]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: debug, improve migration statistics
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
a4ec24b4 99#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
5517d86b
ED
113#ifdef CONFIG_SMP
114/*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119{
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121}
122
123/*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128{
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131}
132#endif
133
e05606d3
IM
134static inline int rt_policy(int policy)
135{
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139}
140
141static inline int task_has_rt_policy(struct task_struct *p)
142{
143 return rt_policy(p->policy);
144}
145
1da177e4 146/*
6aa645ea 147 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 148 */
6aa645ea
IM
149struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152};
153
29f59db3
SV
154#ifdef CONFIG_FAIR_GROUP_SCHED
155
29f59db3
SV
156struct cfs_rq;
157
158/* task group related information */
4cf86d77 159struct task_group {
29f59db3
SV
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
5cb350ba
DG
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
29f59db3
SV
167};
168
169/* Default task group's sched entity on each cpu */
170static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171/* Default task group's cfs_rq on each cpu */
172static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
173
9b5b7751
SV
174static struct sched_entity *init_sched_entity_p[NR_CPUS];
175static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
176
177/* Default task group.
3a252015 178 * Every task in system belong to this group at bootup.
29f59db3 179 */
4cf86d77 180struct task_group init_task_group = {
3a252015
IM
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
183};
9b5b7751 184
24e377a8 185#ifdef CONFIG_FAIR_USER_SCHED
3a252015 186# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 187#else
3a252015 188# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
189#endif
190
4cf86d77 191static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
192
193/* return group to which a task belongs */
4cf86d77 194static inline struct task_group *task_group(struct task_struct *p)
29f59db3 195{
4cf86d77 196 struct task_group *tg;
9b5b7751 197
24e377a8
SV
198#ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200#else
4cf86d77 201 tg = &init_task_group;
24e377a8 202#endif
9b5b7751
SV
203
204 return tg;
29f59db3
SV
205}
206
207/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208static inline void set_task_cfs_rq(struct task_struct *p)
209{
4cf86d77
IM
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
212}
213
214#else
215
216static inline void set_task_cfs_rq(struct task_struct *p) { }
217
218#endif /* CONFIG_FAIR_GROUP_SCHED */
219
6aa645ea
IM
220/* CFS-related fields in a runqueue */
221struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
224
6aa645ea 225 u64 exec_clock;
e9acbff6 226 u64 min_vruntime;
6aa645ea
IM
227
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
233 */
234 struct sched_entity *curr;
ddc97297
PZ
235
236 unsigned long nr_spread_over;
237
62160e3f 238#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
240
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
244 *
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
247 */
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 249 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 250 struct rcu_head rcu;
6aa645ea
IM
251#endif
252};
1da177e4 253
6aa645ea
IM
254/* Real-Time classes' related field in a runqueue: */
255struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
259};
260
1da177e4
LT
261/*
262 * This is the main, per-CPU runqueue data structure.
263 *
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
267 */
70b97a7f 268struct rq {
6aa645ea 269 spinlock_t lock; /* runqueue lock */
1da177e4
LT
270
271 /*
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
274 */
275 unsigned long nr_running;
6aa645ea
IM
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 278 unsigned char idle_at_tick;
46cb4b7c
SS
279#ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281#endif
495eca49 282 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
283 unsigned long nr_load_updates;
284 u64 nr_switches;
285
286 struct cfs_rq cfs;
287#ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 289#endif
6aa645ea 290 struct rt_rq rt;
1da177e4
LT
291
292 /*
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
297 */
298 unsigned long nr_uninterruptible;
299
36c8b586 300 struct task_struct *curr, *idle;
c9819f45 301 unsigned long next_balance;
1da177e4 302 struct mm_struct *prev_mm;
6aa645ea 303
6aa645ea
IM
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
306
307 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
529c7726 310 u64 tick_timestamp;
6aa645ea 311
1da177e4
LT
312 atomic_t nr_iowait;
313
314#ifdef CONFIG_SMP
315 struct sched_domain *sd;
316
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
0a2966b4 320 int cpu; /* cpu of this runqueue */
1da177e4 321
36c8b586 322 struct task_struct *migration_thread;
1da177e4
LT
323 struct list_head migration_queue;
324#endif
325
326#ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
329
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
2d72376b 334 unsigned long yld_count;
1da177e4
LT
335
336 /* schedule() stats */
337 unsigned long sched_switch;
2d72376b 338 unsigned long sched_count;
1da177e4
LT
339 unsigned long sched_goidle;
340
341 /* try_to_wake_up() stats */
2d72376b 342 unsigned long ttwu_count;
1da177e4 343 unsigned long ttwu_local;
b8efb561
IM
344
345 /* BKL stats */
2d72376b 346 unsigned long bkl_count;
1da177e4 347#endif
fcb99371 348 struct lock_class_key rq_lock_key;
1da177e4
LT
349};
350
f34e3b61 351static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 352static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 353
dd41f596
IM
354static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
355{
356 rq->curr->sched_class->check_preempt_curr(rq, p);
357}
358
0a2966b4
CL
359static inline int cpu_of(struct rq *rq)
360{
361#ifdef CONFIG_SMP
362 return rq->cpu;
363#else
364 return 0;
365#endif
366}
367
20d315d4 368/*
b04a0f4c
IM
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
20d315d4 371 */
b04a0f4c 372static void __update_rq_clock(struct rq *rq)
20d315d4
IM
373{
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
378
b04a0f4c
IM
379#ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381#endif
20d315d4
IM
382 /*
383 * Protect against sched_clock() occasionally going backwards:
384 */
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
389 /*
390 * Catch too large forward jumps too:
391 */
529c7726
IM
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
20d315d4
IM
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
402 }
403 }
404
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
b04a0f4c 407}
20d315d4 408
b04a0f4c
IM
409static void update_rq_clock(struct rq *rq)
410{
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
20d315d4
IM
413}
414
674311d5
NP
415/*
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 417 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
418 *
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
421 */
48f24c4d
IM
422#define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
424
425#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426#define this_rq() (&__get_cpu_var(runqueues))
427#define task_rq(p) cpu_rq(task_cpu(p))
428#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
429
bf5c91ba
IM
430/*
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
432 */
433#ifdef CONFIG_SCHED_DEBUG
434# define const_debug __read_mostly
435#else
436# define const_debug static const
437#endif
438
439/*
440 * Debugging: various feature bits
441 */
442enum {
bbdba7c0
IM
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
06877c33 445 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 446 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
95938a35 448 SCHED_FEAT_PREEMPT_RESTRICT = 32,
bf5c91ba
IM
449};
450
451const_debug unsigned int sysctl_sched_features =
bf5c91ba 452 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7 453 SCHED_FEAT_START_DEBIT *1 |
06877c33 454 SCHED_FEAT_TREE_AVG *0 |
ce6c1311 455 SCHED_FEAT_APPROX_AVG *0 |
95938a35
MG
456 SCHED_FEAT_WAKEUP_PREEMPT *1 |
457 SCHED_FEAT_PREEMPT_RESTRICT *1;
bf5c91ba
IM
458
459#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
460
e436d800
IM
461/*
462 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
463 * clock constructed from sched_clock():
464 */
465unsigned long long cpu_clock(int cpu)
466{
e436d800
IM
467 unsigned long long now;
468 unsigned long flags;
b04a0f4c 469 struct rq *rq;
e436d800 470
2cd4d0ea 471 local_irq_save(flags);
b04a0f4c
IM
472 rq = cpu_rq(cpu);
473 update_rq_clock(rq);
474 now = rq->clock;
2cd4d0ea 475 local_irq_restore(flags);
e436d800
IM
476
477 return now;
478}
a58f6f25 479EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 480
1da177e4 481#ifndef prepare_arch_switch
4866cde0
NP
482# define prepare_arch_switch(next) do { } while (0)
483#endif
484#ifndef finish_arch_switch
485# define finish_arch_switch(prev) do { } while (0)
486#endif
487
488#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 489static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
490{
491 return rq->curr == p;
492}
493
70b97a7f 494static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
495{
496}
497
70b97a7f 498static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 499{
da04c035
IM
500#ifdef CONFIG_DEBUG_SPINLOCK
501 /* this is a valid case when another task releases the spinlock */
502 rq->lock.owner = current;
503#endif
8a25d5de
IM
504 /*
505 * If we are tracking spinlock dependencies then we have to
506 * fix up the runqueue lock - which gets 'carried over' from
507 * prev into current:
508 */
509 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
510
4866cde0
NP
511 spin_unlock_irq(&rq->lock);
512}
513
514#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 515static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
516{
517#ifdef CONFIG_SMP
518 return p->oncpu;
519#else
520 return rq->curr == p;
521#endif
522}
523
70b97a7f 524static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
525{
526#ifdef CONFIG_SMP
527 /*
528 * We can optimise this out completely for !SMP, because the
529 * SMP rebalancing from interrupt is the only thing that cares
530 * here.
531 */
532 next->oncpu = 1;
533#endif
534#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
535 spin_unlock_irq(&rq->lock);
536#else
537 spin_unlock(&rq->lock);
538#endif
539}
540
70b97a7f 541static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
542{
543#ifdef CONFIG_SMP
544 /*
545 * After ->oncpu is cleared, the task can be moved to a different CPU.
546 * We must ensure this doesn't happen until the switch is completely
547 * finished.
548 */
549 smp_wmb();
550 prev->oncpu = 0;
551#endif
552#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 local_irq_enable();
1da177e4 554#endif
4866cde0
NP
555}
556#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 557
b29739f9
IM
558/*
559 * __task_rq_lock - lock the runqueue a given task resides on.
560 * Must be called interrupts disabled.
561 */
70b97a7f 562static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
563 __acquires(rq->lock)
564{
3a5c359a
AK
565 for (;;) {
566 struct rq *rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (likely(rq == task_rq(p)))
569 return rq;
b29739f9 570 spin_unlock(&rq->lock);
b29739f9 571 }
b29739f9
IM
572}
573
1da177e4
LT
574/*
575 * task_rq_lock - lock the runqueue a given task resides on and disable
576 * interrupts. Note the ordering: we can safely lookup the task_rq without
577 * explicitly disabling preemption.
578 */
70b97a7f 579static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
580 __acquires(rq->lock)
581{
70b97a7f 582 struct rq *rq;
1da177e4 583
3a5c359a
AK
584 for (;;) {
585 local_irq_save(*flags);
586 rq = task_rq(p);
587 spin_lock(&rq->lock);
588 if (likely(rq == task_rq(p)))
589 return rq;
1da177e4 590 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 591 }
1da177e4
LT
592}
593
a9957449 594static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
595 __releases(rq->lock)
596{
597 spin_unlock(&rq->lock);
598}
599
70b97a7f 600static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
601 __releases(rq->lock)
602{
603 spin_unlock_irqrestore(&rq->lock, *flags);
604}
605
1da177e4 606/*
cc2a73b5 607 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 608 */
a9957449 609static struct rq *this_rq_lock(void)
1da177e4
LT
610 __acquires(rq->lock)
611{
70b97a7f 612 struct rq *rq;
1da177e4
LT
613
614 local_irq_disable();
615 rq = this_rq();
616 spin_lock(&rq->lock);
617
618 return rq;
619}
620
1b9f19c2 621/*
2aa44d05 622 * We are going deep-idle (irqs are disabled):
1b9f19c2 623 */
2aa44d05 624void sched_clock_idle_sleep_event(void)
1b9f19c2 625{
2aa44d05
IM
626 struct rq *rq = cpu_rq(smp_processor_id());
627
628 spin_lock(&rq->lock);
629 __update_rq_clock(rq);
630 spin_unlock(&rq->lock);
631 rq->clock_deep_idle_events++;
632}
633EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
634
635/*
636 * We just idled delta nanoseconds (called with irqs disabled):
637 */
638void sched_clock_idle_wakeup_event(u64 delta_ns)
639{
640 struct rq *rq = cpu_rq(smp_processor_id());
641 u64 now = sched_clock();
1b9f19c2 642
2aa44d05
IM
643 rq->idle_clock += delta_ns;
644 /*
645 * Override the previous timestamp and ignore all
646 * sched_clock() deltas that occured while we idled,
647 * and use the PM-provided delta_ns to advance the
648 * rq clock:
649 */
650 spin_lock(&rq->lock);
651 rq->prev_clock_raw = now;
652 rq->clock += delta_ns;
653 spin_unlock(&rq->lock);
1b9f19c2 654}
2aa44d05 655EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 656
c24d20db
IM
657/*
658 * resched_task - mark a task 'to be rescheduled now'.
659 *
660 * On UP this means the setting of the need_resched flag, on SMP it
661 * might also involve a cross-CPU call to trigger the scheduler on
662 * the target CPU.
663 */
664#ifdef CONFIG_SMP
665
666#ifndef tsk_is_polling
667#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
668#endif
669
670static void resched_task(struct task_struct *p)
671{
672 int cpu;
673
674 assert_spin_locked(&task_rq(p)->lock);
675
676 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
677 return;
678
679 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
680
681 cpu = task_cpu(p);
682 if (cpu == smp_processor_id())
683 return;
684
685 /* NEED_RESCHED must be visible before we test polling */
686 smp_mb();
687 if (!tsk_is_polling(p))
688 smp_send_reschedule(cpu);
689}
690
691static void resched_cpu(int cpu)
692{
693 struct rq *rq = cpu_rq(cpu);
694 unsigned long flags;
695
696 if (!spin_trylock_irqsave(&rq->lock, flags))
697 return;
698 resched_task(cpu_curr(cpu));
699 spin_unlock_irqrestore(&rq->lock, flags);
700}
701#else
702static inline void resched_task(struct task_struct *p)
703{
704 assert_spin_locked(&task_rq(p)->lock);
705 set_tsk_need_resched(p);
706}
707#endif
708
45bf76df
IM
709#if BITS_PER_LONG == 32
710# define WMULT_CONST (~0UL)
711#else
712# define WMULT_CONST (1UL << 32)
713#endif
714
715#define WMULT_SHIFT 32
716
194081eb
IM
717/*
718 * Shift right and round:
719 */
cf2ab469 720#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 721
cb1c4fc9 722static unsigned long
45bf76df
IM
723calc_delta_mine(unsigned long delta_exec, unsigned long weight,
724 struct load_weight *lw)
725{
726 u64 tmp;
727
728 if (unlikely(!lw->inv_weight))
194081eb 729 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
730
731 tmp = (u64)delta_exec * weight;
732 /*
733 * Check whether we'd overflow the 64-bit multiplication:
734 */
194081eb 735 if (unlikely(tmp > WMULT_CONST))
cf2ab469 736 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
737 WMULT_SHIFT/2);
738 else
cf2ab469 739 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 740
ecf691da 741 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
742}
743
744static inline unsigned long
745calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
746{
747 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
748}
749
1091985b 750static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
751{
752 lw->weight += inc;
45bf76df
IM
753}
754
1091985b 755static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
756{
757 lw->weight -= dec;
45bf76df
IM
758}
759
2dd73a4f
PW
760/*
761 * To aid in avoiding the subversion of "niceness" due to uneven distribution
762 * of tasks with abnormal "nice" values across CPUs the contribution that
763 * each task makes to its run queue's load is weighted according to its
764 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
765 * scaled version of the new time slice allocation that they receive on time
766 * slice expiry etc.
767 */
768
dd41f596
IM
769#define WEIGHT_IDLEPRIO 2
770#define WMULT_IDLEPRIO (1 << 31)
771
772/*
773 * Nice levels are multiplicative, with a gentle 10% change for every
774 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
775 * nice 1, it will get ~10% less CPU time than another CPU-bound task
776 * that remained on nice 0.
777 *
778 * The "10% effect" is relative and cumulative: from _any_ nice level,
779 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
780 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
781 * If a task goes up by ~10% and another task goes down by ~10% then
782 * the relative distance between them is ~25%.)
dd41f596
IM
783 */
784static const int prio_to_weight[40] = {
254753dc
IM
785 /* -20 */ 88761, 71755, 56483, 46273, 36291,
786 /* -15 */ 29154, 23254, 18705, 14949, 11916,
787 /* -10 */ 9548, 7620, 6100, 4904, 3906,
788 /* -5 */ 3121, 2501, 1991, 1586, 1277,
789 /* 0 */ 1024, 820, 655, 526, 423,
790 /* 5 */ 335, 272, 215, 172, 137,
791 /* 10 */ 110, 87, 70, 56, 45,
792 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
793};
794
5714d2de
IM
795/*
796 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
797 *
798 * In cases where the weight does not change often, we can use the
799 * precalculated inverse to speed up arithmetics by turning divisions
800 * into multiplications:
801 */
dd41f596 802static const u32 prio_to_wmult[40] = {
254753dc
IM
803 /* -20 */ 48388, 59856, 76040, 92818, 118348,
804 /* -15 */ 147320, 184698, 229616, 287308, 360437,
805 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
806 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
807 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
808 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
809 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
810 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 811};
2dd73a4f 812
dd41f596
IM
813static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
814
815/*
816 * runqueue iterator, to support SMP load-balancing between different
817 * scheduling classes, without having to expose their internal data
818 * structures to the load-balancing proper:
819 */
820struct rq_iterator {
821 void *arg;
822 struct task_struct *(*start)(void *);
823 struct task_struct *(*next)(void *);
824};
825
826static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
827 unsigned long max_nr_move, unsigned long max_load_move,
828 struct sched_domain *sd, enum cpu_idle_type idle,
829 int *all_pinned, unsigned long *load_moved,
a4ac01c3 830 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
831
832#include "sched_stats.h"
dd41f596 833#include "sched_idletask.c"
5522d5d5
IM
834#include "sched_fair.c"
835#include "sched_rt.c"
dd41f596
IM
836#ifdef CONFIG_SCHED_DEBUG
837# include "sched_debug.c"
838#endif
839
840#define sched_class_highest (&rt_sched_class)
841
9c217245
IM
842/*
843 * Update delta_exec, delta_fair fields for rq.
844 *
845 * delta_fair clock advances at a rate inversely proportional to
495eca49 846 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
847 * delta_exec advances at the same rate as wall-clock (provided
848 * cpu is not idle).
849 *
850 * delta_exec / delta_fair is a measure of the (smoothened) load on this
851 * runqueue over any given interval. This (smoothened) load is used
852 * during load balance.
853 *
495eca49 854 * This function is called /before/ updating rq->load
9c217245
IM
855 * and when switching tasks.
856 */
29b4b623 857static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 858{
495eca49 859 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
860}
861
79b5dddf 862static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 863{
495eca49 864 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
865}
866
e5fa2237 867static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
868{
869 rq->nr_running++;
29b4b623 870 inc_load(rq, p);
9c217245
IM
871}
872
db53181e 873static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
874{
875 rq->nr_running--;
79b5dddf 876 dec_load(rq, p);
9c217245
IM
877}
878
45bf76df
IM
879static void set_load_weight(struct task_struct *p)
880{
881 if (task_has_rt_policy(p)) {
dd41f596
IM
882 p->se.load.weight = prio_to_weight[0] * 2;
883 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
884 return;
885 }
45bf76df 886
dd41f596
IM
887 /*
888 * SCHED_IDLE tasks get minimal weight:
889 */
890 if (p->policy == SCHED_IDLE) {
891 p->se.load.weight = WEIGHT_IDLEPRIO;
892 p->se.load.inv_weight = WMULT_IDLEPRIO;
893 return;
894 }
71f8bd46 895
dd41f596
IM
896 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
897 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
898}
899
8159f87e 900static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 901{
dd41f596 902 sched_info_queued(p);
fd390f6a 903 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 904 p->se.on_rq = 1;
71f8bd46
IM
905}
906
69be72c1 907static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 908{
f02231e5 909 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 910 p->se.on_rq = 0;
71f8bd46
IM
911}
912
14531189 913/*
dd41f596 914 * __normal_prio - return the priority that is based on the static prio
14531189 915 */
14531189
IM
916static inline int __normal_prio(struct task_struct *p)
917{
dd41f596 918 return p->static_prio;
14531189
IM
919}
920
b29739f9
IM
921/*
922 * Calculate the expected normal priority: i.e. priority
923 * without taking RT-inheritance into account. Might be
924 * boosted by interactivity modifiers. Changes upon fork,
925 * setprio syscalls, and whenever the interactivity
926 * estimator recalculates.
927 */
36c8b586 928static inline int normal_prio(struct task_struct *p)
b29739f9
IM
929{
930 int prio;
931
e05606d3 932 if (task_has_rt_policy(p))
b29739f9
IM
933 prio = MAX_RT_PRIO-1 - p->rt_priority;
934 else
935 prio = __normal_prio(p);
936 return prio;
937}
938
939/*
940 * Calculate the current priority, i.e. the priority
941 * taken into account by the scheduler. This value might
942 * be boosted by RT tasks, or might be boosted by
943 * interactivity modifiers. Will be RT if the task got
944 * RT-boosted. If not then it returns p->normal_prio.
945 */
36c8b586 946static int effective_prio(struct task_struct *p)
b29739f9
IM
947{
948 p->normal_prio = normal_prio(p);
949 /*
950 * If we are RT tasks or we were boosted to RT priority,
951 * keep the priority unchanged. Otherwise, update priority
952 * to the normal priority:
953 */
954 if (!rt_prio(p->prio))
955 return p->normal_prio;
956 return p->prio;
957}
958
1da177e4 959/*
dd41f596 960 * activate_task - move a task to the runqueue.
1da177e4 961 */
dd41f596 962static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 963{
dd41f596
IM
964 if (p->state == TASK_UNINTERRUPTIBLE)
965 rq->nr_uninterruptible--;
1da177e4 966
8159f87e 967 enqueue_task(rq, p, wakeup);
e5fa2237 968 inc_nr_running(p, rq);
1da177e4
LT
969}
970
1da177e4
LT
971/*
972 * deactivate_task - remove a task from the runqueue.
973 */
2e1cb74a 974static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 975{
dd41f596
IM
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible++;
978
69be72c1 979 dequeue_task(rq, p, sleep);
db53181e 980 dec_nr_running(p, rq);
1da177e4
LT
981}
982
1da177e4
LT
983/**
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
986 */
36c8b586 987inline int task_curr(const struct task_struct *p)
1da177e4
LT
988{
989 return cpu_curr(task_cpu(p)) == p;
990}
991
2dd73a4f
PW
992/* Used instead of source_load when we know the type == 0 */
993unsigned long weighted_cpuload(const int cpu)
994{
495eca49 995 return cpu_rq(cpu)->load.weight;
dd41f596
IM
996}
997
998static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
999{
1000#ifdef CONFIG_SMP
1001 task_thread_info(p)->cpu = cpu;
dd41f596 1002#endif
29f59db3 1003 set_task_cfs_rq(p);
2dd73a4f
PW
1004}
1005
1da177e4 1006#ifdef CONFIG_SMP
c65cc870 1007
cc367732
IM
1008/*
1009 * Is this task likely cache-hot:
1010 */
1011static inline int
1012task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1013{
1014 s64 delta;
1015
1016 if (p->sched_class != &fair_sched_class)
1017 return 0;
1018
1019 delta = now - p->se.exec_start;
1020
1021 return delta < (s64)sysctl_sched_migration_cost;
1022}
1023
1024
dd41f596 1025void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1026{
dd41f596
IM
1027 int old_cpu = task_cpu(p);
1028 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1029 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1030 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1031 u64 clock_offset;
dd41f596
IM
1032
1033 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1034
1035#ifdef CONFIG_SCHEDSTATS
1036 if (p->se.wait_start)
1037 p->se.wait_start -= clock_offset;
dd41f596
IM
1038 if (p->se.sleep_start)
1039 p->se.sleep_start -= clock_offset;
1040 if (p->se.block_start)
1041 p->se.block_start -= clock_offset;
cc367732
IM
1042 if (old_cpu != new_cpu) {
1043 schedstat_inc(p, se.nr_migrations);
1044 if (task_hot(p, old_rq->clock, NULL))
1045 schedstat_inc(p, se.nr_forced2_migrations);
1046 }
6cfb0d5d 1047#endif
2830cf8c
SV
1048 p->se.vruntime -= old_cfsrq->min_vruntime -
1049 new_cfsrq->min_vruntime;
dd41f596
IM
1050
1051 __set_task_cpu(p, new_cpu);
c65cc870
IM
1052}
1053
70b97a7f 1054struct migration_req {
1da177e4 1055 struct list_head list;
1da177e4 1056
36c8b586 1057 struct task_struct *task;
1da177e4
LT
1058 int dest_cpu;
1059
1da177e4 1060 struct completion done;
70b97a7f 1061};
1da177e4
LT
1062
1063/*
1064 * The task's runqueue lock must be held.
1065 * Returns true if you have to wait for migration thread.
1066 */
36c8b586 1067static int
70b97a7f 1068migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1069{
70b97a7f 1070 struct rq *rq = task_rq(p);
1da177e4
LT
1071
1072 /*
1073 * If the task is not on a runqueue (and not running), then
1074 * it is sufficient to simply update the task's cpu field.
1075 */
dd41f596 1076 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1077 set_task_cpu(p, dest_cpu);
1078 return 0;
1079 }
1080
1081 init_completion(&req->done);
1da177e4
LT
1082 req->task = p;
1083 req->dest_cpu = dest_cpu;
1084 list_add(&req->list, &rq->migration_queue);
48f24c4d 1085
1da177e4
LT
1086 return 1;
1087}
1088
1089/*
1090 * wait_task_inactive - wait for a thread to unschedule.
1091 *
1092 * The caller must ensure that the task *will* unschedule sometime soon,
1093 * else this function might spin for a *long* time. This function can't
1094 * be called with interrupts off, or it may introduce deadlock with
1095 * smp_call_function() if an IPI is sent by the same process we are
1096 * waiting to become inactive.
1097 */
36c8b586 1098void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1099{
1100 unsigned long flags;
dd41f596 1101 int running, on_rq;
70b97a7f 1102 struct rq *rq;
1da177e4 1103
3a5c359a
AK
1104 for (;;) {
1105 /*
1106 * We do the initial early heuristics without holding
1107 * any task-queue locks at all. We'll only try to get
1108 * the runqueue lock when things look like they will
1109 * work out!
1110 */
1111 rq = task_rq(p);
fa490cfd 1112
3a5c359a
AK
1113 /*
1114 * If the task is actively running on another CPU
1115 * still, just relax and busy-wait without holding
1116 * any locks.
1117 *
1118 * NOTE! Since we don't hold any locks, it's not
1119 * even sure that "rq" stays as the right runqueue!
1120 * But we don't care, since "task_running()" will
1121 * return false if the runqueue has changed and p
1122 * is actually now running somewhere else!
1123 */
1124 while (task_running(rq, p))
1125 cpu_relax();
fa490cfd 1126
3a5c359a
AK
1127 /*
1128 * Ok, time to look more closely! We need the rq
1129 * lock now, to be *sure*. If we're wrong, we'll
1130 * just go back and repeat.
1131 */
1132 rq = task_rq_lock(p, &flags);
1133 running = task_running(rq, p);
1134 on_rq = p->se.on_rq;
1135 task_rq_unlock(rq, &flags);
fa490cfd 1136
3a5c359a
AK
1137 /*
1138 * Was it really running after all now that we
1139 * checked with the proper locks actually held?
1140 *
1141 * Oops. Go back and try again..
1142 */
1143 if (unlikely(running)) {
1144 cpu_relax();
1145 continue;
1146 }
fa490cfd 1147
3a5c359a
AK
1148 /*
1149 * It's not enough that it's not actively running,
1150 * it must be off the runqueue _entirely_, and not
1151 * preempted!
1152 *
1153 * So if it wa still runnable (but just not actively
1154 * running right now), it's preempted, and we should
1155 * yield - it could be a while.
1156 */
1157 if (unlikely(on_rq)) {
1158 schedule_timeout_uninterruptible(1);
1159 continue;
1160 }
fa490cfd 1161
3a5c359a
AK
1162 /*
1163 * Ahh, all good. It wasn't running, and it wasn't
1164 * runnable, which means that it will never become
1165 * running in the future either. We're all done!
1166 */
1167 break;
1168 }
1da177e4
LT
1169}
1170
1171/***
1172 * kick_process - kick a running thread to enter/exit the kernel
1173 * @p: the to-be-kicked thread
1174 *
1175 * Cause a process which is running on another CPU to enter
1176 * kernel-mode, without any delay. (to get signals handled.)
1177 *
1178 * NOTE: this function doesnt have to take the runqueue lock,
1179 * because all it wants to ensure is that the remote task enters
1180 * the kernel. If the IPI races and the task has been migrated
1181 * to another CPU then no harm is done and the purpose has been
1182 * achieved as well.
1183 */
36c8b586 1184void kick_process(struct task_struct *p)
1da177e4
LT
1185{
1186 int cpu;
1187
1188 preempt_disable();
1189 cpu = task_cpu(p);
1190 if ((cpu != smp_processor_id()) && task_curr(p))
1191 smp_send_reschedule(cpu);
1192 preempt_enable();
1193}
1194
1195/*
2dd73a4f
PW
1196 * Return a low guess at the load of a migration-source cpu weighted
1197 * according to the scheduling class and "nice" value.
1da177e4
LT
1198 *
1199 * We want to under-estimate the load of migration sources, to
1200 * balance conservatively.
1201 */
a9957449 1202static unsigned long source_load(int cpu, int type)
1da177e4 1203{
70b97a7f 1204 struct rq *rq = cpu_rq(cpu);
dd41f596 1205 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1206
3b0bd9bc 1207 if (type == 0)
dd41f596 1208 return total;
b910472d 1209
dd41f596 1210 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1211}
1212
1213/*
2dd73a4f
PW
1214 * Return a high guess at the load of a migration-target cpu weighted
1215 * according to the scheduling class and "nice" value.
1da177e4 1216 */
a9957449 1217static unsigned long target_load(int cpu, int type)
1da177e4 1218{
70b97a7f 1219 struct rq *rq = cpu_rq(cpu);
dd41f596 1220 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1221
7897986b 1222 if (type == 0)
dd41f596 1223 return total;
3b0bd9bc 1224
dd41f596 1225 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1226}
1227
1228/*
1229 * Return the average load per task on the cpu's run queue
1230 */
1231static inline unsigned long cpu_avg_load_per_task(int cpu)
1232{
70b97a7f 1233 struct rq *rq = cpu_rq(cpu);
dd41f596 1234 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1235 unsigned long n = rq->nr_running;
1236
dd41f596 1237 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1238}
1239
147cbb4b
NP
1240/*
1241 * find_idlest_group finds and returns the least busy CPU group within the
1242 * domain.
1243 */
1244static struct sched_group *
1245find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1246{
1247 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1248 unsigned long min_load = ULONG_MAX, this_load = 0;
1249 int load_idx = sd->forkexec_idx;
1250 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1251
1252 do {
1253 unsigned long load, avg_load;
1254 int local_group;
1255 int i;
1256
da5a5522
BD
1257 /* Skip over this group if it has no CPUs allowed */
1258 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1259 continue;
da5a5522 1260
147cbb4b 1261 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1262
1263 /* Tally up the load of all CPUs in the group */
1264 avg_load = 0;
1265
1266 for_each_cpu_mask(i, group->cpumask) {
1267 /* Bias balancing toward cpus of our domain */
1268 if (local_group)
1269 load = source_load(i, load_idx);
1270 else
1271 load = target_load(i, load_idx);
1272
1273 avg_load += load;
1274 }
1275
1276 /* Adjust by relative CPU power of the group */
5517d86b
ED
1277 avg_load = sg_div_cpu_power(group,
1278 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1279
1280 if (local_group) {
1281 this_load = avg_load;
1282 this = group;
1283 } else if (avg_load < min_load) {
1284 min_load = avg_load;
1285 idlest = group;
1286 }
3a5c359a 1287 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1288
1289 if (!idlest || 100*this_load < imbalance*min_load)
1290 return NULL;
1291 return idlest;
1292}
1293
1294/*
0feaece9 1295 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1296 */
95cdf3b7
IM
1297static int
1298find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1299{
da5a5522 1300 cpumask_t tmp;
147cbb4b
NP
1301 unsigned long load, min_load = ULONG_MAX;
1302 int idlest = -1;
1303 int i;
1304
da5a5522
BD
1305 /* Traverse only the allowed CPUs */
1306 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1307
1308 for_each_cpu_mask(i, tmp) {
2dd73a4f 1309 load = weighted_cpuload(i);
147cbb4b
NP
1310
1311 if (load < min_load || (load == min_load && i == this_cpu)) {
1312 min_load = load;
1313 idlest = i;
1314 }
1315 }
1316
1317 return idlest;
1318}
1319
476d139c
NP
1320/*
1321 * sched_balance_self: balance the current task (running on cpu) in domains
1322 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1323 * SD_BALANCE_EXEC.
1324 *
1325 * Balance, ie. select the least loaded group.
1326 *
1327 * Returns the target CPU number, or the same CPU if no balancing is needed.
1328 *
1329 * preempt must be disabled.
1330 */
1331static int sched_balance_self(int cpu, int flag)
1332{
1333 struct task_struct *t = current;
1334 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1335
c96d145e 1336 for_each_domain(cpu, tmp) {
9761eea8
IM
1337 /*
1338 * If power savings logic is enabled for a domain, stop there.
1339 */
5c45bf27
SS
1340 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1341 break;
476d139c
NP
1342 if (tmp->flags & flag)
1343 sd = tmp;
c96d145e 1344 }
476d139c
NP
1345
1346 while (sd) {
1347 cpumask_t span;
1348 struct sched_group *group;
1a848870
SS
1349 int new_cpu, weight;
1350
1351 if (!(sd->flags & flag)) {
1352 sd = sd->child;
1353 continue;
1354 }
476d139c
NP
1355
1356 span = sd->span;
1357 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1358 if (!group) {
1359 sd = sd->child;
1360 continue;
1361 }
476d139c 1362
da5a5522 1363 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1364 if (new_cpu == -1 || new_cpu == cpu) {
1365 /* Now try balancing at a lower domain level of cpu */
1366 sd = sd->child;
1367 continue;
1368 }
476d139c 1369
1a848870 1370 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1371 cpu = new_cpu;
476d139c
NP
1372 sd = NULL;
1373 weight = cpus_weight(span);
1374 for_each_domain(cpu, tmp) {
1375 if (weight <= cpus_weight(tmp->span))
1376 break;
1377 if (tmp->flags & flag)
1378 sd = tmp;
1379 }
1380 /* while loop will break here if sd == NULL */
1381 }
1382
1383 return cpu;
1384}
1385
1386#endif /* CONFIG_SMP */
1da177e4
LT
1387
1388/*
1389 * wake_idle() will wake a task on an idle cpu if task->cpu is
1390 * not idle and an idle cpu is available. The span of cpus to
1391 * search starts with cpus closest then further out as needed,
1392 * so we always favor a closer, idle cpu.
1393 *
1394 * Returns the CPU we should wake onto.
1395 */
1396#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1397static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1398{
1399 cpumask_t tmp;
1400 struct sched_domain *sd;
1401 int i;
1402
4953198b
SS
1403 /*
1404 * If it is idle, then it is the best cpu to run this task.
1405 *
1406 * This cpu is also the best, if it has more than one task already.
1407 * Siblings must be also busy(in most cases) as they didn't already
1408 * pickup the extra load from this cpu and hence we need not check
1409 * sibling runqueue info. This will avoid the checks and cache miss
1410 * penalities associated with that.
1411 */
1412 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1413 return cpu;
1414
1415 for_each_domain(cpu, sd) {
1416 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1417 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1418 for_each_cpu_mask(i, tmp) {
cc367732
IM
1419 if (idle_cpu(i)) {
1420 if (i != task_cpu(p)) {
1421 schedstat_inc(p,
1422 se.nr_wakeups_idle);
1423 }
1da177e4 1424 return i;
cc367732 1425 }
1da177e4 1426 }
9761eea8 1427 } else {
e0f364f4 1428 break;
9761eea8 1429 }
1da177e4
LT
1430 }
1431 return cpu;
1432}
1433#else
36c8b586 1434static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1435{
1436 return cpu;
1437}
1438#endif
1439
1440/***
1441 * try_to_wake_up - wake up a thread
1442 * @p: the to-be-woken-up thread
1443 * @state: the mask of task states that can be woken
1444 * @sync: do a synchronous wakeup?
1445 *
1446 * Put it on the run-queue if it's not already there. The "current"
1447 * thread is always on the run-queue (except when the actual
1448 * re-schedule is in progress), and as such you're allowed to do
1449 * the simpler "current->state = TASK_RUNNING" to mark yourself
1450 * runnable without the overhead of this.
1451 *
1452 * returns failure only if the task is already active.
1453 */
36c8b586 1454static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1455{
cc367732 1456 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1457 unsigned long flags;
1458 long old_state;
70b97a7f 1459 struct rq *rq;
1da177e4 1460#ifdef CONFIG_SMP
7897986b 1461 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1462 unsigned long load, this_load;
1da177e4
LT
1463 int new_cpu;
1464#endif
1465
1466 rq = task_rq_lock(p, &flags);
1467 old_state = p->state;
1468 if (!(old_state & state))
1469 goto out;
1470
dd41f596 1471 if (p->se.on_rq)
1da177e4
LT
1472 goto out_running;
1473
1474 cpu = task_cpu(p);
cc367732 1475 orig_cpu = cpu;
1da177e4
LT
1476 this_cpu = smp_processor_id();
1477
1478#ifdef CONFIG_SMP
1479 if (unlikely(task_running(rq, p)))
1480 goto out_activate;
1481
7897986b
NP
1482 new_cpu = cpu;
1483
2d72376b 1484 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1485 if (cpu == this_cpu) {
1486 schedstat_inc(rq, ttwu_local);
7897986b
NP
1487 goto out_set_cpu;
1488 }
1489
1490 for_each_domain(this_cpu, sd) {
1491 if (cpu_isset(cpu, sd->span)) {
1492 schedstat_inc(sd, ttwu_wake_remote);
1493 this_sd = sd;
1494 break;
1da177e4
LT
1495 }
1496 }
1da177e4 1497
7897986b 1498 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1499 goto out_set_cpu;
1500
1da177e4 1501 /*
7897986b 1502 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1503 */
7897986b
NP
1504 if (this_sd) {
1505 int idx = this_sd->wake_idx;
1506 unsigned int imbalance;
1da177e4 1507
a3f21bce
NP
1508 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1509
7897986b
NP
1510 load = source_load(cpu, idx);
1511 this_load = target_load(this_cpu, idx);
1da177e4 1512
7897986b
NP
1513 new_cpu = this_cpu; /* Wake to this CPU if we can */
1514
a3f21bce
NP
1515 if (this_sd->flags & SD_WAKE_AFFINE) {
1516 unsigned long tl = this_load;
33859f7f
MOS
1517 unsigned long tl_per_task;
1518
cc367732 1519 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1520 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1521
1da177e4 1522 /*
a3f21bce
NP
1523 * If sync wakeup then subtract the (maximum possible)
1524 * effect of the currently running task from the load
1525 * of the current CPU:
1da177e4 1526 */
a3f21bce 1527 if (sync)
dd41f596 1528 tl -= current->se.load.weight;
a3f21bce
NP
1529
1530 if ((tl <= load &&
2dd73a4f 1531 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1532 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1533 /*
1534 * This domain has SD_WAKE_AFFINE and
1535 * p is cache cold in this domain, and
1536 * there is no bad imbalance.
1537 */
1538 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1539 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1540 goto out_set_cpu;
1541 }
1542 }
1543
1544 /*
1545 * Start passive balancing when half the imbalance_pct
1546 * limit is reached.
1547 */
1548 if (this_sd->flags & SD_WAKE_BALANCE) {
1549 if (imbalance*this_load <= 100*load) {
1550 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1551 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1552 goto out_set_cpu;
1553 }
1da177e4
LT
1554 }
1555 }
1556
1557 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1558out_set_cpu:
1559 new_cpu = wake_idle(new_cpu, p);
1560 if (new_cpu != cpu) {
1561 set_task_cpu(p, new_cpu);
1562 task_rq_unlock(rq, &flags);
1563 /* might preempt at this point */
1564 rq = task_rq_lock(p, &flags);
1565 old_state = p->state;
1566 if (!(old_state & state))
1567 goto out;
dd41f596 1568 if (p->se.on_rq)
1da177e4
LT
1569 goto out_running;
1570
1571 this_cpu = smp_processor_id();
1572 cpu = task_cpu(p);
1573 }
1574
1575out_activate:
1576#endif /* CONFIG_SMP */
cc367732
IM
1577 schedstat_inc(p, se.nr_wakeups);
1578 if (sync)
1579 schedstat_inc(p, se.nr_wakeups_sync);
1580 if (orig_cpu != cpu)
1581 schedstat_inc(p, se.nr_wakeups_migrate);
1582 if (cpu == this_cpu)
1583 schedstat_inc(p, se.nr_wakeups_local);
1584 else
1585 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1586 update_rq_clock(rq);
dd41f596 1587 activate_task(rq, p, 1);
1da177e4
LT
1588 /*
1589 * Sync wakeups (i.e. those types of wakeups where the waker
1590 * has indicated that it will leave the CPU in short order)
1591 * don't trigger a preemption, if the woken up task will run on
1592 * this cpu. (in this case the 'I will reschedule' promise of
1593 * the waker guarantees that the freshly woken up task is going
1594 * to be considered on this CPU.)
1595 */
dd41f596
IM
1596 if (!sync || cpu != this_cpu)
1597 check_preempt_curr(rq, p);
1da177e4
LT
1598 success = 1;
1599
1600out_running:
1601 p->state = TASK_RUNNING;
1602out:
1603 task_rq_unlock(rq, &flags);
1604
1605 return success;
1606}
1607
36c8b586 1608int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1609{
1610 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1611 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1612}
1da177e4
LT
1613EXPORT_SYMBOL(wake_up_process);
1614
36c8b586 1615int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1616{
1617 return try_to_wake_up(p, state, 0);
1618}
1619
1da177e4
LT
1620/*
1621 * Perform scheduler related setup for a newly forked process p.
1622 * p is forked by current.
dd41f596
IM
1623 *
1624 * __sched_fork() is basic setup used by init_idle() too:
1625 */
1626static void __sched_fork(struct task_struct *p)
1627{
dd41f596
IM
1628 p->se.exec_start = 0;
1629 p->se.sum_exec_runtime = 0;
f6cf891c 1630 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1631
1632#ifdef CONFIG_SCHEDSTATS
1633 p->se.wait_start = 0;
dd41f596
IM
1634 p->se.sum_sleep_runtime = 0;
1635 p->se.sleep_start = 0;
dd41f596
IM
1636 p->se.block_start = 0;
1637 p->se.sleep_max = 0;
1638 p->se.block_max = 0;
1639 p->se.exec_max = 0;
eba1ed4b 1640 p->se.slice_max = 0;
dd41f596 1641 p->se.wait_max = 0;
6cfb0d5d 1642#endif
476d139c 1643
dd41f596
IM
1644 INIT_LIST_HEAD(&p->run_list);
1645 p->se.on_rq = 0;
476d139c 1646
e107be36
AK
1647#ifdef CONFIG_PREEMPT_NOTIFIERS
1648 INIT_HLIST_HEAD(&p->preempt_notifiers);
1649#endif
1650
1da177e4
LT
1651 /*
1652 * We mark the process as running here, but have not actually
1653 * inserted it onto the runqueue yet. This guarantees that
1654 * nobody will actually run it, and a signal or other external
1655 * event cannot wake it up and insert it on the runqueue either.
1656 */
1657 p->state = TASK_RUNNING;
dd41f596
IM
1658}
1659
1660/*
1661 * fork()/clone()-time setup:
1662 */
1663void sched_fork(struct task_struct *p, int clone_flags)
1664{
1665 int cpu = get_cpu();
1666
1667 __sched_fork(p);
1668
1669#ifdef CONFIG_SMP
1670 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1671#endif
02e4bac2 1672 set_task_cpu(p, cpu);
b29739f9
IM
1673
1674 /*
1675 * Make sure we do not leak PI boosting priority to the child:
1676 */
1677 p->prio = current->normal_prio;
2ddbf952
HS
1678 if (!rt_prio(p->prio))
1679 p->sched_class = &fair_sched_class;
b29739f9 1680
52f17b6c 1681#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1682 if (likely(sched_info_on()))
52f17b6c 1683 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1684#endif
d6077cb8 1685#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1686 p->oncpu = 0;
1687#endif
1da177e4 1688#ifdef CONFIG_PREEMPT
4866cde0 1689 /* Want to start with kernel preemption disabled. */
a1261f54 1690 task_thread_info(p)->preempt_count = 1;
1da177e4 1691#endif
476d139c 1692 put_cpu();
1da177e4
LT
1693}
1694
1695/*
1696 * wake_up_new_task - wake up a newly created task for the first time.
1697 *
1698 * This function will do some initial scheduler statistics housekeeping
1699 * that must be done for every newly created context, then puts the task
1700 * on the runqueue and wakes it.
1701 */
36c8b586 1702void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1703{
1704 unsigned long flags;
dd41f596 1705 struct rq *rq;
1da177e4
LT
1706
1707 rq = task_rq_lock(p, &flags);
147cbb4b 1708 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1709 update_rq_clock(rq);
1da177e4
LT
1710
1711 p->prio = effective_prio(p);
1712
00bf7bfc 1713 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
dd41f596 1714 activate_task(rq, p, 0);
1da177e4 1715 } else {
1da177e4 1716 /*
dd41f596
IM
1717 * Let the scheduling class do new task startup
1718 * management (if any):
1da177e4 1719 */
ee0827d8 1720 p->sched_class->task_new(rq, p);
e5fa2237 1721 inc_nr_running(p, rq);
1da177e4 1722 }
dd41f596
IM
1723 check_preempt_curr(rq, p);
1724 task_rq_unlock(rq, &flags);
1da177e4
LT
1725}
1726
e107be36
AK
1727#ifdef CONFIG_PREEMPT_NOTIFIERS
1728
1729/**
421cee29
RD
1730 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1731 * @notifier: notifier struct to register
e107be36
AK
1732 */
1733void preempt_notifier_register(struct preempt_notifier *notifier)
1734{
1735 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1736}
1737EXPORT_SYMBOL_GPL(preempt_notifier_register);
1738
1739/**
1740 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1741 * @notifier: notifier struct to unregister
e107be36
AK
1742 *
1743 * This is safe to call from within a preemption notifier.
1744 */
1745void preempt_notifier_unregister(struct preempt_notifier *notifier)
1746{
1747 hlist_del(&notifier->link);
1748}
1749EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1750
1751static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1752{
1753 struct preempt_notifier *notifier;
1754 struct hlist_node *node;
1755
1756 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1757 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1758}
1759
1760static void
1761fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762 struct task_struct *next)
1763{
1764 struct preempt_notifier *notifier;
1765 struct hlist_node *node;
1766
1767 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1768 notifier->ops->sched_out(notifier, next);
1769}
1770
1771#else
1772
1773static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1774{
1775}
1776
1777static void
1778fire_sched_out_preempt_notifiers(struct task_struct *curr,
1779 struct task_struct *next)
1780{
1781}
1782
1783#endif
1784
4866cde0
NP
1785/**
1786 * prepare_task_switch - prepare to switch tasks
1787 * @rq: the runqueue preparing to switch
421cee29 1788 * @prev: the current task that is being switched out
4866cde0
NP
1789 * @next: the task we are going to switch to.
1790 *
1791 * This is called with the rq lock held and interrupts off. It must
1792 * be paired with a subsequent finish_task_switch after the context
1793 * switch.
1794 *
1795 * prepare_task_switch sets up locking and calls architecture specific
1796 * hooks.
1797 */
e107be36
AK
1798static inline void
1799prepare_task_switch(struct rq *rq, struct task_struct *prev,
1800 struct task_struct *next)
4866cde0 1801{
e107be36 1802 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1803 prepare_lock_switch(rq, next);
1804 prepare_arch_switch(next);
1805}
1806
1da177e4
LT
1807/**
1808 * finish_task_switch - clean up after a task-switch
344babaa 1809 * @rq: runqueue associated with task-switch
1da177e4
LT
1810 * @prev: the thread we just switched away from.
1811 *
4866cde0
NP
1812 * finish_task_switch must be called after the context switch, paired
1813 * with a prepare_task_switch call before the context switch.
1814 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1815 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1816 *
1817 * Note that we may have delayed dropping an mm in context_switch(). If
1818 * so, we finish that here outside of the runqueue lock. (Doing it
1819 * with the lock held can cause deadlocks; see schedule() for
1820 * details.)
1821 */
a9957449 1822static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1823 __releases(rq->lock)
1824{
1da177e4 1825 struct mm_struct *mm = rq->prev_mm;
55a101f8 1826 long prev_state;
1da177e4
LT
1827
1828 rq->prev_mm = NULL;
1829
1830 /*
1831 * A task struct has one reference for the use as "current".
c394cc9f 1832 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1833 * schedule one last time. The schedule call will never return, and
1834 * the scheduled task must drop that reference.
c394cc9f 1835 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1836 * still held, otherwise prev could be scheduled on another cpu, die
1837 * there before we look at prev->state, and then the reference would
1838 * be dropped twice.
1839 * Manfred Spraul <manfred@colorfullife.com>
1840 */
55a101f8 1841 prev_state = prev->state;
4866cde0
NP
1842 finish_arch_switch(prev);
1843 finish_lock_switch(rq, prev);
e107be36 1844 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1845 if (mm)
1846 mmdrop(mm);
c394cc9f 1847 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1848 /*
1849 * Remove function-return probe instances associated with this
1850 * task and put them back on the free list.
9761eea8 1851 */
c6fd91f0 1852 kprobe_flush_task(prev);
1da177e4 1853 put_task_struct(prev);
c6fd91f0 1854 }
1da177e4
LT
1855}
1856
1857/**
1858 * schedule_tail - first thing a freshly forked thread must call.
1859 * @prev: the thread we just switched away from.
1860 */
36c8b586 1861asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1862 __releases(rq->lock)
1863{
70b97a7f
IM
1864 struct rq *rq = this_rq();
1865
4866cde0
NP
1866 finish_task_switch(rq, prev);
1867#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1868 /* In this case, finish_task_switch does not reenable preemption */
1869 preempt_enable();
1870#endif
1da177e4
LT
1871 if (current->set_child_tid)
1872 put_user(current->pid, current->set_child_tid);
1873}
1874
1875/*
1876 * context_switch - switch to the new MM and the new
1877 * thread's register state.
1878 */
dd41f596 1879static inline void
70b97a7f 1880context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1881 struct task_struct *next)
1da177e4 1882{
dd41f596 1883 struct mm_struct *mm, *oldmm;
1da177e4 1884
e107be36 1885 prepare_task_switch(rq, prev, next);
dd41f596
IM
1886 mm = next->mm;
1887 oldmm = prev->active_mm;
9226d125
ZA
1888 /*
1889 * For paravirt, this is coupled with an exit in switch_to to
1890 * combine the page table reload and the switch backend into
1891 * one hypercall.
1892 */
1893 arch_enter_lazy_cpu_mode();
1894
dd41f596 1895 if (unlikely(!mm)) {
1da177e4
LT
1896 next->active_mm = oldmm;
1897 atomic_inc(&oldmm->mm_count);
1898 enter_lazy_tlb(oldmm, next);
1899 } else
1900 switch_mm(oldmm, mm, next);
1901
dd41f596 1902 if (unlikely(!prev->mm)) {
1da177e4 1903 prev->active_mm = NULL;
1da177e4
LT
1904 rq->prev_mm = oldmm;
1905 }
3a5f5e48
IM
1906 /*
1907 * Since the runqueue lock will be released by the next
1908 * task (which is an invalid locking op but in the case
1909 * of the scheduler it's an obvious special-case), so we
1910 * do an early lockdep release here:
1911 */
1912#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1913 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1914#endif
1da177e4
LT
1915
1916 /* Here we just switch the register state and the stack. */
1917 switch_to(prev, next, prev);
1918
dd41f596
IM
1919 barrier();
1920 /*
1921 * this_rq must be evaluated again because prev may have moved
1922 * CPUs since it called schedule(), thus the 'rq' on its stack
1923 * frame will be invalid.
1924 */
1925 finish_task_switch(this_rq(), prev);
1da177e4
LT
1926}
1927
1928/*
1929 * nr_running, nr_uninterruptible and nr_context_switches:
1930 *
1931 * externally visible scheduler statistics: current number of runnable
1932 * threads, current number of uninterruptible-sleeping threads, total
1933 * number of context switches performed since bootup.
1934 */
1935unsigned long nr_running(void)
1936{
1937 unsigned long i, sum = 0;
1938
1939 for_each_online_cpu(i)
1940 sum += cpu_rq(i)->nr_running;
1941
1942 return sum;
1943}
1944
1945unsigned long nr_uninterruptible(void)
1946{
1947 unsigned long i, sum = 0;
1948
0a945022 1949 for_each_possible_cpu(i)
1da177e4
LT
1950 sum += cpu_rq(i)->nr_uninterruptible;
1951
1952 /*
1953 * Since we read the counters lockless, it might be slightly
1954 * inaccurate. Do not allow it to go below zero though:
1955 */
1956 if (unlikely((long)sum < 0))
1957 sum = 0;
1958
1959 return sum;
1960}
1961
1962unsigned long long nr_context_switches(void)
1963{
cc94abfc
SR
1964 int i;
1965 unsigned long long sum = 0;
1da177e4 1966
0a945022 1967 for_each_possible_cpu(i)
1da177e4
LT
1968 sum += cpu_rq(i)->nr_switches;
1969
1970 return sum;
1971}
1972
1973unsigned long nr_iowait(void)
1974{
1975 unsigned long i, sum = 0;
1976
0a945022 1977 for_each_possible_cpu(i)
1da177e4
LT
1978 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1979
1980 return sum;
1981}
1982
db1b1fef
JS
1983unsigned long nr_active(void)
1984{
1985 unsigned long i, running = 0, uninterruptible = 0;
1986
1987 for_each_online_cpu(i) {
1988 running += cpu_rq(i)->nr_running;
1989 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1990 }
1991
1992 if (unlikely((long)uninterruptible < 0))
1993 uninterruptible = 0;
1994
1995 return running + uninterruptible;
1996}
1997
48f24c4d 1998/*
dd41f596
IM
1999 * Update rq->cpu_load[] statistics. This function is usually called every
2000 * scheduler tick (TICK_NSEC).
48f24c4d 2001 */
dd41f596 2002static void update_cpu_load(struct rq *this_rq)
48f24c4d 2003{
495eca49 2004 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2005 int i, scale;
2006
2007 this_rq->nr_load_updates++;
dd41f596
IM
2008
2009 /* Update our load: */
2010 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2011 unsigned long old_load, new_load;
2012
2013 /* scale is effectively 1 << i now, and >> i divides by scale */
2014
2015 old_load = this_rq->cpu_load[i];
2016 new_load = this_load;
a25707f3
IM
2017 /*
2018 * Round up the averaging division if load is increasing. This
2019 * prevents us from getting stuck on 9 if the load is 10, for
2020 * example.
2021 */
2022 if (new_load > old_load)
2023 new_load += scale-1;
dd41f596
IM
2024 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2025 }
48f24c4d
IM
2026}
2027
dd41f596
IM
2028#ifdef CONFIG_SMP
2029
1da177e4
LT
2030/*
2031 * double_rq_lock - safely lock two runqueues
2032 *
2033 * Note this does not disable interrupts like task_rq_lock,
2034 * you need to do so manually before calling.
2035 */
70b97a7f 2036static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2037 __acquires(rq1->lock)
2038 __acquires(rq2->lock)
2039{
054b9108 2040 BUG_ON(!irqs_disabled());
1da177e4
LT
2041 if (rq1 == rq2) {
2042 spin_lock(&rq1->lock);
2043 __acquire(rq2->lock); /* Fake it out ;) */
2044 } else {
c96d145e 2045 if (rq1 < rq2) {
1da177e4
LT
2046 spin_lock(&rq1->lock);
2047 spin_lock(&rq2->lock);
2048 } else {
2049 spin_lock(&rq2->lock);
2050 spin_lock(&rq1->lock);
2051 }
2052 }
6e82a3be
IM
2053 update_rq_clock(rq1);
2054 update_rq_clock(rq2);
1da177e4
LT
2055}
2056
2057/*
2058 * double_rq_unlock - safely unlock two runqueues
2059 *
2060 * Note this does not restore interrupts like task_rq_unlock,
2061 * you need to do so manually after calling.
2062 */
70b97a7f 2063static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2064 __releases(rq1->lock)
2065 __releases(rq2->lock)
2066{
2067 spin_unlock(&rq1->lock);
2068 if (rq1 != rq2)
2069 spin_unlock(&rq2->lock);
2070 else
2071 __release(rq2->lock);
2072}
2073
2074/*
2075 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2076 */
70b97a7f 2077static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2078 __releases(this_rq->lock)
2079 __acquires(busiest->lock)
2080 __acquires(this_rq->lock)
2081{
054b9108
KK
2082 if (unlikely(!irqs_disabled())) {
2083 /* printk() doesn't work good under rq->lock */
2084 spin_unlock(&this_rq->lock);
2085 BUG_ON(1);
2086 }
1da177e4 2087 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2088 if (busiest < this_rq) {
1da177e4
LT
2089 spin_unlock(&this_rq->lock);
2090 spin_lock(&busiest->lock);
2091 spin_lock(&this_rq->lock);
2092 } else
2093 spin_lock(&busiest->lock);
2094 }
2095}
2096
1da177e4
LT
2097/*
2098 * If dest_cpu is allowed for this process, migrate the task to it.
2099 * This is accomplished by forcing the cpu_allowed mask to only
2100 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2101 * the cpu_allowed mask is restored.
2102 */
36c8b586 2103static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2104{
70b97a7f 2105 struct migration_req req;
1da177e4 2106 unsigned long flags;
70b97a7f 2107 struct rq *rq;
1da177e4
LT
2108
2109 rq = task_rq_lock(p, &flags);
2110 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2111 || unlikely(cpu_is_offline(dest_cpu)))
2112 goto out;
2113
2114 /* force the process onto the specified CPU */
2115 if (migrate_task(p, dest_cpu, &req)) {
2116 /* Need to wait for migration thread (might exit: take ref). */
2117 struct task_struct *mt = rq->migration_thread;
36c8b586 2118
1da177e4
LT
2119 get_task_struct(mt);
2120 task_rq_unlock(rq, &flags);
2121 wake_up_process(mt);
2122 put_task_struct(mt);
2123 wait_for_completion(&req.done);
36c8b586 2124
1da177e4
LT
2125 return;
2126 }
2127out:
2128 task_rq_unlock(rq, &flags);
2129}
2130
2131/*
476d139c
NP
2132 * sched_exec - execve() is a valuable balancing opportunity, because at
2133 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2134 */
2135void sched_exec(void)
2136{
1da177e4 2137 int new_cpu, this_cpu = get_cpu();
476d139c 2138 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2139 put_cpu();
476d139c
NP
2140 if (new_cpu != this_cpu)
2141 sched_migrate_task(current, new_cpu);
1da177e4
LT
2142}
2143
2144/*
2145 * pull_task - move a task from a remote runqueue to the local runqueue.
2146 * Both runqueues must be locked.
2147 */
dd41f596
IM
2148static void pull_task(struct rq *src_rq, struct task_struct *p,
2149 struct rq *this_rq, int this_cpu)
1da177e4 2150{
2e1cb74a 2151 deactivate_task(src_rq, p, 0);
1da177e4 2152 set_task_cpu(p, this_cpu);
dd41f596 2153 activate_task(this_rq, p, 0);
1da177e4
LT
2154 /*
2155 * Note that idle threads have a prio of MAX_PRIO, for this test
2156 * to be always true for them.
2157 */
dd41f596 2158 check_preempt_curr(this_rq, p);
1da177e4
LT
2159}
2160
2161/*
2162 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2163 */
858119e1 2164static
70b97a7f 2165int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2166 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2167 int *all_pinned)
1da177e4
LT
2168{
2169 /*
2170 * We do not migrate tasks that are:
2171 * 1) running (obviously), or
2172 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2173 * 3) are cache-hot on their current CPU.
2174 */
cc367732
IM
2175 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2176 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2177 return 0;
cc367732 2178 }
81026794
NP
2179 *all_pinned = 0;
2180
cc367732
IM
2181 if (task_running(rq, p)) {
2182 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2183 return 0;
cc367732 2184 }
1da177e4 2185
da84d961
IM
2186 /*
2187 * Aggressive migration if:
2188 * 1) task is cache cold, or
2189 * 2) too many balance attempts have failed.
2190 */
2191
2192 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2193#ifdef CONFIG_SCHEDSTATS
cc367732 2194 if (task_hot(p, rq->clock, sd)) {
da84d961 2195 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2196 schedstat_inc(p, se.nr_forced_migrations);
2197 }
da84d961
IM
2198#endif
2199 return 1;
2200 }
2201
cc367732
IM
2202 if (task_hot(p, rq->clock, sd)) {
2203 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2204 return 0;
cc367732 2205 }
1da177e4
LT
2206 return 1;
2207}
2208
dd41f596 2209static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2210 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2211 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2212 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2213 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2214{
dd41f596
IM
2215 int pulled = 0, pinned = 0, skip_for_load;
2216 struct task_struct *p;
2217 long rem_load_move = max_load_move;
1da177e4 2218
2dd73a4f 2219 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2220 goto out;
2221
81026794
NP
2222 pinned = 1;
2223
1da177e4 2224 /*
dd41f596 2225 * Start the load-balancing iterator:
1da177e4 2226 */
dd41f596
IM
2227 p = iterator->start(iterator->arg);
2228next:
2229 if (!p)
1da177e4 2230 goto out;
50ddd969
PW
2231 /*
2232 * To help distribute high priority tasks accross CPUs we don't
2233 * skip a task if it will be the highest priority task (i.e. smallest
2234 * prio value) on its new queue regardless of its load weight
2235 */
dd41f596
IM
2236 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2237 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2238 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2239 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2240 p = iterator->next(iterator->arg);
2241 goto next;
1da177e4
LT
2242 }
2243
dd41f596 2244 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2245 pulled++;
dd41f596 2246 rem_load_move -= p->se.load.weight;
1da177e4 2247
2dd73a4f
PW
2248 /*
2249 * We only want to steal up to the prescribed number of tasks
2250 * and the prescribed amount of weighted load.
2251 */
2252 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2253 if (p->prio < *this_best_prio)
2254 *this_best_prio = p->prio;
dd41f596
IM
2255 p = iterator->next(iterator->arg);
2256 goto next;
1da177e4
LT
2257 }
2258out:
2259 /*
2260 * Right now, this is the only place pull_task() is called,
2261 * so we can safely collect pull_task() stats here rather than
2262 * inside pull_task().
2263 */
2264 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2265
2266 if (all_pinned)
2267 *all_pinned = pinned;
dd41f596 2268 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2269 return pulled;
2270}
2271
dd41f596 2272/*
43010659
PW
2273 * move_tasks tries to move up to max_load_move weighted load from busiest to
2274 * this_rq, as part of a balancing operation within domain "sd".
2275 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2276 *
2277 * Called with both runqueues locked.
2278 */
2279static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2280 unsigned long max_load_move,
dd41f596
IM
2281 struct sched_domain *sd, enum cpu_idle_type idle,
2282 int *all_pinned)
2283{
5522d5d5 2284 const struct sched_class *class = sched_class_highest;
43010659 2285 unsigned long total_load_moved = 0;
a4ac01c3 2286 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2287
2288 do {
43010659
PW
2289 total_load_moved +=
2290 class->load_balance(this_rq, this_cpu, busiest,
2291 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2292 sd, idle, all_pinned, &this_best_prio);
dd41f596 2293 class = class->next;
43010659 2294 } while (class && max_load_move > total_load_moved);
dd41f596 2295
43010659
PW
2296 return total_load_moved > 0;
2297}
2298
2299/*
2300 * move_one_task tries to move exactly one task from busiest to this_rq, as
2301 * part of active balancing operations within "domain".
2302 * Returns 1 if successful and 0 otherwise.
2303 *
2304 * Called with both runqueues locked.
2305 */
2306static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2307 struct sched_domain *sd, enum cpu_idle_type idle)
2308{
5522d5d5 2309 const struct sched_class *class;
a4ac01c3 2310 int this_best_prio = MAX_PRIO;
43010659
PW
2311
2312 for (class = sched_class_highest; class; class = class->next)
2313 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2314 1, ULONG_MAX, sd, idle, NULL,
2315 &this_best_prio))
43010659
PW
2316 return 1;
2317
2318 return 0;
dd41f596
IM
2319}
2320
1da177e4
LT
2321/*
2322 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2323 * domain. It calculates and returns the amount of weighted load which
2324 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2325 */
2326static struct sched_group *
2327find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2328 unsigned long *imbalance, enum cpu_idle_type idle,
2329 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2330{
2331 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2332 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2333 unsigned long max_pull;
2dd73a4f
PW
2334 unsigned long busiest_load_per_task, busiest_nr_running;
2335 unsigned long this_load_per_task, this_nr_running;
7897986b 2336 int load_idx;
5c45bf27
SS
2337#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2338 int power_savings_balance = 1;
2339 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2340 unsigned long min_nr_running = ULONG_MAX;
2341 struct sched_group *group_min = NULL, *group_leader = NULL;
2342#endif
1da177e4
LT
2343
2344 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2345 busiest_load_per_task = busiest_nr_running = 0;
2346 this_load_per_task = this_nr_running = 0;
d15bcfdb 2347 if (idle == CPU_NOT_IDLE)
7897986b 2348 load_idx = sd->busy_idx;
d15bcfdb 2349 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2350 load_idx = sd->newidle_idx;
2351 else
2352 load_idx = sd->idle_idx;
1da177e4
LT
2353
2354 do {
5c45bf27 2355 unsigned long load, group_capacity;
1da177e4
LT
2356 int local_group;
2357 int i;
783609c6 2358 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2359 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2360
2361 local_group = cpu_isset(this_cpu, group->cpumask);
2362
783609c6
SS
2363 if (local_group)
2364 balance_cpu = first_cpu(group->cpumask);
2365
1da177e4 2366 /* Tally up the load of all CPUs in the group */
2dd73a4f 2367 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2368
2369 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2370 struct rq *rq;
2371
2372 if (!cpu_isset(i, *cpus))
2373 continue;
2374
2375 rq = cpu_rq(i);
2dd73a4f 2376
9439aab8 2377 if (*sd_idle && rq->nr_running)
5969fe06
NP
2378 *sd_idle = 0;
2379
1da177e4 2380 /* Bias balancing toward cpus of our domain */
783609c6
SS
2381 if (local_group) {
2382 if (idle_cpu(i) && !first_idle_cpu) {
2383 first_idle_cpu = 1;
2384 balance_cpu = i;
2385 }
2386
a2000572 2387 load = target_load(i, load_idx);
783609c6 2388 } else
a2000572 2389 load = source_load(i, load_idx);
1da177e4
LT
2390
2391 avg_load += load;
2dd73a4f 2392 sum_nr_running += rq->nr_running;
dd41f596 2393 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2394 }
2395
783609c6
SS
2396 /*
2397 * First idle cpu or the first cpu(busiest) in this sched group
2398 * is eligible for doing load balancing at this and above
9439aab8
SS
2399 * domains. In the newly idle case, we will allow all the cpu's
2400 * to do the newly idle load balance.
783609c6 2401 */
9439aab8
SS
2402 if (idle != CPU_NEWLY_IDLE && local_group &&
2403 balance_cpu != this_cpu && balance) {
783609c6
SS
2404 *balance = 0;
2405 goto ret;
2406 }
2407
1da177e4 2408 total_load += avg_load;
5517d86b 2409 total_pwr += group->__cpu_power;
1da177e4
LT
2410
2411 /* Adjust by relative CPU power of the group */
5517d86b
ED
2412 avg_load = sg_div_cpu_power(group,
2413 avg_load * SCHED_LOAD_SCALE);
1da177e4 2414
5517d86b 2415 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2416
1da177e4
LT
2417 if (local_group) {
2418 this_load = avg_load;
2419 this = group;
2dd73a4f
PW
2420 this_nr_running = sum_nr_running;
2421 this_load_per_task = sum_weighted_load;
2422 } else if (avg_load > max_load &&
5c45bf27 2423 sum_nr_running > group_capacity) {
1da177e4
LT
2424 max_load = avg_load;
2425 busiest = group;
2dd73a4f
PW
2426 busiest_nr_running = sum_nr_running;
2427 busiest_load_per_task = sum_weighted_load;
1da177e4 2428 }
5c45bf27
SS
2429
2430#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2431 /*
2432 * Busy processors will not participate in power savings
2433 * balance.
2434 */
dd41f596
IM
2435 if (idle == CPU_NOT_IDLE ||
2436 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2437 goto group_next;
5c45bf27
SS
2438
2439 /*
2440 * If the local group is idle or completely loaded
2441 * no need to do power savings balance at this domain
2442 */
2443 if (local_group && (this_nr_running >= group_capacity ||
2444 !this_nr_running))
2445 power_savings_balance = 0;
2446
dd41f596 2447 /*
5c45bf27
SS
2448 * If a group is already running at full capacity or idle,
2449 * don't include that group in power savings calculations
dd41f596
IM
2450 */
2451 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2452 || !sum_nr_running)
dd41f596 2453 goto group_next;
5c45bf27 2454
dd41f596 2455 /*
5c45bf27 2456 * Calculate the group which has the least non-idle load.
dd41f596
IM
2457 * This is the group from where we need to pick up the load
2458 * for saving power
2459 */
2460 if ((sum_nr_running < min_nr_running) ||
2461 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2462 first_cpu(group->cpumask) <
2463 first_cpu(group_min->cpumask))) {
dd41f596
IM
2464 group_min = group;
2465 min_nr_running = sum_nr_running;
5c45bf27
SS
2466 min_load_per_task = sum_weighted_load /
2467 sum_nr_running;
dd41f596 2468 }
5c45bf27 2469
dd41f596 2470 /*
5c45bf27 2471 * Calculate the group which is almost near its
dd41f596
IM
2472 * capacity but still has some space to pick up some load
2473 * from other group and save more power
2474 */
2475 if (sum_nr_running <= group_capacity - 1) {
2476 if (sum_nr_running > leader_nr_running ||
2477 (sum_nr_running == leader_nr_running &&
2478 first_cpu(group->cpumask) >
2479 first_cpu(group_leader->cpumask))) {
2480 group_leader = group;
2481 leader_nr_running = sum_nr_running;
2482 }
48f24c4d 2483 }
5c45bf27
SS
2484group_next:
2485#endif
1da177e4
LT
2486 group = group->next;
2487 } while (group != sd->groups);
2488
2dd73a4f 2489 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2490 goto out_balanced;
2491
2492 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2493
2494 if (this_load >= avg_load ||
2495 100*max_load <= sd->imbalance_pct*this_load)
2496 goto out_balanced;
2497
2dd73a4f 2498 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2499 /*
2500 * We're trying to get all the cpus to the average_load, so we don't
2501 * want to push ourselves above the average load, nor do we wish to
2502 * reduce the max loaded cpu below the average load, as either of these
2503 * actions would just result in more rebalancing later, and ping-pong
2504 * tasks around. Thus we look for the minimum possible imbalance.
2505 * Negative imbalances (*we* are more loaded than anyone else) will
2506 * be counted as no imbalance for these purposes -- we can't fix that
2507 * by pulling tasks to us. Be careful of negative numbers as they'll
2508 * appear as very large values with unsigned longs.
2509 */
2dd73a4f
PW
2510 if (max_load <= busiest_load_per_task)
2511 goto out_balanced;
2512
2513 /*
2514 * In the presence of smp nice balancing, certain scenarios can have
2515 * max load less than avg load(as we skip the groups at or below
2516 * its cpu_power, while calculating max_load..)
2517 */
2518 if (max_load < avg_load) {
2519 *imbalance = 0;
2520 goto small_imbalance;
2521 }
0c117f1b
SS
2522
2523 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2524 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2525
1da177e4 2526 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2527 *imbalance = min(max_pull * busiest->__cpu_power,
2528 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2529 / SCHED_LOAD_SCALE;
2530
2dd73a4f
PW
2531 /*
2532 * if *imbalance is less than the average load per runnable task
2533 * there is no gaurantee that any tasks will be moved so we'll have
2534 * a think about bumping its value to force at least one task to be
2535 * moved
2536 */
7fd0d2dd 2537 if (*imbalance < busiest_load_per_task) {
48f24c4d 2538 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2539 unsigned int imbn;
2540
2541small_imbalance:
2542 pwr_move = pwr_now = 0;
2543 imbn = 2;
2544 if (this_nr_running) {
2545 this_load_per_task /= this_nr_running;
2546 if (busiest_load_per_task > this_load_per_task)
2547 imbn = 1;
2548 } else
2549 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2550
dd41f596
IM
2551 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2552 busiest_load_per_task * imbn) {
2dd73a4f 2553 *imbalance = busiest_load_per_task;
1da177e4
LT
2554 return busiest;
2555 }
2556
2557 /*
2558 * OK, we don't have enough imbalance to justify moving tasks,
2559 * however we may be able to increase total CPU power used by
2560 * moving them.
2561 */
2562
5517d86b
ED
2563 pwr_now += busiest->__cpu_power *
2564 min(busiest_load_per_task, max_load);
2565 pwr_now += this->__cpu_power *
2566 min(this_load_per_task, this_load);
1da177e4
LT
2567 pwr_now /= SCHED_LOAD_SCALE;
2568
2569 /* Amount of load we'd subtract */
5517d86b
ED
2570 tmp = sg_div_cpu_power(busiest,
2571 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2572 if (max_load > tmp)
5517d86b 2573 pwr_move += busiest->__cpu_power *
2dd73a4f 2574 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2575
2576 /* Amount of load we'd add */
5517d86b 2577 if (max_load * busiest->__cpu_power <
33859f7f 2578 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2579 tmp = sg_div_cpu_power(this,
2580 max_load * busiest->__cpu_power);
1da177e4 2581 else
5517d86b
ED
2582 tmp = sg_div_cpu_power(this,
2583 busiest_load_per_task * SCHED_LOAD_SCALE);
2584 pwr_move += this->__cpu_power *
2585 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2586 pwr_move /= SCHED_LOAD_SCALE;
2587
2588 /* Move if we gain throughput */
7fd0d2dd
SS
2589 if (pwr_move > pwr_now)
2590 *imbalance = busiest_load_per_task;
1da177e4
LT
2591 }
2592
1da177e4
LT
2593 return busiest;
2594
2595out_balanced:
5c45bf27 2596#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2597 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2598 goto ret;
1da177e4 2599
5c45bf27
SS
2600 if (this == group_leader && group_leader != group_min) {
2601 *imbalance = min_load_per_task;
2602 return group_min;
2603 }
5c45bf27 2604#endif
783609c6 2605ret:
1da177e4
LT
2606 *imbalance = 0;
2607 return NULL;
2608}
2609
2610/*
2611 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2612 */
70b97a7f 2613static struct rq *
d15bcfdb 2614find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2615 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2616{
70b97a7f 2617 struct rq *busiest = NULL, *rq;
2dd73a4f 2618 unsigned long max_load = 0;
1da177e4
LT
2619 int i;
2620
2621 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2622 unsigned long wl;
0a2966b4
CL
2623
2624 if (!cpu_isset(i, *cpus))
2625 continue;
2626
48f24c4d 2627 rq = cpu_rq(i);
dd41f596 2628 wl = weighted_cpuload(i);
2dd73a4f 2629
dd41f596 2630 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2631 continue;
1da177e4 2632
dd41f596
IM
2633 if (wl > max_load) {
2634 max_load = wl;
48f24c4d 2635 busiest = rq;
1da177e4
LT
2636 }
2637 }
2638
2639 return busiest;
2640}
2641
77391d71
NP
2642/*
2643 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2644 * so long as it is large enough.
2645 */
2646#define MAX_PINNED_INTERVAL 512
2647
1da177e4
LT
2648/*
2649 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2650 * tasks if there is an imbalance.
1da177e4 2651 */
70b97a7f 2652static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2653 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2654 int *balance)
1da177e4 2655{
43010659 2656 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2657 struct sched_group *group;
1da177e4 2658 unsigned long imbalance;
70b97a7f 2659 struct rq *busiest;
0a2966b4 2660 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2661 unsigned long flags;
5969fe06 2662
89c4710e
SS
2663 /*
2664 * When power savings policy is enabled for the parent domain, idle
2665 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2666 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2667 * portraying it as CPU_NOT_IDLE.
89c4710e 2668 */
d15bcfdb 2669 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2670 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2671 sd_idle = 1;
1da177e4 2672
2d72376b 2673 schedstat_inc(sd, lb_count[idle]);
1da177e4 2674
0a2966b4
CL
2675redo:
2676 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2677 &cpus, balance);
2678
06066714 2679 if (*balance == 0)
783609c6 2680 goto out_balanced;
783609c6 2681
1da177e4
LT
2682 if (!group) {
2683 schedstat_inc(sd, lb_nobusyg[idle]);
2684 goto out_balanced;
2685 }
2686
0a2966b4 2687 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2688 if (!busiest) {
2689 schedstat_inc(sd, lb_nobusyq[idle]);
2690 goto out_balanced;
2691 }
2692
db935dbd 2693 BUG_ON(busiest == this_rq);
1da177e4
LT
2694
2695 schedstat_add(sd, lb_imbalance[idle], imbalance);
2696
43010659 2697 ld_moved = 0;
1da177e4
LT
2698 if (busiest->nr_running > 1) {
2699 /*
2700 * Attempt to move tasks. If find_busiest_group has found
2701 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2702 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2703 * correctly treated as an imbalance.
2704 */
fe2eea3f 2705 local_irq_save(flags);
e17224bf 2706 double_rq_lock(this_rq, busiest);
43010659 2707 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2708 imbalance, sd, idle, &all_pinned);
e17224bf 2709 double_rq_unlock(this_rq, busiest);
fe2eea3f 2710 local_irq_restore(flags);
81026794 2711
46cb4b7c
SS
2712 /*
2713 * some other cpu did the load balance for us.
2714 */
43010659 2715 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2716 resched_cpu(this_cpu);
2717
81026794 2718 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2719 if (unlikely(all_pinned)) {
2720 cpu_clear(cpu_of(busiest), cpus);
2721 if (!cpus_empty(cpus))
2722 goto redo;
81026794 2723 goto out_balanced;
0a2966b4 2724 }
1da177e4 2725 }
81026794 2726
43010659 2727 if (!ld_moved) {
1da177e4
LT
2728 schedstat_inc(sd, lb_failed[idle]);
2729 sd->nr_balance_failed++;
2730
2731 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2732
fe2eea3f 2733 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2734
2735 /* don't kick the migration_thread, if the curr
2736 * task on busiest cpu can't be moved to this_cpu
2737 */
2738 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2739 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2740 all_pinned = 1;
2741 goto out_one_pinned;
2742 }
2743
1da177e4
LT
2744 if (!busiest->active_balance) {
2745 busiest->active_balance = 1;
2746 busiest->push_cpu = this_cpu;
81026794 2747 active_balance = 1;
1da177e4 2748 }
fe2eea3f 2749 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2750 if (active_balance)
1da177e4
LT
2751 wake_up_process(busiest->migration_thread);
2752
2753 /*
2754 * We've kicked active balancing, reset the failure
2755 * counter.
2756 */
39507451 2757 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2758 }
81026794 2759 } else
1da177e4
LT
2760 sd->nr_balance_failed = 0;
2761
81026794 2762 if (likely(!active_balance)) {
1da177e4
LT
2763 /* We were unbalanced, so reset the balancing interval */
2764 sd->balance_interval = sd->min_interval;
81026794
NP
2765 } else {
2766 /*
2767 * If we've begun active balancing, start to back off. This
2768 * case may not be covered by the all_pinned logic if there
2769 * is only 1 task on the busy runqueue (because we don't call
2770 * move_tasks).
2771 */
2772 if (sd->balance_interval < sd->max_interval)
2773 sd->balance_interval *= 2;
1da177e4
LT
2774 }
2775
43010659 2776 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2777 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2778 return -1;
43010659 2779 return ld_moved;
1da177e4
LT
2780
2781out_balanced:
1da177e4
LT
2782 schedstat_inc(sd, lb_balanced[idle]);
2783
16cfb1c0 2784 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2785
2786out_one_pinned:
1da177e4 2787 /* tune up the balancing interval */
77391d71
NP
2788 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2789 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2790 sd->balance_interval *= 2;
2791
48f24c4d 2792 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2793 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2794 return -1;
1da177e4
LT
2795 return 0;
2796}
2797
2798/*
2799 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2800 * tasks if there is an imbalance.
2801 *
d15bcfdb 2802 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2803 * this_rq is locked.
2804 */
48f24c4d 2805static int
70b97a7f 2806load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2807{
2808 struct sched_group *group;
70b97a7f 2809 struct rq *busiest = NULL;
1da177e4 2810 unsigned long imbalance;
43010659 2811 int ld_moved = 0;
5969fe06 2812 int sd_idle = 0;
969bb4e4 2813 int all_pinned = 0;
0a2966b4 2814 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2815
89c4710e
SS
2816 /*
2817 * When power savings policy is enabled for the parent domain, idle
2818 * sibling can pick up load irrespective of busy siblings. In this case,
2819 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2820 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2821 */
2822 if (sd->flags & SD_SHARE_CPUPOWER &&
2823 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2824 sd_idle = 1;
1da177e4 2825
2d72376b 2826 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2827redo:
d15bcfdb 2828 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2829 &sd_idle, &cpus, NULL);
1da177e4 2830 if (!group) {
d15bcfdb 2831 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2832 goto out_balanced;
1da177e4
LT
2833 }
2834
d15bcfdb 2835 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2836 &cpus);
db935dbd 2837 if (!busiest) {
d15bcfdb 2838 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2839 goto out_balanced;
1da177e4
LT
2840 }
2841
db935dbd
NP
2842 BUG_ON(busiest == this_rq);
2843
d15bcfdb 2844 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2845
43010659 2846 ld_moved = 0;
d6d5cfaf
NP
2847 if (busiest->nr_running > 1) {
2848 /* Attempt to move tasks */
2849 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2850 /* this_rq->clock is already updated */
2851 update_rq_clock(busiest);
43010659 2852 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2853 imbalance, sd, CPU_NEWLY_IDLE,
2854 &all_pinned);
d6d5cfaf 2855 spin_unlock(&busiest->lock);
0a2966b4 2856
969bb4e4 2857 if (unlikely(all_pinned)) {
0a2966b4
CL
2858 cpu_clear(cpu_of(busiest), cpus);
2859 if (!cpus_empty(cpus))
2860 goto redo;
2861 }
d6d5cfaf
NP
2862 }
2863
43010659 2864 if (!ld_moved) {
d15bcfdb 2865 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2866 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2867 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2868 return -1;
2869 } else
16cfb1c0 2870 sd->nr_balance_failed = 0;
1da177e4 2871
43010659 2872 return ld_moved;
16cfb1c0
NP
2873
2874out_balanced:
d15bcfdb 2875 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2876 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2877 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2878 return -1;
16cfb1c0 2879 sd->nr_balance_failed = 0;
48f24c4d 2880
16cfb1c0 2881 return 0;
1da177e4
LT
2882}
2883
2884/*
2885 * idle_balance is called by schedule() if this_cpu is about to become
2886 * idle. Attempts to pull tasks from other CPUs.
2887 */
70b97a7f 2888static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2889{
2890 struct sched_domain *sd;
dd41f596
IM
2891 int pulled_task = -1;
2892 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2893
2894 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2895 unsigned long interval;
2896
2897 if (!(sd->flags & SD_LOAD_BALANCE))
2898 continue;
2899
2900 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2901 /* If we've pulled tasks over stop searching: */
1bd77f2d 2902 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2903 this_rq, sd);
2904
2905 interval = msecs_to_jiffies(sd->balance_interval);
2906 if (time_after(next_balance, sd->last_balance + interval))
2907 next_balance = sd->last_balance + interval;
2908 if (pulled_task)
2909 break;
1da177e4 2910 }
dd41f596 2911 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2912 /*
2913 * We are going idle. next_balance may be set based on
2914 * a busy processor. So reset next_balance.
2915 */
2916 this_rq->next_balance = next_balance;
dd41f596 2917 }
1da177e4
LT
2918}
2919
2920/*
2921 * active_load_balance is run by migration threads. It pushes running tasks
2922 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2923 * running on each physical CPU where possible, and avoids physical /
2924 * logical imbalances.
2925 *
2926 * Called with busiest_rq locked.
2927 */
70b97a7f 2928static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2929{
39507451 2930 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2931 struct sched_domain *sd;
2932 struct rq *target_rq;
39507451 2933
48f24c4d 2934 /* Is there any task to move? */
39507451 2935 if (busiest_rq->nr_running <= 1)
39507451
NP
2936 return;
2937
2938 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2939
2940 /*
39507451
NP
2941 * This condition is "impossible", if it occurs
2942 * we need to fix it. Originally reported by
2943 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2944 */
39507451 2945 BUG_ON(busiest_rq == target_rq);
1da177e4 2946
39507451
NP
2947 /* move a task from busiest_rq to target_rq */
2948 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2949 update_rq_clock(busiest_rq);
2950 update_rq_clock(target_rq);
39507451
NP
2951
2952 /* Search for an sd spanning us and the target CPU. */
c96d145e 2953 for_each_domain(target_cpu, sd) {
39507451 2954 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2955 cpu_isset(busiest_cpu, sd->span))
39507451 2956 break;
c96d145e 2957 }
39507451 2958
48f24c4d 2959 if (likely(sd)) {
2d72376b 2960 schedstat_inc(sd, alb_count);
39507451 2961
43010659
PW
2962 if (move_one_task(target_rq, target_cpu, busiest_rq,
2963 sd, CPU_IDLE))
48f24c4d
IM
2964 schedstat_inc(sd, alb_pushed);
2965 else
2966 schedstat_inc(sd, alb_failed);
2967 }
39507451 2968 spin_unlock(&target_rq->lock);
1da177e4
LT
2969}
2970
46cb4b7c
SS
2971#ifdef CONFIG_NO_HZ
2972static struct {
2973 atomic_t load_balancer;
2974 cpumask_t cpu_mask;
2975} nohz ____cacheline_aligned = {
2976 .load_balancer = ATOMIC_INIT(-1),
2977 .cpu_mask = CPU_MASK_NONE,
2978};
2979
7835b98b 2980/*
46cb4b7c
SS
2981 * This routine will try to nominate the ilb (idle load balancing)
2982 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2983 * load balancing on behalf of all those cpus. If all the cpus in the system
2984 * go into this tickless mode, then there will be no ilb owner (as there is
2985 * no need for one) and all the cpus will sleep till the next wakeup event
2986 * arrives...
2987 *
2988 * For the ilb owner, tick is not stopped. And this tick will be used
2989 * for idle load balancing. ilb owner will still be part of
2990 * nohz.cpu_mask..
7835b98b 2991 *
46cb4b7c
SS
2992 * While stopping the tick, this cpu will become the ilb owner if there
2993 * is no other owner. And will be the owner till that cpu becomes busy
2994 * or if all cpus in the system stop their ticks at which point
2995 * there is no need for ilb owner.
2996 *
2997 * When the ilb owner becomes busy, it nominates another owner, during the
2998 * next busy scheduler_tick()
2999 */
3000int select_nohz_load_balancer(int stop_tick)
3001{
3002 int cpu = smp_processor_id();
3003
3004 if (stop_tick) {
3005 cpu_set(cpu, nohz.cpu_mask);
3006 cpu_rq(cpu)->in_nohz_recently = 1;
3007
3008 /*
3009 * If we are going offline and still the leader, give up!
3010 */
3011 if (cpu_is_offline(cpu) &&
3012 atomic_read(&nohz.load_balancer) == cpu) {
3013 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3014 BUG();
3015 return 0;
3016 }
3017
3018 /* time for ilb owner also to sleep */
3019 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3020 if (atomic_read(&nohz.load_balancer) == cpu)
3021 atomic_set(&nohz.load_balancer, -1);
3022 return 0;
3023 }
3024
3025 if (atomic_read(&nohz.load_balancer) == -1) {
3026 /* make me the ilb owner */
3027 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3028 return 1;
3029 } else if (atomic_read(&nohz.load_balancer) == cpu)
3030 return 1;
3031 } else {
3032 if (!cpu_isset(cpu, nohz.cpu_mask))
3033 return 0;
3034
3035 cpu_clear(cpu, nohz.cpu_mask);
3036
3037 if (atomic_read(&nohz.load_balancer) == cpu)
3038 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3039 BUG();
3040 }
3041 return 0;
3042}
3043#endif
3044
3045static DEFINE_SPINLOCK(balancing);
3046
3047/*
7835b98b
CL
3048 * It checks each scheduling domain to see if it is due to be balanced,
3049 * and initiates a balancing operation if so.
3050 *
3051 * Balancing parameters are set up in arch_init_sched_domains.
3052 */
a9957449 3053static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3054{
46cb4b7c
SS
3055 int balance = 1;
3056 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3057 unsigned long interval;
3058 struct sched_domain *sd;
46cb4b7c 3059 /* Earliest time when we have to do rebalance again */
c9819f45 3060 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3061 int update_next_balance = 0;
1da177e4 3062
46cb4b7c 3063 for_each_domain(cpu, sd) {
1da177e4
LT
3064 if (!(sd->flags & SD_LOAD_BALANCE))
3065 continue;
3066
3067 interval = sd->balance_interval;
d15bcfdb 3068 if (idle != CPU_IDLE)
1da177e4
LT
3069 interval *= sd->busy_factor;
3070
3071 /* scale ms to jiffies */
3072 interval = msecs_to_jiffies(interval);
3073 if (unlikely(!interval))
3074 interval = 1;
dd41f596
IM
3075 if (interval > HZ*NR_CPUS/10)
3076 interval = HZ*NR_CPUS/10;
3077
1da177e4 3078
08c183f3
CL
3079 if (sd->flags & SD_SERIALIZE) {
3080 if (!spin_trylock(&balancing))
3081 goto out;
3082 }
3083
c9819f45 3084 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3085 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3086 /*
3087 * We've pulled tasks over so either we're no
5969fe06
NP
3088 * longer idle, or one of our SMT siblings is
3089 * not idle.
3090 */
d15bcfdb 3091 idle = CPU_NOT_IDLE;
1da177e4 3092 }
1bd77f2d 3093 sd->last_balance = jiffies;
1da177e4 3094 }
08c183f3
CL
3095 if (sd->flags & SD_SERIALIZE)
3096 spin_unlock(&balancing);
3097out:
f549da84 3098 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3099 next_balance = sd->last_balance + interval;
f549da84
SS
3100 update_next_balance = 1;
3101 }
783609c6
SS
3102
3103 /*
3104 * Stop the load balance at this level. There is another
3105 * CPU in our sched group which is doing load balancing more
3106 * actively.
3107 */
3108 if (!balance)
3109 break;
1da177e4 3110 }
f549da84
SS
3111
3112 /*
3113 * next_balance will be updated only when there is a need.
3114 * When the cpu is attached to null domain for ex, it will not be
3115 * updated.
3116 */
3117 if (likely(update_next_balance))
3118 rq->next_balance = next_balance;
46cb4b7c
SS
3119}
3120
3121/*
3122 * run_rebalance_domains is triggered when needed from the scheduler tick.
3123 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3124 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3125 */
3126static void run_rebalance_domains(struct softirq_action *h)
3127{
dd41f596
IM
3128 int this_cpu = smp_processor_id();
3129 struct rq *this_rq = cpu_rq(this_cpu);
3130 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3131 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3132
dd41f596 3133 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3134
3135#ifdef CONFIG_NO_HZ
3136 /*
3137 * If this cpu is the owner for idle load balancing, then do the
3138 * balancing on behalf of the other idle cpus whose ticks are
3139 * stopped.
3140 */
dd41f596
IM
3141 if (this_rq->idle_at_tick &&
3142 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3143 cpumask_t cpus = nohz.cpu_mask;
3144 struct rq *rq;
3145 int balance_cpu;
3146
dd41f596 3147 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3148 for_each_cpu_mask(balance_cpu, cpus) {
3149 /*
3150 * If this cpu gets work to do, stop the load balancing
3151 * work being done for other cpus. Next load
3152 * balancing owner will pick it up.
3153 */
3154 if (need_resched())
3155 break;
3156
de0cf899 3157 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3158
3159 rq = cpu_rq(balance_cpu);
dd41f596
IM
3160 if (time_after(this_rq->next_balance, rq->next_balance))
3161 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3162 }
3163 }
3164#endif
3165}
3166
3167/*
3168 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3169 *
3170 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3171 * idle load balancing owner or decide to stop the periodic load balancing,
3172 * if the whole system is idle.
3173 */
dd41f596 3174static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3175{
46cb4b7c
SS
3176#ifdef CONFIG_NO_HZ
3177 /*
3178 * If we were in the nohz mode recently and busy at the current
3179 * scheduler tick, then check if we need to nominate new idle
3180 * load balancer.
3181 */
3182 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3183 rq->in_nohz_recently = 0;
3184
3185 if (atomic_read(&nohz.load_balancer) == cpu) {
3186 cpu_clear(cpu, nohz.cpu_mask);
3187 atomic_set(&nohz.load_balancer, -1);
3188 }
3189
3190 if (atomic_read(&nohz.load_balancer) == -1) {
3191 /*
3192 * simple selection for now: Nominate the
3193 * first cpu in the nohz list to be the next
3194 * ilb owner.
3195 *
3196 * TBD: Traverse the sched domains and nominate
3197 * the nearest cpu in the nohz.cpu_mask.
3198 */
3199 int ilb = first_cpu(nohz.cpu_mask);
3200
3201 if (ilb != NR_CPUS)
3202 resched_cpu(ilb);
3203 }
3204 }
3205
3206 /*
3207 * If this cpu is idle and doing idle load balancing for all the
3208 * cpus with ticks stopped, is it time for that to stop?
3209 */
3210 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3211 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3212 resched_cpu(cpu);
3213 return;
3214 }
3215
3216 /*
3217 * If this cpu is idle and the idle load balancing is done by
3218 * someone else, then no need raise the SCHED_SOFTIRQ
3219 */
3220 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3221 cpu_isset(cpu, nohz.cpu_mask))
3222 return;
3223#endif
3224 if (time_after_eq(jiffies, rq->next_balance))
3225 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3226}
dd41f596
IM
3227
3228#else /* CONFIG_SMP */
3229
1da177e4
LT
3230/*
3231 * on UP we do not need to balance between CPUs:
3232 */
70b97a7f 3233static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3234{
3235}
dd41f596
IM
3236
3237/* Avoid "used but not defined" warning on UP */
3238static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3239 unsigned long max_nr_move, unsigned long max_load_move,
3240 struct sched_domain *sd, enum cpu_idle_type idle,
3241 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3242 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3243{
3244 *load_moved = 0;
3245
3246 return 0;
3247}
3248
1da177e4
LT
3249#endif
3250
1da177e4
LT
3251DEFINE_PER_CPU(struct kernel_stat, kstat);
3252
3253EXPORT_PER_CPU_SYMBOL(kstat);
3254
3255/*
41b86e9c
IM
3256 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3257 * that have not yet been banked in case the task is currently running.
1da177e4 3258 */
41b86e9c 3259unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3260{
1da177e4 3261 unsigned long flags;
41b86e9c
IM
3262 u64 ns, delta_exec;
3263 struct rq *rq;
48f24c4d 3264
41b86e9c
IM
3265 rq = task_rq_lock(p, &flags);
3266 ns = p->se.sum_exec_runtime;
3267 if (rq->curr == p) {
a8e504d2
IM
3268 update_rq_clock(rq);
3269 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3270 if ((s64)delta_exec > 0)
3271 ns += delta_exec;
3272 }
3273 task_rq_unlock(rq, &flags);
48f24c4d 3274
1da177e4
LT
3275 return ns;
3276}
3277
1da177e4
LT
3278/*
3279 * Account user cpu time to a process.
3280 * @p: the process that the cpu time gets accounted to
3281 * @hardirq_offset: the offset to subtract from hardirq_count()
3282 * @cputime: the cpu time spent in user space since the last update
3283 */
3284void account_user_time(struct task_struct *p, cputime_t cputime)
3285{
3286 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3287 cputime64_t tmp;
3288
3289 p->utime = cputime_add(p->utime, cputime);
3290
3291 /* Add user time to cpustat. */
3292 tmp = cputime_to_cputime64(cputime);
3293 if (TASK_NICE(p) > 0)
3294 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3295 else
3296 cpustat->user = cputime64_add(cpustat->user, tmp);
3297}
3298
3299/*
3300 * Account system cpu time to a process.
3301 * @p: the process that the cpu time gets accounted to
3302 * @hardirq_offset: the offset to subtract from hardirq_count()
3303 * @cputime: the cpu time spent in kernel space since the last update
3304 */
3305void account_system_time(struct task_struct *p, int hardirq_offset,
3306 cputime_t cputime)
3307{
3308 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3309 struct rq *rq = this_rq();
1da177e4
LT
3310 cputime64_t tmp;
3311
3312 p->stime = cputime_add(p->stime, cputime);
3313
3314 /* Add system time to cpustat. */
3315 tmp = cputime_to_cputime64(cputime);
3316 if (hardirq_count() - hardirq_offset)
3317 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3318 else if (softirq_count())
3319 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3320 else if (p != rq->idle)
3321 cpustat->system = cputime64_add(cpustat->system, tmp);
3322 else if (atomic_read(&rq->nr_iowait) > 0)
3323 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3324 else
3325 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3326 /* Account for system time used */
3327 acct_update_integrals(p);
1da177e4
LT
3328}
3329
3330/*
3331 * Account for involuntary wait time.
3332 * @p: the process from which the cpu time has been stolen
3333 * @steal: the cpu time spent in involuntary wait
3334 */
3335void account_steal_time(struct task_struct *p, cputime_t steal)
3336{
3337 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3338 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3339 struct rq *rq = this_rq();
1da177e4
LT
3340
3341 if (p == rq->idle) {
3342 p->stime = cputime_add(p->stime, steal);
3343 if (atomic_read(&rq->nr_iowait) > 0)
3344 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3345 else
3346 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3347 } else
3348 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3349}
3350
7835b98b
CL
3351/*
3352 * This function gets called by the timer code, with HZ frequency.
3353 * We call it with interrupts disabled.
3354 *
3355 * It also gets called by the fork code, when changing the parent's
3356 * timeslices.
3357 */
3358void scheduler_tick(void)
3359{
7835b98b
CL
3360 int cpu = smp_processor_id();
3361 struct rq *rq = cpu_rq(cpu);
dd41f596 3362 struct task_struct *curr = rq->curr;
529c7726 3363 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3364
3365 spin_lock(&rq->lock);
546fe3c9 3366 __update_rq_clock(rq);
529c7726
IM
3367 /*
3368 * Let rq->clock advance by at least TICK_NSEC:
3369 */
3370 if (unlikely(rq->clock < next_tick))
3371 rq->clock = next_tick;
3372 rq->tick_timestamp = rq->clock;
f1a438d8 3373 update_cpu_load(rq);
dd41f596
IM
3374 if (curr != rq->idle) /* FIXME: needed? */
3375 curr->sched_class->task_tick(rq, curr);
dd41f596 3376 spin_unlock(&rq->lock);
7835b98b 3377
e418e1c2 3378#ifdef CONFIG_SMP
dd41f596
IM
3379 rq->idle_at_tick = idle_cpu(cpu);
3380 trigger_load_balance(rq, cpu);
e418e1c2 3381#endif
1da177e4
LT
3382}
3383
1da177e4
LT
3384#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3385
3386void fastcall add_preempt_count(int val)
3387{
3388 /*
3389 * Underflow?
3390 */
9a11b49a
IM
3391 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3392 return;
1da177e4
LT
3393 preempt_count() += val;
3394 /*
3395 * Spinlock count overflowing soon?
3396 */
33859f7f
MOS
3397 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3398 PREEMPT_MASK - 10);
1da177e4
LT
3399}
3400EXPORT_SYMBOL(add_preempt_count);
3401
3402void fastcall sub_preempt_count(int val)
3403{
3404 /*
3405 * Underflow?
3406 */
9a11b49a
IM
3407 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3408 return;
1da177e4
LT
3409 /*
3410 * Is the spinlock portion underflowing?
3411 */
9a11b49a
IM
3412 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3413 !(preempt_count() & PREEMPT_MASK)))
3414 return;
3415
1da177e4
LT
3416 preempt_count() -= val;
3417}
3418EXPORT_SYMBOL(sub_preempt_count);
3419
3420#endif
3421
3422/*
dd41f596 3423 * Print scheduling while atomic bug:
1da177e4 3424 */
dd41f596 3425static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3426{
dd41f596
IM
3427 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3428 prev->comm, preempt_count(), prev->pid);
3429 debug_show_held_locks(prev);
3430 if (irqs_disabled())
3431 print_irqtrace_events(prev);
3432 dump_stack();
3433}
1da177e4 3434
dd41f596
IM
3435/*
3436 * Various schedule()-time debugging checks and statistics:
3437 */
3438static inline void schedule_debug(struct task_struct *prev)
3439{
1da177e4
LT
3440 /*
3441 * Test if we are atomic. Since do_exit() needs to call into
3442 * schedule() atomically, we ignore that path for now.
3443 * Otherwise, whine if we are scheduling when we should not be.
3444 */
dd41f596
IM
3445 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3446 __schedule_bug(prev);
3447
1da177e4
LT
3448 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3449
2d72376b 3450 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3451#ifdef CONFIG_SCHEDSTATS
3452 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3453 schedstat_inc(this_rq(), bkl_count);
3454 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3455 }
3456#endif
dd41f596
IM
3457}
3458
3459/*
3460 * Pick up the highest-prio task:
3461 */
3462static inline struct task_struct *
ff95f3df 3463pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3464{
5522d5d5 3465 const struct sched_class *class;
dd41f596 3466 struct task_struct *p;
1da177e4
LT
3467
3468 /*
dd41f596
IM
3469 * Optimization: we know that if all tasks are in
3470 * the fair class we can call that function directly:
1da177e4 3471 */
dd41f596 3472 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3473 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3474 if (likely(p))
3475 return p;
1da177e4
LT
3476 }
3477
dd41f596
IM
3478 class = sched_class_highest;
3479 for ( ; ; ) {
fb8d4724 3480 p = class->pick_next_task(rq);
dd41f596
IM
3481 if (p)
3482 return p;
3483 /*
3484 * Will never be NULL as the idle class always
3485 * returns a non-NULL p:
3486 */
3487 class = class->next;
3488 }
3489}
1da177e4 3490
dd41f596
IM
3491/*
3492 * schedule() is the main scheduler function.
3493 */
3494asmlinkage void __sched schedule(void)
3495{
3496 struct task_struct *prev, *next;
3497 long *switch_count;
3498 struct rq *rq;
dd41f596
IM
3499 int cpu;
3500
3501need_resched:
3502 preempt_disable();
3503 cpu = smp_processor_id();
3504 rq = cpu_rq(cpu);
3505 rcu_qsctr_inc(cpu);
3506 prev = rq->curr;
3507 switch_count = &prev->nivcsw;
3508
3509 release_kernel_lock(prev);
3510need_resched_nonpreemptible:
3511
3512 schedule_debug(prev);
1da177e4 3513
1e819950
IM
3514 /*
3515 * Do the rq-clock update outside the rq lock:
3516 */
3517 local_irq_disable();
c1b3da3e 3518 __update_rq_clock(rq);
1e819950
IM
3519 spin_lock(&rq->lock);
3520 clear_tsk_need_resched(prev);
1da177e4 3521
1da177e4 3522 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3523 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3524 unlikely(signal_pending(prev)))) {
1da177e4 3525 prev->state = TASK_RUNNING;
dd41f596 3526 } else {
2e1cb74a 3527 deactivate_task(rq, prev, 1);
1da177e4 3528 }
dd41f596 3529 switch_count = &prev->nvcsw;
1da177e4
LT
3530 }
3531
dd41f596 3532 if (unlikely(!rq->nr_running))
1da177e4 3533 idle_balance(cpu, rq);
1da177e4 3534
31ee529c 3535 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3536 next = pick_next_task(rq, prev);
1da177e4
LT
3537
3538 sched_info_switch(prev, next);
dd41f596 3539
1da177e4 3540 if (likely(prev != next)) {
1da177e4
LT
3541 rq->nr_switches++;
3542 rq->curr = next;
3543 ++*switch_count;
3544
dd41f596 3545 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3546 } else
3547 spin_unlock_irq(&rq->lock);
3548
dd41f596
IM
3549 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3550 cpu = smp_processor_id();
3551 rq = cpu_rq(cpu);
1da177e4 3552 goto need_resched_nonpreemptible;
dd41f596 3553 }
1da177e4
LT
3554 preempt_enable_no_resched();
3555 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3556 goto need_resched;
3557}
1da177e4
LT
3558EXPORT_SYMBOL(schedule);
3559
3560#ifdef CONFIG_PREEMPT
3561/*
2ed6e34f 3562 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3563 * off of preempt_enable. Kernel preemptions off return from interrupt
3564 * occur there and call schedule directly.
3565 */
3566asmlinkage void __sched preempt_schedule(void)
3567{
3568 struct thread_info *ti = current_thread_info();
3569#ifdef CONFIG_PREEMPT_BKL
3570 struct task_struct *task = current;
3571 int saved_lock_depth;
3572#endif
3573 /*
3574 * If there is a non-zero preempt_count or interrupts are disabled,
3575 * we do not want to preempt the current task. Just return..
3576 */
beed33a8 3577 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3578 return;
3579
3a5c359a
AK
3580 do {
3581 add_preempt_count(PREEMPT_ACTIVE);
3582
3583 /*
3584 * We keep the big kernel semaphore locked, but we
3585 * clear ->lock_depth so that schedule() doesnt
3586 * auto-release the semaphore:
3587 */
1da177e4 3588#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3589 saved_lock_depth = task->lock_depth;
3590 task->lock_depth = -1;
1da177e4 3591#endif
3a5c359a 3592 schedule();
1da177e4 3593#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3594 task->lock_depth = saved_lock_depth;
1da177e4 3595#endif
3a5c359a 3596 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3597
3a5c359a
AK
3598 /*
3599 * Check again in case we missed a preemption opportunity
3600 * between schedule and now.
3601 */
3602 barrier();
3603 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3604}
1da177e4
LT
3605EXPORT_SYMBOL(preempt_schedule);
3606
3607/*
2ed6e34f 3608 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3609 * off of irq context.
3610 * Note, that this is called and return with irqs disabled. This will
3611 * protect us against recursive calling from irq.
3612 */
3613asmlinkage void __sched preempt_schedule_irq(void)
3614{
3615 struct thread_info *ti = current_thread_info();
3616#ifdef CONFIG_PREEMPT_BKL
3617 struct task_struct *task = current;
3618 int saved_lock_depth;
3619#endif
2ed6e34f 3620 /* Catch callers which need to be fixed */
1da177e4
LT
3621 BUG_ON(ti->preempt_count || !irqs_disabled());
3622
3a5c359a
AK
3623 do {
3624 add_preempt_count(PREEMPT_ACTIVE);
3625
3626 /*
3627 * We keep the big kernel semaphore locked, but we
3628 * clear ->lock_depth so that schedule() doesnt
3629 * auto-release the semaphore:
3630 */
1da177e4 3631#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3632 saved_lock_depth = task->lock_depth;
3633 task->lock_depth = -1;
1da177e4 3634#endif
3a5c359a
AK
3635 local_irq_enable();
3636 schedule();
3637 local_irq_disable();
1da177e4 3638#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3639 task->lock_depth = saved_lock_depth;
1da177e4 3640#endif
3a5c359a 3641 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3642
3a5c359a
AK
3643 /*
3644 * Check again in case we missed a preemption opportunity
3645 * between schedule and now.
3646 */
3647 barrier();
3648 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3649}
3650
3651#endif /* CONFIG_PREEMPT */
3652
95cdf3b7
IM
3653int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3654 void *key)
1da177e4 3655{
48f24c4d 3656 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3657}
1da177e4
LT
3658EXPORT_SYMBOL(default_wake_function);
3659
3660/*
3661 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3662 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3663 * number) then we wake all the non-exclusive tasks and one exclusive task.
3664 *
3665 * There are circumstances in which we can try to wake a task which has already
3666 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3667 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3668 */
3669static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3670 int nr_exclusive, int sync, void *key)
3671{
2e45874c 3672 wait_queue_t *curr, *next;
1da177e4 3673
2e45874c 3674 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3675 unsigned flags = curr->flags;
3676
1da177e4 3677 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3678 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3679 break;
3680 }
3681}
3682
3683/**
3684 * __wake_up - wake up threads blocked on a waitqueue.
3685 * @q: the waitqueue
3686 * @mode: which threads
3687 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3688 * @key: is directly passed to the wakeup function
1da177e4
LT
3689 */
3690void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3691 int nr_exclusive, void *key)
1da177e4
LT
3692{
3693 unsigned long flags;
3694
3695 spin_lock_irqsave(&q->lock, flags);
3696 __wake_up_common(q, mode, nr_exclusive, 0, key);
3697 spin_unlock_irqrestore(&q->lock, flags);
3698}
1da177e4
LT
3699EXPORT_SYMBOL(__wake_up);
3700
3701/*
3702 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3703 */
3704void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3705{
3706 __wake_up_common(q, mode, 1, 0, NULL);
3707}
3708
3709/**
67be2dd1 3710 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3711 * @q: the waitqueue
3712 * @mode: which threads
3713 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3714 *
3715 * The sync wakeup differs that the waker knows that it will schedule
3716 * away soon, so while the target thread will be woken up, it will not
3717 * be migrated to another CPU - ie. the two threads are 'synchronized'
3718 * with each other. This can prevent needless bouncing between CPUs.
3719 *
3720 * On UP it can prevent extra preemption.
3721 */
95cdf3b7
IM
3722void fastcall
3723__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3724{
3725 unsigned long flags;
3726 int sync = 1;
3727
3728 if (unlikely(!q))
3729 return;
3730
3731 if (unlikely(!nr_exclusive))
3732 sync = 0;
3733
3734 spin_lock_irqsave(&q->lock, flags);
3735 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3736 spin_unlock_irqrestore(&q->lock, flags);
3737}
3738EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3739
3740void fastcall complete(struct completion *x)
3741{
3742 unsigned long flags;
3743
3744 spin_lock_irqsave(&x->wait.lock, flags);
3745 x->done++;
3746 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3747 1, 0, NULL);
3748 spin_unlock_irqrestore(&x->wait.lock, flags);
3749}
3750EXPORT_SYMBOL(complete);
3751
3752void fastcall complete_all(struct completion *x)
3753{
3754 unsigned long flags;
3755
3756 spin_lock_irqsave(&x->wait.lock, flags);
3757 x->done += UINT_MAX/2;
3758 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3759 0, 0, NULL);
3760 spin_unlock_irqrestore(&x->wait.lock, flags);
3761}
3762EXPORT_SYMBOL(complete_all);
3763
8cbbe86d
AK
3764static inline long __sched
3765do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3766{
1da177e4
LT
3767 if (!x->done) {
3768 DECLARE_WAITQUEUE(wait, current);
3769
3770 wait.flags |= WQ_FLAG_EXCLUSIVE;
3771 __add_wait_queue_tail(&x->wait, &wait);
3772 do {
8cbbe86d
AK
3773 if (state == TASK_INTERRUPTIBLE &&
3774 signal_pending(current)) {
3775 __remove_wait_queue(&x->wait, &wait);
3776 return -ERESTARTSYS;
3777 }
3778 __set_current_state(state);
1da177e4
LT
3779 spin_unlock_irq(&x->wait.lock);
3780 timeout = schedule_timeout(timeout);
3781 spin_lock_irq(&x->wait.lock);
3782 if (!timeout) {
3783 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3784 return timeout;
1da177e4
LT
3785 }
3786 } while (!x->done);
3787 __remove_wait_queue(&x->wait, &wait);
3788 }
3789 x->done--;
1da177e4
LT
3790 return timeout;
3791}
1da177e4 3792
8cbbe86d
AK
3793static long __sched
3794wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3795{
1da177e4
LT
3796 might_sleep();
3797
3798 spin_lock_irq(&x->wait.lock);
8cbbe86d 3799 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3800 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3801 return timeout;
3802}
1da177e4 3803
8cbbe86d
AK
3804void fastcall __sched wait_for_completion(struct completion *x)
3805{
3806 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3807}
8cbbe86d 3808EXPORT_SYMBOL(wait_for_completion);
1da177e4
LT
3809
3810unsigned long fastcall __sched
8cbbe86d 3811wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3812{
8cbbe86d 3813 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3814}
8cbbe86d 3815EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3816
8cbbe86d 3817int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3818{
8cbbe86d 3819 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
0fec171c 3820}
8cbbe86d 3821EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3822
8cbbe86d
AK
3823unsigned long fastcall __sched
3824wait_for_completion_interruptible_timeout(struct completion *x,
3825 unsigned long timeout)
0fec171c 3826{
8cbbe86d 3827 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3828}
8cbbe86d 3829EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3830
8cbbe86d
AK
3831static long __sched
3832sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3833{
0fec171c
IM
3834 unsigned long flags;
3835 wait_queue_t wait;
3836
3837 init_waitqueue_entry(&wait, current);
1da177e4 3838
8cbbe86d 3839 __set_current_state(state);
1da177e4 3840
8cbbe86d
AK
3841 spin_lock_irqsave(&q->lock, flags);
3842 __add_wait_queue(q, &wait);
3843 spin_unlock(&q->lock);
3844 timeout = schedule_timeout(timeout);
3845 spin_lock_irq(&q->lock);
3846 __remove_wait_queue(q, &wait);
3847 spin_unlock_irqrestore(&q->lock, flags);
3848
3849 return timeout;
3850}
3851
3852void __sched interruptible_sleep_on(wait_queue_head_t *q)
3853{
3854 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3855}
1da177e4
LT
3856EXPORT_SYMBOL(interruptible_sleep_on);
3857
0fec171c 3858long __sched
95cdf3b7 3859interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3860{
8cbbe86d 3861 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3862}
1da177e4
LT
3863EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3864
0fec171c 3865void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3866{
8cbbe86d 3867 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3868}
1da177e4
LT
3869EXPORT_SYMBOL(sleep_on);
3870
0fec171c 3871long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3872{
8cbbe86d 3873 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3874}
1da177e4
LT
3875EXPORT_SYMBOL(sleep_on_timeout);
3876
b29739f9
IM
3877#ifdef CONFIG_RT_MUTEXES
3878
3879/*
3880 * rt_mutex_setprio - set the current priority of a task
3881 * @p: task
3882 * @prio: prio value (kernel-internal form)
3883 *
3884 * This function changes the 'effective' priority of a task. It does
3885 * not touch ->normal_prio like __setscheduler().
3886 *
3887 * Used by the rt_mutex code to implement priority inheritance logic.
3888 */
36c8b586 3889void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3890{
3891 unsigned long flags;
83b699ed 3892 int oldprio, on_rq, running;
70b97a7f 3893 struct rq *rq;
b29739f9
IM
3894
3895 BUG_ON(prio < 0 || prio > MAX_PRIO);
3896
3897 rq = task_rq_lock(p, &flags);
a8e504d2 3898 update_rq_clock(rq);
b29739f9 3899
d5f9f942 3900 oldprio = p->prio;
dd41f596 3901 on_rq = p->se.on_rq;
83b699ed
SV
3902 running = task_running(rq, p);
3903 if (on_rq) {
69be72c1 3904 dequeue_task(rq, p, 0);
83b699ed
SV
3905 if (running)
3906 p->sched_class->put_prev_task(rq, p);
3907 }
dd41f596
IM
3908
3909 if (rt_prio(prio))
3910 p->sched_class = &rt_sched_class;
3911 else
3912 p->sched_class = &fair_sched_class;
3913
b29739f9
IM
3914 p->prio = prio;
3915
dd41f596 3916 if (on_rq) {
83b699ed
SV
3917 if (running)
3918 p->sched_class->set_curr_task(rq);
8159f87e 3919 enqueue_task(rq, p, 0);
b29739f9
IM
3920 /*
3921 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3922 * our priority decreased, or if we are not currently running on
3923 * this runqueue and our priority is higher than the current's
b29739f9 3924 */
83b699ed 3925 if (running) {
d5f9f942
AM
3926 if (p->prio > oldprio)
3927 resched_task(rq->curr);
dd41f596
IM
3928 } else {
3929 check_preempt_curr(rq, p);
3930 }
b29739f9
IM
3931 }
3932 task_rq_unlock(rq, &flags);
3933}
3934
3935#endif
3936
36c8b586 3937void set_user_nice(struct task_struct *p, long nice)
1da177e4 3938{
dd41f596 3939 int old_prio, delta, on_rq;
1da177e4 3940 unsigned long flags;
70b97a7f 3941 struct rq *rq;
1da177e4
LT
3942
3943 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3944 return;
3945 /*
3946 * We have to be careful, if called from sys_setpriority(),
3947 * the task might be in the middle of scheduling on another CPU.
3948 */
3949 rq = task_rq_lock(p, &flags);
a8e504d2 3950 update_rq_clock(rq);
1da177e4
LT
3951 /*
3952 * The RT priorities are set via sched_setscheduler(), but we still
3953 * allow the 'normal' nice value to be set - but as expected
3954 * it wont have any effect on scheduling until the task is
dd41f596 3955 * SCHED_FIFO/SCHED_RR:
1da177e4 3956 */
e05606d3 3957 if (task_has_rt_policy(p)) {
1da177e4
LT
3958 p->static_prio = NICE_TO_PRIO(nice);
3959 goto out_unlock;
3960 }
dd41f596
IM
3961 on_rq = p->se.on_rq;
3962 if (on_rq) {
69be72c1 3963 dequeue_task(rq, p, 0);
79b5dddf 3964 dec_load(rq, p);
2dd73a4f 3965 }
1da177e4 3966
1da177e4 3967 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3968 set_load_weight(p);
b29739f9
IM
3969 old_prio = p->prio;
3970 p->prio = effective_prio(p);
3971 delta = p->prio - old_prio;
1da177e4 3972
dd41f596 3973 if (on_rq) {
8159f87e 3974 enqueue_task(rq, p, 0);
29b4b623 3975 inc_load(rq, p);
1da177e4 3976 /*
d5f9f942
AM
3977 * If the task increased its priority or is running and
3978 * lowered its priority, then reschedule its CPU:
1da177e4 3979 */
d5f9f942 3980 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3981 resched_task(rq->curr);
3982 }
3983out_unlock:
3984 task_rq_unlock(rq, &flags);
3985}
1da177e4
LT
3986EXPORT_SYMBOL(set_user_nice);
3987
e43379f1
MM
3988/*
3989 * can_nice - check if a task can reduce its nice value
3990 * @p: task
3991 * @nice: nice value
3992 */
36c8b586 3993int can_nice(const struct task_struct *p, const int nice)
e43379f1 3994{
024f4747
MM
3995 /* convert nice value [19,-20] to rlimit style value [1,40] */
3996 int nice_rlim = 20 - nice;
48f24c4d 3997
e43379f1
MM
3998 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3999 capable(CAP_SYS_NICE));
4000}
4001
1da177e4
LT
4002#ifdef __ARCH_WANT_SYS_NICE
4003
4004/*
4005 * sys_nice - change the priority of the current process.
4006 * @increment: priority increment
4007 *
4008 * sys_setpriority is a more generic, but much slower function that
4009 * does similar things.
4010 */
4011asmlinkage long sys_nice(int increment)
4012{
48f24c4d 4013 long nice, retval;
1da177e4
LT
4014
4015 /*
4016 * Setpriority might change our priority at the same moment.
4017 * We don't have to worry. Conceptually one call occurs first
4018 * and we have a single winner.
4019 */
e43379f1
MM
4020 if (increment < -40)
4021 increment = -40;
1da177e4
LT
4022 if (increment > 40)
4023 increment = 40;
4024
4025 nice = PRIO_TO_NICE(current->static_prio) + increment;
4026 if (nice < -20)
4027 nice = -20;
4028 if (nice > 19)
4029 nice = 19;
4030
e43379f1
MM
4031 if (increment < 0 && !can_nice(current, nice))
4032 return -EPERM;
4033
1da177e4
LT
4034 retval = security_task_setnice(current, nice);
4035 if (retval)
4036 return retval;
4037
4038 set_user_nice(current, nice);
4039 return 0;
4040}
4041
4042#endif
4043
4044/**
4045 * task_prio - return the priority value of a given task.
4046 * @p: the task in question.
4047 *
4048 * This is the priority value as seen by users in /proc.
4049 * RT tasks are offset by -200. Normal tasks are centered
4050 * around 0, value goes from -16 to +15.
4051 */
36c8b586 4052int task_prio(const struct task_struct *p)
1da177e4
LT
4053{
4054 return p->prio - MAX_RT_PRIO;
4055}
4056
4057/**
4058 * task_nice - return the nice value of a given task.
4059 * @p: the task in question.
4060 */
36c8b586 4061int task_nice(const struct task_struct *p)
1da177e4
LT
4062{
4063 return TASK_NICE(p);
4064}
1da177e4 4065EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4066
4067/**
4068 * idle_cpu - is a given cpu idle currently?
4069 * @cpu: the processor in question.
4070 */
4071int idle_cpu(int cpu)
4072{
4073 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4074}
4075
1da177e4
LT
4076/**
4077 * idle_task - return the idle task for a given cpu.
4078 * @cpu: the processor in question.
4079 */
36c8b586 4080struct task_struct *idle_task(int cpu)
1da177e4
LT
4081{
4082 return cpu_rq(cpu)->idle;
4083}
4084
4085/**
4086 * find_process_by_pid - find a process with a matching PID value.
4087 * @pid: the pid in question.
4088 */
a9957449 4089static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4090{
4091 return pid ? find_task_by_pid(pid) : current;
4092}
4093
4094/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4095static void
4096__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4097{
dd41f596 4098 BUG_ON(p->se.on_rq);
48f24c4d 4099
1da177e4 4100 p->policy = policy;
dd41f596
IM
4101 switch (p->policy) {
4102 case SCHED_NORMAL:
4103 case SCHED_BATCH:
4104 case SCHED_IDLE:
4105 p->sched_class = &fair_sched_class;
4106 break;
4107 case SCHED_FIFO:
4108 case SCHED_RR:
4109 p->sched_class = &rt_sched_class;
4110 break;
4111 }
4112
1da177e4 4113 p->rt_priority = prio;
b29739f9
IM
4114 p->normal_prio = normal_prio(p);
4115 /* we are holding p->pi_lock already */
4116 p->prio = rt_mutex_getprio(p);
2dd73a4f 4117 set_load_weight(p);
1da177e4
LT
4118}
4119
4120/**
72fd4a35 4121 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4122 * @p: the task in question.
4123 * @policy: new policy.
4124 * @param: structure containing the new RT priority.
5fe1d75f 4125 *
72fd4a35 4126 * NOTE that the task may be already dead.
1da177e4 4127 */
95cdf3b7
IM
4128int sched_setscheduler(struct task_struct *p, int policy,
4129 struct sched_param *param)
1da177e4 4130{
83b699ed 4131 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4132 unsigned long flags;
70b97a7f 4133 struct rq *rq;
1da177e4 4134
66e5393a
SR
4135 /* may grab non-irq protected spin_locks */
4136 BUG_ON(in_interrupt());
1da177e4
LT
4137recheck:
4138 /* double check policy once rq lock held */
4139 if (policy < 0)
4140 policy = oldpolicy = p->policy;
4141 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4142 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4143 policy != SCHED_IDLE)
b0a9499c 4144 return -EINVAL;
1da177e4
LT
4145 /*
4146 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4147 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4148 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4149 */
4150 if (param->sched_priority < 0 ||
95cdf3b7 4151 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4152 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4153 return -EINVAL;
e05606d3 4154 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4155 return -EINVAL;
4156
37e4ab3f
OC
4157 /*
4158 * Allow unprivileged RT tasks to decrease priority:
4159 */
4160 if (!capable(CAP_SYS_NICE)) {
e05606d3 4161 if (rt_policy(policy)) {
8dc3e909 4162 unsigned long rlim_rtprio;
8dc3e909
ON
4163
4164 if (!lock_task_sighand(p, &flags))
4165 return -ESRCH;
4166 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4167 unlock_task_sighand(p, &flags);
4168
4169 /* can't set/change the rt policy */
4170 if (policy != p->policy && !rlim_rtprio)
4171 return -EPERM;
4172
4173 /* can't increase priority */
4174 if (param->sched_priority > p->rt_priority &&
4175 param->sched_priority > rlim_rtprio)
4176 return -EPERM;
4177 }
dd41f596
IM
4178 /*
4179 * Like positive nice levels, dont allow tasks to
4180 * move out of SCHED_IDLE either:
4181 */
4182 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4183 return -EPERM;
5fe1d75f 4184
37e4ab3f
OC
4185 /* can't change other user's priorities */
4186 if ((current->euid != p->euid) &&
4187 (current->euid != p->uid))
4188 return -EPERM;
4189 }
1da177e4
LT
4190
4191 retval = security_task_setscheduler(p, policy, param);
4192 if (retval)
4193 return retval;
b29739f9
IM
4194 /*
4195 * make sure no PI-waiters arrive (or leave) while we are
4196 * changing the priority of the task:
4197 */
4198 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4199 /*
4200 * To be able to change p->policy safely, the apropriate
4201 * runqueue lock must be held.
4202 */
b29739f9 4203 rq = __task_rq_lock(p);
1da177e4
LT
4204 /* recheck policy now with rq lock held */
4205 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4206 policy = oldpolicy = -1;
b29739f9
IM
4207 __task_rq_unlock(rq);
4208 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4209 goto recheck;
4210 }
2daa3577 4211 update_rq_clock(rq);
dd41f596 4212 on_rq = p->se.on_rq;
83b699ed
SV
4213 running = task_running(rq, p);
4214 if (on_rq) {
2e1cb74a 4215 deactivate_task(rq, p, 0);
83b699ed
SV
4216 if (running)
4217 p->sched_class->put_prev_task(rq, p);
4218 }
f6b53205 4219
1da177e4 4220 oldprio = p->prio;
dd41f596 4221 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4222
dd41f596 4223 if (on_rq) {
83b699ed
SV
4224 if (running)
4225 p->sched_class->set_curr_task(rq);
dd41f596 4226 activate_task(rq, p, 0);
1da177e4
LT
4227 /*
4228 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4229 * our priority decreased, or if we are not currently running on
4230 * this runqueue and our priority is higher than the current's
1da177e4 4231 */
83b699ed 4232 if (running) {
d5f9f942
AM
4233 if (p->prio > oldprio)
4234 resched_task(rq->curr);
dd41f596
IM
4235 } else {
4236 check_preempt_curr(rq, p);
4237 }
1da177e4 4238 }
b29739f9
IM
4239 __task_rq_unlock(rq);
4240 spin_unlock_irqrestore(&p->pi_lock, flags);
4241
95e02ca9
TG
4242 rt_mutex_adjust_pi(p);
4243
1da177e4
LT
4244 return 0;
4245}
4246EXPORT_SYMBOL_GPL(sched_setscheduler);
4247
95cdf3b7
IM
4248static int
4249do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4250{
1da177e4
LT
4251 struct sched_param lparam;
4252 struct task_struct *p;
36c8b586 4253 int retval;
1da177e4
LT
4254
4255 if (!param || pid < 0)
4256 return -EINVAL;
4257 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4258 return -EFAULT;
5fe1d75f
ON
4259
4260 rcu_read_lock();
4261 retval = -ESRCH;
1da177e4 4262 p = find_process_by_pid(pid);
5fe1d75f
ON
4263 if (p != NULL)
4264 retval = sched_setscheduler(p, policy, &lparam);
4265 rcu_read_unlock();
36c8b586 4266
1da177e4
LT
4267 return retval;
4268}
4269
4270/**
4271 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4272 * @pid: the pid in question.
4273 * @policy: new policy.
4274 * @param: structure containing the new RT priority.
4275 */
4276asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4277 struct sched_param __user *param)
4278{
c21761f1
JB
4279 /* negative values for policy are not valid */
4280 if (policy < 0)
4281 return -EINVAL;
4282
1da177e4
LT
4283 return do_sched_setscheduler(pid, policy, param);
4284}
4285
4286/**
4287 * sys_sched_setparam - set/change the RT priority of a thread
4288 * @pid: the pid in question.
4289 * @param: structure containing the new RT priority.
4290 */
4291asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4292{
4293 return do_sched_setscheduler(pid, -1, param);
4294}
4295
4296/**
4297 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4298 * @pid: the pid in question.
4299 */
4300asmlinkage long sys_sched_getscheduler(pid_t pid)
4301{
36c8b586 4302 struct task_struct *p;
3a5c359a 4303 int retval;
1da177e4
LT
4304
4305 if (pid < 0)
3a5c359a 4306 return -EINVAL;
1da177e4
LT
4307
4308 retval = -ESRCH;
4309 read_lock(&tasklist_lock);
4310 p = find_process_by_pid(pid);
4311 if (p) {
4312 retval = security_task_getscheduler(p);
4313 if (!retval)
4314 retval = p->policy;
4315 }
4316 read_unlock(&tasklist_lock);
1da177e4
LT
4317 return retval;
4318}
4319
4320/**
4321 * sys_sched_getscheduler - get the RT priority of a thread
4322 * @pid: the pid in question.
4323 * @param: structure containing the RT priority.
4324 */
4325asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4326{
4327 struct sched_param lp;
36c8b586 4328 struct task_struct *p;
3a5c359a 4329 int retval;
1da177e4
LT
4330
4331 if (!param || pid < 0)
3a5c359a 4332 return -EINVAL;
1da177e4
LT
4333
4334 read_lock(&tasklist_lock);
4335 p = find_process_by_pid(pid);
4336 retval = -ESRCH;
4337 if (!p)
4338 goto out_unlock;
4339
4340 retval = security_task_getscheduler(p);
4341 if (retval)
4342 goto out_unlock;
4343
4344 lp.sched_priority = p->rt_priority;
4345 read_unlock(&tasklist_lock);
4346
4347 /*
4348 * This one might sleep, we cannot do it with a spinlock held ...
4349 */
4350 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4351
1da177e4
LT
4352 return retval;
4353
4354out_unlock:
4355 read_unlock(&tasklist_lock);
4356 return retval;
4357}
4358
4359long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4360{
1da177e4 4361 cpumask_t cpus_allowed;
36c8b586
IM
4362 struct task_struct *p;
4363 int retval;
1da177e4 4364
5be9361c 4365 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4366 read_lock(&tasklist_lock);
4367
4368 p = find_process_by_pid(pid);
4369 if (!p) {
4370 read_unlock(&tasklist_lock);
5be9361c 4371 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4372 return -ESRCH;
4373 }
4374
4375 /*
4376 * It is not safe to call set_cpus_allowed with the
4377 * tasklist_lock held. We will bump the task_struct's
4378 * usage count and then drop tasklist_lock.
4379 */
4380 get_task_struct(p);
4381 read_unlock(&tasklist_lock);
4382
4383 retval = -EPERM;
4384 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4385 !capable(CAP_SYS_NICE))
4386 goto out_unlock;
4387
e7834f8f
DQ
4388 retval = security_task_setscheduler(p, 0, NULL);
4389 if (retval)
4390 goto out_unlock;
4391
1da177e4
LT
4392 cpus_allowed = cpuset_cpus_allowed(p);
4393 cpus_and(new_mask, new_mask, cpus_allowed);
4394 retval = set_cpus_allowed(p, new_mask);
4395
4396out_unlock:
4397 put_task_struct(p);
5be9361c 4398 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4399 return retval;
4400}
4401
4402static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4403 cpumask_t *new_mask)
4404{
4405 if (len < sizeof(cpumask_t)) {
4406 memset(new_mask, 0, sizeof(cpumask_t));
4407 } else if (len > sizeof(cpumask_t)) {
4408 len = sizeof(cpumask_t);
4409 }
4410 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4411}
4412
4413/**
4414 * sys_sched_setaffinity - set the cpu affinity of a process
4415 * @pid: pid of the process
4416 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4417 * @user_mask_ptr: user-space pointer to the new cpu mask
4418 */
4419asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4420 unsigned long __user *user_mask_ptr)
4421{
4422 cpumask_t new_mask;
4423 int retval;
4424
4425 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4426 if (retval)
4427 return retval;
4428
4429 return sched_setaffinity(pid, new_mask);
4430}
4431
4432/*
4433 * Represents all cpu's present in the system
4434 * In systems capable of hotplug, this map could dynamically grow
4435 * as new cpu's are detected in the system via any platform specific
4436 * method, such as ACPI for e.g.
4437 */
4438
4cef0c61 4439cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4440EXPORT_SYMBOL(cpu_present_map);
4441
4442#ifndef CONFIG_SMP
4cef0c61 4443cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4444EXPORT_SYMBOL(cpu_online_map);
4445
4cef0c61 4446cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4447EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4448#endif
4449
4450long sched_getaffinity(pid_t pid, cpumask_t *mask)
4451{
36c8b586 4452 struct task_struct *p;
1da177e4 4453 int retval;
1da177e4 4454
5be9361c 4455 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4456 read_lock(&tasklist_lock);
4457
4458 retval = -ESRCH;
4459 p = find_process_by_pid(pid);
4460 if (!p)
4461 goto out_unlock;
4462
e7834f8f
DQ
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4466
2f7016d9 4467 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4468
4469out_unlock:
4470 read_unlock(&tasklist_lock);
5be9361c 4471 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4472
9531b62f 4473 return retval;
1da177e4
LT
4474}
4475
4476/**
4477 * sys_sched_getaffinity - get the cpu affinity of a process
4478 * @pid: pid of the process
4479 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4480 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4481 */
4482asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4483 unsigned long __user *user_mask_ptr)
4484{
4485 int ret;
4486 cpumask_t mask;
4487
4488 if (len < sizeof(cpumask_t))
4489 return -EINVAL;
4490
4491 ret = sched_getaffinity(pid, &mask);
4492 if (ret < 0)
4493 return ret;
4494
4495 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4496 return -EFAULT;
4497
4498 return sizeof(cpumask_t);
4499}
4500
4501/**
4502 * sys_sched_yield - yield the current processor to other threads.
4503 *
dd41f596
IM
4504 * This function yields the current CPU to other tasks. If there are no
4505 * other threads running on this CPU then this function will return.
1da177e4
LT
4506 */
4507asmlinkage long sys_sched_yield(void)
4508{
70b97a7f 4509 struct rq *rq = this_rq_lock();
1da177e4 4510
2d72376b 4511 schedstat_inc(rq, yld_count);
4530d7ab 4512 current->sched_class->yield_task(rq);
1da177e4
LT
4513
4514 /*
4515 * Since we are going to call schedule() anyway, there's
4516 * no need to preempt or enable interrupts:
4517 */
4518 __release(rq->lock);
8a25d5de 4519 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4520 _raw_spin_unlock(&rq->lock);
4521 preempt_enable_no_resched();
4522
4523 schedule();
4524
4525 return 0;
4526}
4527
e7b38404 4528static void __cond_resched(void)
1da177e4 4529{
8e0a43d8
IM
4530#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4531 __might_sleep(__FILE__, __LINE__);
4532#endif
5bbcfd90
IM
4533 /*
4534 * The BKS might be reacquired before we have dropped
4535 * PREEMPT_ACTIVE, which could trigger a second
4536 * cond_resched() call.
4537 */
1da177e4
LT
4538 do {
4539 add_preempt_count(PREEMPT_ACTIVE);
4540 schedule();
4541 sub_preempt_count(PREEMPT_ACTIVE);
4542 } while (need_resched());
4543}
4544
4545int __sched cond_resched(void)
4546{
9414232f
IM
4547 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4548 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4549 __cond_resched();
4550 return 1;
4551 }
4552 return 0;
4553}
1da177e4
LT
4554EXPORT_SYMBOL(cond_resched);
4555
4556/*
4557 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4558 * call schedule, and on return reacquire the lock.
4559 *
4560 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4561 * operations here to prevent schedule() from being called twice (once via
4562 * spin_unlock(), once by hand).
4563 */
95cdf3b7 4564int cond_resched_lock(spinlock_t *lock)
1da177e4 4565{
6df3cecb
JK
4566 int ret = 0;
4567
1da177e4
LT
4568 if (need_lockbreak(lock)) {
4569 spin_unlock(lock);
4570 cpu_relax();
6df3cecb 4571 ret = 1;
1da177e4
LT
4572 spin_lock(lock);
4573 }
9414232f 4574 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4575 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4576 _raw_spin_unlock(lock);
4577 preempt_enable_no_resched();
4578 __cond_resched();
6df3cecb 4579 ret = 1;
1da177e4 4580 spin_lock(lock);
1da177e4 4581 }
6df3cecb 4582 return ret;
1da177e4 4583}
1da177e4
LT
4584EXPORT_SYMBOL(cond_resched_lock);
4585
4586int __sched cond_resched_softirq(void)
4587{
4588 BUG_ON(!in_softirq());
4589
9414232f 4590 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4591 local_bh_enable();
1da177e4
LT
4592 __cond_resched();
4593 local_bh_disable();
4594 return 1;
4595 }
4596 return 0;
4597}
1da177e4
LT
4598EXPORT_SYMBOL(cond_resched_softirq);
4599
1da177e4
LT
4600/**
4601 * yield - yield the current processor to other threads.
4602 *
72fd4a35 4603 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4604 * thread runnable and calls sys_sched_yield().
4605 */
4606void __sched yield(void)
4607{
4608 set_current_state(TASK_RUNNING);
4609 sys_sched_yield();
4610}
1da177e4
LT
4611EXPORT_SYMBOL(yield);
4612
4613/*
4614 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4615 * that process accounting knows that this is a task in IO wait state.
4616 *
4617 * But don't do that if it is a deliberate, throttling IO wait (this task
4618 * has set its backing_dev_info: the queue against which it should throttle)
4619 */
4620void __sched io_schedule(void)
4621{
70b97a7f 4622 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4623
0ff92245 4624 delayacct_blkio_start();
1da177e4
LT
4625 atomic_inc(&rq->nr_iowait);
4626 schedule();
4627 atomic_dec(&rq->nr_iowait);
0ff92245 4628 delayacct_blkio_end();
1da177e4 4629}
1da177e4
LT
4630EXPORT_SYMBOL(io_schedule);
4631
4632long __sched io_schedule_timeout(long timeout)
4633{
70b97a7f 4634 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4635 long ret;
4636
0ff92245 4637 delayacct_blkio_start();
1da177e4
LT
4638 atomic_inc(&rq->nr_iowait);
4639 ret = schedule_timeout(timeout);
4640 atomic_dec(&rq->nr_iowait);
0ff92245 4641 delayacct_blkio_end();
1da177e4
LT
4642 return ret;
4643}
4644
4645/**
4646 * sys_sched_get_priority_max - return maximum RT priority.
4647 * @policy: scheduling class.
4648 *
4649 * this syscall returns the maximum rt_priority that can be used
4650 * by a given scheduling class.
4651 */
4652asmlinkage long sys_sched_get_priority_max(int policy)
4653{
4654 int ret = -EINVAL;
4655
4656 switch (policy) {
4657 case SCHED_FIFO:
4658 case SCHED_RR:
4659 ret = MAX_USER_RT_PRIO-1;
4660 break;
4661 case SCHED_NORMAL:
b0a9499c 4662 case SCHED_BATCH:
dd41f596 4663 case SCHED_IDLE:
1da177e4
LT
4664 ret = 0;
4665 break;
4666 }
4667 return ret;
4668}
4669
4670/**
4671 * sys_sched_get_priority_min - return minimum RT priority.
4672 * @policy: scheduling class.
4673 *
4674 * this syscall returns the minimum rt_priority that can be used
4675 * by a given scheduling class.
4676 */
4677asmlinkage long sys_sched_get_priority_min(int policy)
4678{
4679 int ret = -EINVAL;
4680
4681 switch (policy) {
4682 case SCHED_FIFO:
4683 case SCHED_RR:
4684 ret = 1;
4685 break;
4686 case SCHED_NORMAL:
b0a9499c 4687 case SCHED_BATCH:
dd41f596 4688 case SCHED_IDLE:
1da177e4
LT
4689 ret = 0;
4690 }
4691 return ret;
4692}
4693
4694/**
4695 * sys_sched_rr_get_interval - return the default timeslice of a process.
4696 * @pid: pid of the process.
4697 * @interval: userspace pointer to the timeslice value.
4698 *
4699 * this syscall writes the default timeslice value of a given process
4700 * into the user-space timespec buffer. A value of '0' means infinity.
4701 */
4702asmlinkage
4703long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4704{
36c8b586 4705 struct task_struct *p;
a4ec24b4 4706 unsigned int time_slice;
3a5c359a 4707 int retval;
1da177e4 4708 struct timespec t;
1da177e4
LT
4709
4710 if (pid < 0)
3a5c359a 4711 return -EINVAL;
1da177e4
LT
4712
4713 retval = -ESRCH;
4714 read_lock(&tasklist_lock);
4715 p = find_process_by_pid(pid);
4716 if (!p)
4717 goto out_unlock;
4718
4719 retval = security_task_getscheduler(p);
4720 if (retval)
4721 goto out_unlock;
4722
a4ec24b4
DA
4723 if (p->policy == SCHED_FIFO)
4724 time_slice = 0;
4725 else if (p->policy == SCHED_RR)
4726 time_slice = DEF_TIMESLICE;
4727 else {
4728 struct sched_entity *se = &p->se;
4729 unsigned long flags;
4730 struct rq *rq;
4731
4732 rq = task_rq_lock(p, &flags);
4733 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4734 task_rq_unlock(rq, &flags);
4735 }
1da177e4 4736 read_unlock(&tasklist_lock);
a4ec24b4 4737 jiffies_to_timespec(time_slice, &t);
1da177e4 4738 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4739 return retval;
3a5c359a 4740
1da177e4
LT
4741out_unlock:
4742 read_unlock(&tasklist_lock);
4743 return retval;
4744}
4745
2ed6e34f 4746static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4747
4748static void show_task(struct task_struct *p)
1da177e4 4749{
1da177e4 4750 unsigned long free = 0;
36c8b586 4751 unsigned state;
1da177e4 4752
1da177e4 4753 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4754 printk("%-13.13s %c", p->comm,
4755 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4756#if BITS_PER_LONG == 32
1da177e4 4757 if (state == TASK_RUNNING)
4bd77321 4758 printk(" running ");
1da177e4 4759 else
4bd77321 4760 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4761#else
4762 if (state == TASK_RUNNING)
4bd77321 4763 printk(" running task ");
1da177e4
LT
4764 else
4765 printk(" %016lx ", thread_saved_pc(p));
4766#endif
4767#ifdef CONFIG_DEBUG_STACK_USAGE
4768 {
10ebffde 4769 unsigned long *n = end_of_stack(p);
1da177e4
LT
4770 while (!*n)
4771 n++;
10ebffde 4772 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4773 }
4774#endif
4bd77321 4775 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4776
4777 if (state != TASK_RUNNING)
4778 show_stack(p, NULL);
4779}
4780
e59e2ae2 4781void show_state_filter(unsigned long state_filter)
1da177e4 4782{
36c8b586 4783 struct task_struct *g, *p;
1da177e4 4784
4bd77321
IM
4785#if BITS_PER_LONG == 32
4786 printk(KERN_INFO
4787 " task PC stack pid father\n");
1da177e4 4788#else
4bd77321
IM
4789 printk(KERN_INFO
4790 " task PC stack pid father\n");
1da177e4
LT
4791#endif
4792 read_lock(&tasklist_lock);
4793 do_each_thread(g, p) {
4794 /*
4795 * reset the NMI-timeout, listing all files on a slow
4796 * console might take alot of time:
4797 */
4798 touch_nmi_watchdog();
39bc89fd 4799 if (!state_filter || (p->state & state_filter))
e59e2ae2 4800 show_task(p);
1da177e4
LT
4801 } while_each_thread(g, p);
4802
04c9167f
JF
4803 touch_all_softlockup_watchdogs();
4804
dd41f596
IM
4805#ifdef CONFIG_SCHED_DEBUG
4806 sysrq_sched_debug_show();
4807#endif
1da177e4 4808 read_unlock(&tasklist_lock);
e59e2ae2
IM
4809 /*
4810 * Only show locks if all tasks are dumped:
4811 */
4812 if (state_filter == -1)
4813 debug_show_all_locks();
1da177e4
LT
4814}
4815
1df21055
IM
4816void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4817{
dd41f596 4818 idle->sched_class = &idle_sched_class;
1df21055
IM
4819}
4820
f340c0d1
IM
4821/**
4822 * init_idle - set up an idle thread for a given CPU
4823 * @idle: task in question
4824 * @cpu: cpu the idle task belongs to
4825 *
4826 * NOTE: this function does not set the idle thread's NEED_RESCHED
4827 * flag, to make booting more robust.
4828 */
5c1e1767 4829void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4830{
70b97a7f 4831 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4832 unsigned long flags;
4833
dd41f596
IM
4834 __sched_fork(idle);
4835 idle->se.exec_start = sched_clock();
4836
b29739f9 4837 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4838 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4839 __set_task_cpu(idle, cpu);
1da177e4
LT
4840
4841 spin_lock_irqsave(&rq->lock, flags);
4842 rq->curr = rq->idle = idle;
4866cde0
NP
4843#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4844 idle->oncpu = 1;
4845#endif
1da177e4
LT
4846 spin_unlock_irqrestore(&rq->lock, flags);
4847
4848 /* Set the preempt count _outside_ the spinlocks! */
4849#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4850 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4851#else
a1261f54 4852 task_thread_info(idle)->preempt_count = 0;
1da177e4 4853#endif
dd41f596
IM
4854 /*
4855 * The idle tasks have their own, simple scheduling class:
4856 */
4857 idle->sched_class = &idle_sched_class;
1da177e4
LT
4858}
4859
4860/*
4861 * In a system that switches off the HZ timer nohz_cpu_mask
4862 * indicates which cpus entered this state. This is used
4863 * in the rcu update to wait only for active cpus. For system
4864 * which do not switch off the HZ timer nohz_cpu_mask should
4865 * always be CPU_MASK_NONE.
4866 */
4867cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4868
4869#ifdef CONFIG_SMP
4870/*
4871 * This is how migration works:
4872 *
70b97a7f 4873 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4874 * runqueue and wake up that CPU's migration thread.
4875 * 2) we down() the locked semaphore => thread blocks.
4876 * 3) migration thread wakes up (implicitly it forces the migrated
4877 * thread off the CPU)
4878 * 4) it gets the migration request and checks whether the migrated
4879 * task is still in the wrong runqueue.
4880 * 5) if it's in the wrong runqueue then the migration thread removes
4881 * it and puts it into the right queue.
4882 * 6) migration thread up()s the semaphore.
4883 * 7) we wake up and the migration is done.
4884 */
4885
4886/*
4887 * Change a given task's CPU affinity. Migrate the thread to a
4888 * proper CPU and schedule it away if the CPU it's executing on
4889 * is removed from the allowed bitmask.
4890 *
4891 * NOTE: the caller must have a valid reference to the task, the
4892 * task must not exit() & deallocate itself prematurely. The
4893 * call is not atomic; no spinlocks may be held.
4894 */
36c8b586 4895int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4896{
70b97a7f 4897 struct migration_req req;
1da177e4 4898 unsigned long flags;
70b97a7f 4899 struct rq *rq;
48f24c4d 4900 int ret = 0;
1da177e4
LT
4901
4902 rq = task_rq_lock(p, &flags);
4903 if (!cpus_intersects(new_mask, cpu_online_map)) {
4904 ret = -EINVAL;
4905 goto out;
4906 }
4907
4908 p->cpus_allowed = new_mask;
4909 /* Can the task run on the task's current CPU? If so, we're done */
4910 if (cpu_isset(task_cpu(p), new_mask))
4911 goto out;
4912
4913 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4914 /* Need help from migration thread: drop lock and wait. */
4915 task_rq_unlock(rq, &flags);
4916 wake_up_process(rq->migration_thread);
4917 wait_for_completion(&req.done);
4918 tlb_migrate_finish(p->mm);
4919 return 0;
4920 }
4921out:
4922 task_rq_unlock(rq, &flags);
48f24c4d 4923
1da177e4
LT
4924 return ret;
4925}
1da177e4
LT
4926EXPORT_SYMBOL_GPL(set_cpus_allowed);
4927
4928/*
4929 * Move (not current) task off this cpu, onto dest cpu. We're doing
4930 * this because either it can't run here any more (set_cpus_allowed()
4931 * away from this CPU, or CPU going down), or because we're
4932 * attempting to rebalance this task on exec (sched_exec).
4933 *
4934 * So we race with normal scheduler movements, but that's OK, as long
4935 * as the task is no longer on this CPU.
efc30814
KK
4936 *
4937 * Returns non-zero if task was successfully migrated.
1da177e4 4938 */
efc30814 4939static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4940{
70b97a7f 4941 struct rq *rq_dest, *rq_src;
dd41f596 4942 int ret = 0, on_rq;
1da177e4
LT
4943
4944 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4945 return ret;
1da177e4
LT
4946
4947 rq_src = cpu_rq(src_cpu);
4948 rq_dest = cpu_rq(dest_cpu);
4949
4950 double_rq_lock(rq_src, rq_dest);
4951 /* Already moved. */
4952 if (task_cpu(p) != src_cpu)
4953 goto out;
4954 /* Affinity changed (again). */
4955 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4956 goto out;
4957
dd41f596 4958 on_rq = p->se.on_rq;
6e82a3be 4959 if (on_rq)
2e1cb74a 4960 deactivate_task(rq_src, p, 0);
6e82a3be 4961
1da177e4 4962 set_task_cpu(p, dest_cpu);
dd41f596
IM
4963 if (on_rq) {
4964 activate_task(rq_dest, p, 0);
4965 check_preempt_curr(rq_dest, p);
1da177e4 4966 }
efc30814 4967 ret = 1;
1da177e4
LT
4968out:
4969 double_rq_unlock(rq_src, rq_dest);
efc30814 4970 return ret;
1da177e4
LT
4971}
4972
4973/*
4974 * migration_thread - this is a highprio system thread that performs
4975 * thread migration by bumping thread off CPU then 'pushing' onto
4976 * another runqueue.
4977 */
95cdf3b7 4978static int migration_thread(void *data)
1da177e4 4979{
1da177e4 4980 int cpu = (long)data;
70b97a7f 4981 struct rq *rq;
1da177e4
LT
4982
4983 rq = cpu_rq(cpu);
4984 BUG_ON(rq->migration_thread != current);
4985
4986 set_current_state(TASK_INTERRUPTIBLE);
4987 while (!kthread_should_stop()) {
70b97a7f 4988 struct migration_req *req;
1da177e4 4989 struct list_head *head;
1da177e4 4990
1da177e4
LT
4991 spin_lock_irq(&rq->lock);
4992
4993 if (cpu_is_offline(cpu)) {
4994 spin_unlock_irq(&rq->lock);
4995 goto wait_to_die;
4996 }
4997
4998 if (rq->active_balance) {
4999 active_load_balance(rq, cpu);
5000 rq->active_balance = 0;
5001 }
5002
5003 head = &rq->migration_queue;
5004
5005 if (list_empty(head)) {
5006 spin_unlock_irq(&rq->lock);
5007 schedule();
5008 set_current_state(TASK_INTERRUPTIBLE);
5009 continue;
5010 }
70b97a7f 5011 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5012 list_del_init(head->next);
5013
674311d5
NP
5014 spin_unlock(&rq->lock);
5015 __migrate_task(req->task, cpu, req->dest_cpu);
5016 local_irq_enable();
1da177e4
LT
5017
5018 complete(&req->done);
5019 }
5020 __set_current_state(TASK_RUNNING);
5021 return 0;
5022
5023wait_to_die:
5024 /* Wait for kthread_stop */
5025 set_current_state(TASK_INTERRUPTIBLE);
5026 while (!kthread_should_stop()) {
5027 schedule();
5028 set_current_state(TASK_INTERRUPTIBLE);
5029 }
5030 __set_current_state(TASK_RUNNING);
5031 return 0;
5032}
5033
5034#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5035/*
5036 * Figure out where task on dead CPU should go, use force if neccessary.
5037 * NOTE: interrupts should be disabled by the caller
5038 */
48f24c4d 5039static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5040{
efc30814 5041 unsigned long flags;
1da177e4 5042 cpumask_t mask;
70b97a7f
IM
5043 struct rq *rq;
5044 int dest_cpu;
1da177e4 5045
3a5c359a
AK
5046 do {
5047 /* On same node? */
5048 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5049 cpus_and(mask, mask, p->cpus_allowed);
5050 dest_cpu = any_online_cpu(mask);
5051
5052 /* On any allowed CPU? */
5053 if (dest_cpu == NR_CPUS)
5054 dest_cpu = any_online_cpu(p->cpus_allowed);
5055
5056 /* No more Mr. Nice Guy. */
5057 if (dest_cpu == NR_CPUS) {
5058 rq = task_rq_lock(p, &flags);
5059 cpus_setall(p->cpus_allowed);
5060 dest_cpu = any_online_cpu(p->cpus_allowed);
5061 task_rq_unlock(rq, &flags);
1da177e4 5062
3a5c359a
AK
5063 /*
5064 * Don't tell them about moving exiting tasks or
5065 * kernel threads (both mm NULL), since they never
5066 * leave kernel.
5067 */
5068 if (p->mm && printk_ratelimit())
5069 printk(KERN_INFO "process %d (%s) no "
5070 "longer affine to cpu%d\n",
5071 p->pid, p->comm, dead_cpu);
5072 }
5073 } while (!__migrate_task(p, dead_cpu, dest_cpu));
1da177e4
LT
5074}
5075
5076/*
5077 * While a dead CPU has no uninterruptible tasks queued at this point,
5078 * it might still have a nonzero ->nr_uninterruptible counter, because
5079 * for performance reasons the counter is not stricly tracking tasks to
5080 * their home CPUs. So we just add the counter to another CPU's counter,
5081 * to keep the global sum constant after CPU-down:
5082 */
70b97a7f 5083static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5084{
70b97a7f 5085 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5086 unsigned long flags;
5087
5088 local_irq_save(flags);
5089 double_rq_lock(rq_src, rq_dest);
5090 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5091 rq_src->nr_uninterruptible = 0;
5092 double_rq_unlock(rq_src, rq_dest);
5093 local_irq_restore(flags);
5094}
5095
5096/* Run through task list and migrate tasks from the dead cpu. */
5097static void migrate_live_tasks(int src_cpu)
5098{
48f24c4d 5099 struct task_struct *p, *t;
1da177e4
LT
5100
5101 write_lock_irq(&tasklist_lock);
5102
48f24c4d
IM
5103 do_each_thread(t, p) {
5104 if (p == current)
1da177e4
LT
5105 continue;
5106
48f24c4d
IM
5107 if (task_cpu(p) == src_cpu)
5108 move_task_off_dead_cpu(src_cpu, p);
5109 } while_each_thread(t, p);
1da177e4
LT
5110
5111 write_unlock_irq(&tasklist_lock);
5112}
5113
a9957449
AD
5114/*
5115 * activate_idle_task - move idle task to the _front_ of runqueue.
5116 */
5117static void activate_idle_task(struct task_struct *p, struct rq *rq)
5118{
5119 update_rq_clock(rq);
5120
5121 if (p->state == TASK_UNINTERRUPTIBLE)
5122 rq->nr_uninterruptible--;
5123
5124 enqueue_task(rq, p, 0);
5125 inc_nr_running(p, rq);
5126}
5127
dd41f596
IM
5128/*
5129 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5130 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5131 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5132 */
5133void sched_idle_next(void)
5134{
48f24c4d 5135 int this_cpu = smp_processor_id();
70b97a7f 5136 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5137 struct task_struct *p = rq->idle;
5138 unsigned long flags;
5139
5140 /* cpu has to be offline */
48f24c4d 5141 BUG_ON(cpu_online(this_cpu));
1da177e4 5142
48f24c4d
IM
5143 /*
5144 * Strictly not necessary since rest of the CPUs are stopped by now
5145 * and interrupts disabled on the current cpu.
1da177e4
LT
5146 */
5147 spin_lock_irqsave(&rq->lock, flags);
5148
dd41f596 5149 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5150
5151 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5152 activate_idle_task(p, rq);
1da177e4
LT
5153
5154 spin_unlock_irqrestore(&rq->lock, flags);
5155}
5156
48f24c4d
IM
5157/*
5158 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5159 * offline.
5160 */
5161void idle_task_exit(void)
5162{
5163 struct mm_struct *mm = current->active_mm;
5164
5165 BUG_ON(cpu_online(smp_processor_id()));
5166
5167 if (mm != &init_mm)
5168 switch_mm(mm, &init_mm, current);
5169 mmdrop(mm);
5170}
5171
054b9108 5172/* called under rq->lock with disabled interrupts */
36c8b586 5173static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5174{
70b97a7f 5175 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5176
5177 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5178 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5179
5180 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5181 BUG_ON(p->state == TASK_DEAD);
1da177e4 5182
48f24c4d 5183 get_task_struct(p);
1da177e4
LT
5184
5185 /*
5186 * Drop lock around migration; if someone else moves it,
5187 * that's OK. No task can be added to this CPU, so iteration is
5188 * fine.
054b9108 5189 * NOTE: interrupts should be left disabled --dev@
1da177e4 5190 */
054b9108 5191 spin_unlock(&rq->lock);
48f24c4d 5192 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5193 spin_lock(&rq->lock);
1da177e4 5194
48f24c4d 5195 put_task_struct(p);
1da177e4
LT
5196}
5197
5198/* release_task() removes task from tasklist, so we won't find dead tasks. */
5199static void migrate_dead_tasks(unsigned int dead_cpu)
5200{
70b97a7f 5201 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5202 struct task_struct *next;
48f24c4d 5203
dd41f596
IM
5204 for ( ; ; ) {
5205 if (!rq->nr_running)
5206 break;
a8e504d2 5207 update_rq_clock(rq);
ff95f3df 5208 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5209 if (!next)
5210 break;
5211 migrate_dead(dead_cpu, next);
e692ab53 5212
1da177e4
LT
5213 }
5214}
5215#endif /* CONFIG_HOTPLUG_CPU */
5216
e692ab53
NP
5217#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5218
5219static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5220 {
5221 .procname = "sched_domain",
c57baf1e 5222 .mode = 0555,
e0361851 5223 },
e692ab53
NP
5224 {0,},
5225};
5226
5227static struct ctl_table sd_ctl_root[] = {
e0361851 5228 {
c57baf1e 5229 .ctl_name = CTL_KERN,
e0361851 5230 .procname = "kernel",
c57baf1e 5231 .mode = 0555,
e0361851
AD
5232 .child = sd_ctl_dir,
5233 },
e692ab53
NP
5234 {0,},
5235};
5236
5237static struct ctl_table *sd_alloc_ctl_entry(int n)
5238{
5239 struct ctl_table *entry =
5240 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5241
5242 BUG_ON(!entry);
5243 memset(entry, 0, n * sizeof(struct ctl_table));
5244
5245 return entry;
5246}
5247
5248static void
e0361851 5249set_table_entry(struct ctl_table *entry,
e692ab53
NP
5250 const char *procname, void *data, int maxlen,
5251 mode_t mode, proc_handler *proc_handler)
5252{
e692ab53
NP
5253 entry->procname = procname;
5254 entry->data = data;
5255 entry->maxlen = maxlen;
5256 entry->mode = mode;
5257 entry->proc_handler = proc_handler;
5258}
5259
5260static struct ctl_table *
5261sd_alloc_ctl_domain_table(struct sched_domain *sd)
5262{
ace8b3d6 5263 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5264
e0361851 5265 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5266 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5267 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5268 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5269 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5270 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5271 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5272 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5273 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5274 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5275 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5276 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5277 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5278 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5279 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5280 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5281 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5282 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5283 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5284 &sd->cache_nice_tries,
5285 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5286 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53
NP
5287 sizeof(int), 0644, proc_dointvec_minmax);
5288
5289 return table;
5290}
5291
5292static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5293{
5294 struct ctl_table *entry, *table;
5295 struct sched_domain *sd;
5296 int domain_num = 0, i;
5297 char buf[32];
5298
5299 for_each_domain(cpu, sd)
5300 domain_num++;
5301 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5302
5303 i = 0;
5304 for_each_domain(cpu, sd) {
5305 snprintf(buf, 32, "domain%d", i);
e692ab53 5306 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5307 entry->mode = 0555;
e692ab53
NP
5308 entry->child = sd_alloc_ctl_domain_table(sd);
5309 entry++;
5310 i++;
5311 }
5312 return table;
5313}
5314
5315static struct ctl_table_header *sd_sysctl_header;
5316static void init_sched_domain_sysctl(void)
5317{
5318 int i, cpu_num = num_online_cpus();
5319 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5320 char buf[32];
5321
5322 sd_ctl_dir[0].child = entry;
5323
5324 for (i = 0; i < cpu_num; i++, entry++) {
5325 snprintf(buf, 32, "cpu%d", i);
e692ab53 5326 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5327 entry->mode = 0555;
e692ab53
NP
5328 entry->child = sd_alloc_ctl_cpu_table(i);
5329 }
5330 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5331}
5332#else
5333static void init_sched_domain_sysctl(void)
5334{
5335}
5336#endif
5337
1da177e4
LT
5338/*
5339 * migration_call - callback that gets triggered when a CPU is added.
5340 * Here we can start up the necessary migration thread for the new CPU.
5341 */
48f24c4d
IM
5342static int __cpuinit
5343migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5344{
1da177e4 5345 struct task_struct *p;
48f24c4d 5346 int cpu = (long)hcpu;
1da177e4 5347 unsigned long flags;
70b97a7f 5348 struct rq *rq;
1da177e4
LT
5349
5350 switch (action) {
5be9361c
GS
5351 case CPU_LOCK_ACQUIRE:
5352 mutex_lock(&sched_hotcpu_mutex);
5353 break;
5354
1da177e4 5355 case CPU_UP_PREPARE:
8bb78442 5356 case CPU_UP_PREPARE_FROZEN:
dd41f596 5357 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5358 if (IS_ERR(p))
5359 return NOTIFY_BAD;
1da177e4
LT
5360 kthread_bind(p, cpu);
5361 /* Must be high prio: stop_machine expects to yield to it. */
5362 rq = task_rq_lock(p, &flags);
dd41f596 5363 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5364 task_rq_unlock(rq, &flags);
5365 cpu_rq(cpu)->migration_thread = p;
5366 break;
48f24c4d 5367
1da177e4 5368 case CPU_ONLINE:
8bb78442 5369 case CPU_ONLINE_FROZEN:
1da177e4
LT
5370 /* Strictly unneccessary, as first user will wake it. */
5371 wake_up_process(cpu_rq(cpu)->migration_thread);
5372 break;
48f24c4d 5373
1da177e4
LT
5374#ifdef CONFIG_HOTPLUG_CPU
5375 case CPU_UP_CANCELED:
8bb78442 5376 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5377 if (!cpu_rq(cpu)->migration_thread)
5378 break;
1da177e4 5379 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5380 kthread_bind(cpu_rq(cpu)->migration_thread,
5381 any_online_cpu(cpu_online_map));
1da177e4
LT
5382 kthread_stop(cpu_rq(cpu)->migration_thread);
5383 cpu_rq(cpu)->migration_thread = NULL;
5384 break;
48f24c4d 5385
1da177e4 5386 case CPU_DEAD:
8bb78442 5387 case CPU_DEAD_FROZEN:
1da177e4
LT
5388 migrate_live_tasks(cpu);
5389 rq = cpu_rq(cpu);
5390 kthread_stop(rq->migration_thread);
5391 rq->migration_thread = NULL;
5392 /* Idle task back to normal (off runqueue, low prio) */
5393 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5394 update_rq_clock(rq);
2e1cb74a 5395 deactivate_task(rq, rq->idle, 0);
1da177e4 5396 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5397 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5398 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5399 migrate_dead_tasks(cpu);
5400 task_rq_unlock(rq, &flags);
5401 migrate_nr_uninterruptible(rq);
5402 BUG_ON(rq->nr_running != 0);
5403
5404 /* No need to migrate the tasks: it was best-effort if
5be9361c 5405 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5406 * the requestors. */
5407 spin_lock_irq(&rq->lock);
5408 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5409 struct migration_req *req;
5410
1da177e4 5411 req = list_entry(rq->migration_queue.next,
70b97a7f 5412 struct migration_req, list);
1da177e4
LT
5413 list_del_init(&req->list);
5414 complete(&req->done);
5415 }
5416 spin_unlock_irq(&rq->lock);
5417 break;
5418#endif
5be9361c
GS
5419 case CPU_LOCK_RELEASE:
5420 mutex_unlock(&sched_hotcpu_mutex);
5421 break;
1da177e4
LT
5422 }
5423 return NOTIFY_OK;
5424}
5425
5426/* Register at highest priority so that task migration (migrate_all_tasks)
5427 * happens before everything else.
5428 */
26c2143b 5429static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5430 .notifier_call = migration_call,
5431 .priority = 10
5432};
5433
5434int __init migration_init(void)
5435{
5436 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5437 int err;
48f24c4d
IM
5438
5439 /* Start one for the boot CPU: */
07dccf33
AM
5440 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5441 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5442 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5443 register_cpu_notifier(&migration_notifier);
48f24c4d 5444
1da177e4
LT
5445 return 0;
5446}
5447#endif
5448
5449#ifdef CONFIG_SMP
476f3534
CL
5450
5451/* Number of possible processor ids */
5452int nr_cpu_ids __read_mostly = NR_CPUS;
5453EXPORT_SYMBOL(nr_cpu_ids);
5454
3e9830dc 5455#ifdef CONFIG_SCHED_DEBUG
1da177e4
LT
5456static void sched_domain_debug(struct sched_domain *sd, int cpu)
5457{
5458 int level = 0;
5459
41c7ce9a
NP
5460 if (!sd) {
5461 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5462 return;
5463 }
5464
1da177e4
LT
5465 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5466
5467 do {
5468 int i;
5469 char str[NR_CPUS];
5470 struct sched_group *group = sd->groups;
5471 cpumask_t groupmask;
5472
5473 cpumask_scnprintf(str, NR_CPUS, sd->span);
5474 cpus_clear(groupmask);
5475
5476 printk(KERN_DEBUG);
5477 for (i = 0; i < level + 1; i++)
5478 printk(" ");
5479 printk("domain %d: ", level);
5480
5481 if (!(sd->flags & SD_LOAD_BALANCE)) {
5482 printk("does not load-balance\n");
5483 if (sd->parent)
33859f7f
MOS
5484 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5485 " has parent");
1da177e4
LT
5486 break;
5487 }
5488
5489 printk("span %s\n", str);
5490
5491 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5492 printk(KERN_ERR "ERROR: domain->span does not contain "
5493 "CPU%d\n", cpu);
1da177e4 5494 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5495 printk(KERN_ERR "ERROR: domain->groups does not contain"
5496 " CPU%d\n", cpu);
1da177e4
LT
5497
5498 printk(KERN_DEBUG);
5499 for (i = 0; i < level + 2; i++)
5500 printk(" ");
5501 printk("groups:");
5502 do {
5503 if (!group) {
5504 printk("\n");
5505 printk(KERN_ERR "ERROR: group is NULL\n");
5506 break;
5507 }
5508
5517d86b 5509 if (!group->__cpu_power) {
1da177e4 5510 printk("\n");
33859f7f
MOS
5511 printk(KERN_ERR "ERROR: domain->cpu_power not "
5512 "set\n");
26797a34 5513 break;
1da177e4
LT
5514 }
5515
5516 if (!cpus_weight(group->cpumask)) {
5517 printk("\n");
5518 printk(KERN_ERR "ERROR: empty group\n");
26797a34 5519 break;
1da177e4
LT
5520 }
5521
5522 if (cpus_intersects(groupmask, group->cpumask)) {
5523 printk("\n");
5524 printk(KERN_ERR "ERROR: repeated CPUs\n");
26797a34 5525 break;
1da177e4
LT
5526 }
5527
5528 cpus_or(groupmask, groupmask, group->cpumask);
5529
5530 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5531 printk(" %s", str);
5532
5533 group = group->next;
5534 } while (group != sd->groups);
5535 printk("\n");
5536
5537 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5538 printk(KERN_ERR "ERROR: groups don't span "
5539 "domain->span\n");
1da177e4
LT
5540
5541 level++;
5542 sd = sd->parent;
33859f7f
MOS
5543 if (!sd)
5544 continue;
1da177e4 5545
33859f7f
MOS
5546 if (!cpus_subset(groupmask, sd->span))
5547 printk(KERN_ERR "ERROR: parent span is not a superset "
5548 "of domain->span\n");
1da177e4
LT
5549
5550 } while (sd);
5551}
5552#else
48f24c4d 5553# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5554#endif
5555
1a20ff27 5556static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5557{
5558 if (cpus_weight(sd->span) == 1)
5559 return 1;
5560
5561 /* Following flags need at least 2 groups */
5562 if (sd->flags & (SD_LOAD_BALANCE |
5563 SD_BALANCE_NEWIDLE |
5564 SD_BALANCE_FORK |
89c4710e
SS
5565 SD_BALANCE_EXEC |
5566 SD_SHARE_CPUPOWER |
5567 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5568 if (sd->groups != sd->groups->next)
5569 return 0;
5570 }
5571
5572 /* Following flags don't use groups */
5573 if (sd->flags & (SD_WAKE_IDLE |
5574 SD_WAKE_AFFINE |
5575 SD_WAKE_BALANCE))
5576 return 0;
5577
5578 return 1;
5579}
5580
48f24c4d
IM
5581static int
5582sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5583{
5584 unsigned long cflags = sd->flags, pflags = parent->flags;
5585
5586 if (sd_degenerate(parent))
5587 return 1;
5588
5589 if (!cpus_equal(sd->span, parent->span))
5590 return 0;
5591
5592 /* Does parent contain flags not in child? */
5593 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5594 if (cflags & SD_WAKE_AFFINE)
5595 pflags &= ~SD_WAKE_BALANCE;
5596 /* Flags needing groups don't count if only 1 group in parent */
5597 if (parent->groups == parent->groups->next) {
5598 pflags &= ~(SD_LOAD_BALANCE |
5599 SD_BALANCE_NEWIDLE |
5600 SD_BALANCE_FORK |
89c4710e
SS
5601 SD_BALANCE_EXEC |
5602 SD_SHARE_CPUPOWER |
5603 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5604 }
5605 if (~cflags & pflags)
5606 return 0;
5607
5608 return 1;
5609}
5610
1da177e4
LT
5611/*
5612 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5613 * hold the hotplug lock.
5614 */
9c1cfda2 5615static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5616{
70b97a7f 5617 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5618 struct sched_domain *tmp;
5619
5620 /* Remove the sched domains which do not contribute to scheduling. */
5621 for (tmp = sd; tmp; tmp = tmp->parent) {
5622 struct sched_domain *parent = tmp->parent;
5623 if (!parent)
5624 break;
1a848870 5625 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5626 tmp->parent = parent->parent;
1a848870
SS
5627 if (parent->parent)
5628 parent->parent->child = tmp;
5629 }
245af2c7
SS
5630 }
5631
1a848870 5632 if (sd && sd_degenerate(sd)) {
245af2c7 5633 sd = sd->parent;
1a848870
SS
5634 if (sd)
5635 sd->child = NULL;
5636 }
1da177e4
LT
5637
5638 sched_domain_debug(sd, cpu);
5639
674311d5 5640 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5641}
5642
5643/* cpus with isolated domains */
67af63a6 5644static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5645
5646/* Setup the mask of cpus configured for isolated domains */
5647static int __init isolated_cpu_setup(char *str)
5648{
5649 int ints[NR_CPUS], i;
5650
5651 str = get_options(str, ARRAY_SIZE(ints), ints);
5652 cpus_clear(cpu_isolated_map);
5653 for (i = 1; i <= ints[0]; i++)
5654 if (ints[i] < NR_CPUS)
5655 cpu_set(ints[i], cpu_isolated_map);
5656 return 1;
5657}
5658
8927f494 5659__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5660
5661/*
6711cab4
SS
5662 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5663 * to a function which identifies what group(along with sched group) a CPU
5664 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5665 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5666 *
5667 * init_sched_build_groups will build a circular linked list of the groups
5668 * covered by the given span, and will set each group's ->cpumask correctly,
5669 * and ->cpu_power to 0.
5670 */
a616058b 5671static void
6711cab4
SS
5672init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5673 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5674 struct sched_group **sg))
1da177e4
LT
5675{
5676 struct sched_group *first = NULL, *last = NULL;
5677 cpumask_t covered = CPU_MASK_NONE;
5678 int i;
5679
5680 for_each_cpu_mask(i, span) {
6711cab4
SS
5681 struct sched_group *sg;
5682 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5683 int j;
5684
5685 if (cpu_isset(i, covered))
5686 continue;
5687
5688 sg->cpumask = CPU_MASK_NONE;
5517d86b 5689 sg->__cpu_power = 0;
1da177e4
LT
5690
5691 for_each_cpu_mask(j, span) {
6711cab4 5692 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5693 continue;
5694
5695 cpu_set(j, covered);
5696 cpu_set(j, sg->cpumask);
5697 }
5698 if (!first)
5699 first = sg;
5700 if (last)
5701 last->next = sg;
5702 last = sg;
5703 }
5704 last->next = first;
5705}
5706
9c1cfda2 5707#define SD_NODES_PER_DOMAIN 16
1da177e4 5708
9c1cfda2 5709#ifdef CONFIG_NUMA
198e2f18 5710
9c1cfda2
JH
5711/**
5712 * find_next_best_node - find the next node to include in a sched_domain
5713 * @node: node whose sched_domain we're building
5714 * @used_nodes: nodes already in the sched_domain
5715 *
5716 * Find the next node to include in a given scheduling domain. Simply
5717 * finds the closest node not already in the @used_nodes map.
5718 *
5719 * Should use nodemask_t.
5720 */
5721static int find_next_best_node(int node, unsigned long *used_nodes)
5722{
5723 int i, n, val, min_val, best_node = 0;
5724
5725 min_val = INT_MAX;
5726
5727 for (i = 0; i < MAX_NUMNODES; i++) {
5728 /* Start at @node */
5729 n = (node + i) % MAX_NUMNODES;
5730
5731 if (!nr_cpus_node(n))
5732 continue;
5733
5734 /* Skip already used nodes */
5735 if (test_bit(n, used_nodes))
5736 continue;
5737
5738 /* Simple min distance search */
5739 val = node_distance(node, n);
5740
5741 if (val < min_val) {
5742 min_val = val;
5743 best_node = n;
5744 }
5745 }
5746
5747 set_bit(best_node, used_nodes);
5748 return best_node;
5749}
5750
5751/**
5752 * sched_domain_node_span - get a cpumask for a node's sched_domain
5753 * @node: node whose cpumask we're constructing
5754 * @size: number of nodes to include in this span
5755 *
5756 * Given a node, construct a good cpumask for its sched_domain to span. It
5757 * should be one that prevents unnecessary balancing, but also spreads tasks
5758 * out optimally.
5759 */
5760static cpumask_t sched_domain_node_span(int node)
5761{
9c1cfda2 5762 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5763 cpumask_t span, nodemask;
5764 int i;
9c1cfda2
JH
5765
5766 cpus_clear(span);
5767 bitmap_zero(used_nodes, MAX_NUMNODES);
5768
5769 nodemask = node_to_cpumask(node);
5770 cpus_or(span, span, nodemask);
5771 set_bit(node, used_nodes);
5772
5773 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5774 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5775
9c1cfda2
JH
5776 nodemask = node_to_cpumask(next_node);
5777 cpus_or(span, span, nodemask);
5778 }
5779
5780 return span;
5781}
5782#endif
5783
5c45bf27 5784int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5785
9c1cfda2 5786/*
48f24c4d 5787 * SMT sched-domains:
9c1cfda2 5788 */
1da177e4
LT
5789#ifdef CONFIG_SCHED_SMT
5790static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5791static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5792
6711cab4
SS
5793static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5794 struct sched_group **sg)
1da177e4 5795{
6711cab4
SS
5796 if (sg)
5797 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5798 return cpu;
5799}
5800#endif
5801
48f24c4d
IM
5802/*
5803 * multi-core sched-domains:
5804 */
1e9f28fa
SS
5805#ifdef CONFIG_SCHED_MC
5806static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5807static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5808#endif
5809
5810#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5811static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5812 struct sched_group **sg)
1e9f28fa 5813{
6711cab4 5814 int group;
a616058b
SS
5815 cpumask_t mask = cpu_sibling_map[cpu];
5816 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5817 group = first_cpu(mask);
5818 if (sg)
5819 *sg = &per_cpu(sched_group_core, group);
5820 return group;
1e9f28fa
SS
5821}
5822#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5823static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5824 struct sched_group **sg)
1e9f28fa 5825{
6711cab4
SS
5826 if (sg)
5827 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5828 return cpu;
5829}
5830#endif
5831
1da177e4 5832static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5833static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5834
6711cab4
SS
5835static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5836 struct sched_group **sg)
1da177e4 5837{
6711cab4 5838 int group;
48f24c4d 5839#ifdef CONFIG_SCHED_MC
1e9f28fa 5840 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5841 cpus_and(mask, mask, *cpu_map);
6711cab4 5842 group = first_cpu(mask);
1e9f28fa 5843#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5844 cpumask_t mask = cpu_sibling_map[cpu];
5845 cpus_and(mask, mask, *cpu_map);
6711cab4 5846 group = first_cpu(mask);
1da177e4 5847#else
6711cab4 5848 group = cpu;
1da177e4 5849#endif
6711cab4
SS
5850 if (sg)
5851 *sg = &per_cpu(sched_group_phys, group);
5852 return group;
1da177e4
LT
5853}
5854
5855#ifdef CONFIG_NUMA
1da177e4 5856/*
9c1cfda2
JH
5857 * The init_sched_build_groups can't handle what we want to do with node
5858 * groups, so roll our own. Now each node has its own list of groups which
5859 * gets dynamically allocated.
1da177e4 5860 */
9c1cfda2 5861static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5862static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5863
9c1cfda2 5864static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5865static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5866
6711cab4
SS
5867static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5868 struct sched_group **sg)
9c1cfda2 5869{
6711cab4
SS
5870 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5871 int group;
5872
5873 cpus_and(nodemask, nodemask, *cpu_map);
5874 group = first_cpu(nodemask);
5875
5876 if (sg)
5877 *sg = &per_cpu(sched_group_allnodes, group);
5878 return group;
1da177e4 5879}
6711cab4 5880
08069033
SS
5881static void init_numa_sched_groups_power(struct sched_group *group_head)
5882{
5883 struct sched_group *sg = group_head;
5884 int j;
5885
5886 if (!sg)
5887 return;
3a5c359a
AK
5888 do {
5889 for_each_cpu_mask(j, sg->cpumask) {
5890 struct sched_domain *sd;
08069033 5891
3a5c359a
AK
5892 sd = &per_cpu(phys_domains, j);
5893 if (j != first_cpu(sd->groups->cpumask)) {
5894 /*
5895 * Only add "power" once for each
5896 * physical package.
5897 */
5898 continue;
5899 }
08069033 5900
3a5c359a
AK
5901 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5902 }
5903 sg = sg->next;
5904 } while (sg != group_head);
08069033 5905}
1da177e4
LT
5906#endif
5907
a616058b 5908#ifdef CONFIG_NUMA
51888ca2
SV
5909/* Free memory allocated for various sched_group structures */
5910static void free_sched_groups(const cpumask_t *cpu_map)
5911{
a616058b 5912 int cpu, i;
51888ca2
SV
5913
5914 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5915 struct sched_group **sched_group_nodes
5916 = sched_group_nodes_bycpu[cpu];
5917
51888ca2
SV
5918 if (!sched_group_nodes)
5919 continue;
5920
5921 for (i = 0; i < MAX_NUMNODES; i++) {
5922 cpumask_t nodemask = node_to_cpumask(i);
5923 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5924
5925 cpus_and(nodemask, nodemask, *cpu_map);
5926 if (cpus_empty(nodemask))
5927 continue;
5928
5929 if (sg == NULL)
5930 continue;
5931 sg = sg->next;
5932next_sg:
5933 oldsg = sg;
5934 sg = sg->next;
5935 kfree(oldsg);
5936 if (oldsg != sched_group_nodes[i])
5937 goto next_sg;
5938 }
5939 kfree(sched_group_nodes);
5940 sched_group_nodes_bycpu[cpu] = NULL;
5941 }
51888ca2 5942}
a616058b
SS
5943#else
5944static void free_sched_groups(const cpumask_t *cpu_map)
5945{
5946}
5947#endif
51888ca2 5948
89c4710e
SS
5949/*
5950 * Initialize sched groups cpu_power.
5951 *
5952 * cpu_power indicates the capacity of sched group, which is used while
5953 * distributing the load between different sched groups in a sched domain.
5954 * Typically cpu_power for all the groups in a sched domain will be same unless
5955 * there are asymmetries in the topology. If there are asymmetries, group
5956 * having more cpu_power will pickup more load compared to the group having
5957 * less cpu_power.
5958 *
5959 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5960 * the maximum number of tasks a group can handle in the presence of other idle
5961 * or lightly loaded groups in the same sched domain.
5962 */
5963static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5964{
5965 struct sched_domain *child;
5966 struct sched_group *group;
5967
5968 WARN_ON(!sd || !sd->groups);
5969
5970 if (cpu != first_cpu(sd->groups->cpumask))
5971 return;
5972
5973 child = sd->child;
5974
5517d86b
ED
5975 sd->groups->__cpu_power = 0;
5976
89c4710e
SS
5977 /*
5978 * For perf policy, if the groups in child domain share resources
5979 * (for example cores sharing some portions of the cache hierarchy
5980 * or SMT), then set this domain groups cpu_power such that each group
5981 * can handle only one task, when there are other idle groups in the
5982 * same sched domain.
5983 */
5984 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5985 (child->flags &
5986 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5987 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5988 return;
5989 }
5990
89c4710e
SS
5991 /*
5992 * add cpu_power of each child group to this groups cpu_power
5993 */
5994 group = child->groups;
5995 do {
5517d86b 5996 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5997 group = group->next;
5998 } while (group != child->groups);
5999}
6000
1da177e4 6001/*
1a20ff27
DG
6002 * Build sched domains for a given set of cpus and attach the sched domains
6003 * to the individual cpus
1da177e4 6004 */
51888ca2 6005static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6006{
6007 int i;
d1b55138
JH
6008#ifdef CONFIG_NUMA
6009 struct sched_group **sched_group_nodes = NULL;
6711cab4 6010 int sd_allnodes = 0;
d1b55138
JH
6011
6012 /*
6013 * Allocate the per-node list of sched groups
6014 */
dd41f596 6015 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6016 GFP_KERNEL);
d1b55138
JH
6017 if (!sched_group_nodes) {
6018 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6019 return -ENOMEM;
d1b55138
JH
6020 }
6021 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6022#endif
1da177e4
LT
6023
6024 /*
1a20ff27 6025 * Set up domains for cpus specified by the cpu_map.
1da177e4 6026 */
1a20ff27 6027 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6028 struct sched_domain *sd = NULL, *p;
6029 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6030
1a20ff27 6031 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6032
6033#ifdef CONFIG_NUMA
dd41f596
IM
6034 if (cpus_weight(*cpu_map) >
6035 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6036 sd = &per_cpu(allnodes_domains, i);
6037 *sd = SD_ALLNODES_INIT;
6038 sd->span = *cpu_map;
6711cab4 6039 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6040 p = sd;
6711cab4 6041 sd_allnodes = 1;
9c1cfda2
JH
6042 } else
6043 p = NULL;
6044
1da177e4 6045 sd = &per_cpu(node_domains, i);
1da177e4 6046 *sd = SD_NODE_INIT;
9c1cfda2
JH
6047 sd->span = sched_domain_node_span(cpu_to_node(i));
6048 sd->parent = p;
1a848870
SS
6049 if (p)
6050 p->child = sd;
9c1cfda2 6051 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6052#endif
6053
6054 p = sd;
6055 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6056 *sd = SD_CPU_INIT;
6057 sd->span = nodemask;
6058 sd->parent = p;
1a848870
SS
6059 if (p)
6060 p->child = sd;
6711cab4 6061 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6062
1e9f28fa
SS
6063#ifdef CONFIG_SCHED_MC
6064 p = sd;
6065 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6066 *sd = SD_MC_INIT;
6067 sd->span = cpu_coregroup_map(i);
6068 cpus_and(sd->span, sd->span, *cpu_map);
6069 sd->parent = p;
1a848870 6070 p->child = sd;
6711cab4 6071 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6072#endif
6073
1da177e4
LT
6074#ifdef CONFIG_SCHED_SMT
6075 p = sd;
6076 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6077 *sd = SD_SIBLING_INIT;
6078 sd->span = cpu_sibling_map[i];
1a20ff27 6079 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6080 sd->parent = p;
1a848870 6081 p->child = sd;
6711cab4 6082 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6083#endif
6084 }
6085
6086#ifdef CONFIG_SCHED_SMT
6087 /* Set up CPU (sibling) groups */
9c1cfda2 6088 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6089 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6090 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6091 if (i != first_cpu(this_sibling_map))
6092 continue;
6093
dd41f596
IM
6094 init_sched_build_groups(this_sibling_map, cpu_map,
6095 &cpu_to_cpu_group);
1da177e4
LT
6096 }
6097#endif
6098
1e9f28fa
SS
6099#ifdef CONFIG_SCHED_MC
6100 /* Set up multi-core groups */
6101 for_each_cpu_mask(i, *cpu_map) {
6102 cpumask_t this_core_map = cpu_coregroup_map(i);
6103 cpus_and(this_core_map, this_core_map, *cpu_map);
6104 if (i != first_cpu(this_core_map))
6105 continue;
dd41f596
IM
6106 init_sched_build_groups(this_core_map, cpu_map,
6107 &cpu_to_core_group);
1e9f28fa
SS
6108 }
6109#endif
6110
1da177e4
LT
6111 /* Set up physical groups */
6112 for (i = 0; i < MAX_NUMNODES; i++) {
6113 cpumask_t nodemask = node_to_cpumask(i);
6114
1a20ff27 6115 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6116 if (cpus_empty(nodemask))
6117 continue;
6118
6711cab4 6119 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6120 }
6121
6122#ifdef CONFIG_NUMA
6123 /* Set up node groups */
6711cab4 6124 if (sd_allnodes)
dd41f596
IM
6125 init_sched_build_groups(*cpu_map, cpu_map,
6126 &cpu_to_allnodes_group);
9c1cfda2
JH
6127
6128 for (i = 0; i < MAX_NUMNODES; i++) {
6129 /* Set up node groups */
6130 struct sched_group *sg, *prev;
6131 cpumask_t nodemask = node_to_cpumask(i);
6132 cpumask_t domainspan;
6133 cpumask_t covered = CPU_MASK_NONE;
6134 int j;
6135
6136 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6137 if (cpus_empty(nodemask)) {
6138 sched_group_nodes[i] = NULL;
9c1cfda2 6139 continue;
d1b55138 6140 }
9c1cfda2
JH
6141
6142 domainspan = sched_domain_node_span(i);
6143 cpus_and(domainspan, domainspan, *cpu_map);
6144
15f0b676 6145 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6146 if (!sg) {
6147 printk(KERN_WARNING "Can not alloc domain group for "
6148 "node %d\n", i);
6149 goto error;
6150 }
9c1cfda2
JH
6151 sched_group_nodes[i] = sg;
6152 for_each_cpu_mask(j, nodemask) {
6153 struct sched_domain *sd;
9761eea8 6154
9c1cfda2
JH
6155 sd = &per_cpu(node_domains, j);
6156 sd->groups = sg;
9c1cfda2 6157 }
5517d86b 6158 sg->__cpu_power = 0;
9c1cfda2 6159 sg->cpumask = nodemask;
51888ca2 6160 sg->next = sg;
9c1cfda2
JH
6161 cpus_or(covered, covered, nodemask);
6162 prev = sg;
6163
6164 for (j = 0; j < MAX_NUMNODES; j++) {
6165 cpumask_t tmp, notcovered;
6166 int n = (i + j) % MAX_NUMNODES;
6167
6168 cpus_complement(notcovered, covered);
6169 cpus_and(tmp, notcovered, *cpu_map);
6170 cpus_and(tmp, tmp, domainspan);
6171 if (cpus_empty(tmp))
6172 break;
6173
6174 nodemask = node_to_cpumask(n);
6175 cpus_and(tmp, tmp, nodemask);
6176 if (cpus_empty(tmp))
6177 continue;
6178
15f0b676
SV
6179 sg = kmalloc_node(sizeof(struct sched_group),
6180 GFP_KERNEL, i);
9c1cfda2
JH
6181 if (!sg) {
6182 printk(KERN_WARNING
6183 "Can not alloc domain group for node %d\n", j);
51888ca2 6184 goto error;
9c1cfda2 6185 }
5517d86b 6186 sg->__cpu_power = 0;
9c1cfda2 6187 sg->cpumask = tmp;
51888ca2 6188 sg->next = prev->next;
9c1cfda2
JH
6189 cpus_or(covered, covered, tmp);
6190 prev->next = sg;
6191 prev = sg;
6192 }
9c1cfda2 6193 }
1da177e4
LT
6194#endif
6195
6196 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6197#ifdef CONFIG_SCHED_SMT
1a20ff27 6198 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6199 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6200
89c4710e 6201 init_sched_groups_power(i, sd);
5c45bf27 6202 }
1da177e4 6203#endif
1e9f28fa 6204#ifdef CONFIG_SCHED_MC
5c45bf27 6205 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6206 struct sched_domain *sd = &per_cpu(core_domains, i);
6207
89c4710e 6208 init_sched_groups_power(i, sd);
5c45bf27
SS
6209 }
6210#endif
1e9f28fa 6211
5c45bf27 6212 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6213 struct sched_domain *sd = &per_cpu(phys_domains, i);
6214
89c4710e 6215 init_sched_groups_power(i, sd);
1da177e4
LT
6216 }
6217
9c1cfda2 6218#ifdef CONFIG_NUMA
08069033
SS
6219 for (i = 0; i < MAX_NUMNODES; i++)
6220 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6221
6711cab4
SS
6222 if (sd_allnodes) {
6223 struct sched_group *sg;
f712c0c7 6224
6711cab4 6225 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6226 init_numa_sched_groups_power(sg);
6227 }
9c1cfda2
JH
6228#endif
6229
1da177e4 6230 /* Attach the domains */
1a20ff27 6231 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6232 struct sched_domain *sd;
6233#ifdef CONFIG_SCHED_SMT
6234 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6235#elif defined(CONFIG_SCHED_MC)
6236 sd = &per_cpu(core_domains, i);
1da177e4
LT
6237#else
6238 sd = &per_cpu(phys_domains, i);
6239#endif
6240 cpu_attach_domain(sd, i);
6241 }
51888ca2
SV
6242
6243 return 0;
6244
a616058b 6245#ifdef CONFIG_NUMA
51888ca2
SV
6246error:
6247 free_sched_groups(cpu_map);
6248 return -ENOMEM;
a616058b 6249#endif
1da177e4 6250}
1a20ff27
DG
6251/*
6252 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6253 */
51888ca2 6254static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6255{
6256 cpumask_t cpu_default_map;
51888ca2 6257 int err;
1da177e4 6258
1a20ff27
DG
6259 /*
6260 * Setup mask for cpus without special case scheduling requirements.
6261 * For now this just excludes isolated cpus, but could be used to
6262 * exclude other special cases in the future.
6263 */
6264 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6265
51888ca2
SV
6266 err = build_sched_domains(&cpu_default_map);
6267
6268 return err;
1a20ff27
DG
6269}
6270
6271static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6272{
51888ca2 6273 free_sched_groups(cpu_map);
9c1cfda2 6274}
1da177e4 6275
1a20ff27
DG
6276/*
6277 * Detach sched domains from a group of cpus specified in cpu_map
6278 * These cpus will now be attached to the NULL domain
6279 */
858119e1 6280static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6281{
6282 int i;
6283
6284 for_each_cpu_mask(i, *cpu_map)
6285 cpu_attach_domain(NULL, i);
6286 synchronize_sched();
6287 arch_destroy_sched_domains(cpu_map);
6288}
6289
6290/*
6291 * Partition sched domains as specified by the cpumasks below.
6292 * This attaches all cpus from the cpumasks to the NULL domain,
6293 * waits for a RCU quiescent period, recalculates sched
6294 * domain information and then attaches them back to the
6295 * correct sched domains
6296 * Call with hotplug lock held
6297 */
51888ca2 6298int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6299{
6300 cpumask_t change_map;
51888ca2 6301 int err = 0;
1a20ff27
DG
6302
6303 cpus_and(*partition1, *partition1, cpu_online_map);
6304 cpus_and(*partition2, *partition2, cpu_online_map);
6305 cpus_or(change_map, *partition1, *partition2);
6306
6307 /* Detach sched domains from all of the affected cpus */
6308 detach_destroy_domains(&change_map);
6309 if (!cpus_empty(*partition1))
51888ca2
SV
6310 err = build_sched_domains(partition1);
6311 if (!err && !cpus_empty(*partition2))
6312 err = build_sched_domains(partition2);
6313
6314 return err;
1a20ff27
DG
6315}
6316
5c45bf27 6317#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6318static int arch_reinit_sched_domains(void)
5c45bf27
SS
6319{
6320 int err;
6321
5be9361c 6322 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6323 detach_destroy_domains(&cpu_online_map);
6324 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6325 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6326
6327 return err;
6328}
6329
6330static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6331{
6332 int ret;
6333
6334 if (buf[0] != '0' && buf[0] != '1')
6335 return -EINVAL;
6336
6337 if (smt)
6338 sched_smt_power_savings = (buf[0] == '1');
6339 else
6340 sched_mc_power_savings = (buf[0] == '1');
6341
6342 ret = arch_reinit_sched_domains();
6343
6344 return ret ? ret : count;
6345}
6346
5c45bf27
SS
6347#ifdef CONFIG_SCHED_MC
6348static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6349{
6350 return sprintf(page, "%u\n", sched_mc_power_savings);
6351}
48f24c4d
IM
6352static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6353 const char *buf, size_t count)
5c45bf27
SS
6354{
6355 return sched_power_savings_store(buf, count, 0);
6356}
6707de00
AB
6357static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6358 sched_mc_power_savings_store);
5c45bf27
SS
6359#endif
6360
6361#ifdef CONFIG_SCHED_SMT
6362static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6363{
6364 return sprintf(page, "%u\n", sched_smt_power_savings);
6365}
48f24c4d
IM
6366static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6367 const char *buf, size_t count)
5c45bf27
SS
6368{
6369 return sched_power_savings_store(buf, count, 1);
6370}
6707de00
AB
6371static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6372 sched_smt_power_savings_store);
6373#endif
6374
6375int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6376{
6377 int err = 0;
6378
6379#ifdef CONFIG_SCHED_SMT
6380 if (smt_capable())
6381 err = sysfs_create_file(&cls->kset.kobj,
6382 &attr_sched_smt_power_savings.attr);
6383#endif
6384#ifdef CONFIG_SCHED_MC
6385 if (!err && mc_capable())
6386 err = sysfs_create_file(&cls->kset.kobj,
6387 &attr_sched_mc_power_savings.attr);
6388#endif
6389 return err;
6390}
5c45bf27
SS
6391#endif
6392
1da177e4
LT
6393/*
6394 * Force a reinitialization of the sched domains hierarchy. The domains
6395 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6396 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6397 * which will prevent rebalancing while the sched domains are recalculated.
6398 */
6399static int update_sched_domains(struct notifier_block *nfb,
6400 unsigned long action, void *hcpu)
6401{
1da177e4
LT
6402 switch (action) {
6403 case CPU_UP_PREPARE:
8bb78442 6404 case CPU_UP_PREPARE_FROZEN:
1da177e4 6405 case CPU_DOWN_PREPARE:
8bb78442 6406 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6407 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6408 return NOTIFY_OK;
6409
6410 case CPU_UP_CANCELED:
8bb78442 6411 case CPU_UP_CANCELED_FROZEN:
1da177e4 6412 case CPU_DOWN_FAILED:
8bb78442 6413 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6414 case CPU_ONLINE:
8bb78442 6415 case CPU_ONLINE_FROZEN:
1da177e4 6416 case CPU_DEAD:
8bb78442 6417 case CPU_DEAD_FROZEN:
1da177e4
LT
6418 /*
6419 * Fall through and re-initialise the domains.
6420 */
6421 break;
6422 default:
6423 return NOTIFY_DONE;
6424 }
6425
6426 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6427 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6428
6429 return NOTIFY_OK;
6430}
1da177e4
LT
6431
6432void __init sched_init_smp(void)
6433{
5c1e1767
NP
6434 cpumask_t non_isolated_cpus;
6435
5be9361c 6436 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6437 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6438 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6439 if (cpus_empty(non_isolated_cpus))
6440 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6441 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6442 /* XXX: Theoretical race here - CPU may be hotplugged now */
6443 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6444
e692ab53
NP
6445 init_sched_domain_sysctl();
6446
5c1e1767
NP
6447 /* Move init over to a non-isolated CPU */
6448 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6449 BUG();
1da177e4
LT
6450}
6451#else
6452void __init sched_init_smp(void)
6453{
6454}
6455#endif /* CONFIG_SMP */
6456
6457int in_sched_functions(unsigned long addr)
6458{
6459 /* Linker adds these: start and end of __sched functions */
6460 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6461
1da177e4
LT
6462 return in_lock_functions(addr) ||
6463 (addr >= (unsigned long)__sched_text_start
6464 && addr < (unsigned long)__sched_text_end);
6465}
6466
a9957449 6467static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6468{
6469 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6470#ifdef CONFIG_FAIR_GROUP_SCHED
6471 cfs_rq->rq = rq;
6472#endif
67e9fb2a 6473 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6474}
6475
1da177e4
LT
6476void __init sched_init(void)
6477{
476f3534 6478 int highest_cpu = 0;
dd41f596
IM
6479 int i, j;
6480
0a945022 6481 for_each_possible_cpu(i) {
dd41f596 6482 struct rt_prio_array *array;
70b97a7f 6483 struct rq *rq;
1da177e4
LT
6484
6485 rq = cpu_rq(i);
6486 spin_lock_init(&rq->lock);
fcb99371 6487 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6488 rq->nr_running = 0;
dd41f596
IM
6489 rq->clock = 1;
6490 init_cfs_rq(&rq->cfs, rq);
6491#ifdef CONFIG_FAIR_GROUP_SCHED
6492 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6493 {
6494 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6495 struct sched_entity *se =
6496 &per_cpu(init_sched_entity, i);
6497
6498 init_cfs_rq_p[i] = cfs_rq;
6499 init_cfs_rq(cfs_rq, rq);
4cf86d77 6500 cfs_rq->tg = &init_task_group;
3a252015 6501 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6502 &rq->leaf_cfs_rq_list);
6503
3a252015
IM
6504 init_sched_entity_p[i] = se;
6505 se->cfs_rq = &rq->cfs;
6506 se->my_q = cfs_rq;
4cf86d77 6507 se->load.weight = init_task_group_load;
9b5b7751 6508 se->load.inv_weight =
4cf86d77 6509 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6510 se->parent = NULL;
6511 }
4cf86d77 6512 init_task_group.shares = init_task_group_load;
5cb350ba 6513 spin_lock_init(&init_task_group.lock);
dd41f596 6514#endif
1da177e4 6515
dd41f596
IM
6516 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6517 rq->cpu_load[j] = 0;
1da177e4 6518#ifdef CONFIG_SMP
41c7ce9a 6519 rq->sd = NULL;
1da177e4 6520 rq->active_balance = 0;
dd41f596 6521 rq->next_balance = jiffies;
1da177e4 6522 rq->push_cpu = 0;
0a2966b4 6523 rq->cpu = i;
1da177e4
LT
6524 rq->migration_thread = NULL;
6525 INIT_LIST_HEAD(&rq->migration_queue);
6526#endif
6527 atomic_set(&rq->nr_iowait, 0);
6528
dd41f596
IM
6529 array = &rq->rt.active;
6530 for (j = 0; j < MAX_RT_PRIO; j++) {
6531 INIT_LIST_HEAD(array->queue + j);
6532 __clear_bit(j, array->bitmap);
1da177e4 6533 }
476f3534 6534 highest_cpu = i;
dd41f596
IM
6535 /* delimiter for bitsearch: */
6536 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6537 }
6538
2dd73a4f 6539 set_load_weight(&init_task);
b50f60ce 6540
e107be36
AK
6541#ifdef CONFIG_PREEMPT_NOTIFIERS
6542 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6543#endif
6544
c9819f45 6545#ifdef CONFIG_SMP
476f3534 6546 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6547 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6548#endif
6549
b50f60ce
HC
6550#ifdef CONFIG_RT_MUTEXES
6551 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6552#endif
6553
1da177e4
LT
6554 /*
6555 * The boot idle thread does lazy MMU switching as well:
6556 */
6557 atomic_inc(&init_mm.mm_count);
6558 enter_lazy_tlb(&init_mm, current);
6559
6560 /*
6561 * Make us the idle thread. Technically, schedule() should not be
6562 * called from this thread, however somewhere below it might be,
6563 * but because we are the idle thread, we just pick up running again
6564 * when this runqueue becomes "idle".
6565 */
6566 init_idle(current, smp_processor_id());
dd41f596
IM
6567 /*
6568 * During early bootup we pretend to be a normal task:
6569 */
6570 current->sched_class = &fair_sched_class;
1da177e4
LT
6571}
6572
6573#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6574void __might_sleep(char *file, int line)
6575{
48f24c4d 6576#ifdef in_atomic
1da177e4
LT
6577 static unsigned long prev_jiffy; /* ratelimiting */
6578
6579 if ((in_atomic() || irqs_disabled()) &&
6580 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6581 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6582 return;
6583 prev_jiffy = jiffies;
91368d73 6584 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6585 " context at %s:%d\n", file, line);
6586 printk("in_atomic():%d, irqs_disabled():%d\n",
6587 in_atomic(), irqs_disabled());
a4c410f0 6588 debug_show_held_locks(current);
3117df04
IM
6589 if (irqs_disabled())
6590 print_irqtrace_events(current);
1da177e4
LT
6591 dump_stack();
6592 }
6593#endif
6594}
6595EXPORT_SYMBOL(__might_sleep);
6596#endif
6597
6598#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6599static void normalize_task(struct rq *rq, struct task_struct *p)
6600{
6601 int on_rq;
6602 update_rq_clock(rq);
6603 on_rq = p->se.on_rq;
6604 if (on_rq)
6605 deactivate_task(rq, p, 0);
6606 __setscheduler(rq, p, SCHED_NORMAL, 0);
6607 if (on_rq) {
6608 activate_task(rq, p, 0);
6609 resched_task(rq->curr);
6610 }
6611}
6612
1da177e4
LT
6613void normalize_rt_tasks(void)
6614{
a0f98a1c 6615 struct task_struct *g, *p;
1da177e4 6616 unsigned long flags;
70b97a7f 6617 struct rq *rq;
1da177e4
LT
6618
6619 read_lock_irq(&tasklist_lock);
a0f98a1c 6620 do_each_thread(g, p) {
178be793
IM
6621 /*
6622 * Only normalize user tasks:
6623 */
6624 if (!p->mm)
6625 continue;
6626
6cfb0d5d 6627 p->se.exec_start = 0;
6cfb0d5d 6628#ifdef CONFIG_SCHEDSTATS
dd41f596 6629 p->se.wait_start = 0;
dd41f596 6630 p->se.sleep_start = 0;
dd41f596 6631 p->se.block_start = 0;
6cfb0d5d 6632#endif
dd41f596
IM
6633 task_rq(p)->clock = 0;
6634
6635 if (!rt_task(p)) {
6636 /*
6637 * Renice negative nice level userspace
6638 * tasks back to 0:
6639 */
6640 if (TASK_NICE(p) < 0 && p->mm)
6641 set_user_nice(p, 0);
1da177e4 6642 continue;
dd41f596 6643 }
1da177e4 6644
b29739f9
IM
6645 spin_lock_irqsave(&p->pi_lock, flags);
6646 rq = __task_rq_lock(p);
1da177e4 6647
178be793 6648 normalize_task(rq, p);
3a5e4dc1 6649
b29739f9
IM
6650 __task_rq_unlock(rq);
6651 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6652 } while_each_thread(g, p);
6653
1da177e4
LT
6654 read_unlock_irq(&tasklist_lock);
6655}
6656
6657#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6658
6659#ifdef CONFIG_IA64
6660/*
6661 * These functions are only useful for the IA64 MCA handling.
6662 *
6663 * They can only be called when the whole system has been
6664 * stopped - every CPU needs to be quiescent, and no scheduling
6665 * activity can take place. Using them for anything else would
6666 * be a serious bug, and as a result, they aren't even visible
6667 * under any other configuration.
6668 */
6669
6670/**
6671 * curr_task - return the current task for a given cpu.
6672 * @cpu: the processor in question.
6673 *
6674 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6675 */
36c8b586 6676struct task_struct *curr_task(int cpu)
1df5c10a
LT
6677{
6678 return cpu_curr(cpu);
6679}
6680
6681/**
6682 * set_curr_task - set the current task for a given cpu.
6683 * @cpu: the processor in question.
6684 * @p: the task pointer to set.
6685 *
6686 * Description: This function must only be used when non-maskable interrupts
6687 * are serviced on a separate stack. It allows the architecture to switch the
6688 * notion of the current task on a cpu in a non-blocking manner. This function
6689 * must be called with all CPU's synchronized, and interrupts disabled, the
6690 * and caller must save the original value of the current task (see
6691 * curr_task() above) and restore that value before reenabling interrupts and
6692 * re-starting the system.
6693 *
6694 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6695 */
36c8b586 6696void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6697{
6698 cpu_curr(cpu) = p;
6699}
6700
6701#endif
29f59db3
SV
6702
6703#ifdef CONFIG_FAIR_GROUP_SCHED
6704
29f59db3 6705/* allocate runqueue etc for a new task group */
4cf86d77 6706struct task_group *sched_create_group(void)
29f59db3 6707{
4cf86d77 6708 struct task_group *tg;
29f59db3
SV
6709 struct cfs_rq *cfs_rq;
6710 struct sched_entity *se;
9b5b7751 6711 struct rq *rq;
29f59db3
SV
6712 int i;
6713
29f59db3
SV
6714 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6715 if (!tg)
6716 return ERR_PTR(-ENOMEM);
6717
9b5b7751 6718 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6719 if (!tg->cfs_rq)
6720 goto err;
9b5b7751 6721 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6722 if (!tg->se)
6723 goto err;
6724
6725 for_each_possible_cpu(i) {
9b5b7751 6726 rq = cpu_rq(i);
29f59db3
SV
6727
6728 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6729 cpu_to_node(i));
6730 if (!cfs_rq)
6731 goto err;
6732
6733 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6734 cpu_to_node(i));
6735 if (!se)
6736 goto err;
6737
6738 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6739 memset(se, 0, sizeof(struct sched_entity));
6740
6741 tg->cfs_rq[i] = cfs_rq;
6742 init_cfs_rq(cfs_rq, rq);
6743 cfs_rq->tg = tg;
29f59db3
SV
6744
6745 tg->se[i] = se;
6746 se->cfs_rq = &rq->cfs;
6747 se->my_q = cfs_rq;
6748 se->load.weight = NICE_0_LOAD;
6749 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6750 se->parent = NULL;
6751 }
6752
9b5b7751
SV
6753 for_each_possible_cpu(i) {
6754 rq = cpu_rq(i);
6755 cfs_rq = tg->cfs_rq[i];
6756 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6757 }
29f59db3 6758
9b5b7751 6759 tg->shares = NICE_0_LOAD;
5cb350ba 6760 spin_lock_init(&tg->lock);
29f59db3 6761
9b5b7751 6762 return tg;
29f59db3
SV
6763
6764err:
6765 for_each_possible_cpu(i) {
a65914b3 6766 if (tg->cfs_rq)
29f59db3 6767 kfree(tg->cfs_rq[i]);
a65914b3 6768 if (tg->se)
29f59db3
SV
6769 kfree(tg->se[i]);
6770 }
a65914b3
IM
6771 kfree(tg->cfs_rq);
6772 kfree(tg->se);
6773 kfree(tg);
29f59db3
SV
6774
6775 return ERR_PTR(-ENOMEM);
6776}
6777
9b5b7751
SV
6778/* rcu callback to free various structures associated with a task group */
6779static void free_sched_group(struct rcu_head *rhp)
29f59db3 6780{
9b5b7751 6781 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 6782 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
6783 struct sched_entity *se;
6784 int i;
6785
29f59db3
SV
6786 /* now it should be safe to free those cfs_rqs */
6787 for_each_possible_cpu(i) {
6788 cfs_rq = tg->cfs_rq[i];
6789 kfree(cfs_rq);
6790
6791 se = tg->se[i];
6792 kfree(se);
6793 }
6794
6795 kfree(tg->cfs_rq);
6796 kfree(tg->se);
6797 kfree(tg);
6798}
6799
9b5b7751 6800/* Destroy runqueue etc associated with a task group */
4cf86d77 6801void sched_destroy_group(struct task_group *tg)
29f59db3 6802{
9b5b7751
SV
6803 struct cfs_rq *cfs_rq;
6804 int i;
29f59db3 6805
9b5b7751
SV
6806 for_each_possible_cpu(i) {
6807 cfs_rq = tg->cfs_rq[i];
6808 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6809 }
6810
6811 cfs_rq = tg->cfs_rq[0];
6812
6813 /* wait for possible concurrent references to cfs_rqs complete */
6814 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
6815}
6816
9b5b7751 6817/* change task's runqueue when it moves between groups.
3a252015
IM
6818 * The caller of this function should have put the task in its new group
6819 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6820 * reflect its new group.
9b5b7751
SV
6821 */
6822void sched_move_task(struct task_struct *tsk)
29f59db3
SV
6823{
6824 int on_rq, running;
6825 unsigned long flags;
6826 struct rq *rq;
6827
6828 rq = task_rq_lock(tsk, &flags);
6829
6830 if (tsk->sched_class != &fair_sched_class)
6831 goto done;
6832
6833 update_rq_clock(rq);
6834
6835 running = task_running(rq, tsk);
6836 on_rq = tsk->se.on_rq;
6837
83b699ed 6838 if (on_rq) {
29f59db3 6839 dequeue_task(rq, tsk, 0);
83b699ed
SV
6840 if (unlikely(running))
6841 tsk->sched_class->put_prev_task(rq, tsk);
6842 }
29f59db3
SV
6843
6844 set_task_cfs_rq(tsk);
6845
83b699ed
SV
6846 if (on_rq) {
6847 if (unlikely(running))
6848 tsk->sched_class->set_curr_task(rq);
7074badb 6849 enqueue_task(rq, tsk, 0);
83b699ed 6850 }
29f59db3
SV
6851
6852done:
6853 task_rq_unlock(rq, &flags);
6854}
6855
6856static void set_se_shares(struct sched_entity *se, unsigned long shares)
6857{
6858 struct cfs_rq *cfs_rq = se->cfs_rq;
6859 struct rq *rq = cfs_rq->rq;
6860 int on_rq;
6861
6862 spin_lock_irq(&rq->lock);
6863
6864 on_rq = se->on_rq;
6865 if (on_rq)
6866 dequeue_entity(cfs_rq, se, 0);
6867
6868 se->load.weight = shares;
6869 se->load.inv_weight = div64_64((1ULL<<32), shares);
6870
6871 if (on_rq)
6872 enqueue_entity(cfs_rq, se, 0);
6873
6874 spin_unlock_irq(&rq->lock);
6875}
6876
4cf86d77 6877int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
6878{
6879 int i;
29f59db3 6880
5cb350ba 6881 spin_lock(&tg->lock);
9b5b7751 6882 if (tg->shares == shares)
5cb350ba 6883 goto done;
29f59db3 6884
9b5b7751 6885 tg->shares = shares;
29f59db3 6886 for_each_possible_cpu(i)
9b5b7751 6887 set_se_shares(tg->se[i], shares);
29f59db3 6888
5cb350ba
DG
6889done:
6890 spin_unlock(&tg->lock);
9b5b7751 6891 return 0;
29f59db3
SV
6892}
6893
5cb350ba
DG
6894unsigned long sched_group_shares(struct task_group *tg)
6895{
6896 return tg->shares;
6897}
6898
3a252015 6899#endif /* CONFIG_FAIR_GROUP_SCHED */