]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: constify sched.h
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
62d0df64 55#include <linux/cpu_acct.h>
1da177e4
LT
56#include <linux/kthread.h>
57#include <linux/seq_file.h>
e692ab53 58#include <linux/sysctl.h>
1da177e4
LT
59#include <linux/syscalls.h>
60#include <linux/times.h>
8f0ab514 61#include <linux/tsacct_kern.h>
c6fd91f0 62#include <linux/kprobes.h>
0ff92245 63#include <linux/delayacct.h>
5517d86b 64#include <linux/reciprocal_div.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
1da177e4 67
5517d86b 68#include <asm/tlb.h>
838225b4 69#include <asm/irq_regs.h>
1da177e4 70
b035b6de
AD
71/*
72 * Scheduler clock - returns current time in nanosec units.
73 * This is default implementation.
74 * Architectures and sub-architectures can override this.
75 */
76unsigned long long __attribute__((weak)) sched_clock(void)
77{
78 return (unsigned long long)jiffies * (1000000000 / HZ);
79}
80
1da177e4
LT
81/*
82 * Convert user-nice values [ -20 ... 0 ... 19 ]
83 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
84 * and back.
85 */
86#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
87#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
88#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89
90/*
91 * 'User priority' is the nice value converted to something we
92 * can work with better when scaling various scheduler parameters,
93 * it's a [ 0 ... 39 ] range.
94 */
95#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
96#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
97#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98
99/*
100 * Some helpers for converting nanosecond timing to jiffy resolution
101 */
a4ec24b4 102#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
103#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
29f59db3
SV
157#ifdef CONFIG_FAIR_GROUP_SCHED
158
68318b8e
SV
159#include <linux/cgroup.h>
160
29f59db3
SV
161struct cfs_rq;
162
163/* task group related information */
4cf86d77 164struct task_group {
68318b8e
SV
165#ifdef CONFIG_FAIR_CGROUP_SCHED
166 struct cgroup_subsys_state css;
167#endif
29f59db3
SV
168 /* schedulable entities of this group on each cpu */
169 struct sched_entity **se;
170 /* runqueue "owned" by this group on each cpu */
171 struct cfs_rq **cfs_rq;
172 unsigned long shares;
5cb350ba
DG
173 /* spinlock to serialize modification to shares */
174 spinlock_t lock;
29f59db3
SV
175};
176
177/* Default task group's sched entity on each cpu */
178static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179/* Default task group's cfs_rq on each cpu */
180static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
181
9b5b7751
SV
182static struct sched_entity *init_sched_entity_p[NR_CPUS];
183static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
184
185/* Default task group.
3a252015 186 * Every task in system belong to this group at bootup.
29f59db3 187 */
4cf86d77 188struct task_group init_task_group = {
3a252015
IM
189 .se = init_sched_entity_p,
190 .cfs_rq = init_cfs_rq_p,
191};
9b5b7751 192
24e377a8 193#ifdef CONFIG_FAIR_USER_SCHED
3a252015 194# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 195#else
3a252015 196# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
197#endif
198
4cf86d77 199static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
200
201/* return group to which a task belongs */
4cf86d77 202static inline struct task_group *task_group(struct task_struct *p)
29f59db3 203{
4cf86d77 204 struct task_group *tg;
9b5b7751 205
24e377a8
SV
206#ifdef CONFIG_FAIR_USER_SCHED
207 tg = p->user->tg;
68318b8e
SV
208#elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210 struct task_group, css);
24e377a8 211#else
4cf86d77 212 tg = &init_task_group;
24e377a8 213#endif
9b5b7751
SV
214
215 return tg;
29f59db3
SV
216}
217
218/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
219static inline void set_task_cfs_rq(struct task_struct *p)
220{
4cf86d77
IM
221 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
222 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
223}
224
225#else
226
227static inline void set_task_cfs_rq(struct task_struct *p) { }
228
229#endif /* CONFIG_FAIR_GROUP_SCHED */
230
6aa645ea
IM
231/* CFS-related fields in a runqueue */
232struct cfs_rq {
233 struct load_weight load;
234 unsigned long nr_running;
235
6aa645ea 236 u64 exec_clock;
e9acbff6 237 u64 min_vruntime;
6aa645ea
IM
238
239 struct rb_root tasks_timeline;
240 struct rb_node *rb_leftmost;
241 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
242 /* 'curr' points to currently running entity on this cfs_rq.
243 * It is set to NULL otherwise (i.e when none are currently running).
244 */
245 struct sched_entity *curr;
ddc97297
PZ
246
247 unsigned long nr_spread_over;
248
62160e3f 249#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
250 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
251
252 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
255 *
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
258 */
259 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 260 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 261 struct rcu_head rcu;
6aa645ea
IM
262#endif
263};
1da177e4 264
6aa645ea
IM
265/* Real-Time classes' related field in a runqueue: */
266struct rt_rq {
267 struct rt_prio_array active;
268 int rt_load_balance_idx;
269 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
270};
271
1da177e4
LT
272/*
273 * This is the main, per-CPU runqueue data structure.
274 *
275 * Locking rule: those places that want to lock multiple runqueues
276 * (such as the load balancing or the thread migration code), lock
277 * acquire operations must be ordered by ascending &runqueue.
278 */
70b97a7f 279struct rq {
d8016491
IM
280 /* runqueue lock: */
281 spinlock_t lock;
1da177e4
LT
282
283 /*
284 * nr_running and cpu_load should be in the same cacheline because
285 * remote CPUs use both these fields when doing load calculation.
286 */
287 unsigned long nr_running;
6aa645ea
IM
288 #define CPU_LOAD_IDX_MAX 5
289 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 290 unsigned char idle_at_tick;
46cb4b7c
SS
291#ifdef CONFIG_NO_HZ
292 unsigned char in_nohz_recently;
293#endif
d8016491
IM
294 /* capture load from *all* tasks on this cpu: */
295 struct load_weight load;
6aa645ea
IM
296 unsigned long nr_load_updates;
297 u64 nr_switches;
298
299 struct cfs_rq cfs;
300#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
301 /* list of leaf cfs_rq on this cpu: */
302 struct list_head leaf_cfs_rq_list;
1da177e4 303#endif
6aa645ea 304 struct rt_rq rt;
1da177e4
LT
305
306 /*
307 * This is part of a global counter where only the total sum
308 * over all CPUs matters. A task can increase this counter on
309 * one CPU and if it got migrated afterwards it may decrease
310 * it on another CPU. Always updated under the runqueue lock:
311 */
312 unsigned long nr_uninterruptible;
313
36c8b586 314 struct task_struct *curr, *idle;
c9819f45 315 unsigned long next_balance;
1da177e4 316 struct mm_struct *prev_mm;
6aa645ea 317
6aa645ea
IM
318 u64 clock, prev_clock_raw;
319 s64 clock_max_delta;
320
321 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
322 u64 idle_clock;
323 unsigned int clock_deep_idle_events;
529c7726 324 u64 tick_timestamp;
6aa645ea 325
1da177e4
LT
326 atomic_t nr_iowait;
327
328#ifdef CONFIG_SMP
329 struct sched_domain *sd;
330
331 /* For active balancing */
332 int active_balance;
333 int push_cpu;
d8016491
IM
334 /* cpu of this runqueue: */
335 int cpu;
1da177e4 336
36c8b586 337 struct task_struct *migration_thread;
1da177e4
LT
338 struct list_head migration_queue;
339#endif
340
341#ifdef CONFIG_SCHEDSTATS
342 /* latency stats */
343 struct sched_info rq_sched_info;
344
345 /* sys_sched_yield() stats */
480b9434
KC
346 unsigned int yld_exp_empty;
347 unsigned int yld_act_empty;
348 unsigned int yld_both_empty;
349 unsigned int yld_count;
1da177e4
LT
350
351 /* schedule() stats */
480b9434
KC
352 unsigned int sched_switch;
353 unsigned int sched_count;
354 unsigned int sched_goidle;
1da177e4
LT
355
356 /* try_to_wake_up() stats */
480b9434
KC
357 unsigned int ttwu_count;
358 unsigned int ttwu_local;
b8efb561
IM
359
360 /* BKL stats */
480b9434 361 unsigned int bkl_count;
1da177e4 362#endif
fcb99371 363 struct lock_class_key rq_lock_key;
1da177e4
LT
364};
365
f34e3b61 366static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 367static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 368
dd41f596
IM
369static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
370{
371 rq->curr->sched_class->check_preempt_curr(rq, p);
372}
373
0a2966b4
CL
374static inline int cpu_of(struct rq *rq)
375{
376#ifdef CONFIG_SMP
377 return rq->cpu;
378#else
379 return 0;
380#endif
381}
382
20d315d4 383/*
b04a0f4c
IM
384 * Update the per-runqueue clock, as finegrained as the platform can give
385 * us, but without assuming monotonicity, etc.:
20d315d4 386 */
b04a0f4c 387static void __update_rq_clock(struct rq *rq)
20d315d4
IM
388{
389 u64 prev_raw = rq->prev_clock_raw;
390 u64 now = sched_clock();
391 s64 delta = now - prev_raw;
392 u64 clock = rq->clock;
393
b04a0f4c
IM
394#ifdef CONFIG_SCHED_DEBUG
395 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
396#endif
20d315d4
IM
397 /*
398 * Protect against sched_clock() occasionally going backwards:
399 */
400 if (unlikely(delta < 0)) {
401 clock++;
402 rq->clock_warps++;
403 } else {
404 /*
405 * Catch too large forward jumps too:
406 */
529c7726
IM
407 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
408 if (clock < rq->tick_timestamp + TICK_NSEC)
409 clock = rq->tick_timestamp + TICK_NSEC;
410 else
411 clock++;
20d315d4
IM
412 rq->clock_overflows++;
413 } else {
414 if (unlikely(delta > rq->clock_max_delta))
415 rq->clock_max_delta = delta;
416 clock += delta;
417 }
418 }
419
420 rq->prev_clock_raw = now;
421 rq->clock = clock;
b04a0f4c 422}
20d315d4 423
b04a0f4c
IM
424static void update_rq_clock(struct rq *rq)
425{
426 if (likely(smp_processor_id() == cpu_of(rq)))
427 __update_rq_clock(rq);
20d315d4
IM
428}
429
674311d5
NP
430/*
431 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 432 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
433 *
434 * The domain tree of any CPU may only be accessed from within
435 * preempt-disabled sections.
436 */
48f24c4d
IM
437#define for_each_domain(cpu, __sd) \
438 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
439
440#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
441#define this_rq() (&__get_cpu_var(runqueues))
442#define task_rq(p) cpu_rq(task_cpu(p))
443#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
444
bf5c91ba
IM
445/*
446 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 */
448#ifdef CONFIG_SCHED_DEBUG
449# define const_debug __read_mostly
450#else
451# define const_debug static const
452#endif
453
454/*
455 * Debugging: various feature bits
456 */
457enum {
bbdba7c0
IM
458 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
459 SCHED_FEAT_START_DEBIT = 2,
06877c33 460 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 461 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 462 SCHED_FEAT_WAKEUP_PREEMPT = 16,
95938a35 463 SCHED_FEAT_PREEMPT_RESTRICT = 32,
bf5c91ba
IM
464};
465
466const_debug unsigned int sysctl_sched_features =
8401f775
IM
467 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
468 SCHED_FEAT_START_DEBIT * 1 |
469 SCHED_FEAT_TREE_AVG * 0 |
470 SCHED_FEAT_APPROX_AVG * 0 |
471 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
472 SCHED_FEAT_PREEMPT_RESTRICT * 1;
bf5c91ba
IM
473
474#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
475
e436d800
IM
476/*
477 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
478 * clock constructed from sched_clock():
479 */
480unsigned long long cpu_clock(int cpu)
481{
e436d800
IM
482 unsigned long long now;
483 unsigned long flags;
b04a0f4c 484 struct rq *rq;
e436d800 485
2cd4d0ea 486 local_irq_save(flags);
b04a0f4c
IM
487 rq = cpu_rq(cpu);
488 update_rq_clock(rq);
489 now = rq->clock;
2cd4d0ea 490 local_irq_restore(flags);
e436d800
IM
491
492 return now;
493}
a58f6f25 494EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 495
1da177e4 496#ifndef prepare_arch_switch
4866cde0
NP
497# define prepare_arch_switch(next) do { } while (0)
498#endif
499#ifndef finish_arch_switch
500# define finish_arch_switch(prev) do { } while (0)
501#endif
502
503#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 504static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
505{
506 return rq->curr == p;
507}
508
70b97a7f 509static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
510{
511}
512
70b97a7f 513static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 514{
da04c035
IM
515#ifdef CONFIG_DEBUG_SPINLOCK
516 /* this is a valid case when another task releases the spinlock */
517 rq->lock.owner = current;
518#endif
8a25d5de
IM
519 /*
520 * If we are tracking spinlock dependencies then we have to
521 * fix up the runqueue lock - which gets 'carried over' from
522 * prev into current:
523 */
524 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
525
4866cde0
NP
526 spin_unlock_irq(&rq->lock);
527}
528
529#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 530static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
531{
532#ifdef CONFIG_SMP
533 return p->oncpu;
534#else
535 return rq->curr == p;
536#endif
537}
538
70b97a7f 539static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
540{
541#ifdef CONFIG_SMP
542 /*
543 * We can optimise this out completely for !SMP, because the
544 * SMP rebalancing from interrupt is the only thing that cares
545 * here.
546 */
547 next->oncpu = 1;
548#endif
549#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
550 spin_unlock_irq(&rq->lock);
551#else
552 spin_unlock(&rq->lock);
553#endif
554}
555
70b97a7f 556static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
557{
558#ifdef CONFIG_SMP
559 /*
560 * After ->oncpu is cleared, the task can be moved to a different CPU.
561 * We must ensure this doesn't happen until the switch is completely
562 * finished.
563 */
564 smp_wmb();
565 prev->oncpu = 0;
566#endif
567#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
568 local_irq_enable();
1da177e4 569#endif
4866cde0
NP
570}
571#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 572
b29739f9
IM
573/*
574 * __task_rq_lock - lock the runqueue a given task resides on.
575 * Must be called interrupts disabled.
576 */
70b97a7f 577static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
578 __acquires(rq->lock)
579{
3a5c359a
AK
580 for (;;) {
581 struct rq *rq = task_rq(p);
582 spin_lock(&rq->lock);
583 if (likely(rq == task_rq(p)))
584 return rq;
b29739f9 585 spin_unlock(&rq->lock);
b29739f9 586 }
b29739f9
IM
587}
588
1da177e4
LT
589/*
590 * task_rq_lock - lock the runqueue a given task resides on and disable
591 * interrupts. Note the ordering: we can safely lookup the task_rq without
592 * explicitly disabling preemption.
593 */
70b97a7f 594static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
595 __acquires(rq->lock)
596{
70b97a7f 597 struct rq *rq;
1da177e4 598
3a5c359a
AK
599 for (;;) {
600 local_irq_save(*flags);
601 rq = task_rq(p);
602 spin_lock(&rq->lock);
603 if (likely(rq == task_rq(p)))
604 return rq;
1da177e4 605 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 606 }
1da177e4
LT
607}
608
a9957449 609static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
610 __releases(rq->lock)
611{
612 spin_unlock(&rq->lock);
613}
614
70b97a7f 615static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
616 __releases(rq->lock)
617{
618 spin_unlock_irqrestore(&rq->lock, *flags);
619}
620
1da177e4 621/*
cc2a73b5 622 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 623 */
a9957449 624static struct rq *this_rq_lock(void)
1da177e4
LT
625 __acquires(rq->lock)
626{
70b97a7f 627 struct rq *rq;
1da177e4
LT
628
629 local_irq_disable();
630 rq = this_rq();
631 spin_lock(&rq->lock);
632
633 return rq;
634}
635
1b9f19c2 636/*
2aa44d05 637 * We are going deep-idle (irqs are disabled):
1b9f19c2 638 */
2aa44d05 639void sched_clock_idle_sleep_event(void)
1b9f19c2 640{
2aa44d05
IM
641 struct rq *rq = cpu_rq(smp_processor_id());
642
643 spin_lock(&rq->lock);
644 __update_rq_clock(rq);
645 spin_unlock(&rq->lock);
646 rq->clock_deep_idle_events++;
647}
648EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
649
650/*
651 * We just idled delta nanoseconds (called with irqs disabled):
652 */
653void sched_clock_idle_wakeup_event(u64 delta_ns)
654{
655 struct rq *rq = cpu_rq(smp_processor_id());
656 u64 now = sched_clock();
1b9f19c2 657
2aa44d05
IM
658 rq->idle_clock += delta_ns;
659 /*
660 * Override the previous timestamp and ignore all
661 * sched_clock() deltas that occured while we idled,
662 * and use the PM-provided delta_ns to advance the
663 * rq clock:
664 */
665 spin_lock(&rq->lock);
666 rq->prev_clock_raw = now;
667 rq->clock += delta_ns;
668 spin_unlock(&rq->lock);
1b9f19c2 669}
2aa44d05 670EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 671
c24d20db
IM
672/*
673 * resched_task - mark a task 'to be rescheduled now'.
674 *
675 * On UP this means the setting of the need_resched flag, on SMP it
676 * might also involve a cross-CPU call to trigger the scheduler on
677 * the target CPU.
678 */
679#ifdef CONFIG_SMP
680
681#ifndef tsk_is_polling
682#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
683#endif
684
685static void resched_task(struct task_struct *p)
686{
687 int cpu;
688
689 assert_spin_locked(&task_rq(p)->lock);
690
691 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
692 return;
693
694 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
695
696 cpu = task_cpu(p);
697 if (cpu == smp_processor_id())
698 return;
699
700 /* NEED_RESCHED must be visible before we test polling */
701 smp_mb();
702 if (!tsk_is_polling(p))
703 smp_send_reschedule(cpu);
704}
705
706static void resched_cpu(int cpu)
707{
708 struct rq *rq = cpu_rq(cpu);
709 unsigned long flags;
710
711 if (!spin_trylock_irqsave(&rq->lock, flags))
712 return;
713 resched_task(cpu_curr(cpu));
714 spin_unlock_irqrestore(&rq->lock, flags);
715}
716#else
717static inline void resched_task(struct task_struct *p)
718{
719 assert_spin_locked(&task_rq(p)->lock);
720 set_tsk_need_resched(p);
721}
722#endif
723
45bf76df
IM
724#if BITS_PER_LONG == 32
725# define WMULT_CONST (~0UL)
726#else
727# define WMULT_CONST (1UL << 32)
728#endif
729
730#define WMULT_SHIFT 32
731
194081eb
IM
732/*
733 * Shift right and round:
734 */
cf2ab469 735#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 736
cb1c4fc9 737static unsigned long
45bf76df
IM
738calc_delta_mine(unsigned long delta_exec, unsigned long weight,
739 struct load_weight *lw)
740{
741 u64 tmp;
742
743 if (unlikely(!lw->inv_weight))
194081eb 744 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
745
746 tmp = (u64)delta_exec * weight;
747 /*
748 * Check whether we'd overflow the 64-bit multiplication:
749 */
194081eb 750 if (unlikely(tmp > WMULT_CONST))
cf2ab469 751 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
752 WMULT_SHIFT/2);
753 else
cf2ab469 754 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 755
ecf691da 756 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
757}
758
759static inline unsigned long
760calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
761{
762 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
763}
764
1091985b 765static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
766{
767 lw->weight += inc;
45bf76df
IM
768}
769
1091985b 770static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
771{
772 lw->weight -= dec;
45bf76df
IM
773}
774
2dd73a4f
PW
775/*
776 * To aid in avoiding the subversion of "niceness" due to uneven distribution
777 * of tasks with abnormal "nice" values across CPUs the contribution that
778 * each task makes to its run queue's load is weighted according to its
779 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
780 * scaled version of the new time slice allocation that they receive on time
781 * slice expiry etc.
782 */
783
dd41f596
IM
784#define WEIGHT_IDLEPRIO 2
785#define WMULT_IDLEPRIO (1 << 31)
786
787/*
788 * Nice levels are multiplicative, with a gentle 10% change for every
789 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
790 * nice 1, it will get ~10% less CPU time than another CPU-bound task
791 * that remained on nice 0.
792 *
793 * The "10% effect" is relative and cumulative: from _any_ nice level,
794 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
795 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
796 * If a task goes up by ~10% and another task goes down by ~10% then
797 * the relative distance between them is ~25%.)
dd41f596
IM
798 */
799static const int prio_to_weight[40] = {
254753dc
IM
800 /* -20 */ 88761, 71755, 56483, 46273, 36291,
801 /* -15 */ 29154, 23254, 18705, 14949, 11916,
802 /* -10 */ 9548, 7620, 6100, 4904, 3906,
803 /* -5 */ 3121, 2501, 1991, 1586, 1277,
804 /* 0 */ 1024, 820, 655, 526, 423,
805 /* 5 */ 335, 272, 215, 172, 137,
806 /* 10 */ 110, 87, 70, 56, 45,
807 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
808};
809
5714d2de
IM
810/*
811 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
812 *
813 * In cases where the weight does not change often, we can use the
814 * precalculated inverse to speed up arithmetics by turning divisions
815 * into multiplications:
816 */
dd41f596 817static const u32 prio_to_wmult[40] = {
254753dc
IM
818 /* -20 */ 48388, 59856, 76040, 92818, 118348,
819 /* -15 */ 147320, 184698, 229616, 287308, 360437,
820 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
821 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
822 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
823 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
824 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
825 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 826};
2dd73a4f 827
dd41f596
IM
828static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
829
830/*
831 * runqueue iterator, to support SMP load-balancing between different
832 * scheduling classes, without having to expose their internal data
833 * structures to the load-balancing proper:
834 */
835struct rq_iterator {
836 void *arg;
837 struct task_struct *(*start)(void *);
838 struct task_struct *(*next)(void *);
839};
840
841static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
842 unsigned long max_nr_move, unsigned long max_load_move,
843 struct sched_domain *sd, enum cpu_idle_type idle,
844 int *all_pinned, unsigned long *load_moved,
a4ac01c3 845 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
846
847#include "sched_stats.h"
dd41f596 848#include "sched_idletask.c"
5522d5d5
IM
849#include "sched_fair.c"
850#include "sched_rt.c"
dd41f596
IM
851#ifdef CONFIG_SCHED_DEBUG
852# include "sched_debug.c"
853#endif
854
855#define sched_class_highest (&rt_sched_class)
856
9c217245
IM
857/*
858 * Update delta_exec, delta_fair fields for rq.
859 *
860 * delta_fair clock advances at a rate inversely proportional to
495eca49 861 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
862 * delta_exec advances at the same rate as wall-clock (provided
863 * cpu is not idle).
864 *
865 * delta_exec / delta_fair is a measure of the (smoothened) load on this
866 * runqueue over any given interval. This (smoothened) load is used
867 * during load balance.
868 *
495eca49 869 * This function is called /before/ updating rq->load
9c217245
IM
870 * and when switching tasks.
871 */
29b4b623 872static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 873{
495eca49 874 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
875}
876
79b5dddf 877static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 878{
495eca49 879 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
880}
881
e5fa2237 882static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
883{
884 rq->nr_running++;
29b4b623 885 inc_load(rq, p);
9c217245
IM
886}
887
db53181e 888static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
889{
890 rq->nr_running--;
79b5dddf 891 dec_load(rq, p);
9c217245
IM
892}
893
45bf76df
IM
894static void set_load_weight(struct task_struct *p)
895{
896 if (task_has_rt_policy(p)) {
dd41f596
IM
897 p->se.load.weight = prio_to_weight[0] * 2;
898 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
899 return;
900 }
45bf76df 901
dd41f596
IM
902 /*
903 * SCHED_IDLE tasks get minimal weight:
904 */
905 if (p->policy == SCHED_IDLE) {
906 p->se.load.weight = WEIGHT_IDLEPRIO;
907 p->se.load.inv_weight = WMULT_IDLEPRIO;
908 return;
909 }
71f8bd46 910
dd41f596
IM
911 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
912 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
913}
914
8159f87e 915static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 916{
dd41f596 917 sched_info_queued(p);
fd390f6a 918 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 919 p->se.on_rq = 1;
71f8bd46
IM
920}
921
69be72c1 922static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 923{
f02231e5 924 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 925 p->se.on_rq = 0;
71f8bd46
IM
926}
927
14531189 928/*
dd41f596 929 * __normal_prio - return the priority that is based on the static prio
14531189 930 */
14531189
IM
931static inline int __normal_prio(struct task_struct *p)
932{
dd41f596 933 return p->static_prio;
14531189
IM
934}
935
b29739f9
IM
936/*
937 * Calculate the expected normal priority: i.e. priority
938 * without taking RT-inheritance into account. Might be
939 * boosted by interactivity modifiers. Changes upon fork,
940 * setprio syscalls, and whenever the interactivity
941 * estimator recalculates.
942 */
36c8b586 943static inline int normal_prio(struct task_struct *p)
b29739f9
IM
944{
945 int prio;
946
e05606d3 947 if (task_has_rt_policy(p))
b29739f9
IM
948 prio = MAX_RT_PRIO-1 - p->rt_priority;
949 else
950 prio = __normal_prio(p);
951 return prio;
952}
953
954/*
955 * Calculate the current priority, i.e. the priority
956 * taken into account by the scheduler. This value might
957 * be boosted by RT tasks, or might be boosted by
958 * interactivity modifiers. Will be RT if the task got
959 * RT-boosted. If not then it returns p->normal_prio.
960 */
36c8b586 961static int effective_prio(struct task_struct *p)
b29739f9
IM
962{
963 p->normal_prio = normal_prio(p);
964 /*
965 * If we are RT tasks or we were boosted to RT priority,
966 * keep the priority unchanged. Otherwise, update priority
967 * to the normal priority:
968 */
969 if (!rt_prio(p->prio))
970 return p->normal_prio;
971 return p->prio;
972}
973
1da177e4 974/*
dd41f596 975 * activate_task - move a task to the runqueue.
1da177e4 976 */
dd41f596 977static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 978{
dd41f596
IM
979 if (p->state == TASK_UNINTERRUPTIBLE)
980 rq->nr_uninterruptible--;
1da177e4 981
8159f87e 982 enqueue_task(rq, p, wakeup);
e5fa2237 983 inc_nr_running(p, rq);
1da177e4
LT
984}
985
1da177e4
LT
986/*
987 * deactivate_task - remove a task from the runqueue.
988 */
2e1cb74a 989static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 990{
dd41f596
IM
991 if (p->state == TASK_UNINTERRUPTIBLE)
992 rq->nr_uninterruptible++;
993
69be72c1 994 dequeue_task(rq, p, sleep);
db53181e 995 dec_nr_running(p, rq);
1da177e4
LT
996}
997
1da177e4
LT
998/**
999 * task_curr - is this task currently executing on a CPU?
1000 * @p: the task in question.
1001 */
36c8b586 1002inline int task_curr(const struct task_struct *p)
1da177e4
LT
1003{
1004 return cpu_curr(task_cpu(p)) == p;
1005}
1006
2dd73a4f
PW
1007/* Used instead of source_load when we know the type == 0 */
1008unsigned long weighted_cpuload(const int cpu)
1009{
495eca49 1010 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1011}
1012
1013static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1014{
1015#ifdef CONFIG_SMP
1016 task_thread_info(p)->cpu = cpu;
dd41f596 1017#endif
29f59db3 1018 set_task_cfs_rq(p);
2dd73a4f
PW
1019}
1020
1da177e4 1021#ifdef CONFIG_SMP
c65cc870 1022
cc367732
IM
1023/*
1024 * Is this task likely cache-hot:
1025 */
1026static inline int
1027task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1028{
1029 s64 delta;
1030
1031 if (p->sched_class != &fair_sched_class)
1032 return 0;
1033
6bc1665b
IM
1034 if (sysctl_sched_migration_cost == -1)
1035 return 1;
1036 if (sysctl_sched_migration_cost == 0)
1037 return 0;
1038
cc367732
IM
1039 delta = now - p->se.exec_start;
1040
1041 return delta < (s64)sysctl_sched_migration_cost;
1042}
1043
1044
dd41f596 1045void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1046{
dd41f596
IM
1047 int old_cpu = task_cpu(p);
1048 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1049 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1050 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1051 u64 clock_offset;
dd41f596
IM
1052
1053 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1054
1055#ifdef CONFIG_SCHEDSTATS
1056 if (p->se.wait_start)
1057 p->se.wait_start -= clock_offset;
dd41f596
IM
1058 if (p->se.sleep_start)
1059 p->se.sleep_start -= clock_offset;
1060 if (p->se.block_start)
1061 p->se.block_start -= clock_offset;
cc367732
IM
1062 if (old_cpu != new_cpu) {
1063 schedstat_inc(p, se.nr_migrations);
1064 if (task_hot(p, old_rq->clock, NULL))
1065 schedstat_inc(p, se.nr_forced2_migrations);
1066 }
6cfb0d5d 1067#endif
2830cf8c
SV
1068 p->se.vruntime -= old_cfsrq->min_vruntime -
1069 new_cfsrq->min_vruntime;
dd41f596
IM
1070
1071 __set_task_cpu(p, new_cpu);
c65cc870
IM
1072}
1073
70b97a7f 1074struct migration_req {
1da177e4 1075 struct list_head list;
1da177e4 1076
36c8b586 1077 struct task_struct *task;
1da177e4
LT
1078 int dest_cpu;
1079
1da177e4 1080 struct completion done;
70b97a7f 1081};
1da177e4
LT
1082
1083/*
1084 * The task's runqueue lock must be held.
1085 * Returns true if you have to wait for migration thread.
1086 */
36c8b586 1087static int
70b97a7f 1088migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1089{
70b97a7f 1090 struct rq *rq = task_rq(p);
1da177e4
LT
1091
1092 /*
1093 * If the task is not on a runqueue (and not running), then
1094 * it is sufficient to simply update the task's cpu field.
1095 */
dd41f596 1096 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1097 set_task_cpu(p, dest_cpu);
1098 return 0;
1099 }
1100
1101 init_completion(&req->done);
1da177e4
LT
1102 req->task = p;
1103 req->dest_cpu = dest_cpu;
1104 list_add(&req->list, &rq->migration_queue);
48f24c4d 1105
1da177e4
LT
1106 return 1;
1107}
1108
1109/*
1110 * wait_task_inactive - wait for a thread to unschedule.
1111 *
1112 * The caller must ensure that the task *will* unschedule sometime soon,
1113 * else this function might spin for a *long* time. This function can't
1114 * be called with interrupts off, or it may introduce deadlock with
1115 * smp_call_function() if an IPI is sent by the same process we are
1116 * waiting to become inactive.
1117 */
36c8b586 1118void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1119{
1120 unsigned long flags;
dd41f596 1121 int running, on_rq;
70b97a7f 1122 struct rq *rq;
1da177e4 1123
3a5c359a
AK
1124 for (;;) {
1125 /*
1126 * We do the initial early heuristics without holding
1127 * any task-queue locks at all. We'll only try to get
1128 * the runqueue lock when things look like they will
1129 * work out!
1130 */
1131 rq = task_rq(p);
fa490cfd 1132
3a5c359a
AK
1133 /*
1134 * If the task is actively running on another CPU
1135 * still, just relax and busy-wait without holding
1136 * any locks.
1137 *
1138 * NOTE! Since we don't hold any locks, it's not
1139 * even sure that "rq" stays as the right runqueue!
1140 * But we don't care, since "task_running()" will
1141 * return false if the runqueue has changed and p
1142 * is actually now running somewhere else!
1143 */
1144 while (task_running(rq, p))
1145 cpu_relax();
fa490cfd 1146
3a5c359a
AK
1147 /*
1148 * Ok, time to look more closely! We need the rq
1149 * lock now, to be *sure*. If we're wrong, we'll
1150 * just go back and repeat.
1151 */
1152 rq = task_rq_lock(p, &flags);
1153 running = task_running(rq, p);
1154 on_rq = p->se.on_rq;
1155 task_rq_unlock(rq, &flags);
fa490cfd 1156
3a5c359a
AK
1157 /*
1158 * Was it really running after all now that we
1159 * checked with the proper locks actually held?
1160 *
1161 * Oops. Go back and try again..
1162 */
1163 if (unlikely(running)) {
1164 cpu_relax();
1165 continue;
1166 }
fa490cfd 1167
3a5c359a
AK
1168 /*
1169 * It's not enough that it's not actively running,
1170 * it must be off the runqueue _entirely_, and not
1171 * preempted!
1172 *
1173 * So if it wa still runnable (but just not actively
1174 * running right now), it's preempted, and we should
1175 * yield - it could be a while.
1176 */
1177 if (unlikely(on_rq)) {
1178 schedule_timeout_uninterruptible(1);
1179 continue;
1180 }
fa490cfd 1181
3a5c359a
AK
1182 /*
1183 * Ahh, all good. It wasn't running, and it wasn't
1184 * runnable, which means that it will never become
1185 * running in the future either. We're all done!
1186 */
1187 break;
1188 }
1da177e4
LT
1189}
1190
1191/***
1192 * kick_process - kick a running thread to enter/exit the kernel
1193 * @p: the to-be-kicked thread
1194 *
1195 * Cause a process which is running on another CPU to enter
1196 * kernel-mode, without any delay. (to get signals handled.)
1197 *
1198 * NOTE: this function doesnt have to take the runqueue lock,
1199 * because all it wants to ensure is that the remote task enters
1200 * the kernel. If the IPI races and the task has been migrated
1201 * to another CPU then no harm is done and the purpose has been
1202 * achieved as well.
1203 */
36c8b586 1204void kick_process(struct task_struct *p)
1da177e4
LT
1205{
1206 int cpu;
1207
1208 preempt_disable();
1209 cpu = task_cpu(p);
1210 if ((cpu != smp_processor_id()) && task_curr(p))
1211 smp_send_reschedule(cpu);
1212 preempt_enable();
1213}
1214
1215/*
2dd73a4f
PW
1216 * Return a low guess at the load of a migration-source cpu weighted
1217 * according to the scheduling class and "nice" value.
1da177e4
LT
1218 *
1219 * We want to under-estimate the load of migration sources, to
1220 * balance conservatively.
1221 */
a9957449 1222static unsigned long source_load(int cpu, int type)
1da177e4 1223{
70b97a7f 1224 struct rq *rq = cpu_rq(cpu);
dd41f596 1225 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1226
3b0bd9bc 1227 if (type == 0)
dd41f596 1228 return total;
b910472d 1229
dd41f596 1230 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1231}
1232
1233/*
2dd73a4f
PW
1234 * Return a high guess at the load of a migration-target cpu weighted
1235 * according to the scheduling class and "nice" value.
1da177e4 1236 */
a9957449 1237static unsigned long target_load(int cpu, int type)
1da177e4 1238{
70b97a7f 1239 struct rq *rq = cpu_rq(cpu);
dd41f596 1240 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1241
7897986b 1242 if (type == 0)
dd41f596 1243 return total;
3b0bd9bc 1244
dd41f596 1245 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1246}
1247
1248/*
1249 * Return the average load per task on the cpu's run queue
1250 */
1251static inline unsigned long cpu_avg_load_per_task(int cpu)
1252{
70b97a7f 1253 struct rq *rq = cpu_rq(cpu);
dd41f596 1254 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1255 unsigned long n = rq->nr_running;
1256
dd41f596 1257 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1258}
1259
147cbb4b
NP
1260/*
1261 * find_idlest_group finds and returns the least busy CPU group within the
1262 * domain.
1263 */
1264static struct sched_group *
1265find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1266{
1267 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1268 unsigned long min_load = ULONG_MAX, this_load = 0;
1269 int load_idx = sd->forkexec_idx;
1270 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1271
1272 do {
1273 unsigned long load, avg_load;
1274 int local_group;
1275 int i;
1276
da5a5522
BD
1277 /* Skip over this group if it has no CPUs allowed */
1278 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1279 continue;
da5a5522 1280
147cbb4b 1281 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1282
1283 /* Tally up the load of all CPUs in the group */
1284 avg_load = 0;
1285
1286 for_each_cpu_mask(i, group->cpumask) {
1287 /* Bias balancing toward cpus of our domain */
1288 if (local_group)
1289 load = source_load(i, load_idx);
1290 else
1291 load = target_load(i, load_idx);
1292
1293 avg_load += load;
1294 }
1295
1296 /* Adjust by relative CPU power of the group */
5517d86b
ED
1297 avg_load = sg_div_cpu_power(group,
1298 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1299
1300 if (local_group) {
1301 this_load = avg_load;
1302 this = group;
1303 } else if (avg_load < min_load) {
1304 min_load = avg_load;
1305 idlest = group;
1306 }
3a5c359a 1307 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1308
1309 if (!idlest || 100*this_load < imbalance*min_load)
1310 return NULL;
1311 return idlest;
1312}
1313
1314/*
0feaece9 1315 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1316 */
95cdf3b7
IM
1317static int
1318find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1319{
da5a5522 1320 cpumask_t tmp;
147cbb4b
NP
1321 unsigned long load, min_load = ULONG_MAX;
1322 int idlest = -1;
1323 int i;
1324
da5a5522
BD
1325 /* Traverse only the allowed CPUs */
1326 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1327
1328 for_each_cpu_mask(i, tmp) {
2dd73a4f 1329 load = weighted_cpuload(i);
147cbb4b
NP
1330
1331 if (load < min_load || (load == min_load && i == this_cpu)) {
1332 min_load = load;
1333 idlest = i;
1334 }
1335 }
1336
1337 return idlest;
1338}
1339
476d139c
NP
1340/*
1341 * sched_balance_self: balance the current task (running on cpu) in domains
1342 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1343 * SD_BALANCE_EXEC.
1344 *
1345 * Balance, ie. select the least loaded group.
1346 *
1347 * Returns the target CPU number, or the same CPU if no balancing is needed.
1348 *
1349 * preempt must be disabled.
1350 */
1351static int sched_balance_self(int cpu, int flag)
1352{
1353 struct task_struct *t = current;
1354 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1355
c96d145e 1356 for_each_domain(cpu, tmp) {
9761eea8
IM
1357 /*
1358 * If power savings logic is enabled for a domain, stop there.
1359 */
5c45bf27
SS
1360 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1361 break;
476d139c
NP
1362 if (tmp->flags & flag)
1363 sd = tmp;
c96d145e 1364 }
476d139c
NP
1365
1366 while (sd) {
1367 cpumask_t span;
1368 struct sched_group *group;
1a848870
SS
1369 int new_cpu, weight;
1370
1371 if (!(sd->flags & flag)) {
1372 sd = sd->child;
1373 continue;
1374 }
476d139c
NP
1375
1376 span = sd->span;
1377 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1378 if (!group) {
1379 sd = sd->child;
1380 continue;
1381 }
476d139c 1382
da5a5522 1383 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1384 if (new_cpu == -1 || new_cpu == cpu) {
1385 /* Now try balancing at a lower domain level of cpu */
1386 sd = sd->child;
1387 continue;
1388 }
476d139c 1389
1a848870 1390 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1391 cpu = new_cpu;
476d139c
NP
1392 sd = NULL;
1393 weight = cpus_weight(span);
1394 for_each_domain(cpu, tmp) {
1395 if (weight <= cpus_weight(tmp->span))
1396 break;
1397 if (tmp->flags & flag)
1398 sd = tmp;
1399 }
1400 /* while loop will break here if sd == NULL */
1401 }
1402
1403 return cpu;
1404}
1405
1406#endif /* CONFIG_SMP */
1da177e4
LT
1407
1408/*
1409 * wake_idle() will wake a task on an idle cpu if task->cpu is
1410 * not idle and an idle cpu is available. The span of cpus to
1411 * search starts with cpus closest then further out as needed,
1412 * so we always favor a closer, idle cpu.
1413 *
1414 * Returns the CPU we should wake onto.
1415 */
1416#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1417static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1418{
1419 cpumask_t tmp;
1420 struct sched_domain *sd;
1421 int i;
1422
4953198b
SS
1423 /*
1424 * If it is idle, then it is the best cpu to run this task.
1425 *
1426 * This cpu is also the best, if it has more than one task already.
1427 * Siblings must be also busy(in most cases) as they didn't already
1428 * pickup the extra load from this cpu and hence we need not check
1429 * sibling runqueue info. This will avoid the checks and cache miss
1430 * penalities associated with that.
1431 */
1432 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1433 return cpu;
1434
1435 for_each_domain(cpu, sd) {
1436 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1437 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1438 for_each_cpu_mask(i, tmp) {
cc367732
IM
1439 if (idle_cpu(i)) {
1440 if (i != task_cpu(p)) {
1441 schedstat_inc(p,
1442 se.nr_wakeups_idle);
1443 }
1da177e4 1444 return i;
cc367732 1445 }
1da177e4 1446 }
9761eea8 1447 } else {
e0f364f4 1448 break;
9761eea8 1449 }
1da177e4
LT
1450 }
1451 return cpu;
1452}
1453#else
36c8b586 1454static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1455{
1456 return cpu;
1457}
1458#endif
1459
1460/***
1461 * try_to_wake_up - wake up a thread
1462 * @p: the to-be-woken-up thread
1463 * @state: the mask of task states that can be woken
1464 * @sync: do a synchronous wakeup?
1465 *
1466 * Put it on the run-queue if it's not already there. The "current"
1467 * thread is always on the run-queue (except when the actual
1468 * re-schedule is in progress), and as such you're allowed to do
1469 * the simpler "current->state = TASK_RUNNING" to mark yourself
1470 * runnable without the overhead of this.
1471 *
1472 * returns failure only if the task is already active.
1473 */
36c8b586 1474static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1475{
cc367732 1476 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1477 unsigned long flags;
1478 long old_state;
70b97a7f 1479 struct rq *rq;
1da177e4 1480#ifdef CONFIG_SMP
7897986b 1481 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1482 unsigned long load, this_load;
1da177e4
LT
1483 int new_cpu;
1484#endif
1485
1486 rq = task_rq_lock(p, &flags);
1487 old_state = p->state;
1488 if (!(old_state & state))
1489 goto out;
1490
dd41f596 1491 if (p->se.on_rq)
1da177e4
LT
1492 goto out_running;
1493
1494 cpu = task_cpu(p);
cc367732 1495 orig_cpu = cpu;
1da177e4
LT
1496 this_cpu = smp_processor_id();
1497
1498#ifdef CONFIG_SMP
1499 if (unlikely(task_running(rq, p)))
1500 goto out_activate;
1501
7897986b
NP
1502 new_cpu = cpu;
1503
2d72376b 1504 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1505 if (cpu == this_cpu) {
1506 schedstat_inc(rq, ttwu_local);
7897986b
NP
1507 goto out_set_cpu;
1508 }
1509
1510 for_each_domain(this_cpu, sd) {
1511 if (cpu_isset(cpu, sd->span)) {
1512 schedstat_inc(sd, ttwu_wake_remote);
1513 this_sd = sd;
1514 break;
1da177e4
LT
1515 }
1516 }
1da177e4 1517
7897986b 1518 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1519 goto out_set_cpu;
1520
1da177e4 1521 /*
7897986b 1522 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1523 */
7897986b
NP
1524 if (this_sd) {
1525 int idx = this_sd->wake_idx;
1526 unsigned int imbalance;
1da177e4 1527
a3f21bce
NP
1528 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1529
7897986b
NP
1530 load = source_load(cpu, idx);
1531 this_load = target_load(this_cpu, idx);
1da177e4 1532
7897986b
NP
1533 new_cpu = this_cpu; /* Wake to this CPU if we can */
1534
a3f21bce
NP
1535 if (this_sd->flags & SD_WAKE_AFFINE) {
1536 unsigned long tl = this_load;
33859f7f
MOS
1537 unsigned long tl_per_task;
1538
71e20f18
IM
1539 /*
1540 * Attract cache-cold tasks on sync wakeups:
1541 */
1542 if (sync && !task_hot(p, rq->clock, this_sd))
1543 goto out_set_cpu;
1544
cc367732 1545 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1546 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1547
1da177e4 1548 /*
a3f21bce
NP
1549 * If sync wakeup then subtract the (maximum possible)
1550 * effect of the currently running task from the load
1551 * of the current CPU:
1da177e4 1552 */
a3f21bce 1553 if (sync)
dd41f596 1554 tl -= current->se.load.weight;
a3f21bce
NP
1555
1556 if ((tl <= load &&
2dd73a4f 1557 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1558 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1559 /*
1560 * This domain has SD_WAKE_AFFINE and
1561 * p is cache cold in this domain, and
1562 * there is no bad imbalance.
1563 */
1564 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1565 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1566 goto out_set_cpu;
1567 }
1568 }
1569
1570 /*
1571 * Start passive balancing when half the imbalance_pct
1572 * limit is reached.
1573 */
1574 if (this_sd->flags & SD_WAKE_BALANCE) {
1575 if (imbalance*this_load <= 100*load) {
1576 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1577 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1578 goto out_set_cpu;
1579 }
1da177e4
LT
1580 }
1581 }
1582
1583 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1584out_set_cpu:
1585 new_cpu = wake_idle(new_cpu, p);
1586 if (new_cpu != cpu) {
1587 set_task_cpu(p, new_cpu);
1588 task_rq_unlock(rq, &flags);
1589 /* might preempt at this point */
1590 rq = task_rq_lock(p, &flags);
1591 old_state = p->state;
1592 if (!(old_state & state))
1593 goto out;
dd41f596 1594 if (p->se.on_rq)
1da177e4
LT
1595 goto out_running;
1596
1597 this_cpu = smp_processor_id();
1598 cpu = task_cpu(p);
1599 }
1600
1601out_activate:
1602#endif /* CONFIG_SMP */
cc367732
IM
1603 schedstat_inc(p, se.nr_wakeups);
1604 if (sync)
1605 schedstat_inc(p, se.nr_wakeups_sync);
1606 if (orig_cpu != cpu)
1607 schedstat_inc(p, se.nr_wakeups_migrate);
1608 if (cpu == this_cpu)
1609 schedstat_inc(p, se.nr_wakeups_local);
1610 else
1611 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1612 update_rq_clock(rq);
dd41f596 1613 activate_task(rq, p, 1);
9c63d9c0 1614 check_preempt_curr(rq, p);
1da177e4
LT
1615 success = 1;
1616
1617out_running:
1618 p->state = TASK_RUNNING;
1619out:
1620 task_rq_unlock(rq, &flags);
1621
1622 return success;
1623}
1624
36c8b586 1625int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1626{
1627 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1628 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1629}
1da177e4
LT
1630EXPORT_SYMBOL(wake_up_process);
1631
36c8b586 1632int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1633{
1634 return try_to_wake_up(p, state, 0);
1635}
1636
1da177e4
LT
1637/*
1638 * Perform scheduler related setup for a newly forked process p.
1639 * p is forked by current.
dd41f596
IM
1640 *
1641 * __sched_fork() is basic setup used by init_idle() too:
1642 */
1643static void __sched_fork(struct task_struct *p)
1644{
dd41f596
IM
1645 p->se.exec_start = 0;
1646 p->se.sum_exec_runtime = 0;
f6cf891c 1647 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1648
1649#ifdef CONFIG_SCHEDSTATS
1650 p->se.wait_start = 0;
dd41f596
IM
1651 p->se.sum_sleep_runtime = 0;
1652 p->se.sleep_start = 0;
dd41f596
IM
1653 p->se.block_start = 0;
1654 p->se.sleep_max = 0;
1655 p->se.block_max = 0;
1656 p->se.exec_max = 0;
eba1ed4b 1657 p->se.slice_max = 0;
dd41f596 1658 p->se.wait_max = 0;
6cfb0d5d 1659#endif
476d139c 1660
dd41f596
IM
1661 INIT_LIST_HEAD(&p->run_list);
1662 p->se.on_rq = 0;
476d139c 1663
e107be36
AK
1664#ifdef CONFIG_PREEMPT_NOTIFIERS
1665 INIT_HLIST_HEAD(&p->preempt_notifiers);
1666#endif
1667
1da177e4
LT
1668 /*
1669 * We mark the process as running here, but have not actually
1670 * inserted it onto the runqueue yet. This guarantees that
1671 * nobody will actually run it, and a signal or other external
1672 * event cannot wake it up and insert it on the runqueue either.
1673 */
1674 p->state = TASK_RUNNING;
dd41f596
IM
1675}
1676
1677/*
1678 * fork()/clone()-time setup:
1679 */
1680void sched_fork(struct task_struct *p, int clone_flags)
1681{
1682 int cpu = get_cpu();
1683
1684 __sched_fork(p);
1685
1686#ifdef CONFIG_SMP
1687 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1688#endif
02e4bac2 1689 set_task_cpu(p, cpu);
b29739f9
IM
1690
1691 /*
1692 * Make sure we do not leak PI boosting priority to the child:
1693 */
1694 p->prio = current->normal_prio;
2ddbf952
HS
1695 if (!rt_prio(p->prio))
1696 p->sched_class = &fair_sched_class;
b29739f9 1697
52f17b6c 1698#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1699 if (likely(sched_info_on()))
52f17b6c 1700 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1701#endif
d6077cb8 1702#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1703 p->oncpu = 0;
1704#endif
1da177e4 1705#ifdef CONFIG_PREEMPT
4866cde0 1706 /* Want to start with kernel preemption disabled. */
a1261f54 1707 task_thread_info(p)->preempt_count = 1;
1da177e4 1708#endif
476d139c 1709 put_cpu();
1da177e4
LT
1710}
1711
1712/*
1713 * wake_up_new_task - wake up a newly created task for the first time.
1714 *
1715 * This function will do some initial scheduler statistics housekeeping
1716 * that must be done for every newly created context, then puts the task
1717 * on the runqueue and wakes it.
1718 */
36c8b586 1719void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1720{
1721 unsigned long flags;
dd41f596 1722 struct rq *rq;
1da177e4
LT
1723
1724 rq = task_rq_lock(p, &flags);
147cbb4b 1725 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1726 update_rq_clock(rq);
1da177e4
LT
1727
1728 p->prio = effective_prio(p);
1729
b9dca1e0 1730 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1731 activate_task(rq, p, 0);
1da177e4 1732 } else {
1da177e4 1733 /*
dd41f596
IM
1734 * Let the scheduling class do new task startup
1735 * management (if any):
1da177e4 1736 */
ee0827d8 1737 p->sched_class->task_new(rq, p);
e5fa2237 1738 inc_nr_running(p, rq);
1da177e4 1739 }
dd41f596
IM
1740 check_preempt_curr(rq, p);
1741 task_rq_unlock(rq, &flags);
1da177e4
LT
1742}
1743
e107be36
AK
1744#ifdef CONFIG_PREEMPT_NOTIFIERS
1745
1746/**
421cee29
RD
1747 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1748 * @notifier: notifier struct to register
e107be36
AK
1749 */
1750void preempt_notifier_register(struct preempt_notifier *notifier)
1751{
1752 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1753}
1754EXPORT_SYMBOL_GPL(preempt_notifier_register);
1755
1756/**
1757 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1758 * @notifier: notifier struct to unregister
e107be36
AK
1759 *
1760 * This is safe to call from within a preemption notifier.
1761 */
1762void preempt_notifier_unregister(struct preempt_notifier *notifier)
1763{
1764 hlist_del(&notifier->link);
1765}
1766EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1767
1768static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1769{
1770 struct preempt_notifier *notifier;
1771 struct hlist_node *node;
1772
1773 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1774 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1775}
1776
1777static void
1778fire_sched_out_preempt_notifiers(struct task_struct *curr,
1779 struct task_struct *next)
1780{
1781 struct preempt_notifier *notifier;
1782 struct hlist_node *node;
1783
1784 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1785 notifier->ops->sched_out(notifier, next);
1786}
1787
1788#else
1789
1790static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1791{
1792}
1793
1794static void
1795fire_sched_out_preempt_notifiers(struct task_struct *curr,
1796 struct task_struct *next)
1797{
1798}
1799
1800#endif
1801
4866cde0
NP
1802/**
1803 * prepare_task_switch - prepare to switch tasks
1804 * @rq: the runqueue preparing to switch
421cee29 1805 * @prev: the current task that is being switched out
4866cde0
NP
1806 * @next: the task we are going to switch to.
1807 *
1808 * This is called with the rq lock held and interrupts off. It must
1809 * be paired with a subsequent finish_task_switch after the context
1810 * switch.
1811 *
1812 * prepare_task_switch sets up locking and calls architecture specific
1813 * hooks.
1814 */
e107be36
AK
1815static inline void
1816prepare_task_switch(struct rq *rq, struct task_struct *prev,
1817 struct task_struct *next)
4866cde0 1818{
e107be36 1819 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1820 prepare_lock_switch(rq, next);
1821 prepare_arch_switch(next);
1822}
1823
1da177e4
LT
1824/**
1825 * finish_task_switch - clean up after a task-switch
344babaa 1826 * @rq: runqueue associated with task-switch
1da177e4
LT
1827 * @prev: the thread we just switched away from.
1828 *
4866cde0
NP
1829 * finish_task_switch must be called after the context switch, paired
1830 * with a prepare_task_switch call before the context switch.
1831 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1832 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1833 *
1834 * Note that we may have delayed dropping an mm in context_switch(). If
1835 * so, we finish that here outside of the runqueue lock. (Doing it
1836 * with the lock held can cause deadlocks; see schedule() for
1837 * details.)
1838 */
a9957449 1839static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1840 __releases(rq->lock)
1841{
1da177e4 1842 struct mm_struct *mm = rq->prev_mm;
55a101f8 1843 long prev_state;
1da177e4
LT
1844
1845 rq->prev_mm = NULL;
1846
1847 /*
1848 * A task struct has one reference for the use as "current".
c394cc9f 1849 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1850 * schedule one last time. The schedule call will never return, and
1851 * the scheduled task must drop that reference.
c394cc9f 1852 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1853 * still held, otherwise prev could be scheduled on another cpu, die
1854 * there before we look at prev->state, and then the reference would
1855 * be dropped twice.
1856 * Manfred Spraul <manfred@colorfullife.com>
1857 */
55a101f8 1858 prev_state = prev->state;
4866cde0
NP
1859 finish_arch_switch(prev);
1860 finish_lock_switch(rq, prev);
e107be36 1861 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1862 if (mm)
1863 mmdrop(mm);
c394cc9f 1864 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1865 /*
1866 * Remove function-return probe instances associated with this
1867 * task and put them back on the free list.
9761eea8 1868 */
c6fd91f0 1869 kprobe_flush_task(prev);
1da177e4 1870 put_task_struct(prev);
c6fd91f0 1871 }
1da177e4
LT
1872}
1873
1874/**
1875 * schedule_tail - first thing a freshly forked thread must call.
1876 * @prev: the thread we just switched away from.
1877 */
36c8b586 1878asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1879 __releases(rq->lock)
1880{
70b97a7f
IM
1881 struct rq *rq = this_rq();
1882
4866cde0
NP
1883 finish_task_switch(rq, prev);
1884#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1885 /* In this case, finish_task_switch does not reenable preemption */
1886 preempt_enable();
1887#endif
1da177e4 1888 if (current->set_child_tid)
b488893a 1889 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1890}
1891
1892/*
1893 * context_switch - switch to the new MM and the new
1894 * thread's register state.
1895 */
dd41f596 1896static inline void
70b97a7f 1897context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1898 struct task_struct *next)
1da177e4 1899{
dd41f596 1900 struct mm_struct *mm, *oldmm;
1da177e4 1901
e107be36 1902 prepare_task_switch(rq, prev, next);
dd41f596
IM
1903 mm = next->mm;
1904 oldmm = prev->active_mm;
9226d125
ZA
1905 /*
1906 * For paravirt, this is coupled with an exit in switch_to to
1907 * combine the page table reload and the switch backend into
1908 * one hypercall.
1909 */
1910 arch_enter_lazy_cpu_mode();
1911
dd41f596 1912 if (unlikely(!mm)) {
1da177e4
LT
1913 next->active_mm = oldmm;
1914 atomic_inc(&oldmm->mm_count);
1915 enter_lazy_tlb(oldmm, next);
1916 } else
1917 switch_mm(oldmm, mm, next);
1918
dd41f596 1919 if (unlikely(!prev->mm)) {
1da177e4 1920 prev->active_mm = NULL;
1da177e4
LT
1921 rq->prev_mm = oldmm;
1922 }
3a5f5e48
IM
1923 /*
1924 * Since the runqueue lock will be released by the next
1925 * task (which is an invalid locking op but in the case
1926 * of the scheduler it's an obvious special-case), so we
1927 * do an early lockdep release here:
1928 */
1929#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1930 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1931#endif
1da177e4
LT
1932
1933 /* Here we just switch the register state and the stack. */
1934 switch_to(prev, next, prev);
1935
dd41f596
IM
1936 barrier();
1937 /*
1938 * this_rq must be evaluated again because prev may have moved
1939 * CPUs since it called schedule(), thus the 'rq' on its stack
1940 * frame will be invalid.
1941 */
1942 finish_task_switch(this_rq(), prev);
1da177e4
LT
1943}
1944
1945/*
1946 * nr_running, nr_uninterruptible and nr_context_switches:
1947 *
1948 * externally visible scheduler statistics: current number of runnable
1949 * threads, current number of uninterruptible-sleeping threads, total
1950 * number of context switches performed since bootup.
1951 */
1952unsigned long nr_running(void)
1953{
1954 unsigned long i, sum = 0;
1955
1956 for_each_online_cpu(i)
1957 sum += cpu_rq(i)->nr_running;
1958
1959 return sum;
1960}
1961
1962unsigned long nr_uninterruptible(void)
1963{
1964 unsigned long i, sum = 0;
1965
0a945022 1966 for_each_possible_cpu(i)
1da177e4
LT
1967 sum += cpu_rq(i)->nr_uninterruptible;
1968
1969 /*
1970 * Since we read the counters lockless, it might be slightly
1971 * inaccurate. Do not allow it to go below zero though:
1972 */
1973 if (unlikely((long)sum < 0))
1974 sum = 0;
1975
1976 return sum;
1977}
1978
1979unsigned long long nr_context_switches(void)
1980{
cc94abfc
SR
1981 int i;
1982 unsigned long long sum = 0;
1da177e4 1983
0a945022 1984 for_each_possible_cpu(i)
1da177e4
LT
1985 sum += cpu_rq(i)->nr_switches;
1986
1987 return sum;
1988}
1989
1990unsigned long nr_iowait(void)
1991{
1992 unsigned long i, sum = 0;
1993
0a945022 1994 for_each_possible_cpu(i)
1da177e4
LT
1995 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1996
1997 return sum;
1998}
1999
db1b1fef
JS
2000unsigned long nr_active(void)
2001{
2002 unsigned long i, running = 0, uninterruptible = 0;
2003
2004 for_each_online_cpu(i) {
2005 running += cpu_rq(i)->nr_running;
2006 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2007 }
2008
2009 if (unlikely((long)uninterruptible < 0))
2010 uninterruptible = 0;
2011
2012 return running + uninterruptible;
2013}
2014
48f24c4d 2015/*
dd41f596
IM
2016 * Update rq->cpu_load[] statistics. This function is usually called every
2017 * scheduler tick (TICK_NSEC).
48f24c4d 2018 */
dd41f596 2019static void update_cpu_load(struct rq *this_rq)
48f24c4d 2020{
495eca49 2021 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2022 int i, scale;
2023
2024 this_rq->nr_load_updates++;
dd41f596
IM
2025
2026 /* Update our load: */
2027 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2028 unsigned long old_load, new_load;
2029
2030 /* scale is effectively 1 << i now, and >> i divides by scale */
2031
2032 old_load = this_rq->cpu_load[i];
2033 new_load = this_load;
a25707f3
IM
2034 /*
2035 * Round up the averaging division if load is increasing. This
2036 * prevents us from getting stuck on 9 if the load is 10, for
2037 * example.
2038 */
2039 if (new_load > old_load)
2040 new_load += scale-1;
dd41f596
IM
2041 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2042 }
48f24c4d
IM
2043}
2044
dd41f596
IM
2045#ifdef CONFIG_SMP
2046
1da177e4
LT
2047/*
2048 * double_rq_lock - safely lock two runqueues
2049 *
2050 * Note this does not disable interrupts like task_rq_lock,
2051 * you need to do so manually before calling.
2052 */
70b97a7f 2053static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2054 __acquires(rq1->lock)
2055 __acquires(rq2->lock)
2056{
054b9108 2057 BUG_ON(!irqs_disabled());
1da177e4
LT
2058 if (rq1 == rq2) {
2059 spin_lock(&rq1->lock);
2060 __acquire(rq2->lock); /* Fake it out ;) */
2061 } else {
c96d145e 2062 if (rq1 < rq2) {
1da177e4
LT
2063 spin_lock(&rq1->lock);
2064 spin_lock(&rq2->lock);
2065 } else {
2066 spin_lock(&rq2->lock);
2067 spin_lock(&rq1->lock);
2068 }
2069 }
6e82a3be
IM
2070 update_rq_clock(rq1);
2071 update_rq_clock(rq2);
1da177e4
LT
2072}
2073
2074/*
2075 * double_rq_unlock - safely unlock two runqueues
2076 *
2077 * Note this does not restore interrupts like task_rq_unlock,
2078 * you need to do so manually after calling.
2079 */
70b97a7f 2080static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2081 __releases(rq1->lock)
2082 __releases(rq2->lock)
2083{
2084 spin_unlock(&rq1->lock);
2085 if (rq1 != rq2)
2086 spin_unlock(&rq2->lock);
2087 else
2088 __release(rq2->lock);
2089}
2090
2091/*
2092 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2093 */
70b97a7f 2094static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2095 __releases(this_rq->lock)
2096 __acquires(busiest->lock)
2097 __acquires(this_rq->lock)
2098{
054b9108
KK
2099 if (unlikely(!irqs_disabled())) {
2100 /* printk() doesn't work good under rq->lock */
2101 spin_unlock(&this_rq->lock);
2102 BUG_ON(1);
2103 }
1da177e4 2104 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2105 if (busiest < this_rq) {
1da177e4
LT
2106 spin_unlock(&this_rq->lock);
2107 spin_lock(&busiest->lock);
2108 spin_lock(&this_rq->lock);
2109 } else
2110 spin_lock(&busiest->lock);
2111 }
2112}
2113
1da177e4
LT
2114/*
2115 * If dest_cpu is allowed for this process, migrate the task to it.
2116 * This is accomplished by forcing the cpu_allowed mask to only
2117 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2118 * the cpu_allowed mask is restored.
2119 */
36c8b586 2120static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2121{
70b97a7f 2122 struct migration_req req;
1da177e4 2123 unsigned long flags;
70b97a7f 2124 struct rq *rq;
1da177e4
LT
2125
2126 rq = task_rq_lock(p, &flags);
2127 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2128 || unlikely(cpu_is_offline(dest_cpu)))
2129 goto out;
2130
2131 /* force the process onto the specified CPU */
2132 if (migrate_task(p, dest_cpu, &req)) {
2133 /* Need to wait for migration thread (might exit: take ref). */
2134 struct task_struct *mt = rq->migration_thread;
36c8b586 2135
1da177e4
LT
2136 get_task_struct(mt);
2137 task_rq_unlock(rq, &flags);
2138 wake_up_process(mt);
2139 put_task_struct(mt);
2140 wait_for_completion(&req.done);
36c8b586 2141
1da177e4
LT
2142 return;
2143 }
2144out:
2145 task_rq_unlock(rq, &flags);
2146}
2147
2148/*
476d139c
NP
2149 * sched_exec - execve() is a valuable balancing opportunity, because at
2150 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2151 */
2152void sched_exec(void)
2153{
1da177e4 2154 int new_cpu, this_cpu = get_cpu();
476d139c 2155 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2156 put_cpu();
476d139c
NP
2157 if (new_cpu != this_cpu)
2158 sched_migrate_task(current, new_cpu);
1da177e4
LT
2159}
2160
2161/*
2162 * pull_task - move a task from a remote runqueue to the local runqueue.
2163 * Both runqueues must be locked.
2164 */
dd41f596
IM
2165static void pull_task(struct rq *src_rq, struct task_struct *p,
2166 struct rq *this_rq, int this_cpu)
1da177e4 2167{
2e1cb74a 2168 deactivate_task(src_rq, p, 0);
1da177e4 2169 set_task_cpu(p, this_cpu);
dd41f596 2170 activate_task(this_rq, p, 0);
1da177e4
LT
2171 /*
2172 * Note that idle threads have a prio of MAX_PRIO, for this test
2173 * to be always true for them.
2174 */
dd41f596 2175 check_preempt_curr(this_rq, p);
1da177e4
LT
2176}
2177
2178/*
2179 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2180 */
858119e1 2181static
70b97a7f 2182int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2183 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2184 int *all_pinned)
1da177e4
LT
2185{
2186 /*
2187 * We do not migrate tasks that are:
2188 * 1) running (obviously), or
2189 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2190 * 3) are cache-hot on their current CPU.
2191 */
cc367732
IM
2192 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2193 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2194 return 0;
cc367732 2195 }
81026794
NP
2196 *all_pinned = 0;
2197
cc367732
IM
2198 if (task_running(rq, p)) {
2199 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2200 return 0;
cc367732 2201 }
1da177e4 2202
da84d961
IM
2203 /*
2204 * Aggressive migration if:
2205 * 1) task is cache cold, or
2206 * 2) too many balance attempts have failed.
2207 */
2208
6bc1665b
IM
2209 if (!task_hot(p, rq->clock, sd) ||
2210 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2211#ifdef CONFIG_SCHEDSTATS
cc367732 2212 if (task_hot(p, rq->clock, sd)) {
da84d961 2213 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2214 schedstat_inc(p, se.nr_forced_migrations);
2215 }
da84d961
IM
2216#endif
2217 return 1;
2218 }
2219
cc367732
IM
2220 if (task_hot(p, rq->clock, sd)) {
2221 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2222 return 0;
cc367732 2223 }
1da177e4
LT
2224 return 1;
2225}
2226
dd41f596 2227static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2228 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2229 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2230 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2231 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2232{
dd41f596
IM
2233 int pulled = 0, pinned = 0, skip_for_load;
2234 struct task_struct *p;
2235 long rem_load_move = max_load_move;
1da177e4 2236
2dd73a4f 2237 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2238 goto out;
2239
81026794
NP
2240 pinned = 1;
2241
1da177e4 2242 /*
dd41f596 2243 * Start the load-balancing iterator:
1da177e4 2244 */
dd41f596
IM
2245 p = iterator->start(iterator->arg);
2246next:
2247 if (!p)
1da177e4 2248 goto out;
50ddd969
PW
2249 /*
2250 * To help distribute high priority tasks accross CPUs we don't
2251 * skip a task if it will be the highest priority task (i.e. smallest
2252 * prio value) on its new queue regardless of its load weight
2253 */
dd41f596
IM
2254 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2255 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2256 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2257 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2258 p = iterator->next(iterator->arg);
2259 goto next;
1da177e4
LT
2260 }
2261
dd41f596 2262 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2263 pulled++;
dd41f596 2264 rem_load_move -= p->se.load.weight;
1da177e4 2265
2dd73a4f
PW
2266 /*
2267 * We only want to steal up to the prescribed number of tasks
2268 * and the prescribed amount of weighted load.
2269 */
2270 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2271 if (p->prio < *this_best_prio)
2272 *this_best_prio = p->prio;
dd41f596
IM
2273 p = iterator->next(iterator->arg);
2274 goto next;
1da177e4
LT
2275 }
2276out:
2277 /*
2278 * Right now, this is the only place pull_task() is called,
2279 * so we can safely collect pull_task() stats here rather than
2280 * inside pull_task().
2281 */
2282 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2283
2284 if (all_pinned)
2285 *all_pinned = pinned;
dd41f596 2286 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2287 return pulled;
2288}
2289
dd41f596 2290/*
43010659
PW
2291 * move_tasks tries to move up to max_load_move weighted load from busiest to
2292 * this_rq, as part of a balancing operation within domain "sd".
2293 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2294 *
2295 * Called with both runqueues locked.
2296 */
2297static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2298 unsigned long max_load_move,
dd41f596
IM
2299 struct sched_domain *sd, enum cpu_idle_type idle,
2300 int *all_pinned)
2301{
5522d5d5 2302 const struct sched_class *class = sched_class_highest;
43010659 2303 unsigned long total_load_moved = 0;
a4ac01c3 2304 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2305
2306 do {
43010659
PW
2307 total_load_moved +=
2308 class->load_balance(this_rq, this_cpu, busiest,
2309 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2310 sd, idle, all_pinned, &this_best_prio);
dd41f596 2311 class = class->next;
43010659 2312 } while (class && max_load_move > total_load_moved);
dd41f596 2313
43010659
PW
2314 return total_load_moved > 0;
2315}
2316
2317/*
2318 * move_one_task tries to move exactly one task from busiest to this_rq, as
2319 * part of active balancing operations within "domain".
2320 * Returns 1 if successful and 0 otherwise.
2321 *
2322 * Called with both runqueues locked.
2323 */
2324static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2325 struct sched_domain *sd, enum cpu_idle_type idle)
2326{
5522d5d5 2327 const struct sched_class *class;
a4ac01c3 2328 int this_best_prio = MAX_PRIO;
43010659
PW
2329
2330 for (class = sched_class_highest; class; class = class->next)
2331 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2332 1, ULONG_MAX, sd, idle, NULL,
2333 &this_best_prio))
43010659
PW
2334 return 1;
2335
2336 return 0;
dd41f596
IM
2337}
2338
1da177e4
LT
2339/*
2340 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2341 * domain. It calculates and returns the amount of weighted load which
2342 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2343 */
2344static struct sched_group *
2345find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2346 unsigned long *imbalance, enum cpu_idle_type idle,
2347 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2348{
2349 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2350 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2351 unsigned long max_pull;
2dd73a4f
PW
2352 unsigned long busiest_load_per_task, busiest_nr_running;
2353 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2354 int load_idx, group_imb = 0;
5c45bf27
SS
2355#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2356 int power_savings_balance = 1;
2357 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2358 unsigned long min_nr_running = ULONG_MAX;
2359 struct sched_group *group_min = NULL, *group_leader = NULL;
2360#endif
1da177e4
LT
2361
2362 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2363 busiest_load_per_task = busiest_nr_running = 0;
2364 this_load_per_task = this_nr_running = 0;
d15bcfdb 2365 if (idle == CPU_NOT_IDLE)
7897986b 2366 load_idx = sd->busy_idx;
d15bcfdb 2367 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2368 load_idx = sd->newidle_idx;
2369 else
2370 load_idx = sd->idle_idx;
1da177e4
LT
2371
2372 do {
908a7c1b 2373 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2374 int local_group;
2375 int i;
908a7c1b 2376 int __group_imb = 0;
783609c6 2377 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2378 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2379
2380 local_group = cpu_isset(this_cpu, group->cpumask);
2381
783609c6
SS
2382 if (local_group)
2383 balance_cpu = first_cpu(group->cpumask);
2384
1da177e4 2385 /* Tally up the load of all CPUs in the group */
2dd73a4f 2386 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2387 max_cpu_load = 0;
2388 min_cpu_load = ~0UL;
1da177e4
LT
2389
2390 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2391 struct rq *rq;
2392
2393 if (!cpu_isset(i, *cpus))
2394 continue;
2395
2396 rq = cpu_rq(i);
2dd73a4f 2397
9439aab8 2398 if (*sd_idle && rq->nr_running)
5969fe06
NP
2399 *sd_idle = 0;
2400
1da177e4 2401 /* Bias balancing toward cpus of our domain */
783609c6
SS
2402 if (local_group) {
2403 if (idle_cpu(i) && !first_idle_cpu) {
2404 first_idle_cpu = 1;
2405 balance_cpu = i;
2406 }
2407
a2000572 2408 load = target_load(i, load_idx);
908a7c1b 2409 } else {
a2000572 2410 load = source_load(i, load_idx);
908a7c1b
KC
2411 if (load > max_cpu_load)
2412 max_cpu_load = load;
2413 if (min_cpu_load > load)
2414 min_cpu_load = load;
2415 }
1da177e4
LT
2416
2417 avg_load += load;
2dd73a4f 2418 sum_nr_running += rq->nr_running;
dd41f596 2419 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2420 }
2421
783609c6
SS
2422 /*
2423 * First idle cpu or the first cpu(busiest) in this sched group
2424 * is eligible for doing load balancing at this and above
9439aab8
SS
2425 * domains. In the newly idle case, we will allow all the cpu's
2426 * to do the newly idle load balance.
783609c6 2427 */
9439aab8
SS
2428 if (idle != CPU_NEWLY_IDLE && local_group &&
2429 balance_cpu != this_cpu && balance) {
783609c6
SS
2430 *balance = 0;
2431 goto ret;
2432 }
2433
1da177e4 2434 total_load += avg_load;
5517d86b 2435 total_pwr += group->__cpu_power;
1da177e4
LT
2436
2437 /* Adjust by relative CPU power of the group */
5517d86b
ED
2438 avg_load = sg_div_cpu_power(group,
2439 avg_load * SCHED_LOAD_SCALE);
1da177e4 2440
908a7c1b
KC
2441 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2442 __group_imb = 1;
2443
5517d86b 2444 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2445
1da177e4
LT
2446 if (local_group) {
2447 this_load = avg_load;
2448 this = group;
2dd73a4f
PW
2449 this_nr_running = sum_nr_running;
2450 this_load_per_task = sum_weighted_load;
2451 } else if (avg_load > max_load &&
908a7c1b 2452 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2453 max_load = avg_load;
2454 busiest = group;
2dd73a4f
PW
2455 busiest_nr_running = sum_nr_running;
2456 busiest_load_per_task = sum_weighted_load;
908a7c1b 2457 group_imb = __group_imb;
1da177e4 2458 }
5c45bf27
SS
2459
2460#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2461 /*
2462 * Busy processors will not participate in power savings
2463 * balance.
2464 */
dd41f596
IM
2465 if (idle == CPU_NOT_IDLE ||
2466 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2467 goto group_next;
5c45bf27
SS
2468
2469 /*
2470 * If the local group is idle or completely loaded
2471 * no need to do power savings balance at this domain
2472 */
2473 if (local_group && (this_nr_running >= group_capacity ||
2474 !this_nr_running))
2475 power_savings_balance = 0;
2476
dd41f596 2477 /*
5c45bf27
SS
2478 * If a group is already running at full capacity or idle,
2479 * don't include that group in power savings calculations
dd41f596
IM
2480 */
2481 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2482 || !sum_nr_running)
dd41f596 2483 goto group_next;
5c45bf27 2484
dd41f596 2485 /*
5c45bf27 2486 * Calculate the group which has the least non-idle load.
dd41f596
IM
2487 * This is the group from where we need to pick up the load
2488 * for saving power
2489 */
2490 if ((sum_nr_running < min_nr_running) ||
2491 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2492 first_cpu(group->cpumask) <
2493 first_cpu(group_min->cpumask))) {
dd41f596
IM
2494 group_min = group;
2495 min_nr_running = sum_nr_running;
5c45bf27
SS
2496 min_load_per_task = sum_weighted_load /
2497 sum_nr_running;
dd41f596 2498 }
5c45bf27 2499
dd41f596 2500 /*
5c45bf27 2501 * Calculate the group which is almost near its
dd41f596
IM
2502 * capacity but still has some space to pick up some load
2503 * from other group and save more power
2504 */
2505 if (sum_nr_running <= group_capacity - 1) {
2506 if (sum_nr_running > leader_nr_running ||
2507 (sum_nr_running == leader_nr_running &&
2508 first_cpu(group->cpumask) >
2509 first_cpu(group_leader->cpumask))) {
2510 group_leader = group;
2511 leader_nr_running = sum_nr_running;
2512 }
48f24c4d 2513 }
5c45bf27
SS
2514group_next:
2515#endif
1da177e4
LT
2516 group = group->next;
2517 } while (group != sd->groups);
2518
2dd73a4f 2519 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2520 goto out_balanced;
2521
2522 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2523
2524 if (this_load >= avg_load ||
2525 100*max_load <= sd->imbalance_pct*this_load)
2526 goto out_balanced;
2527
2dd73a4f 2528 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2529 if (group_imb)
2530 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2531
1da177e4
LT
2532 /*
2533 * We're trying to get all the cpus to the average_load, so we don't
2534 * want to push ourselves above the average load, nor do we wish to
2535 * reduce the max loaded cpu below the average load, as either of these
2536 * actions would just result in more rebalancing later, and ping-pong
2537 * tasks around. Thus we look for the minimum possible imbalance.
2538 * Negative imbalances (*we* are more loaded than anyone else) will
2539 * be counted as no imbalance for these purposes -- we can't fix that
2540 * by pulling tasks to us. Be careful of negative numbers as they'll
2541 * appear as very large values with unsigned longs.
2542 */
2dd73a4f
PW
2543 if (max_load <= busiest_load_per_task)
2544 goto out_balanced;
2545
2546 /*
2547 * In the presence of smp nice balancing, certain scenarios can have
2548 * max load less than avg load(as we skip the groups at or below
2549 * its cpu_power, while calculating max_load..)
2550 */
2551 if (max_load < avg_load) {
2552 *imbalance = 0;
2553 goto small_imbalance;
2554 }
0c117f1b
SS
2555
2556 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2557 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2558
1da177e4 2559 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2560 *imbalance = min(max_pull * busiest->__cpu_power,
2561 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2562 / SCHED_LOAD_SCALE;
2563
2dd73a4f
PW
2564 /*
2565 * if *imbalance is less than the average load per runnable task
2566 * there is no gaurantee that any tasks will be moved so we'll have
2567 * a think about bumping its value to force at least one task to be
2568 * moved
2569 */
7fd0d2dd 2570 if (*imbalance < busiest_load_per_task) {
48f24c4d 2571 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2572 unsigned int imbn;
2573
2574small_imbalance:
2575 pwr_move = pwr_now = 0;
2576 imbn = 2;
2577 if (this_nr_running) {
2578 this_load_per_task /= this_nr_running;
2579 if (busiest_load_per_task > this_load_per_task)
2580 imbn = 1;
2581 } else
2582 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2583
dd41f596
IM
2584 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2585 busiest_load_per_task * imbn) {
2dd73a4f 2586 *imbalance = busiest_load_per_task;
1da177e4
LT
2587 return busiest;
2588 }
2589
2590 /*
2591 * OK, we don't have enough imbalance to justify moving tasks,
2592 * however we may be able to increase total CPU power used by
2593 * moving them.
2594 */
2595
5517d86b
ED
2596 pwr_now += busiest->__cpu_power *
2597 min(busiest_load_per_task, max_load);
2598 pwr_now += this->__cpu_power *
2599 min(this_load_per_task, this_load);
1da177e4
LT
2600 pwr_now /= SCHED_LOAD_SCALE;
2601
2602 /* Amount of load we'd subtract */
5517d86b
ED
2603 tmp = sg_div_cpu_power(busiest,
2604 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2605 if (max_load > tmp)
5517d86b 2606 pwr_move += busiest->__cpu_power *
2dd73a4f 2607 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2608
2609 /* Amount of load we'd add */
5517d86b 2610 if (max_load * busiest->__cpu_power <
33859f7f 2611 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2612 tmp = sg_div_cpu_power(this,
2613 max_load * busiest->__cpu_power);
1da177e4 2614 else
5517d86b
ED
2615 tmp = sg_div_cpu_power(this,
2616 busiest_load_per_task * SCHED_LOAD_SCALE);
2617 pwr_move += this->__cpu_power *
2618 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2619 pwr_move /= SCHED_LOAD_SCALE;
2620
2621 /* Move if we gain throughput */
7fd0d2dd
SS
2622 if (pwr_move > pwr_now)
2623 *imbalance = busiest_load_per_task;
1da177e4
LT
2624 }
2625
1da177e4
LT
2626 return busiest;
2627
2628out_balanced:
5c45bf27 2629#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2630 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2631 goto ret;
1da177e4 2632
5c45bf27
SS
2633 if (this == group_leader && group_leader != group_min) {
2634 *imbalance = min_load_per_task;
2635 return group_min;
2636 }
5c45bf27 2637#endif
783609c6 2638ret:
1da177e4
LT
2639 *imbalance = 0;
2640 return NULL;
2641}
2642
2643/*
2644 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2645 */
70b97a7f 2646static struct rq *
d15bcfdb 2647find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2648 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2649{
70b97a7f 2650 struct rq *busiest = NULL, *rq;
2dd73a4f 2651 unsigned long max_load = 0;
1da177e4
LT
2652 int i;
2653
2654 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2655 unsigned long wl;
0a2966b4
CL
2656
2657 if (!cpu_isset(i, *cpus))
2658 continue;
2659
48f24c4d 2660 rq = cpu_rq(i);
dd41f596 2661 wl = weighted_cpuload(i);
2dd73a4f 2662
dd41f596 2663 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2664 continue;
1da177e4 2665
dd41f596
IM
2666 if (wl > max_load) {
2667 max_load = wl;
48f24c4d 2668 busiest = rq;
1da177e4
LT
2669 }
2670 }
2671
2672 return busiest;
2673}
2674
77391d71
NP
2675/*
2676 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2677 * so long as it is large enough.
2678 */
2679#define MAX_PINNED_INTERVAL 512
2680
1da177e4
LT
2681/*
2682 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2683 * tasks if there is an imbalance.
1da177e4 2684 */
70b97a7f 2685static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2686 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2687 int *balance)
1da177e4 2688{
43010659 2689 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2690 struct sched_group *group;
1da177e4 2691 unsigned long imbalance;
70b97a7f 2692 struct rq *busiest;
0a2966b4 2693 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2694 unsigned long flags;
5969fe06 2695
89c4710e
SS
2696 /*
2697 * When power savings policy is enabled for the parent domain, idle
2698 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2699 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2700 * portraying it as CPU_NOT_IDLE.
89c4710e 2701 */
d15bcfdb 2702 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2703 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2704 sd_idle = 1;
1da177e4 2705
2d72376b 2706 schedstat_inc(sd, lb_count[idle]);
1da177e4 2707
0a2966b4
CL
2708redo:
2709 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2710 &cpus, balance);
2711
06066714 2712 if (*balance == 0)
783609c6 2713 goto out_balanced;
783609c6 2714
1da177e4
LT
2715 if (!group) {
2716 schedstat_inc(sd, lb_nobusyg[idle]);
2717 goto out_balanced;
2718 }
2719
0a2966b4 2720 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2721 if (!busiest) {
2722 schedstat_inc(sd, lb_nobusyq[idle]);
2723 goto out_balanced;
2724 }
2725
db935dbd 2726 BUG_ON(busiest == this_rq);
1da177e4
LT
2727
2728 schedstat_add(sd, lb_imbalance[idle], imbalance);
2729
43010659 2730 ld_moved = 0;
1da177e4
LT
2731 if (busiest->nr_running > 1) {
2732 /*
2733 * Attempt to move tasks. If find_busiest_group has found
2734 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2735 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2736 * correctly treated as an imbalance.
2737 */
fe2eea3f 2738 local_irq_save(flags);
e17224bf 2739 double_rq_lock(this_rq, busiest);
43010659 2740 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2741 imbalance, sd, idle, &all_pinned);
e17224bf 2742 double_rq_unlock(this_rq, busiest);
fe2eea3f 2743 local_irq_restore(flags);
81026794 2744
46cb4b7c
SS
2745 /*
2746 * some other cpu did the load balance for us.
2747 */
43010659 2748 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2749 resched_cpu(this_cpu);
2750
81026794 2751 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2752 if (unlikely(all_pinned)) {
2753 cpu_clear(cpu_of(busiest), cpus);
2754 if (!cpus_empty(cpus))
2755 goto redo;
81026794 2756 goto out_balanced;
0a2966b4 2757 }
1da177e4 2758 }
81026794 2759
43010659 2760 if (!ld_moved) {
1da177e4
LT
2761 schedstat_inc(sd, lb_failed[idle]);
2762 sd->nr_balance_failed++;
2763
2764 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2765
fe2eea3f 2766 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2767
2768 /* don't kick the migration_thread, if the curr
2769 * task on busiest cpu can't be moved to this_cpu
2770 */
2771 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2772 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2773 all_pinned = 1;
2774 goto out_one_pinned;
2775 }
2776
1da177e4
LT
2777 if (!busiest->active_balance) {
2778 busiest->active_balance = 1;
2779 busiest->push_cpu = this_cpu;
81026794 2780 active_balance = 1;
1da177e4 2781 }
fe2eea3f 2782 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2783 if (active_balance)
1da177e4
LT
2784 wake_up_process(busiest->migration_thread);
2785
2786 /*
2787 * We've kicked active balancing, reset the failure
2788 * counter.
2789 */
39507451 2790 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2791 }
81026794 2792 } else
1da177e4
LT
2793 sd->nr_balance_failed = 0;
2794
81026794 2795 if (likely(!active_balance)) {
1da177e4
LT
2796 /* We were unbalanced, so reset the balancing interval */
2797 sd->balance_interval = sd->min_interval;
81026794
NP
2798 } else {
2799 /*
2800 * If we've begun active balancing, start to back off. This
2801 * case may not be covered by the all_pinned logic if there
2802 * is only 1 task on the busy runqueue (because we don't call
2803 * move_tasks).
2804 */
2805 if (sd->balance_interval < sd->max_interval)
2806 sd->balance_interval *= 2;
1da177e4
LT
2807 }
2808
43010659 2809 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2810 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2811 return -1;
43010659 2812 return ld_moved;
1da177e4
LT
2813
2814out_balanced:
1da177e4
LT
2815 schedstat_inc(sd, lb_balanced[idle]);
2816
16cfb1c0 2817 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2818
2819out_one_pinned:
1da177e4 2820 /* tune up the balancing interval */
77391d71
NP
2821 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2822 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2823 sd->balance_interval *= 2;
2824
48f24c4d 2825 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2826 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2827 return -1;
1da177e4
LT
2828 return 0;
2829}
2830
2831/*
2832 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2833 * tasks if there is an imbalance.
2834 *
d15bcfdb 2835 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2836 * this_rq is locked.
2837 */
48f24c4d 2838static int
70b97a7f 2839load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2840{
2841 struct sched_group *group;
70b97a7f 2842 struct rq *busiest = NULL;
1da177e4 2843 unsigned long imbalance;
43010659 2844 int ld_moved = 0;
5969fe06 2845 int sd_idle = 0;
969bb4e4 2846 int all_pinned = 0;
0a2966b4 2847 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2848
89c4710e
SS
2849 /*
2850 * When power savings policy is enabled for the parent domain, idle
2851 * sibling can pick up load irrespective of busy siblings. In this case,
2852 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2853 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2854 */
2855 if (sd->flags & SD_SHARE_CPUPOWER &&
2856 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2857 sd_idle = 1;
1da177e4 2858
2d72376b 2859 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2860redo:
d15bcfdb 2861 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2862 &sd_idle, &cpus, NULL);
1da177e4 2863 if (!group) {
d15bcfdb 2864 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2865 goto out_balanced;
1da177e4
LT
2866 }
2867
d15bcfdb 2868 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2869 &cpus);
db935dbd 2870 if (!busiest) {
d15bcfdb 2871 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2872 goto out_balanced;
1da177e4
LT
2873 }
2874
db935dbd
NP
2875 BUG_ON(busiest == this_rq);
2876
d15bcfdb 2877 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2878
43010659 2879 ld_moved = 0;
d6d5cfaf
NP
2880 if (busiest->nr_running > 1) {
2881 /* Attempt to move tasks */
2882 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2883 /* this_rq->clock is already updated */
2884 update_rq_clock(busiest);
43010659 2885 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2886 imbalance, sd, CPU_NEWLY_IDLE,
2887 &all_pinned);
d6d5cfaf 2888 spin_unlock(&busiest->lock);
0a2966b4 2889
969bb4e4 2890 if (unlikely(all_pinned)) {
0a2966b4
CL
2891 cpu_clear(cpu_of(busiest), cpus);
2892 if (!cpus_empty(cpus))
2893 goto redo;
2894 }
d6d5cfaf
NP
2895 }
2896
43010659 2897 if (!ld_moved) {
d15bcfdb 2898 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2899 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2900 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2901 return -1;
2902 } else
16cfb1c0 2903 sd->nr_balance_failed = 0;
1da177e4 2904
43010659 2905 return ld_moved;
16cfb1c0
NP
2906
2907out_balanced:
d15bcfdb 2908 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2909 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2910 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2911 return -1;
16cfb1c0 2912 sd->nr_balance_failed = 0;
48f24c4d 2913
16cfb1c0 2914 return 0;
1da177e4
LT
2915}
2916
2917/*
2918 * idle_balance is called by schedule() if this_cpu is about to become
2919 * idle. Attempts to pull tasks from other CPUs.
2920 */
70b97a7f 2921static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2922{
2923 struct sched_domain *sd;
dd41f596
IM
2924 int pulled_task = -1;
2925 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2926
2927 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2928 unsigned long interval;
2929
2930 if (!(sd->flags & SD_LOAD_BALANCE))
2931 continue;
2932
2933 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2934 /* If we've pulled tasks over stop searching: */
1bd77f2d 2935 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2936 this_rq, sd);
2937
2938 interval = msecs_to_jiffies(sd->balance_interval);
2939 if (time_after(next_balance, sd->last_balance + interval))
2940 next_balance = sd->last_balance + interval;
2941 if (pulled_task)
2942 break;
1da177e4 2943 }
dd41f596 2944 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2945 /*
2946 * We are going idle. next_balance may be set based on
2947 * a busy processor. So reset next_balance.
2948 */
2949 this_rq->next_balance = next_balance;
dd41f596 2950 }
1da177e4
LT
2951}
2952
2953/*
2954 * active_load_balance is run by migration threads. It pushes running tasks
2955 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2956 * running on each physical CPU where possible, and avoids physical /
2957 * logical imbalances.
2958 *
2959 * Called with busiest_rq locked.
2960 */
70b97a7f 2961static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2962{
39507451 2963 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2964 struct sched_domain *sd;
2965 struct rq *target_rq;
39507451 2966
48f24c4d 2967 /* Is there any task to move? */
39507451 2968 if (busiest_rq->nr_running <= 1)
39507451
NP
2969 return;
2970
2971 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2972
2973 /*
39507451
NP
2974 * This condition is "impossible", if it occurs
2975 * we need to fix it. Originally reported by
2976 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2977 */
39507451 2978 BUG_ON(busiest_rq == target_rq);
1da177e4 2979
39507451
NP
2980 /* move a task from busiest_rq to target_rq */
2981 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2982 update_rq_clock(busiest_rq);
2983 update_rq_clock(target_rq);
39507451
NP
2984
2985 /* Search for an sd spanning us and the target CPU. */
c96d145e 2986 for_each_domain(target_cpu, sd) {
39507451 2987 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2988 cpu_isset(busiest_cpu, sd->span))
39507451 2989 break;
c96d145e 2990 }
39507451 2991
48f24c4d 2992 if (likely(sd)) {
2d72376b 2993 schedstat_inc(sd, alb_count);
39507451 2994
43010659
PW
2995 if (move_one_task(target_rq, target_cpu, busiest_rq,
2996 sd, CPU_IDLE))
48f24c4d
IM
2997 schedstat_inc(sd, alb_pushed);
2998 else
2999 schedstat_inc(sd, alb_failed);
3000 }
39507451 3001 spin_unlock(&target_rq->lock);
1da177e4
LT
3002}
3003
46cb4b7c
SS
3004#ifdef CONFIG_NO_HZ
3005static struct {
3006 atomic_t load_balancer;
3007 cpumask_t cpu_mask;
3008} nohz ____cacheline_aligned = {
3009 .load_balancer = ATOMIC_INIT(-1),
3010 .cpu_mask = CPU_MASK_NONE,
3011};
3012
7835b98b 3013/*
46cb4b7c
SS
3014 * This routine will try to nominate the ilb (idle load balancing)
3015 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3016 * load balancing on behalf of all those cpus. If all the cpus in the system
3017 * go into this tickless mode, then there will be no ilb owner (as there is
3018 * no need for one) and all the cpus will sleep till the next wakeup event
3019 * arrives...
3020 *
3021 * For the ilb owner, tick is not stopped. And this tick will be used
3022 * for idle load balancing. ilb owner will still be part of
3023 * nohz.cpu_mask..
7835b98b 3024 *
46cb4b7c
SS
3025 * While stopping the tick, this cpu will become the ilb owner if there
3026 * is no other owner. And will be the owner till that cpu becomes busy
3027 * or if all cpus in the system stop their ticks at which point
3028 * there is no need for ilb owner.
3029 *
3030 * When the ilb owner becomes busy, it nominates another owner, during the
3031 * next busy scheduler_tick()
3032 */
3033int select_nohz_load_balancer(int stop_tick)
3034{
3035 int cpu = smp_processor_id();
3036
3037 if (stop_tick) {
3038 cpu_set(cpu, nohz.cpu_mask);
3039 cpu_rq(cpu)->in_nohz_recently = 1;
3040
3041 /*
3042 * If we are going offline and still the leader, give up!
3043 */
3044 if (cpu_is_offline(cpu) &&
3045 atomic_read(&nohz.load_balancer) == cpu) {
3046 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3047 BUG();
3048 return 0;
3049 }
3050
3051 /* time for ilb owner also to sleep */
3052 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3053 if (atomic_read(&nohz.load_balancer) == cpu)
3054 atomic_set(&nohz.load_balancer, -1);
3055 return 0;
3056 }
3057
3058 if (atomic_read(&nohz.load_balancer) == -1) {
3059 /* make me the ilb owner */
3060 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3061 return 1;
3062 } else if (atomic_read(&nohz.load_balancer) == cpu)
3063 return 1;
3064 } else {
3065 if (!cpu_isset(cpu, nohz.cpu_mask))
3066 return 0;
3067
3068 cpu_clear(cpu, nohz.cpu_mask);
3069
3070 if (atomic_read(&nohz.load_balancer) == cpu)
3071 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3072 BUG();
3073 }
3074 return 0;
3075}
3076#endif
3077
3078static DEFINE_SPINLOCK(balancing);
3079
3080/*
7835b98b
CL
3081 * It checks each scheduling domain to see if it is due to be balanced,
3082 * and initiates a balancing operation if so.
3083 *
3084 * Balancing parameters are set up in arch_init_sched_domains.
3085 */
a9957449 3086static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3087{
46cb4b7c
SS
3088 int balance = 1;
3089 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3090 unsigned long interval;
3091 struct sched_domain *sd;
46cb4b7c 3092 /* Earliest time when we have to do rebalance again */
c9819f45 3093 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3094 int update_next_balance = 0;
1da177e4 3095
46cb4b7c 3096 for_each_domain(cpu, sd) {
1da177e4
LT
3097 if (!(sd->flags & SD_LOAD_BALANCE))
3098 continue;
3099
3100 interval = sd->balance_interval;
d15bcfdb 3101 if (idle != CPU_IDLE)
1da177e4
LT
3102 interval *= sd->busy_factor;
3103
3104 /* scale ms to jiffies */
3105 interval = msecs_to_jiffies(interval);
3106 if (unlikely(!interval))
3107 interval = 1;
dd41f596
IM
3108 if (interval > HZ*NR_CPUS/10)
3109 interval = HZ*NR_CPUS/10;
3110
1da177e4 3111
08c183f3
CL
3112 if (sd->flags & SD_SERIALIZE) {
3113 if (!spin_trylock(&balancing))
3114 goto out;
3115 }
3116
c9819f45 3117 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3118 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3119 /*
3120 * We've pulled tasks over so either we're no
5969fe06
NP
3121 * longer idle, or one of our SMT siblings is
3122 * not idle.
3123 */
d15bcfdb 3124 idle = CPU_NOT_IDLE;
1da177e4 3125 }
1bd77f2d 3126 sd->last_balance = jiffies;
1da177e4 3127 }
08c183f3
CL
3128 if (sd->flags & SD_SERIALIZE)
3129 spin_unlock(&balancing);
3130out:
f549da84 3131 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3132 next_balance = sd->last_balance + interval;
f549da84
SS
3133 update_next_balance = 1;
3134 }
783609c6
SS
3135
3136 /*
3137 * Stop the load balance at this level. There is another
3138 * CPU in our sched group which is doing load balancing more
3139 * actively.
3140 */
3141 if (!balance)
3142 break;
1da177e4 3143 }
f549da84
SS
3144
3145 /*
3146 * next_balance will be updated only when there is a need.
3147 * When the cpu is attached to null domain for ex, it will not be
3148 * updated.
3149 */
3150 if (likely(update_next_balance))
3151 rq->next_balance = next_balance;
46cb4b7c
SS
3152}
3153
3154/*
3155 * run_rebalance_domains is triggered when needed from the scheduler tick.
3156 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3157 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3158 */
3159static void run_rebalance_domains(struct softirq_action *h)
3160{
dd41f596
IM
3161 int this_cpu = smp_processor_id();
3162 struct rq *this_rq = cpu_rq(this_cpu);
3163 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3164 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3165
dd41f596 3166 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3167
3168#ifdef CONFIG_NO_HZ
3169 /*
3170 * If this cpu is the owner for idle load balancing, then do the
3171 * balancing on behalf of the other idle cpus whose ticks are
3172 * stopped.
3173 */
dd41f596
IM
3174 if (this_rq->idle_at_tick &&
3175 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3176 cpumask_t cpus = nohz.cpu_mask;
3177 struct rq *rq;
3178 int balance_cpu;
3179
dd41f596 3180 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3181 for_each_cpu_mask(balance_cpu, cpus) {
3182 /*
3183 * If this cpu gets work to do, stop the load balancing
3184 * work being done for other cpus. Next load
3185 * balancing owner will pick it up.
3186 */
3187 if (need_resched())
3188 break;
3189
de0cf899 3190 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3191
3192 rq = cpu_rq(balance_cpu);
dd41f596
IM
3193 if (time_after(this_rq->next_balance, rq->next_balance))
3194 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3195 }
3196 }
3197#endif
3198}
3199
3200/*
3201 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3202 *
3203 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3204 * idle load balancing owner or decide to stop the periodic load balancing,
3205 * if the whole system is idle.
3206 */
dd41f596 3207static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3208{
46cb4b7c
SS
3209#ifdef CONFIG_NO_HZ
3210 /*
3211 * If we were in the nohz mode recently and busy at the current
3212 * scheduler tick, then check if we need to nominate new idle
3213 * load balancer.
3214 */
3215 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3216 rq->in_nohz_recently = 0;
3217
3218 if (atomic_read(&nohz.load_balancer) == cpu) {
3219 cpu_clear(cpu, nohz.cpu_mask);
3220 atomic_set(&nohz.load_balancer, -1);
3221 }
3222
3223 if (atomic_read(&nohz.load_balancer) == -1) {
3224 /*
3225 * simple selection for now: Nominate the
3226 * first cpu in the nohz list to be the next
3227 * ilb owner.
3228 *
3229 * TBD: Traverse the sched domains and nominate
3230 * the nearest cpu in the nohz.cpu_mask.
3231 */
3232 int ilb = first_cpu(nohz.cpu_mask);
3233
3234 if (ilb != NR_CPUS)
3235 resched_cpu(ilb);
3236 }
3237 }
3238
3239 /*
3240 * If this cpu is idle and doing idle load balancing for all the
3241 * cpus with ticks stopped, is it time for that to stop?
3242 */
3243 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3244 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3245 resched_cpu(cpu);
3246 return;
3247 }
3248
3249 /*
3250 * If this cpu is idle and the idle load balancing is done by
3251 * someone else, then no need raise the SCHED_SOFTIRQ
3252 */
3253 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3254 cpu_isset(cpu, nohz.cpu_mask))
3255 return;
3256#endif
3257 if (time_after_eq(jiffies, rq->next_balance))
3258 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3259}
dd41f596
IM
3260
3261#else /* CONFIG_SMP */
3262
1da177e4
LT
3263/*
3264 * on UP we do not need to balance between CPUs:
3265 */
70b97a7f 3266static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3267{
3268}
dd41f596
IM
3269
3270/* Avoid "used but not defined" warning on UP */
3271static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3272 unsigned long max_nr_move, unsigned long max_load_move,
3273 struct sched_domain *sd, enum cpu_idle_type idle,
3274 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3275 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3276{
3277 *load_moved = 0;
3278
3279 return 0;
3280}
3281
1da177e4
LT
3282#endif
3283
1da177e4
LT
3284DEFINE_PER_CPU(struct kernel_stat, kstat);
3285
3286EXPORT_PER_CPU_SYMBOL(kstat);
3287
3288/*
41b86e9c
IM
3289 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3290 * that have not yet been banked in case the task is currently running.
1da177e4 3291 */
41b86e9c 3292unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3293{
1da177e4 3294 unsigned long flags;
41b86e9c
IM
3295 u64 ns, delta_exec;
3296 struct rq *rq;
48f24c4d 3297
41b86e9c
IM
3298 rq = task_rq_lock(p, &flags);
3299 ns = p->se.sum_exec_runtime;
3300 if (rq->curr == p) {
a8e504d2
IM
3301 update_rq_clock(rq);
3302 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3303 if ((s64)delta_exec > 0)
3304 ns += delta_exec;
3305 }
3306 task_rq_unlock(rq, &flags);
48f24c4d 3307
1da177e4
LT
3308 return ns;
3309}
3310
1da177e4
LT
3311/*
3312 * Account user cpu time to a process.
3313 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3314 * @cputime: the cpu time spent in user space since the last update
3315 */
3316void account_user_time(struct task_struct *p, cputime_t cputime)
3317{
3318 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3319 cputime64_t tmp;
62d0df64 3320 struct rq *rq = this_rq();
1da177e4
LT
3321
3322 p->utime = cputime_add(p->utime, cputime);
3323
62d0df64
PM
3324 if (p != rq->idle)
3325 cpuacct_charge(p, cputime);
3326
1da177e4
LT
3327 /* Add user time to cpustat. */
3328 tmp = cputime_to_cputime64(cputime);
3329 if (TASK_NICE(p) > 0)
3330 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3331 else
3332 cpustat->user = cputime64_add(cpustat->user, tmp);
3333}
3334
94886b84
LV
3335/*
3336 * Account guest cpu time to a process.
3337 * @p: the process that the cpu time gets accounted to
3338 * @cputime: the cpu time spent in virtual machine since the last update
3339 */
3340void account_guest_time(struct task_struct *p, cputime_t cputime)
3341{
3342 cputime64_t tmp;
3343 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3344
3345 tmp = cputime_to_cputime64(cputime);
3346
3347 p->utime = cputime_add(p->utime, cputime);
3348 p->gtime = cputime_add(p->gtime, cputime);
3349
3350 cpustat->user = cputime64_add(cpustat->user, tmp);
3351 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3352}
3353
c66f08be
MN
3354/*
3355 * Account scaled user cpu time to a process.
3356 * @p: the process that the cpu time gets accounted to
3357 * @cputime: the cpu time spent in user space since the last update
3358 */
3359void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3360{
3361 p->utimescaled = cputime_add(p->utimescaled, cputime);
3362}
3363
1da177e4
LT
3364/*
3365 * Account system cpu time to a process.
3366 * @p: the process that the cpu time gets accounted to
3367 * @hardirq_offset: the offset to subtract from hardirq_count()
3368 * @cputime: the cpu time spent in kernel space since the last update
3369 */
3370void account_system_time(struct task_struct *p, int hardirq_offset,
3371 cputime_t cputime)
3372{
3373 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3374 struct rq *rq = this_rq();
1da177e4
LT
3375 cputime64_t tmp;
3376
94886b84
LV
3377 if (p->flags & PF_VCPU) {
3378 account_guest_time(p, cputime);
94886b84
LV
3379 return;
3380 }
3381
1da177e4
LT
3382 p->stime = cputime_add(p->stime, cputime);
3383
3384 /* Add system time to cpustat. */
3385 tmp = cputime_to_cputime64(cputime);
3386 if (hardirq_count() - hardirq_offset)
3387 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3388 else if (softirq_count())
3389 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
62d0df64 3390 else if (p != rq->idle) {
1da177e4 3391 cpustat->system = cputime64_add(cpustat->system, tmp);
62d0df64
PM
3392 cpuacct_charge(p, cputime);
3393 } else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3394 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3395 else
3396 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3397 /* Account for system time used */
3398 acct_update_integrals(p);
1da177e4
LT
3399}
3400
c66f08be
MN
3401/*
3402 * Account scaled system cpu time to a process.
3403 * @p: the process that the cpu time gets accounted to
3404 * @hardirq_offset: the offset to subtract from hardirq_count()
3405 * @cputime: the cpu time spent in kernel space since the last update
3406 */
3407void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3408{
3409 p->stimescaled = cputime_add(p->stimescaled, cputime);
3410}
3411
1da177e4
LT
3412/*
3413 * Account for involuntary wait time.
3414 * @p: the process from which the cpu time has been stolen
3415 * @steal: the cpu time spent in involuntary wait
3416 */
3417void account_steal_time(struct task_struct *p, cputime_t steal)
3418{
3419 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3420 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3421 struct rq *rq = this_rq();
1da177e4
LT
3422
3423 if (p == rq->idle) {
3424 p->stime = cputime_add(p->stime, steal);
3425 if (atomic_read(&rq->nr_iowait) > 0)
3426 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3427 else
3428 cpustat->idle = cputime64_add(cpustat->idle, tmp);
62d0df64 3429 } else {
1da177e4 3430 cpustat->steal = cputime64_add(cpustat->steal, tmp);
62d0df64
PM
3431 cpuacct_charge(p, -tmp);
3432 }
1da177e4
LT
3433}
3434
7835b98b
CL
3435/*
3436 * This function gets called by the timer code, with HZ frequency.
3437 * We call it with interrupts disabled.
3438 *
3439 * It also gets called by the fork code, when changing the parent's
3440 * timeslices.
3441 */
3442void scheduler_tick(void)
3443{
7835b98b
CL
3444 int cpu = smp_processor_id();
3445 struct rq *rq = cpu_rq(cpu);
dd41f596 3446 struct task_struct *curr = rq->curr;
529c7726 3447 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3448
3449 spin_lock(&rq->lock);
546fe3c9 3450 __update_rq_clock(rq);
529c7726
IM
3451 /*
3452 * Let rq->clock advance by at least TICK_NSEC:
3453 */
3454 if (unlikely(rq->clock < next_tick))
3455 rq->clock = next_tick;
3456 rq->tick_timestamp = rq->clock;
f1a438d8 3457 update_cpu_load(rq);
dd41f596
IM
3458 if (curr != rq->idle) /* FIXME: needed? */
3459 curr->sched_class->task_tick(rq, curr);
dd41f596 3460 spin_unlock(&rq->lock);
7835b98b 3461
e418e1c2 3462#ifdef CONFIG_SMP
dd41f596
IM
3463 rq->idle_at_tick = idle_cpu(cpu);
3464 trigger_load_balance(rq, cpu);
e418e1c2 3465#endif
1da177e4
LT
3466}
3467
1da177e4
LT
3468#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3469
3470void fastcall add_preempt_count(int val)
3471{
3472 /*
3473 * Underflow?
3474 */
9a11b49a
IM
3475 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3476 return;
1da177e4
LT
3477 preempt_count() += val;
3478 /*
3479 * Spinlock count overflowing soon?
3480 */
33859f7f
MOS
3481 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3482 PREEMPT_MASK - 10);
1da177e4
LT
3483}
3484EXPORT_SYMBOL(add_preempt_count);
3485
3486void fastcall sub_preempt_count(int val)
3487{
3488 /*
3489 * Underflow?
3490 */
9a11b49a
IM
3491 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3492 return;
1da177e4
LT
3493 /*
3494 * Is the spinlock portion underflowing?
3495 */
9a11b49a
IM
3496 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3497 !(preempt_count() & PREEMPT_MASK)))
3498 return;
3499
1da177e4
LT
3500 preempt_count() -= val;
3501}
3502EXPORT_SYMBOL(sub_preempt_count);
3503
3504#endif
3505
3506/*
dd41f596 3507 * Print scheduling while atomic bug:
1da177e4 3508 */
dd41f596 3509static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3510{
838225b4
SS
3511 struct pt_regs *regs = get_irq_regs();
3512
3513 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3514 prev->comm, prev->pid, preempt_count());
3515
dd41f596
IM
3516 debug_show_held_locks(prev);
3517 if (irqs_disabled())
3518 print_irqtrace_events(prev);
838225b4
SS
3519
3520 if (regs)
3521 show_regs(regs);
3522 else
3523 dump_stack();
dd41f596 3524}
1da177e4 3525
dd41f596
IM
3526/*
3527 * Various schedule()-time debugging checks and statistics:
3528 */
3529static inline void schedule_debug(struct task_struct *prev)
3530{
1da177e4
LT
3531 /*
3532 * Test if we are atomic. Since do_exit() needs to call into
3533 * schedule() atomically, we ignore that path for now.
3534 * Otherwise, whine if we are scheduling when we should not be.
3535 */
dd41f596
IM
3536 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3537 __schedule_bug(prev);
3538
1da177e4
LT
3539 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3540
2d72376b 3541 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3542#ifdef CONFIG_SCHEDSTATS
3543 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3544 schedstat_inc(this_rq(), bkl_count);
3545 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3546 }
3547#endif
dd41f596
IM
3548}
3549
3550/*
3551 * Pick up the highest-prio task:
3552 */
3553static inline struct task_struct *
ff95f3df 3554pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3555{
5522d5d5 3556 const struct sched_class *class;
dd41f596 3557 struct task_struct *p;
1da177e4
LT
3558
3559 /*
dd41f596
IM
3560 * Optimization: we know that if all tasks are in
3561 * the fair class we can call that function directly:
1da177e4 3562 */
dd41f596 3563 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3564 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3565 if (likely(p))
3566 return p;
1da177e4
LT
3567 }
3568
dd41f596
IM
3569 class = sched_class_highest;
3570 for ( ; ; ) {
fb8d4724 3571 p = class->pick_next_task(rq);
dd41f596
IM
3572 if (p)
3573 return p;
3574 /*
3575 * Will never be NULL as the idle class always
3576 * returns a non-NULL p:
3577 */
3578 class = class->next;
3579 }
3580}
1da177e4 3581
dd41f596
IM
3582/*
3583 * schedule() is the main scheduler function.
3584 */
3585asmlinkage void __sched schedule(void)
3586{
3587 struct task_struct *prev, *next;
3588 long *switch_count;
3589 struct rq *rq;
dd41f596
IM
3590 int cpu;
3591
3592need_resched:
3593 preempt_disable();
3594 cpu = smp_processor_id();
3595 rq = cpu_rq(cpu);
3596 rcu_qsctr_inc(cpu);
3597 prev = rq->curr;
3598 switch_count = &prev->nivcsw;
3599
3600 release_kernel_lock(prev);
3601need_resched_nonpreemptible:
3602
3603 schedule_debug(prev);
1da177e4 3604
1e819950
IM
3605 /*
3606 * Do the rq-clock update outside the rq lock:
3607 */
3608 local_irq_disable();
c1b3da3e 3609 __update_rq_clock(rq);
1e819950
IM
3610 spin_lock(&rq->lock);
3611 clear_tsk_need_resched(prev);
1da177e4 3612
1da177e4 3613 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3614 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3615 unlikely(signal_pending(prev)))) {
1da177e4 3616 prev->state = TASK_RUNNING;
dd41f596 3617 } else {
2e1cb74a 3618 deactivate_task(rq, prev, 1);
1da177e4 3619 }
dd41f596 3620 switch_count = &prev->nvcsw;
1da177e4
LT
3621 }
3622
dd41f596 3623 if (unlikely(!rq->nr_running))
1da177e4 3624 idle_balance(cpu, rq);
1da177e4 3625
31ee529c 3626 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3627 next = pick_next_task(rq, prev);
1da177e4
LT
3628
3629 sched_info_switch(prev, next);
dd41f596 3630
1da177e4 3631 if (likely(prev != next)) {
1da177e4
LT
3632 rq->nr_switches++;
3633 rq->curr = next;
3634 ++*switch_count;
3635
dd41f596 3636 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3637 } else
3638 spin_unlock_irq(&rq->lock);
3639
dd41f596
IM
3640 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3641 cpu = smp_processor_id();
3642 rq = cpu_rq(cpu);
1da177e4 3643 goto need_resched_nonpreemptible;
dd41f596 3644 }
1da177e4
LT
3645 preempt_enable_no_resched();
3646 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3647 goto need_resched;
3648}
1da177e4
LT
3649EXPORT_SYMBOL(schedule);
3650
3651#ifdef CONFIG_PREEMPT
3652/*
2ed6e34f 3653 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3654 * off of preempt_enable. Kernel preemptions off return from interrupt
3655 * occur there and call schedule directly.
3656 */
3657asmlinkage void __sched preempt_schedule(void)
3658{
3659 struct thread_info *ti = current_thread_info();
3660#ifdef CONFIG_PREEMPT_BKL
3661 struct task_struct *task = current;
3662 int saved_lock_depth;
3663#endif
3664 /*
3665 * If there is a non-zero preempt_count or interrupts are disabled,
3666 * we do not want to preempt the current task. Just return..
3667 */
beed33a8 3668 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3669 return;
3670
3a5c359a
AK
3671 do {
3672 add_preempt_count(PREEMPT_ACTIVE);
3673
3674 /*
3675 * We keep the big kernel semaphore locked, but we
3676 * clear ->lock_depth so that schedule() doesnt
3677 * auto-release the semaphore:
3678 */
1da177e4 3679#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3680 saved_lock_depth = task->lock_depth;
3681 task->lock_depth = -1;
1da177e4 3682#endif
3a5c359a 3683 schedule();
1da177e4 3684#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3685 task->lock_depth = saved_lock_depth;
1da177e4 3686#endif
3a5c359a 3687 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3688
3a5c359a
AK
3689 /*
3690 * Check again in case we missed a preemption opportunity
3691 * between schedule and now.
3692 */
3693 barrier();
3694 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3695}
1da177e4
LT
3696EXPORT_SYMBOL(preempt_schedule);
3697
3698/*
2ed6e34f 3699 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3700 * off of irq context.
3701 * Note, that this is called and return with irqs disabled. This will
3702 * protect us against recursive calling from irq.
3703 */
3704asmlinkage void __sched preempt_schedule_irq(void)
3705{
3706 struct thread_info *ti = current_thread_info();
3707#ifdef CONFIG_PREEMPT_BKL
3708 struct task_struct *task = current;
3709 int saved_lock_depth;
3710#endif
2ed6e34f 3711 /* Catch callers which need to be fixed */
1da177e4
LT
3712 BUG_ON(ti->preempt_count || !irqs_disabled());
3713
3a5c359a
AK
3714 do {
3715 add_preempt_count(PREEMPT_ACTIVE);
3716
3717 /*
3718 * We keep the big kernel semaphore locked, but we
3719 * clear ->lock_depth so that schedule() doesnt
3720 * auto-release the semaphore:
3721 */
1da177e4 3722#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3723 saved_lock_depth = task->lock_depth;
3724 task->lock_depth = -1;
1da177e4 3725#endif
3a5c359a
AK
3726 local_irq_enable();
3727 schedule();
3728 local_irq_disable();
1da177e4 3729#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3730 task->lock_depth = saved_lock_depth;
1da177e4 3731#endif
3a5c359a 3732 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3733
3a5c359a
AK
3734 /*
3735 * Check again in case we missed a preemption opportunity
3736 * between schedule and now.
3737 */
3738 barrier();
3739 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3740}
3741
3742#endif /* CONFIG_PREEMPT */
3743
95cdf3b7
IM
3744int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3745 void *key)
1da177e4 3746{
48f24c4d 3747 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3748}
1da177e4
LT
3749EXPORT_SYMBOL(default_wake_function);
3750
3751/*
3752 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3753 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3754 * number) then we wake all the non-exclusive tasks and one exclusive task.
3755 *
3756 * There are circumstances in which we can try to wake a task which has already
3757 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3758 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3759 */
3760static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3761 int nr_exclusive, int sync, void *key)
3762{
2e45874c 3763 wait_queue_t *curr, *next;
1da177e4 3764
2e45874c 3765 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3766 unsigned flags = curr->flags;
3767
1da177e4 3768 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3769 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3770 break;
3771 }
3772}
3773
3774/**
3775 * __wake_up - wake up threads blocked on a waitqueue.
3776 * @q: the waitqueue
3777 * @mode: which threads
3778 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3779 * @key: is directly passed to the wakeup function
1da177e4
LT
3780 */
3781void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3782 int nr_exclusive, void *key)
1da177e4
LT
3783{
3784 unsigned long flags;
3785
3786 spin_lock_irqsave(&q->lock, flags);
3787 __wake_up_common(q, mode, nr_exclusive, 0, key);
3788 spin_unlock_irqrestore(&q->lock, flags);
3789}
1da177e4
LT
3790EXPORT_SYMBOL(__wake_up);
3791
3792/*
3793 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3794 */
3795void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3796{
3797 __wake_up_common(q, mode, 1, 0, NULL);
3798}
3799
3800/**
67be2dd1 3801 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3802 * @q: the waitqueue
3803 * @mode: which threads
3804 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3805 *
3806 * The sync wakeup differs that the waker knows that it will schedule
3807 * away soon, so while the target thread will be woken up, it will not
3808 * be migrated to another CPU - ie. the two threads are 'synchronized'
3809 * with each other. This can prevent needless bouncing between CPUs.
3810 *
3811 * On UP it can prevent extra preemption.
3812 */
95cdf3b7
IM
3813void fastcall
3814__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3815{
3816 unsigned long flags;
3817 int sync = 1;
3818
3819 if (unlikely(!q))
3820 return;
3821
3822 if (unlikely(!nr_exclusive))
3823 sync = 0;
3824
3825 spin_lock_irqsave(&q->lock, flags);
3826 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3827 spin_unlock_irqrestore(&q->lock, flags);
3828}
3829EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3830
b15136e9 3831void complete(struct completion *x)
1da177e4
LT
3832{
3833 unsigned long flags;
3834
3835 spin_lock_irqsave(&x->wait.lock, flags);
3836 x->done++;
3837 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3838 1, 0, NULL);
3839 spin_unlock_irqrestore(&x->wait.lock, flags);
3840}
3841EXPORT_SYMBOL(complete);
3842
b15136e9 3843void complete_all(struct completion *x)
1da177e4
LT
3844{
3845 unsigned long flags;
3846
3847 spin_lock_irqsave(&x->wait.lock, flags);
3848 x->done += UINT_MAX/2;
3849 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3850 0, 0, NULL);
3851 spin_unlock_irqrestore(&x->wait.lock, flags);
3852}
3853EXPORT_SYMBOL(complete_all);
3854
8cbbe86d
AK
3855static inline long __sched
3856do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3857{
1da177e4
LT
3858 if (!x->done) {
3859 DECLARE_WAITQUEUE(wait, current);
3860
3861 wait.flags |= WQ_FLAG_EXCLUSIVE;
3862 __add_wait_queue_tail(&x->wait, &wait);
3863 do {
8cbbe86d
AK
3864 if (state == TASK_INTERRUPTIBLE &&
3865 signal_pending(current)) {
3866 __remove_wait_queue(&x->wait, &wait);
3867 return -ERESTARTSYS;
3868 }
3869 __set_current_state(state);
1da177e4
LT
3870 spin_unlock_irq(&x->wait.lock);
3871 timeout = schedule_timeout(timeout);
3872 spin_lock_irq(&x->wait.lock);
3873 if (!timeout) {
3874 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3875 return timeout;
1da177e4
LT
3876 }
3877 } while (!x->done);
3878 __remove_wait_queue(&x->wait, &wait);
3879 }
3880 x->done--;
1da177e4
LT
3881 return timeout;
3882}
1da177e4 3883
8cbbe86d
AK
3884static long __sched
3885wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3886{
1da177e4
LT
3887 might_sleep();
3888
3889 spin_lock_irq(&x->wait.lock);
8cbbe86d 3890 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3891 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3892 return timeout;
3893}
1da177e4 3894
b15136e9 3895void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3896{
3897 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3898}
8cbbe86d 3899EXPORT_SYMBOL(wait_for_completion);
1da177e4 3900
b15136e9 3901unsigned long __sched
8cbbe86d 3902wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3903{
8cbbe86d 3904 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3905}
8cbbe86d 3906EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3907
8cbbe86d 3908int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3909{
51e97990
AK
3910 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3911 if (t == -ERESTARTSYS)
3912 return t;
3913 return 0;
0fec171c 3914}
8cbbe86d 3915EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3916
b15136e9 3917unsigned long __sched
8cbbe86d
AK
3918wait_for_completion_interruptible_timeout(struct completion *x,
3919 unsigned long timeout)
0fec171c 3920{
8cbbe86d 3921 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3922}
8cbbe86d 3923EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3924
8cbbe86d
AK
3925static long __sched
3926sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3927{
0fec171c
IM
3928 unsigned long flags;
3929 wait_queue_t wait;
3930
3931 init_waitqueue_entry(&wait, current);
1da177e4 3932
8cbbe86d 3933 __set_current_state(state);
1da177e4 3934
8cbbe86d
AK
3935 spin_lock_irqsave(&q->lock, flags);
3936 __add_wait_queue(q, &wait);
3937 spin_unlock(&q->lock);
3938 timeout = schedule_timeout(timeout);
3939 spin_lock_irq(&q->lock);
3940 __remove_wait_queue(q, &wait);
3941 spin_unlock_irqrestore(&q->lock, flags);
3942
3943 return timeout;
3944}
3945
3946void __sched interruptible_sleep_on(wait_queue_head_t *q)
3947{
3948 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3949}
1da177e4
LT
3950EXPORT_SYMBOL(interruptible_sleep_on);
3951
0fec171c 3952long __sched
95cdf3b7 3953interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3954{
8cbbe86d 3955 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3956}
1da177e4
LT
3957EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3958
0fec171c 3959void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3960{
8cbbe86d 3961 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3962}
1da177e4
LT
3963EXPORT_SYMBOL(sleep_on);
3964
0fec171c 3965long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3966{
8cbbe86d 3967 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3968}
1da177e4
LT
3969EXPORT_SYMBOL(sleep_on_timeout);
3970
b29739f9
IM
3971#ifdef CONFIG_RT_MUTEXES
3972
3973/*
3974 * rt_mutex_setprio - set the current priority of a task
3975 * @p: task
3976 * @prio: prio value (kernel-internal form)
3977 *
3978 * This function changes the 'effective' priority of a task. It does
3979 * not touch ->normal_prio like __setscheduler().
3980 *
3981 * Used by the rt_mutex code to implement priority inheritance logic.
3982 */
36c8b586 3983void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3984{
3985 unsigned long flags;
83b699ed 3986 int oldprio, on_rq, running;
70b97a7f 3987 struct rq *rq;
b29739f9
IM
3988
3989 BUG_ON(prio < 0 || prio > MAX_PRIO);
3990
3991 rq = task_rq_lock(p, &flags);
a8e504d2 3992 update_rq_clock(rq);
b29739f9 3993
d5f9f942 3994 oldprio = p->prio;
dd41f596 3995 on_rq = p->se.on_rq;
83b699ed
SV
3996 running = task_running(rq, p);
3997 if (on_rq) {
69be72c1 3998 dequeue_task(rq, p, 0);
83b699ed
SV
3999 if (running)
4000 p->sched_class->put_prev_task(rq, p);
4001 }
dd41f596
IM
4002
4003 if (rt_prio(prio))
4004 p->sched_class = &rt_sched_class;
4005 else
4006 p->sched_class = &fair_sched_class;
4007
b29739f9
IM
4008 p->prio = prio;
4009
dd41f596 4010 if (on_rq) {
83b699ed
SV
4011 if (running)
4012 p->sched_class->set_curr_task(rq);
8159f87e 4013 enqueue_task(rq, p, 0);
b29739f9
IM
4014 /*
4015 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4016 * our priority decreased, or if we are not currently running on
4017 * this runqueue and our priority is higher than the current's
b29739f9 4018 */
83b699ed 4019 if (running) {
d5f9f942
AM
4020 if (p->prio > oldprio)
4021 resched_task(rq->curr);
dd41f596
IM
4022 } else {
4023 check_preempt_curr(rq, p);
4024 }
b29739f9
IM
4025 }
4026 task_rq_unlock(rq, &flags);
4027}
4028
4029#endif
4030
36c8b586 4031void set_user_nice(struct task_struct *p, long nice)
1da177e4 4032{
dd41f596 4033 int old_prio, delta, on_rq;
1da177e4 4034 unsigned long flags;
70b97a7f 4035 struct rq *rq;
1da177e4
LT
4036
4037 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4038 return;
4039 /*
4040 * We have to be careful, if called from sys_setpriority(),
4041 * the task might be in the middle of scheduling on another CPU.
4042 */
4043 rq = task_rq_lock(p, &flags);
a8e504d2 4044 update_rq_clock(rq);
1da177e4
LT
4045 /*
4046 * The RT priorities are set via sched_setscheduler(), but we still
4047 * allow the 'normal' nice value to be set - but as expected
4048 * it wont have any effect on scheduling until the task is
dd41f596 4049 * SCHED_FIFO/SCHED_RR:
1da177e4 4050 */
e05606d3 4051 if (task_has_rt_policy(p)) {
1da177e4
LT
4052 p->static_prio = NICE_TO_PRIO(nice);
4053 goto out_unlock;
4054 }
dd41f596
IM
4055 on_rq = p->se.on_rq;
4056 if (on_rq) {
69be72c1 4057 dequeue_task(rq, p, 0);
79b5dddf 4058 dec_load(rq, p);
2dd73a4f 4059 }
1da177e4 4060
1da177e4 4061 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4062 set_load_weight(p);
b29739f9
IM
4063 old_prio = p->prio;
4064 p->prio = effective_prio(p);
4065 delta = p->prio - old_prio;
1da177e4 4066
dd41f596 4067 if (on_rq) {
8159f87e 4068 enqueue_task(rq, p, 0);
29b4b623 4069 inc_load(rq, p);
1da177e4 4070 /*
d5f9f942
AM
4071 * If the task increased its priority or is running and
4072 * lowered its priority, then reschedule its CPU:
1da177e4 4073 */
d5f9f942 4074 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4075 resched_task(rq->curr);
4076 }
4077out_unlock:
4078 task_rq_unlock(rq, &flags);
4079}
1da177e4
LT
4080EXPORT_SYMBOL(set_user_nice);
4081
e43379f1
MM
4082/*
4083 * can_nice - check if a task can reduce its nice value
4084 * @p: task
4085 * @nice: nice value
4086 */
36c8b586 4087int can_nice(const struct task_struct *p, const int nice)
e43379f1 4088{
024f4747
MM
4089 /* convert nice value [19,-20] to rlimit style value [1,40] */
4090 int nice_rlim = 20 - nice;
48f24c4d 4091
e43379f1
MM
4092 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4093 capable(CAP_SYS_NICE));
4094}
4095
1da177e4
LT
4096#ifdef __ARCH_WANT_SYS_NICE
4097
4098/*
4099 * sys_nice - change the priority of the current process.
4100 * @increment: priority increment
4101 *
4102 * sys_setpriority is a more generic, but much slower function that
4103 * does similar things.
4104 */
4105asmlinkage long sys_nice(int increment)
4106{
48f24c4d 4107 long nice, retval;
1da177e4
LT
4108
4109 /*
4110 * Setpriority might change our priority at the same moment.
4111 * We don't have to worry. Conceptually one call occurs first
4112 * and we have a single winner.
4113 */
e43379f1
MM
4114 if (increment < -40)
4115 increment = -40;
1da177e4
LT
4116 if (increment > 40)
4117 increment = 40;
4118
4119 nice = PRIO_TO_NICE(current->static_prio) + increment;
4120 if (nice < -20)
4121 nice = -20;
4122 if (nice > 19)
4123 nice = 19;
4124
e43379f1
MM
4125 if (increment < 0 && !can_nice(current, nice))
4126 return -EPERM;
4127
1da177e4
LT
4128 retval = security_task_setnice(current, nice);
4129 if (retval)
4130 return retval;
4131
4132 set_user_nice(current, nice);
4133 return 0;
4134}
4135
4136#endif
4137
4138/**
4139 * task_prio - return the priority value of a given task.
4140 * @p: the task in question.
4141 *
4142 * This is the priority value as seen by users in /proc.
4143 * RT tasks are offset by -200. Normal tasks are centered
4144 * around 0, value goes from -16 to +15.
4145 */
36c8b586 4146int task_prio(const struct task_struct *p)
1da177e4
LT
4147{
4148 return p->prio - MAX_RT_PRIO;
4149}
4150
4151/**
4152 * task_nice - return the nice value of a given task.
4153 * @p: the task in question.
4154 */
36c8b586 4155int task_nice(const struct task_struct *p)
1da177e4
LT
4156{
4157 return TASK_NICE(p);
4158}
1da177e4 4159EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4160
4161/**
4162 * idle_cpu - is a given cpu idle currently?
4163 * @cpu: the processor in question.
4164 */
4165int idle_cpu(int cpu)
4166{
4167 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4168}
4169
1da177e4
LT
4170/**
4171 * idle_task - return the idle task for a given cpu.
4172 * @cpu: the processor in question.
4173 */
36c8b586 4174struct task_struct *idle_task(int cpu)
1da177e4
LT
4175{
4176 return cpu_rq(cpu)->idle;
4177}
4178
4179/**
4180 * find_process_by_pid - find a process with a matching PID value.
4181 * @pid: the pid in question.
4182 */
a9957449 4183static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4184{
228ebcbe 4185 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4186}
4187
4188/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4189static void
4190__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4191{
dd41f596 4192 BUG_ON(p->se.on_rq);
48f24c4d 4193
1da177e4 4194 p->policy = policy;
dd41f596
IM
4195 switch (p->policy) {
4196 case SCHED_NORMAL:
4197 case SCHED_BATCH:
4198 case SCHED_IDLE:
4199 p->sched_class = &fair_sched_class;
4200 break;
4201 case SCHED_FIFO:
4202 case SCHED_RR:
4203 p->sched_class = &rt_sched_class;
4204 break;
4205 }
4206
1da177e4 4207 p->rt_priority = prio;
b29739f9
IM
4208 p->normal_prio = normal_prio(p);
4209 /* we are holding p->pi_lock already */
4210 p->prio = rt_mutex_getprio(p);
2dd73a4f 4211 set_load_weight(p);
1da177e4
LT
4212}
4213
4214/**
72fd4a35 4215 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4216 * @p: the task in question.
4217 * @policy: new policy.
4218 * @param: structure containing the new RT priority.
5fe1d75f 4219 *
72fd4a35 4220 * NOTE that the task may be already dead.
1da177e4 4221 */
95cdf3b7
IM
4222int sched_setscheduler(struct task_struct *p, int policy,
4223 struct sched_param *param)
1da177e4 4224{
83b699ed 4225 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4226 unsigned long flags;
70b97a7f 4227 struct rq *rq;
1da177e4 4228
66e5393a
SR
4229 /* may grab non-irq protected spin_locks */
4230 BUG_ON(in_interrupt());
1da177e4
LT
4231recheck:
4232 /* double check policy once rq lock held */
4233 if (policy < 0)
4234 policy = oldpolicy = p->policy;
4235 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4236 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4237 policy != SCHED_IDLE)
b0a9499c 4238 return -EINVAL;
1da177e4
LT
4239 /*
4240 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4241 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4242 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4243 */
4244 if (param->sched_priority < 0 ||
95cdf3b7 4245 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4246 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4247 return -EINVAL;
e05606d3 4248 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4249 return -EINVAL;
4250
37e4ab3f
OC
4251 /*
4252 * Allow unprivileged RT tasks to decrease priority:
4253 */
4254 if (!capable(CAP_SYS_NICE)) {
e05606d3 4255 if (rt_policy(policy)) {
8dc3e909 4256 unsigned long rlim_rtprio;
8dc3e909
ON
4257
4258 if (!lock_task_sighand(p, &flags))
4259 return -ESRCH;
4260 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4261 unlock_task_sighand(p, &flags);
4262
4263 /* can't set/change the rt policy */
4264 if (policy != p->policy && !rlim_rtprio)
4265 return -EPERM;
4266
4267 /* can't increase priority */
4268 if (param->sched_priority > p->rt_priority &&
4269 param->sched_priority > rlim_rtprio)
4270 return -EPERM;
4271 }
dd41f596
IM
4272 /*
4273 * Like positive nice levels, dont allow tasks to
4274 * move out of SCHED_IDLE either:
4275 */
4276 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4277 return -EPERM;
5fe1d75f 4278
37e4ab3f
OC
4279 /* can't change other user's priorities */
4280 if ((current->euid != p->euid) &&
4281 (current->euid != p->uid))
4282 return -EPERM;
4283 }
1da177e4
LT
4284
4285 retval = security_task_setscheduler(p, policy, param);
4286 if (retval)
4287 return retval;
b29739f9
IM
4288 /*
4289 * make sure no PI-waiters arrive (or leave) while we are
4290 * changing the priority of the task:
4291 */
4292 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4293 /*
4294 * To be able to change p->policy safely, the apropriate
4295 * runqueue lock must be held.
4296 */
b29739f9 4297 rq = __task_rq_lock(p);
1da177e4
LT
4298 /* recheck policy now with rq lock held */
4299 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4300 policy = oldpolicy = -1;
b29739f9
IM
4301 __task_rq_unlock(rq);
4302 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4303 goto recheck;
4304 }
2daa3577 4305 update_rq_clock(rq);
dd41f596 4306 on_rq = p->se.on_rq;
83b699ed
SV
4307 running = task_running(rq, p);
4308 if (on_rq) {
2e1cb74a 4309 deactivate_task(rq, p, 0);
83b699ed
SV
4310 if (running)
4311 p->sched_class->put_prev_task(rq, p);
4312 }
f6b53205 4313
1da177e4 4314 oldprio = p->prio;
dd41f596 4315 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4316
dd41f596 4317 if (on_rq) {
83b699ed
SV
4318 if (running)
4319 p->sched_class->set_curr_task(rq);
dd41f596 4320 activate_task(rq, p, 0);
1da177e4
LT
4321 /*
4322 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4323 * our priority decreased, or if we are not currently running on
4324 * this runqueue and our priority is higher than the current's
1da177e4 4325 */
83b699ed 4326 if (running) {
d5f9f942
AM
4327 if (p->prio > oldprio)
4328 resched_task(rq->curr);
dd41f596
IM
4329 } else {
4330 check_preempt_curr(rq, p);
4331 }
1da177e4 4332 }
b29739f9
IM
4333 __task_rq_unlock(rq);
4334 spin_unlock_irqrestore(&p->pi_lock, flags);
4335
95e02ca9
TG
4336 rt_mutex_adjust_pi(p);
4337
1da177e4
LT
4338 return 0;
4339}
4340EXPORT_SYMBOL_GPL(sched_setscheduler);
4341
95cdf3b7
IM
4342static int
4343do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4344{
1da177e4
LT
4345 struct sched_param lparam;
4346 struct task_struct *p;
36c8b586 4347 int retval;
1da177e4
LT
4348
4349 if (!param || pid < 0)
4350 return -EINVAL;
4351 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4352 return -EFAULT;
5fe1d75f
ON
4353
4354 rcu_read_lock();
4355 retval = -ESRCH;
1da177e4 4356 p = find_process_by_pid(pid);
5fe1d75f
ON
4357 if (p != NULL)
4358 retval = sched_setscheduler(p, policy, &lparam);
4359 rcu_read_unlock();
36c8b586 4360
1da177e4
LT
4361 return retval;
4362}
4363
4364/**
4365 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4366 * @pid: the pid in question.
4367 * @policy: new policy.
4368 * @param: structure containing the new RT priority.
4369 */
4370asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4371 struct sched_param __user *param)
4372{
c21761f1
JB
4373 /* negative values for policy are not valid */
4374 if (policy < 0)
4375 return -EINVAL;
4376
1da177e4
LT
4377 return do_sched_setscheduler(pid, policy, param);
4378}
4379
4380/**
4381 * sys_sched_setparam - set/change the RT priority of a thread
4382 * @pid: the pid in question.
4383 * @param: structure containing the new RT priority.
4384 */
4385asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4386{
4387 return do_sched_setscheduler(pid, -1, param);
4388}
4389
4390/**
4391 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4392 * @pid: the pid in question.
4393 */
4394asmlinkage long sys_sched_getscheduler(pid_t pid)
4395{
36c8b586 4396 struct task_struct *p;
3a5c359a 4397 int retval;
1da177e4
LT
4398
4399 if (pid < 0)
3a5c359a 4400 return -EINVAL;
1da177e4
LT
4401
4402 retval = -ESRCH;
4403 read_lock(&tasklist_lock);
4404 p = find_process_by_pid(pid);
4405 if (p) {
4406 retval = security_task_getscheduler(p);
4407 if (!retval)
4408 retval = p->policy;
4409 }
4410 read_unlock(&tasklist_lock);
1da177e4
LT
4411 return retval;
4412}
4413
4414/**
4415 * sys_sched_getscheduler - get the RT priority of a thread
4416 * @pid: the pid in question.
4417 * @param: structure containing the RT priority.
4418 */
4419asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4420{
4421 struct sched_param lp;
36c8b586 4422 struct task_struct *p;
3a5c359a 4423 int retval;
1da177e4
LT
4424
4425 if (!param || pid < 0)
3a5c359a 4426 return -EINVAL;
1da177e4
LT
4427
4428 read_lock(&tasklist_lock);
4429 p = find_process_by_pid(pid);
4430 retval = -ESRCH;
4431 if (!p)
4432 goto out_unlock;
4433
4434 retval = security_task_getscheduler(p);
4435 if (retval)
4436 goto out_unlock;
4437
4438 lp.sched_priority = p->rt_priority;
4439 read_unlock(&tasklist_lock);
4440
4441 /*
4442 * This one might sleep, we cannot do it with a spinlock held ...
4443 */
4444 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4445
1da177e4
LT
4446 return retval;
4447
4448out_unlock:
4449 read_unlock(&tasklist_lock);
4450 return retval;
4451}
4452
4453long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4454{
1da177e4 4455 cpumask_t cpus_allowed;
36c8b586
IM
4456 struct task_struct *p;
4457 int retval;
1da177e4 4458
5be9361c 4459 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4460 read_lock(&tasklist_lock);
4461
4462 p = find_process_by_pid(pid);
4463 if (!p) {
4464 read_unlock(&tasklist_lock);
5be9361c 4465 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4466 return -ESRCH;
4467 }
4468
4469 /*
4470 * It is not safe to call set_cpus_allowed with the
4471 * tasklist_lock held. We will bump the task_struct's
4472 * usage count and then drop tasklist_lock.
4473 */
4474 get_task_struct(p);
4475 read_unlock(&tasklist_lock);
4476
4477 retval = -EPERM;
4478 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4479 !capable(CAP_SYS_NICE))
4480 goto out_unlock;
4481
e7834f8f
DQ
4482 retval = security_task_setscheduler(p, 0, NULL);
4483 if (retval)
4484 goto out_unlock;
4485
1da177e4
LT
4486 cpus_allowed = cpuset_cpus_allowed(p);
4487 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4488 again:
1da177e4
LT
4489 retval = set_cpus_allowed(p, new_mask);
4490
8707d8b8
PM
4491 if (!retval) {
4492 cpus_allowed = cpuset_cpus_allowed(p);
4493 if (!cpus_subset(new_mask, cpus_allowed)) {
4494 /*
4495 * We must have raced with a concurrent cpuset
4496 * update. Just reset the cpus_allowed to the
4497 * cpuset's cpus_allowed
4498 */
4499 new_mask = cpus_allowed;
4500 goto again;
4501 }
4502 }
1da177e4
LT
4503out_unlock:
4504 put_task_struct(p);
5be9361c 4505 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4506 return retval;
4507}
4508
4509static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4510 cpumask_t *new_mask)
4511{
4512 if (len < sizeof(cpumask_t)) {
4513 memset(new_mask, 0, sizeof(cpumask_t));
4514 } else if (len > sizeof(cpumask_t)) {
4515 len = sizeof(cpumask_t);
4516 }
4517 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4518}
4519
4520/**
4521 * sys_sched_setaffinity - set the cpu affinity of a process
4522 * @pid: pid of the process
4523 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4524 * @user_mask_ptr: user-space pointer to the new cpu mask
4525 */
4526asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4527 unsigned long __user *user_mask_ptr)
4528{
4529 cpumask_t new_mask;
4530 int retval;
4531
4532 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4533 if (retval)
4534 return retval;
4535
4536 return sched_setaffinity(pid, new_mask);
4537}
4538
4539/*
4540 * Represents all cpu's present in the system
4541 * In systems capable of hotplug, this map could dynamically grow
4542 * as new cpu's are detected in the system via any platform specific
4543 * method, such as ACPI for e.g.
4544 */
4545
4cef0c61 4546cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4547EXPORT_SYMBOL(cpu_present_map);
4548
4549#ifndef CONFIG_SMP
4cef0c61 4550cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4551EXPORT_SYMBOL(cpu_online_map);
4552
4cef0c61 4553cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4554EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4555#endif
4556
4557long sched_getaffinity(pid_t pid, cpumask_t *mask)
4558{
36c8b586 4559 struct task_struct *p;
1da177e4 4560 int retval;
1da177e4 4561
5be9361c 4562 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4563 read_lock(&tasklist_lock);
4564
4565 retval = -ESRCH;
4566 p = find_process_by_pid(pid);
4567 if (!p)
4568 goto out_unlock;
4569
e7834f8f
DQ
4570 retval = security_task_getscheduler(p);
4571 if (retval)
4572 goto out_unlock;
4573
2f7016d9 4574 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4575
4576out_unlock:
4577 read_unlock(&tasklist_lock);
5be9361c 4578 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4579
9531b62f 4580 return retval;
1da177e4
LT
4581}
4582
4583/**
4584 * sys_sched_getaffinity - get the cpu affinity of a process
4585 * @pid: pid of the process
4586 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4587 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4588 */
4589asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4590 unsigned long __user *user_mask_ptr)
4591{
4592 int ret;
4593 cpumask_t mask;
4594
4595 if (len < sizeof(cpumask_t))
4596 return -EINVAL;
4597
4598 ret = sched_getaffinity(pid, &mask);
4599 if (ret < 0)
4600 return ret;
4601
4602 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4603 return -EFAULT;
4604
4605 return sizeof(cpumask_t);
4606}
4607
4608/**
4609 * sys_sched_yield - yield the current processor to other threads.
4610 *
dd41f596
IM
4611 * This function yields the current CPU to other tasks. If there are no
4612 * other threads running on this CPU then this function will return.
1da177e4
LT
4613 */
4614asmlinkage long sys_sched_yield(void)
4615{
70b97a7f 4616 struct rq *rq = this_rq_lock();
1da177e4 4617
2d72376b 4618 schedstat_inc(rq, yld_count);
4530d7ab 4619 current->sched_class->yield_task(rq);
1da177e4
LT
4620
4621 /*
4622 * Since we are going to call schedule() anyway, there's
4623 * no need to preempt or enable interrupts:
4624 */
4625 __release(rq->lock);
8a25d5de 4626 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4627 _raw_spin_unlock(&rq->lock);
4628 preempt_enable_no_resched();
4629
4630 schedule();
4631
4632 return 0;
4633}
4634
e7b38404 4635static void __cond_resched(void)
1da177e4 4636{
8e0a43d8
IM
4637#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4638 __might_sleep(__FILE__, __LINE__);
4639#endif
5bbcfd90
IM
4640 /*
4641 * The BKS might be reacquired before we have dropped
4642 * PREEMPT_ACTIVE, which could trigger a second
4643 * cond_resched() call.
4644 */
1da177e4
LT
4645 do {
4646 add_preempt_count(PREEMPT_ACTIVE);
4647 schedule();
4648 sub_preempt_count(PREEMPT_ACTIVE);
4649 } while (need_resched());
4650}
4651
4652int __sched cond_resched(void)
4653{
9414232f
IM
4654 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4655 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4656 __cond_resched();
4657 return 1;
4658 }
4659 return 0;
4660}
1da177e4
LT
4661EXPORT_SYMBOL(cond_resched);
4662
4663/*
4664 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4665 * call schedule, and on return reacquire the lock.
4666 *
4667 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4668 * operations here to prevent schedule() from being called twice (once via
4669 * spin_unlock(), once by hand).
4670 */
95cdf3b7 4671int cond_resched_lock(spinlock_t *lock)
1da177e4 4672{
6df3cecb
JK
4673 int ret = 0;
4674
1da177e4
LT
4675 if (need_lockbreak(lock)) {
4676 spin_unlock(lock);
4677 cpu_relax();
6df3cecb 4678 ret = 1;
1da177e4
LT
4679 spin_lock(lock);
4680 }
9414232f 4681 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4682 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4683 _raw_spin_unlock(lock);
4684 preempt_enable_no_resched();
4685 __cond_resched();
6df3cecb 4686 ret = 1;
1da177e4 4687 spin_lock(lock);
1da177e4 4688 }
6df3cecb 4689 return ret;
1da177e4 4690}
1da177e4
LT
4691EXPORT_SYMBOL(cond_resched_lock);
4692
4693int __sched cond_resched_softirq(void)
4694{
4695 BUG_ON(!in_softirq());
4696
9414232f 4697 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4698 local_bh_enable();
1da177e4
LT
4699 __cond_resched();
4700 local_bh_disable();
4701 return 1;
4702 }
4703 return 0;
4704}
1da177e4
LT
4705EXPORT_SYMBOL(cond_resched_softirq);
4706
1da177e4
LT
4707/**
4708 * yield - yield the current processor to other threads.
4709 *
72fd4a35 4710 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4711 * thread runnable and calls sys_sched_yield().
4712 */
4713void __sched yield(void)
4714{
4715 set_current_state(TASK_RUNNING);
4716 sys_sched_yield();
4717}
1da177e4
LT
4718EXPORT_SYMBOL(yield);
4719
4720/*
4721 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4722 * that process accounting knows that this is a task in IO wait state.
4723 *
4724 * But don't do that if it is a deliberate, throttling IO wait (this task
4725 * has set its backing_dev_info: the queue against which it should throttle)
4726 */
4727void __sched io_schedule(void)
4728{
70b97a7f 4729 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4730
0ff92245 4731 delayacct_blkio_start();
1da177e4
LT
4732 atomic_inc(&rq->nr_iowait);
4733 schedule();
4734 atomic_dec(&rq->nr_iowait);
0ff92245 4735 delayacct_blkio_end();
1da177e4 4736}
1da177e4
LT
4737EXPORT_SYMBOL(io_schedule);
4738
4739long __sched io_schedule_timeout(long timeout)
4740{
70b97a7f 4741 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4742 long ret;
4743
0ff92245 4744 delayacct_blkio_start();
1da177e4
LT
4745 atomic_inc(&rq->nr_iowait);
4746 ret = schedule_timeout(timeout);
4747 atomic_dec(&rq->nr_iowait);
0ff92245 4748 delayacct_blkio_end();
1da177e4
LT
4749 return ret;
4750}
4751
4752/**
4753 * sys_sched_get_priority_max - return maximum RT priority.
4754 * @policy: scheduling class.
4755 *
4756 * this syscall returns the maximum rt_priority that can be used
4757 * by a given scheduling class.
4758 */
4759asmlinkage long sys_sched_get_priority_max(int policy)
4760{
4761 int ret = -EINVAL;
4762
4763 switch (policy) {
4764 case SCHED_FIFO:
4765 case SCHED_RR:
4766 ret = MAX_USER_RT_PRIO-1;
4767 break;
4768 case SCHED_NORMAL:
b0a9499c 4769 case SCHED_BATCH:
dd41f596 4770 case SCHED_IDLE:
1da177e4
LT
4771 ret = 0;
4772 break;
4773 }
4774 return ret;
4775}
4776
4777/**
4778 * sys_sched_get_priority_min - return minimum RT priority.
4779 * @policy: scheduling class.
4780 *
4781 * this syscall returns the minimum rt_priority that can be used
4782 * by a given scheduling class.
4783 */
4784asmlinkage long sys_sched_get_priority_min(int policy)
4785{
4786 int ret = -EINVAL;
4787
4788 switch (policy) {
4789 case SCHED_FIFO:
4790 case SCHED_RR:
4791 ret = 1;
4792 break;
4793 case SCHED_NORMAL:
b0a9499c 4794 case SCHED_BATCH:
dd41f596 4795 case SCHED_IDLE:
1da177e4
LT
4796 ret = 0;
4797 }
4798 return ret;
4799}
4800
4801/**
4802 * sys_sched_rr_get_interval - return the default timeslice of a process.
4803 * @pid: pid of the process.
4804 * @interval: userspace pointer to the timeslice value.
4805 *
4806 * this syscall writes the default timeslice value of a given process
4807 * into the user-space timespec buffer. A value of '0' means infinity.
4808 */
4809asmlinkage
4810long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4811{
36c8b586 4812 struct task_struct *p;
a4ec24b4 4813 unsigned int time_slice;
3a5c359a 4814 int retval;
1da177e4 4815 struct timespec t;
1da177e4
LT
4816
4817 if (pid < 0)
3a5c359a 4818 return -EINVAL;
1da177e4
LT
4819
4820 retval = -ESRCH;
4821 read_lock(&tasklist_lock);
4822 p = find_process_by_pid(pid);
4823 if (!p)
4824 goto out_unlock;
4825
4826 retval = security_task_getscheduler(p);
4827 if (retval)
4828 goto out_unlock;
4829
a4ec24b4
DA
4830 if (p->policy == SCHED_FIFO)
4831 time_slice = 0;
4832 else if (p->policy == SCHED_RR)
4833 time_slice = DEF_TIMESLICE;
4834 else {
4835 struct sched_entity *se = &p->se;
4836 unsigned long flags;
4837 struct rq *rq;
4838
4839 rq = task_rq_lock(p, &flags);
4840 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4841 task_rq_unlock(rq, &flags);
4842 }
1da177e4 4843 read_unlock(&tasklist_lock);
a4ec24b4 4844 jiffies_to_timespec(time_slice, &t);
1da177e4 4845 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4846 return retval;
3a5c359a 4847
1da177e4
LT
4848out_unlock:
4849 read_unlock(&tasklist_lock);
4850 return retval;
4851}
4852
2ed6e34f 4853static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4854
4855static void show_task(struct task_struct *p)
1da177e4 4856{
1da177e4 4857 unsigned long free = 0;
36c8b586 4858 unsigned state;
1da177e4 4859
1da177e4 4860 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4861 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4862 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4863#if BITS_PER_LONG == 32
1da177e4 4864 if (state == TASK_RUNNING)
cc4ea795 4865 printk(KERN_CONT " running ");
1da177e4 4866 else
cc4ea795 4867 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4868#else
4869 if (state == TASK_RUNNING)
cc4ea795 4870 printk(KERN_CONT " running task ");
1da177e4 4871 else
cc4ea795 4872 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4873#endif
4874#ifdef CONFIG_DEBUG_STACK_USAGE
4875 {
10ebffde 4876 unsigned long *n = end_of_stack(p);
1da177e4
LT
4877 while (!*n)
4878 n++;
10ebffde 4879 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4880 }
4881#endif
ba25f9dc
PE
4882 printk(KERN_CONT "%5lu %5d %6d\n", free,
4883 task_pid_nr(p), task_pid_nr(p->parent));
1da177e4
LT
4884
4885 if (state != TASK_RUNNING)
4886 show_stack(p, NULL);
4887}
4888
e59e2ae2 4889void show_state_filter(unsigned long state_filter)
1da177e4 4890{
36c8b586 4891 struct task_struct *g, *p;
1da177e4 4892
4bd77321
IM
4893#if BITS_PER_LONG == 32
4894 printk(KERN_INFO
4895 " task PC stack pid father\n");
1da177e4 4896#else
4bd77321
IM
4897 printk(KERN_INFO
4898 " task PC stack pid father\n");
1da177e4
LT
4899#endif
4900 read_lock(&tasklist_lock);
4901 do_each_thread(g, p) {
4902 /*
4903 * reset the NMI-timeout, listing all files on a slow
4904 * console might take alot of time:
4905 */
4906 touch_nmi_watchdog();
39bc89fd 4907 if (!state_filter || (p->state & state_filter))
e59e2ae2 4908 show_task(p);
1da177e4
LT
4909 } while_each_thread(g, p);
4910
04c9167f
JF
4911 touch_all_softlockup_watchdogs();
4912
dd41f596
IM
4913#ifdef CONFIG_SCHED_DEBUG
4914 sysrq_sched_debug_show();
4915#endif
1da177e4 4916 read_unlock(&tasklist_lock);
e59e2ae2
IM
4917 /*
4918 * Only show locks if all tasks are dumped:
4919 */
4920 if (state_filter == -1)
4921 debug_show_all_locks();
1da177e4
LT
4922}
4923
1df21055
IM
4924void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4925{
dd41f596 4926 idle->sched_class = &idle_sched_class;
1df21055
IM
4927}
4928
f340c0d1
IM
4929/**
4930 * init_idle - set up an idle thread for a given CPU
4931 * @idle: task in question
4932 * @cpu: cpu the idle task belongs to
4933 *
4934 * NOTE: this function does not set the idle thread's NEED_RESCHED
4935 * flag, to make booting more robust.
4936 */
5c1e1767 4937void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4938{
70b97a7f 4939 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4940 unsigned long flags;
4941
dd41f596
IM
4942 __sched_fork(idle);
4943 idle->se.exec_start = sched_clock();
4944
b29739f9 4945 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4946 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4947 __set_task_cpu(idle, cpu);
1da177e4
LT
4948
4949 spin_lock_irqsave(&rq->lock, flags);
4950 rq->curr = rq->idle = idle;
4866cde0
NP
4951#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4952 idle->oncpu = 1;
4953#endif
1da177e4
LT
4954 spin_unlock_irqrestore(&rq->lock, flags);
4955
4956 /* Set the preempt count _outside_ the spinlocks! */
4957#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4958 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4959#else
a1261f54 4960 task_thread_info(idle)->preempt_count = 0;
1da177e4 4961#endif
dd41f596
IM
4962 /*
4963 * The idle tasks have their own, simple scheduling class:
4964 */
4965 idle->sched_class = &idle_sched_class;
1da177e4
LT
4966}
4967
4968/*
4969 * In a system that switches off the HZ timer nohz_cpu_mask
4970 * indicates which cpus entered this state. This is used
4971 * in the rcu update to wait only for active cpus. For system
4972 * which do not switch off the HZ timer nohz_cpu_mask should
4973 * always be CPU_MASK_NONE.
4974 */
4975cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4976
4977#ifdef CONFIG_SMP
4978/*
4979 * This is how migration works:
4980 *
70b97a7f 4981 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4982 * runqueue and wake up that CPU's migration thread.
4983 * 2) we down() the locked semaphore => thread blocks.
4984 * 3) migration thread wakes up (implicitly it forces the migrated
4985 * thread off the CPU)
4986 * 4) it gets the migration request and checks whether the migrated
4987 * task is still in the wrong runqueue.
4988 * 5) if it's in the wrong runqueue then the migration thread removes
4989 * it and puts it into the right queue.
4990 * 6) migration thread up()s the semaphore.
4991 * 7) we wake up and the migration is done.
4992 */
4993
4994/*
4995 * Change a given task's CPU affinity. Migrate the thread to a
4996 * proper CPU and schedule it away if the CPU it's executing on
4997 * is removed from the allowed bitmask.
4998 *
4999 * NOTE: the caller must have a valid reference to the task, the
5000 * task must not exit() & deallocate itself prematurely. The
5001 * call is not atomic; no spinlocks may be held.
5002 */
36c8b586 5003int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5004{
70b97a7f 5005 struct migration_req req;
1da177e4 5006 unsigned long flags;
70b97a7f 5007 struct rq *rq;
48f24c4d 5008 int ret = 0;
1da177e4
LT
5009
5010 rq = task_rq_lock(p, &flags);
5011 if (!cpus_intersects(new_mask, cpu_online_map)) {
5012 ret = -EINVAL;
5013 goto out;
5014 }
5015
5016 p->cpus_allowed = new_mask;
5017 /* Can the task run on the task's current CPU? If so, we're done */
5018 if (cpu_isset(task_cpu(p), new_mask))
5019 goto out;
5020
5021 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5022 /* Need help from migration thread: drop lock and wait. */
5023 task_rq_unlock(rq, &flags);
5024 wake_up_process(rq->migration_thread);
5025 wait_for_completion(&req.done);
5026 tlb_migrate_finish(p->mm);
5027 return 0;
5028 }
5029out:
5030 task_rq_unlock(rq, &flags);
48f24c4d 5031
1da177e4
LT
5032 return ret;
5033}
1da177e4
LT
5034EXPORT_SYMBOL_GPL(set_cpus_allowed);
5035
5036/*
5037 * Move (not current) task off this cpu, onto dest cpu. We're doing
5038 * this because either it can't run here any more (set_cpus_allowed()
5039 * away from this CPU, or CPU going down), or because we're
5040 * attempting to rebalance this task on exec (sched_exec).
5041 *
5042 * So we race with normal scheduler movements, but that's OK, as long
5043 * as the task is no longer on this CPU.
efc30814
KK
5044 *
5045 * Returns non-zero if task was successfully migrated.
1da177e4 5046 */
efc30814 5047static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5048{
70b97a7f 5049 struct rq *rq_dest, *rq_src;
dd41f596 5050 int ret = 0, on_rq;
1da177e4
LT
5051
5052 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5053 return ret;
1da177e4
LT
5054
5055 rq_src = cpu_rq(src_cpu);
5056 rq_dest = cpu_rq(dest_cpu);
5057
5058 double_rq_lock(rq_src, rq_dest);
5059 /* Already moved. */
5060 if (task_cpu(p) != src_cpu)
5061 goto out;
5062 /* Affinity changed (again). */
5063 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5064 goto out;
5065
dd41f596 5066 on_rq = p->se.on_rq;
6e82a3be 5067 if (on_rq)
2e1cb74a 5068 deactivate_task(rq_src, p, 0);
6e82a3be 5069
1da177e4 5070 set_task_cpu(p, dest_cpu);
dd41f596
IM
5071 if (on_rq) {
5072 activate_task(rq_dest, p, 0);
5073 check_preempt_curr(rq_dest, p);
1da177e4 5074 }
efc30814 5075 ret = 1;
1da177e4
LT
5076out:
5077 double_rq_unlock(rq_src, rq_dest);
efc30814 5078 return ret;
1da177e4
LT
5079}
5080
5081/*
5082 * migration_thread - this is a highprio system thread that performs
5083 * thread migration by bumping thread off CPU then 'pushing' onto
5084 * another runqueue.
5085 */
95cdf3b7 5086static int migration_thread(void *data)
1da177e4 5087{
1da177e4 5088 int cpu = (long)data;
70b97a7f 5089 struct rq *rq;
1da177e4
LT
5090
5091 rq = cpu_rq(cpu);
5092 BUG_ON(rq->migration_thread != current);
5093
5094 set_current_state(TASK_INTERRUPTIBLE);
5095 while (!kthread_should_stop()) {
70b97a7f 5096 struct migration_req *req;
1da177e4 5097 struct list_head *head;
1da177e4 5098
1da177e4
LT
5099 spin_lock_irq(&rq->lock);
5100
5101 if (cpu_is_offline(cpu)) {
5102 spin_unlock_irq(&rq->lock);
5103 goto wait_to_die;
5104 }
5105
5106 if (rq->active_balance) {
5107 active_load_balance(rq, cpu);
5108 rq->active_balance = 0;
5109 }
5110
5111 head = &rq->migration_queue;
5112
5113 if (list_empty(head)) {
5114 spin_unlock_irq(&rq->lock);
5115 schedule();
5116 set_current_state(TASK_INTERRUPTIBLE);
5117 continue;
5118 }
70b97a7f 5119 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5120 list_del_init(head->next);
5121
674311d5
NP
5122 spin_unlock(&rq->lock);
5123 __migrate_task(req->task, cpu, req->dest_cpu);
5124 local_irq_enable();
1da177e4
LT
5125
5126 complete(&req->done);
5127 }
5128 __set_current_state(TASK_RUNNING);
5129 return 0;
5130
5131wait_to_die:
5132 /* Wait for kthread_stop */
5133 set_current_state(TASK_INTERRUPTIBLE);
5134 while (!kthread_should_stop()) {
5135 schedule();
5136 set_current_state(TASK_INTERRUPTIBLE);
5137 }
5138 __set_current_state(TASK_RUNNING);
5139 return 0;
5140}
5141
5142#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5143
5144static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5145{
5146 int ret;
5147
5148 local_irq_disable();
5149 ret = __migrate_task(p, src_cpu, dest_cpu);
5150 local_irq_enable();
5151 return ret;
5152}
5153
054b9108 5154/*
3a4fa0a2 5155 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5156 * NOTE: interrupts should be disabled by the caller
5157 */
48f24c4d 5158static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5159{
efc30814 5160 unsigned long flags;
1da177e4 5161 cpumask_t mask;
70b97a7f
IM
5162 struct rq *rq;
5163 int dest_cpu;
1da177e4 5164
3a5c359a
AK
5165 do {
5166 /* On same node? */
5167 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5168 cpus_and(mask, mask, p->cpus_allowed);
5169 dest_cpu = any_online_cpu(mask);
5170
5171 /* On any allowed CPU? */
5172 if (dest_cpu == NR_CPUS)
5173 dest_cpu = any_online_cpu(p->cpus_allowed);
5174
5175 /* No more Mr. Nice Guy. */
5176 if (dest_cpu == NR_CPUS) {
470fd646
CW
5177 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5178 /*
5179 * Try to stay on the same cpuset, where the
5180 * current cpuset may be a subset of all cpus.
5181 * The cpuset_cpus_allowed_locked() variant of
5182 * cpuset_cpus_allowed() will not block. It must be
5183 * called within calls to cpuset_lock/cpuset_unlock.
5184 */
3a5c359a 5185 rq = task_rq_lock(p, &flags);
470fd646 5186 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5187 dest_cpu = any_online_cpu(p->cpus_allowed);
5188 task_rq_unlock(rq, &flags);
1da177e4 5189
3a5c359a
AK
5190 /*
5191 * Don't tell them about moving exiting tasks or
5192 * kernel threads (both mm NULL), since they never
5193 * leave kernel.
5194 */
5195 if (p->mm && printk_ratelimit())
5196 printk(KERN_INFO "process %d (%s) no "
5197 "longer affine to cpu%d\n",
ba25f9dc 5198 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 5199 }
f7b4cddc 5200 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5201}
5202
5203/*
5204 * While a dead CPU has no uninterruptible tasks queued at this point,
5205 * it might still have a nonzero ->nr_uninterruptible counter, because
5206 * for performance reasons the counter is not stricly tracking tasks to
5207 * their home CPUs. So we just add the counter to another CPU's counter,
5208 * to keep the global sum constant after CPU-down:
5209 */
70b97a7f 5210static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5211{
70b97a7f 5212 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5213 unsigned long flags;
5214
5215 local_irq_save(flags);
5216 double_rq_lock(rq_src, rq_dest);
5217 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5218 rq_src->nr_uninterruptible = 0;
5219 double_rq_unlock(rq_src, rq_dest);
5220 local_irq_restore(flags);
5221}
5222
5223/* Run through task list and migrate tasks from the dead cpu. */
5224static void migrate_live_tasks(int src_cpu)
5225{
48f24c4d 5226 struct task_struct *p, *t;
1da177e4 5227
f7b4cddc 5228 read_lock(&tasklist_lock);
1da177e4 5229
48f24c4d
IM
5230 do_each_thread(t, p) {
5231 if (p == current)
1da177e4
LT
5232 continue;
5233
48f24c4d
IM
5234 if (task_cpu(p) == src_cpu)
5235 move_task_off_dead_cpu(src_cpu, p);
5236 } while_each_thread(t, p);
1da177e4 5237
f7b4cddc 5238 read_unlock(&tasklist_lock);
1da177e4
LT
5239}
5240
a9957449
AD
5241/*
5242 * activate_idle_task - move idle task to the _front_ of runqueue.
5243 */
5244static void activate_idle_task(struct task_struct *p, struct rq *rq)
5245{
5246 update_rq_clock(rq);
5247
5248 if (p->state == TASK_UNINTERRUPTIBLE)
5249 rq->nr_uninterruptible--;
5250
5251 enqueue_task(rq, p, 0);
5252 inc_nr_running(p, rq);
5253}
5254
dd41f596
IM
5255/*
5256 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5257 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5258 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5259 */
5260void sched_idle_next(void)
5261{
48f24c4d 5262 int this_cpu = smp_processor_id();
70b97a7f 5263 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5264 struct task_struct *p = rq->idle;
5265 unsigned long flags;
5266
5267 /* cpu has to be offline */
48f24c4d 5268 BUG_ON(cpu_online(this_cpu));
1da177e4 5269
48f24c4d
IM
5270 /*
5271 * Strictly not necessary since rest of the CPUs are stopped by now
5272 * and interrupts disabled on the current cpu.
1da177e4
LT
5273 */
5274 spin_lock_irqsave(&rq->lock, flags);
5275
dd41f596 5276 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5277
5278 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5279 activate_idle_task(p, rq);
1da177e4
LT
5280
5281 spin_unlock_irqrestore(&rq->lock, flags);
5282}
5283
48f24c4d
IM
5284/*
5285 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5286 * offline.
5287 */
5288void idle_task_exit(void)
5289{
5290 struct mm_struct *mm = current->active_mm;
5291
5292 BUG_ON(cpu_online(smp_processor_id()));
5293
5294 if (mm != &init_mm)
5295 switch_mm(mm, &init_mm, current);
5296 mmdrop(mm);
5297}
5298
054b9108 5299/* called under rq->lock with disabled interrupts */
36c8b586 5300static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5301{
70b97a7f 5302 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5303
5304 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5305 BUG_ON(!p->exit_state);
1da177e4
LT
5306
5307 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5308 BUG_ON(p->state == TASK_DEAD);
1da177e4 5309
48f24c4d 5310 get_task_struct(p);
1da177e4
LT
5311
5312 /*
5313 * Drop lock around migration; if someone else moves it,
5314 * that's OK. No task can be added to this CPU, so iteration is
5315 * fine.
5316 */
f7b4cddc 5317 spin_unlock_irq(&rq->lock);
48f24c4d 5318 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5319 spin_lock_irq(&rq->lock);
1da177e4 5320
48f24c4d 5321 put_task_struct(p);
1da177e4
LT
5322}
5323
5324/* release_task() removes task from tasklist, so we won't find dead tasks. */
5325static void migrate_dead_tasks(unsigned int dead_cpu)
5326{
70b97a7f 5327 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5328 struct task_struct *next;
48f24c4d 5329
dd41f596
IM
5330 for ( ; ; ) {
5331 if (!rq->nr_running)
5332 break;
a8e504d2 5333 update_rq_clock(rq);
ff95f3df 5334 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5335 if (!next)
5336 break;
5337 migrate_dead(dead_cpu, next);
e692ab53 5338
1da177e4
LT
5339 }
5340}
5341#endif /* CONFIG_HOTPLUG_CPU */
5342
e692ab53
NP
5343#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5344
5345static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5346 {
5347 .procname = "sched_domain",
c57baf1e 5348 .mode = 0555,
e0361851 5349 },
e692ab53
NP
5350 {0,},
5351};
5352
5353static struct ctl_table sd_ctl_root[] = {
e0361851 5354 {
c57baf1e 5355 .ctl_name = CTL_KERN,
e0361851 5356 .procname = "kernel",
c57baf1e 5357 .mode = 0555,
e0361851
AD
5358 .child = sd_ctl_dir,
5359 },
e692ab53
NP
5360 {0,},
5361};
5362
5363static struct ctl_table *sd_alloc_ctl_entry(int n)
5364{
5365 struct ctl_table *entry =
5cf9f062 5366 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5367
e692ab53
NP
5368 return entry;
5369}
5370
6382bc90
MM
5371static void sd_free_ctl_entry(struct ctl_table **tablep)
5372{
cd790076 5373 struct ctl_table *entry;
6382bc90 5374
cd790076
MM
5375 /*
5376 * In the intermediate directories, both the child directory and
5377 * procname are dynamically allocated and could fail but the mode
5378 * will always be set. In the lowest directory the names are
5379 * static strings and all have proc handlers.
5380 */
5381 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5382 if (entry->child)
5383 sd_free_ctl_entry(&entry->child);
cd790076
MM
5384 if (entry->proc_handler == NULL)
5385 kfree(entry->procname);
5386 }
6382bc90
MM
5387
5388 kfree(*tablep);
5389 *tablep = NULL;
5390}
5391
e692ab53 5392static void
e0361851 5393set_table_entry(struct ctl_table *entry,
e692ab53
NP
5394 const char *procname, void *data, int maxlen,
5395 mode_t mode, proc_handler *proc_handler)
5396{
e692ab53
NP
5397 entry->procname = procname;
5398 entry->data = data;
5399 entry->maxlen = maxlen;
5400 entry->mode = mode;
5401 entry->proc_handler = proc_handler;
5402}
5403
5404static struct ctl_table *
5405sd_alloc_ctl_domain_table(struct sched_domain *sd)
5406{
ace8b3d6 5407 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5408
ad1cdc1d
MM
5409 if (table == NULL)
5410 return NULL;
5411
e0361851 5412 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5413 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5414 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5415 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5416 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5417 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5418 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5419 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5420 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5421 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5422 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5423 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5424 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5425 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5426 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5427 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5428 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5429 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5430 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5431 &sd->cache_nice_tries,
5432 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5433 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5434 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5435 /* &table[11] is terminator */
e692ab53
NP
5436
5437 return table;
5438}
5439
8401f775 5440static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5441{
5442 struct ctl_table *entry, *table;
5443 struct sched_domain *sd;
5444 int domain_num = 0, i;
5445 char buf[32];
5446
5447 for_each_domain(cpu, sd)
5448 domain_num++;
5449 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5450 if (table == NULL)
5451 return NULL;
e692ab53
NP
5452
5453 i = 0;
5454 for_each_domain(cpu, sd) {
5455 snprintf(buf, 32, "domain%d", i);
e692ab53 5456 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5457 entry->mode = 0555;
e692ab53
NP
5458 entry->child = sd_alloc_ctl_domain_table(sd);
5459 entry++;
5460 i++;
5461 }
5462 return table;
5463}
5464
5465static struct ctl_table_header *sd_sysctl_header;
6382bc90 5466static void register_sched_domain_sysctl(void)
e692ab53
NP
5467{
5468 int i, cpu_num = num_online_cpus();
5469 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5470 char buf[32];
5471
7378547f
MM
5472 WARN_ON(sd_ctl_dir[0].child);
5473 sd_ctl_dir[0].child = entry;
5474
ad1cdc1d
MM
5475 if (entry == NULL)
5476 return;
5477
97b6ea7b 5478 for_each_online_cpu(i) {
e692ab53 5479 snprintf(buf, 32, "cpu%d", i);
e692ab53 5480 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5481 entry->mode = 0555;
e692ab53 5482 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5483 entry++;
e692ab53 5484 }
7378547f
MM
5485
5486 WARN_ON(sd_sysctl_header);
e692ab53
NP
5487 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5488}
6382bc90 5489
7378547f 5490/* may be called multiple times per register */
6382bc90
MM
5491static void unregister_sched_domain_sysctl(void)
5492{
7378547f
MM
5493 if (sd_sysctl_header)
5494 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5495 sd_sysctl_header = NULL;
7378547f
MM
5496 if (sd_ctl_dir[0].child)
5497 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5498}
e692ab53 5499#else
6382bc90
MM
5500static void register_sched_domain_sysctl(void)
5501{
5502}
5503static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5504{
5505}
5506#endif
5507
1da177e4
LT
5508/*
5509 * migration_call - callback that gets triggered when a CPU is added.
5510 * Here we can start up the necessary migration thread for the new CPU.
5511 */
48f24c4d
IM
5512static int __cpuinit
5513migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5514{
1da177e4 5515 struct task_struct *p;
48f24c4d 5516 int cpu = (long)hcpu;
1da177e4 5517 unsigned long flags;
70b97a7f 5518 struct rq *rq;
1da177e4
LT
5519
5520 switch (action) {
5be9361c
GS
5521 case CPU_LOCK_ACQUIRE:
5522 mutex_lock(&sched_hotcpu_mutex);
5523 break;
5524
1da177e4 5525 case CPU_UP_PREPARE:
8bb78442 5526 case CPU_UP_PREPARE_FROZEN:
dd41f596 5527 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5528 if (IS_ERR(p))
5529 return NOTIFY_BAD;
1da177e4
LT
5530 kthread_bind(p, cpu);
5531 /* Must be high prio: stop_machine expects to yield to it. */
5532 rq = task_rq_lock(p, &flags);
dd41f596 5533 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5534 task_rq_unlock(rq, &flags);
5535 cpu_rq(cpu)->migration_thread = p;
5536 break;
48f24c4d 5537
1da177e4 5538 case CPU_ONLINE:
8bb78442 5539 case CPU_ONLINE_FROZEN:
3a4fa0a2 5540 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5541 wake_up_process(cpu_rq(cpu)->migration_thread);
5542 break;
48f24c4d 5543
1da177e4
LT
5544#ifdef CONFIG_HOTPLUG_CPU
5545 case CPU_UP_CANCELED:
8bb78442 5546 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5547 if (!cpu_rq(cpu)->migration_thread)
5548 break;
1da177e4 5549 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5550 kthread_bind(cpu_rq(cpu)->migration_thread,
5551 any_online_cpu(cpu_online_map));
1da177e4
LT
5552 kthread_stop(cpu_rq(cpu)->migration_thread);
5553 cpu_rq(cpu)->migration_thread = NULL;
5554 break;
48f24c4d 5555
1da177e4 5556 case CPU_DEAD:
8bb78442 5557 case CPU_DEAD_FROZEN:
470fd646 5558 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5559 migrate_live_tasks(cpu);
5560 rq = cpu_rq(cpu);
5561 kthread_stop(rq->migration_thread);
5562 rq->migration_thread = NULL;
5563 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5564 spin_lock_irq(&rq->lock);
a8e504d2 5565 update_rq_clock(rq);
2e1cb74a 5566 deactivate_task(rq, rq->idle, 0);
1da177e4 5567 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5568 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5569 rq->idle->sched_class = &idle_sched_class;
1da177e4 5570 migrate_dead_tasks(cpu);
d2da272a 5571 spin_unlock_irq(&rq->lock);
470fd646 5572 cpuset_unlock();
1da177e4
LT
5573 migrate_nr_uninterruptible(rq);
5574 BUG_ON(rq->nr_running != 0);
5575
5576 /* No need to migrate the tasks: it was best-effort if
5be9361c 5577 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5578 * the requestors. */
5579 spin_lock_irq(&rq->lock);
5580 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5581 struct migration_req *req;
5582
1da177e4 5583 req = list_entry(rq->migration_queue.next,
70b97a7f 5584 struct migration_req, list);
1da177e4
LT
5585 list_del_init(&req->list);
5586 complete(&req->done);
5587 }
5588 spin_unlock_irq(&rq->lock);
5589 break;
5590#endif
5be9361c
GS
5591 case CPU_LOCK_RELEASE:
5592 mutex_unlock(&sched_hotcpu_mutex);
5593 break;
1da177e4
LT
5594 }
5595 return NOTIFY_OK;
5596}
5597
5598/* Register at highest priority so that task migration (migrate_all_tasks)
5599 * happens before everything else.
5600 */
26c2143b 5601static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5602 .notifier_call = migration_call,
5603 .priority = 10
5604};
5605
5606int __init migration_init(void)
5607{
5608 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5609 int err;
48f24c4d
IM
5610
5611 /* Start one for the boot CPU: */
07dccf33
AM
5612 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5613 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5614 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5615 register_cpu_notifier(&migration_notifier);
48f24c4d 5616
1da177e4
LT
5617 return 0;
5618}
5619#endif
5620
5621#ifdef CONFIG_SMP
476f3534
CL
5622
5623/* Number of possible processor ids */
5624int nr_cpu_ids __read_mostly = NR_CPUS;
5625EXPORT_SYMBOL(nr_cpu_ids);
5626
3e9830dc 5627#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5628
5629static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5630{
4dcf6aff
IM
5631 struct sched_group *group = sd->groups;
5632 cpumask_t groupmask;
5633 char str[NR_CPUS];
1da177e4 5634
4dcf6aff
IM
5635 cpumask_scnprintf(str, NR_CPUS, sd->span);
5636 cpus_clear(groupmask);
5637
5638 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5639
5640 if (!(sd->flags & SD_LOAD_BALANCE)) {
5641 printk("does not load-balance\n");
5642 if (sd->parent)
5643 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5644 " has parent");
5645 return -1;
41c7ce9a
NP
5646 }
5647
4dcf6aff
IM
5648 printk(KERN_CONT "span %s\n", str);
5649
5650 if (!cpu_isset(cpu, sd->span)) {
5651 printk(KERN_ERR "ERROR: domain->span does not contain "
5652 "CPU%d\n", cpu);
5653 }
5654 if (!cpu_isset(cpu, group->cpumask)) {
5655 printk(KERN_ERR "ERROR: domain->groups does not contain"
5656 " CPU%d\n", cpu);
5657 }
1da177e4 5658
4dcf6aff 5659 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5660 do {
4dcf6aff
IM
5661 if (!group) {
5662 printk("\n");
5663 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5664 break;
5665 }
5666
4dcf6aff
IM
5667 if (!group->__cpu_power) {
5668 printk(KERN_CONT "\n");
5669 printk(KERN_ERR "ERROR: domain->cpu_power not "
5670 "set\n");
5671 break;
5672 }
1da177e4 5673
4dcf6aff
IM
5674 if (!cpus_weight(group->cpumask)) {
5675 printk(KERN_CONT "\n");
5676 printk(KERN_ERR "ERROR: empty group\n");
5677 break;
5678 }
1da177e4 5679
4dcf6aff
IM
5680 if (cpus_intersects(groupmask, group->cpumask)) {
5681 printk(KERN_CONT "\n");
5682 printk(KERN_ERR "ERROR: repeated CPUs\n");
5683 break;
5684 }
1da177e4 5685
4dcf6aff 5686 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5687
4dcf6aff
IM
5688 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5689 printk(KERN_CONT " %s", str);
1da177e4 5690
4dcf6aff
IM
5691 group = group->next;
5692 } while (group != sd->groups);
5693 printk(KERN_CONT "\n");
1da177e4 5694
4dcf6aff
IM
5695 if (!cpus_equal(sd->span, groupmask))
5696 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5697
4dcf6aff
IM
5698 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5699 printk(KERN_ERR "ERROR: parent span is not a superset "
5700 "of domain->span\n");
5701 return 0;
5702}
1da177e4 5703
4dcf6aff
IM
5704static void sched_domain_debug(struct sched_domain *sd, int cpu)
5705{
5706 int level = 0;
1da177e4 5707
4dcf6aff
IM
5708 if (!sd) {
5709 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5710 return;
5711 }
1da177e4 5712
4dcf6aff
IM
5713 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5714
5715 for (;;) {
5716 if (sched_domain_debug_one(sd, cpu, level))
5717 break;
1da177e4
LT
5718 level++;
5719 sd = sd->parent;
33859f7f 5720 if (!sd)
4dcf6aff
IM
5721 break;
5722 }
1da177e4
LT
5723}
5724#else
48f24c4d 5725# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5726#endif
5727
1a20ff27 5728static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5729{
5730 if (cpus_weight(sd->span) == 1)
5731 return 1;
5732
5733 /* Following flags need at least 2 groups */
5734 if (sd->flags & (SD_LOAD_BALANCE |
5735 SD_BALANCE_NEWIDLE |
5736 SD_BALANCE_FORK |
89c4710e
SS
5737 SD_BALANCE_EXEC |
5738 SD_SHARE_CPUPOWER |
5739 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5740 if (sd->groups != sd->groups->next)
5741 return 0;
5742 }
5743
5744 /* Following flags don't use groups */
5745 if (sd->flags & (SD_WAKE_IDLE |
5746 SD_WAKE_AFFINE |
5747 SD_WAKE_BALANCE))
5748 return 0;
5749
5750 return 1;
5751}
5752
48f24c4d
IM
5753static int
5754sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5755{
5756 unsigned long cflags = sd->flags, pflags = parent->flags;
5757
5758 if (sd_degenerate(parent))
5759 return 1;
5760
5761 if (!cpus_equal(sd->span, parent->span))
5762 return 0;
5763
5764 /* Does parent contain flags not in child? */
5765 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5766 if (cflags & SD_WAKE_AFFINE)
5767 pflags &= ~SD_WAKE_BALANCE;
5768 /* Flags needing groups don't count if only 1 group in parent */
5769 if (parent->groups == parent->groups->next) {
5770 pflags &= ~(SD_LOAD_BALANCE |
5771 SD_BALANCE_NEWIDLE |
5772 SD_BALANCE_FORK |
89c4710e
SS
5773 SD_BALANCE_EXEC |
5774 SD_SHARE_CPUPOWER |
5775 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5776 }
5777 if (~cflags & pflags)
5778 return 0;
5779
5780 return 1;
5781}
5782
1da177e4
LT
5783/*
5784 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5785 * hold the hotplug lock.
5786 */
9c1cfda2 5787static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5788{
70b97a7f 5789 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5790 struct sched_domain *tmp;
5791
5792 /* Remove the sched domains which do not contribute to scheduling. */
5793 for (tmp = sd; tmp; tmp = tmp->parent) {
5794 struct sched_domain *parent = tmp->parent;
5795 if (!parent)
5796 break;
1a848870 5797 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5798 tmp->parent = parent->parent;
1a848870
SS
5799 if (parent->parent)
5800 parent->parent->child = tmp;
5801 }
245af2c7
SS
5802 }
5803
1a848870 5804 if (sd && sd_degenerate(sd)) {
245af2c7 5805 sd = sd->parent;
1a848870
SS
5806 if (sd)
5807 sd->child = NULL;
5808 }
1da177e4
LT
5809
5810 sched_domain_debug(sd, cpu);
5811
674311d5 5812 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5813}
5814
5815/* cpus with isolated domains */
67af63a6 5816static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5817
5818/* Setup the mask of cpus configured for isolated domains */
5819static int __init isolated_cpu_setup(char *str)
5820{
5821 int ints[NR_CPUS], i;
5822
5823 str = get_options(str, ARRAY_SIZE(ints), ints);
5824 cpus_clear(cpu_isolated_map);
5825 for (i = 1; i <= ints[0]; i++)
5826 if (ints[i] < NR_CPUS)
5827 cpu_set(ints[i], cpu_isolated_map);
5828 return 1;
5829}
5830
8927f494 5831__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5832
5833/*
6711cab4
SS
5834 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5835 * to a function which identifies what group(along with sched group) a CPU
5836 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5837 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5838 *
5839 * init_sched_build_groups will build a circular linked list of the groups
5840 * covered by the given span, and will set each group's ->cpumask correctly,
5841 * and ->cpu_power to 0.
5842 */
a616058b 5843static void
6711cab4
SS
5844init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5845 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5846 struct sched_group **sg))
1da177e4
LT
5847{
5848 struct sched_group *first = NULL, *last = NULL;
5849 cpumask_t covered = CPU_MASK_NONE;
5850 int i;
5851
5852 for_each_cpu_mask(i, span) {
6711cab4
SS
5853 struct sched_group *sg;
5854 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5855 int j;
5856
5857 if (cpu_isset(i, covered))
5858 continue;
5859
5860 sg->cpumask = CPU_MASK_NONE;
5517d86b 5861 sg->__cpu_power = 0;
1da177e4
LT
5862
5863 for_each_cpu_mask(j, span) {
6711cab4 5864 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5865 continue;
5866
5867 cpu_set(j, covered);
5868 cpu_set(j, sg->cpumask);
5869 }
5870 if (!first)
5871 first = sg;
5872 if (last)
5873 last->next = sg;
5874 last = sg;
5875 }
5876 last->next = first;
5877}
5878
9c1cfda2 5879#define SD_NODES_PER_DOMAIN 16
1da177e4 5880
9c1cfda2 5881#ifdef CONFIG_NUMA
198e2f18 5882
9c1cfda2
JH
5883/**
5884 * find_next_best_node - find the next node to include in a sched_domain
5885 * @node: node whose sched_domain we're building
5886 * @used_nodes: nodes already in the sched_domain
5887 *
5888 * Find the next node to include in a given scheduling domain. Simply
5889 * finds the closest node not already in the @used_nodes map.
5890 *
5891 * Should use nodemask_t.
5892 */
5893static int find_next_best_node(int node, unsigned long *used_nodes)
5894{
5895 int i, n, val, min_val, best_node = 0;
5896
5897 min_val = INT_MAX;
5898
5899 for (i = 0; i < MAX_NUMNODES; i++) {
5900 /* Start at @node */
5901 n = (node + i) % MAX_NUMNODES;
5902
5903 if (!nr_cpus_node(n))
5904 continue;
5905
5906 /* Skip already used nodes */
5907 if (test_bit(n, used_nodes))
5908 continue;
5909
5910 /* Simple min distance search */
5911 val = node_distance(node, n);
5912
5913 if (val < min_val) {
5914 min_val = val;
5915 best_node = n;
5916 }
5917 }
5918
5919 set_bit(best_node, used_nodes);
5920 return best_node;
5921}
5922
5923/**
5924 * sched_domain_node_span - get a cpumask for a node's sched_domain
5925 * @node: node whose cpumask we're constructing
5926 * @size: number of nodes to include in this span
5927 *
5928 * Given a node, construct a good cpumask for its sched_domain to span. It
5929 * should be one that prevents unnecessary balancing, but also spreads tasks
5930 * out optimally.
5931 */
5932static cpumask_t sched_domain_node_span(int node)
5933{
9c1cfda2 5934 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5935 cpumask_t span, nodemask;
5936 int i;
9c1cfda2
JH
5937
5938 cpus_clear(span);
5939 bitmap_zero(used_nodes, MAX_NUMNODES);
5940
5941 nodemask = node_to_cpumask(node);
5942 cpus_or(span, span, nodemask);
5943 set_bit(node, used_nodes);
5944
5945 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5946 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5947
9c1cfda2
JH
5948 nodemask = node_to_cpumask(next_node);
5949 cpus_or(span, span, nodemask);
5950 }
5951
5952 return span;
5953}
5954#endif
5955
5c45bf27 5956int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5957
9c1cfda2 5958/*
48f24c4d 5959 * SMT sched-domains:
9c1cfda2 5960 */
1da177e4
LT
5961#ifdef CONFIG_SCHED_SMT
5962static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5963static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5964
6711cab4
SS
5965static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5966 struct sched_group **sg)
1da177e4 5967{
6711cab4
SS
5968 if (sg)
5969 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5970 return cpu;
5971}
5972#endif
5973
48f24c4d
IM
5974/*
5975 * multi-core sched-domains:
5976 */
1e9f28fa
SS
5977#ifdef CONFIG_SCHED_MC
5978static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5979static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5980#endif
5981
5982#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5983static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5984 struct sched_group **sg)
1e9f28fa 5985{
6711cab4 5986 int group;
d5a7430d 5987 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 5988 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5989 group = first_cpu(mask);
5990 if (sg)
5991 *sg = &per_cpu(sched_group_core, group);
5992 return group;
1e9f28fa
SS
5993}
5994#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5995static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5996 struct sched_group **sg)
1e9f28fa 5997{
6711cab4
SS
5998 if (sg)
5999 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6000 return cpu;
6001}
6002#endif
6003
1da177e4 6004static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6005static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6006
6711cab4
SS
6007static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6008 struct sched_group **sg)
1da177e4 6009{
6711cab4 6010 int group;
48f24c4d 6011#ifdef CONFIG_SCHED_MC
1e9f28fa 6012 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6013 cpus_and(mask, mask, *cpu_map);
6711cab4 6014 group = first_cpu(mask);
1e9f28fa 6015#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6016 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6017 cpus_and(mask, mask, *cpu_map);
6711cab4 6018 group = first_cpu(mask);
1da177e4 6019#else
6711cab4 6020 group = cpu;
1da177e4 6021#endif
6711cab4
SS
6022 if (sg)
6023 *sg = &per_cpu(sched_group_phys, group);
6024 return group;
1da177e4
LT
6025}
6026
6027#ifdef CONFIG_NUMA
1da177e4 6028/*
9c1cfda2
JH
6029 * The init_sched_build_groups can't handle what we want to do with node
6030 * groups, so roll our own. Now each node has its own list of groups which
6031 * gets dynamically allocated.
1da177e4 6032 */
9c1cfda2 6033static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6034static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6035
9c1cfda2 6036static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6037static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6038
6711cab4
SS
6039static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6040 struct sched_group **sg)
9c1cfda2 6041{
6711cab4
SS
6042 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6043 int group;
6044
6045 cpus_and(nodemask, nodemask, *cpu_map);
6046 group = first_cpu(nodemask);
6047
6048 if (sg)
6049 *sg = &per_cpu(sched_group_allnodes, group);
6050 return group;
1da177e4 6051}
6711cab4 6052
08069033
SS
6053static void init_numa_sched_groups_power(struct sched_group *group_head)
6054{
6055 struct sched_group *sg = group_head;
6056 int j;
6057
6058 if (!sg)
6059 return;
3a5c359a
AK
6060 do {
6061 for_each_cpu_mask(j, sg->cpumask) {
6062 struct sched_domain *sd;
08069033 6063
3a5c359a
AK
6064 sd = &per_cpu(phys_domains, j);
6065 if (j != first_cpu(sd->groups->cpumask)) {
6066 /*
6067 * Only add "power" once for each
6068 * physical package.
6069 */
6070 continue;
6071 }
08069033 6072
3a5c359a
AK
6073 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6074 }
6075 sg = sg->next;
6076 } while (sg != group_head);
08069033 6077}
1da177e4
LT
6078#endif
6079
a616058b 6080#ifdef CONFIG_NUMA
51888ca2
SV
6081/* Free memory allocated for various sched_group structures */
6082static void free_sched_groups(const cpumask_t *cpu_map)
6083{
a616058b 6084 int cpu, i;
51888ca2
SV
6085
6086 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6087 struct sched_group **sched_group_nodes
6088 = sched_group_nodes_bycpu[cpu];
6089
51888ca2
SV
6090 if (!sched_group_nodes)
6091 continue;
6092
6093 for (i = 0; i < MAX_NUMNODES; i++) {
6094 cpumask_t nodemask = node_to_cpumask(i);
6095 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6096
6097 cpus_and(nodemask, nodemask, *cpu_map);
6098 if (cpus_empty(nodemask))
6099 continue;
6100
6101 if (sg == NULL)
6102 continue;
6103 sg = sg->next;
6104next_sg:
6105 oldsg = sg;
6106 sg = sg->next;
6107 kfree(oldsg);
6108 if (oldsg != sched_group_nodes[i])
6109 goto next_sg;
6110 }
6111 kfree(sched_group_nodes);
6112 sched_group_nodes_bycpu[cpu] = NULL;
6113 }
51888ca2 6114}
a616058b
SS
6115#else
6116static void free_sched_groups(const cpumask_t *cpu_map)
6117{
6118}
6119#endif
51888ca2 6120
89c4710e
SS
6121/*
6122 * Initialize sched groups cpu_power.
6123 *
6124 * cpu_power indicates the capacity of sched group, which is used while
6125 * distributing the load between different sched groups in a sched domain.
6126 * Typically cpu_power for all the groups in a sched domain will be same unless
6127 * there are asymmetries in the topology. If there are asymmetries, group
6128 * having more cpu_power will pickup more load compared to the group having
6129 * less cpu_power.
6130 *
6131 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6132 * the maximum number of tasks a group can handle in the presence of other idle
6133 * or lightly loaded groups in the same sched domain.
6134 */
6135static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6136{
6137 struct sched_domain *child;
6138 struct sched_group *group;
6139
6140 WARN_ON(!sd || !sd->groups);
6141
6142 if (cpu != first_cpu(sd->groups->cpumask))
6143 return;
6144
6145 child = sd->child;
6146
5517d86b
ED
6147 sd->groups->__cpu_power = 0;
6148
89c4710e
SS
6149 /*
6150 * For perf policy, if the groups in child domain share resources
6151 * (for example cores sharing some portions of the cache hierarchy
6152 * or SMT), then set this domain groups cpu_power such that each group
6153 * can handle only one task, when there are other idle groups in the
6154 * same sched domain.
6155 */
6156 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6157 (child->flags &
6158 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6159 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6160 return;
6161 }
6162
89c4710e
SS
6163 /*
6164 * add cpu_power of each child group to this groups cpu_power
6165 */
6166 group = child->groups;
6167 do {
5517d86b 6168 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6169 group = group->next;
6170 } while (group != child->groups);
6171}
6172
1da177e4 6173/*
1a20ff27
DG
6174 * Build sched domains for a given set of cpus and attach the sched domains
6175 * to the individual cpus
1da177e4 6176 */
51888ca2 6177static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6178{
6179 int i;
d1b55138
JH
6180#ifdef CONFIG_NUMA
6181 struct sched_group **sched_group_nodes = NULL;
6711cab4 6182 int sd_allnodes = 0;
d1b55138
JH
6183
6184 /*
6185 * Allocate the per-node list of sched groups
6186 */
5cf9f062 6187 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
d3a5aa98 6188 GFP_KERNEL);
d1b55138
JH
6189 if (!sched_group_nodes) {
6190 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6191 return -ENOMEM;
d1b55138
JH
6192 }
6193 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6194#endif
1da177e4
LT
6195
6196 /*
1a20ff27 6197 * Set up domains for cpus specified by the cpu_map.
1da177e4 6198 */
1a20ff27 6199 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6200 struct sched_domain *sd = NULL, *p;
6201 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6202
1a20ff27 6203 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6204
6205#ifdef CONFIG_NUMA
dd41f596
IM
6206 if (cpus_weight(*cpu_map) >
6207 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6208 sd = &per_cpu(allnodes_domains, i);
6209 *sd = SD_ALLNODES_INIT;
6210 sd->span = *cpu_map;
6711cab4 6211 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6212 p = sd;
6711cab4 6213 sd_allnodes = 1;
9c1cfda2
JH
6214 } else
6215 p = NULL;
6216
1da177e4 6217 sd = &per_cpu(node_domains, i);
1da177e4 6218 *sd = SD_NODE_INIT;
9c1cfda2
JH
6219 sd->span = sched_domain_node_span(cpu_to_node(i));
6220 sd->parent = p;
1a848870
SS
6221 if (p)
6222 p->child = sd;
9c1cfda2 6223 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6224#endif
6225
6226 p = sd;
6227 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6228 *sd = SD_CPU_INIT;
6229 sd->span = nodemask;
6230 sd->parent = p;
1a848870
SS
6231 if (p)
6232 p->child = sd;
6711cab4 6233 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6234
1e9f28fa
SS
6235#ifdef CONFIG_SCHED_MC
6236 p = sd;
6237 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6238 *sd = SD_MC_INIT;
6239 sd->span = cpu_coregroup_map(i);
6240 cpus_and(sd->span, sd->span, *cpu_map);
6241 sd->parent = p;
1a848870 6242 p->child = sd;
6711cab4 6243 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6244#endif
6245
1da177e4
LT
6246#ifdef CONFIG_SCHED_SMT
6247 p = sd;
6248 sd = &per_cpu(cpu_domains, i);
1da177e4 6249 *sd = SD_SIBLING_INIT;
d5a7430d 6250 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6251 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6252 sd->parent = p;
1a848870 6253 p->child = sd;
6711cab4 6254 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6255#endif
6256 }
6257
6258#ifdef CONFIG_SCHED_SMT
6259 /* Set up CPU (sibling) groups */
9c1cfda2 6260 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6261 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6262 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6263 if (i != first_cpu(this_sibling_map))
6264 continue;
6265
dd41f596
IM
6266 init_sched_build_groups(this_sibling_map, cpu_map,
6267 &cpu_to_cpu_group);
1da177e4
LT
6268 }
6269#endif
6270
1e9f28fa
SS
6271#ifdef CONFIG_SCHED_MC
6272 /* Set up multi-core groups */
6273 for_each_cpu_mask(i, *cpu_map) {
6274 cpumask_t this_core_map = cpu_coregroup_map(i);
6275 cpus_and(this_core_map, this_core_map, *cpu_map);
6276 if (i != first_cpu(this_core_map))
6277 continue;
dd41f596
IM
6278 init_sched_build_groups(this_core_map, cpu_map,
6279 &cpu_to_core_group);
1e9f28fa
SS
6280 }
6281#endif
6282
1da177e4
LT
6283 /* Set up physical groups */
6284 for (i = 0; i < MAX_NUMNODES; i++) {
6285 cpumask_t nodemask = node_to_cpumask(i);
6286
1a20ff27 6287 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6288 if (cpus_empty(nodemask))
6289 continue;
6290
6711cab4 6291 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6292 }
6293
6294#ifdef CONFIG_NUMA
6295 /* Set up node groups */
6711cab4 6296 if (sd_allnodes)
dd41f596
IM
6297 init_sched_build_groups(*cpu_map, cpu_map,
6298 &cpu_to_allnodes_group);
9c1cfda2
JH
6299
6300 for (i = 0; i < MAX_NUMNODES; i++) {
6301 /* Set up node groups */
6302 struct sched_group *sg, *prev;
6303 cpumask_t nodemask = node_to_cpumask(i);
6304 cpumask_t domainspan;
6305 cpumask_t covered = CPU_MASK_NONE;
6306 int j;
6307
6308 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6309 if (cpus_empty(nodemask)) {
6310 sched_group_nodes[i] = NULL;
9c1cfda2 6311 continue;
d1b55138 6312 }
9c1cfda2
JH
6313
6314 domainspan = sched_domain_node_span(i);
6315 cpus_and(domainspan, domainspan, *cpu_map);
6316
15f0b676 6317 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6318 if (!sg) {
6319 printk(KERN_WARNING "Can not alloc domain group for "
6320 "node %d\n", i);
6321 goto error;
6322 }
9c1cfda2
JH
6323 sched_group_nodes[i] = sg;
6324 for_each_cpu_mask(j, nodemask) {
6325 struct sched_domain *sd;
9761eea8 6326
9c1cfda2
JH
6327 sd = &per_cpu(node_domains, j);
6328 sd->groups = sg;
9c1cfda2 6329 }
5517d86b 6330 sg->__cpu_power = 0;
9c1cfda2 6331 sg->cpumask = nodemask;
51888ca2 6332 sg->next = sg;
9c1cfda2
JH
6333 cpus_or(covered, covered, nodemask);
6334 prev = sg;
6335
6336 for (j = 0; j < MAX_NUMNODES; j++) {
6337 cpumask_t tmp, notcovered;
6338 int n = (i + j) % MAX_NUMNODES;
6339
6340 cpus_complement(notcovered, covered);
6341 cpus_and(tmp, notcovered, *cpu_map);
6342 cpus_and(tmp, tmp, domainspan);
6343 if (cpus_empty(tmp))
6344 break;
6345
6346 nodemask = node_to_cpumask(n);
6347 cpus_and(tmp, tmp, nodemask);
6348 if (cpus_empty(tmp))
6349 continue;
6350
15f0b676
SV
6351 sg = kmalloc_node(sizeof(struct sched_group),
6352 GFP_KERNEL, i);
9c1cfda2
JH
6353 if (!sg) {
6354 printk(KERN_WARNING
6355 "Can not alloc domain group for node %d\n", j);
51888ca2 6356 goto error;
9c1cfda2 6357 }
5517d86b 6358 sg->__cpu_power = 0;
9c1cfda2 6359 sg->cpumask = tmp;
51888ca2 6360 sg->next = prev->next;
9c1cfda2
JH
6361 cpus_or(covered, covered, tmp);
6362 prev->next = sg;
6363 prev = sg;
6364 }
9c1cfda2 6365 }
1da177e4
LT
6366#endif
6367
6368 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6369#ifdef CONFIG_SCHED_SMT
1a20ff27 6370 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6371 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6372
89c4710e 6373 init_sched_groups_power(i, sd);
5c45bf27 6374 }
1da177e4 6375#endif
1e9f28fa 6376#ifdef CONFIG_SCHED_MC
5c45bf27 6377 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6378 struct sched_domain *sd = &per_cpu(core_domains, i);
6379
89c4710e 6380 init_sched_groups_power(i, sd);
5c45bf27
SS
6381 }
6382#endif
1e9f28fa 6383
5c45bf27 6384 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6385 struct sched_domain *sd = &per_cpu(phys_domains, i);
6386
89c4710e 6387 init_sched_groups_power(i, sd);
1da177e4
LT
6388 }
6389
9c1cfda2 6390#ifdef CONFIG_NUMA
08069033
SS
6391 for (i = 0; i < MAX_NUMNODES; i++)
6392 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6393
6711cab4
SS
6394 if (sd_allnodes) {
6395 struct sched_group *sg;
f712c0c7 6396
6711cab4 6397 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6398 init_numa_sched_groups_power(sg);
6399 }
9c1cfda2
JH
6400#endif
6401
1da177e4 6402 /* Attach the domains */
1a20ff27 6403 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6404 struct sched_domain *sd;
6405#ifdef CONFIG_SCHED_SMT
6406 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6407#elif defined(CONFIG_SCHED_MC)
6408 sd = &per_cpu(core_domains, i);
1da177e4
LT
6409#else
6410 sd = &per_cpu(phys_domains, i);
6411#endif
6412 cpu_attach_domain(sd, i);
6413 }
51888ca2
SV
6414
6415 return 0;
6416
a616058b 6417#ifdef CONFIG_NUMA
51888ca2
SV
6418error:
6419 free_sched_groups(cpu_map);
6420 return -ENOMEM;
a616058b 6421#endif
1da177e4 6422}
029190c5
PJ
6423
6424static cpumask_t *doms_cur; /* current sched domains */
6425static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6426
6427/*
6428 * Special case: If a kmalloc of a doms_cur partition (array of
6429 * cpumask_t) fails, then fallback to a single sched domain,
6430 * as determined by the single cpumask_t fallback_doms.
6431 */
6432static cpumask_t fallback_doms;
6433
1a20ff27
DG
6434/*
6435 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6436 * For now this just excludes isolated cpus, but could be used to
6437 * exclude other special cases in the future.
1a20ff27 6438 */
51888ca2 6439static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6440{
7378547f
MM
6441 int err;
6442
029190c5
PJ
6443 ndoms_cur = 1;
6444 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6445 if (!doms_cur)
6446 doms_cur = &fallback_doms;
6447 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6448 err = build_sched_domains(doms_cur);
6382bc90 6449 register_sched_domain_sysctl();
7378547f
MM
6450
6451 return err;
1a20ff27
DG
6452}
6453
6454static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6455{
51888ca2 6456 free_sched_groups(cpu_map);
9c1cfda2 6457}
1da177e4 6458
1a20ff27
DG
6459/*
6460 * Detach sched domains from a group of cpus specified in cpu_map
6461 * These cpus will now be attached to the NULL domain
6462 */
858119e1 6463static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6464{
6465 int i;
6466
6382bc90
MM
6467 unregister_sched_domain_sysctl();
6468
1a20ff27
DG
6469 for_each_cpu_mask(i, *cpu_map)
6470 cpu_attach_domain(NULL, i);
6471 synchronize_sched();
6472 arch_destroy_sched_domains(cpu_map);
6473}
6474
029190c5
PJ
6475/*
6476 * Partition sched domains as specified by the 'ndoms_new'
6477 * cpumasks in the array doms_new[] of cpumasks. This compares
6478 * doms_new[] to the current sched domain partitioning, doms_cur[].
6479 * It destroys each deleted domain and builds each new domain.
6480 *
6481 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6482 * The masks don't intersect (don't overlap.) We should setup one
6483 * sched domain for each mask. CPUs not in any of the cpumasks will
6484 * not be load balanced. If the same cpumask appears both in the
6485 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6486 * it as it is.
6487 *
6488 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6489 * ownership of it and will kfree it when done with it. If the caller
6490 * failed the kmalloc call, then it can pass in doms_new == NULL,
6491 * and partition_sched_domains() will fallback to the single partition
6492 * 'fallback_doms'.
6493 *
6494 * Call with hotplug lock held
6495 */
6496void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6497{
6498 int i, j;
6499
7378547f
MM
6500 /* always unregister in case we don't destroy any domains */
6501 unregister_sched_domain_sysctl();
6502
029190c5
PJ
6503 if (doms_new == NULL) {
6504 ndoms_new = 1;
6505 doms_new = &fallback_doms;
6506 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6507 }
6508
6509 /* Destroy deleted domains */
6510 for (i = 0; i < ndoms_cur; i++) {
6511 for (j = 0; j < ndoms_new; j++) {
6512 if (cpus_equal(doms_cur[i], doms_new[j]))
6513 goto match1;
6514 }
6515 /* no match - a current sched domain not in new doms_new[] */
6516 detach_destroy_domains(doms_cur + i);
6517match1:
6518 ;
6519 }
6520
6521 /* Build new domains */
6522 for (i = 0; i < ndoms_new; i++) {
6523 for (j = 0; j < ndoms_cur; j++) {
6524 if (cpus_equal(doms_new[i], doms_cur[j]))
6525 goto match2;
6526 }
6527 /* no match - add a new doms_new */
6528 build_sched_domains(doms_new + i);
6529match2:
6530 ;
6531 }
6532
6533 /* Remember the new sched domains */
6534 if (doms_cur != &fallback_doms)
6535 kfree(doms_cur);
6536 doms_cur = doms_new;
6537 ndoms_cur = ndoms_new;
7378547f
MM
6538
6539 register_sched_domain_sysctl();
029190c5
PJ
6540}
6541
5c45bf27 6542#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6543static int arch_reinit_sched_domains(void)
5c45bf27
SS
6544{
6545 int err;
6546
5be9361c 6547 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6548 detach_destroy_domains(&cpu_online_map);
6549 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6550 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6551
6552 return err;
6553}
6554
6555static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6556{
6557 int ret;
6558
6559 if (buf[0] != '0' && buf[0] != '1')
6560 return -EINVAL;
6561
6562 if (smt)
6563 sched_smt_power_savings = (buf[0] == '1');
6564 else
6565 sched_mc_power_savings = (buf[0] == '1');
6566
6567 ret = arch_reinit_sched_domains();
6568
6569 return ret ? ret : count;
6570}
6571
5c45bf27
SS
6572#ifdef CONFIG_SCHED_MC
6573static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6574{
6575 return sprintf(page, "%u\n", sched_mc_power_savings);
6576}
48f24c4d
IM
6577static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6578 const char *buf, size_t count)
5c45bf27
SS
6579{
6580 return sched_power_savings_store(buf, count, 0);
6581}
6707de00
AB
6582static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6583 sched_mc_power_savings_store);
5c45bf27
SS
6584#endif
6585
6586#ifdef CONFIG_SCHED_SMT
6587static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6588{
6589 return sprintf(page, "%u\n", sched_smt_power_savings);
6590}
48f24c4d
IM
6591static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6592 const char *buf, size_t count)
5c45bf27
SS
6593{
6594 return sched_power_savings_store(buf, count, 1);
6595}
6707de00
AB
6596static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6597 sched_smt_power_savings_store);
6598#endif
6599
6600int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6601{
6602 int err = 0;
6603
6604#ifdef CONFIG_SCHED_SMT
6605 if (smt_capable())
6606 err = sysfs_create_file(&cls->kset.kobj,
6607 &attr_sched_smt_power_savings.attr);
6608#endif
6609#ifdef CONFIG_SCHED_MC
6610 if (!err && mc_capable())
6611 err = sysfs_create_file(&cls->kset.kobj,
6612 &attr_sched_mc_power_savings.attr);
6613#endif
6614 return err;
6615}
5c45bf27
SS
6616#endif
6617
1da177e4
LT
6618/*
6619 * Force a reinitialization of the sched domains hierarchy. The domains
6620 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6621 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6622 * which will prevent rebalancing while the sched domains are recalculated.
6623 */
6624static int update_sched_domains(struct notifier_block *nfb,
6625 unsigned long action, void *hcpu)
6626{
1da177e4
LT
6627 switch (action) {
6628 case CPU_UP_PREPARE:
8bb78442 6629 case CPU_UP_PREPARE_FROZEN:
1da177e4 6630 case CPU_DOWN_PREPARE:
8bb78442 6631 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6632 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6633 return NOTIFY_OK;
6634
6635 case CPU_UP_CANCELED:
8bb78442 6636 case CPU_UP_CANCELED_FROZEN:
1da177e4 6637 case CPU_DOWN_FAILED:
8bb78442 6638 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6639 case CPU_ONLINE:
8bb78442 6640 case CPU_ONLINE_FROZEN:
1da177e4 6641 case CPU_DEAD:
8bb78442 6642 case CPU_DEAD_FROZEN:
1da177e4
LT
6643 /*
6644 * Fall through and re-initialise the domains.
6645 */
6646 break;
6647 default:
6648 return NOTIFY_DONE;
6649 }
6650
6651 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6652 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6653
6654 return NOTIFY_OK;
6655}
1da177e4
LT
6656
6657void __init sched_init_smp(void)
6658{
5c1e1767
NP
6659 cpumask_t non_isolated_cpus;
6660
5be9361c 6661 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6662 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6663 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6664 if (cpus_empty(non_isolated_cpus))
6665 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6666 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6667 /* XXX: Theoretical race here - CPU may be hotplugged now */
6668 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6669
6670 /* Move init over to a non-isolated CPU */
6671 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6672 BUG();
1da177e4
LT
6673}
6674#else
6675void __init sched_init_smp(void)
6676{
6677}
6678#endif /* CONFIG_SMP */
6679
6680int in_sched_functions(unsigned long addr)
6681{
6682 /* Linker adds these: start and end of __sched functions */
6683 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6684
1da177e4
LT
6685 return in_lock_functions(addr) ||
6686 (addr >= (unsigned long)__sched_text_start
6687 && addr < (unsigned long)__sched_text_end);
6688}
6689
a9957449 6690static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6691{
6692 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6693#ifdef CONFIG_FAIR_GROUP_SCHED
6694 cfs_rq->rq = rq;
6695#endif
67e9fb2a 6696 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6697}
6698
1da177e4
LT
6699void __init sched_init(void)
6700{
476f3534 6701 int highest_cpu = 0;
dd41f596
IM
6702 int i, j;
6703
0a945022 6704 for_each_possible_cpu(i) {
dd41f596 6705 struct rt_prio_array *array;
70b97a7f 6706 struct rq *rq;
1da177e4
LT
6707
6708 rq = cpu_rq(i);
6709 spin_lock_init(&rq->lock);
fcb99371 6710 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6711 rq->nr_running = 0;
dd41f596
IM
6712 rq->clock = 1;
6713 init_cfs_rq(&rq->cfs, rq);
6714#ifdef CONFIG_FAIR_GROUP_SCHED
6715 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6716 {
6717 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6718 struct sched_entity *se =
6719 &per_cpu(init_sched_entity, i);
6720
6721 init_cfs_rq_p[i] = cfs_rq;
6722 init_cfs_rq(cfs_rq, rq);
4cf86d77 6723 cfs_rq->tg = &init_task_group;
3a252015 6724 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6725 &rq->leaf_cfs_rq_list);
6726
3a252015
IM
6727 init_sched_entity_p[i] = se;
6728 se->cfs_rq = &rq->cfs;
6729 se->my_q = cfs_rq;
4cf86d77 6730 se->load.weight = init_task_group_load;
9b5b7751 6731 se->load.inv_weight =
4cf86d77 6732 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6733 se->parent = NULL;
6734 }
4cf86d77 6735 init_task_group.shares = init_task_group_load;
5cb350ba 6736 spin_lock_init(&init_task_group.lock);
dd41f596 6737#endif
1da177e4 6738
dd41f596
IM
6739 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6740 rq->cpu_load[j] = 0;
1da177e4 6741#ifdef CONFIG_SMP
41c7ce9a 6742 rq->sd = NULL;
1da177e4 6743 rq->active_balance = 0;
dd41f596 6744 rq->next_balance = jiffies;
1da177e4 6745 rq->push_cpu = 0;
0a2966b4 6746 rq->cpu = i;
1da177e4
LT
6747 rq->migration_thread = NULL;
6748 INIT_LIST_HEAD(&rq->migration_queue);
6749#endif
6750 atomic_set(&rq->nr_iowait, 0);
6751
dd41f596
IM
6752 array = &rq->rt.active;
6753 for (j = 0; j < MAX_RT_PRIO; j++) {
6754 INIT_LIST_HEAD(array->queue + j);
6755 __clear_bit(j, array->bitmap);
1da177e4 6756 }
476f3534 6757 highest_cpu = i;
dd41f596
IM
6758 /* delimiter for bitsearch: */
6759 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6760 }
6761
2dd73a4f 6762 set_load_weight(&init_task);
b50f60ce 6763
e107be36
AK
6764#ifdef CONFIG_PREEMPT_NOTIFIERS
6765 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6766#endif
6767
c9819f45 6768#ifdef CONFIG_SMP
476f3534 6769 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6770 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6771#endif
6772
b50f60ce
HC
6773#ifdef CONFIG_RT_MUTEXES
6774 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6775#endif
6776
1da177e4
LT
6777 /*
6778 * The boot idle thread does lazy MMU switching as well:
6779 */
6780 atomic_inc(&init_mm.mm_count);
6781 enter_lazy_tlb(&init_mm, current);
6782
6783 /*
6784 * Make us the idle thread. Technically, schedule() should not be
6785 * called from this thread, however somewhere below it might be,
6786 * but because we are the idle thread, we just pick up running again
6787 * when this runqueue becomes "idle".
6788 */
6789 init_idle(current, smp_processor_id());
dd41f596
IM
6790 /*
6791 * During early bootup we pretend to be a normal task:
6792 */
6793 current->sched_class = &fair_sched_class;
1da177e4
LT
6794}
6795
6796#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6797void __might_sleep(char *file, int line)
6798{
48f24c4d 6799#ifdef in_atomic
1da177e4
LT
6800 static unsigned long prev_jiffy; /* ratelimiting */
6801
6802 if ((in_atomic() || irqs_disabled()) &&
6803 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6804 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6805 return;
6806 prev_jiffy = jiffies;
91368d73 6807 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6808 " context at %s:%d\n", file, line);
6809 printk("in_atomic():%d, irqs_disabled():%d\n",
6810 in_atomic(), irqs_disabled());
a4c410f0 6811 debug_show_held_locks(current);
3117df04
IM
6812 if (irqs_disabled())
6813 print_irqtrace_events(current);
1da177e4
LT
6814 dump_stack();
6815 }
6816#endif
6817}
6818EXPORT_SYMBOL(__might_sleep);
6819#endif
6820
6821#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6822static void normalize_task(struct rq *rq, struct task_struct *p)
6823{
6824 int on_rq;
6825 update_rq_clock(rq);
6826 on_rq = p->se.on_rq;
6827 if (on_rq)
6828 deactivate_task(rq, p, 0);
6829 __setscheduler(rq, p, SCHED_NORMAL, 0);
6830 if (on_rq) {
6831 activate_task(rq, p, 0);
6832 resched_task(rq->curr);
6833 }
6834}
6835
1da177e4
LT
6836void normalize_rt_tasks(void)
6837{
a0f98a1c 6838 struct task_struct *g, *p;
1da177e4 6839 unsigned long flags;
70b97a7f 6840 struct rq *rq;
1da177e4
LT
6841
6842 read_lock_irq(&tasklist_lock);
a0f98a1c 6843 do_each_thread(g, p) {
178be793
IM
6844 /*
6845 * Only normalize user tasks:
6846 */
6847 if (!p->mm)
6848 continue;
6849
6cfb0d5d 6850 p->se.exec_start = 0;
6cfb0d5d 6851#ifdef CONFIG_SCHEDSTATS
dd41f596 6852 p->se.wait_start = 0;
dd41f596 6853 p->se.sleep_start = 0;
dd41f596 6854 p->se.block_start = 0;
6cfb0d5d 6855#endif
dd41f596
IM
6856 task_rq(p)->clock = 0;
6857
6858 if (!rt_task(p)) {
6859 /*
6860 * Renice negative nice level userspace
6861 * tasks back to 0:
6862 */
6863 if (TASK_NICE(p) < 0 && p->mm)
6864 set_user_nice(p, 0);
1da177e4 6865 continue;
dd41f596 6866 }
1da177e4 6867
b29739f9
IM
6868 spin_lock_irqsave(&p->pi_lock, flags);
6869 rq = __task_rq_lock(p);
1da177e4 6870
178be793 6871 normalize_task(rq, p);
3a5e4dc1 6872
b29739f9
IM
6873 __task_rq_unlock(rq);
6874 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6875 } while_each_thread(g, p);
6876
1da177e4
LT
6877 read_unlock_irq(&tasklist_lock);
6878}
6879
6880#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6881
6882#ifdef CONFIG_IA64
6883/*
6884 * These functions are only useful for the IA64 MCA handling.
6885 *
6886 * They can only be called when the whole system has been
6887 * stopped - every CPU needs to be quiescent, and no scheduling
6888 * activity can take place. Using them for anything else would
6889 * be a serious bug, and as a result, they aren't even visible
6890 * under any other configuration.
6891 */
6892
6893/**
6894 * curr_task - return the current task for a given cpu.
6895 * @cpu: the processor in question.
6896 *
6897 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6898 */
36c8b586 6899struct task_struct *curr_task(int cpu)
1df5c10a
LT
6900{
6901 return cpu_curr(cpu);
6902}
6903
6904/**
6905 * set_curr_task - set the current task for a given cpu.
6906 * @cpu: the processor in question.
6907 * @p: the task pointer to set.
6908 *
6909 * Description: This function must only be used when non-maskable interrupts
6910 * are serviced on a separate stack. It allows the architecture to switch the
6911 * notion of the current task on a cpu in a non-blocking manner. This function
6912 * must be called with all CPU's synchronized, and interrupts disabled, the
6913 * and caller must save the original value of the current task (see
6914 * curr_task() above) and restore that value before reenabling interrupts and
6915 * re-starting the system.
6916 *
6917 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6918 */
36c8b586 6919void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6920{
6921 cpu_curr(cpu) = p;
6922}
6923
6924#endif
29f59db3
SV
6925
6926#ifdef CONFIG_FAIR_GROUP_SCHED
6927
29f59db3 6928/* allocate runqueue etc for a new task group */
4cf86d77 6929struct task_group *sched_create_group(void)
29f59db3 6930{
4cf86d77 6931 struct task_group *tg;
29f59db3
SV
6932 struct cfs_rq *cfs_rq;
6933 struct sched_entity *se;
9b5b7751 6934 struct rq *rq;
29f59db3
SV
6935 int i;
6936
29f59db3
SV
6937 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6938 if (!tg)
6939 return ERR_PTR(-ENOMEM);
6940
9b5b7751 6941 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6942 if (!tg->cfs_rq)
6943 goto err;
9b5b7751 6944 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6945 if (!tg->se)
6946 goto err;
6947
6948 for_each_possible_cpu(i) {
9b5b7751 6949 rq = cpu_rq(i);
29f59db3
SV
6950
6951 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6952 cpu_to_node(i));
6953 if (!cfs_rq)
6954 goto err;
6955
6956 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6957 cpu_to_node(i));
6958 if (!se)
6959 goto err;
6960
6961 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6962 memset(se, 0, sizeof(struct sched_entity));
6963
6964 tg->cfs_rq[i] = cfs_rq;
6965 init_cfs_rq(cfs_rq, rq);
6966 cfs_rq->tg = tg;
29f59db3
SV
6967
6968 tg->se[i] = se;
6969 se->cfs_rq = &rq->cfs;
6970 se->my_q = cfs_rq;
6971 se->load.weight = NICE_0_LOAD;
6972 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6973 se->parent = NULL;
6974 }
6975
9b5b7751
SV
6976 for_each_possible_cpu(i) {
6977 rq = cpu_rq(i);
6978 cfs_rq = tg->cfs_rq[i];
6979 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6980 }
29f59db3 6981
9b5b7751 6982 tg->shares = NICE_0_LOAD;
5cb350ba 6983 spin_lock_init(&tg->lock);
29f59db3 6984
9b5b7751 6985 return tg;
29f59db3
SV
6986
6987err:
6988 for_each_possible_cpu(i) {
a65914b3 6989 if (tg->cfs_rq)
29f59db3 6990 kfree(tg->cfs_rq[i]);
a65914b3 6991 if (tg->se)
29f59db3
SV
6992 kfree(tg->se[i]);
6993 }
a65914b3
IM
6994 kfree(tg->cfs_rq);
6995 kfree(tg->se);
6996 kfree(tg);
29f59db3
SV
6997
6998 return ERR_PTR(-ENOMEM);
6999}
7000
9b5b7751
SV
7001/* rcu callback to free various structures associated with a task group */
7002static void free_sched_group(struct rcu_head *rhp)
29f59db3 7003{
9b5b7751 7004 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 7005 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
7006 struct sched_entity *se;
7007 int i;
7008
29f59db3
SV
7009 /* now it should be safe to free those cfs_rqs */
7010 for_each_possible_cpu(i) {
7011 cfs_rq = tg->cfs_rq[i];
7012 kfree(cfs_rq);
7013
7014 se = tg->se[i];
7015 kfree(se);
7016 }
7017
7018 kfree(tg->cfs_rq);
7019 kfree(tg->se);
7020 kfree(tg);
7021}
7022
9b5b7751 7023/* Destroy runqueue etc associated with a task group */
4cf86d77 7024void sched_destroy_group(struct task_group *tg)
29f59db3 7025{
9b5b7751
SV
7026 struct cfs_rq *cfs_rq;
7027 int i;
29f59db3 7028
9b5b7751
SV
7029 for_each_possible_cpu(i) {
7030 cfs_rq = tg->cfs_rq[i];
7031 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7032 }
7033
7034 cfs_rq = tg->cfs_rq[0];
7035
7036 /* wait for possible concurrent references to cfs_rqs complete */
7037 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
7038}
7039
9b5b7751 7040/* change task's runqueue when it moves between groups.
3a252015
IM
7041 * The caller of this function should have put the task in its new group
7042 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7043 * reflect its new group.
9b5b7751
SV
7044 */
7045void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7046{
7047 int on_rq, running;
7048 unsigned long flags;
7049 struct rq *rq;
7050
7051 rq = task_rq_lock(tsk, &flags);
7052
7053 if (tsk->sched_class != &fair_sched_class)
7054 goto done;
7055
7056 update_rq_clock(rq);
7057
7058 running = task_running(rq, tsk);
7059 on_rq = tsk->se.on_rq;
7060
83b699ed 7061 if (on_rq) {
29f59db3 7062 dequeue_task(rq, tsk, 0);
83b699ed
SV
7063 if (unlikely(running))
7064 tsk->sched_class->put_prev_task(rq, tsk);
7065 }
29f59db3
SV
7066
7067 set_task_cfs_rq(tsk);
7068
83b699ed
SV
7069 if (on_rq) {
7070 if (unlikely(running))
7071 tsk->sched_class->set_curr_task(rq);
7074badb 7072 enqueue_task(rq, tsk, 0);
83b699ed 7073 }
29f59db3
SV
7074
7075done:
7076 task_rq_unlock(rq, &flags);
7077}
7078
7079static void set_se_shares(struct sched_entity *se, unsigned long shares)
7080{
7081 struct cfs_rq *cfs_rq = se->cfs_rq;
7082 struct rq *rq = cfs_rq->rq;
7083 int on_rq;
7084
7085 spin_lock_irq(&rq->lock);
7086
7087 on_rq = se->on_rq;
7088 if (on_rq)
7089 dequeue_entity(cfs_rq, se, 0);
7090
7091 se->load.weight = shares;
7092 se->load.inv_weight = div64_64((1ULL<<32), shares);
7093
7094 if (on_rq)
7095 enqueue_entity(cfs_rq, se, 0);
7096
7097 spin_unlock_irq(&rq->lock);
7098}
7099
4cf86d77 7100int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7101{
7102 int i;
29f59db3 7103
5cb350ba 7104 spin_lock(&tg->lock);
9b5b7751 7105 if (tg->shares == shares)
5cb350ba 7106 goto done;
29f59db3 7107
9b5b7751 7108 tg->shares = shares;
29f59db3 7109 for_each_possible_cpu(i)
9b5b7751 7110 set_se_shares(tg->se[i], shares);
29f59db3 7111
5cb350ba
DG
7112done:
7113 spin_unlock(&tg->lock);
9b5b7751 7114 return 0;
29f59db3
SV
7115}
7116
5cb350ba
DG
7117unsigned long sched_group_shares(struct task_group *tg)
7118{
7119 return tg->shares;
7120}
7121
3a252015 7122#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7123
7124#ifdef CONFIG_FAIR_CGROUP_SCHED
7125
7126/* return corresponding task_group object of a cgroup */
7127static inline struct task_group *cgroup_tg(struct cgroup *cont)
7128{
7129 return container_of(cgroup_subsys_state(cont, cpu_cgroup_subsys_id),
7130 struct task_group, css);
7131}
7132
7133static struct cgroup_subsys_state *
7134cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
7135{
7136 struct task_group *tg;
7137
7138 if (!cont->parent) {
7139 /* This is early initialization for the top cgroup */
7140 init_task_group.css.cgroup = cont;
7141 return &init_task_group.css;
7142 }
7143
7144 /* we support only 1-level deep hierarchical scheduler atm */
7145 if (cont->parent->parent)
7146 return ERR_PTR(-EINVAL);
7147
7148 tg = sched_create_group();
7149 if (IS_ERR(tg))
7150 return ERR_PTR(-ENOMEM);
7151
7152 /* Bind the cgroup to task_group object we just created */
7153 tg->css.cgroup = cont;
7154
7155 return &tg->css;
7156}
7157
7158static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7159 struct cgroup *cont)
7160{
7161 struct task_group *tg = cgroup_tg(cont);
7162
7163 sched_destroy_group(tg);
7164}
7165
7166static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7167 struct cgroup *cont, struct task_struct *tsk)
7168{
7169 /* We don't support RT-tasks being in separate groups */
7170 if (tsk->sched_class != &fair_sched_class)
7171 return -EINVAL;
7172
7173 return 0;
7174}
7175
7176static void
7177cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cont,
7178 struct cgroup *old_cont, struct task_struct *tsk)
7179{
7180 sched_move_task(tsk);
7181}
7182
7183static ssize_t cpu_shares_write(struct cgroup *cont, struct cftype *cftype,
7184 struct file *file, const char __user *userbuf,
7185 size_t nbytes, loff_t *ppos)
7186{
7187 unsigned long shareval;
7188 struct task_group *tg = cgroup_tg(cont);
7189 char buffer[2*sizeof(unsigned long) + 1];
7190 int rc;
7191
7192 if (nbytes > 2*sizeof(unsigned long)) /* safety check */
7193 return -E2BIG;
7194
7195 if (copy_from_user(buffer, userbuf, nbytes))
7196 return -EFAULT;
7197
7198 buffer[nbytes] = 0; /* nul-terminate */
7199 shareval = simple_strtoul(buffer, NULL, 10);
7200
7201 rc = sched_group_set_shares(tg, shareval);
7202
7203 return (rc < 0 ? rc : nbytes);
7204}
7205
7206static u64 cpu_shares_read_uint(struct cgroup *cont, struct cftype *cft)
7207{
7208 struct task_group *tg = cgroup_tg(cont);
7209
7210 return (u64) tg->shares;
7211}
7212
7213static struct cftype cpu_shares = {
7214 .name = "shares",
7215 .read_uint = cpu_shares_read_uint,
7216 .write = cpu_shares_write,
7217};
7218
7219static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7220{
7221 return cgroup_add_file(cont, ss, &cpu_shares);
7222}
7223
7224struct cgroup_subsys cpu_cgroup_subsys = {
7225 .name = "cpu",
7226 .create = cpu_cgroup_create,
7227 .destroy = cpu_cgroup_destroy,
7228 .can_attach = cpu_cgroup_can_attach,
7229 .attach = cpu_cgroup_attach,
7230 .populate = cpu_cgroup_populate,
7231 .subsys_id = cpu_cgroup_subsys_id,
7232 .early_init = 1,
7233};
7234
7235#endif /* CONFIG_FAIR_CGROUP_SCHED */