]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
generic: reduce stack pressure in sched_affinity
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
1da177e4 71
5517d86b 72#include <asm/tlb.h>
838225b4 73#include <asm/irq_regs.h>
1da177e4 74
b035b6de
AD
75/*
76 * Scheduler clock - returns current time in nanosec units.
77 * This is default implementation.
78 * Architectures and sub-architectures can override this.
79 */
80unsigned long long __attribute__((weak)) sched_clock(void)
81{
d6322faf 82 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
83}
84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
5517d86b
ED
124#ifdef CONFIG_SMP
125/*
126 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
127 * Since cpu_power is a 'constant', we can use a reciprocal divide.
128 */
129static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
130{
131 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132}
133
134/*
135 * Each time a sched group cpu_power is changed,
136 * we must compute its reciprocal value
137 */
138static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
139{
140 sg->__cpu_power += val;
141 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
142}
143#endif
144
e05606d3
IM
145static inline int rt_policy(int policy)
146{
147 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
148 return 1;
149 return 0;
150}
151
152static inline int task_has_rt_policy(struct task_struct *p)
153{
154 return rt_policy(p->policy);
155}
156
1da177e4 157/*
6aa645ea 158 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 159 */
6aa645ea
IM
160struct rt_prio_array {
161 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
162 struct list_head queue[MAX_RT_PRIO];
163};
164
d0b27fa7
PZ
165struct rt_bandwidth {
166 ktime_t rt_period;
167 u64 rt_runtime;
ac086bc2 168 spinlock_t rt_runtime_lock;
d0b27fa7
PZ
169 struct hrtimer rt_period_timer;
170};
171
172static struct rt_bandwidth def_rt_bandwidth;
173
174static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
175
176static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
177{
178 struct rt_bandwidth *rt_b =
179 container_of(timer, struct rt_bandwidth, rt_period_timer);
180 ktime_t now;
181 int overrun;
182 int idle = 0;
183
184 for (;;) {
185 now = hrtimer_cb_get_time(timer);
186 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
187
188 if (!overrun)
189 break;
190
191 idle = do_sched_rt_period_timer(rt_b, overrun);
192 }
193
194 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
195}
196
197static
198void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
199{
200 rt_b->rt_period = ns_to_ktime(period);
201 rt_b->rt_runtime = runtime;
202
ac086bc2
PZ
203 spin_lock_init(&rt_b->rt_runtime_lock);
204
d0b27fa7
PZ
205 hrtimer_init(&rt_b->rt_period_timer,
206 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
207 rt_b->rt_period_timer.function = sched_rt_period_timer;
208 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
209}
210
211static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
212{
213 ktime_t now;
214
215 if (rt_b->rt_runtime == RUNTIME_INF)
216 return;
217
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 return;
220
221 spin_lock(&rt_b->rt_runtime_lock);
222 for (;;) {
223 if (hrtimer_active(&rt_b->rt_period_timer))
224 break;
225
226 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
227 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
228 hrtimer_start(&rt_b->rt_period_timer,
229 rt_b->rt_period_timer.expires,
230 HRTIMER_MODE_ABS);
231 }
232 spin_unlock(&rt_b->rt_runtime_lock);
233}
234
235#ifdef CONFIG_RT_GROUP_SCHED
236static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
237{
238 hrtimer_cancel(&rt_b->rt_period_timer);
239}
240#endif
241
052f1dc7 242#ifdef CONFIG_GROUP_SCHED
29f59db3 243
68318b8e
SV
244#include <linux/cgroup.h>
245
29f59db3
SV
246struct cfs_rq;
247
6f505b16
PZ
248static LIST_HEAD(task_groups);
249
29f59db3 250/* task group related information */
4cf86d77 251struct task_group {
052f1dc7 252#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
253 struct cgroup_subsys_state css;
254#endif
052f1dc7
PZ
255
256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
29f59db3
SV
273};
274
052f1dc7 275#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
276/* Default task group's sched entity on each cpu */
277static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
278/* Default task group's cfs_rq on each cpu */
279static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
280#endif
281
282#ifdef CONFIG_RT_GROUP_SCHED
283static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
284static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 285#endif
6f505b16 286
8ed36996 287/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
288 * a task group's cpu shares.
289 */
8ed36996 290static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 291
a1835615
SV
292/* doms_cur_mutex serializes access to doms_cur[] array */
293static DEFINE_MUTEX(doms_cur_mutex);
294
052f1dc7 295#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
296#ifdef CONFIG_USER_SCHED
297# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
298#else
299# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
300#endif
301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3
SV
309
310/* return group to which a task belongs */
4cf86d77 311static inline struct task_group *task_group(struct task_struct *p)
29f59db3 312{
4cf86d77 313 struct task_group *tg;
9b5b7751 314
052f1dc7 315#ifdef CONFIG_USER_SCHED
24e377a8 316 tg = p->user->tg;
052f1dc7 317#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
318 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
319 struct task_group, css);
24e377a8 320#else
41a2d6cf 321 tg = &init_task_group;
24e377a8 322#endif
9b5b7751 323 return tg;
29f59db3
SV
324}
325
326/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 327static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 328{
052f1dc7 329#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
330 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
331 p->se.parent = task_group(p)->se[cpu];
052f1dc7 332#endif
6f505b16 333
052f1dc7 334#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
335 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
336 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 337#endif
29f59db3
SV
338}
339
a1835615
SV
340static inline void lock_doms_cur(void)
341{
342 mutex_lock(&doms_cur_mutex);
343}
344
345static inline void unlock_doms_cur(void)
346{
347 mutex_unlock(&doms_cur_mutex);
348}
349
29f59db3
SV
350#else
351
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
a1835615
SV
353static inline void lock_doms_cur(void) { }
354static inline void unlock_doms_cur(void) { }
29f59db3 355
052f1dc7 356#endif /* CONFIG_GROUP_SCHED */
29f59db3 357
6aa645ea
IM
358/* CFS-related fields in a runqueue */
359struct cfs_rq {
360 struct load_weight load;
361 unsigned long nr_running;
362
6aa645ea 363 u64 exec_clock;
e9acbff6 364 u64 min_vruntime;
6aa645ea
IM
365
366 struct rb_root tasks_timeline;
367 struct rb_node *rb_leftmost;
368 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
369 /* 'curr' points to currently running entity on this cfs_rq.
370 * It is set to NULL otherwise (i.e when none are currently running).
371 */
aa2ac252 372 struct sched_entity *curr, *next;
ddc97297
PZ
373
374 unsigned long nr_spread_over;
375
62160e3f 376#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
377 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
378
41a2d6cf
IM
379 /*
380 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
381 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
382 * (like users, containers etc.)
383 *
384 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
385 * list is used during load balance.
386 */
41a2d6cf
IM
387 struct list_head leaf_cfs_rq_list;
388 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
389#endif
390};
1da177e4 391
6aa645ea
IM
392/* Real-Time classes' related field in a runqueue: */
393struct rt_rq {
394 struct rt_prio_array active;
63489e45 395 unsigned long rt_nr_running;
052f1dc7 396#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 int highest_prio; /* highest queued rt task prio */
398#endif
fa85ae24 399#ifdef CONFIG_SMP
73fe6aae 400 unsigned long rt_nr_migratory;
a22d7fc1 401 int overloaded;
fa85ae24 402#endif
6f505b16 403 int rt_throttled;
fa85ae24 404 u64 rt_time;
ac086bc2
PZ
405 u64 rt_runtime;
406 spinlock_t rt_runtime_lock;
6f505b16 407
052f1dc7 408#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
409 unsigned long rt_nr_boosted;
410
6f505b16
PZ
411 struct rq *rq;
412 struct list_head leaf_rt_rq_list;
413 struct task_group *tg;
414 struct sched_rt_entity *rt_se;
415#endif
6aa645ea
IM
416};
417
57d885fe
GH
418#ifdef CONFIG_SMP
419
420/*
421 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
422 * variables. Each exclusive cpuset essentially defines an island domain by
423 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
424 * exclusive cpuset is created, we also create and attach a new root-domain
425 * object.
426 *
57d885fe
GH
427 */
428struct root_domain {
429 atomic_t refcount;
430 cpumask_t span;
431 cpumask_t online;
637f5085 432
0eab9146 433 /*
637f5085
GH
434 * The "RT overload" flag: it gets set if a CPU has more than
435 * one runnable RT task.
436 */
437 cpumask_t rto_mask;
0eab9146 438 atomic_t rto_count;
57d885fe
GH
439};
440
dc938520
GH
441/*
442 * By default the system creates a single root-domain with all cpus as
443 * members (mimicking the global state we have today).
444 */
57d885fe
GH
445static struct root_domain def_root_domain;
446
447#endif
448
1da177e4
LT
449/*
450 * This is the main, per-CPU runqueue data structure.
451 *
452 * Locking rule: those places that want to lock multiple runqueues
453 * (such as the load balancing or the thread migration code), lock
454 * acquire operations must be ordered by ascending &runqueue.
455 */
70b97a7f 456struct rq {
d8016491
IM
457 /* runqueue lock: */
458 spinlock_t lock;
1da177e4
LT
459
460 /*
461 * nr_running and cpu_load should be in the same cacheline because
462 * remote CPUs use both these fields when doing load calculation.
463 */
464 unsigned long nr_running;
6aa645ea
IM
465 #define CPU_LOAD_IDX_MAX 5
466 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 467 unsigned char idle_at_tick;
46cb4b7c 468#ifdef CONFIG_NO_HZ
15934a37 469 unsigned long last_tick_seen;
46cb4b7c
SS
470 unsigned char in_nohz_recently;
471#endif
d8016491
IM
472 /* capture load from *all* tasks on this cpu: */
473 struct load_weight load;
6aa645ea
IM
474 unsigned long nr_load_updates;
475 u64 nr_switches;
476
477 struct cfs_rq cfs;
6f505b16 478 struct rt_rq rt;
6f505b16 479
6aa645ea 480#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
481 /* list of leaf cfs_rq on this cpu: */
482 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
483#endif
484#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 485 struct list_head leaf_rt_rq_list;
1da177e4 486#endif
1da177e4
LT
487
488 /*
489 * This is part of a global counter where only the total sum
490 * over all CPUs matters. A task can increase this counter on
491 * one CPU and if it got migrated afterwards it may decrease
492 * it on another CPU. Always updated under the runqueue lock:
493 */
494 unsigned long nr_uninterruptible;
495
36c8b586 496 struct task_struct *curr, *idle;
c9819f45 497 unsigned long next_balance;
1da177e4 498 struct mm_struct *prev_mm;
6aa645ea 499
6aa645ea
IM
500 u64 clock, prev_clock_raw;
501 s64 clock_max_delta;
502
cc203d24 503 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
504 u64 idle_clock;
505 unsigned int clock_deep_idle_events;
529c7726 506 u64 tick_timestamp;
6aa645ea 507
1da177e4
LT
508 atomic_t nr_iowait;
509
510#ifdef CONFIG_SMP
0eab9146 511 struct root_domain *rd;
1da177e4
LT
512 struct sched_domain *sd;
513
514 /* For active balancing */
515 int active_balance;
516 int push_cpu;
d8016491
IM
517 /* cpu of this runqueue: */
518 int cpu;
1da177e4 519
36c8b586 520 struct task_struct *migration_thread;
1da177e4
LT
521 struct list_head migration_queue;
522#endif
523
8f4d37ec
PZ
524#ifdef CONFIG_SCHED_HRTICK
525 unsigned long hrtick_flags;
526 ktime_t hrtick_expire;
527 struct hrtimer hrtick_timer;
528#endif
529
1da177e4
LT
530#ifdef CONFIG_SCHEDSTATS
531 /* latency stats */
532 struct sched_info rq_sched_info;
533
534 /* sys_sched_yield() stats */
480b9434
KC
535 unsigned int yld_exp_empty;
536 unsigned int yld_act_empty;
537 unsigned int yld_both_empty;
538 unsigned int yld_count;
1da177e4
LT
539
540 /* schedule() stats */
480b9434
KC
541 unsigned int sched_switch;
542 unsigned int sched_count;
543 unsigned int sched_goidle;
1da177e4
LT
544
545 /* try_to_wake_up() stats */
480b9434
KC
546 unsigned int ttwu_count;
547 unsigned int ttwu_local;
b8efb561
IM
548
549 /* BKL stats */
480b9434 550 unsigned int bkl_count;
1da177e4 551#endif
fcb99371 552 struct lock_class_key rq_lock_key;
1da177e4
LT
553};
554
f34e3b61 555static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 556
dd41f596
IM
557static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
558{
559 rq->curr->sched_class->check_preempt_curr(rq, p);
560}
561
0a2966b4
CL
562static inline int cpu_of(struct rq *rq)
563{
564#ifdef CONFIG_SMP
565 return rq->cpu;
566#else
567 return 0;
568#endif
569}
570
15934a37
GC
571#ifdef CONFIG_NO_HZ
572static inline bool nohz_on(int cpu)
573{
574 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
575}
576
577static inline u64 max_skipped_ticks(struct rq *rq)
578{
579 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
580}
581
582static inline void update_last_tick_seen(struct rq *rq)
583{
584 rq->last_tick_seen = jiffies;
585}
586#else
587static inline u64 max_skipped_ticks(struct rq *rq)
588{
589 return 1;
590}
591
592static inline void update_last_tick_seen(struct rq *rq)
593{
594}
595#endif
596
20d315d4 597/*
b04a0f4c
IM
598 * Update the per-runqueue clock, as finegrained as the platform can give
599 * us, but without assuming monotonicity, etc.:
20d315d4 600 */
b04a0f4c 601static void __update_rq_clock(struct rq *rq)
20d315d4
IM
602{
603 u64 prev_raw = rq->prev_clock_raw;
604 u64 now = sched_clock();
605 s64 delta = now - prev_raw;
606 u64 clock = rq->clock;
607
b04a0f4c
IM
608#ifdef CONFIG_SCHED_DEBUG
609 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
610#endif
20d315d4
IM
611 /*
612 * Protect against sched_clock() occasionally going backwards:
613 */
614 if (unlikely(delta < 0)) {
615 clock++;
616 rq->clock_warps++;
617 } else {
618 /*
619 * Catch too large forward jumps too:
620 */
15934a37
GC
621 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
622 u64 max_time = rq->tick_timestamp + max_jump;
623
624 if (unlikely(clock + delta > max_time)) {
625 if (clock < max_time)
626 clock = max_time;
529c7726
IM
627 else
628 clock++;
20d315d4
IM
629 rq->clock_overflows++;
630 } else {
631 if (unlikely(delta > rq->clock_max_delta))
632 rq->clock_max_delta = delta;
633 clock += delta;
634 }
635 }
636
637 rq->prev_clock_raw = now;
638 rq->clock = clock;
b04a0f4c 639}
20d315d4 640
b04a0f4c
IM
641static void update_rq_clock(struct rq *rq)
642{
643 if (likely(smp_processor_id() == cpu_of(rq)))
644 __update_rq_clock(rq);
20d315d4
IM
645}
646
674311d5
NP
647/*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 649 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
48f24c4d
IM
654#define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
656
657#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658#define this_rq() (&__get_cpu_var(runqueues))
659#define task_rq(p) cpu_rq(task_cpu(p))
660#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661
bf5c91ba
IM
662/*
663 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
664 */
665#ifdef CONFIG_SCHED_DEBUG
666# define const_debug __read_mostly
667#else
668# define const_debug static const
669#endif
670
671/*
672 * Debugging: various feature bits
673 */
674enum {
bbdba7c0 675 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
676 SCHED_FEAT_WAKEUP_PREEMPT = 2,
677 SCHED_FEAT_START_DEBIT = 4,
d25ce4cd
IM
678 SCHED_FEAT_AFFINE_WAKEUPS = 8,
679 SCHED_FEAT_CACHE_HOT_BUDDY = 16,
02e2b83b
IM
680 SCHED_FEAT_SYNC_WAKEUPS = 32,
681 SCHED_FEAT_HRTICK = 64,
682 SCHED_FEAT_DOUBLE_TICK = 128,
bf5c91ba
IM
683};
684
685const_debug unsigned int sysctl_sched_features =
8401f775 686 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 687 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775 688 SCHED_FEAT_START_DEBIT * 1 |
d25ce4cd
IM
689 SCHED_FEAT_AFFINE_WAKEUPS * 1 |
690 SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
02e2b83b 691 SCHED_FEAT_SYNC_WAKEUPS * 1 |
8f4d37ec 692 SCHED_FEAT_HRTICK * 1 |
02e2b83b 693 SCHED_FEAT_DOUBLE_TICK * 0;
bf5c91ba
IM
694
695#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
696
b82d9fdd
PZ
697/*
698 * Number of tasks to iterate in a single balance run.
699 * Limited because this is done with IRQs disabled.
700 */
701const_debug unsigned int sysctl_sched_nr_migrate = 32;
702
fa85ae24 703/*
9f0c1e56 704 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
705 * default: 1s
706 */
9f0c1e56 707unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 708
6892b75e
IM
709static __read_mostly int scheduler_running;
710
9f0c1e56
PZ
711/*
712 * part of the period that we allow rt tasks to run in us.
713 * default: 0.95s
714 */
715int sysctl_sched_rt_runtime = 950000;
fa85ae24 716
d0b27fa7
PZ
717static inline u64 global_rt_period(void)
718{
719 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
720}
721
722static inline u64 global_rt_runtime(void)
723{
724 if (sysctl_sched_rt_period < 0)
725 return RUNTIME_INF;
726
727 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
728}
fa85ae24 729
27ec4407
IM
730static const unsigned long long time_sync_thresh = 100000;
731
732static DEFINE_PER_CPU(unsigned long long, time_offset);
733static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
734
e436d800 735/*
27ec4407
IM
736 * Global lock which we take every now and then to synchronize
737 * the CPUs time. This method is not warp-safe, but it's good
738 * enough to synchronize slowly diverging time sources and thus
739 * it's good enough for tracing:
e436d800 740 */
27ec4407
IM
741static DEFINE_SPINLOCK(time_sync_lock);
742static unsigned long long prev_global_time;
743
744static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
745{
746 unsigned long flags;
747
748 spin_lock_irqsave(&time_sync_lock, flags);
749
750 if (time < prev_global_time) {
751 per_cpu(time_offset, cpu) += prev_global_time - time;
752 time = prev_global_time;
753 } else {
754 prev_global_time = time;
755 }
756
757 spin_unlock_irqrestore(&time_sync_lock, flags);
758
759 return time;
760}
761
762static unsigned long long __cpu_clock(int cpu)
e436d800 763{
e436d800
IM
764 unsigned long long now;
765 unsigned long flags;
b04a0f4c 766 struct rq *rq;
e436d800 767
8ced5f69
IM
768 /*
769 * Only call sched_clock() if the scheduler has already been
770 * initialized (some code might call cpu_clock() very early):
771 */
6892b75e
IM
772 if (unlikely(!scheduler_running))
773 return 0;
774
775 local_irq_save(flags);
776 rq = cpu_rq(cpu);
777 update_rq_clock(rq);
b04a0f4c 778 now = rq->clock;
2cd4d0ea 779 local_irq_restore(flags);
e436d800
IM
780
781 return now;
782}
27ec4407
IM
783
784/*
785 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
786 * clock constructed from sched_clock():
787 */
788unsigned long long cpu_clock(int cpu)
789{
790 unsigned long long prev_cpu_time, time, delta_time;
791
792 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
793 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
794 delta_time = time-prev_cpu_time;
795
796 if (unlikely(delta_time > time_sync_thresh))
797 time = __sync_cpu_clock(time, cpu);
798
799 return time;
800}
a58f6f25 801EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 802
1da177e4 803#ifndef prepare_arch_switch
4866cde0
NP
804# define prepare_arch_switch(next) do { } while (0)
805#endif
806#ifndef finish_arch_switch
807# define finish_arch_switch(prev) do { } while (0)
808#endif
809
051a1d1a
DA
810static inline int task_current(struct rq *rq, struct task_struct *p)
811{
812 return rq->curr == p;
813}
814
4866cde0 815#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 816static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 817{
051a1d1a 818 return task_current(rq, p);
4866cde0
NP
819}
820
70b97a7f 821static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
822{
823}
824
70b97a7f 825static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 826{
da04c035
IM
827#ifdef CONFIG_DEBUG_SPINLOCK
828 /* this is a valid case when another task releases the spinlock */
829 rq->lock.owner = current;
830#endif
8a25d5de
IM
831 /*
832 * If we are tracking spinlock dependencies then we have to
833 * fix up the runqueue lock - which gets 'carried over' from
834 * prev into current:
835 */
836 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
837
4866cde0
NP
838 spin_unlock_irq(&rq->lock);
839}
840
841#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 842static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
843{
844#ifdef CONFIG_SMP
845 return p->oncpu;
846#else
051a1d1a 847 return task_current(rq, p);
4866cde0
NP
848#endif
849}
850
70b97a7f 851static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
852{
853#ifdef CONFIG_SMP
854 /*
855 * We can optimise this out completely for !SMP, because the
856 * SMP rebalancing from interrupt is the only thing that cares
857 * here.
858 */
859 next->oncpu = 1;
860#endif
861#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
862 spin_unlock_irq(&rq->lock);
863#else
864 spin_unlock(&rq->lock);
865#endif
866}
867
70b97a7f 868static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
869{
870#ifdef CONFIG_SMP
871 /*
872 * After ->oncpu is cleared, the task can be moved to a different CPU.
873 * We must ensure this doesn't happen until the switch is completely
874 * finished.
875 */
876 smp_wmb();
877 prev->oncpu = 0;
878#endif
879#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
880 local_irq_enable();
1da177e4 881#endif
4866cde0
NP
882}
883#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 884
b29739f9
IM
885/*
886 * __task_rq_lock - lock the runqueue a given task resides on.
887 * Must be called interrupts disabled.
888 */
70b97a7f 889static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
890 __acquires(rq->lock)
891{
3a5c359a
AK
892 for (;;) {
893 struct rq *rq = task_rq(p);
894 spin_lock(&rq->lock);
895 if (likely(rq == task_rq(p)))
896 return rq;
b29739f9 897 spin_unlock(&rq->lock);
b29739f9 898 }
b29739f9
IM
899}
900
1da177e4
LT
901/*
902 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 903 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
904 * explicitly disabling preemption.
905 */
70b97a7f 906static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
907 __acquires(rq->lock)
908{
70b97a7f 909 struct rq *rq;
1da177e4 910
3a5c359a
AK
911 for (;;) {
912 local_irq_save(*flags);
913 rq = task_rq(p);
914 spin_lock(&rq->lock);
915 if (likely(rq == task_rq(p)))
916 return rq;
1da177e4 917 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 918 }
1da177e4
LT
919}
920
a9957449 921static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
922 __releases(rq->lock)
923{
924 spin_unlock(&rq->lock);
925}
926
70b97a7f 927static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
928 __releases(rq->lock)
929{
930 spin_unlock_irqrestore(&rq->lock, *flags);
931}
932
1da177e4 933/*
cc2a73b5 934 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 935 */
a9957449 936static struct rq *this_rq_lock(void)
1da177e4
LT
937 __acquires(rq->lock)
938{
70b97a7f 939 struct rq *rq;
1da177e4
LT
940
941 local_irq_disable();
942 rq = this_rq();
943 spin_lock(&rq->lock);
944
945 return rq;
946}
947
1b9f19c2 948/*
2aa44d05 949 * We are going deep-idle (irqs are disabled):
1b9f19c2 950 */
2aa44d05 951void sched_clock_idle_sleep_event(void)
1b9f19c2 952{
2aa44d05
IM
953 struct rq *rq = cpu_rq(smp_processor_id());
954
955 spin_lock(&rq->lock);
956 __update_rq_clock(rq);
957 spin_unlock(&rq->lock);
958 rq->clock_deep_idle_events++;
959}
960EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
961
962/*
963 * We just idled delta nanoseconds (called with irqs disabled):
964 */
965void sched_clock_idle_wakeup_event(u64 delta_ns)
966{
967 struct rq *rq = cpu_rq(smp_processor_id());
968 u64 now = sched_clock();
1b9f19c2 969
2aa44d05
IM
970 rq->idle_clock += delta_ns;
971 /*
972 * Override the previous timestamp and ignore all
973 * sched_clock() deltas that occured while we idled,
974 * and use the PM-provided delta_ns to advance the
975 * rq clock:
976 */
977 spin_lock(&rq->lock);
978 rq->prev_clock_raw = now;
979 rq->clock += delta_ns;
980 spin_unlock(&rq->lock);
782daeee 981 touch_softlockup_watchdog();
1b9f19c2 982}
2aa44d05 983EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 984
8f4d37ec
PZ
985static void __resched_task(struct task_struct *p, int tif_bit);
986
987static inline void resched_task(struct task_struct *p)
988{
989 __resched_task(p, TIF_NEED_RESCHED);
990}
991
992#ifdef CONFIG_SCHED_HRTICK
993/*
994 * Use HR-timers to deliver accurate preemption points.
995 *
996 * Its all a bit involved since we cannot program an hrt while holding the
997 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
998 * reschedule event.
999 *
1000 * When we get rescheduled we reprogram the hrtick_timer outside of the
1001 * rq->lock.
1002 */
1003static inline void resched_hrt(struct task_struct *p)
1004{
1005 __resched_task(p, TIF_HRTICK_RESCHED);
1006}
1007
1008static inline void resched_rq(struct rq *rq)
1009{
1010 unsigned long flags;
1011
1012 spin_lock_irqsave(&rq->lock, flags);
1013 resched_task(rq->curr);
1014 spin_unlock_irqrestore(&rq->lock, flags);
1015}
1016
1017enum {
1018 HRTICK_SET, /* re-programm hrtick_timer */
1019 HRTICK_RESET, /* not a new slice */
1020};
1021
1022/*
1023 * Use hrtick when:
1024 * - enabled by features
1025 * - hrtimer is actually high res
1026 */
1027static inline int hrtick_enabled(struct rq *rq)
1028{
1029 if (!sched_feat(HRTICK))
1030 return 0;
1031 return hrtimer_is_hres_active(&rq->hrtick_timer);
1032}
1033
1034/*
1035 * Called to set the hrtick timer state.
1036 *
1037 * called with rq->lock held and irqs disabled
1038 */
1039static void hrtick_start(struct rq *rq, u64 delay, int reset)
1040{
1041 assert_spin_locked(&rq->lock);
1042
1043 /*
1044 * preempt at: now + delay
1045 */
1046 rq->hrtick_expire =
1047 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1048 /*
1049 * indicate we need to program the timer
1050 */
1051 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1052 if (reset)
1053 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1054
1055 /*
1056 * New slices are called from the schedule path and don't need a
1057 * forced reschedule.
1058 */
1059 if (reset)
1060 resched_hrt(rq->curr);
1061}
1062
1063static void hrtick_clear(struct rq *rq)
1064{
1065 if (hrtimer_active(&rq->hrtick_timer))
1066 hrtimer_cancel(&rq->hrtick_timer);
1067}
1068
1069/*
1070 * Update the timer from the possible pending state.
1071 */
1072static void hrtick_set(struct rq *rq)
1073{
1074 ktime_t time;
1075 int set, reset;
1076 unsigned long flags;
1077
1078 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1079
1080 spin_lock_irqsave(&rq->lock, flags);
1081 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1082 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1083 time = rq->hrtick_expire;
1084 clear_thread_flag(TIF_HRTICK_RESCHED);
1085 spin_unlock_irqrestore(&rq->lock, flags);
1086
1087 if (set) {
1088 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1089 if (reset && !hrtimer_active(&rq->hrtick_timer))
1090 resched_rq(rq);
1091 } else
1092 hrtick_clear(rq);
1093}
1094
1095/*
1096 * High-resolution timer tick.
1097 * Runs from hardirq context with interrupts disabled.
1098 */
1099static enum hrtimer_restart hrtick(struct hrtimer *timer)
1100{
1101 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1102
1103 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1104
1105 spin_lock(&rq->lock);
1106 __update_rq_clock(rq);
1107 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1108 spin_unlock(&rq->lock);
1109
1110 return HRTIMER_NORESTART;
1111}
1112
1113static inline void init_rq_hrtick(struct rq *rq)
1114{
1115 rq->hrtick_flags = 0;
1116 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1117 rq->hrtick_timer.function = hrtick;
1118 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1119}
1120
1121void hrtick_resched(void)
1122{
1123 struct rq *rq;
1124 unsigned long flags;
1125
1126 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1127 return;
1128
1129 local_irq_save(flags);
1130 rq = cpu_rq(smp_processor_id());
1131 hrtick_set(rq);
1132 local_irq_restore(flags);
1133}
1134#else
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
1139static inline void hrtick_set(struct rq *rq)
1140{
1141}
1142
1143static inline void init_rq_hrtick(struct rq *rq)
1144{
1145}
1146
1147void hrtick_resched(void)
1148{
1149}
1150#endif
1151
c24d20db
IM
1152/*
1153 * resched_task - mark a task 'to be rescheduled now'.
1154 *
1155 * On UP this means the setting of the need_resched flag, on SMP it
1156 * might also involve a cross-CPU call to trigger the scheduler on
1157 * the target CPU.
1158 */
1159#ifdef CONFIG_SMP
1160
1161#ifndef tsk_is_polling
1162#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1163#endif
1164
8f4d37ec 1165static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1166{
1167 int cpu;
1168
1169 assert_spin_locked(&task_rq(p)->lock);
1170
8f4d37ec 1171 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1172 return;
1173
8f4d37ec 1174 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1175
1176 cpu = task_cpu(p);
1177 if (cpu == smp_processor_id())
1178 return;
1179
1180 /* NEED_RESCHED must be visible before we test polling */
1181 smp_mb();
1182 if (!tsk_is_polling(p))
1183 smp_send_reschedule(cpu);
1184}
1185
1186static void resched_cpu(int cpu)
1187{
1188 struct rq *rq = cpu_rq(cpu);
1189 unsigned long flags;
1190
1191 if (!spin_trylock_irqsave(&rq->lock, flags))
1192 return;
1193 resched_task(cpu_curr(cpu));
1194 spin_unlock_irqrestore(&rq->lock, flags);
1195}
06d8308c
TG
1196
1197#ifdef CONFIG_NO_HZ
1198/*
1199 * When add_timer_on() enqueues a timer into the timer wheel of an
1200 * idle CPU then this timer might expire before the next timer event
1201 * which is scheduled to wake up that CPU. In case of a completely
1202 * idle system the next event might even be infinite time into the
1203 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1204 * leaves the inner idle loop so the newly added timer is taken into
1205 * account when the CPU goes back to idle and evaluates the timer
1206 * wheel for the next timer event.
1207 */
1208void wake_up_idle_cpu(int cpu)
1209{
1210 struct rq *rq = cpu_rq(cpu);
1211
1212 if (cpu == smp_processor_id())
1213 return;
1214
1215 /*
1216 * This is safe, as this function is called with the timer
1217 * wheel base lock of (cpu) held. When the CPU is on the way
1218 * to idle and has not yet set rq->curr to idle then it will
1219 * be serialized on the timer wheel base lock and take the new
1220 * timer into account automatically.
1221 */
1222 if (rq->curr != rq->idle)
1223 return;
1224
1225 /*
1226 * We can set TIF_RESCHED on the idle task of the other CPU
1227 * lockless. The worst case is that the other CPU runs the
1228 * idle task through an additional NOOP schedule()
1229 */
1230 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1231
1232 /* NEED_RESCHED must be visible before we test polling */
1233 smp_mb();
1234 if (!tsk_is_polling(rq->idle))
1235 smp_send_reschedule(cpu);
1236}
1237#endif
1238
c24d20db 1239#else
8f4d37ec 1240static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1241{
1242 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1243 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1244}
1245#endif
1246
45bf76df
IM
1247#if BITS_PER_LONG == 32
1248# define WMULT_CONST (~0UL)
1249#else
1250# define WMULT_CONST (1UL << 32)
1251#endif
1252
1253#define WMULT_SHIFT 32
1254
194081eb
IM
1255/*
1256 * Shift right and round:
1257 */
cf2ab469 1258#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1259
cb1c4fc9 1260static unsigned long
45bf76df
IM
1261calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1262 struct load_weight *lw)
1263{
1264 u64 tmp;
1265
1266 if (unlikely(!lw->inv_weight))
27d11726 1267 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
45bf76df
IM
1268
1269 tmp = (u64)delta_exec * weight;
1270 /*
1271 * Check whether we'd overflow the 64-bit multiplication:
1272 */
194081eb 1273 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1274 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1275 WMULT_SHIFT/2);
1276 else
cf2ab469 1277 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1278
ecf691da 1279 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1280}
1281
1282static inline unsigned long
1283calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1284{
1285 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1286}
1287
1091985b 1288static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1289{
1290 lw->weight += inc;
e89996ae 1291 lw->inv_weight = 0;
45bf76df
IM
1292}
1293
1091985b 1294static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1295{
1296 lw->weight -= dec;
e89996ae 1297 lw->inv_weight = 0;
45bf76df
IM
1298}
1299
2dd73a4f
PW
1300/*
1301 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1302 * of tasks with abnormal "nice" values across CPUs the contribution that
1303 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1304 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1305 * scaled version of the new time slice allocation that they receive on time
1306 * slice expiry etc.
1307 */
1308
dd41f596
IM
1309#define WEIGHT_IDLEPRIO 2
1310#define WMULT_IDLEPRIO (1 << 31)
1311
1312/*
1313 * Nice levels are multiplicative, with a gentle 10% change for every
1314 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1315 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1316 * that remained on nice 0.
1317 *
1318 * The "10% effect" is relative and cumulative: from _any_ nice level,
1319 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1320 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1321 * If a task goes up by ~10% and another task goes down by ~10% then
1322 * the relative distance between them is ~25%.)
dd41f596
IM
1323 */
1324static const int prio_to_weight[40] = {
254753dc
IM
1325 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1326 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1327 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1328 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1329 /* 0 */ 1024, 820, 655, 526, 423,
1330 /* 5 */ 335, 272, 215, 172, 137,
1331 /* 10 */ 110, 87, 70, 56, 45,
1332 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1333};
1334
5714d2de
IM
1335/*
1336 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1337 *
1338 * In cases where the weight does not change often, we can use the
1339 * precalculated inverse to speed up arithmetics by turning divisions
1340 * into multiplications:
1341 */
dd41f596 1342static const u32 prio_to_wmult[40] = {
254753dc
IM
1343 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1344 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1345 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1346 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1347 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1348 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1349 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1350 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1351};
2dd73a4f 1352
dd41f596
IM
1353static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1354
1355/*
1356 * runqueue iterator, to support SMP load-balancing between different
1357 * scheduling classes, without having to expose their internal data
1358 * structures to the load-balancing proper:
1359 */
1360struct rq_iterator {
1361 void *arg;
1362 struct task_struct *(*start)(void *);
1363 struct task_struct *(*next)(void *);
1364};
1365
e1d1484f
PW
1366#ifdef CONFIG_SMP
1367static unsigned long
1368balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1369 unsigned long max_load_move, struct sched_domain *sd,
1370 enum cpu_idle_type idle, int *all_pinned,
1371 int *this_best_prio, struct rq_iterator *iterator);
1372
1373static int
1374iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1375 struct sched_domain *sd, enum cpu_idle_type idle,
1376 struct rq_iterator *iterator);
e1d1484f 1377#endif
dd41f596 1378
d842de87
SV
1379#ifdef CONFIG_CGROUP_CPUACCT
1380static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1381#else
1382static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1383#endif
1384
e7693a36
GH
1385#ifdef CONFIG_SMP
1386static unsigned long source_load(int cpu, int type);
1387static unsigned long target_load(int cpu, int type);
1388static unsigned long cpu_avg_load_per_task(int cpu);
1389static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1390#endif /* CONFIG_SMP */
1391
dd41f596 1392#include "sched_stats.h"
dd41f596 1393#include "sched_idletask.c"
5522d5d5
IM
1394#include "sched_fair.c"
1395#include "sched_rt.c"
dd41f596
IM
1396#ifdef CONFIG_SCHED_DEBUG
1397# include "sched_debug.c"
1398#endif
1399
1400#define sched_class_highest (&rt_sched_class)
1401
62fb1851
PZ
1402static inline void inc_load(struct rq *rq, const struct task_struct *p)
1403{
1404 update_load_add(&rq->load, p->se.load.weight);
1405}
1406
1407static inline void dec_load(struct rq *rq, const struct task_struct *p)
1408{
1409 update_load_sub(&rq->load, p->se.load.weight);
1410}
1411
1412static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1413{
1414 rq->nr_running++;
62fb1851 1415 inc_load(rq, p);
9c217245
IM
1416}
1417
62fb1851 1418static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1419{
1420 rq->nr_running--;
62fb1851 1421 dec_load(rq, p);
9c217245
IM
1422}
1423
45bf76df
IM
1424static void set_load_weight(struct task_struct *p)
1425{
1426 if (task_has_rt_policy(p)) {
dd41f596
IM
1427 p->se.load.weight = prio_to_weight[0] * 2;
1428 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1429 return;
1430 }
45bf76df 1431
dd41f596
IM
1432 /*
1433 * SCHED_IDLE tasks get minimal weight:
1434 */
1435 if (p->policy == SCHED_IDLE) {
1436 p->se.load.weight = WEIGHT_IDLEPRIO;
1437 p->se.load.inv_weight = WMULT_IDLEPRIO;
1438 return;
1439 }
71f8bd46 1440
dd41f596
IM
1441 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1442 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1443}
1444
8159f87e 1445static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1446{
dd41f596 1447 sched_info_queued(p);
fd390f6a 1448 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1449 p->se.on_rq = 1;
71f8bd46
IM
1450}
1451
69be72c1 1452static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1453{
f02231e5 1454 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1455 p->se.on_rq = 0;
71f8bd46
IM
1456}
1457
14531189 1458/*
dd41f596 1459 * __normal_prio - return the priority that is based on the static prio
14531189 1460 */
14531189
IM
1461static inline int __normal_prio(struct task_struct *p)
1462{
dd41f596 1463 return p->static_prio;
14531189
IM
1464}
1465
b29739f9
IM
1466/*
1467 * Calculate the expected normal priority: i.e. priority
1468 * without taking RT-inheritance into account. Might be
1469 * boosted by interactivity modifiers. Changes upon fork,
1470 * setprio syscalls, and whenever the interactivity
1471 * estimator recalculates.
1472 */
36c8b586 1473static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1474{
1475 int prio;
1476
e05606d3 1477 if (task_has_rt_policy(p))
b29739f9
IM
1478 prio = MAX_RT_PRIO-1 - p->rt_priority;
1479 else
1480 prio = __normal_prio(p);
1481 return prio;
1482}
1483
1484/*
1485 * Calculate the current priority, i.e. the priority
1486 * taken into account by the scheduler. This value might
1487 * be boosted by RT tasks, or might be boosted by
1488 * interactivity modifiers. Will be RT if the task got
1489 * RT-boosted. If not then it returns p->normal_prio.
1490 */
36c8b586 1491static int effective_prio(struct task_struct *p)
b29739f9
IM
1492{
1493 p->normal_prio = normal_prio(p);
1494 /*
1495 * If we are RT tasks or we were boosted to RT priority,
1496 * keep the priority unchanged. Otherwise, update priority
1497 * to the normal priority:
1498 */
1499 if (!rt_prio(p->prio))
1500 return p->normal_prio;
1501 return p->prio;
1502}
1503
1da177e4 1504/*
dd41f596 1505 * activate_task - move a task to the runqueue.
1da177e4 1506 */
dd41f596 1507static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1508{
d9514f6c 1509 if (task_contributes_to_load(p))
dd41f596 1510 rq->nr_uninterruptible--;
1da177e4 1511
8159f87e 1512 enqueue_task(rq, p, wakeup);
62fb1851 1513 inc_nr_running(p, rq);
1da177e4
LT
1514}
1515
1da177e4
LT
1516/*
1517 * deactivate_task - remove a task from the runqueue.
1518 */
2e1cb74a 1519static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1520{
d9514f6c 1521 if (task_contributes_to_load(p))
dd41f596
IM
1522 rq->nr_uninterruptible++;
1523
69be72c1 1524 dequeue_task(rq, p, sleep);
62fb1851 1525 dec_nr_running(p, rq);
1da177e4
LT
1526}
1527
1da177e4
LT
1528/**
1529 * task_curr - is this task currently executing on a CPU?
1530 * @p: the task in question.
1531 */
36c8b586 1532inline int task_curr(const struct task_struct *p)
1da177e4
LT
1533{
1534 return cpu_curr(task_cpu(p)) == p;
1535}
1536
2dd73a4f
PW
1537/* Used instead of source_load when we know the type == 0 */
1538unsigned long weighted_cpuload(const int cpu)
1539{
495eca49 1540 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1541}
1542
1543static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1544{
6f505b16 1545 set_task_rq(p, cpu);
dd41f596 1546#ifdef CONFIG_SMP
ce96b5ac
DA
1547 /*
1548 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1549 * successfuly executed on another CPU. We must ensure that updates of
1550 * per-task data have been completed by this moment.
1551 */
1552 smp_wmb();
dd41f596 1553 task_thread_info(p)->cpu = cpu;
dd41f596 1554#endif
2dd73a4f
PW
1555}
1556
cb469845
SR
1557static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1558 const struct sched_class *prev_class,
1559 int oldprio, int running)
1560{
1561 if (prev_class != p->sched_class) {
1562 if (prev_class->switched_from)
1563 prev_class->switched_from(rq, p, running);
1564 p->sched_class->switched_to(rq, p, running);
1565 } else
1566 p->sched_class->prio_changed(rq, p, oldprio, running);
1567}
1568
1da177e4 1569#ifdef CONFIG_SMP
c65cc870 1570
cc367732
IM
1571/*
1572 * Is this task likely cache-hot:
1573 */
e7693a36 1574static int
cc367732
IM
1575task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1576{
1577 s64 delta;
1578
f540a608
IM
1579 /*
1580 * Buddy candidates are cache hot:
1581 */
d25ce4cd 1582 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1583 return 1;
1584
cc367732
IM
1585 if (p->sched_class != &fair_sched_class)
1586 return 0;
1587
6bc1665b
IM
1588 if (sysctl_sched_migration_cost == -1)
1589 return 1;
1590 if (sysctl_sched_migration_cost == 0)
1591 return 0;
1592
cc367732
IM
1593 delta = now - p->se.exec_start;
1594
1595 return delta < (s64)sysctl_sched_migration_cost;
1596}
1597
1598
dd41f596 1599void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1600{
dd41f596
IM
1601 int old_cpu = task_cpu(p);
1602 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1603 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1604 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1605 u64 clock_offset;
dd41f596
IM
1606
1607 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1608
1609#ifdef CONFIG_SCHEDSTATS
1610 if (p->se.wait_start)
1611 p->se.wait_start -= clock_offset;
dd41f596
IM
1612 if (p->se.sleep_start)
1613 p->se.sleep_start -= clock_offset;
1614 if (p->se.block_start)
1615 p->se.block_start -= clock_offset;
cc367732
IM
1616 if (old_cpu != new_cpu) {
1617 schedstat_inc(p, se.nr_migrations);
1618 if (task_hot(p, old_rq->clock, NULL))
1619 schedstat_inc(p, se.nr_forced2_migrations);
1620 }
6cfb0d5d 1621#endif
2830cf8c
SV
1622 p->se.vruntime -= old_cfsrq->min_vruntime -
1623 new_cfsrq->min_vruntime;
dd41f596
IM
1624
1625 __set_task_cpu(p, new_cpu);
c65cc870
IM
1626}
1627
70b97a7f 1628struct migration_req {
1da177e4 1629 struct list_head list;
1da177e4 1630
36c8b586 1631 struct task_struct *task;
1da177e4
LT
1632 int dest_cpu;
1633
1da177e4 1634 struct completion done;
70b97a7f 1635};
1da177e4
LT
1636
1637/*
1638 * The task's runqueue lock must be held.
1639 * Returns true if you have to wait for migration thread.
1640 */
36c8b586 1641static int
70b97a7f 1642migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1643{
70b97a7f 1644 struct rq *rq = task_rq(p);
1da177e4
LT
1645
1646 /*
1647 * If the task is not on a runqueue (and not running), then
1648 * it is sufficient to simply update the task's cpu field.
1649 */
dd41f596 1650 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1651 set_task_cpu(p, dest_cpu);
1652 return 0;
1653 }
1654
1655 init_completion(&req->done);
1da177e4
LT
1656 req->task = p;
1657 req->dest_cpu = dest_cpu;
1658 list_add(&req->list, &rq->migration_queue);
48f24c4d 1659
1da177e4
LT
1660 return 1;
1661}
1662
1663/*
1664 * wait_task_inactive - wait for a thread to unschedule.
1665 *
1666 * The caller must ensure that the task *will* unschedule sometime soon,
1667 * else this function might spin for a *long* time. This function can't
1668 * be called with interrupts off, or it may introduce deadlock with
1669 * smp_call_function() if an IPI is sent by the same process we are
1670 * waiting to become inactive.
1671 */
36c8b586 1672void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1673{
1674 unsigned long flags;
dd41f596 1675 int running, on_rq;
70b97a7f 1676 struct rq *rq;
1da177e4 1677
3a5c359a
AK
1678 for (;;) {
1679 /*
1680 * We do the initial early heuristics without holding
1681 * any task-queue locks at all. We'll only try to get
1682 * the runqueue lock when things look like they will
1683 * work out!
1684 */
1685 rq = task_rq(p);
fa490cfd 1686
3a5c359a
AK
1687 /*
1688 * If the task is actively running on another CPU
1689 * still, just relax and busy-wait without holding
1690 * any locks.
1691 *
1692 * NOTE! Since we don't hold any locks, it's not
1693 * even sure that "rq" stays as the right runqueue!
1694 * But we don't care, since "task_running()" will
1695 * return false if the runqueue has changed and p
1696 * is actually now running somewhere else!
1697 */
1698 while (task_running(rq, p))
1699 cpu_relax();
fa490cfd 1700
3a5c359a
AK
1701 /*
1702 * Ok, time to look more closely! We need the rq
1703 * lock now, to be *sure*. If we're wrong, we'll
1704 * just go back and repeat.
1705 */
1706 rq = task_rq_lock(p, &flags);
1707 running = task_running(rq, p);
1708 on_rq = p->se.on_rq;
1709 task_rq_unlock(rq, &flags);
fa490cfd 1710
3a5c359a
AK
1711 /*
1712 * Was it really running after all now that we
1713 * checked with the proper locks actually held?
1714 *
1715 * Oops. Go back and try again..
1716 */
1717 if (unlikely(running)) {
1718 cpu_relax();
1719 continue;
1720 }
fa490cfd 1721
3a5c359a
AK
1722 /*
1723 * It's not enough that it's not actively running,
1724 * it must be off the runqueue _entirely_, and not
1725 * preempted!
1726 *
1727 * So if it wa still runnable (but just not actively
1728 * running right now), it's preempted, and we should
1729 * yield - it could be a while.
1730 */
1731 if (unlikely(on_rq)) {
1732 schedule_timeout_uninterruptible(1);
1733 continue;
1734 }
fa490cfd 1735
3a5c359a
AK
1736 /*
1737 * Ahh, all good. It wasn't running, and it wasn't
1738 * runnable, which means that it will never become
1739 * running in the future either. We're all done!
1740 */
1741 break;
1742 }
1da177e4
LT
1743}
1744
1745/***
1746 * kick_process - kick a running thread to enter/exit the kernel
1747 * @p: the to-be-kicked thread
1748 *
1749 * Cause a process which is running on another CPU to enter
1750 * kernel-mode, without any delay. (to get signals handled.)
1751 *
1752 * NOTE: this function doesnt have to take the runqueue lock,
1753 * because all it wants to ensure is that the remote task enters
1754 * the kernel. If the IPI races and the task has been migrated
1755 * to another CPU then no harm is done and the purpose has been
1756 * achieved as well.
1757 */
36c8b586 1758void kick_process(struct task_struct *p)
1da177e4
LT
1759{
1760 int cpu;
1761
1762 preempt_disable();
1763 cpu = task_cpu(p);
1764 if ((cpu != smp_processor_id()) && task_curr(p))
1765 smp_send_reschedule(cpu);
1766 preempt_enable();
1767}
1768
1769/*
2dd73a4f
PW
1770 * Return a low guess at the load of a migration-source cpu weighted
1771 * according to the scheduling class and "nice" value.
1da177e4
LT
1772 *
1773 * We want to under-estimate the load of migration sources, to
1774 * balance conservatively.
1775 */
a9957449 1776static unsigned long source_load(int cpu, int type)
1da177e4 1777{
70b97a7f 1778 struct rq *rq = cpu_rq(cpu);
dd41f596 1779 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1780
3b0bd9bc 1781 if (type == 0)
dd41f596 1782 return total;
b910472d 1783
dd41f596 1784 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1785}
1786
1787/*
2dd73a4f
PW
1788 * Return a high guess at the load of a migration-target cpu weighted
1789 * according to the scheduling class and "nice" value.
1da177e4 1790 */
a9957449 1791static unsigned long target_load(int cpu, int type)
1da177e4 1792{
70b97a7f 1793 struct rq *rq = cpu_rq(cpu);
dd41f596 1794 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1795
7897986b 1796 if (type == 0)
dd41f596 1797 return total;
3b0bd9bc 1798
dd41f596 1799 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1800}
1801
1802/*
1803 * Return the average load per task on the cpu's run queue
1804 */
e7693a36 1805static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1806{
70b97a7f 1807 struct rq *rq = cpu_rq(cpu);
dd41f596 1808 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1809 unsigned long n = rq->nr_running;
1810
dd41f596 1811 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1812}
1813
147cbb4b
NP
1814/*
1815 * find_idlest_group finds and returns the least busy CPU group within the
1816 * domain.
1817 */
1818static struct sched_group *
1819find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1820{
1821 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1822 unsigned long min_load = ULONG_MAX, this_load = 0;
1823 int load_idx = sd->forkexec_idx;
1824 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1825
1826 do {
1827 unsigned long load, avg_load;
1828 int local_group;
1829 int i;
1830
da5a5522
BD
1831 /* Skip over this group if it has no CPUs allowed */
1832 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1833 continue;
da5a5522 1834
147cbb4b 1835 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1836
1837 /* Tally up the load of all CPUs in the group */
1838 avg_load = 0;
1839
1840 for_each_cpu_mask(i, group->cpumask) {
1841 /* Bias balancing toward cpus of our domain */
1842 if (local_group)
1843 load = source_load(i, load_idx);
1844 else
1845 load = target_load(i, load_idx);
1846
1847 avg_load += load;
1848 }
1849
1850 /* Adjust by relative CPU power of the group */
5517d86b
ED
1851 avg_load = sg_div_cpu_power(group,
1852 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1853
1854 if (local_group) {
1855 this_load = avg_load;
1856 this = group;
1857 } else if (avg_load < min_load) {
1858 min_load = avg_load;
1859 idlest = group;
1860 }
3a5c359a 1861 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1862
1863 if (!idlest || 100*this_load < imbalance*min_load)
1864 return NULL;
1865 return idlest;
1866}
1867
1868/*
0feaece9 1869 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1870 */
95cdf3b7
IM
1871static int
1872find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1873{
da5a5522 1874 cpumask_t tmp;
147cbb4b
NP
1875 unsigned long load, min_load = ULONG_MAX;
1876 int idlest = -1;
1877 int i;
1878
da5a5522
BD
1879 /* Traverse only the allowed CPUs */
1880 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1881
1882 for_each_cpu_mask(i, tmp) {
2dd73a4f 1883 load = weighted_cpuload(i);
147cbb4b
NP
1884
1885 if (load < min_load || (load == min_load && i == this_cpu)) {
1886 min_load = load;
1887 idlest = i;
1888 }
1889 }
1890
1891 return idlest;
1892}
1893
476d139c
NP
1894/*
1895 * sched_balance_self: balance the current task (running on cpu) in domains
1896 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1897 * SD_BALANCE_EXEC.
1898 *
1899 * Balance, ie. select the least loaded group.
1900 *
1901 * Returns the target CPU number, or the same CPU if no balancing is needed.
1902 *
1903 * preempt must be disabled.
1904 */
1905static int sched_balance_self(int cpu, int flag)
1906{
1907 struct task_struct *t = current;
1908 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1909
c96d145e 1910 for_each_domain(cpu, tmp) {
9761eea8
IM
1911 /*
1912 * If power savings logic is enabled for a domain, stop there.
1913 */
5c45bf27
SS
1914 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1915 break;
476d139c
NP
1916 if (tmp->flags & flag)
1917 sd = tmp;
c96d145e 1918 }
476d139c
NP
1919
1920 while (sd) {
1921 cpumask_t span;
1922 struct sched_group *group;
1a848870
SS
1923 int new_cpu, weight;
1924
1925 if (!(sd->flags & flag)) {
1926 sd = sd->child;
1927 continue;
1928 }
476d139c
NP
1929
1930 span = sd->span;
1931 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1932 if (!group) {
1933 sd = sd->child;
1934 continue;
1935 }
476d139c 1936
da5a5522 1937 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1938 if (new_cpu == -1 || new_cpu == cpu) {
1939 /* Now try balancing at a lower domain level of cpu */
1940 sd = sd->child;
1941 continue;
1942 }
476d139c 1943
1a848870 1944 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1945 cpu = new_cpu;
476d139c
NP
1946 sd = NULL;
1947 weight = cpus_weight(span);
1948 for_each_domain(cpu, tmp) {
1949 if (weight <= cpus_weight(tmp->span))
1950 break;
1951 if (tmp->flags & flag)
1952 sd = tmp;
1953 }
1954 /* while loop will break here if sd == NULL */
1955 }
1956
1957 return cpu;
1958}
1959
1960#endif /* CONFIG_SMP */
1da177e4 1961
1da177e4
LT
1962/***
1963 * try_to_wake_up - wake up a thread
1964 * @p: the to-be-woken-up thread
1965 * @state: the mask of task states that can be woken
1966 * @sync: do a synchronous wakeup?
1967 *
1968 * Put it on the run-queue if it's not already there. The "current"
1969 * thread is always on the run-queue (except when the actual
1970 * re-schedule is in progress), and as such you're allowed to do
1971 * the simpler "current->state = TASK_RUNNING" to mark yourself
1972 * runnable without the overhead of this.
1973 *
1974 * returns failure only if the task is already active.
1975 */
36c8b586 1976static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1977{
cc367732 1978 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1979 unsigned long flags;
1980 long old_state;
70b97a7f 1981 struct rq *rq;
1da177e4 1982
b85d0667
IM
1983 if (!sched_feat(SYNC_WAKEUPS))
1984 sync = 0;
1985
04e2f174 1986 smp_wmb();
1da177e4
LT
1987 rq = task_rq_lock(p, &flags);
1988 old_state = p->state;
1989 if (!(old_state & state))
1990 goto out;
1991
dd41f596 1992 if (p->se.on_rq)
1da177e4
LT
1993 goto out_running;
1994
1995 cpu = task_cpu(p);
cc367732 1996 orig_cpu = cpu;
1da177e4
LT
1997 this_cpu = smp_processor_id();
1998
1999#ifdef CONFIG_SMP
2000 if (unlikely(task_running(rq, p)))
2001 goto out_activate;
2002
5d2f5a61
DA
2003 cpu = p->sched_class->select_task_rq(p, sync);
2004 if (cpu != orig_cpu) {
2005 set_task_cpu(p, cpu);
1da177e4
LT
2006 task_rq_unlock(rq, &flags);
2007 /* might preempt at this point */
2008 rq = task_rq_lock(p, &flags);
2009 old_state = p->state;
2010 if (!(old_state & state))
2011 goto out;
dd41f596 2012 if (p->se.on_rq)
1da177e4
LT
2013 goto out_running;
2014
2015 this_cpu = smp_processor_id();
2016 cpu = task_cpu(p);
2017 }
2018
e7693a36
GH
2019#ifdef CONFIG_SCHEDSTATS
2020 schedstat_inc(rq, ttwu_count);
2021 if (cpu == this_cpu)
2022 schedstat_inc(rq, ttwu_local);
2023 else {
2024 struct sched_domain *sd;
2025 for_each_domain(this_cpu, sd) {
2026 if (cpu_isset(cpu, sd->span)) {
2027 schedstat_inc(sd, ttwu_wake_remote);
2028 break;
2029 }
2030 }
2031 }
e7693a36
GH
2032#endif
2033
1da177e4
LT
2034out_activate:
2035#endif /* CONFIG_SMP */
cc367732
IM
2036 schedstat_inc(p, se.nr_wakeups);
2037 if (sync)
2038 schedstat_inc(p, se.nr_wakeups_sync);
2039 if (orig_cpu != cpu)
2040 schedstat_inc(p, se.nr_wakeups_migrate);
2041 if (cpu == this_cpu)
2042 schedstat_inc(p, se.nr_wakeups_local);
2043 else
2044 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2045 update_rq_clock(rq);
dd41f596 2046 activate_task(rq, p, 1);
1da177e4
LT
2047 success = 1;
2048
2049out_running:
4ae7d5ce
IM
2050 check_preempt_curr(rq, p);
2051
1da177e4 2052 p->state = TASK_RUNNING;
9a897c5a
SR
2053#ifdef CONFIG_SMP
2054 if (p->sched_class->task_wake_up)
2055 p->sched_class->task_wake_up(rq, p);
2056#endif
1da177e4
LT
2057out:
2058 task_rq_unlock(rq, &flags);
2059
2060 return success;
2061}
2062
7ad5b3a5 2063int wake_up_process(struct task_struct *p)
1da177e4 2064{
d9514f6c 2065 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2066}
1da177e4
LT
2067EXPORT_SYMBOL(wake_up_process);
2068
7ad5b3a5 2069int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2070{
2071 return try_to_wake_up(p, state, 0);
2072}
2073
1da177e4
LT
2074/*
2075 * Perform scheduler related setup for a newly forked process p.
2076 * p is forked by current.
dd41f596
IM
2077 *
2078 * __sched_fork() is basic setup used by init_idle() too:
2079 */
2080static void __sched_fork(struct task_struct *p)
2081{
dd41f596
IM
2082 p->se.exec_start = 0;
2083 p->se.sum_exec_runtime = 0;
f6cf891c 2084 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2085 p->se.last_wakeup = 0;
2086 p->se.avg_overlap = 0;
6cfb0d5d
IM
2087
2088#ifdef CONFIG_SCHEDSTATS
2089 p->se.wait_start = 0;
dd41f596
IM
2090 p->se.sum_sleep_runtime = 0;
2091 p->se.sleep_start = 0;
dd41f596
IM
2092 p->se.block_start = 0;
2093 p->se.sleep_max = 0;
2094 p->se.block_max = 0;
2095 p->se.exec_max = 0;
eba1ed4b 2096 p->se.slice_max = 0;
dd41f596 2097 p->se.wait_max = 0;
6cfb0d5d 2098#endif
476d139c 2099
fa717060 2100 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2101 p->se.on_rq = 0;
476d139c 2102
e107be36
AK
2103#ifdef CONFIG_PREEMPT_NOTIFIERS
2104 INIT_HLIST_HEAD(&p->preempt_notifiers);
2105#endif
2106
1da177e4
LT
2107 /*
2108 * We mark the process as running here, but have not actually
2109 * inserted it onto the runqueue yet. This guarantees that
2110 * nobody will actually run it, and a signal or other external
2111 * event cannot wake it up and insert it on the runqueue either.
2112 */
2113 p->state = TASK_RUNNING;
dd41f596
IM
2114}
2115
2116/*
2117 * fork()/clone()-time setup:
2118 */
2119void sched_fork(struct task_struct *p, int clone_flags)
2120{
2121 int cpu = get_cpu();
2122
2123 __sched_fork(p);
2124
2125#ifdef CONFIG_SMP
2126 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2127#endif
02e4bac2 2128 set_task_cpu(p, cpu);
b29739f9
IM
2129
2130 /*
2131 * Make sure we do not leak PI boosting priority to the child:
2132 */
2133 p->prio = current->normal_prio;
2ddbf952
HS
2134 if (!rt_prio(p->prio))
2135 p->sched_class = &fair_sched_class;
b29739f9 2136
52f17b6c 2137#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2138 if (likely(sched_info_on()))
52f17b6c 2139 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2140#endif
d6077cb8 2141#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2142 p->oncpu = 0;
2143#endif
1da177e4 2144#ifdef CONFIG_PREEMPT
4866cde0 2145 /* Want to start with kernel preemption disabled. */
a1261f54 2146 task_thread_info(p)->preempt_count = 1;
1da177e4 2147#endif
476d139c 2148 put_cpu();
1da177e4
LT
2149}
2150
2151/*
2152 * wake_up_new_task - wake up a newly created task for the first time.
2153 *
2154 * This function will do some initial scheduler statistics housekeeping
2155 * that must be done for every newly created context, then puts the task
2156 * on the runqueue and wakes it.
2157 */
7ad5b3a5 2158void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2159{
2160 unsigned long flags;
dd41f596 2161 struct rq *rq;
1da177e4
LT
2162
2163 rq = task_rq_lock(p, &flags);
147cbb4b 2164 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2165 update_rq_clock(rq);
1da177e4
LT
2166
2167 p->prio = effective_prio(p);
2168
b9dca1e0 2169 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2170 activate_task(rq, p, 0);
1da177e4 2171 } else {
1da177e4 2172 /*
dd41f596
IM
2173 * Let the scheduling class do new task startup
2174 * management (if any):
1da177e4 2175 */
ee0827d8 2176 p->sched_class->task_new(rq, p);
62fb1851 2177 inc_nr_running(p, rq);
1da177e4 2178 }
dd41f596 2179 check_preempt_curr(rq, p);
9a897c5a
SR
2180#ifdef CONFIG_SMP
2181 if (p->sched_class->task_wake_up)
2182 p->sched_class->task_wake_up(rq, p);
2183#endif
dd41f596 2184 task_rq_unlock(rq, &flags);
1da177e4
LT
2185}
2186
e107be36
AK
2187#ifdef CONFIG_PREEMPT_NOTIFIERS
2188
2189/**
421cee29
RD
2190 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2191 * @notifier: notifier struct to register
e107be36
AK
2192 */
2193void preempt_notifier_register(struct preempt_notifier *notifier)
2194{
2195 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2196}
2197EXPORT_SYMBOL_GPL(preempt_notifier_register);
2198
2199/**
2200 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2201 * @notifier: notifier struct to unregister
e107be36
AK
2202 *
2203 * This is safe to call from within a preemption notifier.
2204 */
2205void preempt_notifier_unregister(struct preempt_notifier *notifier)
2206{
2207 hlist_del(&notifier->link);
2208}
2209EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2210
2211static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2212{
2213 struct preempt_notifier *notifier;
2214 struct hlist_node *node;
2215
2216 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2217 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2218}
2219
2220static void
2221fire_sched_out_preempt_notifiers(struct task_struct *curr,
2222 struct task_struct *next)
2223{
2224 struct preempt_notifier *notifier;
2225 struct hlist_node *node;
2226
2227 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2228 notifier->ops->sched_out(notifier, next);
2229}
2230
2231#else
2232
2233static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2234{
2235}
2236
2237static void
2238fire_sched_out_preempt_notifiers(struct task_struct *curr,
2239 struct task_struct *next)
2240{
2241}
2242
2243#endif
2244
4866cde0
NP
2245/**
2246 * prepare_task_switch - prepare to switch tasks
2247 * @rq: the runqueue preparing to switch
421cee29 2248 * @prev: the current task that is being switched out
4866cde0
NP
2249 * @next: the task we are going to switch to.
2250 *
2251 * This is called with the rq lock held and interrupts off. It must
2252 * be paired with a subsequent finish_task_switch after the context
2253 * switch.
2254 *
2255 * prepare_task_switch sets up locking and calls architecture specific
2256 * hooks.
2257 */
e107be36
AK
2258static inline void
2259prepare_task_switch(struct rq *rq, struct task_struct *prev,
2260 struct task_struct *next)
4866cde0 2261{
e107be36 2262 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2263 prepare_lock_switch(rq, next);
2264 prepare_arch_switch(next);
2265}
2266
1da177e4
LT
2267/**
2268 * finish_task_switch - clean up after a task-switch
344babaa 2269 * @rq: runqueue associated with task-switch
1da177e4
LT
2270 * @prev: the thread we just switched away from.
2271 *
4866cde0
NP
2272 * finish_task_switch must be called after the context switch, paired
2273 * with a prepare_task_switch call before the context switch.
2274 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2275 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2276 *
2277 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2278 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2279 * with the lock held can cause deadlocks; see schedule() for
2280 * details.)
2281 */
a9957449 2282static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2283 __releases(rq->lock)
2284{
1da177e4 2285 struct mm_struct *mm = rq->prev_mm;
55a101f8 2286 long prev_state;
1da177e4
LT
2287
2288 rq->prev_mm = NULL;
2289
2290 /*
2291 * A task struct has one reference for the use as "current".
c394cc9f 2292 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2293 * schedule one last time. The schedule call will never return, and
2294 * the scheduled task must drop that reference.
c394cc9f 2295 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2296 * still held, otherwise prev could be scheduled on another cpu, die
2297 * there before we look at prev->state, and then the reference would
2298 * be dropped twice.
2299 * Manfred Spraul <manfred@colorfullife.com>
2300 */
55a101f8 2301 prev_state = prev->state;
4866cde0
NP
2302 finish_arch_switch(prev);
2303 finish_lock_switch(rq, prev);
9a897c5a
SR
2304#ifdef CONFIG_SMP
2305 if (current->sched_class->post_schedule)
2306 current->sched_class->post_schedule(rq);
2307#endif
e8fa1362 2308
e107be36 2309 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2310 if (mm)
2311 mmdrop(mm);
c394cc9f 2312 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2313 /*
2314 * Remove function-return probe instances associated with this
2315 * task and put them back on the free list.
9761eea8 2316 */
c6fd91f0 2317 kprobe_flush_task(prev);
1da177e4 2318 put_task_struct(prev);
c6fd91f0 2319 }
1da177e4
LT
2320}
2321
2322/**
2323 * schedule_tail - first thing a freshly forked thread must call.
2324 * @prev: the thread we just switched away from.
2325 */
36c8b586 2326asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2327 __releases(rq->lock)
2328{
70b97a7f
IM
2329 struct rq *rq = this_rq();
2330
4866cde0
NP
2331 finish_task_switch(rq, prev);
2332#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2333 /* In this case, finish_task_switch does not reenable preemption */
2334 preempt_enable();
2335#endif
1da177e4 2336 if (current->set_child_tid)
b488893a 2337 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2338}
2339
2340/*
2341 * context_switch - switch to the new MM and the new
2342 * thread's register state.
2343 */
dd41f596 2344static inline void
70b97a7f 2345context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2346 struct task_struct *next)
1da177e4 2347{
dd41f596 2348 struct mm_struct *mm, *oldmm;
1da177e4 2349
e107be36 2350 prepare_task_switch(rq, prev, next);
dd41f596
IM
2351 mm = next->mm;
2352 oldmm = prev->active_mm;
9226d125
ZA
2353 /*
2354 * For paravirt, this is coupled with an exit in switch_to to
2355 * combine the page table reload and the switch backend into
2356 * one hypercall.
2357 */
2358 arch_enter_lazy_cpu_mode();
2359
dd41f596 2360 if (unlikely(!mm)) {
1da177e4
LT
2361 next->active_mm = oldmm;
2362 atomic_inc(&oldmm->mm_count);
2363 enter_lazy_tlb(oldmm, next);
2364 } else
2365 switch_mm(oldmm, mm, next);
2366
dd41f596 2367 if (unlikely(!prev->mm)) {
1da177e4 2368 prev->active_mm = NULL;
1da177e4
LT
2369 rq->prev_mm = oldmm;
2370 }
3a5f5e48
IM
2371 /*
2372 * Since the runqueue lock will be released by the next
2373 * task (which is an invalid locking op but in the case
2374 * of the scheduler it's an obvious special-case), so we
2375 * do an early lockdep release here:
2376 */
2377#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2378 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2379#endif
1da177e4
LT
2380
2381 /* Here we just switch the register state and the stack. */
2382 switch_to(prev, next, prev);
2383
dd41f596
IM
2384 barrier();
2385 /*
2386 * this_rq must be evaluated again because prev may have moved
2387 * CPUs since it called schedule(), thus the 'rq' on its stack
2388 * frame will be invalid.
2389 */
2390 finish_task_switch(this_rq(), prev);
1da177e4
LT
2391}
2392
2393/*
2394 * nr_running, nr_uninterruptible and nr_context_switches:
2395 *
2396 * externally visible scheduler statistics: current number of runnable
2397 * threads, current number of uninterruptible-sleeping threads, total
2398 * number of context switches performed since bootup.
2399 */
2400unsigned long nr_running(void)
2401{
2402 unsigned long i, sum = 0;
2403
2404 for_each_online_cpu(i)
2405 sum += cpu_rq(i)->nr_running;
2406
2407 return sum;
2408}
2409
2410unsigned long nr_uninterruptible(void)
2411{
2412 unsigned long i, sum = 0;
2413
0a945022 2414 for_each_possible_cpu(i)
1da177e4
LT
2415 sum += cpu_rq(i)->nr_uninterruptible;
2416
2417 /*
2418 * Since we read the counters lockless, it might be slightly
2419 * inaccurate. Do not allow it to go below zero though:
2420 */
2421 if (unlikely((long)sum < 0))
2422 sum = 0;
2423
2424 return sum;
2425}
2426
2427unsigned long long nr_context_switches(void)
2428{
cc94abfc
SR
2429 int i;
2430 unsigned long long sum = 0;
1da177e4 2431
0a945022 2432 for_each_possible_cpu(i)
1da177e4
LT
2433 sum += cpu_rq(i)->nr_switches;
2434
2435 return sum;
2436}
2437
2438unsigned long nr_iowait(void)
2439{
2440 unsigned long i, sum = 0;
2441
0a945022 2442 for_each_possible_cpu(i)
1da177e4
LT
2443 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2444
2445 return sum;
2446}
2447
db1b1fef
JS
2448unsigned long nr_active(void)
2449{
2450 unsigned long i, running = 0, uninterruptible = 0;
2451
2452 for_each_online_cpu(i) {
2453 running += cpu_rq(i)->nr_running;
2454 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2455 }
2456
2457 if (unlikely((long)uninterruptible < 0))
2458 uninterruptible = 0;
2459
2460 return running + uninterruptible;
2461}
2462
48f24c4d 2463/*
dd41f596
IM
2464 * Update rq->cpu_load[] statistics. This function is usually called every
2465 * scheduler tick (TICK_NSEC).
48f24c4d 2466 */
dd41f596 2467static void update_cpu_load(struct rq *this_rq)
48f24c4d 2468{
495eca49 2469 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2470 int i, scale;
2471
2472 this_rq->nr_load_updates++;
dd41f596
IM
2473
2474 /* Update our load: */
2475 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2476 unsigned long old_load, new_load;
2477
2478 /* scale is effectively 1 << i now, and >> i divides by scale */
2479
2480 old_load = this_rq->cpu_load[i];
2481 new_load = this_load;
a25707f3
IM
2482 /*
2483 * Round up the averaging division if load is increasing. This
2484 * prevents us from getting stuck on 9 if the load is 10, for
2485 * example.
2486 */
2487 if (new_load > old_load)
2488 new_load += scale-1;
dd41f596
IM
2489 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2490 }
48f24c4d
IM
2491}
2492
dd41f596
IM
2493#ifdef CONFIG_SMP
2494
1da177e4
LT
2495/*
2496 * double_rq_lock - safely lock two runqueues
2497 *
2498 * Note this does not disable interrupts like task_rq_lock,
2499 * you need to do so manually before calling.
2500 */
70b97a7f 2501static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2502 __acquires(rq1->lock)
2503 __acquires(rq2->lock)
2504{
054b9108 2505 BUG_ON(!irqs_disabled());
1da177e4
LT
2506 if (rq1 == rq2) {
2507 spin_lock(&rq1->lock);
2508 __acquire(rq2->lock); /* Fake it out ;) */
2509 } else {
c96d145e 2510 if (rq1 < rq2) {
1da177e4
LT
2511 spin_lock(&rq1->lock);
2512 spin_lock(&rq2->lock);
2513 } else {
2514 spin_lock(&rq2->lock);
2515 spin_lock(&rq1->lock);
2516 }
2517 }
6e82a3be
IM
2518 update_rq_clock(rq1);
2519 update_rq_clock(rq2);
1da177e4
LT
2520}
2521
2522/*
2523 * double_rq_unlock - safely unlock two runqueues
2524 *
2525 * Note this does not restore interrupts like task_rq_unlock,
2526 * you need to do so manually after calling.
2527 */
70b97a7f 2528static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2529 __releases(rq1->lock)
2530 __releases(rq2->lock)
2531{
2532 spin_unlock(&rq1->lock);
2533 if (rq1 != rq2)
2534 spin_unlock(&rq2->lock);
2535 else
2536 __release(rq2->lock);
2537}
2538
2539/*
2540 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2541 */
e8fa1362 2542static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2543 __releases(this_rq->lock)
2544 __acquires(busiest->lock)
2545 __acquires(this_rq->lock)
2546{
e8fa1362
SR
2547 int ret = 0;
2548
054b9108
KK
2549 if (unlikely(!irqs_disabled())) {
2550 /* printk() doesn't work good under rq->lock */
2551 spin_unlock(&this_rq->lock);
2552 BUG_ON(1);
2553 }
1da177e4 2554 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2555 if (busiest < this_rq) {
1da177e4
LT
2556 spin_unlock(&this_rq->lock);
2557 spin_lock(&busiest->lock);
2558 spin_lock(&this_rq->lock);
e8fa1362 2559 ret = 1;
1da177e4
LT
2560 } else
2561 spin_lock(&busiest->lock);
2562 }
e8fa1362 2563 return ret;
1da177e4
LT
2564}
2565
1da177e4
LT
2566/*
2567 * If dest_cpu is allowed for this process, migrate the task to it.
2568 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2569 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2570 * the cpu_allowed mask is restored.
2571 */
36c8b586 2572static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2573{
70b97a7f 2574 struct migration_req req;
1da177e4 2575 unsigned long flags;
70b97a7f 2576 struct rq *rq;
1da177e4
LT
2577
2578 rq = task_rq_lock(p, &flags);
2579 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2580 || unlikely(cpu_is_offline(dest_cpu)))
2581 goto out;
2582
2583 /* force the process onto the specified CPU */
2584 if (migrate_task(p, dest_cpu, &req)) {
2585 /* Need to wait for migration thread (might exit: take ref). */
2586 struct task_struct *mt = rq->migration_thread;
36c8b586 2587
1da177e4
LT
2588 get_task_struct(mt);
2589 task_rq_unlock(rq, &flags);
2590 wake_up_process(mt);
2591 put_task_struct(mt);
2592 wait_for_completion(&req.done);
36c8b586 2593
1da177e4
LT
2594 return;
2595 }
2596out:
2597 task_rq_unlock(rq, &flags);
2598}
2599
2600/*
476d139c
NP
2601 * sched_exec - execve() is a valuable balancing opportunity, because at
2602 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2603 */
2604void sched_exec(void)
2605{
1da177e4 2606 int new_cpu, this_cpu = get_cpu();
476d139c 2607 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2608 put_cpu();
476d139c
NP
2609 if (new_cpu != this_cpu)
2610 sched_migrate_task(current, new_cpu);
1da177e4
LT
2611}
2612
2613/*
2614 * pull_task - move a task from a remote runqueue to the local runqueue.
2615 * Both runqueues must be locked.
2616 */
dd41f596
IM
2617static void pull_task(struct rq *src_rq, struct task_struct *p,
2618 struct rq *this_rq, int this_cpu)
1da177e4 2619{
2e1cb74a 2620 deactivate_task(src_rq, p, 0);
1da177e4 2621 set_task_cpu(p, this_cpu);
dd41f596 2622 activate_task(this_rq, p, 0);
1da177e4
LT
2623 /*
2624 * Note that idle threads have a prio of MAX_PRIO, for this test
2625 * to be always true for them.
2626 */
dd41f596 2627 check_preempt_curr(this_rq, p);
1da177e4
LT
2628}
2629
2630/*
2631 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2632 */
858119e1 2633static
70b97a7f 2634int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2635 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2636 int *all_pinned)
1da177e4
LT
2637{
2638 /*
2639 * We do not migrate tasks that are:
2640 * 1) running (obviously), or
2641 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2642 * 3) are cache-hot on their current CPU.
2643 */
cc367732
IM
2644 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2645 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2646 return 0;
cc367732 2647 }
81026794
NP
2648 *all_pinned = 0;
2649
cc367732
IM
2650 if (task_running(rq, p)) {
2651 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2652 return 0;
cc367732 2653 }
1da177e4 2654
da84d961
IM
2655 /*
2656 * Aggressive migration if:
2657 * 1) task is cache cold, or
2658 * 2) too many balance attempts have failed.
2659 */
2660
6bc1665b
IM
2661 if (!task_hot(p, rq->clock, sd) ||
2662 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2663#ifdef CONFIG_SCHEDSTATS
cc367732 2664 if (task_hot(p, rq->clock, sd)) {
da84d961 2665 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2666 schedstat_inc(p, se.nr_forced_migrations);
2667 }
da84d961
IM
2668#endif
2669 return 1;
2670 }
2671
cc367732
IM
2672 if (task_hot(p, rq->clock, sd)) {
2673 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2674 return 0;
cc367732 2675 }
1da177e4
LT
2676 return 1;
2677}
2678
e1d1484f
PW
2679static unsigned long
2680balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2681 unsigned long max_load_move, struct sched_domain *sd,
2682 enum cpu_idle_type idle, int *all_pinned,
2683 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2684{
b82d9fdd 2685 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2686 struct task_struct *p;
2687 long rem_load_move = max_load_move;
1da177e4 2688
e1d1484f 2689 if (max_load_move == 0)
1da177e4
LT
2690 goto out;
2691
81026794
NP
2692 pinned = 1;
2693
1da177e4 2694 /*
dd41f596 2695 * Start the load-balancing iterator:
1da177e4 2696 */
dd41f596
IM
2697 p = iterator->start(iterator->arg);
2698next:
b82d9fdd 2699 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2700 goto out;
50ddd969 2701 /*
b82d9fdd 2702 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2703 * skip a task if it will be the highest priority task (i.e. smallest
2704 * prio value) on its new queue regardless of its load weight
2705 */
dd41f596
IM
2706 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2707 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2708 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2709 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2710 p = iterator->next(iterator->arg);
2711 goto next;
1da177e4
LT
2712 }
2713
dd41f596 2714 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2715 pulled++;
dd41f596 2716 rem_load_move -= p->se.load.weight;
1da177e4 2717
2dd73a4f 2718 /*
b82d9fdd 2719 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2720 */
e1d1484f 2721 if (rem_load_move > 0) {
a4ac01c3
PW
2722 if (p->prio < *this_best_prio)
2723 *this_best_prio = p->prio;
dd41f596
IM
2724 p = iterator->next(iterator->arg);
2725 goto next;
1da177e4
LT
2726 }
2727out:
2728 /*
e1d1484f 2729 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2730 * so we can safely collect pull_task() stats here rather than
2731 * inside pull_task().
2732 */
2733 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2734
2735 if (all_pinned)
2736 *all_pinned = pinned;
e1d1484f
PW
2737
2738 return max_load_move - rem_load_move;
1da177e4
LT
2739}
2740
dd41f596 2741/*
43010659
PW
2742 * move_tasks tries to move up to max_load_move weighted load from busiest to
2743 * this_rq, as part of a balancing operation within domain "sd".
2744 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2745 *
2746 * Called with both runqueues locked.
2747 */
2748static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2749 unsigned long max_load_move,
dd41f596
IM
2750 struct sched_domain *sd, enum cpu_idle_type idle,
2751 int *all_pinned)
2752{
5522d5d5 2753 const struct sched_class *class = sched_class_highest;
43010659 2754 unsigned long total_load_moved = 0;
a4ac01c3 2755 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2756
2757 do {
43010659
PW
2758 total_load_moved +=
2759 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2760 max_load_move - total_load_moved,
a4ac01c3 2761 sd, idle, all_pinned, &this_best_prio);
dd41f596 2762 class = class->next;
43010659 2763 } while (class && max_load_move > total_load_moved);
dd41f596 2764
43010659
PW
2765 return total_load_moved > 0;
2766}
2767
e1d1484f
PW
2768static int
2769iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2770 struct sched_domain *sd, enum cpu_idle_type idle,
2771 struct rq_iterator *iterator)
2772{
2773 struct task_struct *p = iterator->start(iterator->arg);
2774 int pinned = 0;
2775
2776 while (p) {
2777 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2778 pull_task(busiest, p, this_rq, this_cpu);
2779 /*
2780 * Right now, this is only the second place pull_task()
2781 * is called, so we can safely collect pull_task()
2782 * stats here rather than inside pull_task().
2783 */
2784 schedstat_inc(sd, lb_gained[idle]);
2785
2786 return 1;
2787 }
2788 p = iterator->next(iterator->arg);
2789 }
2790
2791 return 0;
2792}
2793
43010659
PW
2794/*
2795 * move_one_task tries to move exactly one task from busiest to this_rq, as
2796 * part of active balancing operations within "domain".
2797 * Returns 1 if successful and 0 otherwise.
2798 *
2799 * Called with both runqueues locked.
2800 */
2801static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2802 struct sched_domain *sd, enum cpu_idle_type idle)
2803{
5522d5d5 2804 const struct sched_class *class;
43010659
PW
2805
2806 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2807 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2808 return 1;
2809
2810 return 0;
dd41f596
IM
2811}
2812
1da177e4
LT
2813/*
2814 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2815 * domain. It calculates and returns the amount of weighted load which
2816 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2817 */
2818static struct sched_group *
2819find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2820 unsigned long *imbalance, enum cpu_idle_type idle,
2821 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2822{
2823 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2824 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2825 unsigned long max_pull;
2dd73a4f
PW
2826 unsigned long busiest_load_per_task, busiest_nr_running;
2827 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2828 int load_idx, group_imb = 0;
5c45bf27
SS
2829#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2830 int power_savings_balance = 1;
2831 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2832 unsigned long min_nr_running = ULONG_MAX;
2833 struct sched_group *group_min = NULL, *group_leader = NULL;
2834#endif
1da177e4
LT
2835
2836 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2837 busiest_load_per_task = busiest_nr_running = 0;
2838 this_load_per_task = this_nr_running = 0;
d15bcfdb 2839 if (idle == CPU_NOT_IDLE)
7897986b 2840 load_idx = sd->busy_idx;
d15bcfdb 2841 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2842 load_idx = sd->newidle_idx;
2843 else
2844 load_idx = sd->idle_idx;
1da177e4
LT
2845
2846 do {
908a7c1b 2847 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2848 int local_group;
2849 int i;
908a7c1b 2850 int __group_imb = 0;
783609c6 2851 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2852 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2853
2854 local_group = cpu_isset(this_cpu, group->cpumask);
2855
783609c6
SS
2856 if (local_group)
2857 balance_cpu = first_cpu(group->cpumask);
2858
1da177e4 2859 /* Tally up the load of all CPUs in the group */
2dd73a4f 2860 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2861 max_cpu_load = 0;
2862 min_cpu_load = ~0UL;
1da177e4
LT
2863
2864 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2865 struct rq *rq;
2866
2867 if (!cpu_isset(i, *cpus))
2868 continue;
2869
2870 rq = cpu_rq(i);
2dd73a4f 2871
9439aab8 2872 if (*sd_idle && rq->nr_running)
5969fe06
NP
2873 *sd_idle = 0;
2874
1da177e4 2875 /* Bias balancing toward cpus of our domain */
783609c6
SS
2876 if (local_group) {
2877 if (idle_cpu(i) && !first_idle_cpu) {
2878 first_idle_cpu = 1;
2879 balance_cpu = i;
2880 }
2881
a2000572 2882 load = target_load(i, load_idx);
908a7c1b 2883 } else {
a2000572 2884 load = source_load(i, load_idx);
908a7c1b
KC
2885 if (load > max_cpu_load)
2886 max_cpu_load = load;
2887 if (min_cpu_load > load)
2888 min_cpu_load = load;
2889 }
1da177e4
LT
2890
2891 avg_load += load;
2dd73a4f 2892 sum_nr_running += rq->nr_running;
dd41f596 2893 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2894 }
2895
783609c6
SS
2896 /*
2897 * First idle cpu or the first cpu(busiest) in this sched group
2898 * is eligible for doing load balancing at this and above
9439aab8
SS
2899 * domains. In the newly idle case, we will allow all the cpu's
2900 * to do the newly idle load balance.
783609c6 2901 */
9439aab8
SS
2902 if (idle != CPU_NEWLY_IDLE && local_group &&
2903 balance_cpu != this_cpu && balance) {
783609c6
SS
2904 *balance = 0;
2905 goto ret;
2906 }
2907
1da177e4 2908 total_load += avg_load;
5517d86b 2909 total_pwr += group->__cpu_power;
1da177e4
LT
2910
2911 /* Adjust by relative CPU power of the group */
5517d86b
ED
2912 avg_load = sg_div_cpu_power(group,
2913 avg_load * SCHED_LOAD_SCALE);
1da177e4 2914
908a7c1b
KC
2915 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2916 __group_imb = 1;
2917
5517d86b 2918 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2919
1da177e4
LT
2920 if (local_group) {
2921 this_load = avg_load;
2922 this = group;
2dd73a4f
PW
2923 this_nr_running = sum_nr_running;
2924 this_load_per_task = sum_weighted_load;
2925 } else if (avg_load > max_load &&
908a7c1b 2926 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2927 max_load = avg_load;
2928 busiest = group;
2dd73a4f
PW
2929 busiest_nr_running = sum_nr_running;
2930 busiest_load_per_task = sum_weighted_load;
908a7c1b 2931 group_imb = __group_imb;
1da177e4 2932 }
5c45bf27
SS
2933
2934#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2935 /*
2936 * Busy processors will not participate in power savings
2937 * balance.
2938 */
dd41f596
IM
2939 if (idle == CPU_NOT_IDLE ||
2940 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2941 goto group_next;
5c45bf27
SS
2942
2943 /*
2944 * If the local group is idle or completely loaded
2945 * no need to do power savings balance at this domain
2946 */
2947 if (local_group && (this_nr_running >= group_capacity ||
2948 !this_nr_running))
2949 power_savings_balance = 0;
2950
dd41f596 2951 /*
5c45bf27
SS
2952 * If a group is already running at full capacity or idle,
2953 * don't include that group in power savings calculations
dd41f596
IM
2954 */
2955 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2956 || !sum_nr_running)
dd41f596 2957 goto group_next;
5c45bf27 2958
dd41f596 2959 /*
5c45bf27 2960 * Calculate the group which has the least non-idle load.
dd41f596
IM
2961 * This is the group from where we need to pick up the load
2962 * for saving power
2963 */
2964 if ((sum_nr_running < min_nr_running) ||
2965 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2966 first_cpu(group->cpumask) <
2967 first_cpu(group_min->cpumask))) {
dd41f596
IM
2968 group_min = group;
2969 min_nr_running = sum_nr_running;
5c45bf27
SS
2970 min_load_per_task = sum_weighted_load /
2971 sum_nr_running;
dd41f596 2972 }
5c45bf27 2973
dd41f596 2974 /*
5c45bf27 2975 * Calculate the group which is almost near its
dd41f596
IM
2976 * capacity but still has some space to pick up some load
2977 * from other group and save more power
2978 */
2979 if (sum_nr_running <= group_capacity - 1) {
2980 if (sum_nr_running > leader_nr_running ||
2981 (sum_nr_running == leader_nr_running &&
2982 first_cpu(group->cpumask) >
2983 first_cpu(group_leader->cpumask))) {
2984 group_leader = group;
2985 leader_nr_running = sum_nr_running;
2986 }
48f24c4d 2987 }
5c45bf27
SS
2988group_next:
2989#endif
1da177e4
LT
2990 group = group->next;
2991 } while (group != sd->groups);
2992
2dd73a4f 2993 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2994 goto out_balanced;
2995
2996 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2997
2998 if (this_load >= avg_load ||
2999 100*max_load <= sd->imbalance_pct*this_load)
3000 goto out_balanced;
3001
2dd73a4f 3002 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3003 if (group_imb)
3004 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3005
1da177e4
LT
3006 /*
3007 * We're trying to get all the cpus to the average_load, so we don't
3008 * want to push ourselves above the average load, nor do we wish to
3009 * reduce the max loaded cpu below the average load, as either of these
3010 * actions would just result in more rebalancing later, and ping-pong
3011 * tasks around. Thus we look for the minimum possible imbalance.
3012 * Negative imbalances (*we* are more loaded than anyone else) will
3013 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3014 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3015 * appear as very large values with unsigned longs.
3016 */
2dd73a4f
PW
3017 if (max_load <= busiest_load_per_task)
3018 goto out_balanced;
3019
3020 /*
3021 * In the presence of smp nice balancing, certain scenarios can have
3022 * max load less than avg load(as we skip the groups at or below
3023 * its cpu_power, while calculating max_load..)
3024 */
3025 if (max_load < avg_load) {
3026 *imbalance = 0;
3027 goto small_imbalance;
3028 }
0c117f1b
SS
3029
3030 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3031 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3032
1da177e4 3033 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3034 *imbalance = min(max_pull * busiest->__cpu_power,
3035 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3036 / SCHED_LOAD_SCALE;
3037
2dd73a4f
PW
3038 /*
3039 * if *imbalance is less than the average load per runnable task
3040 * there is no gaurantee that any tasks will be moved so we'll have
3041 * a think about bumping its value to force at least one task to be
3042 * moved
3043 */
7fd0d2dd 3044 if (*imbalance < busiest_load_per_task) {
48f24c4d 3045 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3046 unsigned int imbn;
3047
3048small_imbalance:
3049 pwr_move = pwr_now = 0;
3050 imbn = 2;
3051 if (this_nr_running) {
3052 this_load_per_task /= this_nr_running;
3053 if (busiest_load_per_task > this_load_per_task)
3054 imbn = 1;
3055 } else
3056 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3057
dd41f596
IM
3058 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3059 busiest_load_per_task * imbn) {
2dd73a4f 3060 *imbalance = busiest_load_per_task;
1da177e4
LT
3061 return busiest;
3062 }
3063
3064 /*
3065 * OK, we don't have enough imbalance to justify moving tasks,
3066 * however we may be able to increase total CPU power used by
3067 * moving them.
3068 */
3069
5517d86b
ED
3070 pwr_now += busiest->__cpu_power *
3071 min(busiest_load_per_task, max_load);
3072 pwr_now += this->__cpu_power *
3073 min(this_load_per_task, this_load);
1da177e4
LT
3074 pwr_now /= SCHED_LOAD_SCALE;
3075
3076 /* Amount of load we'd subtract */
5517d86b
ED
3077 tmp = sg_div_cpu_power(busiest,
3078 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3079 if (max_load > tmp)
5517d86b 3080 pwr_move += busiest->__cpu_power *
2dd73a4f 3081 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3082
3083 /* Amount of load we'd add */
5517d86b 3084 if (max_load * busiest->__cpu_power <
33859f7f 3085 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3086 tmp = sg_div_cpu_power(this,
3087 max_load * busiest->__cpu_power);
1da177e4 3088 else
5517d86b
ED
3089 tmp = sg_div_cpu_power(this,
3090 busiest_load_per_task * SCHED_LOAD_SCALE);
3091 pwr_move += this->__cpu_power *
3092 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3093 pwr_move /= SCHED_LOAD_SCALE;
3094
3095 /* Move if we gain throughput */
7fd0d2dd
SS
3096 if (pwr_move > pwr_now)
3097 *imbalance = busiest_load_per_task;
1da177e4
LT
3098 }
3099
1da177e4
LT
3100 return busiest;
3101
3102out_balanced:
5c45bf27 3103#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3104 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3105 goto ret;
1da177e4 3106
5c45bf27
SS
3107 if (this == group_leader && group_leader != group_min) {
3108 *imbalance = min_load_per_task;
3109 return group_min;
3110 }
5c45bf27 3111#endif
783609c6 3112ret:
1da177e4
LT
3113 *imbalance = 0;
3114 return NULL;
3115}
3116
3117/*
3118 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3119 */
70b97a7f 3120static struct rq *
d15bcfdb 3121find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 3122 unsigned long imbalance, cpumask_t *cpus)
1da177e4 3123{
70b97a7f 3124 struct rq *busiest = NULL, *rq;
2dd73a4f 3125 unsigned long max_load = 0;
1da177e4
LT
3126 int i;
3127
3128 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3129 unsigned long wl;
0a2966b4
CL
3130
3131 if (!cpu_isset(i, *cpus))
3132 continue;
3133
48f24c4d 3134 rq = cpu_rq(i);
dd41f596 3135 wl = weighted_cpuload(i);
2dd73a4f 3136
dd41f596 3137 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3138 continue;
1da177e4 3139
dd41f596
IM
3140 if (wl > max_load) {
3141 max_load = wl;
48f24c4d 3142 busiest = rq;
1da177e4
LT
3143 }
3144 }
3145
3146 return busiest;
3147}
3148
77391d71
NP
3149/*
3150 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3151 * so long as it is large enough.
3152 */
3153#define MAX_PINNED_INTERVAL 512
3154
1da177e4
LT
3155/*
3156 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3157 * tasks if there is an imbalance.
1da177e4 3158 */
70b97a7f 3159static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3160 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 3161 int *balance)
1da177e4 3162{
43010659 3163 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3164 struct sched_group *group;
1da177e4 3165 unsigned long imbalance;
70b97a7f 3166 struct rq *busiest;
0a2966b4 3167 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 3168 unsigned long flags;
5969fe06 3169
89c4710e
SS
3170 /*
3171 * When power savings policy is enabled for the parent domain, idle
3172 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3173 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3174 * portraying it as CPU_NOT_IDLE.
89c4710e 3175 */
d15bcfdb 3176 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3177 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3178 sd_idle = 1;
1da177e4 3179
2d72376b 3180 schedstat_inc(sd, lb_count[idle]);
1da177e4 3181
0a2966b4
CL
3182redo:
3183 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
3184 &cpus, balance);
3185
06066714 3186 if (*balance == 0)
783609c6 3187 goto out_balanced;
783609c6 3188
1da177e4
LT
3189 if (!group) {
3190 schedstat_inc(sd, lb_nobusyg[idle]);
3191 goto out_balanced;
3192 }
3193
0a2966b4 3194 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
3195 if (!busiest) {
3196 schedstat_inc(sd, lb_nobusyq[idle]);
3197 goto out_balanced;
3198 }
3199
db935dbd 3200 BUG_ON(busiest == this_rq);
1da177e4
LT
3201
3202 schedstat_add(sd, lb_imbalance[idle], imbalance);
3203
43010659 3204 ld_moved = 0;
1da177e4
LT
3205 if (busiest->nr_running > 1) {
3206 /*
3207 * Attempt to move tasks. If find_busiest_group has found
3208 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3209 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3210 * correctly treated as an imbalance.
3211 */
fe2eea3f 3212 local_irq_save(flags);
e17224bf 3213 double_rq_lock(this_rq, busiest);
43010659 3214 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3215 imbalance, sd, idle, &all_pinned);
e17224bf 3216 double_rq_unlock(this_rq, busiest);
fe2eea3f 3217 local_irq_restore(flags);
81026794 3218
46cb4b7c
SS
3219 /*
3220 * some other cpu did the load balance for us.
3221 */
43010659 3222 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3223 resched_cpu(this_cpu);
3224
81026794 3225 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
3226 if (unlikely(all_pinned)) {
3227 cpu_clear(cpu_of(busiest), cpus);
3228 if (!cpus_empty(cpus))
3229 goto redo;
81026794 3230 goto out_balanced;
0a2966b4 3231 }
1da177e4 3232 }
81026794 3233
43010659 3234 if (!ld_moved) {
1da177e4
LT
3235 schedstat_inc(sd, lb_failed[idle]);
3236 sd->nr_balance_failed++;
3237
3238 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3239
fe2eea3f 3240 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3241
3242 /* don't kick the migration_thread, if the curr
3243 * task on busiest cpu can't be moved to this_cpu
3244 */
3245 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3246 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3247 all_pinned = 1;
3248 goto out_one_pinned;
3249 }
3250
1da177e4
LT
3251 if (!busiest->active_balance) {
3252 busiest->active_balance = 1;
3253 busiest->push_cpu = this_cpu;
81026794 3254 active_balance = 1;
1da177e4 3255 }
fe2eea3f 3256 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3257 if (active_balance)
1da177e4
LT
3258 wake_up_process(busiest->migration_thread);
3259
3260 /*
3261 * We've kicked active balancing, reset the failure
3262 * counter.
3263 */
39507451 3264 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3265 }
81026794 3266 } else
1da177e4
LT
3267 sd->nr_balance_failed = 0;
3268
81026794 3269 if (likely(!active_balance)) {
1da177e4
LT
3270 /* We were unbalanced, so reset the balancing interval */
3271 sd->balance_interval = sd->min_interval;
81026794
NP
3272 } else {
3273 /*
3274 * If we've begun active balancing, start to back off. This
3275 * case may not be covered by the all_pinned logic if there
3276 * is only 1 task on the busy runqueue (because we don't call
3277 * move_tasks).
3278 */
3279 if (sd->balance_interval < sd->max_interval)
3280 sd->balance_interval *= 2;
1da177e4
LT
3281 }
3282
43010659 3283 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3284 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3285 return -1;
43010659 3286 return ld_moved;
1da177e4
LT
3287
3288out_balanced:
1da177e4
LT
3289 schedstat_inc(sd, lb_balanced[idle]);
3290
16cfb1c0 3291 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3292
3293out_one_pinned:
1da177e4 3294 /* tune up the balancing interval */
77391d71
NP
3295 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3296 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3297 sd->balance_interval *= 2;
3298
48f24c4d 3299 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3300 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3301 return -1;
1da177e4
LT
3302 return 0;
3303}
3304
3305/*
3306 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3307 * tasks if there is an imbalance.
3308 *
d15bcfdb 3309 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3310 * this_rq is locked.
3311 */
48f24c4d 3312static int
70b97a7f 3313load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
3314{
3315 struct sched_group *group;
70b97a7f 3316 struct rq *busiest = NULL;
1da177e4 3317 unsigned long imbalance;
43010659 3318 int ld_moved = 0;
5969fe06 3319 int sd_idle = 0;
969bb4e4 3320 int all_pinned = 0;
0a2966b4 3321 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 3322
89c4710e
SS
3323 /*
3324 * When power savings policy is enabled for the parent domain, idle
3325 * sibling can pick up load irrespective of busy siblings. In this case,
3326 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3327 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3328 */
3329 if (sd->flags & SD_SHARE_CPUPOWER &&
3330 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3331 sd_idle = 1;
1da177e4 3332
2d72376b 3333 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3334redo:
d15bcfdb 3335 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 3336 &sd_idle, &cpus, NULL);
1da177e4 3337 if (!group) {
d15bcfdb 3338 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3339 goto out_balanced;
1da177e4
LT
3340 }
3341
d15bcfdb 3342 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 3343 &cpus);
db935dbd 3344 if (!busiest) {
d15bcfdb 3345 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3346 goto out_balanced;
1da177e4
LT
3347 }
3348
db935dbd
NP
3349 BUG_ON(busiest == this_rq);
3350
d15bcfdb 3351 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3352
43010659 3353 ld_moved = 0;
d6d5cfaf
NP
3354 if (busiest->nr_running > 1) {
3355 /* Attempt to move tasks */
3356 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3357 /* this_rq->clock is already updated */
3358 update_rq_clock(busiest);
43010659 3359 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3360 imbalance, sd, CPU_NEWLY_IDLE,
3361 &all_pinned);
d6d5cfaf 3362 spin_unlock(&busiest->lock);
0a2966b4 3363
969bb4e4 3364 if (unlikely(all_pinned)) {
0a2966b4
CL
3365 cpu_clear(cpu_of(busiest), cpus);
3366 if (!cpus_empty(cpus))
3367 goto redo;
3368 }
d6d5cfaf
NP
3369 }
3370
43010659 3371 if (!ld_moved) {
d15bcfdb 3372 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3373 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3374 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3375 return -1;
3376 } else
16cfb1c0 3377 sd->nr_balance_failed = 0;
1da177e4 3378
43010659 3379 return ld_moved;
16cfb1c0
NP
3380
3381out_balanced:
d15bcfdb 3382 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3383 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3384 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3385 return -1;
16cfb1c0 3386 sd->nr_balance_failed = 0;
48f24c4d 3387
16cfb1c0 3388 return 0;
1da177e4
LT
3389}
3390
3391/*
3392 * idle_balance is called by schedule() if this_cpu is about to become
3393 * idle. Attempts to pull tasks from other CPUs.
3394 */
70b97a7f 3395static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3396{
3397 struct sched_domain *sd;
dd41f596
IM
3398 int pulled_task = -1;
3399 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3400
3401 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3402 unsigned long interval;
3403
3404 if (!(sd->flags & SD_LOAD_BALANCE))
3405 continue;
3406
3407 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3408 /* If we've pulled tasks over stop searching: */
1bd77f2d 3409 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
3410 this_rq, sd);
3411
3412 interval = msecs_to_jiffies(sd->balance_interval);
3413 if (time_after(next_balance, sd->last_balance + interval))
3414 next_balance = sd->last_balance + interval;
3415 if (pulled_task)
3416 break;
1da177e4 3417 }
dd41f596 3418 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3419 /*
3420 * We are going idle. next_balance may be set based on
3421 * a busy processor. So reset next_balance.
3422 */
3423 this_rq->next_balance = next_balance;
dd41f596 3424 }
1da177e4
LT
3425}
3426
3427/*
3428 * active_load_balance is run by migration threads. It pushes running tasks
3429 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3430 * running on each physical CPU where possible, and avoids physical /
3431 * logical imbalances.
3432 *
3433 * Called with busiest_rq locked.
3434 */
70b97a7f 3435static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3436{
39507451 3437 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3438 struct sched_domain *sd;
3439 struct rq *target_rq;
39507451 3440
48f24c4d 3441 /* Is there any task to move? */
39507451 3442 if (busiest_rq->nr_running <= 1)
39507451
NP
3443 return;
3444
3445 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3446
3447 /*
39507451 3448 * This condition is "impossible", if it occurs
41a2d6cf 3449 * we need to fix it. Originally reported by
39507451 3450 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3451 */
39507451 3452 BUG_ON(busiest_rq == target_rq);
1da177e4 3453
39507451
NP
3454 /* move a task from busiest_rq to target_rq */
3455 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3456 update_rq_clock(busiest_rq);
3457 update_rq_clock(target_rq);
39507451
NP
3458
3459 /* Search for an sd spanning us and the target CPU. */
c96d145e 3460 for_each_domain(target_cpu, sd) {
39507451 3461 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3462 cpu_isset(busiest_cpu, sd->span))
39507451 3463 break;
c96d145e 3464 }
39507451 3465
48f24c4d 3466 if (likely(sd)) {
2d72376b 3467 schedstat_inc(sd, alb_count);
39507451 3468
43010659
PW
3469 if (move_one_task(target_rq, target_cpu, busiest_rq,
3470 sd, CPU_IDLE))
48f24c4d
IM
3471 schedstat_inc(sd, alb_pushed);
3472 else
3473 schedstat_inc(sd, alb_failed);
3474 }
39507451 3475 spin_unlock(&target_rq->lock);
1da177e4
LT
3476}
3477
46cb4b7c
SS
3478#ifdef CONFIG_NO_HZ
3479static struct {
3480 atomic_t load_balancer;
41a2d6cf 3481 cpumask_t cpu_mask;
46cb4b7c
SS
3482} nohz ____cacheline_aligned = {
3483 .load_balancer = ATOMIC_INIT(-1),
3484 .cpu_mask = CPU_MASK_NONE,
3485};
3486
7835b98b 3487/*
46cb4b7c
SS
3488 * This routine will try to nominate the ilb (idle load balancing)
3489 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3490 * load balancing on behalf of all those cpus. If all the cpus in the system
3491 * go into this tickless mode, then there will be no ilb owner (as there is
3492 * no need for one) and all the cpus will sleep till the next wakeup event
3493 * arrives...
3494 *
3495 * For the ilb owner, tick is not stopped. And this tick will be used
3496 * for idle load balancing. ilb owner will still be part of
3497 * nohz.cpu_mask..
7835b98b 3498 *
46cb4b7c
SS
3499 * While stopping the tick, this cpu will become the ilb owner if there
3500 * is no other owner. And will be the owner till that cpu becomes busy
3501 * or if all cpus in the system stop their ticks at which point
3502 * there is no need for ilb owner.
3503 *
3504 * When the ilb owner becomes busy, it nominates another owner, during the
3505 * next busy scheduler_tick()
3506 */
3507int select_nohz_load_balancer(int stop_tick)
3508{
3509 int cpu = smp_processor_id();
3510
3511 if (stop_tick) {
3512 cpu_set(cpu, nohz.cpu_mask);
3513 cpu_rq(cpu)->in_nohz_recently = 1;
3514
3515 /*
3516 * If we are going offline and still the leader, give up!
3517 */
3518 if (cpu_is_offline(cpu) &&
3519 atomic_read(&nohz.load_balancer) == cpu) {
3520 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3521 BUG();
3522 return 0;
3523 }
3524
3525 /* time for ilb owner also to sleep */
3526 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3527 if (atomic_read(&nohz.load_balancer) == cpu)
3528 atomic_set(&nohz.load_balancer, -1);
3529 return 0;
3530 }
3531
3532 if (atomic_read(&nohz.load_balancer) == -1) {
3533 /* make me the ilb owner */
3534 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3535 return 1;
3536 } else if (atomic_read(&nohz.load_balancer) == cpu)
3537 return 1;
3538 } else {
3539 if (!cpu_isset(cpu, nohz.cpu_mask))
3540 return 0;
3541
3542 cpu_clear(cpu, nohz.cpu_mask);
3543
3544 if (atomic_read(&nohz.load_balancer) == cpu)
3545 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3546 BUG();
3547 }
3548 return 0;
3549}
3550#endif
3551
3552static DEFINE_SPINLOCK(balancing);
3553
3554/*
7835b98b
CL
3555 * It checks each scheduling domain to see if it is due to be balanced,
3556 * and initiates a balancing operation if so.
3557 *
3558 * Balancing parameters are set up in arch_init_sched_domains.
3559 */
a9957449 3560static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3561{
46cb4b7c
SS
3562 int balance = 1;
3563 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3564 unsigned long interval;
3565 struct sched_domain *sd;
46cb4b7c 3566 /* Earliest time when we have to do rebalance again */
c9819f45 3567 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3568 int update_next_balance = 0;
1da177e4 3569
46cb4b7c 3570 for_each_domain(cpu, sd) {
1da177e4
LT
3571 if (!(sd->flags & SD_LOAD_BALANCE))
3572 continue;
3573
3574 interval = sd->balance_interval;
d15bcfdb 3575 if (idle != CPU_IDLE)
1da177e4
LT
3576 interval *= sd->busy_factor;
3577
3578 /* scale ms to jiffies */
3579 interval = msecs_to_jiffies(interval);
3580 if (unlikely(!interval))
3581 interval = 1;
dd41f596
IM
3582 if (interval > HZ*NR_CPUS/10)
3583 interval = HZ*NR_CPUS/10;
3584
1da177e4 3585
08c183f3
CL
3586 if (sd->flags & SD_SERIALIZE) {
3587 if (!spin_trylock(&balancing))
3588 goto out;
3589 }
3590
c9819f45 3591 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3592 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3593 /*
3594 * We've pulled tasks over so either we're no
5969fe06
NP
3595 * longer idle, or one of our SMT siblings is
3596 * not idle.
3597 */
d15bcfdb 3598 idle = CPU_NOT_IDLE;
1da177e4 3599 }
1bd77f2d 3600 sd->last_balance = jiffies;
1da177e4 3601 }
08c183f3
CL
3602 if (sd->flags & SD_SERIALIZE)
3603 spin_unlock(&balancing);
3604out:
f549da84 3605 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3606 next_balance = sd->last_balance + interval;
f549da84
SS
3607 update_next_balance = 1;
3608 }
783609c6
SS
3609
3610 /*
3611 * Stop the load balance at this level. There is another
3612 * CPU in our sched group which is doing load balancing more
3613 * actively.
3614 */
3615 if (!balance)
3616 break;
1da177e4 3617 }
f549da84
SS
3618
3619 /*
3620 * next_balance will be updated only when there is a need.
3621 * When the cpu is attached to null domain for ex, it will not be
3622 * updated.
3623 */
3624 if (likely(update_next_balance))
3625 rq->next_balance = next_balance;
46cb4b7c
SS
3626}
3627
3628/*
3629 * run_rebalance_domains is triggered when needed from the scheduler tick.
3630 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3631 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3632 */
3633static void run_rebalance_domains(struct softirq_action *h)
3634{
dd41f596
IM
3635 int this_cpu = smp_processor_id();
3636 struct rq *this_rq = cpu_rq(this_cpu);
3637 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3638 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3639
dd41f596 3640 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3641
3642#ifdef CONFIG_NO_HZ
3643 /*
3644 * If this cpu is the owner for idle load balancing, then do the
3645 * balancing on behalf of the other idle cpus whose ticks are
3646 * stopped.
3647 */
dd41f596
IM
3648 if (this_rq->idle_at_tick &&
3649 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3650 cpumask_t cpus = nohz.cpu_mask;
3651 struct rq *rq;
3652 int balance_cpu;
3653
dd41f596 3654 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3655 for_each_cpu_mask(balance_cpu, cpus) {
3656 /*
3657 * If this cpu gets work to do, stop the load balancing
3658 * work being done for other cpus. Next load
3659 * balancing owner will pick it up.
3660 */
3661 if (need_resched())
3662 break;
3663
de0cf899 3664 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3665
3666 rq = cpu_rq(balance_cpu);
dd41f596
IM
3667 if (time_after(this_rq->next_balance, rq->next_balance))
3668 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3669 }
3670 }
3671#endif
3672}
3673
3674/*
3675 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3676 *
3677 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3678 * idle load balancing owner or decide to stop the periodic load balancing,
3679 * if the whole system is idle.
3680 */
dd41f596 3681static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3682{
46cb4b7c
SS
3683#ifdef CONFIG_NO_HZ
3684 /*
3685 * If we were in the nohz mode recently and busy at the current
3686 * scheduler tick, then check if we need to nominate new idle
3687 * load balancer.
3688 */
3689 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3690 rq->in_nohz_recently = 0;
3691
3692 if (atomic_read(&nohz.load_balancer) == cpu) {
3693 cpu_clear(cpu, nohz.cpu_mask);
3694 atomic_set(&nohz.load_balancer, -1);
3695 }
3696
3697 if (atomic_read(&nohz.load_balancer) == -1) {
3698 /*
3699 * simple selection for now: Nominate the
3700 * first cpu in the nohz list to be the next
3701 * ilb owner.
3702 *
3703 * TBD: Traverse the sched domains and nominate
3704 * the nearest cpu in the nohz.cpu_mask.
3705 */
3706 int ilb = first_cpu(nohz.cpu_mask);
3707
434d53b0 3708 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3709 resched_cpu(ilb);
3710 }
3711 }
3712
3713 /*
3714 * If this cpu is idle and doing idle load balancing for all the
3715 * cpus with ticks stopped, is it time for that to stop?
3716 */
3717 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3718 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3719 resched_cpu(cpu);
3720 return;
3721 }
3722
3723 /*
3724 * If this cpu is idle and the idle load balancing is done by
3725 * someone else, then no need raise the SCHED_SOFTIRQ
3726 */
3727 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3728 cpu_isset(cpu, nohz.cpu_mask))
3729 return;
3730#endif
3731 if (time_after_eq(jiffies, rq->next_balance))
3732 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3733}
dd41f596
IM
3734
3735#else /* CONFIG_SMP */
3736
1da177e4
LT
3737/*
3738 * on UP we do not need to balance between CPUs:
3739 */
70b97a7f 3740static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3741{
3742}
dd41f596 3743
1da177e4
LT
3744#endif
3745
1da177e4
LT
3746DEFINE_PER_CPU(struct kernel_stat, kstat);
3747
3748EXPORT_PER_CPU_SYMBOL(kstat);
3749
3750/*
41b86e9c
IM
3751 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3752 * that have not yet been banked in case the task is currently running.
1da177e4 3753 */
41b86e9c 3754unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3755{
1da177e4 3756 unsigned long flags;
41b86e9c
IM
3757 u64 ns, delta_exec;
3758 struct rq *rq;
48f24c4d 3759
41b86e9c
IM
3760 rq = task_rq_lock(p, &flags);
3761 ns = p->se.sum_exec_runtime;
051a1d1a 3762 if (task_current(rq, p)) {
a8e504d2
IM
3763 update_rq_clock(rq);
3764 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3765 if ((s64)delta_exec > 0)
3766 ns += delta_exec;
3767 }
3768 task_rq_unlock(rq, &flags);
48f24c4d 3769
1da177e4
LT
3770 return ns;
3771}
3772
1da177e4
LT
3773/*
3774 * Account user cpu time to a process.
3775 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3776 * @cputime: the cpu time spent in user space since the last update
3777 */
3778void account_user_time(struct task_struct *p, cputime_t cputime)
3779{
3780 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3781 cputime64_t tmp;
3782
3783 p->utime = cputime_add(p->utime, cputime);
3784
3785 /* Add user time to cpustat. */
3786 tmp = cputime_to_cputime64(cputime);
3787 if (TASK_NICE(p) > 0)
3788 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3789 else
3790 cpustat->user = cputime64_add(cpustat->user, tmp);
3791}
3792
94886b84
LV
3793/*
3794 * Account guest cpu time to a process.
3795 * @p: the process that the cpu time gets accounted to
3796 * @cputime: the cpu time spent in virtual machine since the last update
3797 */
f7402e03 3798static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3799{
3800 cputime64_t tmp;
3801 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3802
3803 tmp = cputime_to_cputime64(cputime);
3804
3805 p->utime = cputime_add(p->utime, cputime);
3806 p->gtime = cputime_add(p->gtime, cputime);
3807
3808 cpustat->user = cputime64_add(cpustat->user, tmp);
3809 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3810}
3811
c66f08be
MN
3812/*
3813 * Account scaled user cpu time to a process.
3814 * @p: the process that the cpu time gets accounted to
3815 * @cputime: the cpu time spent in user space since the last update
3816 */
3817void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3818{
3819 p->utimescaled = cputime_add(p->utimescaled, cputime);
3820}
3821
1da177e4
LT
3822/*
3823 * Account system cpu time to a process.
3824 * @p: the process that the cpu time gets accounted to
3825 * @hardirq_offset: the offset to subtract from hardirq_count()
3826 * @cputime: the cpu time spent in kernel space since the last update
3827 */
3828void account_system_time(struct task_struct *p, int hardirq_offset,
3829 cputime_t cputime)
3830{
3831 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3832 struct rq *rq = this_rq();
1da177e4
LT
3833 cputime64_t tmp;
3834
9778385d
CB
3835 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3836 return account_guest_time(p, cputime);
94886b84 3837
1da177e4
LT
3838 p->stime = cputime_add(p->stime, cputime);
3839
3840 /* Add system time to cpustat. */
3841 tmp = cputime_to_cputime64(cputime);
3842 if (hardirq_count() - hardirq_offset)
3843 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3844 else if (softirq_count())
3845 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3846 else if (p != rq->idle)
1da177e4 3847 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3848 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3849 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3850 else
3851 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3852 /* Account for system time used */
3853 acct_update_integrals(p);
1da177e4
LT
3854}
3855
c66f08be
MN
3856/*
3857 * Account scaled system cpu time to a process.
3858 * @p: the process that the cpu time gets accounted to
3859 * @hardirq_offset: the offset to subtract from hardirq_count()
3860 * @cputime: the cpu time spent in kernel space since the last update
3861 */
3862void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3863{
3864 p->stimescaled = cputime_add(p->stimescaled, cputime);
3865}
3866
1da177e4
LT
3867/*
3868 * Account for involuntary wait time.
3869 * @p: the process from which the cpu time has been stolen
3870 * @steal: the cpu time spent in involuntary wait
3871 */
3872void account_steal_time(struct task_struct *p, cputime_t steal)
3873{
3874 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3875 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3876 struct rq *rq = this_rq();
1da177e4
LT
3877
3878 if (p == rq->idle) {
3879 p->stime = cputime_add(p->stime, steal);
3880 if (atomic_read(&rq->nr_iowait) > 0)
3881 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3882 else
3883 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3884 } else
1da177e4
LT
3885 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3886}
3887
7835b98b
CL
3888/*
3889 * This function gets called by the timer code, with HZ frequency.
3890 * We call it with interrupts disabled.
3891 *
3892 * It also gets called by the fork code, when changing the parent's
3893 * timeslices.
3894 */
3895void scheduler_tick(void)
3896{
7835b98b
CL
3897 int cpu = smp_processor_id();
3898 struct rq *rq = cpu_rq(cpu);
dd41f596 3899 struct task_struct *curr = rq->curr;
529c7726 3900 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3901
3902 spin_lock(&rq->lock);
546fe3c9 3903 __update_rq_clock(rq);
529c7726
IM
3904 /*
3905 * Let rq->clock advance by at least TICK_NSEC:
3906 */
cc203d24 3907 if (unlikely(rq->clock < next_tick)) {
529c7726 3908 rq->clock = next_tick;
cc203d24
GC
3909 rq->clock_underflows++;
3910 }
529c7726 3911 rq->tick_timestamp = rq->clock;
15934a37 3912 update_last_tick_seen(rq);
f1a438d8 3913 update_cpu_load(rq);
fa85ae24 3914 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 3915 spin_unlock(&rq->lock);
7835b98b 3916
e418e1c2 3917#ifdef CONFIG_SMP
dd41f596
IM
3918 rq->idle_at_tick = idle_cpu(cpu);
3919 trigger_load_balance(rq, cpu);
e418e1c2 3920#endif
1da177e4
LT
3921}
3922
1da177e4
LT
3923#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3924
43627582 3925void __kprobes add_preempt_count(int val)
1da177e4
LT
3926{
3927 /*
3928 * Underflow?
3929 */
9a11b49a
IM
3930 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3931 return;
1da177e4
LT
3932 preempt_count() += val;
3933 /*
3934 * Spinlock count overflowing soon?
3935 */
33859f7f
MOS
3936 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3937 PREEMPT_MASK - 10);
1da177e4
LT
3938}
3939EXPORT_SYMBOL(add_preempt_count);
3940
43627582 3941void __kprobes sub_preempt_count(int val)
1da177e4
LT
3942{
3943 /*
3944 * Underflow?
3945 */
9a11b49a
IM
3946 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3947 return;
1da177e4
LT
3948 /*
3949 * Is the spinlock portion underflowing?
3950 */
9a11b49a
IM
3951 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3952 !(preempt_count() & PREEMPT_MASK)))
3953 return;
3954
1da177e4
LT
3955 preempt_count() -= val;
3956}
3957EXPORT_SYMBOL(sub_preempt_count);
3958
3959#endif
3960
3961/*
dd41f596 3962 * Print scheduling while atomic bug:
1da177e4 3963 */
dd41f596 3964static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3965{
838225b4
SS
3966 struct pt_regs *regs = get_irq_regs();
3967
3968 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3969 prev->comm, prev->pid, preempt_count());
3970
dd41f596
IM
3971 debug_show_held_locks(prev);
3972 if (irqs_disabled())
3973 print_irqtrace_events(prev);
838225b4
SS
3974
3975 if (regs)
3976 show_regs(regs);
3977 else
3978 dump_stack();
dd41f596 3979}
1da177e4 3980
dd41f596
IM
3981/*
3982 * Various schedule()-time debugging checks and statistics:
3983 */
3984static inline void schedule_debug(struct task_struct *prev)
3985{
1da177e4 3986 /*
41a2d6cf 3987 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3988 * schedule() atomically, we ignore that path for now.
3989 * Otherwise, whine if we are scheduling when we should not be.
3990 */
dd41f596
IM
3991 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3992 __schedule_bug(prev);
3993
1da177e4
LT
3994 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3995
2d72376b 3996 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3997#ifdef CONFIG_SCHEDSTATS
3998 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3999 schedstat_inc(this_rq(), bkl_count);
4000 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4001 }
4002#endif
dd41f596
IM
4003}
4004
4005/*
4006 * Pick up the highest-prio task:
4007 */
4008static inline struct task_struct *
ff95f3df 4009pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4010{
5522d5d5 4011 const struct sched_class *class;
dd41f596 4012 struct task_struct *p;
1da177e4
LT
4013
4014 /*
dd41f596
IM
4015 * Optimization: we know that if all tasks are in
4016 * the fair class we can call that function directly:
1da177e4 4017 */
dd41f596 4018 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4019 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4020 if (likely(p))
4021 return p;
1da177e4
LT
4022 }
4023
dd41f596
IM
4024 class = sched_class_highest;
4025 for ( ; ; ) {
fb8d4724 4026 p = class->pick_next_task(rq);
dd41f596
IM
4027 if (p)
4028 return p;
4029 /*
4030 * Will never be NULL as the idle class always
4031 * returns a non-NULL p:
4032 */
4033 class = class->next;
4034 }
4035}
1da177e4 4036
dd41f596
IM
4037/*
4038 * schedule() is the main scheduler function.
4039 */
4040asmlinkage void __sched schedule(void)
4041{
4042 struct task_struct *prev, *next;
67ca7bde 4043 unsigned long *switch_count;
dd41f596 4044 struct rq *rq;
dd41f596
IM
4045 int cpu;
4046
4047need_resched:
4048 preempt_disable();
4049 cpu = smp_processor_id();
4050 rq = cpu_rq(cpu);
4051 rcu_qsctr_inc(cpu);
4052 prev = rq->curr;
4053 switch_count = &prev->nivcsw;
4054
4055 release_kernel_lock(prev);
4056need_resched_nonpreemptible:
4057
4058 schedule_debug(prev);
1da177e4 4059
8f4d37ec
PZ
4060 hrtick_clear(rq);
4061
1e819950
IM
4062 /*
4063 * Do the rq-clock update outside the rq lock:
4064 */
4065 local_irq_disable();
c1b3da3e 4066 __update_rq_clock(rq);
1e819950
IM
4067 spin_lock(&rq->lock);
4068 clear_tsk_need_resched(prev);
1da177e4 4069
1da177e4 4070 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4071 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4072 signal_pending(prev))) {
1da177e4 4073 prev->state = TASK_RUNNING;
dd41f596 4074 } else {
2e1cb74a 4075 deactivate_task(rq, prev, 1);
1da177e4 4076 }
dd41f596 4077 switch_count = &prev->nvcsw;
1da177e4
LT
4078 }
4079
9a897c5a
SR
4080#ifdef CONFIG_SMP
4081 if (prev->sched_class->pre_schedule)
4082 prev->sched_class->pre_schedule(rq, prev);
4083#endif
f65eda4f 4084
dd41f596 4085 if (unlikely(!rq->nr_running))
1da177e4 4086 idle_balance(cpu, rq);
1da177e4 4087
31ee529c 4088 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4089 next = pick_next_task(rq, prev);
1da177e4
LT
4090
4091 sched_info_switch(prev, next);
dd41f596 4092
1da177e4 4093 if (likely(prev != next)) {
1da177e4
LT
4094 rq->nr_switches++;
4095 rq->curr = next;
4096 ++*switch_count;
4097
dd41f596 4098 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4099 /*
4100 * the context switch might have flipped the stack from under
4101 * us, hence refresh the local variables.
4102 */
4103 cpu = smp_processor_id();
4104 rq = cpu_rq(cpu);
1da177e4
LT
4105 } else
4106 spin_unlock_irq(&rq->lock);
4107
8f4d37ec
PZ
4108 hrtick_set(rq);
4109
4110 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4111 goto need_resched_nonpreemptible;
8f4d37ec 4112
1da177e4
LT
4113 preempt_enable_no_resched();
4114 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4115 goto need_resched;
4116}
1da177e4
LT
4117EXPORT_SYMBOL(schedule);
4118
4119#ifdef CONFIG_PREEMPT
4120/*
2ed6e34f 4121 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4122 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4123 * occur there and call schedule directly.
4124 */
4125asmlinkage void __sched preempt_schedule(void)
4126{
4127 struct thread_info *ti = current_thread_info();
1da177e4
LT
4128 struct task_struct *task = current;
4129 int saved_lock_depth;
6478d880 4130
1da177e4
LT
4131 /*
4132 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4133 * we do not want to preempt the current task. Just return..
1da177e4 4134 */
beed33a8 4135 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4136 return;
4137
3a5c359a
AK
4138 do {
4139 add_preempt_count(PREEMPT_ACTIVE);
4140
4141 /*
4142 * We keep the big kernel semaphore locked, but we
4143 * clear ->lock_depth so that schedule() doesnt
4144 * auto-release the semaphore:
4145 */
3a5c359a
AK
4146 saved_lock_depth = task->lock_depth;
4147 task->lock_depth = -1;
3a5c359a 4148 schedule();
3a5c359a 4149 task->lock_depth = saved_lock_depth;
3a5c359a 4150 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4151
3a5c359a
AK
4152 /*
4153 * Check again in case we missed a preemption opportunity
4154 * between schedule and now.
4155 */
4156 barrier();
4157 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4158}
1da177e4
LT
4159EXPORT_SYMBOL(preempt_schedule);
4160
4161/*
2ed6e34f 4162 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4163 * off of irq context.
4164 * Note, that this is called and return with irqs disabled. This will
4165 * protect us against recursive calling from irq.
4166 */
4167asmlinkage void __sched preempt_schedule_irq(void)
4168{
4169 struct thread_info *ti = current_thread_info();
1da177e4
LT
4170 struct task_struct *task = current;
4171 int saved_lock_depth;
6478d880 4172
2ed6e34f 4173 /* Catch callers which need to be fixed */
1da177e4
LT
4174 BUG_ON(ti->preempt_count || !irqs_disabled());
4175
3a5c359a
AK
4176 do {
4177 add_preempt_count(PREEMPT_ACTIVE);
4178
4179 /*
4180 * We keep the big kernel semaphore locked, but we
4181 * clear ->lock_depth so that schedule() doesnt
4182 * auto-release the semaphore:
4183 */
3a5c359a
AK
4184 saved_lock_depth = task->lock_depth;
4185 task->lock_depth = -1;
3a5c359a
AK
4186 local_irq_enable();
4187 schedule();
4188 local_irq_disable();
3a5c359a 4189 task->lock_depth = saved_lock_depth;
3a5c359a 4190 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4191
3a5c359a
AK
4192 /*
4193 * Check again in case we missed a preemption opportunity
4194 * between schedule and now.
4195 */
4196 barrier();
4197 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4198}
4199
4200#endif /* CONFIG_PREEMPT */
4201
95cdf3b7
IM
4202int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4203 void *key)
1da177e4 4204{
48f24c4d 4205 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4206}
1da177e4
LT
4207EXPORT_SYMBOL(default_wake_function);
4208
4209/*
41a2d6cf
IM
4210 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4211 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4212 * number) then we wake all the non-exclusive tasks and one exclusive task.
4213 *
4214 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4215 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4216 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4217 */
4218static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4219 int nr_exclusive, int sync, void *key)
4220{
2e45874c 4221 wait_queue_t *curr, *next;
1da177e4 4222
2e45874c 4223 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4224 unsigned flags = curr->flags;
4225
1da177e4 4226 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4227 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4228 break;
4229 }
4230}
4231
4232/**
4233 * __wake_up - wake up threads blocked on a waitqueue.
4234 * @q: the waitqueue
4235 * @mode: which threads
4236 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4237 * @key: is directly passed to the wakeup function
1da177e4 4238 */
7ad5b3a5 4239void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4240 int nr_exclusive, void *key)
1da177e4
LT
4241{
4242 unsigned long flags;
4243
4244 spin_lock_irqsave(&q->lock, flags);
4245 __wake_up_common(q, mode, nr_exclusive, 0, key);
4246 spin_unlock_irqrestore(&q->lock, flags);
4247}
1da177e4
LT
4248EXPORT_SYMBOL(__wake_up);
4249
4250/*
4251 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4252 */
7ad5b3a5 4253void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4254{
4255 __wake_up_common(q, mode, 1, 0, NULL);
4256}
4257
4258/**
67be2dd1 4259 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4260 * @q: the waitqueue
4261 * @mode: which threads
4262 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4263 *
4264 * The sync wakeup differs that the waker knows that it will schedule
4265 * away soon, so while the target thread will be woken up, it will not
4266 * be migrated to another CPU - ie. the two threads are 'synchronized'
4267 * with each other. This can prevent needless bouncing between CPUs.
4268 *
4269 * On UP it can prevent extra preemption.
4270 */
7ad5b3a5 4271void
95cdf3b7 4272__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4273{
4274 unsigned long flags;
4275 int sync = 1;
4276
4277 if (unlikely(!q))
4278 return;
4279
4280 if (unlikely(!nr_exclusive))
4281 sync = 0;
4282
4283 spin_lock_irqsave(&q->lock, flags);
4284 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4285 spin_unlock_irqrestore(&q->lock, flags);
4286}
4287EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4288
b15136e9 4289void complete(struct completion *x)
1da177e4
LT
4290{
4291 unsigned long flags;
4292
4293 spin_lock_irqsave(&x->wait.lock, flags);
4294 x->done++;
d9514f6c 4295 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4296 spin_unlock_irqrestore(&x->wait.lock, flags);
4297}
4298EXPORT_SYMBOL(complete);
4299
b15136e9 4300void complete_all(struct completion *x)
1da177e4
LT
4301{
4302 unsigned long flags;
4303
4304 spin_lock_irqsave(&x->wait.lock, flags);
4305 x->done += UINT_MAX/2;
d9514f6c 4306 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4307 spin_unlock_irqrestore(&x->wait.lock, flags);
4308}
4309EXPORT_SYMBOL(complete_all);
4310
8cbbe86d
AK
4311static inline long __sched
4312do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4313{
1da177e4
LT
4314 if (!x->done) {
4315 DECLARE_WAITQUEUE(wait, current);
4316
4317 wait.flags |= WQ_FLAG_EXCLUSIVE;
4318 __add_wait_queue_tail(&x->wait, &wait);
4319 do {
009e577e
MW
4320 if ((state == TASK_INTERRUPTIBLE &&
4321 signal_pending(current)) ||
4322 (state == TASK_KILLABLE &&
4323 fatal_signal_pending(current))) {
8cbbe86d
AK
4324 __remove_wait_queue(&x->wait, &wait);
4325 return -ERESTARTSYS;
4326 }
4327 __set_current_state(state);
1da177e4
LT
4328 spin_unlock_irq(&x->wait.lock);
4329 timeout = schedule_timeout(timeout);
4330 spin_lock_irq(&x->wait.lock);
4331 if (!timeout) {
4332 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4333 return timeout;
1da177e4
LT
4334 }
4335 } while (!x->done);
4336 __remove_wait_queue(&x->wait, &wait);
4337 }
4338 x->done--;
1da177e4
LT
4339 return timeout;
4340}
1da177e4 4341
8cbbe86d
AK
4342static long __sched
4343wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4344{
1da177e4
LT
4345 might_sleep();
4346
4347 spin_lock_irq(&x->wait.lock);
8cbbe86d 4348 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4349 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4350 return timeout;
4351}
1da177e4 4352
b15136e9 4353void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4354{
4355 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4356}
8cbbe86d 4357EXPORT_SYMBOL(wait_for_completion);
1da177e4 4358
b15136e9 4359unsigned long __sched
8cbbe86d 4360wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4361{
8cbbe86d 4362 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4363}
8cbbe86d 4364EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4365
8cbbe86d 4366int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4367{
51e97990
AK
4368 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4369 if (t == -ERESTARTSYS)
4370 return t;
4371 return 0;
0fec171c 4372}
8cbbe86d 4373EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4374
b15136e9 4375unsigned long __sched
8cbbe86d
AK
4376wait_for_completion_interruptible_timeout(struct completion *x,
4377 unsigned long timeout)
0fec171c 4378{
8cbbe86d 4379 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4380}
8cbbe86d 4381EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4382
009e577e
MW
4383int __sched wait_for_completion_killable(struct completion *x)
4384{
4385 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4386 if (t == -ERESTARTSYS)
4387 return t;
4388 return 0;
4389}
4390EXPORT_SYMBOL(wait_for_completion_killable);
4391
8cbbe86d
AK
4392static long __sched
4393sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4394{
0fec171c
IM
4395 unsigned long flags;
4396 wait_queue_t wait;
4397
4398 init_waitqueue_entry(&wait, current);
1da177e4 4399
8cbbe86d 4400 __set_current_state(state);
1da177e4 4401
8cbbe86d
AK
4402 spin_lock_irqsave(&q->lock, flags);
4403 __add_wait_queue(q, &wait);
4404 spin_unlock(&q->lock);
4405 timeout = schedule_timeout(timeout);
4406 spin_lock_irq(&q->lock);
4407 __remove_wait_queue(q, &wait);
4408 spin_unlock_irqrestore(&q->lock, flags);
4409
4410 return timeout;
4411}
4412
4413void __sched interruptible_sleep_on(wait_queue_head_t *q)
4414{
4415 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4416}
1da177e4
LT
4417EXPORT_SYMBOL(interruptible_sleep_on);
4418
0fec171c 4419long __sched
95cdf3b7 4420interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4421{
8cbbe86d 4422 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4423}
1da177e4
LT
4424EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4425
0fec171c 4426void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4427{
8cbbe86d 4428 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4429}
1da177e4
LT
4430EXPORT_SYMBOL(sleep_on);
4431
0fec171c 4432long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4433{
8cbbe86d 4434 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4435}
1da177e4
LT
4436EXPORT_SYMBOL(sleep_on_timeout);
4437
b29739f9
IM
4438#ifdef CONFIG_RT_MUTEXES
4439
4440/*
4441 * rt_mutex_setprio - set the current priority of a task
4442 * @p: task
4443 * @prio: prio value (kernel-internal form)
4444 *
4445 * This function changes the 'effective' priority of a task. It does
4446 * not touch ->normal_prio like __setscheduler().
4447 *
4448 * Used by the rt_mutex code to implement priority inheritance logic.
4449 */
36c8b586 4450void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4451{
4452 unsigned long flags;
83b699ed 4453 int oldprio, on_rq, running;
70b97a7f 4454 struct rq *rq;
cb469845 4455 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4456
4457 BUG_ON(prio < 0 || prio > MAX_PRIO);
4458
4459 rq = task_rq_lock(p, &flags);
a8e504d2 4460 update_rq_clock(rq);
b29739f9 4461
d5f9f942 4462 oldprio = p->prio;
dd41f596 4463 on_rq = p->se.on_rq;
051a1d1a 4464 running = task_current(rq, p);
0e1f3483 4465 if (on_rq)
69be72c1 4466 dequeue_task(rq, p, 0);
0e1f3483
HS
4467 if (running)
4468 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4469
4470 if (rt_prio(prio))
4471 p->sched_class = &rt_sched_class;
4472 else
4473 p->sched_class = &fair_sched_class;
4474
b29739f9
IM
4475 p->prio = prio;
4476
0e1f3483
HS
4477 if (running)
4478 p->sched_class->set_curr_task(rq);
dd41f596 4479 if (on_rq) {
8159f87e 4480 enqueue_task(rq, p, 0);
cb469845
SR
4481
4482 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4483 }
4484 task_rq_unlock(rq, &flags);
4485}
4486
4487#endif
4488
36c8b586 4489void set_user_nice(struct task_struct *p, long nice)
1da177e4 4490{
dd41f596 4491 int old_prio, delta, on_rq;
1da177e4 4492 unsigned long flags;
70b97a7f 4493 struct rq *rq;
1da177e4
LT
4494
4495 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4496 return;
4497 /*
4498 * We have to be careful, if called from sys_setpriority(),
4499 * the task might be in the middle of scheduling on another CPU.
4500 */
4501 rq = task_rq_lock(p, &flags);
a8e504d2 4502 update_rq_clock(rq);
1da177e4
LT
4503 /*
4504 * The RT priorities are set via sched_setscheduler(), but we still
4505 * allow the 'normal' nice value to be set - but as expected
4506 * it wont have any effect on scheduling until the task is
dd41f596 4507 * SCHED_FIFO/SCHED_RR:
1da177e4 4508 */
e05606d3 4509 if (task_has_rt_policy(p)) {
1da177e4
LT
4510 p->static_prio = NICE_TO_PRIO(nice);
4511 goto out_unlock;
4512 }
dd41f596 4513 on_rq = p->se.on_rq;
62fb1851 4514 if (on_rq) {
69be72c1 4515 dequeue_task(rq, p, 0);
62fb1851
PZ
4516 dec_load(rq, p);
4517 }
1da177e4 4518
1da177e4 4519 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4520 set_load_weight(p);
b29739f9
IM
4521 old_prio = p->prio;
4522 p->prio = effective_prio(p);
4523 delta = p->prio - old_prio;
1da177e4 4524
dd41f596 4525 if (on_rq) {
8159f87e 4526 enqueue_task(rq, p, 0);
62fb1851 4527 inc_load(rq, p);
1da177e4 4528 /*
d5f9f942
AM
4529 * If the task increased its priority or is running and
4530 * lowered its priority, then reschedule its CPU:
1da177e4 4531 */
d5f9f942 4532 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4533 resched_task(rq->curr);
4534 }
4535out_unlock:
4536 task_rq_unlock(rq, &flags);
4537}
1da177e4
LT
4538EXPORT_SYMBOL(set_user_nice);
4539
e43379f1
MM
4540/*
4541 * can_nice - check if a task can reduce its nice value
4542 * @p: task
4543 * @nice: nice value
4544 */
36c8b586 4545int can_nice(const struct task_struct *p, const int nice)
e43379f1 4546{
024f4747
MM
4547 /* convert nice value [19,-20] to rlimit style value [1,40] */
4548 int nice_rlim = 20 - nice;
48f24c4d 4549
e43379f1
MM
4550 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4551 capable(CAP_SYS_NICE));
4552}
4553
1da177e4
LT
4554#ifdef __ARCH_WANT_SYS_NICE
4555
4556/*
4557 * sys_nice - change the priority of the current process.
4558 * @increment: priority increment
4559 *
4560 * sys_setpriority is a more generic, but much slower function that
4561 * does similar things.
4562 */
4563asmlinkage long sys_nice(int increment)
4564{
48f24c4d 4565 long nice, retval;
1da177e4
LT
4566
4567 /*
4568 * Setpriority might change our priority at the same moment.
4569 * We don't have to worry. Conceptually one call occurs first
4570 * and we have a single winner.
4571 */
e43379f1
MM
4572 if (increment < -40)
4573 increment = -40;
1da177e4
LT
4574 if (increment > 40)
4575 increment = 40;
4576
4577 nice = PRIO_TO_NICE(current->static_prio) + increment;
4578 if (nice < -20)
4579 nice = -20;
4580 if (nice > 19)
4581 nice = 19;
4582
e43379f1
MM
4583 if (increment < 0 && !can_nice(current, nice))
4584 return -EPERM;
4585
1da177e4
LT
4586 retval = security_task_setnice(current, nice);
4587 if (retval)
4588 return retval;
4589
4590 set_user_nice(current, nice);
4591 return 0;
4592}
4593
4594#endif
4595
4596/**
4597 * task_prio - return the priority value of a given task.
4598 * @p: the task in question.
4599 *
4600 * This is the priority value as seen by users in /proc.
4601 * RT tasks are offset by -200. Normal tasks are centered
4602 * around 0, value goes from -16 to +15.
4603 */
36c8b586 4604int task_prio(const struct task_struct *p)
1da177e4
LT
4605{
4606 return p->prio - MAX_RT_PRIO;
4607}
4608
4609/**
4610 * task_nice - return the nice value of a given task.
4611 * @p: the task in question.
4612 */
36c8b586 4613int task_nice(const struct task_struct *p)
1da177e4
LT
4614{
4615 return TASK_NICE(p);
4616}
150d8bed 4617EXPORT_SYMBOL(task_nice);
1da177e4
LT
4618
4619/**
4620 * idle_cpu - is a given cpu idle currently?
4621 * @cpu: the processor in question.
4622 */
4623int idle_cpu(int cpu)
4624{
4625 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4626}
4627
1da177e4
LT
4628/**
4629 * idle_task - return the idle task for a given cpu.
4630 * @cpu: the processor in question.
4631 */
36c8b586 4632struct task_struct *idle_task(int cpu)
1da177e4
LT
4633{
4634 return cpu_rq(cpu)->idle;
4635}
4636
4637/**
4638 * find_process_by_pid - find a process with a matching PID value.
4639 * @pid: the pid in question.
4640 */
a9957449 4641static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4642{
228ebcbe 4643 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4644}
4645
4646/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4647static void
4648__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4649{
dd41f596 4650 BUG_ON(p->se.on_rq);
48f24c4d 4651
1da177e4 4652 p->policy = policy;
dd41f596
IM
4653 switch (p->policy) {
4654 case SCHED_NORMAL:
4655 case SCHED_BATCH:
4656 case SCHED_IDLE:
4657 p->sched_class = &fair_sched_class;
4658 break;
4659 case SCHED_FIFO:
4660 case SCHED_RR:
4661 p->sched_class = &rt_sched_class;
4662 break;
4663 }
4664
1da177e4 4665 p->rt_priority = prio;
b29739f9
IM
4666 p->normal_prio = normal_prio(p);
4667 /* we are holding p->pi_lock already */
4668 p->prio = rt_mutex_getprio(p);
2dd73a4f 4669 set_load_weight(p);
1da177e4
LT
4670}
4671
4672/**
72fd4a35 4673 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4674 * @p: the task in question.
4675 * @policy: new policy.
4676 * @param: structure containing the new RT priority.
5fe1d75f 4677 *
72fd4a35 4678 * NOTE that the task may be already dead.
1da177e4 4679 */
95cdf3b7
IM
4680int sched_setscheduler(struct task_struct *p, int policy,
4681 struct sched_param *param)
1da177e4 4682{
83b699ed 4683 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4684 unsigned long flags;
cb469845 4685 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4686 struct rq *rq;
1da177e4 4687
66e5393a
SR
4688 /* may grab non-irq protected spin_locks */
4689 BUG_ON(in_interrupt());
1da177e4
LT
4690recheck:
4691 /* double check policy once rq lock held */
4692 if (policy < 0)
4693 policy = oldpolicy = p->policy;
4694 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4695 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4696 policy != SCHED_IDLE)
b0a9499c 4697 return -EINVAL;
1da177e4
LT
4698 /*
4699 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4700 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4701 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4702 */
4703 if (param->sched_priority < 0 ||
95cdf3b7 4704 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4705 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4706 return -EINVAL;
e05606d3 4707 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4708 return -EINVAL;
4709
37e4ab3f
OC
4710 /*
4711 * Allow unprivileged RT tasks to decrease priority:
4712 */
4713 if (!capable(CAP_SYS_NICE)) {
e05606d3 4714 if (rt_policy(policy)) {
8dc3e909 4715 unsigned long rlim_rtprio;
8dc3e909
ON
4716
4717 if (!lock_task_sighand(p, &flags))
4718 return -ESRCH;
4719 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4720 unlock_task_sighand(p, &flags);
4721
4722 /* can't set/change the rt policy */
4723 if (policy != p->policy && !rlim_rtprio)
4724 return -EPERM;
4725
4726 /* can't increase priority */
4727 if (param->sched_priority > p->rt_priority &&
4728 param->sched_priority > rlim_rtprio)
4729 return -EPERM;
4730 }
dd41f596
IM
4731 /*
4732 * Like positive nice levels, dont allow tasks to
4733 * move out of SCHED_IDLE either:
4734 */
4735 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4736 return -EPERM;
5fe1d75f 4737
37e4ab3f
OC
4738 /* can't change other user's priorities */
4739 if ((current->euid != p->euid) &&
4740 (current->euid != p->uid))
4741 return -EPERM;
4742 }
1da177e4 4743
b68aa230
PZ
4744#ifdef CONFIG_RT_GROUP_SCHED
4745 /*
4746 * Do not allow realtime tasks into groups that have no runtime
4747 * assigned.
4748 */
d0b27fa7 4749 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4750 return -EPERM;
4751#endif
4752
1da177e4
LT
4753 retval = security_task_setscheduler(p, policy, param);
4754 if (retval)
4755 return retval;
b29739f9
IM
4756 /*
4757 * make sure no PI-waiters arrive (or leave) while we are
4758 * changing the priority of the task:
4759 */
4760 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4761 /*
4762 * To be able to change p->policy safely, the apropriate
4763 * runqueue lock must be held.
4764 */
b29739f9 4765 rq = __task_rq_lock(p);
1da177e4
LT
4766 /* recheck policy now with rq lock held */
4767 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4768 policy = oldpolicy = -1;
b29739f9
IM
4769 __task_rq_unlock(rq);
4770 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4771 goto recheck;
4772 }
2daa3577 4773 update_rq_clock(rq);
dd41f596 4774 on_rq = p->se.on_rq;
051a1d1a 4775 running = task_current(rq, p);
0e1f3483 4776 if (on_rq)
2e1cb74a 4777 deactivate_task(rq, p, 0);
0e1f3483
HS
4778 if (running)
4779 p->sched_class->put_prev_task(rq, p);
f6b53205 4780
1da177e4 4781 oldprio = p->prio;
dd41f596 4782 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4783
0e1f3483
HS
4784 if (running)
4785 p->sched_class->set_curr_task(rq);
dd41f596
IM
4786 if (on_rq) {
4787 activate_task(rq, p, 0);
cb469845
SR
4788
4789 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4790 }
b29739f9
IM
4791 __task_rq_unlock(rq);
4792 spin_unlock_irqrestore(&p->pi_lock, flags);
4793
95e02ca9
TG
4794 rt_mutex_adjust_pi(p);
4795
1da177e4
LT
4796 return 0;
4797}
4798EXPORT_SYMBOL_GPL(sched_setscheduler);
4799
95cdf3b7
IM
4800static int
4801do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4802{
1da177e4
LT
4803 struct sched_param lparam;
4804 struct task_struct *p;
36c8b586 4805 int retval;
1da177e4
LT
4806
4807 if (!param || pid < 0)
4808 return -EINVAL;
4809 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4810 return -EFAULT;
5fe1d75f
ON
4811
4812 rcu_read_lock();
4813 retval = -ESRCH;
1da177e4 4814 p = find_process_by_pid(pid);
5fe1d75f
ON
4815 if (p != NULL)
4816 retval = sched_setscheduler(p, policy, &lparam);
4817 rcu_read_unlock();
36c8b586 4818
1da177e4
LT
4819 return retval;
4820}
4821
4822/**
4823 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4824 * @pid: the pid in question.
4825 * @policy: new policy.
4826 * @param: structure containing the new RT priority.
4827 */
41a2d6cf
IM
4828asmlinkage long
4829sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4830{
c21761f1
JB
4831 /* negative values for policy are not valid */
4832 if (policy < 0)
4833 return -EINVAL;
4834
1da177e4
LT
4835 return do_sched_setscheduler(pid, policy, param);
4836}
4837
4838/**
4839 * sys_sched_setparam - set/change the RT priority of a thread
4840 * @pid: the pid in question.
4841 * @param: structure containing the new RT priority.
4842 */
4843asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4844{
4845 return do_sched_setscheduler(pid, -1, param);
4846}
4847
4848/**
4849 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4850 * @pid: the pid in question.
4851 */
4852asmlinkage long sys_sched_getscheduler(pid_t pid)
4853{
36c8b586 4854 struct task_struct *p;
3a5c359a 4855 int retval;
1da177e4
LT
4856
4857 if (pid < 0)
3a5c359a 4858 return -EINVAL;
1da177e4
LT
4859
4860 retval = -ESRCH;
4861 read_lock(&tasklist_lock);
4862 p = find_process_by_pid(pid);
4863 if (p) {
4864 retval = security_task_getscheduler(p);
4865 if (!retval)
4866 retval = p->policy;
4867 }
4868 read_unlock(&tasklist_lock);
1da177e4
LT
4869 return retval;
4870}
4871
4872/**
4873 * sys_sched_getscheduler - get the RT priority of a thread
4874 * @pid: the pid in question.
4875 * @param: structure containing the RT priority.
4876 */
4877asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4878{
4879 struct sched_param lp;
36c8b586 4880 struct task_struct *p;
3a5c359a 4881 int retval;
1da177e4
LT
4882
4883 if (!param || pid < 0)
3a5c359a 4884 return -EINVAL;
1da177e4
LT
4885
4886 read_lock(&tasklist_lock);
4887 p = find_process_by_pid(pid);
4888 retval = -ESRCH;
4889 if (!p)
4890 goto out_unlock;
4891
4892 retval = security_task_getscheduler(p);
4893 if (retval)
4894 goto out_unlock;
4895
4896 lp.sched_priority = p->rt_priority;
4897 read_unlock(&tasklist_lock);
4898
4899 /*
4900 * This one might sleep, we cannot do it with a spinlock held ...
4901 */
4902 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4903
1da177e4
LT
4904 return retval;
4905
4906out_unlock:
4907 read_unlock(&tasklist_lock);
4908 return retval;
4909}
4910
b53e921b 4911long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4912{
1da177e4 4913 cpumask_t cpus_allowed;
b53e921b 4914 cpumask_t new_mask = *in_mask;
36c8b586
IM
4915 struct task_struct *p;
4916 int retval;
1da177e4 4917
95402b38 4918 get_online_cpus();
1da177e4
LT
4919 read_lock(&tasklist_lock);
4920
4921 p = find_process_by_pid(pid);
4922 if (!p) {
4923 read_unlock(&tasklist_lock);
95402b38 4924 put_online_cpus();
1da177e4
LT
4925 return -ESRCH;
4926 }
4927
4928 /*
4929 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4930 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4931 * usage count and then drop tasklist_lock.
4932 */
4933 get_task_struct(p);
4934 read_unlock(&tasklist_lock);
4935
4936 retval = -EPERM;
4937 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4938 !capable(CAP_SYS_NICE))
4939 goto out_unlock;
4940
e7834f8f
DQ
4941 retval = security_task_setscheduler(p, 0, NULL);
4942 if (retval)
4943 goto out_unlock;
4944
f9a86fcb 4945 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 4946 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4947 again:
1da177e4
LT
4948 retval = set_cpus_allowed(p, new_mask);
4949
8707d8b8 4950 if (!retval) {
f9a86fcb 4951 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
4952 if (!cpus_subset(new_mask, cpus_allowed)) {
4953 /*
4954 * We must have raced with a concurrent cpuset
4955 * update. Just reset the cpus_allowed to the
4956 * cpuset's cpus_allowed
4957 */
4958 new_mask = cpus_allowed;
4959 goto again;
4960 }
4961 }
1da177e4
LT
4962out_unlock:
4963 put_task_struct(p);
95402b38 4964 put_online_cpus();
1da177e4
LT
4965 return retval;
4966}
4967
4968static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4969 cpumask_t *new_mask)
4970{
4971 if (len < sizeof(cpumask_t)) {
4972 memset(new_mask, 0, sizeof(cpumask_t));
4973 } else if (len > sizeof(cpumask_t)) {
4974 len = sizeof(cpumask_t);
4975 }
4976 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4977}
4978
4979/**
4980 * sys_sched_setaffinity - set the cpu affinity of a process
4981 * @pid: pid of the process
4982 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4983 * @user_mask_ptr: user-space pointer to the new cpu mask
4984 */
4985asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4986 unsigned long __user *user_mask_ptr)
4987{
4988 cpumask_t new_mask;
4989 int retval;
4990
4991 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4992 if (retval)
4993 return retval;
4994
b53e921b 4995 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
4996}
4997
4998/*
4999 * Represents all cpu's present in the system
5000 * In systems capable of hotplug, this map could dynamically grow
5001 * as new cpu's are detected in the system via any platform specific
5002 * method, such as ACPI for e.g.
5003 */
5004
4cef0c61 5005cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5006EXPORT_SYMBOL(cpu_present_map);
5007
5008#ifndef CONFIG_SMP
4cef0c61 5009cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5010EXPORT_SYMBOL(cpu_online_map);
5011
4cef0c61 5012cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5013EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5014#endif
5015
5016long sched_getaffinity(pid_t pid, cpumask_t *mask)
5017{
36c8b586 5018 struct task_struct *p;
1da177e4 5019 int retval;
1da177e4 5020
95402b38 5021 get_online_cpus();
1da177e4
LT
5022 read_lock(&tasklist_lock);
5023
5024 retval = -ESRCH;
5025 p = find_process_by_pid(pid);
5026 if (!p)
5027 goto out_unlock;
5028
e7834f8f
DQ
5029 retval = security_task_getscheduler(p);
5030 if (retval)
5031 goto out_unlock;
5032
2f7016d9 5033 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5034
5035out_unlock:
5036 read_unlock(&tasklist_lock);
95402b38 5037 put_online_cpus();
1da177e4 5038
9531b62f 5039 return retval;
1da177e4
LT
5040}
5041
5042/**
5043 * sys_sched_getaffinity - get the cpu affinity of a process
5044 * @pid: pid of the process
5045 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5046 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5047 */
5048asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5049 unsigned long __user *user_mask_ptr)
5050{
5051 int ret;
5052 cpumask_t mask;
5053
5054 if (len < sizeof(cpumask_t))
5055 return -EINVAL;
5056
5057 ret = sched_getaffinity(pid, &mask);
5058 if (ret < 0)
5059 return ret;
5060
5061 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5062 return -EFAULT;
5063
5064 return sizeof(cpumask_t);
5065}
5066
5067/**
5068 * sys_sched_yield - yield the current processor to other threads.
5069 *
dd41f596
IM
5070 * This function yields the current CPU to other tasks. If there are no
5071 * other threads running on this CPU then this function will return.
1da177e4
LT
5072 */
5073asmlinkage long sys_sched_yield(void)
5074{
70b97a7f 5075 struct rq *rq = this_rq_lock();
1da177e4 5076
2d72376b 5077 schedstat_inc(rq, yld_count);
4530d7ab 5078 current->sched_class->yield_task(rq);
1da177e4
LT
5079
5080 /*
5081 * Since we are going to call schedule() anyway, there's
5082 * no need to preempt or enable interrupts:
5083 */
5084 __release(rq->lock);
8a25d5de 5085 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5086 _raw_spin_unlock(&rq->lock);
5087 preempt_enable_no_resched();
5088
5089 schedule();
5090
5091 return 0;
5092}
5093
e7b38404 5094static void __cond_resched(void)
1da177e4 5095{
8e0a43d8
IM
5096#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5097 __might_sleep(__FILE__, __LINE__);
5098#endif
5bbcfd90
IM
5099 /*
5100 * The BKS might be reacquired before we have dropped
5101 * PREEMPT_ACTIVE, which could trigger a second
5102 * cond_resched() call.
5103 */
1da177e4
LT
5104 do {
5105 add_preempt_count(PREEMPT_ACTIVE);
5106 schedule();
5107 sub_preempt_count(PREEMPT_ACTIVE);
5108 } while (need_resched());
5109}
5110
02b67cc3
HX
5111#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5112int __sched _cond_resched(void)
1da177e4 5113{
9414232f
IM
5114 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5115 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5116 __cond_resched();
5117 return 1;
5118 }
5119 return 0;
5120}
02b67cc3
HX
5121EXPORT_SYMBOL(_cond_resched);
5122#endif
1da177e4
LT
5123
5124/*
5125 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5126 * call schedule, and on return reacquire the lock.
5127 *
41a2d6cf 5128 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5129 * operations here to prevent schedule() from being called twice (once via
5130 * spin_unlock(), once by hand).
5131 */
95cdf3b7 5132int cond_resched_lock(spinlock_t *lock)
1da177e4 5133{
95c354fe 5134 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5135 int ret = 0;
5136
95c354fe 5137 if (spin_needbreak(lock) || resched) {
1da177e4 5138 spin_unlock(lock);
95c354fe
NP
5139 if (resched && need_resched())
5140 __cond_resched();
5141 else
5142 cpu_relax();
6df3cecb 5143 ret = 1;
1da177e4 5144 spin_lock(lock);
1da177e4 5145 }
6df3cecb 5146 return ret;
1da177e4 5147}
1da177e4
LT
5148EXPORT_SYMBOL(cond_resched_lock);
5149
5150int __sched cond_resched_softirq(void)
5151{
5152 BUG_ON(!in_softirq());
5153
9414232f 5154 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5155 local_bh_enable();
1da177e4
LT
5156 __cond_resched();
5157 local_bh_disable();
5158 return 1;
5159 }
5160 return 0;
5161}
1da177e4
LT
5162EXPORT_SYMBOL(cond_resched_softirq);
5163
1da177e4
LT
5164/**
5165 * yield - yield the current processor to other threads.
5166 *
72fd4a35 5167 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5168 * thread runnable and calls sys_sched_yield().
5169 */
5170void __sched yield(void)
5171{
5172 set_current_state(TASK_RUNNING);
5173 sys_sched_yield();
5174}
1da177e4
LT
5175EXPORT_SYMBOL(yield);
5176
5177/*
41a2d6cf 5178 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5179 * that process accounting knows that this is a task in IO wait state.
5180 *
5181 * But don't do that if it is a deliberate, throttling IO wait (this task
5182 * has set its backing_dev_info: the queue against which it should throttle)
5183 */
5184void __sched io_schedule(void)
5185{
70b97a7f 5186 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5187
0ff92245 5188 delayacct_blkio_start();
1da177e4
LT
5189 atomic_inc(&rq->nr_iowait);
5190 schedule();
5191 atomic_dec(&rq->nr_iowait);
0ff92245 5192 delayacct_blkio_end();
1da177e4 5193}
1da177e4
LT
5194EXPORT_SYMBOL(io_schedule);
5195
5196long __sched io_schedule_timeout(long timeout)
5197{
70b97a7f 5198 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5199 long ret;
5200
0ff92245 5201 delayacct_blkio_start();
1da177e4
LT
5202 atomic_inc(&rq->nr_iowait);
5203 ret = schedule_timeout(timeout);
5204 atomic_dec(&rq->nr_iowait);
0ff92245 5205 delayacct_blkio_end();
1da177e4
LT
5206 return ret;
5207}
5208
5209/**
5210 * sys_sched_get_priority_max - return maximum RT priority.
5211 * @policy: scheduling class.
5212 *
5213 * this syscall returns the maximum rt_priority that can be used
5214 * by a given scheduling class.
5215 */
5216asmlinkage long sys_sched_get_priority_max(int policy)
5217{
5218 int ret = -EINVAL;
5219
5220 switch (policy) {
5221 case SCHED_FIFO:
5222 case SCHED_RR:
5223 ret = MAX_USER_RT_PRIO-1;
5224 break;
5225 case SCHED_NORMAL:
b0a9499c 5226 case SCHED_BATCH:
dd41f596 5227 case SCHED_IDLE:
1da177e4
LT
5228 ret = 0;
5229 break;
5230 }
5231 return ret;
5232}
5233
5234/**
5235 * sys_sched_get_priority_min - return minimum RT priority.
5236 * @policy: scheduling class.
5237 *
5238 * this syscall returns the minimum rt_priority that can be used
5239 * by a given scheduling class.
5240 */
5241asmlinkage long sys_sched_get_priority_min(int policy)
5242{
5243 int ret = -EINVAL;
5244
5245 switch (policy) {
5246 case SCHED_FIFO:
5247 case SCHED_RR:
5248 ret = 1;
5249 break;
5250 case SCHED_NORMAL:
b0a9499c 5251 case SCHED_BATCH:
dd41f596 5252 case SCHED_IDLE:
1da177e4
LT
5253 ret = 0;
5254 }
5255 return ret;
5256}
5257
5258/**
5259 * sys_sched_rr_get_interval - return the default timeslice of a process.
5260 * @pid: pid of the process.
5261 * @interval: userspace pointer to the timeslice value.
5262 *
5263 * this syscall writes the default timeslice value of a given process
5264 * into the user-space timespec buffer. A value of '0' means infinity.
5265 */
5266asmlinkage
5267long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5268{
36c8b586 5269 struct task_struct *p;
a4ec24b4 5270 unsigned int time_slice;
3a5c359a 5271 int retval;
1da177e4 5272 struct timespec t;
1da177e4
LT
5273
5274 if (pid < 0)
3a5c359a 5275 return -EINVAL;
1da177e4
LT
5276
5277 retval = -ESRCH;
5278 read_lock(&tasklist_lock);
5279 p = find_process_by_pid(pid);
5280 if (!p)
5281 goto out_unlock;
5282
5283 retval = security_task_getscheduler(p);
5284 if (retval)
5285 goto out_unlock;
5286
77034937
IM
5287 /*
5288 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5289 * tasks that are on an otherwise idle runqueue:
5290 */
5291 time_slice = 0;
5292 if (p->policy == SCHED_RR) {
a4ec24b4 5293 time_slice = DEF_TIMESLICE;
1868f958 5294 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5295 struct sched_entity *se = &p->se;
5296 unsigned long flags;
5297 struct rq *rq;
5298
5299 rq = task_rq_lock(p, &flags);
77034937
IM
5300 if (rq->cfs.load.weight)
5301 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5302 task_rq_unlock(rq, &flags);
5303 }
1da177e4 5304 read_unlock(&tasklist_lock);
a4ec24b4 5305 jiffies_to_timespec(time_slice, &t);
1da177e4 5306 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5307 return retval;
3a5c359a 5308
1da177e4
LT
5309out_unlock:
5310 read_unlock(&tasklist_lock);
5311 return retval;
5312}
5313
2ed6e34f 5314static const char stat_nam[] = "RSDTtZX";
36c8b586 5315
82a1fcb9 5316void sched_show_task(struct task_struct *p)
1da177e4 5317{
1da177e4 5318 unsigned long free = 0;
36c8b586 5319 unsigned state;
1da177e4 5320
1da177e4 5321 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5322 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5323 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5324#if BITS_PER_LONG == 32
1da177e4 5325 if (state == TASK_RUNNING)
cc4ea795 5326 printk(KERN_CONT " running ");
1da177e4 5327 else
cc4ea795 5328 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5329#else
5330 if (state == TASK_RUNNING)
cc4ea795 5331 printk(KERN_CONT " running task ");
1da177e4 5332 else
cc4ea795 5333 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5334#endif
5335#ifdef CONFIG_DEBUG_STACK_USAGE
5336 {
10ebffde 5337 unsigned long *n = end_of_stack(p);
1da177e4
LT
5338 while (!*n)
5339 n++;
10ebffde 5340 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5341 }
5342#endif
ba25f9dc 5343 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5344 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5345
5fb5e6de 5346 show_stack(p, NULL);
1da177e4
LT
5347}
5348
e59e2ae2 5349void show_state_filter(unsigned long state_filter)
1da177e4 5350{
36c8b586 5351 struct task_struct *g, *p;
1da177e4 5352
4bd77321
IM
5353#if BITS_PER_LONG == 32
5354 printk(KERN_INFO
5355 " task PC stack pid father\n");
1da177e4 5356#else
4bd77321
IM
5357 printk(KERN_INFO
5358 " task PC stack pid father\n");
1da177e4
LT
5359#endif
5360 read_lock(&tasklist_lock);
5361 do_each_thread(g, p) {
5362 /*
5363 * reset the NMI-timeout, listing all files on a slow
5364 * console might take alot of time:
5365 */
5366 touch_nmi_watchdog();
39bc89fd 5367 if (!state_filter || (p->state & state_filter))
82a1fcb9 5368 sched_show_task(p);
1da177e4
LT
5369 } while_each_thread(g, p);
5370
04c9167f
JF
5371 touch_all_softlockup_watchdogs();
5372
dd41f596
IM
5373#ifdef CONFIG_SCHED_DEBUG
5374 sysrq_sched_debug_show();
5375#endif
1da177e4 5376 read_unlock(&tasklist_lock);
e59e2ae2
IM
5377 /*
5378 * Only show locks if all tasks are dumped:
5379 */
5380 if (state_filter == -1)
5381 debug_show_all_locks();
1da177e4
LT
5382}
5383
1df21055
IM
5384void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5385{
dd41f596 5386 idle->sched_class = &idle_sched_class;
1df21055
IM
5387}
5388
f340c0d1
IM
5389/**
5390 * init_idle - set up an idle thread for a given CPU
5391 * @idle: task in question
5392 * @cpu: cpu the idle task belongs to
5393 *
5394 * NOTE: this function does not set the idle thread's NEED_RESCHED
5395 * flag, to make booting more robust.
5396 */
5c1e1767 5397void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5398{
70b97a7f 5399 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5400 unsigned long flags;
5401
dd41f596
IM
5402 __sched_fork(idle);
5403 idle->se.exec_start = sched_clock();
5404
b29739f9 5405 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5406 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5407 __set_task_cpu(idle, cpu);
1da177e4
LT
5408
5409 spin_lock_irqsave(&rq->lock, flags);
5410 rq->curr = rq->idle = idle;
4866cde0
NP
5411#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5412 idle->oncpu = 1;
5413#endif
1da177e4
LT
5414 spin_unlock_irqrestore(&rq->lock, flags);
5415
5416 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5417 task_thread_info(idle)->preempt_count = 0;
6478d880 5418
dd41f596
IM
5419 /*
5420 * The idle tasks have their own, simple scheduling class:
5421 */
5422 idle->sched_class = &idle_sched_class;
1da177e4
LT
5423}
5424
5425/*
5426 * In a system that switches off the HZ timer nohz_cpu_mask
5427 * indicates which cpus entered this state. This is used
5428 * in the rcu update to wait only for active cpus. For system
5429 * which do not switch off the HZ timer nohz_cpu_mask should
5430 * always be CPU_MASK_NONE.
5431 */
5432cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5433
19978ca6
IM
5434/*
5435 * Increase the granularity value when there are more CPUs,
5436 * because with more CPUs the 'effective latency' as visible
5437 * to users decreases. But the relationship is not linear,
5438 * so pick a second-best guess by going with the log2 of the
5439 * number of CPUs.
5440 *
5441 * This idea comes from the SD scheduler of Con Kolivas:
5442 */
5443static inline void sched_init_granularity(void)
5444{
5445 unsigned int factor = 1 + ilog2(num_online_cpus());
5446 const unsigned long limit = 200000000;
5447
5448 sysctl_sched_min_granularity *= factor;
5449 if (sysctl_sched_min_granularity > limit)
5450 sysctl_sched_min_granularity = limit;
5451
5452 sysctl_sched_latency *= factor;
5453 if (sysctl_sched_latency > limit)
5454 sysctl_sched_latency = limit;
5455
5456 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5457}
5458
1da177e4
LT
5459#ifdef CONFIG_SMP
5460/*
5461 * This is how migration works:
5462 *
70b97a7f 5463 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5464 * runqueue and wake up that CPU's migration thread.
5465 * 2) we down() the locked semaphore => thread blocks.
5466 * 3) migration thread wakes up (implicitly it forces the migrated
5467 * thread off the CPU)
5468 * 4) it gets the migration request and checks whether the migrated
5469 * task is still in the wrong runqueue.
5470 * 5) if it's in the wrong runqueue then the migration thread removes
5471 * it and puts it into the right queue.
5472 * 6) migration thread up()s the semaphore.
5473 * 7) we wake up and the migration is done.
5474 */
5475
5476/*
5477 * Change a given task's CPU affinity. Migrate the thread to a
5478 * proper CPU and schedule it away if the CPU it's executing on
5479 * is removed from the allowed bitmask.
5480 *
5481 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5482 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5483 * call is not atomic; no spinlocks may be held.
5484 */
36c8b586 5485int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5486{
70b97a7f 5487 struct migration_req req;
1da177e4 5488 unsigned long flags;
70b97a7f 5489 struct rq *rq;
48f24c4d 5490 int ret = 0;
1da177e4
LT
5491
5492 rq = task_rq_lock(p, &flags);
5493 if (!cpus_intersects(new_mask, cpu_online_map)) {
5494 ret = -EINVAL;
5495 goto out;
5496 }
5497
73fe6aae
GH
5498 if (p->sched_class->set_cpus_allowed)
5499 p->sched_class->set_cpus_allowed(p, &new_mask);
5500 else {
0eab9146 5501 p->cpus_allowed = new_mask;
6f505b16 5502 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
73fe6aae
GH
5503 }
5504
1da177e4
LT
5505 /* Can the task run on the task's current CPU? If so, we're done */
5506 if (cpu_isset(task_cpu(p), new_mask))
5507 goto out;
5508
5509 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5510 /* Need help from migration thread: drop lock and wait. */
5511 task_rq_unlock(rq, &flags);
5512 wake_up_process(rq->migration_thread);
5513 wait_for_completion(&req.done);
5514 tlb_migrate_finish(p->mm);
5515 return 0;
5516 }
5517out:
5518 task_rq_unlock(rq, &flags);
48f24c4d 5519
1da177e4
LT
5520 return ret;
5521}
1da177e4
LT
5522EXPORT_SYMBOL_GPL(set_cpus_allowed);
5523
5524/*
41a2d6cf 5525 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5526 * this because either it can't run here any more (set_cpus_allowed()
5527 * away from this CPU, or CPU going down), or because we're
5528 * attempting to rebalance this task on exec (sched_exec).
5529 *
5530 * So we race with normal scheduler movements, but that's OK, as long
5531 * as the task is no longer on this CPU.
efc30814
KK
5532 *
5533 * Returns non-zero if task was successfully migrated.
1da177e4 5534 */
efc30814 5535static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5536{
70b97a7f 5537 struct rq *rq_dest, *rq_src;
dd41f596 5538 int ret = 0, on_rq;
1da177e4
LT
5539
5540 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5541 return ret;
1da177e4
LT
5542
5543 rq_src = cpu_rq(src_cpu);
5544 rq_dest = cpu_rq(dest_cpu);
5545
5546 double_rq_lock(rq_src, rq_dest);
5547 /* Already moved. */
5548 if (task_cpu(p) != src_cpu)
5549 goto out;
5550 /* Affinity changed (again). */
5551 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5552 goto out;
5553
dd41f596 5554 on_rq = p->se.on_rq;
6e82a3be 5555 if (on_rq)
2e1cb74a 5556 deactivate_task(rq_src, p, 0);
6e82a3be 5557
1da177e4 5558 set_task_cpu(p, dest_cpu);
dd41f596
IM
5559 if (on_rq) {
5560 activate_task(rq_dest, p, 0);
5561 check_preempt_curr(rq_dest, p);
1da177e4 5562 }
efc30814 5563 ret = 1;
1da177e4
LT
5564out:
5565 double_rq_unlock(rq_src, rq_dest);
efc30814 5566 return ret;
1da177e4
LT
5567}
5568
5569/*
5570 * migration_thread - this is a highprio system thread that performs
5571 * thread migration by bumping thread off CPU then 'pushing' onto
5572 * another runqueue.
5573 */
95cdf3b7 5574static int migration_thread(void *data)
1da177e4 5575{
1da177e4 5576 int cpu = (long)data;
70b97a7f 5577 struct rq *rq;
1da177e4
LT
5578
5579 rq = cpu_rq(cpu);
5580 BUG_ON(rq->migration_thread != current);
5581
5582 set_current_state(TASK_INTERRUPTIBLE);
5583 while (!kthread_should_stop()) {
70b97a7f 5584 struct migration_req *req;
1da177e4 5585 struct list_head *head;
1da177e4 5586
1da177e4
LT
5587 spin_lock_irq(&rq->lock);
5588
5589 if (cpu_is_offline(cpu)) {
5590 spin_unlock_irq(&rq->lock);
5591 goto wait_to_die;
5592 }
5593
5594 if (rq->active_balance) {
5595 active_load_balance(rq, cpu);
5596 rq->active_balance = 0;
5597 }
5598
5599 head = &rq->migration_queue;
5600
5601 if (list_empty(head)) {
5602 spin_unlock_irq(&rq->lock);
5603 schedule();
5604 set_current_state(TASK_INTERRUPTIBLE);
5605 continue;
5606 }
70b97a7f 5607 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5608 list_del_init(head->next);
5609
674311d5
NP
5610 spin_unlock(&rq->lock);
5611 __migrate_task(req->task, cpu, req->dest_cpu);
5612 local_irq_enable();
1da177e4
LT
5613
5614 complete(&req->done);
5615 }
5616 __set_current_state(TASK_RUNNING);
5617 return 0;
5618
5619wait_to_die:
5620 /* Wait for kthread_stop */
5621 set_current_state(TASK_INTERRUPTIBLE);
5622 while (!kthread_should_stop()) {
5623 schedule();
5624 set_current_state(TASK_INTERRUPTIBLE);
5625 }
5626 __set_current_state(TASK_RUNNING);
5627 return 0;
5628}
5629
5630#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5631
5632static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5633{
5634 int ret;
5635
5636 local_irq_disable();
5637 ret = __migrate_task(p, src_cpu, dest_cpu);
5638 local_irq_enable();
5639 return ret;
5640}
5641
054b9108 5642/*
3a4fa0a2 5643 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5644 * NOTE: interrupts should be disabled by the caller
5645 */
48f24c4d 5646static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5647{
efc30814 5648 unsigned long flags;
1da177e4 5649 cpumask_t mask;
70b97a7f
IM
5650 struct rq *rq;
5651 int dest_cpu;
1da177e4 5652
3a5c359a
AK
5653 do {
5654 /* On same node? */
5655 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5656 cpus_and(mask, mask, p->cpus_allowed);
5657 dest_cpu = any_online_cpu(mask);
5658
5659 /* On any allowed CPU? */
434d53b0 5660 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5661 dest_cpu = any_online_cpu(p->cpus_allowed);
5662
5663 /* No more Mr. Nice Guy. */
434d53b0 5664 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5665 cpumask_t cpus_allowed;
5666
5667 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5668 /*
5669 * Try to stay on the same cpuset, where the
5670 * current cpuset may be a subset of all cpus.
5671 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5672 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5673 * called within calls to cpuset_lock/cpuset_unlock.
5674 */
3a5c359a 5675 rq = task_rq_lock(p, &flags);
470fd646 5676 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5677 dest_cpu = any_online_cpu(p->cpus_allowed);
5678 task_rq_unlock(rq, &flags);
1da177e4 5679
3a5c359a
AK
5680 /*
5681 * Don't tell them about moving exiting tasks or
5682 * kernel threads (both mm NULL), since they never
5683 * leave kernel.
5684 */
41a2d6cf 5685 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5686 printk(KERN_INFO "process %d (%s) no "
5687 "longer affine to cpu%d\n",
41a2d6cf
IM
5688 task_pid_nr(p), p->comm, dead_cpu);
5689 }
3a5c359a 5690 }
f7b4cddc 5691 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5692}
5693
5694/*
5695 * While a dead CPU has no uninterruptible tasks queued at this point,
5696 * it might still have a nonzero ->nr_uninterruptible counter, because
5697 * for performance reasons the counter is not stricly tracking tasks to
5698 * their home CPUs. So we just add the counter to another CPU's counter,
5699 * to keep the global sum constant after CPU-down:
5700 */
70b97a7f 5701static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5702{
70b97a7f 5703 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5704 unsigned long flags;
5705
5706 local_irq_save(flags);
5707 double_rq_lock(rq_src, rq_dest);
5708 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5709 rq_src->nr_uninterruptible = 0;
5710 double_rq_unlock(rq_src, rq_dest);
5711 local_irq_restore(flags);
5712}
5713
5714/* Run through task list and migrate tasks from the dead cpu. */
5715static void migrate_live_tasks(int src_cpu)
5716{
48f24c4d 5717 struct task_struct *p, *t;
1da177e4 5718
f7b4cddc 5719 read_lock(&tasklist_lock);
1da177e4 5720
48f24c4d
IM
5721 do_each_thread(t, p) {
5722 if (p == current)
1da177e4
LT
5723 continue;
5724
48f24c4d
IM
5725 if (task_cpu(p) == src_cpu)
5726 move_task_off_dead_cpu(src_cpu, p);
5727 } while_each_thread(t, p);
1da177e4 5728
f7b4cddc 5729 read_unlock(&tasklist_lock);
1da177e4
LT
5730}
5731
dd41f596
IM
5732/*
5733 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5734 * It does so by boosting its priority to highest possible.
5735 * Used by CPU offline code.
1da177e4
LT
5736 */
5737void sched_idle_next(void)
5738{
48f24c4d 5739 int this_cpu = smp_processor_id();
70b97a7f 5740 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5741 struct task_struct *p = rq->idle;
5742 unsigned long flags;
5743
5744 /* cpu has to be offline */
48f24c4d 5745 BUG_ON(cpu_online(this_cpu));
1da177e4 5746
48f24c4d
IM
5747 /*
5748 * Strictly not necessary since rest of the CPUs are stopped by now
5749 * and interrupts disabled on the current cpu.
1da177e4
LT
5750 */
5751 spin_lock_irqsave(&rq->lock, flags);
5752
dd41f596 5753 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5754
94bc9a7b
DA
5755 update_rq_clock(rq);
5756 activate_task(rq, p, 0);
1da177e4
LT
5757
5758 spin_unlock_irqrestore(&rq->lock, flags);
5759}
5760
48f24c4d
IM
5761/*
5762 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5763 * offline.
5764 */
5765void idle_task_exit(void)
5766{
5767 struct mm_struct *mm = current->active_mm;
5768
5769 BUG_ON(cpu_online(smp_processor_id()));
5770
5771 if (mm != &init_mm)
5772 switch_mm(mm, &init_mm, current);
5773 mmdrop(mm);
5774}
5775
054b9108 5776/* called under rq->lock with disabled interrupts */
36c8b586 5777static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5778{
70b97a7f 5779 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5780
5781 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5782 BUG_ON(!p->exit_state);
1da177e4
LT
5783
5784 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5785 BUG_ON(p->state == TASK_DEAD);
1da177e4 5786
48f24c4d 5787 get_task_struct(p);
1da177e4
LT
5788
5789 /*
5790 * Drop lock around migration; if someone else moves it,
41a2d6cf 5791 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5792 * fine.
5793 */
f7b4cddc 5794 spin_unlock_irq(&rq->lock);
48f24c4d 5795 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5796 spin_lock_irq(&rq->lock);
1da177e4 5797
48f24c4d 5798 put_task_struct(p);
1da177e4
LT
5799}
5800
5801/* release_task() removes task from tasklist, so we won't find dead tasks. */
5802static void migrate_dead_tasks(unsigned int dead_cpu)
5803{
70b97a7f 5804 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5805 struct task_struct *next;
48f24c4d 5806
dd41f596
IM
5807 for ( ; ; ) {
5808 if (!rq->nr_running)
5809 break;
a8e504d2 5810 update_rq_clock(rq);
ff95f3df 5811 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5812 if (!next)
5813 break;
5814 migrate_dead(dead_cpu, next);
e692ab53 5815
1da177e4
LT
5816 }
5817}
5818#endif /* CONFIG_HOTPLUG_CPU */
5819
e692ab53
NP
5820#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5821
5822static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5823 {
5824 .procname = "sched_domain",
c57baf1e 5825 .mode = 0555,
e0361851 5826 },
38605cae 5827 {0, },
e692ab53
NP
5828};
5829
5830static struct ctl_table sd_ctl_root[] = {
e0361851 5831 {
c57baf1e 5832 .ctl_name = CTL_KERN,
e0361851 5833 .procname = "kernel",
c57baf1e 5834 .mode = 0555,
e0361851
AD
5835 .child = sd_ctl_dir,
5836 },
38605cae 5837 {0, },
e692ab53
NP
5838};
5839
5840static struct ctl_table *sd_alloc_ctl_entry(int n)
5841{
5842 struct ctl_table *entry =
5cf9f062 5843 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5844
e692ab53
NP
5845 return entry;
5846}
5847
6382bc90
MM
5848static void sd_free_ctl_entry(struct ctl_table **tablep)
5849{
cd790076 5850 struct ctl_table *entry;
6382bc90 5851
cd790076
MM
5852 /*
5853 * In the intermediate directories, both the child directory and
5854 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5855 * will always be set. In the lowest directory the names are
cd790076
MM
5856 * static strings and all have proc handlers.
5857 */
5858 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5859 if (entry->child)
5860 sd_free_ctl_entry(&entry->child);
cd790076
MM
5861 if (entry->proc_handler == NULL)
5862 kfree(entry->procname);
5863 }
6382bc90
MM
5864
5865 kfree(*tablep);
5866 *tablep = NULL;
5867}
5868
e692ab53 5869static void
e0361851 5870set_table_entry(struct ctl_table *entry,
e692ab53
NP
5871 const char *procname, void *data, int maxlen,
5872 mode_t mode, proc_handler *proc_handler)
5873{
e692ab53
NP
5874 entry->procname = procname;
5875 entry->data = data;
5876 entry->maxlen = maxlen;
5877 entry->mode = mode;
5878 entry->proc_handler = proc_handler;
5879}
5880
5881static struct ctl_table *
5882sd_alloc_ctl_domain_table(struct sched_domain *sd)
5883{
ace8b3d6 5884 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5885
ad1cdc1d
MM
5886 if (table == NULL)
5887 return NULL;
5888
e0361851 5889 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5890 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5891 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5892 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5893 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5894 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5895 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5896 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5897 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5898 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5899 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5900 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5901 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5902 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5903 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5904 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5905 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5906 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5907 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5908 &sd->cache_nice_tries,
5909 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5910 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5911 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5912 /* &table[11] is terminator */
e692ab53
NP
5913
5914 return table;
5915}
5916
9a4e7159 5917static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5918{
5919 struct ctl_table *entry, *table;
5920 struct sched_domain *sd;
5921 int domain_num = 0, i;
5922 char buf[32];
5923
5924 for_each_domain(cpu, sd)
5925 domain_num++;
5926 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5927 if (table == NULL)
5928 return NULL;
e692ab53
NP
5929
5930 i = 0;
5931 for_each_domain(cpu, sd) {
5932 snprintf(buf, 32, "domain%d", i);
e692ab53 5933 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5934 entry->mode = 0555;
e692ab53
NP
5935 entry->child = sd_alloc_ctl_domain_table(sd);
5936 entry++;
5937 i++;
5938 }
5939 return table;
5940}
5941
5942static struct ctl_table_header *sd_sysctl_header;
6382bc90 5943static void register_sched_domain_sysctl(void)
e692ab53
NP
5944{
5945 int i, cpu_num = num_online_cpus();
5946 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5947 char buf[32];
5948
7378547f
MM
5949 WARN_ON(sd_ctl_dir[0].child);
5950 sd_ctl_dir[0].child = entry;
5951
ad1cdc1d
MM
5952 if (entry == NULL)
5953 return;
5954
97b6ea7b 5955 for_each_online_cpu(i) {
e692ab53 5956 snprintf(buf, 32, "cpu%d", i);
e692ab53 5957 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5958 entry->mode = 0555;
e692ab53 5959 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5960 entry++;
e692ab53 5961 }
7378547f
MM
5962
5963 WARN_ON(sd_sysctl_header);
e692ab53
NP
5964 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5965}
6382bc90 5966
7378547f 5967/* may be called multiple times per register */
6382bc90
MM
5968static void unregister_sched_domain_sysctl(void)
5969{
7378547f
MM
5970 if (sd_sysctl_header)
5971 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5972 sd_sysctl_header = NULL;
7378547f
MM
5973 if (sd_ctl_dir[0].child)
5974 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5975}
e692ab53 5976#else
6382bc90
MM
5977static void register_sched_domain_sysctl(void)
5978{
5979}
5980static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5981{
5982}
5983#endif
5984
1da177e4
LT
5985/*
5986 * migration_call - callback that gets triggered when a CPU is added.
5987 * Here we can start up the necessary migration thread for the new CPU.
5988 */
48f24c4d
IM
5989static int __cpuinit
5990migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5991{
1da177e4 5992 struct task_struct *p;
48f24c4d 5993 int cpu = (long)hcpu;
1da177e4 5994 unsigned long flags;
70b97a7f 5995 struct rq *rq;
1da177e4
LT
5996
5997 switch (action) {
5be9361c 5998
1da177e4 5999 case CPU_UP_PREPARE:
8bb78442 6000 case CPU_UP_PREPARE_FROZEN:
dd41f596 6001 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6002 if (IS_ERR(p))
6003 return NOTIFY_BAD;
1da177e4
LT
6004 kthread_bind(p, cpu);
6005 /* Must be high prio: stop_machine expects to yield to it. */
6006 rq = task_rq_lock(p, &flags);
dd41f596 6007 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6008 task_rq_unlock(rq, &flags);
6009 cpu_rq(cpu)->migration_thread = p;
6010 break;
48f24c4d 6011
1da177e4 6012 case CPU_ONLINE:
8bb78442 6013 case CPU_ONLINE_FROZEN:
3a4fa0a2 6014 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6015 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6016
6017 /* Update our root-domain */
6018 rq = cpu_rq(cpu);
6019 spin_lock_irqsave(&rq->lock, flags);
6020 if (rq->rd) {
6021 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6022 cpu_set(cpu, rq->rd->online);
6023 }
6024 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6025 break;
48f24c4d 6026
1da177e4
LT
6027#ifdef CONFIG_HOTPLUG_CPU
6028 case CPU_UP_CANCELED:
8bb78442 6029 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6030 if (!cpu_rq(cpu)->migration_thread)
6031 break;
41a2d6cf 6032 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6033 kthread_bind(cpu_rq(cpu)->migration_thread,
6034 any_online_cpu(cpu_online_map));
1da177e4
LT
6035 kthread_stop(cpu_rq(cpu)->migration_thread);
6036 cpu_rq(cpu)->migration_thread = NULL;
6037 break;
48f24c4d 6038
1da177e4 6039 case CPU_DEAD:
8bb78442 6040 case CPU_DEAD_FROZEN:
470fd646 6041 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6042 migrate_live_tasks(cpu);
6043 rq = cpu_rq(cpu);
6044 kthread_stop(rq->migration_thread);
6045 rq->migration_thread = NULL;
6046 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6047 spin_lock_irq(&rq->lock);
a8e504d2 6048 update_rq_clock(rq);
2e1cb74a 6049 deactivate_task(rq, rq->idle, 0);
1da177e4 6050 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6051 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6052 rq->idle->sched_class = &idle_sched_class;
1da177e4 6053 migrate_dead_tasks(cpu);
d2da272a 6054 spin_unlock_irq(&rq->lock);
470fd646 6055 cpuset_unlock();
1da177e4
LT
6056 migrate_nr_uninterruptible(rq);
6057 BUG_ON(rq->nr_running != 0);
6058
41a2d6cf
IM
6059 /*
6060 * No need to migrate the tasks: it was best-effort if
6061 * they didn't take sched_hotcpu_mutex. Just wake up
6062 * the requestors.
6063 */
1da177e4
LT
6064 spin_lock_irq(&rq->lock);
6065 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6066 struct migration_req *req;
6067
1da177e4 6068 req = list_entry(rq->migration_queue.next,
70b97a7f 6069 struct migration_req, list);
1da177e4
LT
6070 list_del_init(&req->list);
6071 complete(&req->done);
6072 }
6073 spin_unlock_irq(&rq->lock);
6074 break;
57d885fe 6075
08f503b0
GH
6076 case CPU_DYING:
6077 case CPU_DYING_FROZEN:
57d885fe
GH
6078 /* Update our root-domain */
6079 rq = cpu_rq(cpu);
6080 spin_lock_irqsave(&rq->lock, flags);
6081 if (rq->rd) {
6082 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6083 cpu_clear(cpu, rq->rd->online);
6084 }
6085 spin_unlock_irqrestore(&rq->lock, flags);
6086 break;
1da177e4
LT
6087#endif
6088 }
6089 return NOTIFY_OK;
6090}
6091
6092/* Register at highest priority so that task migration (migrate_all_tasks)
6093 * happens before everything else.
6094 */
26c2143b 6095static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6096 .notifier_call = migration_call,
6097 .priority = 10
6098};
6099
e6fe6649 6100void __init migration_init(void)
1da177e4
LT
6101{
6102 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6103 int err;
48f24c4d
IM
6104
6105 /* Start one for the boot CPU: */
07dccf33
AM
6106 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6107 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6108 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6109 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6110}
6111#endif
6112
6113#ifdef CONFIG_SMP
476f3534
CL
6114
6115/* Number of possible processor ids */
6116int nr_cpu_ids __read_mostly = NR_CPUS;
6117EXPORT_SYMBOL(nr_cpu_ids);
6118
3e9830dc 6119#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
6120
6121static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 6122{
4dcf6aff
IM
6123 struct sched_group *group = sd->groups;
6124 cpumask_t groupmask;
434d53b0 6125 char str[256];
1da177e4 6126
434d53b0 6127 cpulist_scnprintf(str, sizeof(str), sd->span);
4dcf6aff
IM
6128 cpus_clear(groupmask);
6129
6130 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6131
6132 if (!(sd->flags & SD_LOAD_BALANCE)) {
6133 printk("does not load-balance\n");
6134 if (sd->parent)
6135 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6136 " has parent");
6137 return -1;
41c7ce9a
NP
6138 }
6139
4dcf6aff
IM
6140 printk(KERN_CONT "span %s\n", str);
6141
6142 if (!cpu_isset(cpu, sd->span)) {
6143 printk(KERN_ERR "ERROR: domain->span does not contain "
6144 "CPU%d\n", cpu);
6145 }
6146 if (!cpu_isset(cpu, group->cpumask)) {
6147 printk(KERN_ERR "ERROR: domain->groups does not contain"
6148 " CPU%d\n", cpu);
6149 }
1da177e4 6150
4dcf6aff 6151 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6152 do {
4dcf6aff
IM
6153 if (!group) {
6154 printk("\n");
6155 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6156 break;
6157 }
6158
4dcf6aff
IM
6159 if (!group->__cpu_power) {
6160 printk(KERN_CONT "\n");
6161 printk(KERN_ERR "ERROR: domain->cpu_power not "
6162 "set\n");
6163 break;
6164 }
1da177e4 6165
4dcf6aff
IM
6166 if (!cpus_weight(group->cpumask)) {
6167 printk(KERN_CONT "\n");
6168 printk(KERN_ERR "ERROR: empty group\n");
6169 break;
6170 }
1da177e4 6171
4dcf6aff
IM
6172 if (cpus_intersects(groupmask, group->cpumask)) {
6173 printk(KERN_CONT "\n");
6174 printk(KERN_ERR "ERROR: repeated CPUs\n");
6175 break;
6176 }
1da177e4 6177
4dcf6aff 6178 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 6179
434d53b0 6180 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6181 printk(KERN_CONT " %s", str);
1da177e4 6182
4dcf6aff
IM
6183 group = group->next;
6184 } while (group != sd->groups);
6185 printk(KERN_CONT "\n");
1da177e4 6186
4dcf6aff
IM
6187 if (!cpus_equal(sd->span, groupmask))
6188 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6189
4dcf6aff
IM
6190 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6191 printk(KERN_ERR "ERROR: parent span is not a superset "
6192 "of domain->span\n");
6193 return 0;
6194}
1da177e4 6195
4dcf6aff
IM
6196static void sched_domain_debug(struct sched_domain *sd, int cpu)
6197{
6198 int level = 0;
1da177e4 6199
4dcf6aff
IM
6200 if (!sd) {
6201 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6202 return;
6203 }
1da177e4 6204
4dcf6aff
IM
6205 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6206
6207 for (;;) {
6208 if (sched_domain_debug_one(sd, cpu, level))
6209 break;
1da177e4
LT
6210 level++;
6211 sd = sd->parent;
33859f7f 6212 if (!sd)
4dcf6aff
IM
6213 break;
6214 }
1da177e4
LT
6215}
6216#else
48f24c4d 6217# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6218#endif
6219
1a20ff27 6220static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6221{
6222 if (cpus_weight(sd->span) == 1)
6223 return 1;
6224
6225 /* Following flags need at least 2 groups */
6226 if (sd->flags & (SD_LOAD_BALANCE |
6227 SD_BALANCE_NEWIDLE |
6228 SD_BALANCE_FORK |
89c4710e
SS
6229 SD_BALANCE_EXEC |
6230 SD_SHARE_CPUPOWER |
6231 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6232 if (sd->groups != sd->groups->next)
6233 return 0;
6234 }
6235
6236 /* Following flags don't use groups */
6237 if (sd->flags & (SD_WAKE_IDLE |
6238 SD_WAKE_AFFINE |
6239 SD_WAKE_BALANCE))
6240 return 0;
6241
6242 return 1;
6243}
6244
48f24c4d
IM
6245static int
6246sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6247{
6248 unsigned long cflags = sd->flags, pflags = parent->flags;
6249
6250 if (sd_degenerate(parent))
6251 return 1;
6252
6253 if (!cpus_equal(sd->span, parent->span))
6254 return 0;
6255
6256 /* Does parent contain flags not in child? */
6257 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6258 if (cflags & SD_WAKE_AFFINE)
6259 pflags &= ~SD_WAKE_BALANCE;
6260 /* Flags needing groups don't count if only 1 group in parent */
6261 if (parent->groups == parent->groups->next) {
6262 pflags &= ~(SD_LOAD_BALANCE |
6263 SD_BALANCE_NEWIDLE |
6264 SD_BALANCE_FORK |
89c4710e
SS
6265 SD_BALANCE_EXEC |
6266 SD_SHARE_CPUPOWER |
6267 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6268 }
6269 if (~cflags & pflags)
6270 return 0;
6271
6272 return 1;
6273}
6274
57d885fe
GH
6275static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6276{
6277 unsigned long flags;
6278 const struct sched_class *class;
6279
6280 spin_lock_irqsave(&rq->lock, flags);
6281
6282 if (rq->rd) {
6283 struct root_domain *old_rd = rq->rd;
6284
0eab9146 6285 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6286 if (class->leave_domain)
6287 class->leave_domain(rq);
0eab9146 6288 }
57d885fe 6289
dc938520
GH
6290 cpu_clear(rq->cpu, old_rd->span);
6291 cpu_clear(rq->cpu, old_rd->online);
6292
57d885fe
GH
6293 if (atomic_dec_and_test(&old_rd->refcount))
6294 kfree(old_rd);
6295 }
6296
6297 atomic_inc(&rd->refcount);
6298 rq->rd = rd;
6299
dc938520 6300 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6301 if (cpu_isset(rq->cpu, cpu_online_map))
6302 cpu_set(rq->cpu, rd->online);
dc938520 6303
0eab9146 6304 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6305 if (class->join_domain)
6306 class->join_domain(rq);
0eab9146 6307 }
57d885fe
GH
6308
6309 spin_unlock_irqrestore(&rq->lock, flags);
6310}
6311
dc938520 6312static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6313{
6314 memset(rd, 0, sizeof(*rd));
6315
dc938520
GH
6316 cpus_clear(rd->span);
6317 cpus_clear(rd->online);
57d885fe
GH
6318}
6319
6320static void init_defrootdomain(void)
6321{
dc938520 6322 init_rootdomain(&def_root_domain);
57d885fe
GH
6323 atomic_set(&def_root_domain.refcount, 1);
6324}
6325
dc938520 6326static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6327{
6328 struct root_domain *rd;
6329
6330 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6331 if (!rd)
6332 return NULL;
6333
dc938520 6334 init_rootdomain(rd);
57d885fe
GH
6335
6336 return rd;
6337}
6338
1da177e4 6339/*
0eab9146 6340 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6341 * hold the hotplug lock.
6342 */
0eab9146
IM
6343static void
6344cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6345{
70b97a7f 6346 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6347 struct sched_domain *tmp;
6348
6349 /* Remove the sched domains which do not contribute to scheduling. */
6350 for (tmp = sd; tmp; tmp = tmp->parent) {
6351 struct sched_domain *parent = tmp->parent;
6352 if (!parent)
6353 break;
1a848870 6354 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6355 tmp->parent = parent->parent;
1a848870
SS
6356 if (parent->parent)
6357 parent->parent->child = tmp;
6358 }
245af2c7
SS
6359 }
6360
1a848870 6361 if (sd && sd_degenerate(sd)) {
245af2c7 6362 sd = sd->parent;
1a848870
SS
6363 if (sd)
6364 sd->child = NULL;
6365 }
1da177e4
LT
6366
6367 sched_domain_debug(sd, cpu);
6368
57d885fe 6369 rq_attach_root(rq, rd);
674311d5 6370 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6371}
6372
6373/* cpus with isolated domains */
67af63a6 6374static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6375
6376/* Setup the mask of cpus configured for isolated domains */
6377static int __init isolated_cpu_setup(char *str)
6378{
6379 int ints[NR_CPUS], i;
6380
6381 str = get_options(str, ARRAY_SIZE(ints), ints);
6382 cpus_clear(cpu_isolated_map);
6383 for (i = 1; i <= ints[0]; i++)
6384 if (ints[i] < NR_CPUS)
6385 cpu_set(ints[i], cpu_isolated_map);
6386 return 1;
6387}
6388
8927f494 6389__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6390
6391/*
6711cab4
SS
6392 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6393 * to a function which identifies what group(along with sched group) a CPU
6394 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6395 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6396 *
6397 * init_sched_build_groups will build a circular linked list of the groups
6398 * covered by the given span, and will set each group's ->cpumask correctly,
6399 * and ->cpu_power to 0.
6400 */
a616058b 6401static void
6711cab4
SS
6402init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6403 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6404 struct sched_group **sg))
1da177e4
LT
6405{
6406 struct sched_group *first = NULL, *last = NULL;
6407 cpumask_t covered = CPU_MASK_NONE;
6408 int i;
6409
6410 for_each_cpu_mask(i, span) {
6711cab4
SS
6411 struct sched_group *sg;
6412 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
6413 int j;
6414
6415 if (cpu_isset(i, covered))
6416 continue;
6417
6418 sg->cpumask = CPU_MASK_NONE;
5517d86b 6419 sg->__cpu_power = 0;
1da177e4
LT
6420
6421 for_each_cpu_mask(j, span) {
6711cab4 6422 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
6423 continue;
6424
6425 cpu_set(j, covered);
6426 cpu_set(j, sg->cpumask);
6427 }
6428 if (!first)
6429 first = sg;
6430 if (last)
6431 last->next = sg;
6432 last = sg;
6433 }
6434 last->next = first;
6435}
6436
9c1cfda2 6437#define SD_NODES_PER_DOMAIN 16
1da177e4 6438
9c1cfda2 6439#ifdef CONFIG_NUMA
198e2f18 6440
9c1cfda2
JH
6441/**
6442 * find_next_best_node - find the next node to include in a sched_domain
6443 * @node: node whose sched_domain we're building
6444 * @used_nodes: nodes already in the sched_domain
6445 *
41a2d6cf 6446 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6447 * finds the closest node not already in the @used_nodes map.
6448 *
6449 * Should use nodemask_t.
6450 */
6451static int find_next_best_node(int node, unsigned long *used_nodes)
6452{
6453 int i, n, val, min_val, best_node = 0;
6454
6455 min_val = INT_MAX;
6456
6457 for (i = 0; i < MAX_NUMNODES; i++) {
6458 /* Start at @node */
6459 n = (node + i) % MAX_NUMNODES;
6460
6461 if (!nr_cpus_node(n))
6462 continue;
6463
6464 /* Skip already used nodes */
6465 if (test_bit(n, used_nodes))
6466 continue;
6467
6468 /* Simple min distance search */
6469 val = node_distance(node, n);
6470
6471 if (val < min_val) {
6472 min_val = val;
6473 best_node = n;
6474 }
6475 }
6476
6477 set_bit(best_node, used_nodes);
6478 return best_node;
6479}
6480
6481/**
6482 * sched_domain_node_span - get a cpumask for a node's sched_domain
6483 * @node: node whose cpumask we're constructing
6484 * @size: number of nodes to include in this span
6485 *
41a2d6cf 6486 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6487 * should be one that prevents unnecessary balancing, but also spreads tasks
6488 * out optimally.
6489 */
6490static cpumask_t sched_domain_node_span(int node)
6491{
9c1cfda2 6492 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6493 cpumask_t span, nodemask;
6494 int i;
9c1cfda2
JH
6495
6496 cpus_clear(span);
6497 bitmap_zero(used_nodes, MAX_NUMNODES);
6498
6499 nodemask = node_to_cpumask(node);
6500 cpus_or(span, span, nodemask);
6501 set_bit(node, used_nodes);
6502
6503 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6504 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6505
9c1cfda2
JH
6506 nodemask = node_to_cpumask(next_node);
6507 cpus_or(span, span, nodemask);
6508 }
6509
6510 return span;
6511}
6512#endif
6513
5c45bf27 6514int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6515
9c1cfda2 6516/*
48f24c4d 6517 * SMT sched-domains:
9c1cfda2 6518 */
1da177e4
LT
6519#ifdef CONFIG_SCHED_SMT
6520static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6521static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6522
41a2d6cf
IM
6523static int
6524cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6525{
6711cab4
SS
6526 if (sg)
6527 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6528 return cpu;
6529}
6530#endif
6531
48f24c4d
IM
6532/*
6533 * multi-core sched-domains:
6534 */
1e9f28fa
SS
6535#ifdef CONFIG_SCHED_MC
6536static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6537static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6538#endif
6539
6540#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6541static int
6542cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6543{
6711cab4 6544 int group;
d5a7430d 6545 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6546 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6547 group = first_cpu(mask);
6548 if (sg)
6549 *sg = &per_cpu(sched_group_core, group);
6550 return group;
1e9f28fa
SS
6551}
6552#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6553static int
6554cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6555{
6711cab4
SS
6556 if (sg)
6557 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6558 return cpu;
6559}
6560#endif
6561
1da177e4 6562static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6563static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6564
41a2d6cf
IM
6565static int
6566cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6567{
6711cab4 6568 int group;
48f24c4d 6569#ifdef CONFIG_SCHED_MC
1e9f28fa 6570 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6571 cpus_and(mask, mask, *cpu_map);
6711cab4 6572 group = first_cpu(mask);
1e9f28fa 6573#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6574 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6575 cpus_and(mask, mask, *cpu_map);
6711cab4 6576 group = first_cpu(mask);
1da177e4 6577#else
6711cab4 6578 group = cpu;
1da177e4 6579#endif
6711cab4
SS
6580 if (sg)
6581 *sg = &per_cpu(sched_group_phys, group);
6582 return group;
1da177e4
LT
6583}
6584
6585#ifdef CONFIG_NUMA
1da177e4 6586/*
9c1cfda2
JH
6587 * The init_sched_build_groups can't handle what we want to do with node
6588 * groups, so roll our own. Now each node has its own list of groups which
6589 * gets dynamically allocated.
1da177e4 6590 */
9c1cfda2 6591static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6592static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6593
9c1cfda2 6594static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6595static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6596
6711cab4
SS
6597static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6598 struct sched_group **sg)
9c1cfda2 6599{
6711cab4
SS
6600 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6601 int group;
6602
6603 cpus_and(nodemask, nodemask, *cpu_map);
6604 group = first_cpu(nodemask);
6605
6606 if (sg)
6607 *sg = &per_cpu(sched_group_allnodes, group);
6608 return group;
1da177e4 6609}
6711cab4 6610
08069033
SS
6611static void init_numa_sched_groups_power(struct sched_group *group_head)
6612{
6613 struct sched_group *sg = group_head;
6614 int j;
6615
6616 if (!sg)
6617 return;
3a5c359a
AK
6618 do {
6619 for_each_cpu_mask(j, sg->cpumask) {
6620 struct sched_domain *sd;
08069033 6621
3a5c359a
AK
6622 sd = &per_cpu(phys_domains, j);
6623 if (j != first_cpu(sd->groups->cpumask)) {
6624 /*
6625 * Only add "power" once for each
6626 * physical package.
6627 */
6628 continue;
6629 }
08069033 6630
3a5c359a
AK
6631 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6632 }
6633 sg = sg->next;
6634 } while (sg != group_head);
08069033 6635}
1da177e4
LT
6636#endif
6637
a616058b 6638#ifdef CONFIG_NUMA
51888ca2
SV
6639/* Free memory allocated for various sched_group structures */
6640static void free_sched_groups(const cpumask_t *cpu_map)
6641{
a616058b 6642 int cpu, i;
51888ca2
SV
6643
6644 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6645 struct sched_group **sched_group_nodes
6646 = sched_group_nodes_bycpu[cpu];
6647
51888ca2
SV
6648 if (!sched_group_nodes)
6649 continue;
6650
6651 for (i = 0; i < MAX_NUMNODES; i++) {
6652 cpumask_t nodemask = node_to_cpumask(i);
6653 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6654
6655 cpus_and(nodemask, nodemask, *cpu_map);
6656 if (cpus_empty(nodemask))
6657 continue;
6658
6659 if (sg == NULL)
6660 continue;
6661 sg = sg->next;
6662next_sg:
6663 oldsg = sg;
6664 sg = sg->next;
6665 kfree(oldsg);
6666 if (oldsg != sched_group_nodes[i])
6667 goto next_sg;
6668 }
6669 kfree(sched_group_nodes);
6670 sched_group_nodes_bycpu[cpu] = NULL;
6671 }
51888ca2 6672}
a616058b
SS
6673#else
6674static void free_sched_groups(const cpumask_t *cpu_map)
6675{
6676}
6677#endif
51888ca2 6678
89c4710e
SS
6679/*
6680 * Initialize sched groups cpu_power.
6681 *
6682 * cpu_power indicates the capacity of sched group, which is used while
6683 * distributing the load between different sched groups in a sched domain.
6684 * Typically cpu_power for all the groups in a sched domain will be same unless
6685 * there are asymmetries in the topology. If there are asymmetries, group
6686 * having more cpu_power will pickup more load compared to the group having
6687 * less cpu_power.
6688 *
6689 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6690 * the maximum number of tasks a group can handle in the presence of other idle
6691 * or lightly loaded groups in the same sched domain.
6692 */
6693static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6694{
6695 struct sched_domain *child;
6696 struct sched_group *group;
6697
6698 WARN_ON(!sd || !sd->groups);
6699
6700 if (cpu != first_cpu(sd->groups->cpumask))
6701 return;
6702
6703 child = sd->child;
6704
5517d86b
ED
6705 sd->groups->__cpu_power = 0;
6706
89c4710e
SS
6707 /*
6708 * For perf policy, if the groups in child domain share resources
6709 * (for example cores sharing some portions of the cache hierarchy
6710 * or SMT), then set this domain groups cpu_power such that each group
6711 * can handle only one task, when there are other idle groups in the
6712 * same sched domain.
6713 */
6714 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6715 (child->flags &
6716 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6717 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6718 return;
6719 }
6720
89c4710e
SS
6721 /*
6722 * add cpu_power of each child group to this groups cpu_power
6723 */
6724 group = child->groups;
6725 do {
5517d86b 6726 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6727 group = group->next;
6728 } while (group != child->groups);
6729}
6730
1da177e4 6731/*
1a20ff27
DG
6732 * Build sched domains for a given set of cpus and attach the sched domains
6733 * to the individual cpus
1da177e4 6734 */
51888ca2 6735static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6736{
6737 int i;
57d885fe 6738 struct root_domain *rd;
d1b55138
JH
6739#ifdef CONFIG_NUMA
6740 struct sched_group **sched_group_nodes = NULL;
6711cab4 6741 int sd_allnodes = 0;
d1b55138
JH
6742
6743 /*
6744 * Allocate the per-node list of sched groups
6745 */
5cf9f062 6746 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6747 GFP_KERNEL);
d1b55138
JH
6748 if (!sched_group_nodes) {
6749 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6750 return -ENOMEM;
d1b55138
JH
6751 }
6752 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6753#endif
1da177e4 6754
dc938520 6755 rd = alloc_rootdomain();
57d885fe
GH
6756 if (!rd) {
6757 printk(KERN_WARNING "Cannot alloc root domain\n");
6758 return -ENOMEM;
6759 }
6760
1da177e4 6761 /*
1a20ff27 6762 * Set up domains for cpus specified by the cpu_map.
1da177e4 6763 */
1a20ff27 6764 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6765 struct sched_domain *sd = NULL, *p;
6766 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6767
1a20ff27 6768 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6769
6770#ifdef CONFIG_NUMA
dd41f596
IM
6771 if (cpus_weight(*cpu_map) >
6772 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6773 sd = &per_cpu(allnodes_domains, i);
6774 *sd = SD_ALLNODES_INIT;
6775 sd->span = *cpu_map;
6711cab4 6776 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6777 p = sd;
6711cab4 6778 sd_allnodes = 1;
9c1cfda2
JH
6779 } else
6780 p = NULL;
6781
1da177e4 6782 sd = &per_cpu(node_domains, i);
1da177e4 6783 *sd = SD_NODE_INIT;
9c1cfda2
JH
6784 sd->span = sched_domain_node_span(cpu_to_node(i));
6785 sd->parent = p;
1a848870
SS
6786 if (p)
6787 p->child = sd;
9c1cfda2 6788 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6789#endif
6790
6791 p = sd;
6792 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6793 *sd = SD_CPU_INIT;
6794 sd->span = nodemask;
6795 sd->parent = p;
1a848870
SS
6796 if (p)
6797 p->child = sd;
6711cab4 6798 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6799
1e9f28fa
SS
6800#ifdef CONFIG_SCHED_MC
6801 p = sd;
6802 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6803 *sd = SD_MC_INIT;
6804 sd->span = cpu_coregroup_map(i);
6805 cpus_and(sd->span, sd->span, *cpu_map);
6806 sd->parent = p;
1a848870 6807 p->child = sd;
6711cab4 6808 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6809#endif
6810
1da177e4
LT
6811#ifdef CONFIG_SCHED_SMT
6812 p = sd;
6813 sd = &per_cpu(cpu_domains, i);
1da177e4 6814 *sd = SD_SIBLING_INIT;
d5a7430d 6815 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6816 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6817 sd->parent = p;
1a848870 6818 p->child = sd;
6711cab4 6819 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6820#endif
6821 }
6822
6823#ifdef CONFIG_SCHED_SMT
6824 /* Set up CPU (sibling) groups */
9c1cfda2 6825 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6826 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6827 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6828 if (i != first_cpu(this_sibling_map))
6829 continue;
6830
dd41f596
IM
6831 init_sched_build_groups(this_sibling_map, cpu_map,
6832 &cpu_to_cpu_group);
1da177e4
LT
6833 }
6834#endif
6835
1e9f28fa
SS
6836#ifdef CONFIG_SCHED_MC
6837 /* Set up multi-core groups */
6838 for_each_cpu_mask(i, *cpu_map) {
6839 cpumask_t this_core_map = cpu_coregroup_map(i);
6840 cpus_and(this_core_map, this_core_map, *cpu_map);
6841 if (i != first_cpu(this_core_map))
6842 continue;
dd41f596
IM
6843 init_sched_build_groups(this_core_map, cpu_map,
6844 &cpu_to_core_group);
1e9f28fa
SS
6845 }
6846#endif
6847
1da177e4
LT
6848 /* Set up physical groups */
6849 for (i = 0; i < MAX_NUMNODES; i++) {
6850 cpumask_t nodemask = node_to_cpumask(i);
6851
1a20ff27 6852 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6853 if (cpus_empty(nodemask))
6854 continue;
6855
6711cab4 6856 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6857 }
6858
6859#ifdef CONFIG_NUMA
6860 /* Set up node groups */
6711cab4 6861 if (sd_allnodes)
dd41f596
IM
6862 init_sched_build_groups(*cpu_map, cpu_map,
6863 &cpu_to_allnodes_group);
9c1cfda2
JH
6864
6865 for (i = 0; i < MAX_NUMNODES; i++) {
6866 /* Set up node groups */
6867 struct sched_group *sg, *prev;
6868 cpumask_t nodemask = node_to_cpumask(i);
6869 cpumask_t domainspan;
6870 cpumask_t covered = CPU_MASK_NONE;
6871 int j;
6872
6873 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6874 if (cpus_empty(nodemask)) {
6875 sched_group_nodes[i] = NULL;
9c1cfda2 6876 continue;
d1b55138 6877 }
9c1cfda2
JH
6878
6879 domainspan = sched_domain_node_span(i);
6880 cpus_and(domainspan, domainspan, *cpu_map);
6881
15f0b676 6882 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6883 if (!sg) {
6884 printk(KERN_WARNING "Can not alloc domain group for "
6885 "node %d\n", i);
6886 goto error;
6887 }
9c1cfda2
JH
6888 sched_group_nodes[i] = sg;
6889 for_each_cpu_mask(j, nodemask) {
6890 struct sched_domain *sd;
9761eea8 6891
9c1cfda2
JH
6892 sd = &per_cpu(node_domains, j);
6893 sd->groups = sg;
9c1cfda2 6894 }
5517d86b 6895 sg->__cpu_power = 0;
9c1cfda2 6896 sg->cpumask = nodemask;
51888ca2 6897 sg->next = sg;
9c1cfda2
JH
6898 cpus_or(covered, covered, nodemask);
6899 prev = sg;
6900
6901 for (j = 0; j < MAX_NUMNODES; j++) {
6902 cpumask_t tmp, notcovered;
6903 int n = (i + j) % MAX_NUMNODES;
6904
6905 cpus_complement(notcovered, covered);
6906 cpus_and(tmp, notcovered, *cpu_map);
6907 cpus_and(tmp, tmp, domainspan);
6908 if (cpus_empty(tmp))
6909 break;
6910
6911 nodemask = node_to_cpumask(n);
6912 cpus_and(tmp, tmp, nodemask);
6913 if (cpus_empty(tmp))
6914 continue;
6915
15f0b676
SV
6916 sg = kmalloc_node(sizeof(struct sched_group),
6917 GFP_KERNEL, i);
9c1cfda2
JH
6918 if (!sg) {
6919 printk(KERN_WARNING
6920 "Can not alloc domain group for node %d\n", j);
51888ca2 6921 goto error;
9c1cfda2 6922 }
5517d86b 6923 sg->__cpu_power = 0;
9c1cfda2 6924 sg->cpumask = tmp;
51888ca2 6925 sg->next = prev->next;
9c1cfda2
JH
6926 cpus_or(covered, covered, tmp);
6927 prev->next = sg;
6928 prev = sg;
6929 }
9c1cfda2 6930 }
1da177e4
LT
6931#endif
6932
6933 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6934#ifdef CONFIG_SCHED_SMT
1a20ff27 6935 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6936 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6937
89c4710e 6938 init_sched_groups_power(i, sd);
5c45bf27 6939 }
1da177e4 6940#endif
1e9f28fa 6941#ifdef CONFIG_SCHED_MC
5c45bf27 6942 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6943 struct sched_domain *sd = &per_cpu(core_domains, i);
6944
89c4710e 6945 init_sched_groups_power(i, sd);
5c45bf27
SS
6946 }
6947#endif
1e9f28fa 6948
5c45bf27 6949 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6950 struct sched_domain *sd = &per_cpu(phys_domains, i);
6951
89c4710e 6952 init_sched_groups_power(i, sd);
1da177e4
LT
6953 }
6954
9c1cfda2 6955#ifdef CONFIG_NUMA
08069033
SS
6956 for (i = 0; i < MAX_NUMNODES; i++)
6957 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6958
6711cab4
SS
6959 if (sd_allnodes) {
6960 struct sched_group *sg;
f712c0c7 6961
6711cab4 6962 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6963 init_numa_sched_groups_power(sg);
6964 }
9c1cfda2
JH
6965#endif
6966
1da177e4 6967 /* Attach the domains */
1a20ff27 6968 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6969 struct sched_domain *sd;
6970#ifdef CONFIG_SCHED_SMT
6971 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6972#elif defined(CONFIG_SCHED_MC)
6973 sd = &per_cpu(core_domains, i);
1da177e4
LT
6974#else
6975 sd = &per_cpu(phys_domains, i);
6976#endif
57d885fe 6977 cpu_attach_domain(sd, rd, i);
1da177e4 6978 }
51888ca2
SV
6979
6980 return 0;
6981
a616058b 6982#ifdef CONFIG_NUMA
51888ca2
SV
6983error:
6984 free_sched_groups(cpu_map);
6985 return -ENOMEM;
a616058b 6986#endif
1da177e4 6987}
029190c5
PJ
6988
6989static cpumask_t *doms_cur; /* current sched domains */
6990static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6991
6992/*
6993 * Special case: If a kmalloc of a doms_cur partition (array of
6994 * cpumask_t) fails, then fallback to a single sched domain,
6995 * as determined by the single cpumask_t fallback_doms.
6996 */
6997static cpumask_t fallback_doms;
6998
22e52b07
HC
6999void __attribute__((weak)) arch_update_cpu_topology(void)
7000{
7001}
7002
1a20ff27 7003/*
41a2d6cf 7004 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7005 * For now this just excludes isolated cpus, but could be used to
7006 * exclude other special cases in the future.
1a20ff27 7007 */
51888ca2 7008static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7009{
7378547f
MM
7010 int err;
7011
22e52b07 7012 arch_update_cpu_topology();
029190c5
PJ
7013 ndoms_cur = 1;
7014 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7015 if (!doms_cur)
7016 doms_cur = &fallback_doms;
7017 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 7018 err = build_sched_domains(doms_cur);
6382bc90 7019 register_sched_domain_sysctl();
7378547f
MM
7020
7021 return err;
1a20ff27
DG
7022}
7023
7024static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 7025{
51888ca2 7026 free_sched_groups(cpu_map);
9c1cfda2 7027}
1da177e4 7028
1a20ff27
DG
7029/*
7030 * Detach sched domains from a group of cpus specified in cpu_map
7031 * These cpus will now be attached to the NULL domain
7032 */
858119e1 7033static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
7034{
7035 int i;
7036
6382bc90
MM
7037 unregister_sched_domain_sysctl();
7038
1a20ff27 7039 for_each_cpu_mask(i, *cpu_map)
57d885fe 7040 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
7041 synchronize_sched();
7042 arch_destroy_sched_domains(cpu_map);
7043}
7044
029190c5
PJ
7045/*
7046 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7047 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7048 * doms_new[] to the current sched domain partitioning, doms_cur[].
7049 * It destroys each deleted domain and builds each new domain.
7050 *
7051 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7052 * The masks don't intersect (don't overlap.) We should setup one
7053 * sched domain for each mask. CPUs not in any of the cpumasks will
7054 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7055 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7056 * it as it is.
7057 *
41a2d6cf
IM
7058 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7059 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7060 * failed the kmalloc call, then it can pass in doms_new == NULL,
7061 * and partition_sched_domains() will fallback to the single partition
7062 * 'fallback_doms'.
7063 *
7064 * Call with hotplug lock held
7065 */
7066void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
7067{
7068 int i, j;
7069
a1835615
SV
7070 lock_doms_cur();
7071
7378547f
MM
7072 /* always unregister in case we don't destroy any domains */
7073 unregister_sched_domain_sysctl();
7074
029190c5
PJ
7075 if (doms_new == NULL) {
7076 ndoms_new = 1;
7077 doms_new = &fallback_doms;
7078 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7079 }
7080
7081 /* Destroy deleted domains */
7082 for (i = 0; i < ndoms_cur; i++) {
7083 for (j = 0; j < ndoms_new; j++) {
7084 if (cpus_equal(doms_cur[i], doms_new[j]))
7085 goto match1;
7086 }
7087 /* no match - a current sched domain not in new doms_new[] */
7088 detach_destroy_domains(doms_cur + i);
7089match1:
7090 ;
7091 }
7092
7093 /* Build new domains */
7094 for (i = 0; i < ndoms_new; i++) {
7095 for (j = 0; j < ndoms_cur; j++) {
7096 if (cpus_equal(doms_new[i], doms_cur[j]))
7097 goto match2;
7098 }
7099 /* no match - add a new doms_new */
7100 build_sched_domains(doms_new + i);
7101match2:
7102 ;
7103 }
7104
7105 /* Remember the new sched domains */
7106 if (doms_cur != &fallback_doms)
7107 kfree(doms_cur);
7108 doms_cur = doms_new;
7109 ndoms_cur = ndoms_new;
7378547f
MM
7110
7111 register_sched_domain_sysctl();
a1835615
SV
7112
7113 unlock_doms_cur();
029190c5
PJ
7114}
7115
5c45bf27 7116#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7117int arch_reinit_sched_domains(void)
5c45bf27
SS
7118{
7119 int err;
7120
95402b38 7121 get_online_cpus();
5c45bf27
SS
7122 detach_destroy_domains(&cpu_online_map);
7123 err = arch_init_sched_domains(&cpu_online_map);
95402b38 7124 put_online_cpus();
5c45bf27
SS
7125
7126 return err;
7127}
7128
7129static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7130{
7131 int ret;
7132
7133 if (buf[0] != '0' && buf[0] != '1')
7134 return -EINVAL;
7135
7136 if (smt)
7137 sched_smt_power_savings = (buf[0] == '1');
7138 else
7139 sched_mc_power_savings = (buf[0] == '1');
7140
7141 ret = arch_reinit_sched_domains();
7142
7143 return ret ? ret : count;
7144}
7145
5c45bf27
SS
7146#ifdef CONFIG_SCHED_MC
7147static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7148{
7149 return sprintf(page, "%u\n", sched_mc_power_savings);
7150}
48f24c4d
IM
7151static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7152 const char *buf, size_t count)
5c45bf27
SS
7153{
7154 return sched_power_savings_store(buf, count, 0);
7155}
6707de00
AB
7156static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7157 sched_mc_power_savings_store);
5c45bf27
SS
7158#endif
7159
7160#ifdef CONFIG_SCHED_SMT
7161static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7162{
7163 return sprintf(page, "%u\n", sched_smt_power_savings);
7164}
48f24c4d
IM
7165static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7166 const char *buf, size_t count)
5c45bf27
SS
7167{
7168 return sched_power_savings_store(buf, count, 1);
7169}
6707de00
AB
7170static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7171 sched_smt_power_savings_store);
7172#endif
7173
7174int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7175{
7176 int err = 0;
7177
7178#ifdef CONFIG_SCHED_SMT
7179 if (smt_capable())
7180 err = sysfs_create_file(&cls->kset.kobj,
7181 &attr_sched_smt_power_savings.attr);
7182#endif
7183#ifdef CONFIG_SCHED_MC
7184 if (!err && mc_capable())
7185 err = sysfs_create_file(&cls->kset.kobj,
7186 &attr_sched_mc_power_savings.attr);
7187#endif
7188 return err;
7189}
5c45bf27
SS
7190#endif
7191
1da177e4 7192/*
41a2d6cf 7193 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7194 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7195 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7196 * which will prevent rebalancing while the sched domains are recalculated.
7197 */
7198static int update_sched_domains(struct notifier_block *nfb,
7199 unsigned long action, void *hcpu)
7200{
1da177e4
LT
7201 switch (action) {
7202 case CPU_UP_PREPARE:
8bb78442 7203 case CPU_UP_PREPARE_FROZEN:
1da177e4 7204 case CPU_DOWN_PREPARE:
8bb78442 7205 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7206 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7207 return NOTIFY_OK;
7208
7209 case CPU_UP_CANCELED:
8bb78442 7210 case CPU_UP_CANCELED_FROZEN:
1da177e4 7211 case CPU_DOWN_FAILED:
8bb78442 7212 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7213 case CPU_ONLINE:
8bb78442 7214 case CPU_ONLINE_FROZEN:
1da177e4 7215 case CPU_DEAD:
8bb78442 7216 case CPU_DEAD_FROZEN:
1da177e4
LT
7217 /*
7218 * Fall through and re-initialise the domains.
7219 */
7220 break;
7221 default:
7222 return NOTIFY_DONE;
7223 }
7224
7225 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7226 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7227
7228 return NOTIFY_OK;
7229}
1da177e4
LT
7230
7231void __init sched_init_smp(void)
7232{
5c1e1767
NP
7233 cpumask_t non_isolated_cpus;
7234
434d53b0
MT
7235#if defined(CONFIG_NUMA)
7236 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7237 GFP_KERNEL);
7238 BUG_ON(sched_group_nodes_bycpu == NULL);
7239#endif
95402b38 7240 get_online_cpus();
1a20ff27 7241 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7242 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7243 if (cpus_empty(non_isolated_cpus))
7244 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7245 put_online_cpus();
1da177e4
LT
7246 /* XXX: Theoretical race here - CPU may be hotplugged now */
7247 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7248
7249 /* Move init over to a non-isolated CPU */
7250 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7251 BUG();
19978ca6 7252 sched_init_granularity();
1da177e4
LT
7253}
7254#else
7255void __init sched_init_smp(void)
7256{
434d53b0
MT
7257#if defined(CONFIG_NUMA)
7258 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7259 GFP_KERNEL);
7260 BUG_ON(sched_group_nodes_bycpu == NULL);
7261#endif
19978ca6 7262 sched_init_granularity();
1da177e4
LT
7263}
7264#endif /* CONFIG_SMP */
7265
7266int in_sched_functions(unsigned long addr)
7267{
1da177e4
LT
7268 return in_lock_functions(addr) ||
7269 (addr >= (unsigned long)__sched_text_start
7270 && addr < (unsigned long)__sched_text_end);
7271}
7272
a9957449 7273static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7274{
7275 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
7276#ifdef CONFIG_FAIR_GROUP_SCHED
7277 cfs_rq->rq = rq;
7278#endif
67e9fb2a 7279 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7280}
7281
fa85ae24
PZ
7282static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7283{
7284 struct rt_prio_array *array;
7285 int i;
7286
7287 array = &rt_rq->active;
7288 for (i = 0; i < MAX_RT_PRIO; i++) {
7289 INIT_LIST_HEAD(array->queue + i);
7290 __clear_bit(i, array->bitmap);
7291 }
7292 /* delimiter for bitsearch: */
7293 __set_bit(MAX_RT_PRIO, array->bitmap);
7294
052f1dc7 7295#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7296 rt_rq->highest_prio = MAX_RT_PRIO;
7297#endif
fa85ae24
PZ
7298#ifdef CONFIG_SMP
7299 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7300 rt_rq->overloaded = 0;
7301#endif
7302
7303 rt_rq->rt_time = 0;
7304 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7305 rt_rq->rt_runtime = 0;
7306 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7307
052f1dc7 7308#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7309 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7310 rt_rq->rq = rq;
7311#endif
fa85ae24
PZ
7312}
7313
6f505b16
PZ
7314#ifdef CONFIG_FAIR_GROUP_SCHED
7315static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7316 struct cfs_rq *cfs_rq, struct sched_entity *se,
7317 int cpu, int add)
7318{
7319 tg->cfs_rq[cpu] = cfs_rq;
7320 init_cfs_rq(cfs_rq, rq);
7321 cfs_rq->tg = tg;
7322 if (add)
7323 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7324
7325 tg->se[cpu] = se;
7326 se->cfs_rq = &rq->cfs;
7327 se->my_q = cfs_rq;
7328 se->load.weight = tg->shares;
7329 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7330 se->parent = NULL;
7331}
052f1dc7 7332#endif
6f505b16 7333
052f1dc7 7334#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
7335static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7336 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7337 int cpu, int add)
7338{
7339 tg->rt_rq[cpu] = rt_rq;
7340 init_rt_rq(rt_rq, rq);
7341 rt_rq->tg = tg;
7342 rt_rq->rt_se = rt_se;
ac086bc2 7343 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7344 if (add)
7345 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7346
7347 tg->rt_se[cpu] = rt_se;
7348 rt_se->rt_rq = &rq->rt;
7349 rt_se->my_q = rt_rq;
7350 rt_se->parent = NULL;
7351 INIT_LIST_HEAD(&rt_se->run_list);
7352}
7353#endif
7354
1da177e4
LT
7355void __init sched_init(void)
7356{
476f3534 7357 int highest_cpu = 0;
dd41f596 7358 int i, j;
434d53b0
MT
7359 unsigned long alloc_size = 0, ptr;
7360
7361#ifdef CONFIG_FAIR_GROUP_SCHED
7362 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7363#endif
7364#ifdef CONFIG_RT_GROUP_SCHED
7365 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7366#endif
7367 /*
7368 * As sched_init() is called before page_alloc is setup,
7369 * we use alloc_bootmem().
7370 */
7371 if (alloc_size) {
7372 ptr = (unsigned long)alloc_bootmem_low(alloc_size);
7373
7374#ifdef CONFIG_FAIR_GROUP_SCHED
7375 init_task_group.se = (struct sched_entity **)ptr;
7376 ptr += nr_cpu_ids * sizeof(void **);
7377
7378 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7379 ptr += nr_cpu_ids * sizeof(void **);
7380#endif
7381#ifdef CONFIG_RT_GROUP_SCHED
7382 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7383 ptr += nr_cpu_ids * sizeof(void **);
7384
7385 init_task_group.rt_rq = (struct rt_rq **)ptr;
7386#endif
7387 }
dd41f596 7388
57d885fe
GH
7389#ifdef CONFIG_SMP
7390 init_defrootdomain();
7391#endif
7392
d0b27fa7
PZ
7393 init_rt_bandwidth(&def_rt_bandwidth,
7394 global_rt_period(), global_rt_runtime());
7395
7396#ifdef CONFIG_RT_GROUP_SCHED
7397 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7398 global_rt_period(), global_rt_runtime());
7399#endif
7400
052f1dc7 7401#ifdef CONFIG_GROUP_SCHED
6f505b16
PZ
7402 list_add(&init_task_group.list, &task_groups);
7403#endif
7404
0a945022 7405 for_each_possible_cpu(i) {
70b97a7f 7406 struct rq *rq;
1da177e4
LT
7407
7408 rq = cpu_rq(i);
7409 spin_lock_init(&rq->lock);
fcb99371 7410 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7411 rq->nr_running = 0;
dd41f596 7412 rq->clock = 1;
15934a37 7413 update_last_tick_seen(rq);
dd41f596 7414 init_cfs_rq(&rq->cfs, rq);
6f505b16 7415 init_rt_rq(&rq->rt, rq);
dd41f596 7416#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7417 init_task_group.shares = init_task_group_load;
6f505b16
PZ
7418 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7419 init_tg_cfs_entry(rq, &init_task_group,
7420 &per_cpu(init_cfs_rq, i),
7421 &per_cpu(init_sched_entity, i), i, 1);
7422
052f1dc7
PZ
7423#endif
7424#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
7425 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7426 init_tg_rt_entry(rq, &init_task_group,
7427 &per_cpu(init_rt_rq, i),
7428 &per_cpu(init_sched_rt_entity, i), i, 1);
ac086bc2
PZ
7429#else
7430 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
dd41f596 7431#endif
1da177e4 7432
dd41f596
IM
7433 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7434 rq->cpu_load[j] = 0;
1da177e4 7435#ifdef CONFIG_SMP
41c7ce9a 7436 rq->sd = NULL;
57d885fe 7437 rq->rd = NULL;
1da177e4 7438 rq->active_balance = 0;
dd41f596 7439 rq->next_balance = jiffies;
1da177e4 7440 rq->push_cpu = 0;
0a2966b4 7441 rq->cpu = i;
1da177e4
LT
7442 rq->migration_thread = NULL;
7443 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7444 rq_attach_root(rq, &def_root_domain);
1da177e4 7445#endif
8f4d37ec 7446 init_rq_hrtick(rq);
1da177e4 7447 atomic_set(&rq->nr_iowait, 0);
476f3534 7448 highest_cpu = i;
1da177e4
LT
7449 }
7450
2dd73a4f 7451 set_load_weight(&init_task);
b50f60ce 7452
e107be36
AK
7453#ifdef CONFIG_PREEMPT_NOTIFIERS
7454 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7455#endif
7456
c9819f45 7457#ifdef CONFIG_SMP
476f3534 7458 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
7459 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7460#endif
7461
b50f60ce
HC
7462#ifdef CONFIG_RT_MUTEXES
7463 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7464#endif
7465
1da177e4
LT
7466 /*
7467 * The boot idle thread does lazy MMU switching as well:
7468 */
7469 atomic_inc(&init_mm.mm_count);
7470 enter_lazy_tlb(&init_mm, current);
7471
7472 /*
7473 * Make us the idle thread. Technically, schedule() should not be
7474 * called from this thread, however somewhere below it might be,
7475 * but because we are the idle thread, we just pick up running again
7476 * when this runqueue becomes "idle".
7477 */
7478 init_idle(current, smp_processor_id());
dd41f596
IM
7479 /*
7480 * During early bootup we pretend to be a normal task:
7481 */
7482 current->sched_class = &fair_sched_class;
6892b75e
IM
7483
7484 scheduler_running = 1;
1da177e4
LT
7485}
7486
7487#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7488void __might_sleep(char *file, int line)
7489{
48f24c4d 7490#ifdef in_atomic
1da177e4
LT
7491 static unsigned long prev_jiffy; /* ratelimiting */
7492
7493 if ((in_atomic() || irqs_disabled()) &&
7494 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7495 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7496 return;
7497 prev_jiffy = jiffies;
91368d73 7498 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7499 " context at %s:%d\n", file, line);
7500 printk("in_atomic():%d, irqs_disabled():%d\n",
7501 in_atomic(), irqs_disabled());
a4c410f0 7502 debug_show_held_locks(current);
3117df04
IM
7503 if (irqs_disabled())
7504 print_irqtrace_events(current);
1da177e4
LT
7505 dump_stack();
7506 }
7507#endif
7508}
7509EXPORT_SYMBOL(__might_sleep);
7510#endif
7511
7512#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7513static void normalize_task(struct rq *rq, struct task_struct *p)
7514{
7515 int on_rq;
7516 update_rq_clock(rq);
7517 on_rq = p->se.on_rq;
7518 if (on_rq)
7519 deactivate_task(rq, p, 0);
7520 __setscheduler(rq, p, SCHED_NORMAL, 0);
7521 if (on_rq) {
7522 activate_task(rq, p, 0);
7523 resched_task(rq->curr);
7524 }
7525}
7526
1da177e4
LT
7527void normalize_rt_tasks(void)
7528{
a0f98a1c 7529 struct task_struct *g, *p;
1da177e4 7530 unsigned long flags;
70b97a7f 7531 struct rq *rq;
1da177e4 7532
4cf5d77a 7533 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7534 do_each_thread(g, p) {
178be793
IM
7535 /*
7536 * Only normalize user tasks:
7537 */
7538 if (!p->mm)
7539 continue;
7540
6cfb0d5d 7541 p->se.exec_start = 0;
6cfb0d5d 7542#ifdef CONFIG_SCHEDSTATS
dd41f596 7543 p->se.wait_start = 0;
dd41f596 7544 p->se.sleep_start = 0;
dd41f596 7545 p->se.block_start = 0;
6cfb0d5d 7546#endif
dd41f596
IM
7547 task_rq(p)->clock = 0;
7548
7549 if (!rt_task(p)) {
7550 /*
7551 * Renice negative nice level userspace
7552 * tasks back to 0:
7553 */
7554 if (TASK_NICE(p) < 0 && p->mm)
7555 set_user_nice(p, 0);
1da177e4 7556 continue;
dd41f596 7557 }
1da177e4 7558
4cf5d77a 7559 spin_lock(&p->pi_lock);
b29739f9 7560 rq = __task_rq_lock(p);
1da177e4 7561
178be793 7562 normalize_task(rq, p);
3a5e4dc1 7563
b29739f9 7564 __task_rq_unlock(rq);
4cf5d77a 7565 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7566 } while_each_thread(g, p);
7567
4cf5d77a 7568 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7569}
7570
7571#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7572
7573#ifdef CONFIG_IA64
7574/*
7575 * These functions are only useful for the IA64 MCA handling.
7576 *
7577 * They can only be called when the whole system has been
7578 * stopped - every CPU needs to be quiescent, and no scheduling
7579 * activity can take place. Using them for anything else would
7580 * be a serious bug, and as a result, they aren't even visible
7581 * under any other configuration.
7582 */
7583
7584/**
7585 * curr_task - return the current task for a given cpu.
7586 * @cpu: the processor in question.
7587 *
7588 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7589 */
36c8b586 7590struct task_struct *curr_task(int cpu)
1df5c10a
LT
7591{
7592 return cpu_curr(cpu);
7593}
7594
7595/**
7596 * set_curr_task - set the current task for a given cpu.
7597 * @cpu: the processor in question.
7598 * @p: the task pointer to set.
7599 *
7600 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7601 * are serviced on a separate stack. It allows the architecture to switch the
7602 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7603 * must be called with all CPU's synchronized, and interrupts disabled, the
7604 * and caller must save the original value of the current task (see
7605 * curr_task() above) and restore that value before reenabling interrupts and
7606 * re-starting the system.
7607 *
7608 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7609 */
36c8b586 7610void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7611{
7612 cpu_curr(cpu) = p;
7613}
7614
7615#endif
29f59db3 7616
bccbe08a
PZ
7617#ifdef CONFIG_FAIR_GROUP_SCHED
7618static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7619{
7620 int i;
7621
7622 for_each_possible_cpu(i) {
7623 if (tg->cfs_rq)
7624 kfree(tg->cfs_rq[i]);
7625 if (tg->se)
7626 kfree(tg->se[i]);
6f505b16
PZ
7627 }
7628
7629 kfree(tg->cfs_rq);
7630 kfree(tg->se);
6f505b16
PZ
7631}
7632
bccbe08a 7633static int alloc_fair_sched_group(struct task_group *tg)
29f59db3 7634{
29f59db3
SV
7635 struct cfs_rq *cfs_rq;
7636 struct sched_entity *se;
9b5b7751 7637 struct rq *rq;
29f59db3
SV
7638 int i;
7639
434d53b0 7640 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7641 if (!tg->cfs_rq)
7642 goto err;
434d53b0 7643 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7644 if (!tg->se)
7645 goto err;
052f1dc7
PZ
7646
7647 tg->shares = NICE_0_LOAD;
29f59db3
SV
7648
7649 for_each_possible_cpu(i) {
9b5b7751 7650 rq = cpu_rq(i);
29f59db3 7651
6f505b16
PZ
7652 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7653 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7654 if (!cfs_rq)
7655 goto err;
7656
6f505b16
PZ
7657 se = kmalloc_node(sizeof(struct sched_entity),
7658 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7659 if (!se)
7660 goto err;
7661
052f1dc7 7662 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
bccbe08a
PZ
7663 }
7664
7665 return 1;
7666
7667 err:
7668 return 0;
7669}
7670
7671static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7672{
7673 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7674 &cpu_rq(cpu)->leaf_cfs_rq_list);
7675}
7676
7677static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7678{
7679 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7680}
7681#else
7682static inline void free_fair_sched_group(struct task_group *tg)
7683{
7684}
7685
7686static inline int alloc_fair_sched_group(struct task_group *tg)
7687{
7688 return 1;
7689}
7690
7691static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7692{
7693}
7694
7695static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7696{
7697}
052f1dc7
PZ
7698#endif
7699
7700#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7701static void free_rt_sched_group(struct task_group *tg)
7702{
7703 int i;
7704
d0b27fa7
PZ
7705 destroy_rt_bandwidth(&tg->rt_bandwidth);
7706
bccbe08a
PZ
7707 for_each_possible_cpu(i) {
7708 if (tg->rt_rq)
7709 kfree(tg->rt_rq[i]);
7710 if (tg->rt_se)
7711 kfree(tg->rt_se[i]);
7712 }
7713
7714 kfree(tg->rt_rq);
7715 kfree(tg->rt_se);
7716}
7717
7718static int alloc_rt_sched_group(struct task_group *tg)
7719{
7720 struct rt_rq *rt_rq;
7721 struct sched_rt_entity *rt_se;
7722 struct rq *rq;
7723 int i;
7724
434d53b0 7725 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7726 if (!tg->rt_rq)
7727 goto err;
434d53b0 7728 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7729 if (!tg->rt_se)
7730 goto err;
7731
d0b27fa7
PZ
7732 init_rt_bandwidth(&tg->rt_bandwidth,
7733 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7734
7735 for_each_possible_cpu(i) {
7736 rq = cpu_rq(i);
7737
6f505b16
PZ
7738 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7739 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7740 if (!rt_rq)
7741 goto err;
29f59db3 7742
6f505b16
PZ
7743 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7744 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7745 if (!rt_se)
7746 goto err;
29f59db3 7747
6f505b16 7748 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
29f59db3
SV
7749 }
7750
bccbe08a
PZ
7751 return 1;
7752
7753 err:
7754 return 0;
7755}
7756
7757static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7758{
7759 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7760 &cpu_rq(cpu)->leaf_rt_rq_list);
7761}
7762
7763static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7764{
7765 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7766}
7767#else
7768static inline void free_rt_sched_group(struct task_group *tg)
7769{
7770}
7771
7772static inline int alloc_rt_sched_group(struct task_group *tg)
7773{
7774 return 1;
7775}
7776
7777static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7778{
7779}
7780
7781static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7782{
7783}
7784#endif
7785
d0b27fa7 7786#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
7787static void free_sched_group(struct task_group *tg)
7788{
7789 free_fair_sched_group(tg);
7790 free_rt_sched_group(tg);
7791 kfree(tg);
7792}
7793
7794/* allocate runqueue etc for a new task group */
7795struct task_group *sched_create_group(void)
7796{
7797 struct task_group *tg;
7798 unsigned long flags;
7799 int i;
7800
7801 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7802 if (!tg)
7803 return ERR_PTR(-ENOMEM);
7804
7805 if (!alloc_fair_sched_group(tg))
7806 goto err;
7807
7808 if (!alloc_rt_sched_group(tg))
7809 goto err;
7810
8ed36996 7811 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7812 for_each_possible_cpu(i) {
bccbe08a
PZ
7813 register_fair_sched_group(tg, i);
7814 register_rt_sched_group(tg, i);
9b5b7751 7815 }
6f505b16 7816 list_add_rcu(&tg->list, &task_groups);
8ed36996 7817 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7818
9b5b7751 7819 return tg;
29f59db3
SV
7820
7821err:
6f505b16 7822 free_sched_group(tg);
29f59db3
SV
7823 return ERR_PTR(-ENOMEM);
7824}
7825
9b5b7751 7826/* rcu callback to free various structures associated with a task group */
6f505b16 7827static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7828{
29f59db3 7829 /* now it should be safe to free those cfs_rqs */
6f505b16 7830 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7831}
7832
9b5b7751 7833/* Destroy runqueue etc associated with a task group */
4cf86d77 7834void sched_destroy_group(struct task_group *tg)
29f59db3 7835{
8ed36996 7836 unsigned long flags;
9b5b7751 7837 int i;
29f59db3 7838
8ed36996 7839 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7840 for_each_possible_cpu(i) {
bccbe08a
PZ
7841 unregister_fair_sched_group(tg, i);
7842 unregister_rt_sched_group(tg, i);
9b5b7751 7843 }
6f505b16 7844 list_del_rcu(&tg->list);
8ed36996 7845 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7846
9b5b7751 7847 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7848 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7849}
7850
9b5b7751 7851/* change task's runqueue when it moves between groups.
3a252015
IM
7852 * The caller of this function should have put the task in its new group
7853 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7854 * reflect its new group.
9b5b7751
SV
7855 */
7856void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7857{
7858 int on_rq, running;
7859 unsigned long flags;
7860 struct rq *rq;
7861
7862 rq = task_rq_lock(tsk, &flags);
7863
29f59db3
SV
7864 update_rq_clock(rq);
7865
051a1d1a 7866 running = task_current(rq, tsk);
29f59db3
SV
7867 on_rq = tsk->se.on_rq;
7868
0e1f3483 7869 if (on_rq)
29f59db3 7870 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7871 if (unlikely(running))
7872 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7873
6f505b16 7874 set_task_rq(tsk, task_cpu(tsk));
29f59db3 7875
810b3817
PZ
7876#ifdef CONFIG_FAIR_GROUP_SCHED
7877 if (tsk->sched_class->moved_group)
7878 tsk->sched_class->moved_group(tsk);
7879#endif
7880
0e1f3483
HS
7881 if (unlikely(running))
7882 tsk->sched_class->set_curr_task(rq);
7883 if (on_rq)
7074badb 7884 enqueue_task(rq, tsk, 0);
29f59db3 7885
29f59db3
SV
7886 task_rq_unlock(rq, &flags);
7887}
d0b27fa7 7888#endif
29f59db3 7889
052f1dc7 7890#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
7891static void set_se_shares(struct sched_entity *se, unsigned long shares)
7892{
7893 struct cfs_rq *cfs_rq = se->cfs_rq;
7894 struct rq *rq = cfs_rq->rq;
7895 int on_rq;
7896
62fb1851 7897 spin_lock_irq(&rq->lock);
29f59db3
SV
7898
7899 on_rq = se->on_rq;
62fb1851 7900 if (on_rq)
29f59db3
SV
7901 dequeue_entity(cfs_rq, se, 0);
7902
7903 se->load.weight = shares;
7904 se->load.inv_weight = div64_64((1ULL<<32), shares);
7905
62fb1851 7906 if (on_rq)
29f59db3 7907 enqueue_entity(cfs_rq, se, 0);
62fb1851
PZ
7908
7909 spin_unlock_irq(&rq->lock);
29f59db3
SV
7910}
7911
8ed36996
PZ
7912static DEFINE_MUTEX(shares_mutex);
7913
4cf86d77 7914int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7915{
7916 int i;
8ed36996 7917 unsigned long flags;
c61935fd 7918
62fb1851
PZ
7919 /*
7920 * A weight of 0 or 1 can cause arithmetics problems.
7921 * (The default weight is 1024 - so there's no practical
7922 * limitation from this.)
7923 */
7924 if (shares < 2)
7925 shares = 2;
7926
8ed36996 7927 mutex_lock(&shares_mutex);
9b5b7751 7928 if (tg->shares == shares)
5cb350ba 7929 goto done;
29f59db3 7930
8ed36996 7931 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
7932 for_each_possible_cpu(i)
7933 unregister_fair_sched_group(tg, i);
8ed36996 7934 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
7935
7936 /* wait for any ongoing reference to this group to finish */
7937 synchronize_sched();
7938
7939 /*
7940 * Now we are free to modify the group's share on each cpu
7941 * w/o tripping rebalance_share or load_balance_fair.
7942 */
9b5b7751 7943 tg->shares = shares;
62fb1851 7944 for_each_possible_cpu(i)
9b5b7751 7945 set_se_shares(tg->se[i], shares);
29f59db3 7946
6b2d7700
SV
7947 /*
7948 * Enable load balance activity on this group, by inserting it back on
7949 * each cpu's rq->leaf_cfs_rq_list.
7950 */
8ed36996 7951 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
7952 for_each_possible_cpu(i)
7953 register_fair_sched_group(tg, i);
8ed36996 7954 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 7955done:
8ed36996 7956 mutex_unlock(&shares_mutex);
9b5b7751 7957 return 0;
29f59db3
SV
7958}
7959
5cb350ba
DG
7960unsigned long sched_group_shares(struct task_group *tg)
7961{
7962 return tg->shares;
7963}
052f1dc7 7964#endif
5cb350ba 7965
052f1dc7 7966#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7967/*
9f0c1e56 7968 * Ensure that the real time constraints are schedulable.
6f505b16 7969 */
9f0c1e56
PZ
7970static DEFINE_MUTEX(rt_constraints_mutex);
7971
7972static unsigned long to_ratio(u64 period, u64 runtime)
7973{
7974 if (runtime == RUNTIME_INF)
7975 return 1ULL << 16;
7976
2692a240 7977 return div64_64(runtime << 16, period);
9f0c1e56
PZ
7978}
7979
7980static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
7981{
7982 struct task_group *tgi;
7983 unsigned long total = 0;
9f0c1e56 7984 unsigned long global_ratio =
d0b27fa7 7985 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
7986
7987 rcu_read_lock();
9f0c1e56
PZ
7988 list_for_each_entry_rcu(tgi, &task_groups, list) {
7989 if (tgi == tg)
7990 continue;
6f505b16 7991
d0b27fa7
PZ
7992 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
7993 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
7994 }
7995 rcu_read_unlock();
6f505b16 7996
9f0c1e56 7997 return total + to_ratio(period, runtime) < global_ratio;
6f505b16
PZ
7998}
7999
521f1a24
DG
8000/* Must be called with tasklist_lock held */
8001static inline int tg_has_rt_tasks(struct task_group *tg)
8002{
8003 struct task_struct *g, *p;
8004 do_each_thread(g, p) {
8005 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8006 return 1;
8007 } while_each_thread(g, p);
8008 return 0;
8009}
8010
d0b27fa7
PZ
8011static int tg_set_bandwidth(struct task_group *tg,
8012 u64 rt_period, u64 rt_runtime)
6f505b16 8013{
ac086bc2 8014 int i, err = 0;
9f0c1e56 8015
9f0c1e56 8016 mutex_lock(&rt_constraints_mutex);
521f1a24 8017 read_lock(&tasklist_lock);
ac086bc2 8018 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8019 err = -EBUSY;
8020 goto unlock;
8021 }
9f0c1e56
PZ
8022 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8023 err = -EINVAL;
8024 goto unlock;
8025 }
ac086bc2
PZ
8026
8027 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8028 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8029 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8030
8031 for_each_possible_cpu(i) {
8032 struct rt_rq *rt_rq = tg->rt_rq[i];
8033
8034 spin_lock(&rt_rq->rt_runtime_lock);
8035 rt_rq->rt_runtime = rt_runtime;
8036 spin_unlock(&rt_rq->rt_runtime_lock);
8037 }
8038 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8039 unlock:
521f1a24 8040 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8041 mutex_unlock(&rt_constraints_mutex);
8042
8043 return err;
6f505b16
PZ
8044}
8045
d0b27fa7
PZ
8046int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8047{
8048 u64 rt_runtime, rt_period;
8049
8050 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8051 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8052 if (rt_runtime_us < 0)
8053 rt_runtime = RUNTIME_INF;
8054
8055 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8056}
8057
9f0c1e56
PZ
8058long sched_group_rt_runtime(struct task_group *tg)
8059{
8060 u64 rt_runtime_us;
8061
d0b27fa7 8062 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8063 return -1;
8064
d0b27fa7 8065 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8066 do_div(rt_runtime_us, NSEC_PER_USEC);
8067 return rt_runtime_us;
8068}
d0b27fa7
PZ
8069
8070int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8071{
8072 u64 rt_runtime, rt_period;
8073
8074 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8075 rt_runtime = tg->rt_bandwidth.rt_runtime;
8076
8077 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8078}
8079
8080long sched_group_rt_period(struct task_group *tg)
8081{
8082 u64 rt_period_us;
8083
8084 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8085 do_div(rt_period_us, NSEC_PER_USEC);
8086 return rt_period_us;
8087}
8088
8089static int sched_rt_global_constraints(void)
8090{
8091 int ret = 0;
8092
8093 mutex_lock(&rt_constraints_mutex);
8094 if (!__rt_schedulable(NULL, 1, 0))
8095 ret = -EINVAL;
8096 mutex_unlock(&rt_constraints_mutex);
8097
8098 return ret;
8099}
8100#else
8101static int sched_rt_global_constraints(void)
8102{
ac086bc2
PZ
8103 unsigned long flags;
8104 int i;
8105
8106 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8107 for_each_possible_cpu(i) {
8108 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8109
8110 spin_lock(&rt_rq->rt_runtime_lock);
8111 rt_rq->rt_runtime = global_rt_runtime();
8112 spin_unlock(&rt_rq->rt_runtime_lock);
8113 }
8114 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8115
d0b27fa7
PZ
8116 return 0;
8117}
052f1dc7 8118#endif
d0b27fa7
PZ
8119
8120int sched_rt_handler(struct ctl_table *table, int write,
8121 struct file *filp, void __user *buffer, size_t *lenp,
8122 loff_t *ppos)
8123{
8124 int ret;
8125 int old_period, old_runtime;
8126 static DEFINE_MUTEX(mutex);
8127
8128 mutex_lock(&mutex);
8129 old_period = sysctl_sched_rt_period;
8130 old_runtime = sysctl_sched_rt_runtime;
8131
8132 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8133
8134 if (!ret && write) {
8135 ret = sched_rt_global_constraints();
8136 if (ret) {
8137 sysctl_sched_rt_period = old_period;
8138 sysctl_sched_rt_runtime = old_runtime;
8139 } else {
8140 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8141 def_rt_bandwidth.rt_period =
8142 ns_to_ktime(global_rt_period());
8143 }
8144 }
8145 mutex_unlock(&mutex);
8146
8147 return ret;
8148}
68318b8e 8149
052f1dc7 8150#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8151
8152/* return corresponding task_group object of a cgroup */
2b01dfe3 8153static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8154{
2b01dfe3
PM
8155 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8156 struct task_group, css);
68318b8e
SV
8157}
8158
8159static struct cgroup_subsys_state *
2b01dfe3 8160cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
8161{
8162 struct task_group *tg;
8163
2b01dfe3 8164 if (!cgrp->parent) {
68318b8e 8165 /* This is early initialization for the top cgroup */
2b01dfe3 8166 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8167 return &init_task_group.css;
8168 }
8169
8170 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 8171 if (cgrp->parent->parent)
68318b8e
SV
8172 return ERR_PTR(-EINVAL);
8173
8174 tg = sched_create_group();
8175 if (IS_ERR(tg))
8176 return ERR_PTR(-ENOMEM);
8177
8178 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8179 tg->css.cgroup = cgrp;
68318b8e
SV
8180
8181 return &tg->css;
8182}
8183
41a2d6cf
IM
8184static void
8185cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8186{
2b01dfe3 8187 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8188
8189 sched_destroy_group(tg);
8190}
8191
41a2d6cf
IM
8192static int
8193cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8194 struct task_struct *tsk)
68318b8e 8195{
b68aa230
PZ
8196#ifdef CONFIG_RT_GROUP_SCHED
8197 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8198 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8199 return -EINVAL;
8200#else
68318b8e
SV
8201 /* We don't support RT-tasks being in separate groups */
8202 if (tsk->sched_class != &fair_sched_class)
8203 return -EINVAL;
b68aa230 8204#endif
68318b8e
SV
8205
8206 return 0;
8207}
8208
8209static void
2b01dfe3 8210cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8211 struct cgroup *old_cont, struct task_struct *tsk)
8212{
8213 sched_move_task(tsk);
8214}
8215
052f1dc7 8216#ifdef CONFIG_FAIR_GROUP_SCHED
2b01dfe3
PM
8217static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8218 u64 shareval)
68318b8e 8219{
2b01dfe3 8220 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8221}
8222
2b01dfe3 8223static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8224{
2b01dfe3 8225 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8226
8227 return (u64) tg->shares;
8228}
052f1dc7 8229#endif
68318b8e 8230
052f1dc7 8231#ifdef CONFIG_RT_GROUP_SCHED
ac086bc2 8232static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9f0c1e56
PZ
8233 struct file *file,
8234 const char __user *userbuf,
8235 size_t nbytes, loff_t *unused_ppos)
6f505b16 8236{
9f0c1e56
PZ
8237 char buffer[64];
8238 int retval = 0;
8239 s64 val;
8240 char *end;
8241
8242 if (!nbytes)
8243 return -EINVAL;
8244 if (nbytes >= sizeof(buffer))
8245 return -E2BIG;
8246 if (copy_from_user(buffer, userbuf, nbytes))
8247 return -EFAULT;
8248
8249 buffer[nbytes] = 0; /* nul-terminate */
8250
8251 /* strip newline if necessary */
8252 if (nbytes && (buffer[nbytes-1] == '\n'))
8253 buffer[nbytes-1] = 0;
8254 val = simple_strtoll(buffer, &end, 0);
8255 if (*end)
8256 return -EINVAL;
8257
8258 /* Pass to subsystem */
8259 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8260 if (!retval)
8261 retval = nbytes;
8262 return retval;
6f505b16
PZ
8263}
8264
9f0c1e56
PZ
8265static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8266 struct file *file,
8267 char __user *buf, size_t nbytes,
8268 loff_t *ppos)
6f505b16 8269{
9f0c1e56
PZ
8270 char tmp[64];
8271 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8272 int len = sprintf(tmp, "%ld\n", val);
6f505b16 8273
9f0c1e56 8274 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
6f505b16 8275}
d0b27fa7
PZ
8276
8277static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8278 u64 rt_period_us)
8279{
8280 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8281}
8282
8283static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8284{
8285 return sched_group_rt_period(cgroup_tg(cgrp));
8286}
052f1dc7 8287#endif
6f505b16 8288
fe5c7cc2 8289static struct cftype cpu_files[] = {
052f1dc7 8290#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8291 {
8292 .name = "shares",
8293 .read_uint = cpu_shares_read_uint,
8294 .write_uint = cpu_shares_write_uint,
8295 },
052f1dc7
PZ
8296#endif
8297#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8298 {
9f0c1e56
PZ
8299 .name = "rt_runtime_us",
8300 .read = cpu_rt_runtime_read,
8301 .write = cpu_rt_runtime_write,
6f505b16 8302 },
d0b27fa7
PZ
8303 {
8304 .name = "rt_period_us",
8305 .read_uint = cpu_rt_period_read_uint,
8306 .write_uint = cpu_rt_period_write_uint,
8307 },
052f1dc7 8308#endif
68318b8e
SV
8309};
8310
8311static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8312{
fe5c7cc2 8313 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8314}
8315
8316struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8317 .name = "cpu",
8318 .create = cpu_cgroup_create,
8319 .destroy = cpu_cgroup_destroy,
8320 .can_attach = cpu_cgroup_can_attach,
8321 .attach = cpu_cgroup_attach,
8322 .populate = cpu_cgroup_populate,
8323 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8324 .early_init = 1,
8325};
8326
052f1dc7 8327#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8328
8329#ifdef CONFIG_CGROUP_CPUACCT
8330
8331/*
8332 * CPU accounting code for task groups.
8333 *
8334 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8335 * (balbir@in.ibm.com).
8336 */
8337
8338/* track cpu usage of a group of tasks */
8339struct cpuacct {
8340 struct cgroup_subsys_state css;
8341 /* cpuusage holds pointer to a u64-type object on every cpu */
8342 u64 *cpuusage;
8343};
8344
8345struct cgroup_subsys cpuacct_subsys;
8346
8347/* return cpu accounting group corresponding to this container */
32cd756a 8348static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8349{
32cd756a 8350 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8351 struct cpuacct, css);
8352}
8353
8354/* return cpu accounting group to which this task belongs */
8355static inline struct cpuacct *task_ca(struct task_struct *tsk)
8356{
8357 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8358 struct cpuacct, css);
8359}
8360
8361/* create a new cpu accounting group */
8362static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8363 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8364{
8365 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8366
8367 if (!ca)
8368 return ERR_PTR(-ENOMEM);
8369
8370 ca->cpuusage = alloc_percpu(u64);
8371 if (!ca->cpuusage) {
8372 kfree(ca);
8373 return ERR_PTR(-ENOMEM);
8374 }
8375
8376 return &ca->css;
8377}
8378
8379/* destroy an existing cpu accounting group */
41a2d6cf 8380static void
32cd756a 8381cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8382{
32cd756a 8383 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8384
8385 free_percpu(ca->cpuusage);
8386 kfree(ca);
8387}
8388
8389/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8390static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8391{
32cd756a 8392 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8393 u64 totalcpuusage = 0;
8394 int i;
8395
8396 for_each_possible_cpu(i) {
8397 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8398
8399 /*
8400 * Take rq->lock to make 64-bit addition safe on 32-bit
8401 * platforms.
8402 */
8403 spin_lock_irq(&cpu_rq(i)->lock);
8404 totalcpuusage += *cpuusage;
8405 spin_unlock_irq(&cpu_rq(i)->lock);
8406 }
8407
8408 return totalcpuusage;
8409}
8410
0297b803
DG
8411static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8412 u64 reset)
8413{
8414 struct cpuacct *ca = cgroup_ca(cgrp);
8415 int err = 0;
8416 int i;
8417
8418 if (reset) {
8419 err = -EINVAL;
8420 goto out;
8421 }
8422
8423 for_each_possible_cpu(i) {
8424 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8425
8426 spin_lock_irq(&cpu_rq(i)->lock);
8427 *cpuusage = 0;
8428 spin_unlock_irq(&cpu_rq(i)->lock);
8429 }
8430out:
8431 return err;
8432}
8433
d842de87
SV
8434static struct cftype files[] = {
8435 {
8436 .name = "usage",
8437 .read_uint = cpuusage_read,
0297b803 8438 .write_uint = cpuusage_write,
d842de87
SV
8439 },
8440};
8441
32cd756a 8442static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8443{
32cd756a 8444 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8445}
8446
8447/*
8448 * charge this task's execution time to its accounting group.
8449 *
8450 * called with rq->lock held.
8451 */
8452static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8453{
8454 struct cpuacct *ca;
8455
8456 if (!cpuacct_subsys.active)
8457 return;
8458
8459 ca = task_ca(tsk);
8460 if (ca) {
8461 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8462
8463 *cpuusage += cputime;
8464 }
8465}
8466
8467struct cgroup_subsys cpuacct_subsys = {
8468 .name = "cpuacct",
8469 .create = cpuacct_create,
8470 .destroy = cpuacct_destroy,
8471 .populate = cpuacct_populate,
8472 .subsys_id = cpuacct_subsys_id,
8473};
8474#endif /* CONFIG_CGROUP_CPUACCT */