544 put_online_cpus();
1da177e4
LT
7545 /* XXX: Theoretical race here - CPU may be hotplugged now */
7546 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7547 init_hrtick();
5c1e1767
NP
7548
7549 /* Move init over to a non-isolated CPU */
7c16ec58 7550 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7551 BUG();
19978ca6 7552 sched_init_granularity();
1da177e4
LT
7553}
7554#else
7555void __init sched_init_smp(void)
7556{
19978ca6 7557 sched_init_granularity();
1da177e4
LT
7558}
7559#endif /* CONFIG_SMP */
7560
7561int in_sched_functions(unsigned long addr)
7562{
1da177e4
LT
7563 return in_lock_functions(addr) ||
7564 (addr >= (unsigned long)__sched_text_start
7565 && addr < (unsigned long)__sched_text_end);
7566}
7567
a9957449 7568static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7569{
7570 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7571 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7572#ifdef CONFIG_FAIR_GROUP_SCHED
7573 cfs_rq->rq = rq;
7574#endif
67e9fb2a 7575 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7576}
7577
fa85ae24
PZ
7578static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7579{
7580 struct rt_prio_array *array;
7581 int i;
7582
7583 array = &rt_rq->active;
7584 for (i = 0; i < MAX_RT_PRIO; i++) {
7585 INIT_LIST_HEAD(array->queue + i);
7586 __clear_bit(i, array->bitmap);
7587 }
7588 /* delimiter for bitsearch: */
7589 __set_bit(MAX_RT_PRIO, array->bitmap);
7590
052f1dc7 7591#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7592 rt_rq->highest_prio = MAX_RT_PRIO;
7593#endif
fa85ae24
PZ
7594#ifdef CONFIG_SMP
7595 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7596 rt_rq->overloaded = 0;
7597#endif
7598
7599 rt_rq->rt_time = 0;
7600 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7601 rt_rq->rt_runtime = 0;
7602 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7603
052f1dc7 7604#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7605 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7606 rt_rq->rq = rq;
7607#endif
fa85ae24
PZ
7608}
7609
6f505b16 7610#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7611static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7612 struct sched_entity *se, int cpu, int add,
7613 struct sched_entity *parent)
6f505b16 7614{
ec7dc8ac 7615 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7616 tg->cfs_rq[cpu] = cfs_rq;
7617 init_cfs_rq(cfs_rq, rq);
7618 cfs_rq->tg = tg;
7619 if (add)
7620 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7621
7622 tg->se[cpu] = se;
354d60c2
DG
7623 /* se could be NULL for init_task_group */
7624 if (!se)
7625 return;
7626
ec7dc8ac
DG
7627 if (!parent)
7628 se->cfs_rq = &rq->cfs;
7629 else
7630 se->cfs_rq = parent->my_q;
7631
6f505b16
PZ
7632 se->my_q = cfs_rq;
7633 se->load.weight = tg->shares;
e05510d0 7634 se->load.inv_weight = 0;
ec7dc8ac 7635 se->parent = parent;
6f505b16 7636}
052f1dc7 7637#endif
6f505b16 7638
052f1dc7 7639#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7640static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7641 struct sched_rt_entity *rt_se, int cpu, int add,
7642 struct sched_rt_entity *parent)
6f505b16 7643{
ec7dc8ac
DG
7644 struct rq *rq = cpu_rq(cpu);
7645
6f505b16
PZ
7646 tg->rt_rq[cpu] = rt_rq;
7647 init_rt_rq(rt_rq, rq);
7648 rt_rq->tg = tg;
7649 rt_rq->rt_se = rt_se;
ac086bc2 7650 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7651 if (add)
7652 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7653
7654 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7655 if (!rt_se)
7656 return;
7657
ec7dc8ac
DG
7658 if (!parent)
7659 rt_se->rt_rq = &rq->rt;
7660 else
7661 rt_se->rt_rq = parent->my_q;
7662
6f505b16 7663 rt_se->my_q = rt_rq;
ec7dc8ac 7664 rt_se->parent = parent;
6f505b16
PZ
7665 INIT_LIST_HEAD(&rt_se->run_list);
7666}
7667#endif
7668
1da177e4
LT
7669void __init sched_init(void)
7670{
dd41f596 7671 int i, j;
434d53b0
MT
7672 unsigned long alloc_size = 0, ptr;
7673
7674#ifdef CONFIG_FAIR_GROUP_SCHED
7675 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7676#endif
7677#ifdef CONFIG_RT_GROUP_SCHED
7678 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7679#endif
7680#ifdef CONFIG_USER_SCHED
7681 alloc_size *= 2;
434d53b0
MT
7682#endif
7683 /*
7684 * As sched_init() is called before page_alloc is setup,
7685 * we use alloc_bootmem().
7686 */
7687 if (alloc_size) {
5a9d3225 7688 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7689
7690#ifdef CONFIG_FAIR_GROUP_SCHED
7691 init_task_group.se = (struct sched_entity **)ptr;
7692 ptr += nr_cpu_ids * sizeof(void **);
7693
7694 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7695 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7696
7697#ifdef CONFIG_USER_SCHED
7698 root_task_group.se = (struct sched_entity **)ptr;
7699 ptr += nr_cpu_ids * sizeof(void **);
7700
7701 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7702 ptr += nr_cpu_ids * sizeof(void **);
7703#endif
434d53b0
MT
7704#endif
7705#ifdef CONFIG_RT_GROUP_SCHED
7706 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7707 ptr += nr_cpu_ids * sizeof(void **);
7708
7709 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7710 ptr += nr_cpu_ids * sizeof(void **);
7711
7712#ifdef CONFIG_USER_SCHED
7713 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7714 ptr += nr_cpu_ids * sizeof(void **);
7715
7716 root_task_group.rt_rq = (struct rt_rq **)ptr;
7717 ptr += nr_cpu_ids * sizeof(void **);
7718#endif
434d53b0
MT
7719#endif
7720 }
dd41f596 7721
57d885fe
GH
7722#ifdef CONFIG_SMP
7723 init_defrootdomain();
7724#endif
7725
d0b27fa7
PZ
7726 init_rt_bandwidth(&def_rt_bandwidth,
7727 global_rt_period(), global_rt_runtime());
7728
7729#ifdef CONFIG_RT_GROUP_SCHED
7730 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7731 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7732#ifdef CONFIG_USER_SCHED
7733 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7734 global_rt_period(), RUNTIME_INF);
7735#endif
d0b27fa7
PZ
7736#endif
7737
052f1dc7 7738#ifdef CONFIG_GROUP_SCHED
6f505b16 7739 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7740 INIT_LIST_HEAD(&init_task_group.children);
7741
7742#ifdef CONFIG_USER_SCHED
7743 INIT_LIST_HEAD(&root_task_group.children);
7744 init_task_group.parent = &root_task_group;
7745 list_add(&init_task_group.siblings, &root_task_group.children);
7746#endif
6f505b16
PZ
7747#endif
7748
0a945022 7749 for_each_possible_cpu(i) {
70b97a7f 7750 struct rq *rq;
1da177e4
LT
7751
7752 rq = cpu_rq(i);
7753 spin_lock_init(&rq->lock);
fcb99371 7754 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7755 rq->nr_running = 0;
dd41f596 7756 init_cfs_rq(&rq->cfs, rq);
6f505b16 7757 init_rt_rq(&rq->rt, rq);
dd41f596 7758#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7759 init_task_group.shares = init_task_group_load;
6f505b16 7760 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7761#ifdef CONFIG_CGROUP_SCHED
7762 /*
7763 * How much cpu bandwidth does init_task_group get?
7764 *
7765 * In case of task-groups formed thr' the cgroup filesystem, it
7766 * gets 100% of the cpu resources in the system. This overall
7767 * system cpu resource is divided among the tasks of
7768 * init_task_group and its child task-groups in a fair manner,
7769 * based on each entity's (task or task-group's) weight
7770 * (se->load.weight).
7771 *
7772 * In other words, if init_task_group has 10 tasks of weight
7773 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7774 * then A0's share of the cpu resource is:
7775 *
7776 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7777 *
7778 * We achieve this by letting init_task_group's tasks sit
7779 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7780 */
ec7dc8ac 7781 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7782#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7783 root_task_group.shares = NICE_0_LOAD;
7784 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7785 /*
7786 * In case of task-groups formed thr' the user id of tasks,
7787 * init_task_group represents tasks belonging to root user.
7788 * Hence it forms a sibling of all subsequent groups formed.
7789 * In this case, init_task_group gets only a fraction of overall
7790 * system cpu resource, based on the weight assigned to root
7791 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7792 * by letting tasks of init_task_group sit in a separate cfs_rq
7793 * (init_cfs_rq) and having one entity represent this group of
7794 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7795 */
ec7dc8ac 7796 init_tg_cfs_entry(&init_task_group,
6f505b16 7797 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7798 &per_cpu(init_sched_entity, i), i, 1,
7799 root_task_group.se[i]);
6f505b16 7800
052f1dc7 7801#endif
354d60c2
DG
7802#endif /* CONFIG_FAIR_GROUP_SCHED */
7803
7804 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7805#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7806 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7807#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7808 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7809#elif defined CONFIG_USER_SCHED
eff766a6 7810 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7811 init_tg_rt_entry(&init_task_group,
6f505b16 7812 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7813 &per_cpu(init_sched_rt_entity, i), i, 1,
7814 root_task_group.rt_se[i]);
354d60c2 7815#endif
dd41f596 7816#endif
1da177e4 7817
dd41f596
IM
7818 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7819 rq->cpu_load[j] = 0;
1da177e4 7820#ifdef CONFIG_SMP
41c7ce9a 7821 rq->sd = NULL;
57d885fe 7822 rq->rd = NULL;
1da177e4 7823 rq->active_balance = 0;
dd41f596 7824 rq->next_balance = jiffies;
1da177e4 7825 rq->push_cpu = 0;
0a2966b4 7826 rq->cpu = i;
1da177e4
LT
7827 rq->migration_thread = NULL;
7828 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7829 rq_attach_root(rq, &def_root_domain);
1da177e4 7830#endif
8f4d37ec 7831 init_rq_hrtick(rq);
1da177e4 7832 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7833 }
7834
2dd73a4f 7835 set_load_weight(&init_task);
b50f60ce 7836
e107be36
AK
7837#ifdef CONFIG_PREEMPT_NOTIFIERS
7838 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7839#endif
7840
c9819f45
CL
7841#ifdef CONFIG_SMP
7842 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7843#endif
7844
b50f60ce
HC
7845#ifdef CONFIG_RT_MUTEXES
7846 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7847#endif
7848
1da177e4
LT
7849 /*
7850 * The boot idle thread does lazy MMU switching as well:
7851 */
7852 atomic_inc(&init_mm.mm_count);
7853 enter_lazy_tlb(&init_mm, current);
7854
7855 /*
7856 * Make us the idle thread. Technically, schedule() should not be
7857 * called from this thread, however somewhere below it might be,
7858 * but because we are the idle thread, we just pick up running again
7859 * when this runqueue becomes "idle".
7860 */
7861 init_idle(current, smp_processor_id());
dd41f596
IM
7862 /*
7863 * During early bootup we pretend to be a normal task:
7864 */
7865 current->sched_class = &fair_sched_class;
6892b75e
IM
7866
7867 scheduler_running = 1;
1da177e4
LT
7868}
7869
7870#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7871void __might_sleep(char *file, int line)
7872{
48f24c4d 7873#ifdef in_atomic
1da177e4
LT
7874 static unsigned long prev_jiffy; /* ratelimiting */
7875
7876 if ((in_atomic() || irqs_disabled()) &&
7877 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7878 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7879 return;
7880 prev_jiffy = jiffies;
91368d73 7881 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7882 " context at %s:%d\n", file, line);
7883 printk("in_atomic():%d, irqs_disabled():%d\n",
7884 in_atomic(), irqs_disabled());
a4c410f0 7885 debug_show_held_locks(current);
3117df04
IM
7886 if (irqs_disabled())
7887 print_irqtrace_events(current);
1da177e4
LT
7888 dump_stack();
7889 }
7890#endif
7891}
7892EXPORT_SYMBOL(__might_sleep);
7893#endif
7894
7895#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7896static void normalize_task(struct rq *rq, struct task_struct *p)
7897{
7898 int on_rq;
3e51f33f 7899
3a5e4dc1
AK
7900 update_rq_clock(rq);
7901 on_rq = p->se.on_rq;
7902 if (on_rq)
7903 deactivate_task(rq, p, 0);
7904 __setscheduler(rq, p, SCHED_NORMAL, 0);
7905 if (on_rq) {
7906 activate_task(rq, p, 0);
7907 resched_task(rq->curr);
7908 }
7909}
7910
1da177e4
LT
7911void normalize_rt_tasks(void)
7912{
a0f98a1c 7913 struct task_struct *g, *p;
1da177e4 7914 unsigned long flags;
70b97a7f 7915 struct rq *rq;
1da177e4 7916
4cf5d77a 7917 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7918 do_each_thread(g, p) {
178be793
IM
7919 /*
7920 * Only normalize user tasks:
7921 */
7922 if (!p->mm)
7923 continue;
7924
6cfb0d5d 7925 p->se.exec_start = 0;
6cfb0d5d 7926#ifdef CONFIG_SCHEDSTATS
dd41f596 7927 p->se.wait_start = 0;
dd41f596 7928 p->se.sleep_start = 0;
dd41f596 7929 p->se.block_start = 0;
6cfb0d5d 7930#endif
dd41f596
IM
7931
7932 if (!rt_task(p)) {
7933 /*
7934 * Renice negative nice level userspace
7935 * tasks back to 0:
7936 */
7937 if (TASK_NICE(p) < 0 && p->mm)
7938 set_user_nice(p, 0);
1da177e4 7939 continue;
dd41f596 7940 }
1da177e4 7941
4cf5d77a 7942 spin_lock(&p->pi_lock);
b29739f9 7943 rq = __task_rq_lock(p);
1da177e4 7944
178be793 7945 normalize_task(rq, p);
3a5e4dc1 7946
b29739f9 7947 __task_rq_unlock(rq);
4cf5d77a 7948 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7949 } while_each_thread(g, p);
7950
4cf5d77a 7951 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7952}
7953
7954#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7955
7956#ifdef CONFIG_IA64
7957/*
7958 * These functions are only useful for the IA64 MCA handling.
7959 *
7960 * They can only be called when the whole system has been
7961 * stopped - every CPU needs to be quiescent, and no scheduling
7962 * activity can take place. Using them for anything else would
7963 * be a serious bug, and as a result, they aren't even visible
7964 * under any other configuration.
7965 */
7966
7967/**
7968 * curr_task - return the current task for a given cpu.
7969 * @cpu: the processor in question.
7970 *
7971 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7972 */
36c8b586 7973struct task_struct *curr_task(int cpu)
1df5c10a
LT
7974{
7975 return cpu_curr(cpu);
7976}
7977
7978/**
7979 * set_curr_task - set the current task for a given cpu.
7980 * @cpu: the processor in question.
7981 * @p: the task pointer to set.
7982 *
7983 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7984 * are serviced on a separate stack. It allows the architecture to switch the
7985 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7986 * must be called with all CPU's synchronized, and interrupts disabled, the
7987 * and caller must save the original value of the current task (see
7988 * curr_task() above) and restore that value before reenabling interrupts and
7989 * re-starting the system.
7990 *
7991 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7992 */
36c8b586 7993void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7994{
7995 cpu_curr(cpu) = p;
7996}
7997
7998#endif
29f59db3 7999
bccbe08a
PZ
8000#ifdef CONFIG_FAIR_GROUP_SCHED
8001static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8002{
8003 int i;
8004
8005 for_each_possible_cpu(i) {
8006 if (tg->cfs_rq)
8007 kfree(tg->cfs_rq[i]);
8008 if (tg->se)
8009 kfree(tg->se[i]);
6f505b16
PZ
8010 }
8011
8012 kfree(tg->cfs_rq);
8013 kfree(tg->se);
6f505b16
PZ
8014}
8015
ec7dc8ac
DG
8016static
8017int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8018{
29f59db3 8019 struct cfs_rq *cfs_rq;
ec7dc8ac 8020 struct sched_entity *se, *parent_se;
9b5b7751 8021 struct rq *rq;
29f59db3
SV
8022 int i;
8023
434d53b0 8024 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8025 if (!tg->cfs_rq)
8026 goto err;
434d53b0 8027 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8028 if (!tg->se)
8029 goto err;
052f1dc7
PZ
8030
8031 tg->shares = NICE_0_LOAD;
29f59db3
SV
8032
8033 for_each_possible_cpu(i) {
9b5b7751 8034 rq = cpu_rq(i);
29f59db3 8035
6f505b16
PZ
8036 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8037 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8038 if (!cfs_rq)
8039 goto err;
8040
6f505b16
PZ
8041 se = kmalloc_node(sizeof(struct sched_entity),
8042 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8043 if (!se)
8044 goto err;
8045
ec7dc8ac
DG
8046 parent_se = parent ? parent->se[i] : NULL;
8047 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8048 }
8049
8050 return 1;
8051
8052 err:
8053 return 0;
8054}
8055
8056static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8057{
8058 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8059 &cpu_rq(cpu)->leaf_cfs_rq_list);
8060}
8061
8062static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8063{
8064 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8065}
8066#else
8067static inline void free_fair_sched_group(struct task_group *tg)
8068{
8069}
8070
ec7dc8ac
DG
8071static inline
8072int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8073{
8074 return 1;
8075}
8076
8077static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8078{
8079}
8080
8081static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8082{
8083}
052f1dc7
PZ
8084#endif
8085
8086#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8087static void free_rt_sched_group(struct task_group *tg)
8088{
8089 int i;
8090
d0b27fa7
PZ
8091 destroy_rt_bandwidth(&tg->rt_bandwidth);
8092
bccbe08a
PZ
8093 for_each_possible_cpu(i) {
8094 if (tg->rt_rq)
8095 kfree(tg->rt_rq[i]);
8096 if (tg->rt_se)
8097 kfree(tg->rt_se[i]);
8098 }
8099
8100 kfree(tg->rt_rq);
8101 kfree(tg->rt_se);
8102}
8103
ec7dc8ac
DG
8104static
8105int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8106{
8107 struct rt_rq *rt_rq;
ec7dc8ac 8108 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8109 struct rq *rq;
8110 int i;
8111
434d53b0 8112 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8113 if (!tg->rt_rq)
8114 goto err;
434d53b0 8115 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8116 if (!tg->rt_se)
8117 goto err;
8118
d0b27fa7
PZ
8119 init_rt_bandwidth(&tg->rt_bandwidth,
8120 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8121
8122 for_each_possible_cpu(i) {
8123 rq = cpu_rq(i);
8124
6f505b16
PZ
8125 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8126 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8127 if (!rt_rq)
8128 goto err;
29f59db3 8129
6f505b16
PZ
8130 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8131 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8132 if (!rt_se)
8133 goto err;
29f59db3 8134
ec7dc8ac
DG
8135 parent_se = parent ? parent->rt_se[i] : NULL;
8136 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8137 }
8138
bccbe08a
PZ
8139 return 1;
8140
8141 err:
8142 return 0;
8143}
8144
8145static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8146{
8147 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8148 &cpu_rq(cpu)->leaf_rt_rq_list);
8149}
8150
8151static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8152{
8153 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8154}
8155#else
8156static inline void free_rt_sched_group(struct task_group *tg)
8157{
8158}
8159
ec7dc8ac
DG
8160static inline
8161int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8162{
8163 return 1;
8164}
8165
8166static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8167{
8168}
8169
8170static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8171{
8172}
8173#endif
8174
d0b27fa7 8175#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8176static void free_sched_group(struct task_group *tg)
8177{
8178 free_fair_sched_group(tg);
8179 free_rt_sched_group(tg);
8180 kfree(tg);
8181}
8182
8183/* allocate runqueue etc for a new task group */
ec7dc8ac 8184struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8185{
8186 struct task_group *tg;
8187 unsigned long flags;
8188 int i;
8189
8190 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8191 if (!tg)
8192 return ERR_PTR(-ENOMEM);
8193
ec7dc8ac 8194 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8195 goto err;
8196
ec7dc8ac 8197 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8198 goto err;
8199
8ed36996 8200 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8201 for_each_possible_cpu(i) {
bccbe08a
PZ
8202 register_fair_sched_group(tg, i);
8203 register_rt_sched_group(tg, i);
9b5b7751 8204 }
6f505b16 8205 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8206
8207 WARN_ON(!parent); /* root should already exist */
8208
8209 tg->parent = parent;
8210 list_add_rcu(&tg->siblings, &parent->children);
8211 INIT_LIST_HEAD(&tg->children);
8ed36996 8212 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8213
9b5b7751 8214 return tg;
29f59db3
SV
8215
8216err:
6f505b16 8217 free_sched_group(tg);
29f59db3
SV
8218 return ERR_PTR(-ENOMEM);
8219}
8220
9b5b7751 8221/* rcu callback to free various structures associated with a task group */
6f505b16 8222static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8223{
29f59db3 8224 /* now it should be safe to free those cfs_rqs */
6f505b16 8225 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8226}
8227
9b5b7751 8228/* Destroy runqueue etc associated with a task group */
4cf86d77 8229void sched_destroy_group(struct task_group *tg)
29f59db3 8230{
8ed36996 8231 unsigned long flags;
9b5b7751 8232 int i;
29f59db3 8233
8ed36996 8234 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8235 for_each_possible_cpu(i) {
bccbe08a
PZ
8236 unregister_fair_sched_group(tg, i);
8237 unregister_rt_sched_group(tg, i);
9b5b7751 8238 }
6f505b16 8239 list_del_rcu(&tg->list);
f473aa5e 8240 list_del_rcu(&tg->siblings);
8ed36996 8241 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8242
9b5b7751 8243 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8244 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8245}
8246
9b5b7751 8247/* change task's runqueue when it moves between groups.
3a252015
IM
8248 * The caller of this function should have put the task in its new group
8249 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8250 * reflect its new group.
9b5b7751
SV
8251 */
8252void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8253{
8254 int on_rq, running;
8255 unsigned long flags;
8256 struct rq *rq;
8257
8258 rq = task_rq_lock(tsk, &flags);
8259
29f59db3
SV
8260 update_rq_clock(rq);
8261
051a1d1a 8262 running = task_current(rq, tsk);
29f59db3
SV
8263 on_rq = tsk->se.on_rq;
8264
0e1f3483 8265 if (on_rq)
29f59db3 8266 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8267 if (unlikely(running))
8268 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8269
6f505b16 8270 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8271
810b3817
PZ
8272#ifdef CONFIG_FAIR_GROUP_SCHED
8273 if (tsk->sched_class->moved_group)
8274 tsk->sched_class->moved_group(tsk);
8275#endif
8276
0e1f3483
HS
8277 if (unlikely(running))
8278 tsk->sched_class->set_curr_task(rq);
8279 if (on_rq)
7074badb 8280 enqueue_task(rq, tsk, 0);
29f59db3 8281
29f59db3
SV
8282 task_rq_unlock(rq, &flags);
8283}
d0b27fa7 8284#endif
29f59db3 8285
052f1dc7 8286#ifdef CONFIG_FAIR_GROUP_SCHED
6363ca57 8287static void set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8288{
8289 struct cfs_rq *cfs_rq = se->cfs_rq;
6363ca57 8290 struct rq *rq = cfs_rq->rq;
29f59db3
SV
8291 int on_rq;
8292
6363ca57
IM
8293 spin_lock_irq(&rq->lock);
8294
29f59db3 8295 on_rq = se->on_rq;
62fb1851 8296 if (on_rq)
29f59db3
SV
8297 dequeue_entity(cfs_rq, se, 0);
8298
8299 se->load.weight = shares;
e05510d0 8300 se->load.inv_weight = 0;
29f59db3 8301
62fb1851 8302 if (on_rq)
29f59db3 8303 enqueue_entity(cfs_rq, se, 0);
62fb1851 8304
6363ca57 8305 spin_unlock_irq(&rq->lock);
29f59db3
SV
8306}
8307
8ed36996
PZ
8308static DEFINE_MUTEX(shares_mutex);
8309
4cf86d77 8310int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8311{
8312 int i;
8ed36996 8313 unsigned long flags;
c61935fd 8314
ec7dc8ac
DG
8315 /*
8316 * We can't change the weight of the root cgroup.
8317 */
8318 if (!tg->se[0])
8319 return -EINVAL;
8320
18d95a28
PZ
8321 if (shares < MIN_SHARES)
8322 shares = MIN_SHARES;
cb4ad1ff
MX
8323 else if (shares > MAX_SHARES)
8324 shares = MAX_SHARES;
62fb1851 8325
8ed36996 8326 mutex_lock(&shares_mutex);
9b5b7751 8327 if (tg->shares == shares)
5cb350ba 8328 goto done;
29f59db3 8329
8ed36996 8330 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8331 for_each_possible_cpu(i)
8332 unregister_fair_sched_group(tg, i);
f473aa5e 8333 list_del_rcu(&tg->siblings);
8ed36996 8334 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8335
8336 /* wait for any ongoing reference to this group to finish */
8337 synchronize_sched();
8338
8339 /*
8340 * Now we are free to modify the group's share on each cpu
8341 * w/o tripping rebalance_share or load_balance_fair.
8342 */
9b5b7751 8343 tg->shares = shares;
6363ca57 8344 for_each_possible_cpu(i)
cb4ad1ff 8345 set_se_shares(tg->se[i], shares);
29f59db3 8346
6b2d7700
SV
8347 /*
8348 * Enable load balance activity on this group, by inserting it back on
8349 * each cpu's rq->leaf_cfs_rq_list.
8350 */
8ed36996 8351 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8352 for_each_possible_cpu(i)
8353 register_fair_sched_group(tg, i);
f473aa5e 8354 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8355 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8356done:
8ed36996 8357 mutex_unlock(&shares_mutex);
9b5b7751 8358 return 0;
29f59db3
SV
8359}
8360
5cb350ba
DG
8361unsigned long sched_group_shares(struct task_group *tg)
8362{
8363 return tg->shares;
8364}
052f1dc7 8365#endif
5cb350ba 8366
052f1dc7 8367#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8368/*
9f0c1e56 8369 * Ensure that the real time constraints are schedulable.
6f505b16 8370 */
9f0c1e56
PZ
8371static DEFINE_MUTEX(rt_constraints_mutex);
8372
8373static unsigned long to_ratio(u64 period, u64 runtime)
8374{
8375 if (runtime == RUNTIME_INF)
8376 return 1ULL << 16;
8377
6f6d6a1a 8378 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8379}
8380
b40b2e8e
PZ
8381#ifdef CONFIG_CGROUP_SCHED
8382static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8383{
49307fd6 8384 struct task_group *tgi, *parent = tg ? tg->parent : NULL;
b40b2e8e
PZ
8385 unsigned long total = 0;
8386
8387 if (!parent) {
8388 if (global_rt_period() < period)
8389 return 0;
8390
8391 return to_ratio(period, runtime) <
8392 to_ratio(global_rt_period(), global_rt_runtime());
8393 }
8394
8395 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8396 return 0;
8397
8398 rcu_read_lock();
8399 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8400 if (tgi == tg)
8401 continue;
8402
8403 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8404 tgi->rt_bandwidth.rt_runtime);
8405 }
8406 rcu_read_unlock();
8407
8408 return total + to_ratio(period, runtime) <
8409 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8410 parent->rt_bandwidth.rt_runtime);
8411}
8412#elif defined CONFIG_USER_SCHED
9f0c1e56 8413static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8414{
8415 struct task_group *tgi;
8416 unsigned long total = 0;
9f0c1e56 8417 unsigned long global_ratio =
d0b27fa7 8418 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8419
8420 rcu_read_lock();
9f0c1e56
PZ
8421 list_for_each_entry_rcu(tgi, &task_groups, list) {
8422 if (tgi == tg)
8423 continue;
6f505b16 8424
d0b27fa7
PZ
8425 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8426 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8427 }
8428 rcu_read_unlock();
6f505b16 8429
9f0c1e56 8430 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8431}
b40b2e8e 8432#endif
6f505b16 8433
521f1a24
DG
8434/* Must be called with tasklist_lock held */
8435static inline int tg_has_rt_tasks(struct task_group *tg)
8436{
8437 struct task_struct *g, *p;
8438 do_each_thread(g, p) {
8439 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8440 return 1;
8441 } while_each_thread(g, p);
8442 return 0;
8443}
8444
d0b27fa7
PZ
8445static int tg_set_bandwidth(struct task_group *tg,
8446 u64 rt_period, u64 rt_runtime)
6f505b16 8447{
ac086bc2 8448 int i, err = 0;
9f0c1e56 8449
9f0c1e56 8450 mutex_lock(&rt_constraints_mutex);
521f1a24 8451 read_lock(&tasklist_lock);
ac086bc2 8452 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8453 err = -EBUSY;
8454 goto unlock;
8455 }
9f0c1e56
PZ
8456 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8457 err = -EINVAL;
8458 goto unlock;
8459 }
ac086bc2
PZ
8460
8461 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8462 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8463 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8464
8465 for_each_possible_cpu(i) {
8466 struct rt_rq *rt_rq = tg->rt_rq[i];
8467
8468 spin_lock(&rt_rq->rt_runtime_lock);
8469 rt_rq->rt_runtime = rt_runtime;
8470 spin_unlock(&rt_rq->rt_runtime_lock);
8471 }
8472 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8473 unlock:
521f1a24 8474 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8475 mutex_unlock(&rt_constraints_mutex);
8476
8477 return err;
6f505b16
PZ
8478}
8479
d0b27fa7
PZ
8480int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8481{
8482 u64 rt_runtime, rt_period;
8483
8484 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8485 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8486 if (rt_runtime_us < 0)
8487 rt_runtime = RUNTIME_INF;
8488
8489 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8490}
8491
9f0c1e56
PZ
8492long sched_group_rt_runtime(struct task_group *tg)
8493{
8494 u64 rt_runtime_us;
8495
d0b27fa7 8496 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8497 return -1;
8498
d0b27fa7 8499 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8500 do_div(rt_runtime_us, NSEC_PER_USEC);
8501 return rt_runtime_us;
8502}
d0b27fa7
PZ
8503
8504int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8505{
8506 u64 rt_runtime, rt_period;
8507
8508 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8509 rt_runtime = tg->rt_bandwidth.rt_runtime;
8510
8511 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8512}
8513
8514long sched_group_rt_period(struct task_group *tg)
8515{
8516 u64 rt_period_us;
8517
8518 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8519 do_div(rt_period_us, NSEC_PER_USEC);
8520 return rt_period_us;
8521}
8522
8523static int sched_rt_global_constraints(void)
8524{
8525 int ret = 0;
8526
8527 mutex_lock(&rt_constraints_mutex);
8528 if (!__rt_schedulable(NULL, 1, 0))
8529 ret = -EINVAL;
8530 mutex_unlock(&rt_constraints_mutex);
8531
8532 return ret;
8533}
8534#else
8535static int sched_rt_global_constraints(void)
8536{
ac086bc2
PZ
8537 unsigned long flags;
8538 int i;
8539
8540 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8541 for_each_possible_cpu(i) {
8542 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8543
8544 spin_lock(&rt_rq->rt_runtime_lock);
8545 rt_rq->rt_runtime = global_rt_runtime();
8546 spin_unlock(&rt_rq->rt_runtime_lock);
8547 }
8548 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8549
d0b27fa7
PZ
8550 return 0;
8551}
052f1dc7 8552#endif
d0b27fa7
PZ
8553
8554int sched_rt_handler(struct ctl_table *table, int write,
8555 struct file *filp, void __user *buffer, size_t *lenp,
8556 loff_t *ppos)
8557{
8558 int ret;
8559 int old_period, old_runtime;
8560 static DEFINE_MUTEX(mutex);
8561
8562 mutex_lock(&mutex);
8563 old_period = sysctl_sched_rt_period;
8564 old_runtime = sysctl_sched_rt_runtime;
8565
8566 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8567
8568 if (!ret && write) {
8569 ret = sched_rt_global_constraints();
8570 if (ret) {
8571 sysctl_sched_rt_period = old_period;
8572 sysctl_sched_rt_runtime = old_runtime;
8573 } else {
8574 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8575 def_rt_bandwidth.rt_period =
8576 ns_to_ktime(global_rt_period());
8577 }
8578 }
8579 mutex_unlock(&mutex);
8580
8581 return ret;
8582}
68318b8e 8583
052f1dc7 8584#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8585
8586/* return corresponding task_group object of a cgroup */
2b01dfe3 8587static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8588{
2b01dfe3
PM
8589 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8590 struct task_group, css);
68318b8e
SV
8591}
8592
8593static struct cgroup_subsys_state *
2b01dfe3 8594cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8595{
ec7dc8ac 8596 struct task_group *tg, *parent;
68318b8e 8597
2b01dfe3 8598 if (!cgrp->parent) {
68318b8e 8599 /* This is early initialization for the top cgroup */
2b01dfe3 8600 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8601 return &init_task_group.css;
8602 }
8603
ec7dc8ac
DG
8604 parent = cgroup_tg(cgrp->parent);
8605 tg = sched_create_group(parent);
68318b8e
SV
8606 if (IS_ERR(tg))
8607 return ERR_PTR(-ENOMEM);
8608
8609 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8610 tg->css.cgroup = cgrp;
68318b8e
SV
8611
8612 return &tg->css;
8613}
8614
41a2d6cf
IM
8615static void
8616cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8617{
2b01dfe3 8618 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8619
8620 sched_destroy_group(tg);
8621}
8622
41a2d6cf
IM
8623static int
8624cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8625 struct task_struct *tsk)
68318b8e 8626{
b68aa230
PZ
8627#ifdef CONFIG_RT_GROUP_SCHED
8628 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8629 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8630 return -EINVAL;
8631#else
68318b8e
SV
8632 /* We don't support RT-tasks being in separate groups */
8633 if (tsk->sched_class != &fair_sched_class)
8634 return -EINVAL;
b68aa230 8635#endif
68318b8e
SV
8636
8637 return 0;
8638}
8639
8640static void
2b01dfe3 8641cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8642 struct cgroup *old_cont, struct task_struct *tsk)
8643{
8644 sched_move_task(tsk);
8645}
8646
052f1dc7 8647#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8648static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8649 u64 shareval)
68318b8e 8650{
2b01dfe3 8651 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8652}
8653
f4c753b7 8654static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8655{
2b01dfe3 8656 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8657
8658 return (u64) tg->shares;
8659}
052f1dc7 8660#endif
68318b8e 8661
052f1dc7 8662#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8663static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8664 s64 val)
6f505b16 8665{
06ecb27c 8666 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8667}
8668
06ecb27c 8669static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8670{
06ecb27c 8671 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8672}
d0b27fa7
PZ
8673
8674static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8675 u64 rt_period_us)
8676{
8677 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8678}
8679
8680static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8681{
8682 return sched_group_rt_period(cgroup_tg(cgrp));
8683}
052f1dc7 8684#endif
6f505b16 8685
fe5c7cc2 8686static struct cftype cpu_files[] = {
052f1dc7 8687#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8688 {
8689 .name = "shares",
f4c753b7
PM
8690 .read_u64 = cpu_shares_read_u64,
8691 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8692 },
052f1dc7
PZ
8693#endif
8694#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8695 {
9f0c1e56 8696 .name = "rt_runtime_us",
06ecb27c
PM
8697 .read_s64 = cpu_rt_runtime_read,
8698 .write_s64 = cpu_rt_runtime_write,
6f505b16 8699 },
d0b27fa7
PZ
8700 {
8701 .name = "rt_period_us",
f4c753b7
PM
8702 .read_u64 = cpu_rt_period_read_uint,
8703 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8704 },
052f1dc7 8705#endif
68318b8e
SV
8706};
8707
8708static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8709{
fe5c7cc2 8710 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8711}
8712
8713struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8714 .name = "cpu",
8715 .create = cpu_cgroup_create,
8716 .destroy = cpu_cgroup_destroy,
8717 .can_attach = cpu_cgroup_can_attach,
8718 .attach = cpu_cgroup_attach,
8719 .populate = cpu_cgroup_populate,
8720 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8721 .early_init = 1,
8722};
8723
052f1dc7 8724#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8725
8726#ifdef CONFIG_CGROUP_CPUACCT
8727
8728/*
8729 * CPU accounting code for task groups.
8730 *
8731 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8732 * (balbir@in.ibm.com).
8733 */
8734
8735/* track cpu usage of a group of tasks */
8736struct cpuacct {
8737 struct cgroup_subsys_state css;
8738 /* cpuusage holds pointer to a u64-type object on every cpu */
8739 u64 *cpuusage;
8740};
8741
8742struct cgroup_subsys cpuacct_subsys;
8743
8744/* return cpu accounting group corresponding to this container */
32cd756a 8745static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8746{
32cd756a 8747 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8748 struct cpuacct, css);
8749}
8750
8751/* return cpu accounting group to which this task belongs */
8752static inline struct cpuacct *task_ca(struct task_struct *tsk)
8753{
8754 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8755 struct cpuacct, css);
8756}
8757
8758/* create a new cpu accounting group */
8759static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8760 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8761{
8762 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8763
8764 if (!ca)
8765 return ERR_PTR(-ENOMEM);
8766
8767 ca->cpuusage = alloc_percpu(u64);
8768 if (!ca->cpuusage) {
8769 kfree(ca);
8770 return ERR_PTR(-ENOMEM);
8771 }
8772
8773 return &ca->css;
8774}
8775
8776/* destroy an existing cpu accounting group */
41a2d6cf 8777static void
32cd756a 8778cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8779{
32cd756a 8780 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8781
8782 free_percpu(ca->cpuusage);
8783 kfree(ca);
8784}
8785
8786/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8787static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8788{
32cd756a 8789 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8790 u64 totalcpuusage = 0;
8791 int i;
8792
8793 for_each_possible_cpu(i) {
8794 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8795
8796 /*
8797 * Take rq->lock to make 64-bit addition safe on 32-bit
8798 * platforms.
8799 */
8800 spin_lock_irq(&cpu_rq(i)->lock);
8801 totalcpuusage += *cpuusage;
8802 spin_unlock_irq(&cpu_rq(i)->lock);
8803 }
8804
8805 return totalcpuusage;
8806}
8807
0297b803
DG
8808static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8809 u64 reset)
8810{
8811 struct cpuacct *ca = cgroup_ca(cgrp);
8812 int err = 0;
8813 int i;
8814
8815 if (reset) {
8816 err = -EINVAL;
8817 goto out;
8818 }
8819
8820 for_each_possible_cpu(i) {
8821 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8822
8823 spin_lock_irq(&cpu_rq(i)->lock);
8824 *cpuusage = 0;
8825 spin_unlock_irq(&cpu_rq(i)->lock);
8826 }
8827out:
8828 return err;
8829}
8830
d842de87
SV
8831static struct cftype files[] = {
8832 {
8833 .name = "usage",
f4c753b7
PM
8834 .read_u64 = cpuusage_read,
8835 .write_u64 = cpuusage_write,
d842de87
SV
8836 },
8837};
8838
32cd756a 8839static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8840{
32cd756a 8841 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8842}
8843
8844/*
8845 * charge this task's execution time to its accounting group.
8846 *
8847 * called with rq->lock held.
8848 */
8849static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8850{
8851 struct cpuacct *ca;
8852
8853 if (!cpuacct_subsys.active)
8854 return;
8855
8856 ca = task_ca(tsk);
8857 if (ca) {
8858 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8859
8860 *cpuusage += cputime;
8861 }
8862}
8863
8864struct cgroup_subsys cpuacct_subsys = {
8865 .name = "cpuacct",
8866 .create = cpuacct_create,
8867 .destroy = cpuacct_destroy,
8868 .populate = cpuacct_populate,
8869 .subsys_id = cpuacct_subsys_id,
8870};
8871#endif /* CONFIG_CGROUP_CPUACCT */