]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: fix style of swap() macro in kernel/sched_fair.c
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
62d0df64 55#include <linux/cpu_acct.h>
1da177e4
LT
56#include <linux/kthread.h>
57#include <linux/seq_file.h>
e692ab53 58#include <linux/sysctl.h>
1da177e4
LT
59#include <linux/syscalls.h>
60#include <linux/times.h>
8f0ab514 61#include <linux/tsacct_kern.h>
c6fd91f0 62#include <linux/kprobes.h>
0ff92245 63#include <linux/delayacct.h>
5517d86b 64#include <linux/reciprocal_div.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
1da177e4 67
5517d86b 68#include <asm/tlb.h>
838225b4 69#include <asm/irq_regs.h>
1da177e4 70
b035b6de
AD
71/*
72 * Scheduler clock - returns current time in nanosec units.
73 * This is default implementation.
74 * Architectures and sub-architectures can override this.
75 */
76unsigned long long __attribute__((weak)) sched_clock(void)
77{
78 return (unsigned long long)jiffies * (1000000000 / HZ);
79}
80
1da177e4
LT
81/*
82 * Convert user-nice values [ -20 ... 0 ... 19 ]
83 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
84 * and back.
85 */
86#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
87#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
88#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89
90/*
91 * 'User priority' is the nice value converted to something we
92 * can work with better when scaling various scheduler parameters,
93 * it's a [ 0 ... 39 ] range.
94 */
95#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
96#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
97#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98
99/*
100 * Some helpers for converting nanosecond timing to jiffy resolution
101 */
a4ec24b4 102#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
103#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
29f59db3
SV
157#ifdef CONFIG_FAIR_GROUP_SCHED
158
68318b8e
SV
159#include <linux/cgroup.h>
160
29f59db3
SV
161struct cfs_rq;
162
163/* task group related information */
4cf86d77 164struct task_group {
68318b8e
SV
165#ifdef CONFIG_FAIR_CGROUP_SCHED
166 struct cgroup_subsys_state css;
167#endif
29f59db3
SV
168 /* schedulable entities of this group on each cpu */
169 struct sched_entity **se;
170 /* runqueue "owned" by this group on each cpu */
171 struct cfs_rq **cfs_rq;
172 unsigned long shares;
5cb350ba
DG
173 /* spinlock to serialize modification to shares */
174 spinlock_t lock;
ae8393e5 175 struct rcu_head rcu;
29f59db3
SV
176};
177
178/* Default task group's sched entity on each cpu */
179static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
180/* Default task group's cfs_rq on each cpu */
181static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
182
9b5b7751
SV
183static struct sched_entity *init_sched_entity_p[NR_CPUS];
184static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
185
186/* Default task group.
3a252015 187 * Every task in system belong to this group at bootup.
29f59db3 188 */
4cf86d77 189struct task_group init_task_group = {
3a252015
IM
190 .se = init_sched_entity_p,
191 .cfs_rq = init_cfs_rq_p,
192};
9b5b7751 193
24e377a8 194#ifdef CONFIG_FAIR_USER_SCHED
3a252015 195# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 196#else
3a252015 197# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
198#endif
199
4cf86d77 200static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
201
202/* return group to which a task belongs */
4cf86d77 203static inline struct task_group *task_group(struct task_struct *p)
29f59db3 204{
4cf86d77 205 struct task_group *tg;
9b5b7751 206
24e377a8
SV
207#ifdef CONFIG_FAIR_USER_SCHED
208 tg = p->user->tg;
68318b8e
SV
209#elif defined(CONFIG_FAIR_CGROUP_SCHED)
210 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
211 struct task_group, css);
24e377a8 212#else
4cf86d77 213 tg = &init_task_group;
24e377a8 214#endif
9b5b7751
SV
215
216 return tg;
29f59db3
SV
217}
218
219/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
220static inline void set_task_cfs_rq(struct task_struct *p)
221{
4cf86d77
IM
222 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
223 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
224}
225
226#else
227
228static inline void set_task_cfs_rq(struct task_struct *p) { }
229
230#endif /* CONFIG_FAIR_GROUP_SCHED */
231
6aa645ea
IM
232/* CFS-related fields in a runqueue */
233struct cfs_rq {
234 struct load_weight load;
235 unsigned long nr_running;
236
6aa645ea 237 u64 exec_clock;
e9acbff6 238 u64 min_vruntime;
6aa645ea
IM
239
240 struct rb_root tasks_timeline;
241 struct rb_node *rb_leftmost;
242 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
243 /* 'curr' points to currently running entity on this cfs_rq.
244 * It is set to NULL otherwise (i.e when none are currently running).
245 */
246 struct sched_entity *curr;
ddc97297
PZ
247
248 unsigned long nr_spread_over;
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
251 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
252
253 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
254 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
255 * (like users, containers etc.)
256 *
257 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
258 * list is used during load balance.
259 */
260 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 261 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
262#endif
263};
1da177e4 264
6aa645ea
IM
265/* Real-Time classes' related field in a runqueue: */
266struct rt_rq {
267 struct rt_prio_array active;
268 int rt_load_balance_idx;
269 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
270};
271
1da177e4
LT
272/*
273 * This is the main, per-CPU runqueue data structure.
274 *
275 * Locking rule: those places that want to lock multiple runqueues
276 * (such as the load balancing or the thread migration code), lock
277 * acquire operations must be ordered by ascending &runqueue.
278 */
70b97a7f 279struct rq {
d8016491
IM
280 /* runqueue lock: */
281 spinlock_t lock;
1da177e4
LT
282
283 /*
284 * nr_running and cpu_load should be in the same cacheline because
285 * remote CPUs use both these fields when doing load calculation.
286 */
287 unsigned long nr_running;
6aa645ea
IM
288 #define CPU_LOAD_IDX_MAX 5
289 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 290 unsigned char idle_at_tick;
46cb4b7c
SS
291#ifdef CONFIG_NO_HZ
292 unsigned char in_nohz_recently;
293#endif
d8016491
IM
294 /* capture load from *all* tasks on this cpu: */
295 struct load_weight load;
6aa645ea
IM
296 unsigned long nr_load_updates;
297 u64 nr_switches;
298
299 struct cfs_rq cfs;
300#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
301 /* list of leaf cfs_rq on this cpu: */
302 struct list_head leaf_cfs_rq_list;
1da177e4 303#endif
6aa645ea 304 struct rt_rq rt;
1da177e4
LT
305
306 /*
307 * This is part of a global counter where only the total sum
308 * over all CPUs matters. A task can increase this counter on
309 * one CPU and if it got migrated afterwards it may decrease
310 * it on another CPU. Always updated under the runqueue lock:
311 */
312 unsigned long nr_uninterruptible;
313
36c8b586 314 struct task_struct *curr, *idle;
c9819f45 315 unsigned long next_balance;
1da177e4 316 struct mm_struct *prev_mm;
6aa645ea 317
6aa645ea
IM
318 u64 clock, prev_clock_raw;
319 s64 clock_max_delta;
320
321 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
322 u64 idle_clock;
323 unsigned int clock_deep_idle_events;
529c7726 324 u64 tick_timestamp;
6aa645ea 325
1da177e4
LT
326 atomic_t nr_iowait;
327
328#ifdef CONFIG_SMP
329 struct sched_domain *sd;
330
331 /* For active balancing */
332 int active_balance;
333 int push_cpu;
d8016491
IM
334 /* cpu of this runqueue: */
335 int cpu;
1da177e4 336
36c8b586 337 struct task_struct *migration_thread;
1da177e4
LT
338 struct list_head migration_queue;
339#endif
340
341#ifdef CONFIG_SCHEDSTATS
342 /* latency stats */
343 struct sched_info rq_sched_info;
344
345 /* sys_sched_yield() stats */
480b9434
KC
346 unsigned int yld_exp_empty;
347 unsigned int yld_act_empty;
348 unsigned int yld_both_empty;
349 unsigned int yld_count;
1da177e4
LT
350
351 /* schedule() stats */
480b9434
KC
352 unsigned int sched_switch;
353 unsigned int sched_count;
354 unsigned int sched_goidle;
1da177e4
LT
355
356 /* try_to_wake_up() stats */
480b9434
KC
357 unsigned int ttwu_count;
358 unsigned int ttwu_local;
b8efb561
IM
359
360 /* BKL stats */
480b9434 361 unsigned int bkl_count;
1da177e4 362#endif
fcb99371 363 struct lock_class_key rq_lock_key;
1da177e4
LT
364};
365
f34e3b61 366static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 367static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 368
dd41f596
IM
369static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
370{
371 rq->curr->sched_class->check_preempt_curr(rq, p);
372}
373
0a2966b4
CL
374static inline int cpu_of(struct rq *rq)
375{
376#ifdef CONFIG_SMP
377 return rq->cpu;
378#else
379 return 0;
380#endif
381}
382
20d315d4 383/*
b04a0f4c
IM
384 * Update the per-runqueue clock, as finegrained as the platform can give
385 * us, but without assuming monotonicity, etc.:
20d315d4 386 */
b04a0f4c 387static void __update_rq_clock(struct rq *rq)
20d315d4
IM
388{
389 u64 prev_raw = rq->prev_clock_raw;
390 u64 now = sched_clock();
391 s64 delta = now - prev_raw;
392 u64 clock = rq->clock;
393
b04a0f4c
IM
394#ifdef CONFIG_SCHED_DEBUG
395 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
396#endif
20d315d4
IM
397 /*
398 * Protect against sched_clock() occasionally going backwards:
399 */
400 if (unlikely(delta < 0)) {
401 clock++;
402 rq->clock_warps++;
403 } else {
404 /*
405 * Catch too large forward jumps too:
406 */
529c7726
IM
407 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
408 if (clock < rq->tick_timestamp + TICK_NSEC)
409 clock = rq->tick_timestamp + TICK_NSEC;
410 else
411 clock++;
20d315d4
IM
412 rq->clock_overflows++;
413 } else {
414 if (unlikely(delta > rq->clock_max_delta))
415 rq->clock_max_delta = delta;
416 clock += delta;
417 }
418 }
419
420 rq->prev_clock_raw = now;
421 rq->clock = clock;
b04a0f4c 422}
20d315d4 423
b04a0f4c
IM
424static void update_rq_clock(struct rq *rq)
425{
426 if (likely(smp_processor_id() == cpu_of(rq)))
427 __update_rq_clock(rq);
20d315d4
IM
428}
429
674311d5
NP
430/*
431 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 432 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
433 *
434 * The domain tree of any CPU may only be accessed from within
435 * preempt-disabled sections.
436 */
48f24c4d
IM
437#define for_each_domain(cpu, __sd) \
438 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
439
440#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
441#define this_rq() (&__get_cpu_var(runqueues))
442#define task_rq(p) cpu_rq(task_cpu(p))
443#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
444
bf5c91ba
IM
445/*
446 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 */
448#ifdef CONFIG_SCHED_DEBUG
449# define const_debug __read_mostly
450#else
451# define const_debug static const
452#endif
453
454/*
455 * Debugging: various feature bits
456 */
457enum {
bbdba7c0
IM
458 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
459 SCHED_FEAT_START_DEBIT = 2,
06877c33 460 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 461 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 462 SCHED_FEAT_WAKEUP_PREEMPT = 16,
95938a35 463 SCHED_FEAT_PREEMPT_RESTRICT = 32,
bf5c91ba
IM
464};
465
466const_debug unsigned int sysctl_sched_features =
8401f775
IM
467 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
468 SCHED_FEAT_START_DEBIT * 1 |
469 SCHED_FEAT_TREE_AVG * 0 |
470 SCHED_FEAT_APPROX_AVG * 0 |
471 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
472 SCHED_FEAT_PREEMPT_RESTRICT * 1;
bf5c91ba
IM
473
474#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
475
e436d800
IM
476/*
477 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
478 * clock constructed from sched_clock():
479 */
480unsigned long long cpu_clock(int cpu)
481{
e436d800
IM
482 unsigned long long now;
483 unsigned long flags;
b04a0f4c 484 struct rq *rq;
e436d800 485
2cd4d0ea 486 local_irq_save(flags);
b04a0f4c
IM
487 rq = cpu_rq(cpu);
488 update_rq_clock(rq);
489 now = rq->clock;
2cd4d0ea 490 local_irq_restore(flags);
e436d800
IM
491
492 return now;
493}
a58f6f25 494EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 495
1da177e4 496#ifndef prepare_arch_switch
4866cde0
NP
497# define prepare_arch_switch(next) do { } while (0)
498#endif
499#ifndef finish_arch_switch
500# define finish_arch_switch(prev) do { } while (0)
501#endif
502
503#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 504static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
505{
506 return rq->curr == p;
507}
508
70b97a7f 509static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
510{
511}
512
70b97a7f 513static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 514{
da04c035
IM
515#ifdef CONFIG_DEBUG_SPINLOCK
516 /* this is a valid case when another task releases the spinlock */
517 rq->lock.owner = current;
518#endif
8a25d5de
IM
519 /*
520 * If we are tracking spinlock dependencies then we have to
521 * fix up the runqueue lock - which gets 'carried over' from
522 * prev into current:
523 */
524 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
525
4866cde0
NP
526 spin_unlock_irq(&rq->lock);
527}
528
529#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 530static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
531{
532#ifdef CONFIG_SMP
533 return p->oncpu;
534#else
535 return rq->curr == p;
536#endif
537}
538
70b97a7f 539static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
540{
541#ifdef CONFIG_SMP
542 /*
543 * We can optimise this out completely for !SMP, because the
544 * SMP rebalancing from interrupt is the only thing that cares
545 * here.
546 */
547 next->oncpu = 1;
548#endif
549#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
550 spin_unlock_irq(&rq->lock);
551#else
552 spin_unlock(&rq->lock);
553#endif
554}
555
70b97a7f 556static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
557{
558#ifdef CONFIG_SMP
559 /*
560 * After ->oncpu is cleared, the task can be moved to a different CPU.
561 * We must ensure this doesn't happen until the switch is completely
562 * finished.
563 */
564 smp_wmb();
565 prev->oncpu = 0;
566#endif
567#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
568 local_irq_enable();
1da177e4 569#endif
4866cde0
NP
570}
571#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 572
b29739f9
IM
573/*
574 * __task_rq_lock - lock the runqueue a given task resides on.
575 * Must be called interrupts disabled.
576 */
70b97a7f 577static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
578 __acquires(rq->lock)
579{
3a5c359a
AK
580 for (;;) {
581 struct rq *rq = task_rq(p);
582 spin_lock(&rq->lock);
583 if (likely(rq == task_rq(p)))
584 return rq;
b29739f9 585 spin_unlock(&rq->lock);
b29739f9 586 }
b29739f9
IM
587}
588
1da177e4
LT
589/*
590 * task_rq_lock - lock the runqueue a given task resides on and disable
591 * interrupts. Note the ordering: we can safely lookup the task_rq without
592 * explicitly disabling preemption.
593 */
70b97a7f 594static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
595 __acquires(rq->lock)
596{
70b97a7f 597 struct rq *rq;
1da177e4 598
3a5c359a
AK
599 for (;;) {
600 local_irq_save(*flags);
601 rq = task_rq(p);
602 spin_lock(&rq->lock);
603 if (likely(rq == task_rq(p)))
604 return rq;
1da177e4 605 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 606 }
1da177e4
LT
607}
608
a9957449 609static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
610 __releases(rq->lock)
611{
612 spin_unlock(&rq->lock);
613}
614
70b97a7f 615static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
616 __releases(rq->lock)
617{
618 spin_unlock_irqrestore(&rq->lock, *flags);
619}
620
1da177e4 621/*
cc2a73b5 622 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 623 */
a9957449 624static struct rq *this_rq_lock(void)
1da177e4
LT
625 __acquires(rq->lock)
626{
70b97a7f 627 struct rq *rq;
1da177e4
LT
628
629 local_irq_disable();
630 rq = this_rq();
631 spin_lock(&rq->lock);
632
633 return rq;
634}
635
1b9f19c2 636/*
2aa44d05 637 * We are going deep-idle (irqs are disabled):
1b9f19c2 638 */
2aa44d05 639void sched_clock_idle_sleep_event(void)
1b9f19c2 640{
2aa44d05
IM
641 struct rq *rq = cpu_rq(smp_processor_id());
642
643 spin_lock(&rq->lock);
644 __update_rq_clock(rq);
645 spin_unlock(&rq->lock);
646 rq->clock_deep_idle_events++;
647}
648EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
649
650/*
651 * We just idled delta nanoseconds (called with irqs disabled):
652 */
653void sched_clock_idle_wakeup_event(u64 delta_ns)
654{
655 struct rq *rq = cpu_rq(smp_processor_id());
656 u64 now = sched_clock();
1b9f19c2 657
2aa44d05
IM
658 rq->idle_clock += delta_ns;
659 /*
660 * Override the previous timestamp and ignore all
661 * sched_clock() deltas that occured while we idled,
662 * and use the PM-provided delta_ns to advance the
663 * rq clock:
664 */
665 spin_lock(&rq->lock);
666 rq->prev_clock_raw = now;
667 rq->clock += delta_ns;
668 spin_unlock(&rq->lock);
1b9f19c2 669}
2aa44d05 670EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 671
c24d20db
IM
672/*
673 * resched_task - mark a task 'to be rescheduled now'.
674 *
675 * On UP this means the setting of the need_resched flag, on SMP it
676 * might also involve a cross-CPU call to trigger the scheduler on
677 * the target CPU.
678 */
679#ifdef CONFIG_SMP
680
681#ifndef tsk_is_polling
682#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
683#endif
684
685static void resched_task(struct task_struct *p)
686{
687 int cpu;
688
689 assert_spin_locked(&task_rq(p)->lock);
690
691 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
692 return;
693
694 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
695
696 cpu = task_cpu(p);
697 if (cpu == smp_processor_id())
698 return;
699
700 /* NEED_RESCHED must be visible before we test polling */
701 smp_mb();
702 if (!tsk_is_polling(p))
703 smp_send_reschedule(cpu);
704}
705
706static void resched_cpu(int cpu)
707{
708 struct rq *rq = cpu_rq(cpu);
709 unsigned long flags;
710
711 if (!spin_trylock_irqsave(&rq->lock, flags))
712 return;
713 resched_task(cpu_curr(cpu));
714 spin_unlock_irqrestore(&rq->lock, flags);
715}
716#else
717static inline void resched_task(struct task_struct *p)
718{
719 assert_spin_locked(&task_rq(p)->lock);
720 set_tsk_need_resched(p);
721}
722#endif
723
45bf76df
IM
724#if BITS_PER_LONG == 32
725# define WMULT_CONST (~0UL)
726#else
727# define WMULT_CONST (1UL << 32)
728#endif
729
730#define WMULT_SHIFT 32
731
194081eb
IM
732/*
733 * Shift right and round:
734 */
cf2ab469 735#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 736
cb1c4fc9 737static unsigned long
45bf76df
IM
738calc_delta_mine(unsigned long delta_exec, unsigned long weight,
739 struct load_weight *lw)
740{
741 u64 tmp;
742
743 if (unlikely(!lw->inv_weight))
194081eb 744 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
745
746 tmp = (u64)delta_exec * weight;
747 /*
748 * Check whether we'd overflow the 64-bit multiplication:
749 */
194081eb 750 if (unlikely(tmp > WMULT_CONST))
cf2ab469 751 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
752 WMULT_SHIFT/2);
753 else
cf2ab469 754 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 755
ecf691da 756 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
757}
758
759static inline unsigned long
760calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
761{
762 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
763}
764
1091985b 765static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
766{
767 lw->weight += inc;
45bf76df
IM
768}
769
1091985b 770static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
771{
772 lw->weight -= dec;
45bf76df
IM
773}
774
2dd73a4f
PW
775/*
776 * To aid in avoiding the subversion of "niceness" due to uneven distribution
777 * of tasks with abnormal "nice" values across CPUs the contribution that
778 * each task makes to its run queue's load is weighted according to its
779 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
780 * scaled version of the new time slice allocation that they receive on time
781 * slice expiry etc.
782 */
783
dd41f596
IM
784#define WEIGHT_IDLEPRIO 2
785#define WMULT_IDLEPRIO (1 << 31)
786
787/*
788 * Nice levels are multiplicative, with a gentle 10% change for every
789 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
790 * nice 1, it will get ~10% less CPU time than another CPU-bound task
791 * that remained on nice 0.
792 *
793 * The "10% effect" is relative and cumulative: from _any_ nice level,
794 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
795 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
796 * If a task goes up by ~10% and another task goes down by ~10% then
797 * the relative distance between them is ~25%.)
dd41f596
IM
798 */
799static const int prio_to_weight[40] = {
254753dc
IM
800 /* -20 */ 88761, 71755, 56483, 46273, 36291,
801 /* -15 */ 29154, 23254, 18705, 14949, 11916,
802 /* -10 */ 9548, 7620, 6100, 4904, 3906,
803 /* -5 */ 3121, 2501, 1991, 1586, 1277,
804 /* 0 */ 1024, 820, 655, 526, 423,
805 /* 5 */ 335, 272, 215, 172, 137,
806 /* 10 */ 110, 87, 70, 56, 45,
807 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
808};
809
5714d2de
IM
810/*
811 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
812 *
813 * In cases where the weight does not change often, we can use the
814 * precalculated inverse to speed up arithmetics by turning divisions
815 * into multiplications:
816 */
dd41f596 817static const u32 prio_to_wmult[40] = {
254753dc
IM
818 /* -20 */ 48388, 59856, 76040, 92818, 118348,
819 /* -15 */ 147320, 184698, 229616, 287308, 360437,
820 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
821 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
822 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
823 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
824 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
825 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 826};
2dd73a4f 827
dd41f596
IM
828static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
829
830/*
831 * runqueue iterator, to support SMP load-balancing between different
832 * scheduling classes, without having to expose their internal data
833 * structures to the load-balancing proper:
834 */
835struct rq_iterator {
836 void *arg;
837 struct task_struct *(*start)(void *);
838 struct task_struct *(*next)(void *);
839};
840
e1d1484f
PW
841#ifdef CONFIG_SMP
842static unsigned long
843balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
844 unsigned long max_load_move, struct sched_domain *sd,
845 enum cpu_idle_type idle, int *all_pinned,
846 int *this_best_prio, struct rq_iterator *iterator);
847
848static int
849iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
850 struct sched_domain *sd, enum cpu_idle_type idle,
851 struct rq_iterator *iterator);
e1d1484f 852#endif
dd41f596
IM
853
854#include "sched_stats.h"
dd41f596 855#include "sched_idletask.c"
5522d5d5
IM
856#include "sched_fair.c"
857#include "sched_rt.c"
dd41f596
IM
858#ifdef CONFIG_SCHED_DEBUG
859# include "sched_debug.c"
860#endif
861
862#define sched_class_highest (&rt_sched_class)
863
9c217245
IM
864/*
865 * Update delta_exec, delta_fair fields for rq.
866 *
867 * delta_fair clock advances at a rate inversely proportional to
495eca49 868 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
869 * delta_exec advances at the same rate as wall-clock (provided
870 * cpu is not idle).
871 *
872 * delta_exec / delta_fair is a measure of the (smoothened) load on this
873 * runqueue over any given interval. This (smoothened) load is used
874 * during load balance.
875 *
495eca49 876 * This function is called /before/ updating rq->load
9c217245
IM
877 * and when switching tasks.
878 */
29b4b623 879static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 880{
495eca49 881 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
882}
883
79b5dddf 884static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 885{
495eca49 886 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
887}
888
e5fa2237 889static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
890{
891 rq->nr_running++;
29b4b623 892 inc_load(rq, p);
9c217245
IM
893}
894
db53181e 895static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
896{
897 rq->nr_running--;
79b5dddf 898 dec_load(rq, p);
9c217245
IM
899}
900
45bf76df
IM
901static void set_load_weight(struct task_struct *p)
902{
903 if (task_has_rt_policy(p)) {
dd41f596
IM
904 p->se.load.weight = prio_to_weight[0] * 2;
905 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
906 return;
907 }
45bf76df 908
dd41f596
IM
909 /*
910 * SCHED_IDLE tasks get minimal weight:
911 */
912 if (p->policy == SCHED_IDLE) {
913 p->se.load.weight = WEIGHT_IDLEPRIO;
914 p->se.load.inv_weight = WMULT_IDLEPRIO;
915 return;
916 }
71f8bd46 917
dd41f596
IM
918 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
919 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
920}
921
8159f87e 922static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 923{
dd41f596 924 sched_info_queued(p);
fd390f6a 925 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 926 p->se.on_rq = 1;
71f8bd46
IM
927}
928
69be72c1 929static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 930{
f02231e5 931 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 932 p->se.on_rq = 0;
71f8bd46
IM
933}
934
14531189 935/*
dd41f596 936 * __normal_prio - return the priority that is based on the static prio
14531189 937 */
14531189
IM
938static inline int __normal_prio(struct task_struct *p)
939{
dd41f596 940 return p->static_prio;
14531189
IM
941}
942
b29739f9
IM
943/*
944 * Calculate the expected normal priority: i.e. priority
945 * without taking RT-inheritance into account. Might be
946 * boosted by interactivity modifiers. Changes upon fork,
947 * setprio syscalls, and whenever the interactivity
948 * estimator recalculates.
949 */
36c8b586 950static inline int normal_prio(struct task_struct *p)
b29739f9
IM
951{
952 int prio;
953
e05606d3 954 if (task_has_rt_policy(p))
b29739f9
IM
955 prio = MAX_RT_PRIO-1 - p->rt_priority;
956 else
957 prio = __normal_prio(p);
958 return prio;
959}
960
961/*
962 * Calculate the current priority, i.e. the priority
963 * taken into account by the scheduler. This value might
964 * be boosted by RT tasks, or might be boosted by
965 * interactivity modifiers. Will be RT if the task got
966 * RT-boosted. If not then it returns p->normal_prio.
967 */
36c8b586 968static int effective_prio(struct task_struct *p)
b29739f9
IM
969{
970 p->normal_prio = normal_prio(p);
971 /*
972 * If we are RT tasks or we were boosted to RT priority,
973 * keep the priority unchanged. Otherwise, update priority
974 * to the normal priority:
975 */
976 if (!rt_prio(p->prio))
977 return p->normal_prio;
978 return p->prio;
979}
980
1da177e4 981/*
dd41f596 982 * activate_task - move a task to the runqueue.
1da177e4 983 */
dd41f596 984static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 985{
dd41f596
IM
986 if (p->state == TASK_UNINTERRUPTIBLE)
987 rq->nr_uninterruptible--;
1da177e4 988
8159f87e 989 enqueue_task(rq, p, wakeup);
e5fa2237 990 inc_nr_running(p, rq);
1da177e4
LT
991}
992
1da177e4
LT
993/*
994 * deactivate_task - remove a task from the runqueue.
995 */
2e1cb74a 996static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 997{
dd41f596
IM
998 if (p->state == TASK_UNINTERRUPTIBLE)
999 rq->nr_uninterruptible++;
1000
69be72c1 1001 dequeue_task(rq, p, sleep);
db53181e 1002 dec_nr_running(p, rq);
1da177e4
LT
1003}
1004
1da177e4
LT
1005/**
1006 * task_curr - is this task currently executing on a CPU?
1007 * @p: the task in question.
1008 */
36c8b586 1009inline int task_curr(const struct task_struct *p)
1da177e4
LT
1010{
1011 return cpu_curr(task_cpu(p)) == p;
1012}
1013
2dd73a4f
PW
1014/* Used instead of source_load when we know the type == 0 */
1015unsigned long weighted_cpuload(const int cpu)
1016{
495eca49 1017 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1018}
1019
1020static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1021{
1022#ifdef CONFIG_SMP
1023 task_thread_info(p)->cpu = cpu;
dd41f596 1024#endif
29f59db3 1025 set_task_cfs_rq(p);
2dd73a4f
PW
1026}
1027
1da177e4 1028#ifdef CONFIG_SMP
c65cc870 1029
cc367732
IM
1030/*
1031 * Is this task likely cache-hot:
1032 */
1033static inline int
1034task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1035{
1036 s64 delta;
1037
1038 if (p->sched_class != &fair_sched_class)
1039 return 0;
1040
6bc1665b
IM
1041 if (sysctl_sched_migration_cost == -1)
1042 return 1;
1043 if (sysctl_sched_migration_cost == 0)
1044 return 0;
1045
cc367732
IM
1046 delta = now - p->se.exec_start;
1047
1048 return delta < (s64)sysctl_sched_migration_cost;
1049}
1050
1051
dd41f596 1052void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1053{
dd41f596
IM
1054 int old_cpu = task_cpu(p);
1055 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1056 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1057 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1058 u64 clock_offset;
dd41f596
IM
1059
1060 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1061
1062#ifdef CONFIG_SCHEDSTATS
1063 if (p->se.wait_start)
1064 p->se.wait_start -= clock_offset;
dd41f596
IM
1065 if (p->se.sleep_start)
1066 p->se.sleep_start -= clock_offset;
1067 if (p->se.block_start)
1068 p->se.block_start -= clock_offset;
cc367732
IM
1069 if (old_cpu != new_cpu) {
1070 schedstat_inc(p, se.nr_migrations);
1071 if (task_hot(p, old_rq->clock, NULL))
1072 schedstat_inc(p, se.nr_forced2_migrations);
1073 }
6cfb0d5d 1074#endif
2830cf8c
SV
1075 p->se.vruntime -= old_cfsrq->min_vruntime -
1076 new_cfsrq->min_vruntime;
dd41f596
IM
1077
1078 __set_task_cpu(p, new_cpu);
c65cc870
IM
1079}
1080
70b97a7f 1081struct migration_req {
1da177e4 1082 struct list_head list;
1da177e4 1083
36c8b586 1084 struct task_struct *task;
1da177e4
LT
1085 int dest_cpu;
1086
1da177e4 1087 struct completion done;
70b97a7f 1088};
1da177e4
LT
1089
1090/*
1091 * The task's runqueue lock must be held.
1092 * Returns true if you have to wait for migration thread.
1093 */
36c8b586 1094static int
70b97a7f 1095migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1096{
70b97a7f 1097 struct rq *rq = task_rq(p);
1da177e4
LT
1098
1099 /*
1100 * If the task is not on a runqueue (and not running), then
1101 * it is sufficient to simply update the task's cpu field.
1102 */
dd41f596 1103 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1104 set_task_cpu(p, dest_cpu);
1105 return 0;
1106 }
1107
1108 init_completion(&req->done);
1da177e4
LT
1109 req->task = p;
1110 req->dest_cpu = dest_cpu;
1111 list_add(&req->list, &rq->migration_queue);
48f24c4d 1112
1da177e4
LT
1113 return 1;
1114}
1115
1116/*
1117 * wait_task_inactive - wait for a thread to unschedule.
1118 *
1119 * The caller must ensure that the task *will* unschedule sometime soon,
1120 * else this function might spin for a *long* time. This function can't
1121 * be called with interrupts off, or it may introduce deadlock with
1122 * smp_call_function() if an IPI is sent by the same process we are
1123 * waiting to become inactive.
1124 */
36c8b586 1125void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1126{
1127 unsigned long flags;
dd41f596 1128 int running, on_rq;
70b97a7f 1129 struct rq *rq;
1da177e4 1130
3a5c359a
AK
1131 for (;;) {
1132 /*
1133 * We do the initial early heuristics without holding
1134 * any task-queue locks at all. We'll only try to get
1135 * the runqueue lock when things look like they will
1136 * work out!
1137 */
1138 rq = task_rq(p);
fa490cfd 1139
3a5c359a
AK
1140 /*
1141 * If the task is actively running on another CPU
1142 * still, just relax and busy-wait without holding
1143 * any locks.
1144 *
1145 * NOTE! Since we don't hold any locks, it's not
1146 * even sure that "rq" stays as the right runqueue!
1147 * But we don't care, since "task_running()" will
1148 * return false if the runqueue has changed and p
1149 * is actually now running somewhere else!
1150 */
1151 while (task_running(rq, p))
1152 cpu_relax();
fa490cfd 1153
3a5c359a
AK
1154 /*
1155 * Ok, time to look more closely! We need the rq
1156 * lock now, to be *sure*. If we're wrong, we'll
1157 * just go back and repeat.
1158 */
1159 rq = task_rq_lock(p, &flags);
1160 running = task_running(rq, p);
1161 on_rq = p->se.on_rq;
1162 task_rq_unlock(rq, &flags);
fa490cfd 1163
3a5c359a
AK
1164 /*
1165 * Was it really running after all now that we
1166 * checked with the proper locks actually held?
1167 *
1168 * Oops. Go back and try again..
1169 */
1170 if (unlikely(running)) {
1171 cpu_relax();
1172 continue;
1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * It's not enough that it's not actively running,
1177 * it must be off the runqueue _entirely_, and not
1178 * preempted!
1179 *
1180 * So if it wa still runnable (but just not actively
1181 * running right now), it's preempted, and we should
1182 * yield - it could be a while.
1183 */
1184 if (unlikely(on_rq)) {
1185 schedule_timeout_uninterruptible(1);
1186 continue;
1187 }
fa490cfd 1188
3a5c359a
AK
1189 /*
1190 * Ahh, all good. It wasn't running, and it wasn't
1191 * runnable, which means that it will never become
1192 * running in the future either. We're all done!
1193 */
1194 break;
1195 }
1da177e4
LT
1196}
1197
1198/***
1199 * kick_process - kick a running thread to enter/exit the kernel
1200 * @p: the to-be-kicked thread
1201 *
1202 * Cause a process which is running on another CPU to enter
1203 * kernel-mode, without any delay. (to get signals handled.)
1204 *
1205 * NOTE: this function doesnt have to take the runqueue lock,
1206 * because all it wants to ensure is that the remote task enters
1207 * the kernel. If the IPI races and the task has been migrated
1208 * to another CPU then no harm is done and the purpose has been
1209 * achieved as well.
1210 */
36c8b586 1211void kick_process(struct task_struct *p)
1da177e4
LT
1212{
1213 int cpu;
1214
1215 preempt_disable();
1216 cpu = task_cpu(p);
1217 if ((cpu != smp_processor_id()) && task_curr(p))
1218 smp_send_reschedule(cpu);
1219 preempt_enable();
1220}
1221
1222/*
2dd73a4f
PW
1223 * Return a low guess at the load of a migration-source cpu weighted
1224 * according to the scheduling class and "nice" value.
1da177e4
LT
1225 *
1226 * We want to under-estimate the load of migration sources, to
1227 * balance conservatively.
1228 */
a9957449 1229static unsigned long source_load(int cpu, int type)
1da177e4 1230{
70b97a7f 1231 struct rq *rq = cpu_rq(cpu);
dd41f596 1232 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1233
3b0bd9bc 1234 if (type == 0)
dd41f596 1235 return total;
b910472d 1236
dd41f596 1237 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1238}
1239
1240/*
2dd73a4f
PW
1241 * Return a high guess at the load of a migration-target cpu weighted
1242 * according to the scheduling class and "nice" value.
1da177e4 1243 */
a9957449 1244static unsigned long target_load(int cpu, int type)
1da177e4 1245{
70b97a7f 1246 struct rq *rq = cpu_rq(cpu);
dd41f596 1247 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1248
7897986b 1249 if (type == 0)
dd41f596 1250 return total;
3b0bd9bc 1251
dd41f596 1252 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1253}
1254
1255/*
1256 * Return the average load per task on the cpu's run queue
1257 */
1258static inline unsigned long cpu_avg_load_per_task(int cpu)
1259{
70b97a7f 1260 struct rq *rq = cpu_rq(cpu);
dd41f596 1261 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1262 unsigned long n = rq->nr_running;
1263
dd41f596 1264 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1265}
1266
147cbb4b
NP
1267/*
1268 * find_idlest_group finds and returns the least busy CPU group within the
1269 * domain.
1270 */
1271static struct sched_group *
1272find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1273{
1274 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1275 unsigned long min_load = ULONG_MAX, this_load = 0;
1276 int load_idx = sd->forkexec_idx;
1277 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1278
1279 do {
1280 unsigned long load, avg_load;
1281 int local_group;
1282 int i;
1283
da5a5522
BD
1284 /* Skip over this group if it has no CPUs allowed */
1285 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1286 continue;
da5a5522 1287
147cbb4b 1288 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1289
1290 /* Tally up the load of all CPUs in the group */
1291 avg_load = 0;
1292
1293 for_each_cpu_mask(i, group->cpumask) {
1294 /* Bias balancing toward cpus of our domain */
1295 if (local_group)
1296 load = source_load(i, load_idx);
1297 else
1298 load = target_load(i, load_idx);
1299
1300 avg_load += load;
1301 }
1302
1303 /* Adjust by relative CPU power of the group */
5517d86b
ED
1304 avg_load = sg_div_cpu_power(group,
1305 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1306
1307 if (local_group) {
1308 this_load = avg_load;
1309 this = group;
1310 } else if (avg_load < min_load) {
1311 min_load = avg_load;
1312 idlest = group;
1313 }
3a5c359a 1314 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1315
1316 if (!idlest || 100*this_load < imbalance*min_load)
1317 return NULL;
1318 return idlest;
1319}
1320
1321/*
0feaece9 1322 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1323 */
95cdf3b7
IM
1324static int
1325find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1326{
da5a5522 1327 cpumask_t tmp;
147cbb4b
NP
1328 unsigned long load, min_load = ULONG_MAX;
1329 int idlest = -1;
1330 int i;
1331
da5a5522
BD
1332 /* Traverse only the allowed CPUs */
1333 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1334
1335 for_each_cpu_mask(i, tmp) {
2dd73a4f 1336 load = weighted_cpuload(i);
147cbb4b
NP
1337
1338 if (load < min_load || (load == min_load && i == this_cpu)) {
1339 min_load = load;
1340 idlest = i;
1341 }
1342 }
1343
1344 return idlest;
1345}
1346
476d139c
NP
1347/*
1348 * sched_balance_self: balance the current task (running on cpu) in domains
1349 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1350 * SD_BALANCE_EXEC.
1351 *
1352 * Balance, ie. select the least loaded group.
1353 *
1354 * Returns the target CPU number, or the same CPU if no balancing is needed.
1355 *
1356 * preempt must be disabled.
1357 */
1358static int sched_balance_self(int cpu, int flag)
1359{
1360 struct task_struct *t = current;
1361 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1362
c96d145e 1363 for_each_domain(cpu, tmp) {
9761eea8
IM
1364 /*
1365 * If power savings logic is enabled for a domain, stop there.
1366 */
5c45bf27
SS
1367 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1368 break;
476d139c
NP
1369 if (tmp->flags & flag)
1370 sd = tmp;
c96d145e 1371 }
476d139c
NP
1372
1373 while (sd) {
1374 cpumask_t span;
1375 struct sched_group *group;
1a848870
SS
1376 int new_cpu, weight;
1377
1378 if (!(sd->flags & flag)) {
1379 sd = sd->child;
1380 continue;
1381 }
476d139c
NP
1382
1383 span = sd->span;
1384 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1385 if (!group) {
1386 sd = sd->child;
1387 continue;
1388 }
476d139c 1389
da5a5522 1390 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1391 if (new_cpu == -1 || new_cpu == cpu) {
1392 /* Now try balancing at a lower domain level of cpu */
1393 sd = sd->child;
1394 continue;
1395 }
476d139c 1396
1a848870 1397 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1398 cpu = new_cpu;
476d139c
NP
1399 sd = NULL;
1400 weight = cpus_weight(span);
1401 for_each_domain(cpu, tmp) {
1402 if (weight <= cpus_weight(tmp->span))
1403 break;
1404 if (tmp->flags & flag)
1405 sd = tmp;
1406 }
1407 /* while loop will break here if sd == NULL */
1408 }
1409
1410 return cpu;
1411}
1412
1413#endif /* CONFIG_SMP */
1da177e4
LT
1414
1415/*
1416 * wake_idle() will wake a task on an idle cpu if task->cpu is
1417 * not idle and an idle cpu is available. The span of cpus to
1418 * search starts with cpus closest then further out as needed,
1419 * so we always favor a closer, idle cpu.
1420 *
1421 * Returns the CPU we should wake onto.
1422 */
1423#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1424static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1425{
1426 cpumask_t tmp;
1427 struct sched_domain *sd;
1428 int i;
1429
4953198b
SS
1430 /*
1431 * If it is idle, then it is the best cpu to run this task.
1432 *
1433 * This cpu is also the best, if it has more than one task already.
1434 * Siblings must be also busy(in most cases) as they didn't already
1435 * pickup the extra load from this cpu and hence we need not check
1436 * sibling runqueue info. This will avoid the checks and cache miss
1437 * penalities associated with that.
1438 */
1439 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1440 return cpu;
1441
1442 for_each_domain(cpu, sd) {
1443 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1444 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1445 for_each_cpu_mask(i, tmp) {
cc367732
IM
1446 if (idle_cpu(i)) {
1447 if (i != task_cpu(p)) {
1448 schedstat_inc(p,
1449 se.nr_wakeups_idle);
1450 }
1da177e4 1451 return i;
cc367732 1452 }
1da177e4 1453 }
9761eea8 1454 } else {
e0f364f4 1455 break;
9761eea8 1456 }
1da177e4
LT
1457 }
1458 return cpu;
1459}
1460#else
36c8b586 1461static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1462{
1463 return cpu;
1464}
1465#endif
1466
1467/***
1468 * try_to_wake_up - wake up a thread
1469 * @p: the to-be-woken-up thread
1470 * @state: the mask of task states that can be woken
1471 * @sync: do a synchronous wakeup?
1472 *
1473 * Put it on the run-queue if it's not already there. The "current"
1474 * thread is always on the run-queue (except when the actual
1475 * re-schedule is in progress), and as such you're allowed to do
1476 * the simpler "current->state = TASK_RUNNING" to mark yourself
1477 * runnable without the overhead of this.
1478 *
1479 * returns failure only if the task is already active.
1480 */
36c8b586 1481static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1482{
cc367732 1483 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1484 unsigned long flags;
1485 long old_state;
70b97a7f 1486 struct rq *rq;
1da177e4 1487#ifdef CONFIG_SMP
7897986b 1488 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1489 unsigned long load, this_load;
1da177e4
LT
1490 int new_cpu;
1491#endif
1492
1493 rq = task_rq_lock(p, &flags);
1494 old_state = p->state;
1495 if (!(old_state & state))
1496 goto out;
1497
dd41f596 1498 if (p->se.on_rq)
1da177e4
LT
1499 goto out_running;
1500
1501 cpu = task_cpu(p);
cc367732 1502 orig_cpu = cpu;
1da177e4
LT
1503 this_cpu = smp_processor_id();
1504
1505#ifdef CONFIG_SMP
1506 if (unlikely(task_running(rq, p)))
1507 goto out_activate;
1508
7897986b
NP
1509 new_cpu = cpu;
1510
2d72376b 1511 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1512 if (cpu == this_cpu) {
1513 schedstat_inc(rq, ttwu_local);
7897986b
NP
1514 goto out_set_cpu;
1515 }
1516
1517 for_each_domain(this_cpu, sd) {
1518 if (cpu_isset(cpu, sd->span)) {
1519 schedstat_inc(sd, ttwu_wake_remote);
1520 this_sd = sd;
1521 break;
1da177e4
LT
1522 }
1523 }
1da177e4 1524
7897986b 1525 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1526 goto out_set_cpu;
1527
1da177e4 1528 /*
7897986b 1529 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1530 */
7897986b
NP
1531 if (this_sd) {
1532 int idx = this_sd->wake_idx;
1533 unsigned int imbalance;
1da177e4 1534
a3f21bce
NP
1535 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1536
7897986b
NP
1537 load = source_load(cpu, idx);
1538 this_load = target_load(this_cpu, idx);
1da177e4 1539
7897986b
NP
1540 new_cpu = this_cpu; /* Wake to this CPU if we can */
1541
a3f21bce
NP
1542 if (this_sd->flags & SD_WAKE_AFFINE) {
1543 unsigned long tl = this_load;
33859f7f
MOS
1544 unsigned long tl_per_task;
1545
71e20f18
IM
1546 /*
1547 * Attract cache-cold tasks on sync wakeups:
1548 */
1549 if (sync && !task_hot(p, rq->clock, this_sd))
1550 goto out_set_cpu;
1551
cc367732 1552 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1553 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1554
1da177e4 1555 /*
a3f21bce
NP
1556 * If sync wakeup then subtract the (maximum possible)
1557 * effect of the currently running task from the load
1558 * of the current CPU:
1da177e4 1559 */
a3f21bce 1560 if (sync)
dd41f596 1561 tl -= current->se.load.weight;
a3f21bce
NP
1562
1563 if ((tl <= load &&
2dd73a4f 1564 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1565 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1566 /*
1567 * This domain has SD_WAKE_AFFINE and
1568 * p is cache cold in this domain, and
1569 * there is no bad imbalance.
1570 */
1571 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1572 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1573 goto out_set_cpu;
1574 }
1575 }
1576
1577 /*
1578 * Start passive balancing when half the imbalance_pct
1579 * limit is reached.
1580 */
1581 if (this_sd->flags & SD_WAKE_BALANCE) {
1582 if (imbalance*this_load <= 100*load) {
1583 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1584 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1585 goto out_set_cpu;
1586 }
1da177e4
LT
1587 }
1588 }
1589
1590 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1591out_set_cpu:
1592 new_cpu = wake_idle(new_cpu, p);
1593 if (new_cpu != cpu) {
1594 set_task_cpu(p, new_cpu);
1595 task_rq_unlock(rq, &flags);
1596 /* might preempt at this point */
1597 rq = task_rq_lock(p, &flags);
1598 old_state = p->state;
1599 if (!(old_state & state))
1600 goto out;
dd41f596 1601 if (p->se.on_rq)
1da177e4
LT
1602 goto out_running;
1603
1604 this_cpu = smp_processor_id();
1605 cpu = task_cpu(p);
1606 }
1607
1608out_activate:
1609#endif /* CONFIG_SMP */
cc367732
IM
1610 schedstat_inc(p, se.nr_wakeups);
1611 if (sync)
1612 schedstat_inc(p, se.nr_wakeups_sync);
1613 if (orig_cpu != cpu)
1614 schedstat_inc(p, se.nr_wakeups_migrate);
1615 if (cpu == this_cpu)
1616 schedstat_inc(p, se.nr_wakeups_local);
1617 else
1618 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1619 update_rq_clock(rq);
dd41f596 1620 activate_task(rq, p, 1);
9c63d9c0 1621 check_preempt_curr(rq, p);
1da177e4
LT
1622 success = 1;
1623
1624out_running:
1625 p->state = TASK_RUNNING;
1626out:
1627 task_rq_unlock(rq, &flags);
1628
1629 return success;
1630}
1631
36c8b586 1632int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1633{
1634 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1635 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1636}
1da177e4
LT
1637EXPORT_SYMBOL(wake_up_process);
1638
36c8b586 1639int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1640{
1641 return try_to_wake_up(p, state, 0);
1642}
1643
1da177e4
LT
1644/*
1645 * Perform scheduler related setup for a newly forked process p.
1646 * p is forked by current.
dd41f596
IM
1647 *
1648 * __sched_fork() is basic setup used by init_idle() too:
1649 */
1650static void __sched_fork(struct task_struct *p)
1651{
dd41f596
IM
1652 p->se.exec_start = 0;
1653 p->se.sum_exec_runtime = 0;
f6cf891c 1654 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1655
1656#ifdef CONFIG_SCHEDSTATS
1657 p->se.wait_start = 0;
dd41f596
IM
1658 p->se.sum_sleep_runtime = 0;
1659 p->se.sleep_start = 0;
dd41f596
IM
1660 p->se.block_start = 0;
1661 p->se.sleep_max = 0;
1662 p->se.block_max = 0;
1663 p->se.exec_max = 0;
eba1ed4b 1664 p->se.slice_max = 0;
dd41f596 1665 p->se.wait_max = 0;
6cfb0d5d 1666#endif
476d139c 1667
dd41f596
IM
1668 INIT_LIST_HEAD(&p->run_list);
1669 p->se.on_rq = 0;
476d139c 1670
e107be36
AK
1671#ifdef CONFIG_PREEMPT_NOTIFIERS
1672 INIT_HLIST_HEAD(&p->preempt_notifiers);
1673#endif
1674
1da177e4
LT
1675 /*
1676 * We mark the process as running here, but have not actually
1677 * inserted it onto the runqueue yet. This guarantees that
1678 * nobody will actually run it, and a signal or other external
1679 * event cannot wake it up and insert it on the runqueue either.
1680 */
1681 p->state = TASK_RUNNING;
dd41f596
IM
1682}
1683
1684/*
1685 * fork()/clone()-time setup:
1686 */
1687void sched_fork(struct task_struct *p, int clone_flags)
1688{
1689 int cpu = get_cpu();
1690
1691 __sched_fork(p);
1692
1693#ifdef CONFIG_SMP
1694 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1695#endif
02e4bac2 1696 set_task_cpu(p, cpu);
b29739f9
IM
1697
1698 /*
1699 * Make sure we do not leak PI boosting priority to the child:
1700 */
1701 p->prio = current->normal_prio;
2ddbf952
HS
1702 if (!rt_prio(p->prio))
1703 p->sched_class = &fair_sched_class;
b29739f9 1704
52f17b6c 1705#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1706 if (likely(sched_info_on()))
52f17b6c 1707 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1708#endif
d6077cb8 1709#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1710 p->oncpu = 0;
1711#endif
1da177e4 1712#ifdef CONFIG_PREEMPT
4866cde0 1713 /* Want to start with kernel preemption disabled. */
a1261f54 1714 task_thread_info(p)->preempt_count = 1;
1da177e4 1715#endif
476d139c 1716 put_cpu();
1da177e4
LT
1717}
1718
1719/*
1720 * wake_up_new_task - wake up a newly created task for the first time.
1721 *
1722 * This function will do some initial scheduler statistics housekeeping
1723 * that must be done for every newly created context, then puts the task
1724 * on the runqueue and wakes it.
1725 */
36c8b586 1726void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1727{
1728 unsigned long flags;
dd41f596 1729 struct rq *rq;
1da177e4
LT
1730
1731 rq = task_rq_lock(p, &flags);
147cbb4b 1732 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1733 update_rq_clock(rq);
1da177e4
LT
1734
1735 p->prio = effective_prio(p);
1736
b9dca1e0 1737 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1738 activate_task(rq, p, 0);
1da177e4 1739 } else {
1da177e4 1740 /*
dd41f596
IM
1741 * Let the scheduling class do new task startup
1742 * management (if any):
1da177e4 1743 */
ee0827d8 1744 p->sched_class->task_new(rq, p);
e5fa2237 1745 inc_nr_running(p, rq);
1da177e4 1746 }
dd41f596
IM
1747 check_preempt_curr(rq, p);
1748 task_rq_unlock(rq, &flags);
1da177e4
LT
1749}
1750
e107be36
AK
1751#ifdef CONFIG_PREEMPT_NOTIFIERS
1752
1753/**
421cee29
RD
1754 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1755 * @notifier: notifier struct to register
e107be36
AK
1756 */
1757void preempt_notifier_register(struct preempt_notifier *notifier)
1758{
1759 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1760}
1761EXPORT_SYMBOL_GPL(preempt_notifier_register);
1762
1763/**
1764 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1765 * @notifier: notifier struct to unregister
e107be36
AK
1766 *
1767 * This is safe to call from within a preemption notifier.
1768 */
1769void preempt_notifier_unregister(struct preempt_notifier *notifier)
1770{
1771 hlist_del(&notifier->link);
1772}
1773EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1774
1775static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1776{
1777 struct preempt_notifier *notifier;
1778 struct hlist_node *node;
1779
1780 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1781 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1782}
1783
1784static void
1785fire_sched_out_preempt_notifiers(struct task_struct *curr,
1786 struct task_struct *next)
1787{
1788 struct preempt_notifier *notifier;
1789 struct hlist_node *node;
1790
1791 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1792 notifier->ops->sched_out(notifier, next);
1793}
1794
1795#else
1796
1797static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1798{
1799}
1800
1801static void
1802fire_sched_out_preempt_notifiers(struct task_struct *curr,
1803 struct task_struct *next)
1804{
1805}
1806
1807#endif
1808
4866cde0
NP
1809/**
1810 * prepare_task_switch - prepare to switch tasks
1811 * @rq: the runqueue preparing to switch
421cee29 1812 * @prev: the current task that is being switched out
4866cde0
NP
1813 * @next: the task we are going to switch to.
1814 *
1815 * This is called with the rq lock held and interrupts off. It must
1816 * be paired with a subsequent finish_task_switch after the context
1817 * switch.
1818 *
1819 * prepare_task_switch sets up locking and calls architecture specific
1820 * hooks.
1821 */
e107be36
AK
1822static inline void
1823prepare_task_switch(struct rq *rq, struct task_struct *prev,
1824 struct task_struct *next)
4866cde0 1825{
e107be36 1826 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1827 prepare_lock_switch(rq, next);
1828 prepare_arch_switch(next);
1829}
1830
1da177e4
LT
1831/**
1832 * finish_task_switch - clean up after a task-switch
344babaa 1833 * @rq: runqueue associated with task-switch
1da177e4
LT
1834 * @prev: the thread we just switched away from.
1835 *
4866cde0
NP
1836 * finish_task_switch must be called after the context switch, paired
1837 * with a prepare_task_switch call before the context switch.
1838 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1839 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1840 *
1841 * Note that we may have delayed dropping an mm in context_switch(). If
1842 * so, we finish that here outside of the runqueue lock. (Doing it
1843 * with the lock held can cause deadlocks; see schedule() for
1844 * details.)
1845 */
a9957449 1846static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1847 __releases(rq->lock)
1848{
1da177e4 1849 struct mm_struct *mm = rq->prev_mm;
55a101f8 1850 long prev_state;
1da177e4
LT
1851
1852 rq->prev_mm = NULL;
1853
1854 /*
1855 * A task struct has one reference for the use as "current".
c394cc9f 1856 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1857 * schedule one last time. The schedule call will never return, and
1858 * the scheduled task must drop that reference.
c394cc9f 1859 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1860 * still held, otherwise prev could be scheduled on another cpu, die
1861 * there before we look at prev->state, and then the reference would
1862 * be dropped twice.
1863 * Manfred Spraul <manfred@colorfullife.com>
1864 */
55a101f8 1865 prev_state = prev->state;
4866cde0
NP
1866 finish_arch_switch(prev);
1867 finish_lock_switch(rq, prev);
e107be36 1868 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1869 if (mm)
1870 mmdrop(mm);
c394cc9f 1871 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1872 /*
1873 * Remove function-return probe instances associated with this
1874 * task and put them back on the free list.
9761eea8 1875 */
c6fd91f0 1876 kprobe_flush_task(prev);
1da177e4 1877 put_task_struct(prev);
c6fd91f0 1878 }
1da177e4
LT
1879}
1880
1881/**
1882 * schedule_tail - first thing a freshly forked thread must call.
1883 * @prev: the thread we just switched away from.
1884 */
36c8b586 1885asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1886 __releases(rq->lock)
1887{
70b97a7f
IM
1888 struct rq *rq = this_rq();
1889
4866cde0
NP
1890 finish_task_switch(rq, prev);
1891#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1892 /* In this case, finish_task_switch does not reenable preemption */
1893 preempt_enable();
1894#endif
1da177e4 1895 if (current->set_child_tid)
b488893a 1896 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1897}
1898
1899/*
1900 * context_switch - switch to the new MM and the new
1901 * thread's register state.
1902 */
dd41f596 1903static inline void
70b97a7f 1904context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1905 struct task_struct *next)
1da177e4 1906{
dd41f596 1907 struct mm_struct *mm, *oldmm;
1da177e4 1908
e107be36 1909 prepare_task_switch(rq, prev, next);
dd41f596
IM
1910 mm = next->mm;
1911 oldmm = prev->active_mm;
9226d125
ZA
1912 /*
1913 * For paravirt, this is coupled with an exit in switch_to to
1914 * combine the page table reload and the switch backend into
1915 * one hypercall.
1916 */
1917 arch_enter_lazy_cpu_mode();
1918
dd41f596 1919 if (unlikely(!mm)) {
1da177e4
LT
1920 next->active_mm = oldmm;
1921 atomic_inc(&oldmm->mm_count);
1922 enter_lazy_tlb(oldmm, next);
1923 } else
1924 switch_mm(oldmm, mm, next);
1925
dd41f596 1926 if (unlikely(!prev->mm)) {
1da177e4 1927 prev->active_mm = NULL;
1da177e4
LT
1928 rq->prev_mm = oldmm;
1929 }
3a5f5e48
IM
1930 /*
1931 * Since the runqueue lock will be released by the next
1932 * task (which is an invalid locking op but in the case
1933 * of the scheduler it's an obvious special-case), so we
1934 * do an early lockdep release here:
1935 */
1936#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1937 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1938#endif
1da177e4
LT
1939
1940 /* Here we just switch the register state and the stack. */
1941 switch_to(prev, next, prev);
1942
dd41f596
IM
1943 barrier();
1944 /*
1945 * this_rq must be evaluated again because prev may have moved
1946 * CPUs since it called schedule(), thus the 'rq' on its stack
1947 * frame will be invalid.
1948 */
1949 finish_task_switch(this_rq(), prev);
1da177e4
LT
1950}
1951
1952/*
1953 * nr_running, nr_uninterruptible and nr_context_switches:
1954 *
1955 * externally visible scheduler statistics: current number of runnable
1956 * threads, current number of uninterruptible-sleeping threads, total
1957 * number of context switches performed since bootup.
1958 */
1959unsigned long nr_running(void)
1960{
1961 unsigned long i, sum = 0;
1962
1963 for_each_online_cpu(i)
1964 sum += cpu_rq(i)->nr_running;
1965
1966 return sum;
1967}
1968
1969unsigned long nr_uninterruptible(void)
1970{
1971 unsigned long i, sum = 0;
1972
0a945022 1973 for_each_possible_cpu(i)
1da177e4
LT
1974 sum += cpu_rq(i)->nr_uninterruptible;
1975
1976 /*
1977 * Since we read the counters lockless, it might be slightly
1978 * inaccurate. Do not allow it to go below zero though:
1979 */
1980 if (unlikely((long)sum < 0))
1981 sum = 0;
1982
1983 return sum;
1984}
1985
1986unsigned long long nr_context_switches(void)
1987{
cc94abfc
SR
1988 int i;
1989 unsigned long long sum = 0;
1da177e4 1990
0a945022 1991 for_each_possible_cpu(i)
1da177e4
LT
1992 sum += cpu_rq(i)->nr_switches;
1993
1994 return sum;
1995}
1996
1997unsigned long nr_iowait(void)
1998{
1999 unsigned long i, sum = 0;
2000
0a945022 2001 for_each_possible_cpu(i)
1da177e4
LT
2002 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2003
2004 return sum;
2005}
2006
db1b1fef
JS
2007unsigned long nr_active(void)
2008{
2009 unsigned long i, running = 0, uninterruptible = 0;
2010
2011 for_each_online_cpu(i) {
2012 running += cpu_rq(i)->nr_running;
2013 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2014 }
2015
2016 if (unlikely((long)uninterruptible < 0))
2017 uninterruptible = 0;
2018
2019 return running + uninterruptible;
2020}
2021
48f24c4d 2022/*
dd41f596
IM
2023 * Update rq->cpu_load[] statistics. This function is usually called every
2024 * scheduler tick (TICK_NSEC).
48f24c4d 2025 */
dd41f596 2026static void update_cpu_load(struct rq *this_rq)
48f24c4d 2027{
495eca49 2028 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2029 int i, scale;
2030
2031 this_rq->nr_load_updates++;
dd41f596
IM
2032
2033 /* Update our load: */
2034 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2035 unsigned long old_load, new_load;
2036
2037 /* scale is effectively 1 << i now, and >> i divides by scale */
2038
2039 old_load = this_rq->cpu_load[i];
2040 new_load = this_load;
a25707f3
IM
2041 /*
2042 * Round up the averaging division if load is increasing. This
2043 * prevents us from getting stuck on 9 if the load is 10, for
2044 * example.
2045 */
2046 if (new_load > old_load)
2047 new_load += scale-1;
dd41f596
IM
2048 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2049 }
48f24c4d
IM
2050}
2051
dd41f596
IM
2052#ifdef CONFIG_SMP
2053
1da177e4
LT
2054/*
2055 * double_rq_lock - safely lock two runqueues
2056 *
2057 * Note this does not disable interrupts like task_rq_lock,
2058 * you need to do so manually before calling.
2059 */
70b97a7f 2060static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2061 __acquires(rq1->lock)
2062 __acquires(rq2->lock)
2063{
054b9108 2064 BUG_ON(!irqs_disabled());
1da177e4
LT
2065 if (rq1 == rq2) {
2066 spin_lock(&rq1->lock);
2067 __acquire(rq2->lock); /* Fake it out ;) */
2068 } else {
c96d145e 2069 if (rq1 < rq2) {
1da177e4
LT
2070 spin_lock(&rq1->lock);
2071 spin_lock(&rq2->lock);
2072 } else {
2073 spin_lock(&rq2->lock);
2074 spin_lock(&rq1->lock);
2075 }
2076 }
6e82a3be
IM
2077 update_rq_clock(rq1);
2078 update_rq_clock(rq2);
1da177e4
LT
2079}
2080
2081/*
2082 * double_rq_unlock - safely unlock two runqueues
2083 *
2084 * Note this does not restore interrupts like task_rq_unlock,
2085 * you need to do so manually after calling.
2086 */
70b97a7f 2087static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2088 __releases(rq1->lock)
2089 __releases(rq2->lock)
2090{
2091 spin_unlock(&rq1->lock);
2092 if (rq1 != rq2)
2093 spin_unlock(&rq2->lock);
2094 else
2095 __release(rq2->lock);
2096}
2097
2098/*
2099 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2100 */
70b97a7f 2101static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2102 __releases(this_rq->lock)
2103 __acquires(busiest->lock)
2104 __acquires(this_rq->lock)
2105{
054b9108
KK
2106 if (unlikely(!irqs_disabled())) {
2107 /* printk() doesn't work good under rq->lock */
2108 spin_unlock(&this_rq->lock);
2109 BUG_ON(1);
2110 }
1da177e4 2111 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2112 if (busiest < this_rq) {
1da177e4
LT
2113 spin_unlock(&this_rq->lock);
2114 spin_lock(&busiest->lock);
2115 spin_lock(&this_rq->lock);
2116 } else
2117 spin_lock(&busiest->lock);
2118 }
2119}
2120
1da177e4
LT
2121/*
2122 * If dest_cpu is allowed for this process, migrate the task to it.
2123 * This is accomplished by forcing the cpu_allowed mask to only
2124 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2125 * the cpu_allowed mask is restored.
2126 */
36c8b586 2127static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2128{
70b97a7f 2129 struct migration_req req;
1da177e4 2130 unsigned long flags;
70b97a7f 2131 struct rq *rq;
1da177e4
LT
2132
2133 rq = task_rq_lock(p, &flags);
2134 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2135 || unlikely(cpu_is_offline(dest_cpu)))
2136 goto out;
2137
2138 /* force the process onto the specified CPU */
2139 if (migrate_task(p, dest_cpu, &req)) {
2140 /* Need to wait for migration thread (might exit: take ref). */
2141 struct task_struct *mt = rq->migration_thread;
36c8b586 2142
1da177e4
LT
2143 get_task_struct(mt);
2144 task_rq_unlock(rq, &flags);
2145 wake_up_process(mt);
2146 put_task_struct(mt);
2147 wait_for_completion(&req.done);
36c8b586 2148
1da177e4
LT
2149 return;
2150 }
2151out:
2152 task_rq_unlock(rq, &flags);
2153}
2154
2155/*
476d139c
NP
2156 * sched_exec - execve() is a valuable balancing opportunity, because at
2157 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2158 */
2159void sched_exec(void)
2160{
1da177e4 2161 int new_cpu, this_cpu = get_cpu();
476d139c 2162 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2163 put_cpu();
476d139c
NP
2164 if (new_cpu != this_cpu)
2165 sched_migrate_task(current, new_cpu);
1da177e4
LT
2166}
2167
2168/*
2169 * pull_task - move a task from a remote runqueue to the local runqueue.
2170 * Both runqueues must be locked.
2171 */
dd41f596
IM
2172static void pull_task(struct rq *src_rq, struct task_struct *p,
2173 struct rq *this_rq, int this_cpu)
1da177e4 2174{
2e1cb74a 2175 deactivate_task(src_rq, p, 0);
1da177e4 2176 set_task_cpu(p, this_cpu);
dd41f596 2177 activate_task(this_rq, p, 0);
1da177e4
LT
2178 /*
2179 * Note that idle threads have a prio of MAX_PRIO, for this test
2180 * to be always true for them.
2181 */
dd41f596 2182 check_preempt_curr(this_rq, p);
1da177e4
LT
2183}
2184
2185/*
2186 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2187 */
858119e1 2188static
70b97a7f 2189int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2190 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2191 int *all_pinned)
1da177e4
LT
2192{
2193 /*
2194 * We do not migrate tasks that are:
2195 * 1) running (obviously), or
2196 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2197 * 3) are cache-hot on their current CPU.
2198 */
cc367732
IM
2199 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2200 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2201 return 0;
cc367732 2202 }
81026794
NP
2203 *all_pinned = 0;
2204
cc367732
IM
2205 if (task_running(rq, p)) {
2206 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2207 return 0;
cc367732 2208 }
1da177e4 2209
da84d961
IM
2210 /*
2211 * Aggressive migration if:
2212 * 1) task is cache cold, or
2213 * 2) too many balance attempts have failed.
2214 */
2215
6bc1665b
IM
2216 if (!task_hot(p, rq->clock, sd) ||
2217 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2218#ifdef CONFIG_SCHEDSTATS
cc367732 2219 if (task_hot(p, rq->clock, sd)) {
da84d961 2220 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2221 schedstat_inc(p, se.nr_forced_migrations);
2222 }
da84d961
IM
2223#endif
2224 return 1;
2225 }
2226
cc367732
IM
2227 if (task_hot(p, rq->clock, sd)) {
2228 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2229 return 0;
cc367732 2230 }
1da177e4
LT
2231 return 1;
2232}
2233
e1d1484f
PW
2234static unsigned long
2235balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2236 unsigned long max_load_move, struct sched_domain *sd,
2237 enum cpu_idle_type idle, int *all_pinned,
2238 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2239{
dd41f596
IM
2240 int pulled = 0, pinned = 0, skip_for_load;
2241 struct task_struct *p;
2242 long rem_load_move = max_load_move;
1da177e4 2243
e1d1484f 2244 if (max_load_move == 0)
1da177e4
LT
2245 goto out;
2246
81026794
NP
2247 pinned = 1;
2248
1da177e4 2249 /*
dd41f596 2250 * Start the load-balancing iterator:
1da177e4 2251 */
dd41f596
IM
2252 p = iterator->start(iterator->arg);
2253next:
2254 if (!p)
1da177e4 2255 goto out;
50ddd969
PW
2256 /*
2257 * To help distribute high priority tasks accross CPUs we don't
2258 * skip a task if it will be the highest priority task (i.e. smallest
2259 * prio value) on its new queue regardless of its load weight
2260 */
dd41f596
IM
2261 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2262 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2263 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2264 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2265 p = iterator->next(iterator->arg);
2266 goto next;
1da177e4
LT
2267 }
2268
dd41f596 2269 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2270 pulled++;
dd41f596 2271 rem_load_move -= p->se.load.weight;
1da177e4 2272
2dd73a4f
PW
2273 /*
2274 * We only want to steal up to the prescribed number of tasks
2275 * and the prescribed amount of weighted load.
2276 */
e1d1484f 2277 if (rem_load_move > 0) {
a4ac01c3
PW
2278 if (p->prio < *this_best_prio)
2279 *this_best_prio = p->prio;
dd41f596
IM
2280 p = iterator->next(iterator->arg);
2281 goto next;
1da177e4
LT
2282 }
2283out:
2284 /*
e1d1484f 2285 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2286 * so we can safely collect pull_task() stats here rather than
2287 * inside pull_task().
2288 */
2289 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2290
2291 if (all_pinned)
2292 *all_pinned = pinned;
e1d1484f
PW
2293
2294 return max_load_move - rem_load_move;
1da177e4
LT
2295}
2296
dd41f596 2297/*
43010659
PW
2298 * move_tasks tries to move up to max_load_move weighted load from busiest to
2299 * this_rq, as part of a balancing operation within domain "sd".
2300 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2301 *
2302 * Called with both runqueues locked.
2303 */
2304static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2305 unsigned long max_load_move,
dd41f596
IM
2306 struct sched_domain *sd, enum cpu_idle_type idle,
2307 int *all_pinned)
2308{
5522d5d5 2309 const struct sched_class *class = sched_class_highest;
43010659 2310 unsigned long total_load_moved = 0;
a4ac01c3 2311 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2312
2313 do {
43010659
PW
2314 total_load_moved +=
2315 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2316 max_load_move - total_load_moved,
a4ac01c3 2317 sd, idle, all_pinned, &this_best_prio);
dd41f596 2318 class = class->next;
43010659 2319 } while (class && max_load_move > total_load_moved);
dd41f596 2320
43010659
PW
2321 return total_load_moved > 0;
2322}
2323
e1d1484f
PW
2324static int
2325iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2326 struct sched_domain *sd, enum cpu_idle_type idle,
2327 struct rq_iterator *iterator)
2328{
2329 struct task_struct *p = iterator->start(iterator->arg);
2330 int pinned = 0;
2331
2332 while (p) {
2333 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2334 pull_task(busiest, p, this_rq, this_cpu);
2335 /*
2336 * Right now, this is only the second place pull_task()
2337 * is called, so we can safely collect pull_task()
2338 * stats here rather than inside pull_task().
2339 */
2340 schedstat_inc(sd, lb_gained[idle]);
2341
2342 return 1;
2343 }
2344 p = iterator->next(iterator->arg);
2345 }
2346
2347 return 0;
2348}
2349
43010659
PW
2350/*
2351 * move_one_task tries to move exactly one task from busiest to this_rq, as
2352 * part of active balancing operations within "domain".
2353 * Returns 1 if successful and 0 otherwise.
2354 *
2355 * Called with both runqueues locked.
2356 */
2357static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2358 struct sched_domain *sd, enum cpu_idle_type idle)
2359{
5522d5d5 2360 const struct sched_class *class;
43010659
PW
2361
2362 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2363 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2364 return 1;
2365
2366 return 0;
dd41f596
IM
2367}
2368
1da177e4
LT
2369/*
2370 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2371 * domain. It calculates and returns the amount of weighted load which
2372 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2373 */
2374static struct sched_group *
2375find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2376 unsigned long *imbalance, enum cpu_idle_type idle,
2377 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2378{
2379 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2380 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2381 unsigned long max_pull;
2dd73a4f
PW
2382 unsigned long busiest_load_per_task, busiest_nr_running;
2383 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2384 int load_idx, group_imb = 0;
5c45bf27
SS
2385#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2386 int power_savings_balance = 1;
2387 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2388 unsigned long min_nr_running = ULONG_MAX;
2389 struct sched_group *group_min = NULL, *group_leader = NULL;
2390#endif
1da177e4
LT
2391
2392 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2393 busiest_load_per_task = busiest_nr_running = 0;
2394 this_load_per_task = this_nr_running = 0;
d15bcfdb 2395 if (idle == CPU_NOT_IDLE)
7897986b 2396 load_idx = sd->busy_idx;
d15bcfdb 2397 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2398 load_idx = sd->newidle_idx;
2399 else
2400 load_idx = sd->idle_idx;
1da177e4
LT
2401
2402 do {
908a7c1b 2403 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2404 int local_group;
2405 int i;
908a7c1b 2406 int __group_imb = 0;
783609c6 2407 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2408 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2409
2410 local_group = cpu_isset(this_cpu, group->cpumask);
2411
783609c6
SS
2412 if (local_group)
2413 balance_cpu = first_cpu(group->cpumask);
2414
1da177e4 2415 /* Tally up the load of all CPUs in the group */
2dd73a4f 2416 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2417 max_cpu_load = 0;
2418 min_cpu_load = ~0UL;
1da177e4
LT
2419
2420 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2421 struct rq *rq;
2422
2423 if (!cpu_isset(i, *cpus))
2424 continue;
2425
2426 rq = cpu_rq(i);
2dd73a4f 2427
9439aab8 2428 if (*sd_idle && rq->nr_running)
5969fe06
NP
2429 *sd_idle = 0;
2430
1da177e4 2431 /* Bias balancing toward cpus of our domain */
783609c6
SS
2432 if (local_group) {
2433 if (idle_cpu(i) && !first_idle_cpu) {
2434 first_idle_cpu = 1;
2435 balance_cpu = i;
2436 }
2437
a2000572 2438 load = target_load(i, load_idx);
908a7c1b 2439 } else {
a2000572 2440 load = source_load(i, load_idx);
908a7c1b
KC
2441 if (load > max_cpu_load)
2442 max_cpu_load = load;
2443 if (min_cpu_load > load)
2444 min_cpu_load = load;
2445 }
1da177e4
LT
2446
2447 avg_load += load;
2dd73a4f 2448 sum_nr_running += rq->nr_running;
dd41f596 2449 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2450 }
2451
783609c6
SS
2452 /*
2453 * First idle cpu or the first cpu(busiest) in this sched group
2454 * is eligible for doing load balancing at this and above
9439aab8
SS
2455 * domains. In the newly idle case, we will allow all the cpu's
2456 * to do the newly idle load balance.
783609c6 2457 */
9439aab8
SS
2458 if (idle != CPU_NEWLY_IDLE && local_group &&
2459 balance_cpu != this_cpu && balance) {
783609c6
SS
2460 *balance = 0;
2461 goto ret;
2462 }
2463
1da177e4 2464 total_load += avg_load;
5517d86b 2465 total_pwr += group->__cpu_power;
1da177e4
LT
2466
2467 /* Adjust by relative CPU power of the group */
5517d86b
ED
2468 avg_load = sg_div_cpu_power(group,
2469 avg_load * SCHED_LOAD_SCALE);
1da177e4 2470
908a7c1b
KC
2471 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2472 __group_imb = 1;
2473
5517d86b 2474 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2475
1da177e4
LT
2476 if (local_group) {
2477 this_load = avg_load;
2478 this = group;
2dd73a4f
PW
2479 this_nr_running = sum_nr_running;
2480 this_load_per_task = sum_weighted_load;
2481 } else if (avg_load > max_load &&
908a7c1b 2482 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2483 max_load = avg_load;
2484 busiest = group;
2dd73a4f
PW
2485 busiest_nr_running = sum_nr_running;
2486 busiest_load_per_task = sum_weighted_load;
908a7c1b 2487 group_imb = __group_imb;
1da177e4 2488 }
5c45bf27
SS
2489
2490#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2491 /*
2492 * Busy processors will not participate in power savings
2493 * balance.
2494 */
dd41f596
IM
2495 if (idle == CPU_NOT_IDLE ||
2496 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2497 goto group_next;
5c45bf27
SS
2498
2499 /*
2500 * If the local group is idle or completely loaded
2501 * no need to do power savings balance at this domain
2502 */
2503 if (local_group && (this_nr_running >= group_capacity ||
2504 !this_nr_running))
2505 power_savings_balance = 0;
2506
dd41f596 2507 /*
5c45bf27
SS
2508 * If a group is already running at full capacity or idle,
2509 * don't include that group in power savings calculations
dd41f596
IM
2510 */
2511 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2512 || !sum_nr_running)
dd41f596 2513 goto group_next;
5c45bf27 2514
dd41f596 2515 /*
5c45bf27 2516 * Calculate the group which has the least non-idle load.
dd41f596
IM
2517 * This is the group from where we need to pick up the load
2518 * for saving power
2519 */
2520 if ((sum_nr_running < min_nr_running) ||
2521 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2522 first_cpu(group->cpumask) <
2523 first_cpu(group_min->cpumask))) {
dd41f596
IM
2524 group_min = group;
2525 min_nr_running = sum_nr_running;
5c45bf27
SS
2526 min_load_per_task = sum_weighted_load /
2527 sum_nr_running;
dd41f596 2528 }
5c45bf27 2529
dd41f596 2530 /*
5c45bf27 2531 * Calculate the group which is almost near its
dd41f596
IM
2532 * capacity but still has some space to pick up some load
2533 * from other group and save more power
2534 */
2535 if (sum_nr_running <= group_capacity - 1) {
2536 if (sum_nr_running > leader_nr_running ||
2537 (sum_nr_running == leader_nr_running &&
2538 first_cpu(group->cpumask) >
2539 first_cpu(group_leader->cpumask))) {
2540 group_leader = group;
2541 leader_nr_running = sum_nr_running;
2542 }
48f24c4d 2543 }
5c45bf27
SS
2544group_next:
2545#endif
1da177e4
LT
2546 group = group->next;
2547 } while (group != sd->groups);
2548
2dd73a4f 2549 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2550 goto out_balanced;
2551
2552 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2553
2554 if (this_load >= avg_load ||
2555 100*max_load <= sd->imbalance_pct*this_load)
2556 goto out_balanced;
2557
2dd73a4f 2558 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2559 if (group_imb)
2560 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2561
1da177e4
LT
2562 /*
2563 * We're trying to get all the cpus to the average_load, so we don't
2564 * want to push ourselves above the average load, nor do we wish to
2565 * reduce the max loaded cpu below the average load, as either of these
2566 * actions would just result in more rebalancing later, and ping-pong
2567 * tasks around. Thus we look for the minimum possible imbalance.
2568 * Negative imbalances (*we* are more loaded than anyone else) will
2569 * be counted as no imbalance for these purposes -- we can't fix that
2570 * by pulling tasks to us. Be careful of negative numbers as they'll
2571 * appear as very large values with unsigned longs.
2572 */
2dd73a4f
PW
2573 if (max_load <= busiest_load_per_task)
2574 goto out_balanced;
2575
2576 /*
2577 * In the presence of smp nice balancing, certain scenarios can have
2578 * max load less than avg load(as we skip the groups at or below
2579 * its cpu_power, while calculating max_load..)
2580 */
2581 if (max_load < avg_load) {
2582 *imbalance = 0;
2583 goto small_imbalance;
2584 }
0c117f1b
SS
2585
2586 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2587 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2588
1da177e4 2589 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2590 *imbalance = min(max_pull * busiest->__cpu_power,
2591 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2592 / SCHED_LOAD_SCALE;
2593
2dd73a4f
PW
2594 /*
2595 * if *imbalance is less than the average load per runnable task
2596 * there is no gaurantee that any tasks will be moved so we'll have
2597 * a think about bumping its value to force at least one task to be
2598 * moved
2599 */
7fd0d2dd 2600 if (*imbalance < busiest_load_per_task) {
48f24c4d 2601 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2602 unsigned int imbn;
2603
2604small_imbalance:
2605 pwr_move = pwr_now = 0;
2606 imbn = 2;
2607 if (this_nr_running) {
2608 this_load_per_task /= this_nr_running;
2609 if (busiest_load_per_task > this_load_per_task)
2610 imbn = 1;
2611 } else
2612 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2613
dd41f596
IM
2614 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2615 busiest_load_per_task * imbn) {
2dd73a4f 2616 *imbalance = busiest_load_per_task;
1da177e4
LT
2617 return busiest;
2618 }
2619
2620 /*
2621 * OK, we don't have enough imbalance to justify moving tasks,
2622 * however we may be able to increase total CPU power used by
2623 * moving them.
2624 */
2625
5517d86b
ED
2626 pwr_now += busiest->__cpu_power *
2627 min(busiest_load_per_task, max_load);
2628 pwr_now += this->__cpu_power *
2629 min(this_load_per_task, this_load);
1da177e4
LT
2630 pwr_now /= SCHED_LOAD_SCALE;
2631
2632 /* Amount of load we'd subtract */
5517d86b
ED
2633 tmp = sg_div_cpu_power(busiest,
2634 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2635 if (max_load > tmp)
5517d86b 2636 pwr_move += busiest->__cpu_power *
2dd73a4f 2637 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2638
2639 /* Amount of load we'd add */
5517d86b 2640 if (max_load * busiest->__cpu_power <
33859f7f 2641 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2642 tmp = sg_div_cpu_power(this,
2643 max_load * busiest->__cpu_power);
1da177e4 2644 else
5517d86b
ED
2645 tmp = sg_div_cpu_power(this,
2646 busiest_load_per_task * SCHED_LOAD_SCALE);
2647 pwr_move += this->__cpu_power *
2648 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2649 pwr_move /= SCHED_LOAD_SCALE;
2650
2651 /* Move if we gain throughput */
7fd0d2dd
SS
2652 if (pwr_move > pwr_now)
2653 *imbalance = busiest_load_per_task;
1da177e4
LT
2654 }
2655
1da177e4
LT
2656 return busiest;
2657
2658out_balanced:
5c45bf27 2659#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2660 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2661 goto ret;
1da177e4 2662
5c45bf27
SS
2663 if (this == group_leader && group_leader != group_min) {
2664 *imbalance = min_load_per_task;
2665 return group_min;
2666 }
5c45bf27 2667#endif
783609c6 2668ret:
1da177e4
LT
2669 *imbalance = 0;
2670 return NULL;
2671}
2672
2673/*
2674 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2675 */
70b97a7f 2676static struct rq *
d15bcfdb 2677find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2678 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2679{
70b97a7f 2680 struct rq *busiest = NULL, *rq;
2dd73a4f 2681 unsigned long max_load = 0;
1da177e4
LT
2682 int i;
2683
2684 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2685 unsigned long wl;
0a2966b4
CL
2686
2687 if (!cpu_isset(i, *cpus))
2688 continue;
2689
48f24c4d 2690 rq = cpu_rq(i);
dd41f596 2691 wl = weighted_cpuload(i);
2dd73a4f 2692
dd41f596 2693 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2694 continue;
1da177e4 2695
dd41f596
IM
2696 if (wl > max_load) {
2697 max_load = wl;
48f24c4d 2698 busiest = rq;
1da177e4
LT
2699 }
2700 }
2701
2702 return busiest;
2703}
2704
77391d71
NP
2705/*
2706 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2707 * so long as it is large enough.
2708 */
2709#define MAX_PINNED_INTERVAL 512
2710
1da177e4
LT
2711/*
2712 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2713 * tasks if there is an imbalance.
1da177e4 2714 */
70b97a7f 2715static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2716 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2717 int *balance)
1da177e4 2718{
43010659 2719 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2720 struct sched_group *group;
1da177e4 2721 unsigned long imbalance;
70b97a7f 2722 struct rq *busiest;
0a2966b4 2723 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2724 unsigned long flags;
5969fe06 2725
89c4710e
SS
2726 /*
2727 * When power savings policy is enabled for the parent domain, idle
2728 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2729 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2730 * portraying it as CPU_NOT_IDLE.
89c4710e 2731 */
d15bcfdb 2732 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2733 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2734 sd_idle = 1;
1da177e4 2735
2d72376b 2736 schedstat_inc(sd, lb_count[idle]);
1da177e4 2737
0a2966b4
CL
2738redo:
2739 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2740 &cpus, balance);
2741
06066714 2742 if (*balance == 0)
783609c6 2743 goto out_balanced;
783609c6 2744
1da177e4
LT
2745 if (!group) {
2746 schedstat_inc(sd, lb_nobusyg[idle]);
2747 goto out_balanced;
2748 }
2749
0a2966b4 2750 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2751 if (!busiest) {
2752 schedstat_inc(sd, lb_nobusyq[idle]);
2753 goto out_balanced;
2754 }
2755
db935dbd 2756 BUG_ON(busiest == this_rq);
1da177e4
LT
2757
2758 schedstat_add(sd, lb_imbalance[idle], imbalance);
2759
43010659 2760 ld_moved = 0;
1da177e4
LT
2761 if (busiest->nr_running > 1) {
2762 /*
2763 * Attempt to move tasks. If find_busiest_group has found
2764 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2765 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2766 * correctly treated as an imbalance.
2767 */
fe2eea3f 2768 local_irq_save(flags);
e17224bf 2769 double_rq_lock(this_rq, busiest);
43010659 2770 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2771 imbalance, sd, idle, &all_pinned);
e17224bf 2772 double_rq_unlock(this_rq, busiest);
fe2eea3f 2773 local_irq_restore(flags);
81026794 2774
46cb4b7c
SS
2775 /*
2776 * some other cpu did the load balance for us.
2777 */
43010659 2778 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2779 resched_cpu(this_cpu);
2780
81026794 2781 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2782 if (unlikely(all_pinned)) {
2783 cpu_clear(cpu_of(busiest), cpus);
2784 if (!cpus_empty(cpus))
2785 goto redo;
81026794 2786 goto out_balanced;
0a2966b4 2787 }
1da177e4 2788 }
81026794 2789
43010659 2790 if (!ld_moved) {
1da177e4
LT
2791 schedstat_inc(sd, lb_failed[idle]);
2792 sd->nr_balance_failed++;
2793
2794 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2795
fe2eea3f 2796 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2797
2798 /* don't kick the migration_thread, if the curr
2799 * task on busiest cpu can't be moved to this_cpu
2800 */
2801 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2802 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2803 all_pinned = 1;
2804 goto out_one_pinned;
2805 }
2806
1da177e4
LT
2807 if (!busiest->active_balance) {
2808 busiest->active_balance = 1;
2809 busiest->push_cpu = this_cpu;
81026794 2810 active_balance = 1;
1da177e4 2811 }
fe2eea3f 2812 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2813 if (active_balance)
1da177e4
LT
2814 wake_up_process(busiest->migration_thread);
2815
2816 /*
2817 * We've kicked active balancing, reset the failure
2818 * counter.
2819 */
39507451 2820 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2821 }
81026794 2822 } else
1da177e4
LT
2823 sd->nr_balance_failed = 0;
2824
81026794 2825 if (likely(!active_balance)) {
1da177e4
LT
2826 /* We were unbalanced, so reset the balancing interval */
2827 sd->balance_interval = sd->min_interval;
81026794
NP
2828 } else {
2829 /*
2830 * If we've begun active balancing, start to back off. This
2831 * case may not be covered by the all_pinned logic if there
2832 * is only 1 task on the busy runqueue (because we don't call
2833 * move_tasks).
2834 */
2835 if (sd->balance_interval < sd->max_interval)
2836 sd->balance_interval *= 2;
1da177e4
LT
2837 }
2838
43010659 2839 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2840 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2841 return -1;
43010659 2842 return ld_moved;
1da177e4
LT
2843
2844out_balanced:
1da177e4
LT
2845 schedstat_inc(sd, lb_balanced[idle]);
2846
16cfb1c0 2847 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2848
2849out_one_pinned:
1da177e4 2850 /* tune up the balancing interval */
77391d71
NP
2851 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2852 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2853 sd->balance_interval *= 2;
2854
48f24c4d 2855 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2856 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2857 return -1;
1da177e4
LT
2858 return 0;
2859}
2860
2861/*
2862 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2863 * tasks if there is an imbalance.
2864 *
d15bcfdb 2865 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2866 * this_rq is locked.
2867 */
48f24c4d 2868static int
70b97a7f 2869load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2870{
2871 struct sched_group *group;
70b97a7f 2872 struct rq *busiest = NULL;
1da177e4 2873 unsigned long imbalance;
43010659 2874 int ld_moved = 0;
5969fe06 2875 int sd_idle = 0;
969bb4e4 2876 int all_pinned = 0;
0a2966b4 2877 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2878
89c4710e
SS
2879 /*
2880 * When power savings policy is enabled for the parent domain, idle
2881 * sibling can pick up load irrespective of busy siblings. In this case,
2882 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2883 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2884 */
2885 if (sd->flags & SD_SHARE_CPUPOWER &&
2886 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2887 sd_idle = 1;
1da177e4 2888
2d72376b 2889 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2890redo:
d15bcfdb 2891 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2892 &sd_idle, &cpus, NULL);
1da177e4 2893 if (!group) {
d15bcfdb 2894 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2895 goto out_balanced;
1da177e4
LT
2896 }
2897
d15bcfdb 2898 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2899 &cpus);
db935dbd 2900 if (!busiest) {
d15bcfdb 2901 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2902 goto out_balanced;
1da177e4
LT
2903 }
2904
db935dbd
NP
2905 BUG_ON(busiest == this_rq);
2906
d15bcfdb 2907 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2908
43010659 2909 ld_moved = 0;
d6d5cfaf
NP
2910 if (busiest->nr_running > 1) {
2911 /* Attempt to move tasks */
2912 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2913 /* this_rq->clock is already updated */
2914 update_rq_clock(busiest);
43010659 2915 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2916 imbalance, sd, CPU_NEWLY_IDLE,
2917 &all_pinned);
d6d5cfaf 2918 spin_unlock(&busiest->lock);
0a2966b4 2919
969bb4e4 2920 if (unlikely(all_pinned)) {
0a2966b4
CL
2921 cpu_clear(cpu_of(busiest), cpus);
2922 if (!cpus_empty(cpus))
2923 goto redo;
2924 }
d6d5cfaf
NP
2925 }
2926
43010659 2927 if (!ld_moved) {
d15bcfdb 2928 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2929 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2930 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2931 return -1;
2932 } else
16cfb1c0 2933 sd->nr_balance_failed = 0;
1da177e4 2934
43010659 2935 return ld_moved;
16cfb1c0
NP
2936
2937out_balanced:
d15bcfdb 2938 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2939 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2940 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2941 return -1;
16cfb1c0 2942 sd->nr_balance_failed = 0;
48f24c4d 2943
16cfb1c0 2944 return 0;
1da177e4
LT
2945}
2946
2947/*
2948 * idle_balance is called by schedule() if this_cpu is about to become
2949 * idle. Attempts to pull tasks from other CPUs.
2950 */
70b97a7f 2951static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2952{
2953 struct sched_domain *sd;
dd41f596
IM
2954 int pulled_task = -1;
2955 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2956
2957 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2958 unsigned long interval;
2959
2960 if (!(sd->flags & SD_LOAD_BALANCE))
2961 continue;
2962
2963 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2964 /* If we've pulled tasks over stop searching: */
1bd77f2d 2965 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2966 this_rq, sd);
2967
2968 interval = msecs_to_jiffies(sd->balance_interval);
2969 if (time_after(next_balance, sd->last_balance + interval))
2970 next_balance = sd->last_balance + interval;
2971 if (pulled_task)
2972 break;
1da177e4 2973 }
dd41f596 2974 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2975 /*
2976 * We are going idle. next_balance may be set based on
2977 * a busy processor. So reset next_balance.
2978 */
2979 this_rq->next_balance = next_balance;
dd41f596 2980 }
1da177e4
LT
2981}
2982
2983/*
2984 * active_load_balance is run by migration threads. It pushes running tasks
2985 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2986 * running on each physical CPU where possible, and avoids physical /
2987 * logical imbalances.
2988 *
2989 * Called with busiest_rq locked.
2990 */
70b97a7f 2991static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2992{
39507451 2993 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2994 struct sched_domain *sd;
2995 struct rq *target_rq;
39507451 2996
48f24c4d 2997 /* Is there any task to move? */
39507451 2998 if (busiest_rq->nr_running <= 1)
39507451
NP
2999 return;
3000
3001 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3002
3003 /*
39507451
NP
3004 * This condition is "impossible", if it occurs
3005 * we need to fix it. Originally reported by
3006 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3007 */
39507451 3008 BUG_ON(busiest_rq == target_rq);
1da177e4 3009
39507451
NP
3010 /* move a task from busiest_rq to target_rq */
3011 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3012 update_rq_clock(busiest_rq);
3013 update_rq_clock(target_rq);
39507451
NP
3014
3015 /* Search for an sd spanning us and the target CPU. */
c96d145e 3016 for_each_domain(target_cpu, sd) {
39507451 3017 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3018 cpu_isset(busiest_cpu, sd->span))
39507451 3019 break;
c96d145e 3020 }
39507451 3021
48f24c4d 3022 if (likely(sd)) {
2d72376b 3023 schedstat_inc(sd, alb_count);
39507451 3024
43010659
PW
3025 if (move_one_task(target_rq, target_cpu, busiest_rq,
3026 sd, CPU_IDLE))
48f24c4d
IM
3027 schedstat_inc(sd, alb_pushed);
3028 else
3029 schedstat_inc(sd, alb_failed);
3030 }
39507451 3031 spin_unlock(&target_rq->lock);
1da177e4
LT
3032}
3033
46cb4b7c
SS
3034#ifdef CONFIG_NO_HZ
3035static struct {
3036 atomic_t load_balancer;
3037 cpumask_t cpu_mask;
3038} nohz ____cacheline_aligned = {
3039 .load_balancer = ATOMIC_INIT(-1),
3040 .cpu_mask = CPU_MASK_NONE,
3041};
3042
7835b98b 3043/*
46cb4b7c
SS
3044 * This routine will try to nominate the ilb (idle load balancing)
3045 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3046 * load balancing on behalf of all those cpus. If all the cpus in the system
3047 * go into this tickless mode, then there will be no ilb owner (as there is
3048 * no need for one) and all the cpus will sleep till the next wakeup event
3049 * arrives...
3050 *
3051 * For the ilb owner, tick is not stopped. And this tick will be used
3052 * for idle load balancing. ilb owner will still be part of
3053 * nohz.cpu_mask..
7835b98b 3054 *
46cb4b7c
SS
3055 * While stopping the tick, this cpu will become the ilb owner if there
3056 * is no other owner. And will be the owner till that cpu becomes busy
3057 * or if all cpus in the system stop their ticks at which point
3058 * there is no need for ilb owner.
3059 *
3060 * When the ilb owner becomes busy, it nominates another owner, during the
3061 * next busy scheduler_tick()
3062 */
3063int select_nohz_load_balancer(int stop_tick)
3064{
3065 int cpu = smp_processor_id();
3066
3067 if (stop_tick) {
3068 cpu_set(cpu, nohz.cpu_mask);
3069 cpu_rq(cpu)->in_nohz_recently = 1;
3070
3071 /*
3072 * If we are going offline and still the leader, give up!
3073 */
3074 if (cpu_is_offline(cpu) &&
3075 atomic_read(&nohz.load_balancer) == cpu) {
3076 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3077 BUG();
3078 return 0;
3079 }
3080
3081 /* time for ilb owner also to sleep */
3082 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3083 if (atomic_read(&nohz.load_balancer) == cpu)
3084 atomic_set(&nohz.load_balancer, -1);
3085 return 0;
3086 }
3087
3088 if (atomic_read(&nohz.load_balancer) == -1) {
3089 /* make me the ilb owner */
3090 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3091 return 1;
3092 } else if (atomic_read(&nohz.load_balancer) == cpu)
3093 return 1;
3094 } else {
3095 if (!cpu_isset(cpu, nohz.cpu_mask))
3096 return 0;
3097
3098 cpu_clear(cpu, nohz.cpu_mask);
3099
3100 if (atomic_read(&nohz.load_balancer) == cpu)
3101 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3102 BUG();
3103 }
3104 return 0;
3105}
3106#endif
3107
3108static DEFINE_SPINLOCK(balancing);
3109
3110/*
7835b98b
CL
3111 * It checks each scheduling domain to see if it is due to be balanced,
3112 * and initiates a balancing operation if so.
3113 *
3114 * Balancing parameters are set up in arch_init_sched_domains.
3115 */
a9957449 3116static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3117{
46cb4b7c
SS
3118 int balance = 1;
3119 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3120 unsigned long interval;
3121 struct sched_domain *sd;
46cb4b7c 3122 /* Earliest time when we have to do rebalance again */
c9819f45 3123 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3124 int update_next_balance = 0;
1da177e4 3125
46cb4b7c 3126 for_each_domain(cpu, sd) {
1da177e4
LT
3127 if (!(sd->flags & SD_LOAD_BALANCE))
3128 continue;
3129
3130 interval = sd->balance_interval;
d15bcfdb 3131 if (idle != CPU_IDLE)
1da177e4
LT
3132 interval *= sd->busy_factor;
3133
3134 /* scale ms to jiffies */
3135 interval = msecs_to_jiffies(interval);
3136 if (unlikely(!interval))
3137 interval = 1;
dd41f596
IM
3138 if (interval > HZ*NR_CPUS/10)
3139 interval = HZ*NR_CPUS/10;
3140
1da177e4 3141
08c183f3
CL
3142 if (sd->flags & SD_SERIALIZE) {
3143 if (!spin_trylock(&balancing))
3144 goto out;
3145 }
3146
c9819f45 3147 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3148 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3149 /*
3150 * We've pulled tasks over so either we're no
5969fe06
NP
3151 * longer idle, or one of our SMT siblings is
3152 * not idle.
3153 */
d15bcfdb 3154 idle = CPU_NOT_IDLE;
1da177e4 3155 }
1bd77f2d 3156 sd->last_balance = jiffies;
1da177e4 3157 }
08c183f3
CL
3158 if (sd->flags & SD_SERIALIZE)
3159 spin_unlock(&balancing);
3160out:
f549da84 3161 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3162 next_balance = sd->last_balance + interval;
f549da84
SS
3163 update_next_balance = 1;
3164 }
783609c6
SS
3165
3166 /*
3167 * Stop the load balance at this level. There is another
3168 * CPU in our sched group which is doing load balancing more
3169 * actively.
3170 */
3171 if (!balance)
3172 break;
1da177e4 3173 }
f549da84
SS
3174
3175 /*
3176 * next_balance will be updated only when there is a need.
3177 * When the cpu is attached to null domain for ex, it will not be
3178 * updated.
3179 */
3180 if (likely(update_next_balance))
3181 rq->next_balance = next_balance;
46cb4b7c
SS
3182}
3183
3184/*
3185 * run_rebalance_domains is triggered when needed from the scheduler tick.
3186 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3187 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3188 */
3189static void run_rebalance_domains(struct softirq_action *h)
3190{
dd41f596
IM
3191 int this_cpu = smp_processor_id();
3192 struct rq *this_rq = cpu_rq(this_cpu);
3193 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3194 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3195
dd41f596 3196 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3197
3198#ifdef CONFIG_NO_HZ
3199 /*
3200 * If this cpu is the owner for idle load balancing, then do the
3201 * balancing on behalf of the other idle cpus whose ticks are
3202 * stopped.
3203 */
dd41f596
IM
3204 if (this_rq->idle_at_tick &&
3205 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3206 cpumask_t cpus = nohz.cpu_mask;
3207 struct rq *rq;
3208 int balance_cpu;
3209
dd41f596 3210 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3211 for_each_cpu_mask(balance_cpu, cpus) {
3212 /*
3213 * If this cpu gets work to do, stop the load balancing
3214 * work being done for other cpus. Next load
3215 * balancing owner will pick it up.
3216 */
3217 if (need_resched())
3218 break;
3219
de0cf899 3220 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3221
3222 rq = cpu_rq(balance_cpu);
dd41f596
IM
3223 if (time_after(this_rq->next_balance, rq->next_balance))
3224 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3225 }
3226 }
3227#endif
3228}
3229
3230/*
3231 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3232 *
3233 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3234 * idle load balancing owner or decide to stop the periodic load balancing,
3235 * if the whole system is idle.
3236 */
dd41f596 3237static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3238{
46cb4b7c
SS
3239#ifdef CONFIG_NO_HZ
3240 /*
3241 * If we were in the nohz mode recently and busy at the current
3242 * scheduler tick, then check if we need to nominate new idle
3243 * load balancer.
3244 */
3245 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3246 rq->in_nohz_recently = 0;
3247
3248 if (atomic_read(&nohz.load_balancer) == cpu) {
3249 cpu_clear(cpu, nohz.cpu_mask);
3250 atomic_set(&nohz.load_balancer, -1);
3251 }
3252
3253 if (atomic_read(&nohz.load_balancer) == -1) {
3254 /*
3255 * simple selection for now: Nominate the
3256 * first cpu in the nohz list to be the next
3257 * ilb owner.
3258 *
3259 * TBD: Traverse the sched domains and nominate
3260 * the nearest cpu in the nohz.cpu_mask.
3261 */
3262 int ilb = first_cpu(nohz.cpu_mask);
3263
3264 if (ilb != NR_CPUS)
3265 resched_cpu(ilb);
3266 }
3267 }
3268
3269 /*
3270 * If this cpu is idle and doing idle load balancing for all the
3271 * cpus with ticks stopped, is it time for that to stop?
3272 */
3273 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3274 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3275 resched_cpu(cpu);
3276 return;
3277 }
3278
3279 /*
3280 * If this cpu is idle and the idle load balancing is done by
3281 * someone else, then no need raise the SCHED_SOFTIRQ
3282 */
3283 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3284 cpu_isset(cpu, nohz.cpu_mask))
3285 return;
3286#endif
3287 if (time_after_eq(jiffies, rq->next_balance))
3288 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3289}
dd41f596
IM
3290
3291#else /* CONFIG_SMP */
3292
1da177e4
LT
3293/*
3294 * on UP we do not need to balance between CPUs:
3295 */
70b97a7f 3296static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3297{
3298}
dd41f596 3299
1da177e4
LT
3300#endif
3301
1da177e4
LT
3302DEFINE_PER_CPU(struct kernel_stat, kstat);
3303
3304EXPORT_PER_CPU_SYMBOL(kstat);
3305
3306/*
41b86e9c
IM
3307 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3308 * that have not yet been banked in case the task is currently running.
1da177e4 3309 */
41b86e9c 3310unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3311{
1da177e4 3312 unsigned long flags;
41b86e9c
IM
3313 u64 ns, delta_exec;
3314 struct rq *rq;
48f24c4d 3315
41b86e9c
IM
3316 rq = task_rq_lock(p, &flags);
3317 ns = p->se.sum_exec_runtime;
3318 if (rq->curr == p) {
a8e504d2
IM
3319 update_rq_clock(rq);
3320 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3321 if ((s64)delta_exec > 0)
3322 ns += delta_exec;
3323 }
3324 task_rq_unlock(rq, &flags);
48f24c4d 3325
1da177e4
LT
3326 return ns;
3327}
3328
1da177e4
LT
3329/*
3330 * Account user cpu time to a process.
3331 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3332 * @cputime: the cpu time spent in user space since the last update
3333 */
3334void account_user_time(struct task_struct *p, cputime_t cputime)
3335{
3336 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3337 cputime64_t tmp;
62d0df64 3338 struct rq *rq = this_rq();
1da177e4
LT
3339
3340 p->utime = cputime_add(p->utime, cputime);
3341
62d0df64
PM
3342 if (p != rq->idle)
3343 cpuacct_charge(p, cputime);
3344
1da177e4
LT
3345 /* Add user time to cpustat. */
3346 tmp = cputime_to_cputime64(cputime);
3347 if (TASK_NICE(p) > 0)
3348 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3349 else
3350 cpustat->user = cputime64_add(cpustat->user, tmp);
3351}
3352
94886b84
LV
3353/*
3354 * Account guest cpu time to a process.
3355 * @p: the process that the cpu time gets accounted to
3356 * @cputime: the cpu time spent in virtual machine since the last update
3357 */
f7402e03 3358static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3359{
3360 cputime64_t tmp;
3361 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3362
3363 tmp = cputime_to_cputime64(cputime);
3364
3365 p->utime = cputime_add(p->utime, cputime);
3366 p->gtime = cputime_add(p->gtime, cputime);
3367
3368 cpustat->user = cputime64_add(cpustat->user, tmp);
3369 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3370}
3371
c66f08be
MN
3372/*
3373 * Account scaled user cpu time to a process.
3374 * @p: the process that the cpu time gets accounted to
3375 * @cputime: the cpu time spent in user space since the last update
3376 */
3377void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3378{
3379 p->utimescaled = cputime_add(p->utimescaled, cputime);
3380}
3381
1da177e4
LT
3382/*
3383 * Account system cpu time to a process.
3384 * @p: the process that the cpu time gets accounted to
3385 * @hardirq_offset: the offset to subtract from hardirq_count()
3386 * @cputime: the cpu time spent in kernel space since the last update
3387 */
3388void account_system_time(struct task_struct *p, int hardirq_offset,
3389 cputime_t cputime)
3390{
3391 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3392 struct rq *rq = this_rq();
1da177e4
LT
3393 cputime64_t tmp;
3394
94886b84
LV
3395 if (p->flags & PF_VCPU) {
3396 account_guest_time(p, cputime);
94886b84
LV
3397 return;
3398 }
3399
1da177e4
LT
3400 p->stime = cputime_add(p->stime, cputime);
3401
3402 /* Add system time to cpustat. */
3403 tmp = cputime_to_cputime64(cputime);
3404 if (hardirq_count() - hardirq_offset)
3405 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3406 else if (softirq_count())
3407 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
62d0df64 3408 else if (p != rq->idle) {
1da177e4 3409 cpustat->system = cputime64_add(cpustat->system, tmp);
62d0df64
PM
3410 cpuacct_charge(p, cputime);
3411 } else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3412 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3413 else
3414 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3415 /* Account for system time used */
3416 acct_update_integrals(p);
1da177e4
LT
3417}
3418
c66f08be
MN
3419/*
3420 * Account scaled system cpu time to a process.
3421 * @p: the process that the cpu time gets accounted to
3422 * @hardirq_offset: the offset to subtract from hardirq_count()
3423 * @cputime: the cpu time spent in kernel space since the last update
3424 */
3425void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3426{
3427 p->stimescaled = cputime_add(p->stimescaled, cputime);
3428}
3429
1da177e4
LT
3430/*
3431 * Account for involuntary wait time.
3432 * @p: the process from which the cpu time has been stolen
3433 * @steal: the cpu time spent in involuntary wait
3434 */
3435void account_steal_time(struct task_struct *p, cputime_t steal)
3436{
3437 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3438 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3439 struct rq *rq = this_rq();
1da177e4
LT
3440
3441 if (p == rq->idle) {
3442 p->stime = cputime_add(p->stime, steal);
3443 if (atomic_read(&rq->nr_iowait) > 0)
3444 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3445 else
3446 cpustat->idle = cputime64_add(cpustat->idle, tmp);
62d0df64 3447 } else {
1da177e4 3448 cpustat->steal = cputime64_add(cpustat->steal, tmp);
62d0df64
PM
3449 cpuacct_charge(p, -tmp);
3450 }
1da177e4
LT
3451}
3452
7835b98b
CL
3453/*
3454 * This function gets called by the timer code, with HZ frequency.
3455 * We call it with interrupts disabled.
3456 *
3457 * It also gets called by the fork code, when changing the parent's
3458 * timeslices.
3459 */
3460void scheduler_tick(void)
3461{
7835b98b
CL
3462 int cpu = smp_processor_id();
3463 struct rq *rq = cpu_rq(cpu);
dd41f596 3464 struct task_struct *curr = rq->curr;
529c7726 3465 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3466
3467 spin_lock(&rq->lock);
546fe3c9 3468 __update_rq_clock(rq);
529c7726
IM
3469 /*
3470 * Let rq->clock advance by at least TICK_NSEC:
3471 */
3472 if (unlikely(rq->clock < next_tick))
3473 rq->clock = next_tick;
3474 rq->tick_timestamp = rq->clock;
f1a438d8 3475 update_cpu_load(rq);
dd41f596
IM
3476 if (curr != rq->idle) /* FIXME: needed? */
3477 curr->sched_class->task_tick(rq, curr);
dd41f596 3478 spin_unlock(&rq->lock);
7835b98b 3479
e418e1c2 3480#ifdef CONFIG_SMP
dd41f596
IM
3481 rq->idle_at_tick = idle_cpu(cpu);
3482 trigger_load_balance(rq, cpu);
e418e1c2 3483#endif
1da177e4
LT
3484}
3485
1da177e4
LT
3486#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3487
3488void fastcall add_preempt_count(int val)
3489{
3490 /*
3491 * Underflow?
3492 */
9a11b49a
IM
3493 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3494 return;
1da177e4
LT
3495 preempt_count() += val;
3496 /*
3497 * Spinlock count overflowing soon?
3498 */
33859f7f
MOS
3499 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3500 PREEMPT_MASK - 10);
1da177e4
LT
3501}
3502EXPORT_SYMBOL(add_preempt_count);
3503
3504void fastcall sub_preempt_count(int val)
3505{
3506 /*
3507 * Underflow?
3508 */
9a11b49a
IM
3509 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3510 return;
1da177e4
LT
3511 /*
3512 * Is the spinlock portion underflowing?
3513 */
9a11b49a
IM
3514 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3515 !(preempt_count() & PREEMPT_MASK)))
3516 return;
3517
1da177e4
LT
3518 preempt_count() -= val;
3519}
3520EXPORT_SYMBOL(sub_preempt_count);
3521
3522#endif
3523
3524/*
dd41f596 3525 * Print scheduling while atomic bug:
1da177e4 3526 */
dd41f596 3527static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3528{
838225b4
SS
3529 struct pt_regs *regs = get_irq_regs();
3530
3531 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3532 prev->comm, prev->pid, preempt_count());
3533
dd41f596
IM
3534 debug_show_held_locks(prev);
3535 if (irqs_disabled())
3536 print_irqtrace_events(prev);
838225b4
SS
3537
3538 if (regs)
3539 show_regs(regs);
3540 else
3541 dump_stack();
dd41f596 3542}
1da177e4 3543
dd41f596
IM
3544/*
3545 * Various schedule()-time debugging checks and statistics:
3546 */
3547static inline void schedule_debug(struct task_struct *prev)
3548{
1da177e4
LT
3549 /*
3550 * Test if we are atomic. Since do_exit() needs to call into
3551 * schedule() atomically, we ignore that path for now.
3552 * Otherwise, whine if we are scheduling when we should not be.
3553 */
dd41f596
IM
3554 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3555 __schedule_bug(prev);
3556
1da177e4
LT
3557 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3558
2d72376b 3559 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3560#ifdef CONFIG_SCHEDSTATS
3561 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3562 schedstat_inc(this_rq(), bkl_count);
3563 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3564 }
3565#endif
dd41f596
IM
3566}
3567
3568/*
3569 * Pick up the highest-prio task:
3570 */
3571static inline struct task_struct *
ff95f3df 3572pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3573{
5522d5d5 3574 const struct sched_class *class;
dd41f596 3575 struct task_struct *p;
1da177e4
LT
3576
3577 /*
dd41f596
IM
3578 * Optimization: we know that if all tasks are in
3579 * the fair class we can call that function directly:
1da177e4 3580 */
dd41f596 3581 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3582 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3583 if (likely(p))
3584 return p;
1da177e4
LT
3585 }
3586
dd41f596
IM
3587 class = sched_class_highest;
3588 for ( ; ; ) {
fb8d4724 3589 p = class->pick_next_task(rq);
dd41f596
IM
3590 if (p)
3591 return p;
3592 /*
3593 * Will never be NULL as the idle class always
3594 * returns a non-NULL p:
3595 */
3596 class = class->next;
3597 }
3598}
1da177e4 3599
dd41f596
IM
3600/*
3601 * schedule() is the main scheduler function.
3602 */
3603asmlinkage void __sched schedule(void)
3604{
3605 struct task_struct *prev, *next;
3606 long *switch_count;
3607 struct rq *rq;
dd41f596
IM
3608 int cpu;
3609
3610need_resched:
3611 preempt_disable();
3612 cpu = smp_processor_id();
3613 rq = cpu_rq(cpu);
3614 rcu_qsctr_inc(cpu);
3615 prev = rq->curr;
3616 switch_count = &prev->nivcsw;
3617
3618 release_kernel_lock(prev);
3619need_resched_nonpreemptible:
3620
3621 schedule_debug(prev);
1da177e4 3622
1e819950
IM
3623 /*
3624 * Do the rq-clock update outside the rq lock:
3625 */
3626 local_irq_disable();
c1b3da3e 3627 __update_rq_clock(rq);
1e819950
IM
3628 spin_lock(&rq->lock);
3629 clear_tsk_need_resched(prev);
1da177e4 3630
1da177e4 3631 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3632 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3633 unlikely(signal_pending(prev)))) {
1da177e4 3634 prev->state = TASK_RUNNING;
dd41f596 3635 } else {
2e1cb74a 3636 deactivate_task(rq, prev, 1);
1da177e4 3637 }
dd41f596 3638 switch_count = &prev->nvcsw;
1da177e4
LT
3639 }
3640
dd41f596 3641 if (unlikely(!rq->nr_running))
1da177e4 3642 idle_balance(cpu, rq);
1da177e4 3643
31ee529c 3644 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3645 next = pick_next_task(rq, prev);
1da177e4
LT
3646
3647 sched_info_switch(prev, next);
dd41f596 3648
1da177e4 3649 if (likely(prev != next)) {
1da177e4
LT
3650 rq->nr_switches++;
3651 rq->curr = next;
3652 ++*switch_count;
3653
dd41f596 3654 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3655 } else
3656 spin_unlock_irq(&rq->lock);
3657
dd41f596
IM
3658 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3659 cpu = smp_processor_id();
3660 rq = cpu_rq(cpu);
1da177e4 3661 goto need_resched_nonpreemptible;
dd41f596 3662 }
1da177e4
LT
3663 preempt_enable_no_resched();
3664 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3665 goto need_resched;
3666}
1da177e4
LT
3667EXPORT_SYMBOL(schedule);
3668
3669#ifdef CONFIG_PREEMPT
3670/*
2ed6e34f 3671 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3672 * off of preempt_enable. Kernel preemptions off return from interrupt
3673 * occur there and call schedule directly.
3674 */
3675asmlinkage void __sched preempt_schedule(void)
3676{
3677 struct thread_info *ti = current_thread_info();
3678#ifdef CONFIG_PREEMPT_BKL
3679 struct task_struct *task = current;
3680 int saved_lock_depth;
3681#endif
3682 /*
3683 * If there is a non-zero preempt_count or interrupts are disabled,
3684 * we do not want to preempt the current task. Just return..
3685 */
beed33a8 3686 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3687 return;
3688
3a5c359a
AK
3689 do {
3690 add_preempt_count(PREEMPT_ACTIVE);
3691
3692 /*
3693 * We keep the big kernel semaphore locked, but we
3694 * clear ->lock_depth so that schedule() doesnt
3695 * auto-release the semaphore:
3696 */
1da177e4 3697#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3698 saved_lock_depth = task->lock_depth;
3699 task->lock_depth = -1;
1da177e4 3700#endif
3a5c359a 3701 schedule();
1da177e4 3702#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3703 task->lock_depth = saved_lock_depth;
1da177e4 3704#endif
3a5c359a 3705 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3706
3a5c359a
AK
3707 /*
3708 * Check again in case we missed a preemption opportunity
3709 * between schedule and now.
3710 */
3711 barrier();
3712 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3713}
1da177e4
LT
3714EXPORT_SYMBOL(preempt_schedule);
3715
3716/*
2ed6e34f 3717 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3718 * off of irq context.
3719 * Note, that this is called and return with irqs disabled. This will
3720 * protect us against recursive calling from irq.
3721 */
3722asmlinkage void __sched preempt_schedule_irq(void)
3723{
3724 struct thread_info *ti = current_thread_info();
3725#ifdef CONFIG_PREEMPT_BKL
3726 struct task_struct *task = current;
3727 int saved_lock_depth;
3728#endif
2ed6e34f 3729 /* Catch callers which need to be fixed */
1da177e4
LT
3730 BUG_ON(ti->preempt_count || !irqs_disabled());
3731
3a5c359a
AK
3732 do {
3733 add_preempt_count(PREEMPT_ACTIVE);
3734
3735 /*
3736 * We keep the big kernel semaphore locked, but we
3737 * clear ->lock_depth so that schedule() doesnt
3738 * auto-release the semaphore:
3739 */
1da177e4 3740#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3741 saved_lock_depth = task->lock_depth;
3742 task->lock_depth = -1;
1da177e4 3743#endif
3a5c359a
AK
3744 local_irq_enable();
3745 schedule();
3746 local_irq_disable();
1da177e4 3747#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3748 task->lock_depth = saved_lock_depth;
1da177e4 3749#endif
3a5c359a 3750 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3751
3a5c359a
AK
3752 /*
3753 * Check again in case we missed a preemption opportunity
3754 * between schedule and now.
3755 */
3756 barrier();
3757 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3758}
3759
3760#endif /* CONFIG_PREEMPT */
3761
95cdf3b7
IM
3762int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3763 void *key)
1da177e4 3764{
48f24c4d 3765 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3766}
1da177e4
LT
3767EXPORT_SYMBOL(default_wake_function);
3768
3769/*
3770 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3771 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3772 * number) then we wake all the non-exclusive tasks and one exclusive task.
3773 *
3774 * There are circumstances in which we can try to wake a task which has already
3775 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3776 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3777 */
3778static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3779 int nr_exclusive, int sync, void *key)
3780{
2e45874c 3781 wait_queue_t *curr, *next;
1da177e4 3782
2e45874c 3783 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3784 unsigned flags = curr->flags;
3785
1da177e4 3786 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3787 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3788 break;
3789 }
3790}
3791
3792/**
3793 * __wake_up - wake up threads blocked on a waitqueue.
3794 * @q: the waitqueue
3795 * @mode: which threads
3796 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3797 * @key: is directly passed to the wakeup function
1da177e4
LT
3798 */
3799void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3800 int nr_exclusive, void *key)
1da177e4
LT
3801{
3802 unsigned long flags;
3803
3804 spin_lock_irqsave(&q->lock, flags);
3805 __wake_up_common(q, mode, nr_exclusive, 0, key);
3806 spin_unlock_irqrestore(&q->lock, flags);
3807}
1da177e4
LT
3808EXPORT_SYMBOL(__wake_up);
3809
3810/*
3811 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3812 */
3813void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3814{
3815 __wake_up_common(q, mode, 1, 0, NULL);
3816}
3817
3818/**
67be2dd1 3819 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3820 * @q: the waitqueue
3821 * @mode: which threads
3822 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3823 *
3824 * The sync wakeup differs that the waker knows that it will schedule
3825 * away soon, so while the target thread will be woken up, it will not
3826 * be migrated to another CPU - ie. the two threads are 'synchronized'
3827 * with each other. This can prevent needless bouncing between CPUs.
3828 *
3829 * On UP it can prevent extra preemption.
3830 */
95cdf3b7
IM
3831void fastcall
3832__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3833{
3834 unsigned long flags;
3835 int sync = 1;
3836
3837 if (unlikely(!q))
3838 return;
3839
3840 if (unlikely(!nr_exclusive))
3841 sync = 0;
3842
3843 spin_lock_irqsave(&q->lock, flags);
3844 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3845 spin_unlock_irqrestore(&q->lock, flags);
3846}
3847EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3848
b15136e9 3849void complete(struct completion *x)
1da177e4
LT
3850{
3851 unsigned long flags;
3852
3853 spin_lock_irqsave(&x->wait.lock, flags);
3854 x->done++;
3855 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3856 1, 0, NULL);
3857 spin_unlock_irqrestore(&x->wait.lock, flags);
3858}
3859EXPORT_SYMBOL(complete);
3860
b15136e9 3861void complete_all(struct completion *x)
1da177e4
LT
3862{
3863 unsigned long flags;
3864
3865 spin_lock_irqsave(&x->wait.lock, flags);
3866 x->done += UINT_MAX/2;
3867 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3868 0, 0, NULL);
3869 spin_unlock_irqrestore(&x->wait.lock, flags);
3870}
3871EXPORT_SYMBOL(complete_all);
3872
8cbbe86d
AK
3873static inline long __sched
3874do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3875{
1da177e4
LT
3876 if (!x->done) {
3877 DECLARE_WAITQUEUE(wait, current);
3878
3879 wait.flags |= WQ_FLAG_EXCLUSIVE;
3880 __add_wait_queue_tail(&x->wait, &wait);
3881 do {
8cbbe86d
AK
3882 if (state == TASK_INTERRUPTIBLE &&
3883 signal_pending(current)) {
3884 __remove_wait_queue(&x->wait, &wait);
3885 return -ERESTARTSYS;
3886 }
3887 __set_current_state(state);
1da177e4
LT
3888 spin_unlock_irq(&x->wait.lock);
3889 timeout = schedule_timeout(timeout);
3890 spin_lock_irq(&x->wait.lock);
3891 if (!timeout) {
3892 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3893 return timeout;
1da177e4
LT
3894 }
3895 } while (!x->done);
3896 __remove_wait_queue(&x->wait, &wait);
3897 }
3898 x->done--;
1da177e4
LT
3899 return timeout;
3900}
1da177e4 3901
8cbbe86d
AK
3902static long __sched
3903wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3904{
1da177e4
LT
3905 might_sleep();
3906
3907 spin_lock_irq(&x->wait.lock);
8cbbe86d 3908 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3909 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3910 return timeout;
3911}
1da177e4 3912
b15136e9 3913void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3914{
3915 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3916}
8cbbe86d 3917EXPORT_SYMBOL(wait_for_completion);
1da177e4 3918
b15136e9 3919unsigned long __sched
8cbbe86d 3920wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3921{
8cbbe86d 3922 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3923}
8cbbe86d 3924EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3925
8cbbe86d 3926int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3927{
51e97990
AK
3928 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3929 if (t == -ERESTARTSYS)
3930 return t;
3931 return 0;
0fec171c 3932}
8cbbe86d 3933EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3934
b15136e9 3935unsigned long __sched
8cbbe86d
AK
3936wait_for_completion_interruptible_timeout(struct completion *x,
3937 unsigned long timeout)
0fec171c 3938{
8cbbe86d 3939 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3940}
8cbbe86d 3941EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3942
8cbbe86d
AK
3943static long __sched
3944sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3945{
0fec171c
IM
3946 unsigned long flags;
3947 wait_queue_t wait;
3948
3949 init_waitqueue_entry(&wait, current);
1da177e4 3950
8cbbe86d 3951 __set_current_state(state);
1da177e4 3952
8cbbe86d
AK
3953 spin_lock_irqsave(&q->lock, flags);
3954 __add_wait_queue(q, &wait);
3955 spin_unlock(&q->lock);
3956 timeout = schedule_timeout(timeout);
3957 spin_lock_irq(&q->lock);
3958 __remove_wait_queue(q, &wait);
3959 spin_unlock_irqrestore(&q->lock, flags);
3960
3961 return timeout;
3962}
3963
3964void __sched interruptible_sleep_on(wait_queue_head_t *q)
3965{
3966 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3967}
1da177e4
LT
3968EXPORT_SYMBOL(interruptible_sleep_on);
3969
0fec171c 3970long __sched
95cdf3b7 3971interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3972{
8cbbe86d 3973 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3974}
1da177e4
LT
3975EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3976
0fec171c 3977void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3978{
8cbbe86d 3979 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3980}
1da177e4
LT
3981EXPORT_SYMBOL(sleep_on);
3982
0fec171c 3983long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3984{
8cbbe86d 3985 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3986}
1da177e4
LT
3987EXPORT_SYMBOL(sleep_on_timeout);
3988
b29739f9
IM
3989#ifdef CONFIG_RT_MUTEXES
3990
3991/*
3992 * rt_mutex_setprio - set the current priority of a task
3993 * @p: task
3994 * @prio: prio value (kernel-internal form)
3995 *
3996 * This function changes the 'effective' priority of a task. It does
3997 * not touch ->normal_prio like __setscheduler().
3998 *
3999 * Used by the rt_mutex code to implement priority inheritance logic.
4000 */
36c8b586 4001void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4002{
4003 unsigned long flags;
83b699ed 4004 int oldprio, on_rq, running;
70b97a7f 4005 struct rq *rq;
b29739f9
IM
4006
4007 BUG_ON(prio < 0 || prio > MAX_PRIO);
4008
4009 rq = task_rq_lock(p, &flags);
a8e504d2 4010 update_rq_clock(rq);
b29739f9 4011
d5f9f942 4012 oldprio = p->prio;
dd41f596 4013 on_rq = p->se.on_rq;
83b699ed
SV
4014 running = task_running(rq, p);
4015 if (on_rq) {
69be72c1 4016 dequeue_task(rq, p, 0);
83b699ed
SV
4017 if (running)
4018 p->sched_class->put_prev_task(rq, p);
4019 }
dd41f596
IM
4020
4021 if (rt_prio(prio))
4022 p->sched_class = &rt_sched_class;
4023 else
4024 p->sched_class = &fair_sched_class;
4025
b29739f9
IM
4026 p->prio = prio;
4027
dd41f596 4028 if (on_rq) {
83b699ed
SV
4029 if (running)
4030 p->sched_class->set_curr_task(rq);
8159f87e 4031 enqueue_task(rq, p, 0);
b29739f9
IM
4032 /*
4033 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4034 * our priority decreased, or if we are not currently running on
4035 * this runqueue and our priority is higher than the current's
b29739f9 4036 */
83b699ed 4037 if (running) {
d5f9f942
AM
4038 if (p->prio > oldprio)
4039 resched_task(rq->curr);
dd41f596
IM
4040 } else {
4041 check_preempt_curr(rq, p);
4042 }
b29739f9
IM
4043 }
4044 task_rq_unlock(rq, &flags);
4045}
4046
4047#endif
4048
36c8b586 4049void set_user_nice(struct task_struct *p, long nice)
1da177e4 4050{
dd41f596 4051 int old_prio, delta, on_rq;
1da177e4 4052 unsigned long flags;
70b97a7f 4053 struct rq *rq;
1da177e4
LT
4054
4055 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4056 return;
4057 /*
4058 * We have to be careful, if called from sys_setpriority(),
4059 * the task might be in the middle of scheduling on another CPU.
4060 */
4061 rq = task_rq_lock(p, &flags);
a8e504d2 4062 update_rq_clock(rq);
1da177e4
LT
4063 /*
4064 * The RT priorities are set via sched_setscheduler(), but we still
4065 * allow the 'normal' nice value to be set - but as expected
4066 * it wont have any effect on scheduling until the task is
dd41f596 4067 * SCHED_FIFO/SCHED_RR:
1da177e4 4068 */
e05606d3 4069 if (task_has_rt_policy(p)) {
1da177e4
LT
4070 p->static_prio = NICE_TO_PRIO(nice);
4071 goto out_unlock;
4072 }
dd41f596
IM
4073 on_rq = p->se.on_rq;
4074 if (on_rq) {
69be72c1 4075 dequeue_task(rq, p, 0);
79b5dddf 4076 dec_load(rq, p);
2dd73a4f 4077 }
1da177e4 4078
1da177e4 4079 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4080 set_load_weight(p);
b29739f9
IM
4081 old_prio = p->prio;
4082 p->prio = effective_prio(p);
4083 delta = p->prio - old_prio;
1da177e4 4084
dd41f596 4085 if (on_rq) {
8159f87e 4086 enqueue_task(rq, p, 0);
29b4b623 4087 inc_load(rq, p);
1da177e4 4088 /*
d5f9f942
AM
4089 * If the task increased its priority or is running and
4090 * lowered its priority, then reschedule its CPU:
1da177e4 4091 */
d5f9f942 4092 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4093 resched_task(rq->curr);
4094 }
4095out_unlock:
4096 task_rq_unlock(rq, &flags);
4097}
1da177e4
LT
4098EXPORT_SYMBOL(set_user_nice);
4099
e43379f1
MM
4100/*
4101 * can_nice - check if a task can reduce its nice value
4102 * @p: task
4103 * @nice: nice value
4104 */
36c8b586 4105int can_nice(const struct task_struct *p, const int nice)
e43379f1 4106{
024f4747
MM
4107 /* convert nice value [19,-20] to rlimit style value [1,40] */
4108 int nice_rlim = 20 - nice;
48f24c4d 4109
e43379f1
MM
4110 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4111 capable(CAP_SYS_NICE));
4112}
4113
1da177e4
LT
4114#ifdef __ARCH_WANT_SYS_NICE
4115
4116/*
4117 * sys_nice - change the priority of the current process.
4118 * @increment: priority increment
4119 *
4120 * sys_setpriority is a more generic, but much slower function that
4121 * does similar things.
4122 */
4123asmlinkage long sys_nice(int increment)
4124{
48f24c4d 4125 long nice, retval;
1da177e4
LT
4126
4127 /*
4128 * Setpriority might change our priority at the same moment.
4129 * We don't have to worry. Conceptually one call occurs first
4130 * and we have a single winner.
4131 */
e43379f1
MM
4132 if (increment < -40)
4133 increment = -40;
1da177e4
LT
4134 if (increment > 40)
4135 increment = 40;
4136
4137 nice = PRIO_TO_NICE(current->static_prio) + increment;
4138 if (nice < -20)
4139 nice = -20;
4140 if (nice > 19)
4141 nice = 19;
4142
e43379f1
MM
4143 if (increment < 0 && !can_nice(current, nice))
4144 return -EPERM;
4145
1da177e4
LT
4146 retval = security_task_setnice(current, nice);
4147 if (retval)
4148 return retval;
4149
4150 set_user_nice(current, nice);
4151 return 0;
4152}
4153
4154#endif
4155
4156/**
4157 * task_prio - return the priority value of a given task.
4158 * @p: the task in question.
4159 *
4160 * This is the priority value as seen by users in /proc.
4161 * RT tasks are offset by -200. Normal tasks are centered
4162 * around 0, value goes from -16 to +15.
4163 */
36c8b586 4164int task_prio(const struct task_struct *p)
1da177e4
LT
4165{
4166 return p->prio - MAX_RT_PRIO;
4167}
4168
4169/**
4170 * task_nice - return the nice value of a given task.
4171 * @p: the task in question.
4172 */
36c8b586 4173int task_nice(const struct task_struct *p)
1da177e4
LT
4174{
4175 return TASK_NICE(p);
4176}
1da177e4 4177EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4178
4179/**
4180 * idle_cpu - is a given cpu idle currently?
4181 * @cpu: the processor in question.
4182 */
4183int idle_cpu(int cpu)
4184{
4185 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4186}
4187
1da177e4
LT
4188/**
4189 * idle_task - return the idle task for a given cpu.
4190 * @cpu: the processor in question.
4191 */
36c8b586 4192struct task_struct *idle_task(int cpu)
1da177e4
LT
4193{
4194 return cpu_rq(cpu)->idle;
4195}
4196
4197/**
4198 * find_process_by_pid - find a process with a matching PID value.
4199 * @pid: the pid in question.
4200 */
a9957449 4201static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4202{
228ebcbe 4203 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4204}
4205
4206/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4207static void
4208__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4209{
dd41f596 4210 BUG_ON(p->se.on_rq);
48f24c4d 4211
1da177e4 4212 p->policy = policy;
dd41f596
IM
4213 switch (p->policy) {
4214 case SCHED_NORMAL:
4215 case SCHED_BATCH:
4216 case SCHED_IDLE:
4217 p->sched_class = &fair_sched_class;
4218 break;
4219 case SCHED_FIFO:
4220 case SCHED_RR:
4221 p->sched_class = &rt_sched_class;
4222 break;
4223 }
4224
1da177e4 4225 p->rt_priority = prio;
b29739f9
IM
4226 p->normal_prio = normal_prio(p);
4227 /* we are holding p->pi_lock already */
4228 p->prio = rt_mutex_getprio(p);
2dd73a4f 4229 set_load_weight(p);
1da177e4
LT
4230}
4231
4232/**
72fd4a35 4233 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4234 * @p: the task in question.
4235 * @policy: new policy.
4236 * @param: structure containing the new RT priority.
5fe1d75f 4237 *
72fd4a35 4238 * NOTE that the task may be already dead.
1da177e4 4239 */
95cdf3b7
IM
4240int sched_setscheduler(struct task_struct *p, int policy,
4241 struct sched_param *param)
1da177e4 4242{
83b699ed 4243 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4244 unsigned long flags;
70b97a7f 4245 struct rq *rq;
1da177e4 4246
66e5393a
SR
4247 /* may grab non-irq protected spin_locks */
4248 BUG_ON(in_interrupt());
1da177e4
LT
4249recheck:
4250 /* double check policy once rq lock held */
4251 if (policy < 0)
4252 policy = oldpolicy = p->policy;
4253 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4254 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4255 policy != SCHED_IDLE)
b0a9499c 4256 return -EINVAL;
1da177e4
LT
4257 /*
4258 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4259 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4260 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4261 */
4262 if (param->sched_priority < 0 ||
95cdf3b7 4263 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4264 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4265 return -EINVAL;
e05606d3 4266 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4267 return -EINVAL;
4268
37e4ab3f
OC
4269 /*
4270 * Allow unprivileged RT tasks to decrease priority:
4271 */
4272 if (!capable(CAP_SYS_NICE)) {
e05606d3 4273 if (rt_policy(policy)) {
8dc3e909 4274 unsigned long rlim_rtprio;
8dc3e909
ON
4275
4276 if (!lock_task_sighand(p, &flags))
4277 return -ESRCH;
4278 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4279 unlock_task_sighand(p, &flags);
4280
4281 /* can't set/change the rt policy */
4282 if (policy != p->policy && !rlim_rtprio)
4283 return -EPERM;
4284
4285 /* can't increase priority */
4286 if (param->sched_priority > p->rt_priority &&
4287 param->sched_priority > rlim_rtprio)
4288 return -EPERM;
4289 }
dd41f596
IM
4290 /*
4291 * Like positive nice levels, dont allow tasks to
4292 * move out of SCHED_IDLE either:
4293 */
4294 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4295 return -EPERM;
5fe1d75f 4296
37e4ab3f
OC
4297 /* can't change other user's priorities */
4298 if ((current->euid != p->euid) &&
4299 (current->euid != p->uid))
4300 return -EPERM;
4301 }
1da177e4
LT
4302
4303 retval = security_task_setscheduler(p, policy, param);
4304 if (retval)
4305 return retval;
b29739f9
IM
4306 /*
4307 * make sure no PI-waiters arrive (or leave) while we are
4308 * changing the priority of the task:
4309 */
4310 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4311 /*
4312 * To be able to change p->policy safely, the apropriate
4313 * runqueue lock must be held.
4314 */
b29739f9 4315 rq = __task_rq_lock(p);
1da177e4
LT
4316 /* recheck policy now with rq lock held */
4317 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4318 policy = oldpolicy = -1;
b29739f9
IM
4319 __task_rq_unlock(rq);
4320 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4321 goto recheck;
4322 }
2daa3577 4323 update_rq_clock(rq);
dd41f596 4324 on_rq = p->se.on_rq;
83b699ed
SV
4325 running = task_running(rq, p);
4326 if (on_rq) {
2e1cb74a 4327 deactivate_task(rq, p, 0);
83b699ed
SV
4328 if (running)
4329 p->sched_class->put_prev_task(rq, p);
4330 }
f6b53205 4331
1da177e4 4332 oldprio = p->prio;
dd41f596 4333 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4334
dd41f596 4335 if (on_rq) {
83b699ed
SV
4336 if (running)
4337 p->sched_class->set_curr_task(rq);
dd41f596 4338 activate_task(rq, p, 0);
1da177e4
LT
4339 /*
4340 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4341 * our priority decreased, or if we are not currently running on
4342 * this runqueue and our priority is higher than the current's
1da177e4 4343 */
83b699ed 4344 if (running) {
d5f9f942
AM
4345 if (p->prio > oldprio)
4346 resched_task(rq->curr);
dd41f596
IM
4347 } else {
4348 check_preempt_curr(rq, p);
4349 }
1da177e4 4350 }
b29739f9
IM
4351 __task_rq_unlock(rq);
4352 spin_unlock_irqrestore(&p->pi_lock, flags);
4353
95e02ca9
TG
4354 rt_mutex_adjust_pi(p);
4355
1da177e4
LT
4356 return 0;
4357}
4358EXPORT_SYMBOL_GPL(sched_setscheduler);
4359
95cdf3b7
IM
4360static int
4361do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4362{
1da177e4
LT
4363 struct sched_param lparam;
4364 struct task_struct *p;
36c8b586 4365 int retval;
1da177e4
LT
4366
4367 if (!param || pid < 0)
4368 return -EINVAL;
4369 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4370 return -EFAULT;
5fe1d75f
ON
4371
4372 rcu_read_lock();
4373 retval = -ESRCH;
1da177e4 4374 p = find_process_by_pid(pid);
5fe1d75f
ON
4375 if (p != NULL)
4376 retval = sched_setscheduler(p, policy, &lparam);
4377 rcu_read_unlock();
36c8b586 4378
1da177e4
LT
4379 return retval;
4380}
4381
4382/**
4383 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4384 * @pid: the pid in question.
4385 * @policy: new policy.
4386 * @param: structure containing the new RT priority.
4387 */
4388asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4389 struct sched_param __user *param)
4390{
c21761f1
JB
4391 /* negative values for policy are not valid */
4392 if (policy < 0)
4393 return -EINVAL;
4394
1da177e4
LT
4395 return do_sched_setscheduler(pid, policy, param);
4396}
4397
4398/**
4399 * sys_sched_setparam - set/change the RT priority of a thread
4400 * @pid: the pid in question.
4401 * @param: structure containing the new RT priority.
4402 */
4403asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4404{
4405 return do_sched_setscheduler(pid, -1, param);
4406}
4407
4408/**
4409 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4410 * @pid: the pid in question.
4411 */
4412asmlinkage long sys_sched_getscheduler(pid_t pid)
4413{
36c8b586 4414 struct task_struct *p;
3a5c359a 4415 int retval;
1da177e4
LT
4416
4417 if (pid < 0)
3a5c359a 4418 return -EINVAL;
1da177e4
LT
4419
4420 retval = -ESRCH;
4421 read_lock(&tasklist_lock);
4422 p = find_process_by_pid(pid);
4423 if (p) {
4424 retval = security_task_getscheduler(p);
4425 if (!retval)
4426 retval = p->policy;
4427 }
4428 read_unlock(&tasklist_lock);
1da177e4
LT
4429 return retval;
4430}
4431
4432/**
4433 * sys_sched_getscheduler - get the RT priority of a thread
4434 * @pid: the pid in question.
4435 * @param: structure containing the RT priority.
4436 */
4437asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4438{
4439 struct sched_param lp;
36c8b586 4440 struct task_struct *p;
3a5c359a 4441 int retval;
1da177e4
LT
4442
4443 if (!param || pid < 0)
3a5c359a 4444 return -EINVAL;
1da177e4
LT
4445
4446 read_lock(&tasklist_lock);
4447 p = find_process_by_pid(pid);
4448 retval = -ESRCH;
4449 if (!p)
4450 goto out_unlock;
4451
4452 retval = security_task_getscheduler(p);
4453 if (retval)
4454 goto out_unlock;
4455
4456 lp.sched_priority = p->rt_priority;
4457 read_unlock(&tasklist_lock);
4458
4459 /*
4460 * This one might sleep, we cannot do it with a spinlock held ...
4461 */
4462 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4463
1da177e4
LT
4464 return retval;
4465
4466out_unlock:
4467 read_unlock(&tasklist_lock);
4468 return retval;
4469}
4470
4471long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4472{
1da177e4 4473 cpumask_t cpus_allowed;
36c8b586
IM
4474 struct task_struct *p;
4475 int retval;
1da177e4 4476
5be9361c 4477 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4478 read_lock(&tasklist_lock);
4479
4480 p = find_process_by_pid(pid);
4481 if (!p) {
4482 read_unlock(&tasklist_lock);
5be9361c 4483 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4484 return -ESRCH;
4485 }
4486
4487 /*
4488 * It is not safe to call set_cpus_allowed with the
4489 * tasklist_lock held. We will bump the task_struct's
4490 * usage count and then drop tasklist_lock.
4491 */
4492 get_task_struct(p);
4493 read_unlock(&tasklist_lock);
4494
4495 retval = -EPERM;
4496 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4497 !capable(CAP_SYS_NICE))
4498 goto out_unlock;
4499
e7834f8f
DQ
4500 retval = security_task_setscheduler(p, 0, NULL);
4501 if (retval)
4502 goto out_unlock;
4503
1da177e4
LT
4504 cpus_allowed = cpuset_cpus_allowed(p);
4505 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4506 again:
1da177e4
LT
4507 retval = set_cpus_allowed(p, new_mask);
4508
8707d8b8
PM
4509 if (!retval) {
4510 cpus_allowed = cpuset_cpus_allowed(p);
4511 if (!cpus_subset(new_mask, cpus_allowed)) {
4512 /*
4513 * We must have raced with a concurrent cpuset
4514 * update. Just reset the cpus_allowed to the
4515 * cpuset's cpus_allowed
4516 */
4517 new_mask = cpus_allowed;
4518 goto again;
4519 }
4520 }
1da177e4
LT
4521out_unlock:
4522 put_task_struct(p);
5be9361c 4523 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4524 return retval;
4525}
4526
4527static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4528 cpumask_t *new_mask)
4529{
4530 if (len < sizeof(cpumask_t)) {
4531 memset(new_mask, 0, sizeof(cpumask_t));
4532 } else if (len > sizeof(cpumask_t)) {
4533 len = sizeof(cpumask_t);
4534 }
4535 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4536}
4537
4538/**
4539 * sys_sched_setaffinity - set the cpu affinity of a process
4540 * @pid: pid of the process
4541 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4542 * @user_mask_ptr: user-space pointer to the new cpu mask
4543 */
4544asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4545 unsigned long __user *user_mask_ptr)
4546{
4547 cpumask_t new_mask;
4548 int retval;
4549
4550 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4551 if (retval)
4552 return retval;
4553
4554 return sched_setaffinity(pid, new_mask);
4555}
4556
4557/*
4558 * Represents all cpu's present in the system
4559 * In systems capable of hotplug, this map could dynamically grow
4560 * as new cpu's are detected in the system via any platform specific
4561 * method, such as ACPI for e.g.
4562 */
4563
4cef0c61 4564cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4565EXPORT_SYMBOL(cpu_present_map);
4566
4567#ifndef CONFIG_SMP
4cef0c61 4568cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4569EXPORT_SYMBOL(cpu_online_map);
4570
4cef0c61 4571cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4572EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4573#endif
4574
4575long sched_getaffinity(pid_t pid, cpumask_t *mask)
4576{
36c8b586 4577 struct task_struct *p;
1da177e4 4578 int retval;
1da177e4 4579
5be9361c 4580 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4581 read_lock(&tasklist_lock);
4582
4583 retval = -ESRCH;
4584 p = find_process_by_pid(pid);
4585 if (!p)
4586 goto out_unlock;
4587
e7834f8f
DQ
4588 retval = security_task_getscheduler(p);
4589 if (retval)
4590 goto out_unlock;
4591
2f7016d9 4592 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4593
4594out_unlock:
4595 read_unlock(&tasklist_lock);
5be9361c 4596 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4597
9531b62f 4598 return retval;
1da177e4
LT
4599}
4600
4601/**
4602 * sys_sched_getaffinity - get the cpu affinity of a process
4603 * @pid: pid of the process
4604 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4605 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4606 */
4607asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4608 unsigned long __user *user_mask_ptr)
4609{
4610 int ret;
4611 cpumask_t mask;
4612
4613 if (len < sizeof(cpumask_t))
4614 return -EINVAL;
4615
4616 ret = sched_getaffinity(pid, &mask);
4617 if (ret < 0)
4618 return ret;
4619
4620 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4621 return -EFAULT;
4622
4623 return sizeof(cpumask_t);
4624}
4625
4626/**
4627 * sys_sched_yield - yield the current processor to other threads.
4628 *
dd41f596
IM
4629 * This function yields the current CPU to other tasks. If there are no
4630 * other threads running on this CPU then this function will return.
1da177e4
LT
4631 */
4632asmlinkage long sys_sched_yield(void)
4633{
70b97a7f 4634 struct rq *rq = this_rq_lock();
1da177e4 4635
2d72376b 4636 schedstat_inc(rq, yld_count);
4530d7ab 4637 current->sched_class->yield_task(rq);
1da177e4
LT
4638
4639 /*
4640 * Since we are going to call schedule() anyway, there's
4641 * no need to preempt or enable interrupts:
4642 */
4643 __release(rq->lock);
8a25d5de 4644 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4645 _raw_spin_unlock(&rq->lock);
4646 preempt_enable_no_resched();
4647
4648 schedule();
4649
4650 return 0;
4651}
4652
e7b38404 4653static void __cond_resched(void)
1da177e4 4654{
8e0a43d8
IM
4655#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4656 __might_sleep(__FILE__, __LINE__);
4657#endif
5bbcfd90
IM
4658 /*
4659 * The BKS might be reacquired before we have dropped
4660 * PREEMPT_ACTIVE, which could trigger a second
4661 * cond_resched() call.
4662 */
1da177e4
LT
4663 do {
4664 add_preempt_count(PREEMPT_ACTIVE);
4665 schedule();
4666 sub_preempt_count(PREEMPT_ACTIVE);
4667 } while (need_resched());
4668}
4669
4670int __sched cond_resched(void)
4671{
9414232f
IM
4672 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4673 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4674 __cond_resched();
4675 return 1;
4676 }
4677 return 0;
4678}
1da177e4
LT
4679EXPORT_SYMBOL(cond_resched);
4680
4681/*
4682 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4683 * call schedule, and on return reacquire the lock.
4684 *
4685 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4686 * operations here to prevent schedule() from being called twice (once via
4687 * spin_unlock(), once by hand).
4688 */
95cdf3b7 4689int cond_resched_lock(spinlock_t *lock)
1da177e4 4690{
6df3cecb
JK
4691 int ret = 0;
4692
1da177e4
LT
4693 if (need_lockbreak(lock)) {
4694 spin_unlock(lock);
4695 cpu_relax();
6df3cecb 4696 ret = 1;
1da177e4
LT
4697 spin_lock(lock);
4698 }
9414232f 4699 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4700 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4701 _raw_spin_unlock(lock);
4702 preempt_enable_no_resched();
4703 __cond_resched();
6df3cecb 4704 ret = 1;
1da177e4 4705 spin_lock(lock);
1da177e4 4706 }
6df3cecb 4707 return ret;
1da177e4 4708}
1da177e4
LT
4709EXPORT_SYMBOL(cond_resched_lock);
4710
4711int __sched cond_resched_softirq(void)
4712{
4713 BUG_ON(!in_softirq());
4714
9414232f 4715 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4716 local_bh_enable();
1da177e4
LT
4717 __cond_resched();
4718 local_bh_disable();
4719 return 1;
4720 }
4721 return 0;
4722}
1da177e4
LT
4723EXPORT_SYMBOL(cond_resched_softirq);
4724
1da177e4
LT
4725/**
4726 * yield - yield the current processor to other threads.
4727 *
72fd4a35 4728 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4729 * thread runnable and calls sys_sched_yield().
4730 */
4731void __sched yield(void)
4732{
4733 set_current_state(TASK_RUNNING);
4734 sys_sched_yield();
4735}
1da177e4
LT
4736EXPORT_SYMBOL(yield);
4737
4738/*
4739 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4740 * that process accounting knows that this is a task in IO wait state.
4741 *
4742 * But don't do that if it is a deliberate, throttling IO wait (this task
4743 * has set its backing_dev_info: the queue against which it should throttle)
4744 */
4745void __sched io_schedule(void)
4746{
70b97a7f 4747 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4748
0ff92245 4749 delayacct_blkio_start();
1da177e4
LT
4750 atomic_inc(&rq->nr_iowait);
4751 schedule();
4752 atomic_dec(&rq->nr_iowait);
0ff92245 4753 delayacct_blkio_end();
1da177e4 4754}
1da177e4
LT
4755EXPORT_SYMBOL(io_schedule);
4756
4757long __sched io_schedule_timeout(long timeout)
4758{
70b97a7f 4759 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4760 long ret;
4761
0ff92245 4762 delayacct_blkio_start();
1da177e4
LT
4763 atomic_inc(&rq->nr_iowait);
4764 ret = schedule_timeout(timeout);
4765 atomic_dec(&rq->nr_iowait);
0ff92245 4766 delayacct_blkio_end();
1da177e4
LT
4767 return ret;
4768}
4769
4770/**
4771 * sys_sched_get_priority_max - return maximum RT priority.
4772 * @policy: scheduling class.
4773 *
4774 * this syscall returns the maximum rt_priority that can be used
4775 * by a given scheduling class.
4776 */
4777asmlinkage long sys_sched_get_priority_max(int policy)
4778{
4779 int ret = -EINVAL;
4780
4781 switch (policy) {
4782 case SCHED_FIFO:
4783 case SCHED_RR:
4784 ret = MAX_USER_RT_PRIO-1;
4785 break;
4786 case SCHED_NORMAL:
b0a9499c 4787 case SCHED_BATCH:
dd41f596 4788 case SCHED_IDLE:
1da177e4
LT
4789 ret = 0;
4790 break;
4791 }
4792 return ret;
4793}
4794
4795/**
4796 * sys_sched_get_priority_min - return minimum RT priority.
4797 * @policy: scheduling class.
4798 *
4799 * this syscall returns the minimum rt_priority that can be used
4800 * by a given scheduling class.
4801 */
4802asmlinkage long sys_sched_get_priority_min(int policy)
4803{
4804 int ret = -EINVAL;
4805
4806 switch (policy) {
4807 case SCHED_FIFO:
4808 case SCHED_RR:
4809 ret = 1;
4810 break;
4811 case SCHED_NORMAL:
b0a9499c 4812 case SCHED_BATCH:
dd41f596 4813 case SCHED_IDLE:
1da177e4
LT
4814 ret = 0;
4815 }
4816 return ret;
4817}
4818
4819/**
4820 * sys_sched_rr_get_interval - return the default timeslice of a process.
4821 * @pid: pid of the process.
4822 * @interval: userspace pointer to the timeslice value.
4823 *
4824 * this syscall writes the default timeslice value of a given process
4825 * into the user-space timespec buffer. A value of '0' means infinity.
4826 */
4827asmlinkage
4828long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4829{
36c8b586 4830 struct task_struct *p;
a4ec24b4 4831 unsigned int time_slice;
3a5c359a 4832 int retval;
1da177e4 4833 struct timespec t;
1da177e4
LT
4834
4835 if (pid < 0)
3a5c359a 4836 return -EINVAL;
1da177e4
LT
4837
4838 retval = -ESRCH;
4839 read_lock(&tasklist_lock);
4840 p = find_process_by_pid(pid);
4841 if (!p)
4842 goto out_unlock;
4843
4844 retval = security_task_getscheduler(p);
4845 if (retval)
4846 goto out_unlock;
4847
a4ec24b4
DA
4848 if (p->policy == SCHED_FIFO)
4849 time_slice = 0;
4850 else if (p->policy == SCHED_RR)
4851 time_slice = DEF_TIMESLICE;
4852 else {
4853 struct sched_entity *se = &p->se;
4854 unsigned long flags;
4855 struct rq *rq;
4856
4857 rq = task_rq_lock(p, &flags);
4858 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4859 task_rq_unlock(rq, &flags);
4860 }
1da177e4 4861 read_unlock(&tasklist_lock);
a4ec24b4 4862 jiffies_to_timespec(time_slice, &t);
1da177e4 4863 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4864 return retval;
3a5c359a 4865
1da177e4
LT
4866out_unlock:
4867 read_unlock(&tasklist_lock);
4868 return retval;
4869}
4870
2ed6e34f 4871static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4872
4873static void show_task(struct task_struct *p)
1da177e4 4874{
1da177e4 4875 unsigned long free = 0;
36c8b586 4876 unsigned state;
1da177e4 4877
1da177e4 4878 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4879 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4880 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4881#if BITS_PER_LONG == 32
1da177e4 4882 if (state == TASK_RUNNING)
cc4ea795 4883 printk(KERN_CONT " running ");
1da177e4 4884 else
cc4ea795 4885 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4886#else
4887 if (state == TASK_RUNNING)
cc4ea795 4888 printk(KERN_CONT " running task ");
1da177e4 4889 else
cc4ea795 4890 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4891#endif
4892#ifdef CONFIG_DEBUG_STACK_USAGE
4893 {
10ebffde 4894 unsigned long *n = end_of_stack(p);
1da177e4
LT
4895 while (!*n)
4896 n++;
10ebffde 4897 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4898 }
4899#endif
ba25f9dc
PE
4900 printk(KERN_CONT "%5lu %5d %6d\n", free,
4901 task_pid_nr(p), task_pid_nr(p->parent));
1da177e4
LT
4902
4903 if (state != TASK_RUNNING)
4904 show_stack(p, NULL);
4905}
4906
e59e2ae2 4907void show_state_filter(unsigned long state_filter)
1da177e4 4908{
36c8b586 4909 struct task_struct *g, *p;
1da177e4 4910
4bd77321
IM
4911#if BITS_PER_LONG == 32
4912 printk(KERN_INFO
4913 " task PC stack pid father\n");
1da177e4 4914#else
4bd77321
IM
4915 printk(KERN_INFO
4916 " task PC stack pid father\n");
1da177e4
LT
4917#endif
4918 read_lock(&tasklist_lock);
4919 do_each_thread(g, p) {
4920 /*
4921 * reset the NMI-timeout, listing all files on a slow
4922 * console might take alot of time:
4923 */
4924 touch_nmi_watchdog();
39bc89fd 4925 if (!state_filter || (p->state & state_filter))
e59e2ae2 4926 show_task(p);
1da177e4
LT
4927 } while_each_thread(g, p);
4928
04c9167f
JF
4929 touch_all_softlockup_watchdogs();
4930
dd41f596
IM
4931#ifdef CONFIG_SCHED_DEBUG
4932 sysrq_sched_debug_show();
4933#endif
1da177e4 4934 read_unlock(&tasklist_lock);
e59e2ae2
IM
4935 /*
4936 * Only show locks if all tasks are dumped:
4937 */
4938 if (state_filter == -1)
4939 debug_show_all_locks();
1da177e4
LT
4940}
4941
1df21055
IM
4942void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4943{
dd41f596 4944 idle->sched_class = &idle_sched_class;
1df21055
IM
4945}
4946
f340c0d1
IM
4947/**
4948 * init_idle - set up an idle thread for a given CPU
4949 * @idle: task in question
4950 * @cpu: cpu the idle task belongs to
4951 *
4952 * NOTE: this function does not set the idle thread's NEED_RESCHED
4953 * flag, to make booting more robust.
4954 */
5c1e1767 4955void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4956{
70b97a7f 4957 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4958 unsigned long flags;
4959
dd41f596
IM
4960 __sched_fork(idle);
4961 idle->se.exec_start = sched_clock();
4962
b29739f9 4963 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4964 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4965 __set_task_cpu(idle, cpu);
1da177e4
LT
4966
4967 spin_lock_irqsave(&rq->lock, flags);
4968 rq->curr = rq->idle = idle;
4866cde0
NP
4969#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4970 idle->oncpu = 1;
4971#endif
1da177e4
LT
4972 spin_unlock_irqrestore(&rq->lock, flags);
4973
4974 /* Set the preempt count _outside_ the spinlocks! */
4975#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4976 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4977#else
a1261f54 4978 task_thread_info(idle)->preempt_count = 0;
1da177e4 4979#endif
dd41f596
IM
4980 /*
4981 * The idle tasks have their own, simple scheduling class:
4982 */
4983 idle->sched_class = &idle_sched_class;
1da177e4
LT
4984}
4985
4986/*
4987 * In a system that switches off the HZ timer nohz_cpu_mask
4988 * indicates which cpus entered this state. This is used
4989 * in the rcu update to wait only for active cpus. For system
4990 * which do not switch off the HZ timer nohz_cpu_mask should
4991 * always be CPU_MASK_NONE.
4992 */
4993cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4994
4995#ifdef CONFIG_SMP
4996/*
4997 * This is how migration works:
4998 *
70b97a7f 4999 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5000 * runqueue and wake up that CPU's migration thread.
5001 * 2) we down() the locked semaphore => thread blocks.
5002 * 3) migration thread wakes up (implicitly it forces the migrated
5003 * thread off the CPU)
5004 * 4) it gets the migration request and checks whether the migrated
5005 * task is still in the wrong runqueue.
5006 * 5) if it's in the wrong runqueue then the migration thread removes
5007 * it and puts it into the right queue.
5008 * 6) migration thread up()s the semaphore.
5009 * 7) we wake up and the migration is done.
5010 */
5011
5012/*
5013 * Change a given task's CPU affinity. Migrate the thread to a
5014 * proper CPU and schedule it away if the CPU it's executing on
5015 * is removed from the allowed bitmask.
5016 *
5017 * NOTE: the caller must have a valid reference to the task, the
5018 * task must not exit() & deallocate itself prematurely. The
5019 * call is not atomic; no spinlocks may be held.
5020 */
36c8b586 5021int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5022{
70b97a7f 5023 struct migration_req req;
1da177e4 5024 unsigned long flags;
70b97a7f 5025 struct rq *rq;
48f24c4d 5026 int ret = 0;
1da177e4
LT
5027
5028 rq = task_rq_lock(p, &flags);
5029 if (!cpus_intersects(new_mask, cpu_online_map)) {
5030 ret = -EINVAL;
5031 goto out;
5032 }
5033
5034 p->cpus_allowed = new_mask;
5035 /* Can the task run on the task's current CPU? If so, we're done */
5036 if (cpu_isset(task_cpu(p), new_mask))
5037 goto out;
5038
5039 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5040 /* Need help from migration thread: drop lock and wait. */
5041 task_rq_unlock(rq, &flags);
5042 wake_up_process(rq->migration_thread);
5043 wait_for_completion(&req.done);
5044 tlb_migrate_finish(p->mm);
5045 return 0;
5046 }
5047out:
5048 task_rq_unlock(rq, &flags);
48f24c4d 5049
1da177e4
LT
5050 return ret;
5051}
1da177e4
LT
5052EXPORT_SYMBOL_GPL(set_cpus_allowed);
5053
5054/*
5055 * Move (not current) task off this cpu, onto dest cpu. We're doing
5056 * this because either it can't run here any more (set_cpus_allowed()
5057 * away from this CPU, or CPU going down), or because we're
5058 * attempting to rebalance this task on exec (sched_exec).
5059 *
5060 * So we race with normal scheduler movements, but that's OK, as long
5061 * as the task is no longer on this CPU.
efc30814
KK
5062 *
5063 * Returns non-zero if task was successfully migrated.
1da177e4 5064 */
efc30814 5065static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5066{
70b97a7f 5067 struct rq *rq_dest, *rq_src;
dd41f596 5068 int ret = 0, on_rq;
1da177e4
LT
5069
5070 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5071 return ret;
1da177e4
LT
5072
5073 rq_src = cpu_rq(src_cpu);
5074 rq_dest = cpu_rq(dest_cpu);
5075
5076 double_rq_lock(rq_src, rq_dest);
5077 /* Already moved. */
5078 if (task_cpu(p) != src_cpu)
5079 goto out;
5080 /* Affinity changed (again). */
5081 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5082 goto out;
5083
dd41f596 5084 on_rq = p->se.on_rq;
6e82a3be 5085 if (on_rq)
2e1cb74a 5086 deactivate_task(rq_src, p, 0);
6e82a3be 5087
1da177e4 5088 set_task_cpu(p, dest_cpu);
dd41f596
IM
5089 if (on_rq) {
5090 activate_task(rq_dest, p, 0);
5091 check_preempt_curr(rq_dest, p);
1da177e4 5092 }
efc30814 5093 ret = 1;
1da177e4
LT
5094out:
5095 double_rq_unlock(rq_src, rq_dest);
efc30814 5096 return ret;
1da177e4
LT
5097}
5098
5099/*
5100 * migration_thread - this is a highprio system thread that performs
5101 * thread migration by bumping thread off CPU then 'pushing' onto
5102 * another runqueue.
5103 */
95cdf3b7 5104static int migration_thread(void *data)
1da177e4 5105{
1da177e4 5106 int cpu = (long)data;
70b97a7f 5107 struct rq *rq;
1da177e4
LT
5108
5109 rq = cpu_rq(cpu);
5110 BUG_ON(rq->migration_thread != current);
5111
5112 set_current_state(TASK_INTERRUPTIBLE);
5113 while (!kthread_should_stop()) {
70b97a7f 5114 struct migration_req *req;
1da177e4 5115 struct list_head *head;
1da177e4 5116
1da177e4
LT
5117 spin_lock_irq(&rq->lock);
5118
5119 if (cpu_is_offline(cpu)) {
5120 spin_unlock_irq(&rq->lock);
5121 goto wait_to_die;
5122 }
5123
5124 if (rq->active_balance) {
5125 active_load_balance(rq, cpu);
5126 rq->active_balance = 0;
5127 }
5128
5129 head = &rq->migration_queue;
5130
5131 if (list_empty(head)) {
5132 spin_unlock_irq(&rq->lock);
5133 schedule();
5134 set_current_state(TASK_INTERRUPTIBLE);
5135 continue;
5136 }
70b97a7f 5137 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5138 list_del_init(head->next);
5139
674311d5
NP
5140 spin_unlock(&rq->lock);
5141 __migrate_task(req->task, cpu, req->dest_cpu);
5142 local_irq_enable();
1da177e4
LT
5143
5144 complete(&req->done);
5145 }
5146 __set_current_state(TASK_RUNNING);
5147 return 0;
5148
5149wait_to_die:
5150 /* Wait for kthread_stop */
5151 set_current_state(TASK_INTERRUPTIBLE);
5152 while (!kthread_should_stop()) {
5153 schedule();
5154 set_current_state(TASK_INTERRUPTIBLE);
5155 }
5156 __set_current_state(TASK_RUNNING);
5157 return 0;
5158}
5159
5160#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5161
5162static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5163{
5164 int ret;
5165
5166 local_irq_disable();
5167 ret = __migrate_task(p, src_cpu, dest_cpu);
5168 local_irq_enable();
5169 return ret;
5170}
5171
054b9108 5172/*
3a4fa0a2 5173 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5174 * NOTE: interrupts should be disabled by the caller
5175 */
48f24c4d 5176static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5177{
efc30814 5178 unsigned long flags;
1da177e4 5179 cpumask_t mask;
70b97a7f
IM
5180 struct rq *rq;
5181 int dest_cpu;
1da177e4 5182
3a5c359a
AK
5183 do {
5184 /* On same node? */
5185 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5186 cpus_and(mask, mask, p->cpus_allowed);
5187 dest_cpu = any_online_cpu(mask);
5188
5189 /* On any allowed CPU? */
5190 if (dest_cpu == NR_CPUS)
5191 dest_cpu = any_online_cpu(p->cpus_allowed);
5192
5193 /* No more Mr. Nice Guy. */
5194 if (dest_cpu == NR_CPUS) {
470fd646
CW
5195 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5196 /*
5197 * Try to stay on the same cpuset, where the
5198 * current cpuset may be a subset of all cpus.
5199 * The cpuset_cpus_allowed_locked() variant of
5200 * cpuset_cpus_allowed() will not block. It must be
5201 * called within calls to cpuset_lock/cpuset_unlock.
5202 */
3a5c359a 5203 rq = task_rq_lock(p, &flags);
470fd646 5204 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5205 dest_cpu = any_online_cpu(p->cpus_allowed);
5206 task_rq_unlock(rq, &flags);
1da177e4 5207
3a5c359a
AK
5208 /*
5209 * Don't tell them about moving exiting tasks or
5210 * kernel threads (both mm NULL), since they never
5211 * leave kernel.
5212 */
5213 if (p->mm && printk_ratelimit())
5214 printk(KERN_INFO "process %d (%s) no "
5215 "longer affine to cpu%d\n",
ba25f9dc 5216 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 5217 }
f7b4cddc 5218 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5219}
5220
5221/*
5222 * While a dead CPU has no uninterruptible tasks queued at this point,
5223 * it might still have a nonzero ->nr_uninterruptible counter, because
5224 * for performance reasons the counter is not stricly tracking tasks to
5225 * their home CPUs. So we just add the counter to another CPU's counter,
5226 * to keep the global sum constant after CPU-down:
5227 */
70b97a7f 5228static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5229{
70b97a7f 5230 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5231 unsigned long flags;
5232
5233 local_irq_save(flags);
5234 double_rq_lock(rq_src, rq_dest);
5235 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5236 rq_src->nr_uninterruptible = 0;
5237 double_rq_unlock(rq_src, rq_dest);
5238 local_irq_restore(flags);
5239}
5240
5241/* Run through task list and migrate tasks from the dead cpu. */
5242static void migrate_live_tasks(int src_cpu)
5243{
48f24c4d 5244 struct task_struct *p, *t;
1da177e4 5245
f7b4cddc 5246 read_lock(&tasklist_lock);
1da177e4 5247
48f24c4d
IM
5248 do_each_thread(t, p) {
5249 if (p == current)
1da177e4
LT
5250 continue;
5251
48f24c4d
IM
5252 if (task_cpu(p) == src_cpu)
5253 move_task_off_dead_cpu(src_cpu, p);
5254 } while_each_thread(t, p);
1da177e4 5255
f7b4cddc 5256 read_unlock(&tasklist_lock);
1da177e4
LT
5257}
5258
a9957449
AD
5259/*
5260 * activate_idle_task - move idle task to the _front_ of runqueue.
5261 */
5262static void activate_idle_task(struct task_struct *p, struct rq *rq)
5263{
5264 update_rq_clock(rq);
5265
5266 if (p->state == TASK_UNINTERRUPTIBLE)
5267 rq->nr_uninterruptible--;
5268
5269 enqueue_task(rq, p, 0);
5270 inc_nr_running(p, rq);
5271}
5272
dd41f596
IM
5273/*
5274 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5275 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5276 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5277 */
5278void sched_idle_next(void)
5279{
48f24c4d 5280 int this_cpu = smp_processor_id();
70b97a7f 5281 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5282 struct task_struct *p = rq->idle;
5283 unsigned long flags;
5284
5285 /* cpu has to be offline */
48f24c4d 5286 BUG_ON(cpu_online(this_cpu));
1da177e4 5287
48f24c4d
IM
5288 /*
5289 * Strictly not necessary since rest of the CPUs are stopped by now
5290 * and interrupts disabled on the current cpu.
1da177e4
LT
5291 */
5292 spin_lock_irqsave(&rq->lock, flags);
5293
dd41f596 5294 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5295
5296 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5297 activate_idle_task(p, rq);
1da177e4
LT
5298
5299 spin_unlock_irqrestore(&rq->lock, flags);
5300}
5301
48f24c4d
IM
5302/*
5303 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5304 * offline.
5305 */
5306void idle_task_exit(void)
5307{
5308 struct mm_struct *mm = current->active_mm;
5309
5310 BUG_ON(cpu_online(smp_processor_id()));
5311
5312 if (mm != &init_mm)
5313 switch_mm(mm, &init_mm, current);
5314 mmdrop(mm);
5315}
5316
054b9108 5317/* called under rq->lock with disabled interrupts */
36c8b586 5318static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5319{
70b97a7f 5320 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5321
5322 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5323 BUG_ON(!p->exit_state);
1da177e4
LT
5324
5325 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5326 BUG_ON(p->state == TASK_DEAD);
1da177e4 5327
48f24c4d 5328 get_task_struct(p);
1da177e4
LT
5329
5330 /*
5331 * Drop lock around migration; if someone else moves it,
5332 * that's OK. No task can be added to this CPU, so iteration is
5333 * fine.
5334 */
f7b4cddc 5335 spin_unlock_irq(&rq->lock);
48f24c4d 5336 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5337 spin_lock_irq(&rq->lock);
1da177e4 5338
48f24c4d 5339 put_task_struct(p);
1da177e4
LT
5340}
5341
5342/* release_task() removes task from tasklist, so we won't find dead tasks. */
5343static void migrate_dead_tasks(unsigned int dead_cpu)
5344{
70b97a7f 5345 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5346 struct task_struct *next;
48f24c4d 5347
dd41f596
IM
5348 for ( ; ; ) {
5349 if (!rq->nr_running)
5350 break;
a8e504d2 5351 update_rq_clock(rq);
ff95f3df 5352 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5353 if (!next)
5354 break;
5355 migrate_dead(dead_cpu, next);
e692ab53 5356
1da177e4
LT
5357 }
5358}
5359#endif /* CONFIG_HOTPLUG_CPU */
5360
e692ab53
NP
5361#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5362
5363static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5364 {
5365 .procname = "sched_domain",
c57baf1e 5366 .mode = 0555,
e0361851 5367 },
e692ab53
NP
5368 {0,},
5369};
5370
5371static struct ctl_table sd_ctl_root[] = {
e0361851 5372 {
c57baf1e 5373 .ctl_name = CTL_KERN,
e0361851 5374 .procname = "kernel",
c57baf1e 5375 .mode = 0555,
e0361851
AD
5376 .child = sd_ctl_dir,
5377 },
e692ab53
NP
5378 {0,},
5379};
5380
5381static struct ctl_table *sd_alloc_ctl_entry(int n)
5382{
5383 struct ctl_table *entry =
5cf9f062 5384 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5385
e692ab53
NP
5386 return entry;
5387}
5388
6382bc90
MM
5389static void sd_free_ctl_entry(struct ctl_table **tablep)
5390{
cd790076 5391 struct ctl_table *entry;
6382bc90 5392
cd790076
MM
5393 /*
5394 * In the intermediate directories, both the child directory and
5395 * procname are dynamically allocated and could fail but the mode
5396 * will always be set. In the lowest directory the names are
5397 * static strings and all have proc handlers.
5398 */
5399 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5400 if (entry->child)
5401 sd_free_ctl_entry(&entry->child);
cd790076
MM
5402 if (entry->proc_handler == NULL)
5403 kfree(entry->procname);
5404 }
6382bc90
MM
5405
5406 kfree(*tablep);
5407 *tablep = NULL;
5408}
5409
e692ab53 5410static void
e0361851 5411set_table_entry(struct ctl_table *entry,
e692ab53
NP
5412 const char *procname, void *data, int maxlen,
5413 mode_t mode, proc_handler *proc_handler)
5414{
e692ab53
NP
5415 entry->procname = procname;
5416 entry->data = data;
5417 entry->maxlen = maxlen;
5418 entry->mode = mode;
5419 entry->proc_handler = proc_handler;
5420}
5421
5422static struct ctl_table *
5423sd_alloc_ctl_domain_table(struct sched_domain *sd)
5424{
ace8b3d6 5425 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5426
ad1cdc1d
MM
5427 if (table == NULL)
5428 return NULL;
5429
e0361851 5430 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5431 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5432 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5433 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5434 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5435 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5436 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5437 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5438 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5439 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5440 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5441 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5442 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5443 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5444 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5445 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5446 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5447 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5448 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5449 &sd->cache_nice_tries,
5450 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5451 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5452 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5453 /* &table[11] is terminator */
e692ab53
NP
5454
5455 return table;
5456}
5457
8401f775 5458static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5459{
5460 struct ctl_table *entry, *table;
5461 struct sched_domain *sd;
5462 int domain_num = 0, i;
5463 char buf[32];
5464
5465 for_each_domain(cpu, sd)
5466 domain_num++;
5467 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5468 if (table == NULL)
5469 return NULL;
e692ab53
NP
5470
5471 i = 0;
5472 for_each_domain(cpu, sd) {
5473 snprintf(buf, 32, "domain%d", i);
e692ab53 5474 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5475 entry->mode = 0555;
e692ab53
NP
5476 entry->child = sd_alloc_ctl_domain_table(sd);
5477 entry++;
5478 i++;
5479 }
5480 return table;
5481}
5482
5483static struct ctl_table_header *sd_sysctl_header;
6382bc90 5484static void register_sched_domain_sysctl(void)
e692ab53
NP
5485{
5486 int i, cpu_num = num_online_cpus();
5487 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5488 char buf[32];
5489
7378547f
MM
5490 WARN_ON(sd_ctl_dir[0].child);
5491 sd_ctl_dir[0].child = entry;
5492
ad1cdc1d
MM
5493 if (entry == NULL)
5494 return;
5495
97b6ea7b 5496 for_each_online_cpu(i) {
e692ab53 5497 snprintf(buf, 32, "cpu%d", i);
e692ab53 5498 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5499 entry->mode = 0555;
e692ab53 5500 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5501 entry++;
e692ab53 5502 }
7378547f
MM
5503
5504 WARN_ON(sd_sysctl_header);
e692ab53
NP
5505 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5506}
6382bc90 5507
7378547f 5508/* may be called multiple times per register */
6382bc90
MM
5509static void unregister_sched_domain_sysctl(void)
5510{
7378547f
MM
5511 if (sd_sysctl_header)
5512 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5513 sd_sysctl_header = NULL;
7378547f
MM
5514 if (sd_ctl_dir[0].child)
5515 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5516}
e692ab53 5517#else
6382bc90
MM
5518static void register_sched_domain_sysctl(void)
5519{
5520}
5521static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5522{
5523}
5524#endif
5525
1da177e4
LT
5526/*
5527 * migration_call - callback that gets triggered when a CPU is added.
5528 * Here we can start up the necessary migration thread for the new CPU.
5529 */
48f24c4d
IM
5530static int __cpuinit
5531migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5532{
1da177e4 5533 struct task_struct *p;
48f24c4d 5534 int cpu = (long)hcpu;
1da177e4 5535 unsigned long flags;
70b97a7f 5536 struct rq *rq;
1da177e4
LT
5537
5538 switch (action) {
5be9361c
GS
5539 case CPU_LOCK_ACQUIRE:
5540 mutex_lock(&sched_hotcpu_mutex);
5541 break;
5542
1da177e4 5543 case CPU_UP_PREPARE:
8bb78442 5544 case CPU_UP_PREPARE_FROZEN:
dd41f596 5545 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5546 if (IS_ERR(p))
5547 return NOTIFY_BAD;
1da177e4
LT
5548 kthread_bind(p, cpu);
5549 /* Must be high prio: stop_machine expects to yield to it. */
5550 rq = task_rq_lock(p, &flags);
dd41f596 5551 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5552 task_rq_unlock(rq, &flags);
5553 cpu_rq(cpu)->migration_thread = p;
5554 break;
48f24c4d 5555
1da177e4 5556 case CPU_ONLINE:
8bb78442 5557 case CPU_ONLINE_FROZEN:
3a4fa0a2 5558 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5559 wake_up_process(cpu_rq(cpu)->migration_thread);
5560 break;
48f24c4d 5561
1da177e4
LT
5562#ifdef CONFIG_HOTPLUG_CPU
5563 case CPU_UP_CANCELED:
8bb78442 5564 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5565 if (!cpu_rq(cpu)->migration_thread)
5566 break;
1da177e4 5567 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5568 kthread_bind(cpu_rq(cpu)->migration_thread,
5569 any_online_cpu(cpu_online_map));
1da177e4
LT
5570 kthread_stop(cpu_rq(cpu)->migration_thread);
5571 cpu_rq(cpu)->migration_thread = NULL;
5572 break;
48f24c4d 5573
1da177e4 5574 case CPU_DEAD:
8bb78442 5575 case CPU_DEAD_FROZEN:
470fd646 5576 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5577 migrate_live_tasks(cpu);
5578 rq = cpu_rq(cpu);
5579 kthread_stop(rq->migration_thread);
5580 rq->migration_thread = NULL;
5581 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5582 spin_lock_irq(&rq->lock);
a8e504d2 5583 update_rq_clock(rq);
2e1cb74a 5584 deactivate_task(rq, rq->idle, 0);
1da177e4 5585 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5586 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5587 rq->idle->sched_class = &idle_sched_class;
1da177e4 5588 migrate_dead_tasks(cpu);
d2da272a 5589 spin_unlock_irq(&rq->lock);
470fd646 5590 cpuset_unlock();
1da177e4
LT
5591 migrate_nr_uninterruptible(rq);
5592 BUG_ON(rq->nr_running != 0);
5593
5594 /* No need to migrate the tasks: it was best-effort if
5be9361c 5595 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5596 * the requestors. */
5597 spin_lock_irq(&rq->lock);
5598 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5599 struct migration_req *req;
5600
1da177e4 5601 req = list_entry(rq->migration_queue.next,
70b97a7f 5602 struct migration_req, list);
1da177e4
LT
5603 list_del_init(&req->list);
5604 complete(&req->done);
5605 }
5606 spin_unlock_irq(&rq->lock);
5607 break;
5608#endif
5be9361c
GS
5609 case CPU_LOCK_RELEASE:
5610 mutex_unlock(&sched_hotcpu_mutex);
5611 break;
1da177e4
LT
5612 }
5613 return NOTIFY_OK;
5614}
5615
5616/* Register at highest priority so that task migration (migrate_all_tasks)
5617 * happens before everything else.
5618 */
26c2143b 5619static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5620 .notifier_call = migration_call,
5621 .priority = 10
5622};
5623
5624int __init migration_init(void)
5625{
5626 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5627 int err;
48f24c4d
IM
5628
5629 /* Start one for the boot CPU: */
07dccf33
AM
5630 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5631 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5632 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5633 register_cpu_notifier(&migration_notifier);
48f24c4d 5634
1da177e4
LT
5635 return 0;
5636}
5637#endif
5638
5639#ifdef CONFIG_SMP
476f3534
CL
5640
5641/* Number of possible processor ids */
5642int nr_cpu_ids __read_mostly = NR_CPUS;
5643EXPORT_SYMBOL(nr_cpu_ids);
5644
3e9830dc 5645#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5646
5647static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5648{
4dcf6aff
IM
5649 struct sched_group *group = sd->groups;
5650 cpumask_t groupmask;
5651 char str[NR_CPUS];
1da177e4 5652
4dcf6aff
IM
5653 cpumask_scnprintf(str, NR_CPUS, sd->span);
5654 cpus_clear(groupmask);
5655
5656 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5657
5658 if (!(sd->flags & SD_LOAD_BALANCE)) {
5659 printk("does not load-balance\n");
5660 if (sd->parent)
5661 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5662 " has parent");
5663 return -1;
41c7ce9a
NP
5664 }
5665
4dcf6aff
IM
5666 printk(KERN_CONT "span %s\n", str);
5667
5668 if (!cpu_isset(cpu, sd->span)) {
5669 printk(KERN_ERR "ERROR: domain->span does not contain "
5670 "CPU%d\n", cpu);
5671 }
5672 if (!cpu_isset(cpu, group->cpumask)) {
5673 printk(KERN_ERR "ERROR: domain->groups does not contain"
5674 " CPU%d\n", cpu);
5675 }
1da177e4 5676
4dcf6aff 5677 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5678 do {
4dcf6aff
IM
5679 if (!group) {
5680 printk("\n");
5681 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5682 break;
5683 }
5684
4dcf6aff
IM
5685 if (!group->__cpu_power) {
5686 printk(KERN_CONT "\n");
5687 printk(KERN_ERR "ERROR: domain->cpu_power not "
5688 "set\n");
5689 break;
5690 }
1da177e4 5691
4dcf6aff
IM
5692 if (!cpus_weight(group->cpumask)) {
5693 printk(KERN_CONT "\n");
5694 printk(KERN_ERR "ERROR: empty group\n");
5695 break;
5696 }
1da177e4 5697
4dcf6aff
IM
5698 if (cpus_intersects(groupmask, group->cpumask)) {
5699 printk(KERN_CONT "\n");
5700 printk(KERN_ERR "ERROR: repeated CPUs\n");
5701 break;
5702 }
1da177e4 5703
4dcf6aff 5704 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5705
4dcf6aff
IM
5706 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5707 printk(KERN_CONT " %s", str);
1da177e4 5708
4dcf6aff
IM
5709 group = group->next;
5710 } while (group != sd->groups);
5711 printk(KERN_CONT "\n");
1da177e4 5712
4dcf6aff
IM
5713 if (!cpus_equal(sd->span, groupmask))
5714 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5715
4dcf6aff
IM
5716 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5717 printk(KERN_ERR "ERROR: parent span is not a superset "
5718 "of domain->span\n");
5719 return 0;
5720}
1da177e4 5721
4dcf6aff
IM
5722static void sched_domain_debug(struct sched_domain *sd, int cpu)
5723{
5724 int level = 0;
1da177e4 5725
4dcf6aff
IM
5726 if (!sd) {
5727 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5728 return;
5729 }
1da177e4 5730
4dcf6aff
IM
5731 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5732
5733 for (;;) {
5734 if (sched_domain_debug_one(sd, cpu, level))
5735 break;
1da177e4
LT
5736 level++;
5737 sd = sd->parent;
33859f7f 5738 if (!sd)
4dcf6aff
IM
5739 break;
5740 }
1da177e4
LT
5741}
5742#else
48f24c4d 5743# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5744#endif
5745
1a20ff27 5746static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5747{
5748 if (cpus_weight(sd->span) == 1)
5749 return 1;
5750
5751 /* Following flags need at least 2 groups */
5752 if (sd->flags & (SD_LOAD_BALANCE |
5753 SD_BALANCE_NEWIDLE |
5754 SD_BALANCE_FORK |
89c4710e
SS
5755 SD_BALANCE_EXEC |
5756 SD_SHARE_CPUPOWER |
5757 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5758 if (sd->groups != sd->groups->next)
5759 return 0;
5760 }
5761
5762 /* Following flags don't use groups */
5763 if (sd->flags & (SD_WAKE_IDLE |
5764 SD_WAKE_AFFINE |
5765 SD_WAKE_BALANCE))
5766 return 0;
5767
5768 return 1;
5769}
5770
48f24c4d
IM
5771static int
5772sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5773{
5774 unsigned long cflags = sd->flags, pflags = parent->flags;
5775
5776 if (sd_degenerate(parent))
5777 return 1;
5778
5779 if (!cpus_equal(sd->span, parent->span))
5780 return 0;
5781
5782 /* Does parent contain flags not in child? */
5783 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5784 if (cflags & SD_WAKE_AFFINE)
5785 pflags &= ~SD_WAKE_BALANCE;
5786 /* Flags needing groups don't count if only 1 group in parent */
5787 if (parent->groups == parent->groups->next) {
5788 pflags &= ~(SD_LOAD_BALANCE |
5789 SD_BALANCE_NEWIDLE |
5790 SD_BALANCE_FORK |
89c4710e
SS
5791 SD_BALANCE_EXEC |
5792 SD_SHARE_CPUPOWER |
5793 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5794 }
5795 if (~cflags & pflags)
5796 return 0;
5797
5798 return 1;
5799}
5800
1da177e4
LT
5801/*
5802 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5803 * hold the hotplug lock.
5804 */
9c1cfda2 5805static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5806{
70b97a7f 5807 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5808 struct sched_domain *tmp;
5809
5810 /* Remove the sched domains which do not contribute to scheduling. */
5811 for (tmp = sd; tmp; tmp = tmp->parent) {
5812 struct sched_domain *parent = tmp->parent;
5813 if (!parent)
5814 break;
1a848870 5815 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5816 tmp->parent = parent->parent;
1a848870
SS
5817 if (parent->parent)
5818 parent->parent->child = tmp;
5819 }
245af2c7
SS
5820 }
5821
1a848870 5822 if (sd && sd_degenerate(sd)) {
245af2c7 5823 sd = sd->parent;
1a848870
SS
5824 if (sd)
5825 sd->child = NULL;
5826 }
1da177e4
LT
5827
5828 sched_domain_debug(sd, cpu);
5829
674311d5 5830 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5831}
5832
5833/* cpus with isolated domains */
67af63a6 5834static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5835
5836/* Setup the mask of cpus configured for isolated domains */
5837static int __init isolated_cpu_setup(char *str)
5838{
5839 int ints[NR_CPUS], i;
5840
5841 str = get_options(str, ARRAY_SIZE(ints), ints);
5842 cpus_clear(cpu_isolated_map);
5843 for (i = 1; i <= ints[0]; i++)
5844 if (ints[i] < NR_CPUS)
5845 cpu_set(ints[i], cpu_isolated_map);
5846 return 1;
5847}
5848
8927f494 5849__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5850
5851/*
6711cab4
SS
5852 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5853 * to a function which identifies what group(along with sched group) a CPU
5854 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5855 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5856 *
5857 * init_sched_build_groups will build a circular linked list of the groups
5858 * covered by the given span, and will set each group's ->cpumask correctly,
5859 * and ->cpu_power to 0.
5860 */
a616058b 5861static void
6711cab4
SS
5862init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5863 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5864 struct sched_group **sg))
1da177e4
LT
5865{
5866 struct sched_group *first = NULL, *last = NULL;
5867 cpumask_t covered = CPU_MASK_NONE;
5868 int i;
5869
5870 for_each_cpu_mask(i, span) {
6711cab4
SS
5871 struct sched_group *sg;
5872 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5873 int j;
5874
5875 if (cpu_isset(i, covered))
5876 continue;
5877
5878 sg->cpumask = CPU_MASK_NONE;
5517d86b 5879 sg->__cpu_power = 0;
1da177e4
LT
5880
5881 for_each_cpu_mask(j, span) {
6711cab4 5882 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5883 continue;
5884
5885 cpu_set(j, covered);
5886 cpu_set(j, sg->cpumask);
5887 }
5888 if (!first)
5889 first = sg;
5890 if (last)
5891 last->next = sg;
5892 last = sg;
5893 }
5894 last->next = first;
5895}
5896
9c1cfda2 5897#define SD_NODES_PER_DOMAIN 16
1da177e4 5898
9c1cfda2 5899#ifdef CONFIG_NUMA
198e2f18 5900
9c1cfda2
JH
5901/**
5902 * find_next_best_node - find the next node to include in a sched_domain
5903 * @node: node whose sched_domain we're building
5904 * @used_nodes: nodes already in the sched_domain
5905 *
5906 * Find the next node to include in a given scheduling domain. Simply
5907 * finds the closest node not already in the @used_nodes map.
5908 *
5909 * Should use nodemask_t.
5910 */
5911static int find_next_best_node(int node, unsigned long *used_nodes)
5912{
5913 int i, n, val, min_val, best_node = 0;
5914
5915 min_val = INT_MAX;
5916
5917 for (i = 0; i < MAX_NUMNODES; i++) {
5918 /* Start at @node */
5919 n = (node + i) % MAX_NUMNODES;
5920
5921 if (!nr_cpus_node(n))
5922 continue;
5923
5924 /* Skip already used nodes */
5925 if (test_bit(n, used_nodes))
5926 continue;
5927
5928 /* Simple min distance search */
5929 val = node_distance(node, n);
5930
5931 if (val < min_val) {
5932 min_val = val;
5933 best_node = n;
5934 }
5935 }
5936
5937 set_bit(best_node, used_nodes);
5938 return best_node;
5939}
5940
5941/**
5942 * sched_domain_node_span - get a cpumask for a node's sched_domain
5943 * @node: node whose cpumask we're constructing
5944 * @size: number of nodes to include in this span
5945 *
5946 * Given a node, construct a good cpumask for its sched_domain to span. It
5947 * should be one that prevents unnecessary balancing, but also spreads tasks
5948 * out optimally.
5949 */
5950static cpumask_t sched_domain_node_span(int node)
5951{
9c1cfda2 5952 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5953 cpumask_t span, nodemask;
5954 int i;
9c1cfda2
JH
5955
5956 cpus_clear(span);
5957 bitmap_zero(used_nodes, MAX_NUMNODES);
5958
5959 nodemask = node_to_cpumask(node);
5960 cpus_or(span, span, nodemask);
5961 set_bit(node, used_nodes);
5962
5963 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5964 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5965
9c1cfda2
JH
5966 nodemask = node_to_cpumask(next_node);
5967 cpus_or(span, span, nodemask);
5968 }
5969
5970 return span;
5971}
5972#endif
5973
5c45bf27 5974int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5975
9c1cfda2 5976/*
48f24c4d 5977 * SMT sched-domains:
9c1cfda2 5978 */
1da177e4
LT
5979#ifdef CONFIG_SCHED_SMT
5980static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5981static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5982
6711cab4
SS
5983static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5984 struct sched_group **sg)
1da177e4 5985{
6711cab4
SS
5986 if (sg)
5987 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5988 return cpu;
5989}
5990#endif
5991
48f24c4d
IM
5992/*
5993 * multi-core sched-domains:
5994 */
1e9f28fa
SS
5995#ifdef CONFIG_SCHED_MC
5996static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5997static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5998#endif
5999
6000#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
6001static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6002 struct sched_group **sg)
1e9f28fa 6003{
6711cab4 6004 int group;
d5a7430d 6005 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6006 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6007 group = first_cpu(mask);
6008 if (sg)
6009 *sg = &per_cpu(sched_group_core, group);
6010 return group;
1e9f28fa
SS
6011}
6012#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
6013static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6014 struct sched_group **sg)
1e9f28fa 6015{
6711cab4
SS
6016 if (sg)
6017 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6018 return cpu;
6019}
6020#endif
6021
1da177e4 6022static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6023static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6024
6711cab4
SS
6025static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6026 struct sched_group **sg)
1da177e4 6027{
6711cab4 6028 int group;
48f24c4d 6029#ifdef CONFIG_SCHED_MC
1e9f28fa 6030 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6031 cpus_and(mask, mask, *cpu_map);
6711cab4 6032 group = first_cpu(mask);
1e9f28fa 6033#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6034 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6035 cpus_and(mask, mask, *cpu_map);
6711cab4 6036 group = first_cpu(mask);
1da177e4 6037#else
6711cab4 6038 group = cpu;
1da177e4 6039#endif
6711cab4
SS
6040 if (sg)
6041 *sg = &per_cpu(sched_group_phys, group);
6042 return group;
1da177e4
LT
6043}
6044
6045#ifdef CONFIG_NUMA
1da177e4 6046/*
9c1cfda2
JH
6047 * The init_sched_build_groups can't handle what we want to do with node
6048 * groups, so roll our own. Now each node has its own list of groups which
6049 * gets dynamically allocated.
1da177e4 6050 */
9c1cfda2 6051static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6052static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6053
9c1cfda2 6054static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6055static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6056
6711cab4
SS
6057static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6058 struct sched_group **sg)
9c1cfda2 6059{
6711cab4
SS
6060 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6061 int group;
6062
6063 cpus_and(nodemask, nodemask, *cpu_map);
6064 group = first_cpu(nodemask);
6065
6066 if (sg)
6067 *sg = &per_cpu(sched_group_allnodes, group);
6068 return group;
1da177e4 6069}
6711cab4 6070
08069033
SS
6071static void init_numa_sched_groups_power(struct sched_group *group_head)
6072{
6073 struct sched_group *sg = group_head;
6074 int j;
6075
6076 if (!sg)
6077 return;
3a5c359a
AK
6078 do {
6079 for_each_cpu_mask(j, sg->cpumask) {
6080 struct sched_domain *sd;
08069033 6081
3a5c359a
AK
6082 sd = &per_cpu(phys_domains, j);
6083 if (j != first_cpu(sd->groups->cpumask)) {
6084 /*
6085 * Only add "power" once for each
6086 * physical package.
6087 */
6088 continue;
6089 }
08069033 6090
3a5c359a
AK
6091 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6092 }
6093 sg = sg->next;
6094 } while (sg != group_head);
08069033 6095}
1da177e4
LT
6096#endif
6097
a616058b 6098#ifdef CONFIG_NUMA
51888ca2
SV
6099/* Free memory allocated for various sched_group structures */
6100static void free_sched_groups(const cpumask_t *cpu_map)
6101{
a616058b 6102 int cpu, i;
51888ca2
SV
6103
6104 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6105 struct sched_group **sched_group_nodes
6106 = sched_group_nodes_bycpu[cpu];
6107
51888ca2
SV
6108 if (!sched_group_nodes)
6109 continue;
6110
6111 for (i = 0; i < MAX_NUMNODES; i++) {
6112 cpumask_t nodemask = node_to_cpumask(i);
6113 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6114
6115 cpus_and(nodemask, nodemask, *cpu_map);
6116 if (cpus_empty(nodemask))
6117 continue;
6118
6119 if (sg == NULL)
6120 continue;
6121 sg = sg->next;
6122next_sg:
6123 oldsg = sg;
6124 sg = sg->next;
6125 kfree(oldsg);
6126 if (oldsg != sched_group_nodes[i])
6127 goto next_sg;
6128 }
6129 kfree(sched_group_nodes);
6130 sched_group_nodes_bycpu[cpu] = NULL;
6131 }
51888ca2 6132}
a616058b
SS
6133#else
6134static void free_sched_groups(const cpumask_t *cpu_map)
6135{
6136}
6137#endif
51888ca2 6138
89c4710e
SS
6139/*
6140 * Initialize sched groups cpu_power.
6141 *
6142 * cpu_power indicates the capacity of sched group, which is used while
6143 * distributing the load between different sched groups in a sched domain.
6144 * Typically cpu_power for all the groups in a sched domain will be same unless
6145 * there are asymmetries in the topology. If there are asymmetries, group
6146 * having more cpu_power will pickup more load compared to the group having
6147 * less cpu_power.
6148 *
6149 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6150 * the maximum number of tasks a group can handle in the presence of other idle
6151 * or lightly loaded groups in the same sched domain.
6152 */
6153static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6154{
6155 struct sched_domain *child;
6156 struct sched_group *group;
6157
6158 WARN_ON(!sd || !sd->groups);
6159
6160 if (cpu != first_cpu(sd->groups->cpumask))
6161 return;
6162
6163 child = sd->child;
6164
5517d86b
ED
6165 sd->groups->__cpu_power = 0;
6166
89c4710e
SS
6167 /*
6168 * For perf policy, if the groups in child domain share resources
6169 * (for example cores sharing some portions of the cache hierarchy
6170 * or SMT), then set this domain groups cpu_power such that each group
6171 * can handle only one task, when there are other idle groups in the
6172 * same sched domain.
6173 */
6174 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6175 (child->flags &
6176 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6177 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6178 return;
6179 }
6180
89c4710e
SS
6181 /*
6182 * add cpu_power of each child group to this groups cpu_power
6183 */
6184 group = child->groups;
6185 do {
5517d86b 6186 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6187 group = group->next;
6188 } while (group != child->groups);
6189}
6190
1da177e4 6191/*
1a20ff27
DG
6192 * Build sched domains for a given set of cpus and attach the sched domains
6193 * to the individual cpus
1da177e4 6194 */
51888ca2 6195static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6196{
6197 int i;
d1b55138
JH
6198#ifdef CONFIG_NUMA
6199 struct sched_group **sched_group_nodes = NULL;
6711cab4 6200 int sd_allnodes = 0;
d1b55138
JH
6201
6202 /*
6203 * Allocate the per-node list of sched groups
6204 */
5cf9f062 6205 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
d3a5aa98 6206 GFP_KERNEL);
d1b55138
JH
6207 if (!sched_group_nodes) {
6208 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6209 return -ENOMEM;
d1b55138
JH
6210 }
6211 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6212#endif
1da177e4
LT
6213
6214 /*
1a20ff27 6215 * Set up domains for cpus specified by the cpu_map.
1da177e4 6216 */
1a20ff27 6217 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6218 struct sched_domain *sd = NULL, *p;
6219 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6220
1a20ff27 6221 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6222
6223#ifdef CONFIG_NUMA
dd41f596
IM
6224 if (cpus_weight(*cpu_map) >
6225 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6226 sd = &per_cpu(allnodes_domains, i);
6227 *sd = SD_ALLNODES_INIT;
6228 sd->span = *cpu_map;
6711cab4 6229 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6230 p = sd;
6711cab4 6231 sd_allnodes = 1;
9c1cfda2
JH
6232 } else
6233 p = NULL;
6234
1da177e4 6235 sd = &per_cpu(node_domains, i);
1da177e4 6236 *sd = SD_NODE_INIT;
9c1cfda2
JH
6237 sd->span = sched_domain_node_span(cpu_to_node(i));
6238 sd->parent = p;
1a848870
SS
6239 if (p)
6240 p->child = sd;
9c1cfda2 6241 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6242#endif
6243
6244 p = sd;
6245 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6246 *sd = SD_CPU_INIT;
6247 sd->span = nodemask;
6248 sd->parent = p;
1a848870
SS
6249 if (p)
6250 p->child = sd;
6711cab4 6251 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6252
1e9f28fa
SS
6253#ifdef CONFIG_SCHED_MC
6254 p = sd;
6255 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6256 *sd = SD_MC_INIT;
6257 sd->span = cpu_coregroup_map(i);
6258 cpus_and(sd->span, sd->span, *cpu_map);
6259 sd->parent = p;
1a848870 6260 p->child = sd;
6711cab4 6261 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6262#endif
6263
1da177e4
LT
6264#ifdef CONFIG_SCHED_SMT
6265 p = sd;
6266 sd = &per_cpu(cpu_domains, i);
1da177e4 6267 *sd = SD_SIBLING_INIT;
d5a7430d 6268 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6269 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6270 sd->parent = p;
1a848870 6271 p->child = sd;
6711cab4 6272 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6273#endif
6274 }
6275
6276#ifdef CONFIG_SCHED_SMT
6277 /* Set up CPU (sibling) groups */
9c1cfda2 6278 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6279 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6280 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6281 if (i != first_cpu(this_sibling_map))
6282 continue;
6283
dd41f596
IM
6284 init_sched_build_groups(this_sibling_map, cpu_map,
6285 &cpu_to_cpu_group);
1da177e4
LT
6286 }
6287#endif
6288
1e9f28fa
SS
6289#ifdef CONFIG_SCHED_MC
6290 /* Set up multi-core groups */
6291 for_each_cpu_mask(i, *cpu_map) {
6292 cpumask_t this_core_map = cpu_coregroup_map(i);
6293 cpus_and(this_core_map, this_core_map, *cpu_map);
6294 if (i != first_cpu(this_core_map))
6295 continue;
dd41f596
IM
6296 init_sched_build_groups(this_core_map, cpu_map,
6297 &cpu_to_core_group);
1e9f28fa
SS
6298 }
6299#endif
6300
1da177e4
LT
6301 /* Set up physical groups */
6302 for (i = 0; i < MAX_NUMNODES; i++) {
6303 cpumask_t nodemask = node_to_cpumask(i);
6304
1a20ff27 6305 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6306 if (cpus_empty(nodemask))
6307 continue;
6308
6711cab4 6309 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6310 }
6311
6312#ifdef CONFIG_NUMA
6313 /* Set up node groups */
6711cab4 6314 if (sd_allnodes)
dd41f596
IM
6315 init_sched_build_groups(*cpu_map, cpu_map,
6316 &cpu_to_allnodes_group);
9c1cfda2
JH
6317
6318 for (i = 0; i < MAX_NUMNODES; i++) {
6319 /* Set up node groups */
6320 struct sched_group *sg, *prev;
6321 cpumask_t nodemask = node_to_cpumask(i);
6322 cpumask_t domainspan;
6323 cpumask_t covered = CPU_MASK_NONE;
6324 int j;
6325
6326 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6327 if (cpus_empty(nodemask)) {
6328 sched_group_nodes[i] = NULL;
9c1cfda2 6329 continue;
d1b55138 6330 }
9c1cfda2
JH
6331
6332 domainspan = sched_domain_node_span(i);
6333 cpus_and(domainspan, domainspan, *cpu_map);
6334
15f0b676 6335 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6336 if (!sg) {
6337 printk(KERN_WARNING "Can not alloc domain group for "
6338 "node %d\n", i);
6339 goto error;
6340 }
9c1cfda2
JH
6341 sched_group_nodes[i] = sg;
6342 for_each_cpu_mask(j, nodemask) {
6343 struct sched_domain *sd;
9761eea8 6344
9c1cfda2
JH
6345 sd = &per_cpu(node_domains, j);
6346 sd->groups = sg;
9c1cfda2 6347 }
5517d86b 6348 sg->__cpu_power = 0;
9c1cfda2 6349 sg->cpumask = nodemask;
51888ca2 6350 sg->next = sg;
9c1cfda2
JH
6351 cpus_or(covered, covered, nodemask);
6352 prev = sg;
6353
6354 for (j = 0; j < MAX_NUMNODES; j++) {
6355 cpumask_t tmp, notcovered;
6356 int n = (i + j) % MAX_NUMNODES;
6357
6358 cpus_complement(notcovered, covered);
6359 cpus_and(tmp, notcovered, *cpu_map);
6360 cpus_and(tmp, tmp, domainspan);
6361 if (cpus_empty(tmp))
6362 break;
6363
6364 nodemask = node_to_cpumask(n);
6365 cpus_and(tmp, tmp, nodemask);
6366 if (cpus_empty(tmp))
6367 continue;
6368
15f0b676
SV
6369 sg = kmalloc_node(sizeof(struct sched_group),
6370 GFP_KERNEL, i);
9c1cfda2
JH
6371 if (!sg) {
6372 printk(KERN_WARNING
6373 "Can not alloc domain group for node %d\n", j);
51888ca2 6374 goto error;
9c1cfda2 6375 }
5517d86b 6376 sg->__cpu_power = 0;
9c1cfda2 6377 sg->cpumask = tmp;
51888ca2 6378 sg->next = prev->next;
9c1cfda2
JH
6379 cpus_or(covered, covered, tmp);
6380 prev->next = sg;
6381 prev = sg;
6382 }
9c1cfda2 6383 }
1da177e4
LT
6384#endif
6385
6386 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6387#ifdef CONFIG_SCHED_SMT
1a20ff27 6388 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6389 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6390
89c4710e 6391 init_sched_groups_power(i, sd);
5c45bf27 6392 }
1da177e4 6393#endif
1e9f28fa 6394#ifdef CONFIG_SCHED_MC
5c45bf27 6395 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6396 struct sched_domain *sd = &per_cpu(core_domains, i);
6397
89c4710e 6398 init_sched_groups_power(i, sd);
5c45bf27
SS
6399 }
6400#endif
1e9f28fa 6401
5c45bf27 6402 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6403 struct sched_domain *sd = &per_cpu(phys_domains, i);
6404
89c4710e 6405 init_sched_groups_power(i, sd);
1da177e4
LT
6406 }
6407
9c1cfda2 6408#ifdef CONFIG_NUMA
08069033
SS
6409 for (i = 0; i < MAX_NUMNODES; i++)
6410 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6411
6711cab4
SS
6412 if (sd_allnodes) {
6413 struct sched_group *sg;
f712c0c7 6414
6711cab4 6415 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6416 init_numa_sched_groups_power(sg);
6417 }
9c1cfda2
JH
6418#endif
6419
1da177e4 6420 /* Attach the domains */
1a20ff27 6421 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6422 struct sched_domain *sd;
6423#ifdef CONFIG_SCHED_SMT
6424 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6425#elif defined(CONFIG_SCHED_MC)
6426 sd = &per_cpu(core_domains, i);
1da177e4
LT
6427#else
6428 sd = &per_cpu(phys_domains, i);
6429#endif
6430 cpu_attach_domain(sd, i);
6431 }
51888ca2
SV
6432
6433 return 0;
6434
a616058b 6435#ifdef CONFIG_NUMA
51888ca2
SV
6436error:
6437 free_sched_groups(cpu_map);
6438 return -ENOMEM;
a616058b 6439#endif
1da177e4 6440}
029190c5
PJ
6441
6442static cpumask_t *doms_cur; /* current sched domains */
6443static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6444
6445/*
6446 * Special case: If a kmalloc of a doms_cur partition (array of
6447 * cpumask_t) fails, then fallback to a single sched domain,
6448 * as determined by the single cpumask_t fallback_doms.
6449 */
6450static cpumask_t fallback_doms;
6451
1a20ff27
DG
6452/*
6453 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6454 * For now this just excludes isolated cpus, but could be used to
6455 * exclude other special cases in the future.
1a20ff27 6456 */
51888ca2 6457static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6458{
7378547f
MM
6459 int err;
6460
029190c5
PJ
6461 ndoms_cur = 1;
6462 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6463 if (!doms_cur)
6464 doms_cur = &fallback_doms;
6465 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6466 err = build_sched_domains(doms_cur);
6382bc90 6467 register_sched_domain_sysctl();
7378547f
MM
6468
6469 return err;
1a20ff27
DG
6470}
6471
6472static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6473{
51888ca2 6474 free_sched_groups(cpu_map);
9c1cfda2 6475}
1da177e4 6476
1a20ff27
DG
6477/*
6478 * Detach sched domains from a group of cpus specified in cpu_map
6479 * These cpus will now be attached to the NULL domain
6480 */
858119e1 6481static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6482{
6483 int i;
6484
6382bc90
MM
6485 unregister_sched_domain_sysctl();
6486
1a20ff27
DG
6487 for_each_cpu_mask(i, *cpu_map)
6488 cpu_attach_domain(NULL, i);
6489 synchronize_sched();
6490 arch_destroy_sched_domains(cpu_map);
6491}
6492
029190c5
PJ
6493/*
6494 * Partition sched domains as specified by the 'ndoms_new'
6495 * cpumasks in the array doms_new[] of cpumasks. This compares
6496 * doms_new[] to the current sched domain partitioning, doms_cur[].
6497 * It destroys each deleted domain and builds each new domain.
6498 *
6499 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6500 * The masks don't intersect (don't overlap.) We should setup one
6501 * sched domain for each mask. CPUs not in any of the cpumasks will
6502 * not be load balanced. If the same cpumask appears both in the
6503 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6504 * it as it is.
6505 *
6506 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6507 * ownership of it and will kfree it when done with it. If the caller
6508 * failed the kmalloc call, then it can pass in doms_new == NULL,
6509 * and partition_sched_domains() will fallback to the single partition
6510 * 'fallback_doms'.
6511 *
6512 * Call with hotplug lock held
6513 */
6514void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6515{
6516 int i, j;
6517
7378547f
MM
6518 /* always unregister in case we don't destroy any domains */
6519 unregister_sched_domain_sysctl();
6520
029190c5
PJ
6521 if (doms_new == NULL) {
6522 ndoms_new = 1;
6523 doms_new = &fallback_doms;
6524 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6525 }
6526
6527 /* Destroy deleted domains */
6528 for (i = 0; i < ndoms_cur; i++) {
6529 for (j = 0; j < ndoms_new; j++) {
6530 if (cpus_equal(doms_cur[i], doms_new[j]))
6531 goto match1;
6532 }
6533 /* no match - a current sched domain not in new doms_new[] */
6534 detach_destroy_domains(doms_cur + i);
6535match1:
6536 ;
6537 }
6538
6539 /* Build new domains */
6540 for (i = 0; i < ndoms_new; i++) {
6541 for (j = 0; j < ndoms_cur; j++) {
6542 if (cpus_equal(doms_new[i], doms_cur[j]))
6543 goto match2;
6544 }
6545 /* no match - add a new doms_new */
6546 build_sched_domains(doms_new + i);
6547match2:
6548 ;
6549 }
6550
6551 /* Remember the new sched domains */
6552 if (doms_cur != &fallback_doms)
6553 kfree(doms_cur);
6554 doms_cur = doms_new;
6555 ndoms_cur = ndoms_new;
7378547f
MM
6556
6557 register_sched_domain_sysctl();
029190c5
PJ
6558}
6559
5c45bf27 6560#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6561static int arch_reinit_sched_domains(void)
5c45bf27
SS
6562{
6563 int err;
6564
5be9361c 6565 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6566 detach_destroy_domains(&cpu_online_map);
6567 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6568 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6569
6570 return err;
6571}
6572
6573static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6574{
6575 int ret;
6576
6577 if (buf[0] != '0' && buf[0] != '1')
6578 return -EINVAL;
6579
6580 if (smt)
6581 sched_smt_power_savings = (buf[0] == '1');
6582 else
6583 sched_mc_power_savings = (buf[0] == '1');
6584
6585 ret = arch_reinit_sched_domains();
6586
6587 return ret ? ret : count;
6588}
6589
5c45bf27
SS
6590#ifdef CONFIG_SCHED_MC
6591static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6592{
6593 return sprintf(page, "%u\n", sched_mc_power_savings);
6594}
48f24c4d
IM
6595static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6596 const char *buf, size_t count)
5c45bf27
SS
6597{
6598 return sched_power_savings_store(buf, count, 0);
6599}
6707de00
AB
6600static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6601 sched_mc_power_savings_store);
5c45bf27
SS
6602#endif
6603
6604#ifdef CONFIG_SCHED_SMT
6605static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6606{
6607 return sprintf(page, "%u\n", sched_smt_power_savings);
6608}
48f24c4d
IM
6609static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6610 const char *buf, size_t count)
5c45bf27
SS
6611{
6612 return sched_power_savings_store(buf, count, 1);
6613}
6707de00
AB
6614static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6615 sched_smt_power_savings_store);
6616#endif
6617
6618int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6619{
6620 int err = 0;
6621
6622#ifdef CONFIG_SCHED_SMT
6623 if (smt_capable())
6624 err = sysfs_create_file(&cls->kset.kobj,
6625 &attr_sched_smt_power_savings.attr);
6626#endif
6627#ifdef CONFIG_SCHED_MC
6628 if (!err && mc_capable())
6629 err = sysfs_create_file(&cls->kset.kobj,
6630 &attr_sched_mc_power_savings.attr);
6631#endif
6632 return err;
6633}
5c45bf27
SS
6634#endif
6635
1da177e4
LT
6636/*
6637 * Force a reinitialization of the sched domains hierarchy. The domains
6638 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6639 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6640 * which will prevent rebalancing while the sched domains are recalculated.
6641 */
6642static int update_sched_domains(struct notifier_block *nfb,
6643 unsigned long action, void *hcpu)
6644{
1da177e4
LT
6645 switch (action) {
6646 case CPU_UP_PREPARE:
8bb78442 6647 case CPU_UP_PREPARE_FROZEN:
1da177e4 6648 case CPU_DOWN_PREPARE:
8bb78442 6649 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6650 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6651 return NOTIFY_OK;
6652
6653 case CPU_UP_CANCELED:
8bb78442 6654 case CPU_UP_CANCELED_FROZEN:
1da177e4 6655 case CPU_DOWN_FAILED:
8bb78442 6656 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6657 case CPU_ONLINE:
8bb78442 6658 case CPU_ONLINE_FROZEN:
1da177e4 6659 case CPU_DEAD:
8bb78442 6660 case CPU_DEAD_FROZEN:
1da177e4
LT
6661 /*
6662 * Fall through and re-initialise the domains.
6663 */
6664 break;
6665 default:
6666 return NOTIFY_DONE;
6667 }
6668
6669 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6670 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6671
6672 return NOTIFY_OK;
6673}
1da177e4
LT
6674
6675void __init sched_init_smp(void)
6676{
5c1e1767
NP
6677 cpumask_t non_isolated_cpus;
6678
5be9361c 6679 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6680 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6681 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6682 if (cpus_empty(non_isolated_cpus))
6683 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6684 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6685 /* XXX: Theoretical race here - CPU may be hotplugged now */
6686 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6687
6688 /* Move init over to a non-isolated CPU */
6689 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6690 BUG();
1da177e4
LT
6691}
6692#else
6693void __init sched_init_smp(void)
6694{
6695}
6696#endif /* CONFIG_SMP */
6697
6698int in_sched_functions(unsigned long addr)
6699{
6700 /* Linker adds these: start and end of __sched functions */
6701 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6702
1da177e4
LT
6703 return in_lock_functions(addr) ||
6704 (addr >= (unsigned long)__sched_text_start
6705 && addr < (unsigned long)__sched_text_end);
6706}
6707
a9957449 6708static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6709{
6710 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6711#ifdef CONFIG_FAIR_GROUP_SCHED
6712 cfs_rq->rq = rq;
6713#endif
67e9fb2a 6714 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6715}
6716
1da177e4
LT
6717void __init sched_init(void)
6718{
476f3534 6719 int highest_cpu = 0;
dd41f596
IM
6720 int i, j;
6721
0a945022 6722 for_each_possible_cpu(i) {
dd41f596 6723 struct rt_prio_array *array;
70b97a7f 6724 struct rq *rq;
1da177e4
LT
6725
6726 rq = cpu_rq(i);
6727 spin_lock_init(&rq->lock);
fcb99371 6728 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6729 rq->nr_running = 0;
dd41f596
IM
6730 rq->clock = 1;
6731 init_cfs_rq(&rq->cfs, rq);
6732#ifdef CONFIG_FAIR_GROUP_SCHED
6733 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6734 {
6735 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6736 struct sched_entity *se =
6737 &per_cpu(init_sched_entity, i);
6738
6739 init_cfs_rq_p[i] = cfs_rq;
6740 init_cfs_rq(cfs_rq, rq);
4cf86d77 6741 cfs_rq->tg = &init_task_group;
3a252015 6742 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6743 &rq->leaf_cfs_rq_list);
6744
3a252015
IM
6745 init_sched_entity_p[i] = se;
6746 se->cfs_rq = &rq->cfs;
6747 se->my_q = cfs_rq;
4cf86d77 6748 se->load.weight = init_task_group_load;
9b5b7751 6749 se->load.inv_weight =
4cf86d77 6750 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6751 se->parent = NULL;
6752 }
4cf86d77 6753 init_task_group.shares = init_task_group_load;
5cb350ba 6754 spin_lock_init(&init_task_group.lock);
dd41f596 6755#endif
1da177e4 6756
dd41f596
IM
6757 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6758 rq->cpu_load[j] = 0;
1da177e4 6759#ifdef CONFIG_SMP
41c7ce9a 6760 rq->sd = NULL;
1da177e4 6761 rq->active_balance = 0;
dd41f596 6762 rq->next_balance = jiffies;
1da177e4 6763 rq->push_cpu = 0;
0a2966b4 6764 rq->cpu = i;
1da177e4
LT
6765 rq->migration_thread = NULL;
6766 INIT_LIST_HEAD(&rq->migration_queue);
6767#endif
6768 atomic_set(&rq->nr_iowait, 0);
6769
dd41f596
IM
6770 array = &rq->rt.active;
6771 for (j = 0; j < MAX_RT_PRIO; j++) {
6772 INIT_LIST_HEAD(array->queue + j);
6773 __clear_bit(j, array->bitmap);
1da177e4 6774 }
476f3534 6775 highest_cpu = i;
dd41f596
IM
6776 /* delimiter for bitsearch: */
6777 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6778 }
6779
2dd73a4f 6780 set_load_weight(&init_task);
b50f60ce 6781
e107be36
AK
6782#ifdef CONFIG_PREEMPT_NOTIFIERS
6783 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6784#endif
6785
c9819f45 6786#ifdef CONFIG_SMP
476f3534 6787 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6788 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6789#endif
6790
b50f60ce
HC
6791#ifdef CONFIG_RT_MUTEXES
6792 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6793#endif
6794
1da177e4
LT
6795 /*
6796 * The boot idle thread does lazy MMU switching as well:
6797 */
6798 atomic_inc(&init_mm.mm_count);
6799 enter_lazy_tlb(&init_mm, current);
6800
6801 /*
6802 * Make us the idle thread. Technically, schedule() should not be
6803 * called from this thread, however somewhere below it might be,
6804 * but because we are the idle thread, we just pick up running again
6805 * when this runqueue becomes "idle".
6806 */
6807 init_idle(current, smp_processor_id());
dd41f596
IM
6808 /*
6809 * During early bootup we pretend to be a normal task:
6810 */
6811 current->sched_class = &fair_sched_class;
1da177e4
LT
6812}
6813
6814#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6815void __might_sleep(char *file, int line)
6816{
48f24c4d 6817#ifdef in_atomic
1da177e4
LT
6818 static unsigned long prev_jiffy; /* ratelimiting */
6819
6820 if ((in_atomic() || irqs_disabled()) &&
6821 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6822 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6823 return;
6824 prev_jiffy = jiffies;
91368d73 6825 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6826 " context at %s:%d\n", file, line);
6827 printk("in_atomic():%d, irqs_disabled():%d\n",
6828 in_atomic(), irqs_disabled());
a4c410f0 6829 debug_show_held_locks(current);
3117df04
IM
6830 if (irqs_disabled())
6831 print_irqtrace_events(current);
1da177e4
LT
6832 dump_stack();
6833 }
6834#endif
6835}
6836EXPORT_SYMBOL(__might_sleep);
6837#endif
6838
6839#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6840static void normalize_task(struct rq *rq, struct task_struct *p)
6841{
6842 int on_rq;
6843 update_rq_clock(rq);
6844 on_rq = p->se.on_rq;
6845 if (on_rq)
6846 deactivate_task(rq, p, 0);
6847 __setscheduler(rq, p, SCHED_NORMAL, 0);
6848 if (on_rq) {
6849 activate_task(rq, p, 0);
6850 resched_task(rq->curr);
6851 }
6852}
6853
1da177e4
LT
6854void normalize_rt_tasks(void)
6855{
a0f98a1c 6856 struct task_struct *g, *p;
1da177e4 6857 unsigned long flags;
70b97a7f 6858 struct rq *rq;
1da177e4
LT
6859
6860 read_lock_irq(&tasklist_lock);
a0f98a1c 6861 do_each_thread(g, p) {
178be793
IM
6862 /*
6863 * Only normalize user tasks:
6864 */
6865 if (!p->mm)
6866 continue;
6867
6cfb0d5d 6868 p->se.exec_start = 0;
6cfb0d5d 6869#ifdef CONFIG_SCHEDSTATS
dd41f596 6870 p->se.wait_start = 0;
dd41f596 6871 p->se.sleep_start = 0;
dd41f596 6872 p->se.block_start = 0;
6cfb0d5d 6873#endif
dd41f596
IM
6874 task_rq(p)->clock = 0;
6875
6876 if (!rt_task(p)) {
6877 /*
6878 * Renice negative nice level userspace
6879 * tasks back to 0:
6880 */
6881 if (TASK_NICE(p) < 0 && p->mm)
6882 set_user_nice(p, 0);
1da177e4 6883 continue;
dd41f596 6884 }
1da177e4 6885
b29739f9
IM
6886 spin_lock_irqsave(&p->pi_lock, flags);
6887 rq = __task_rq_lock(p);
1da177e4 6888
178be793 6889 normalize_task(rq, p);
3a5e4dc1 6890
b29739f9
IM
6891 __task_rq_unlock(rq);
6892 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6893 } while_each_thread(g, p);
6894
1da177e4
LT
6895 read_unlock_irq(&tasklist_lock);
6896}
6897
6898#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6899
6900#ifdef CONFIG_IA64
6901/*
6902 * These functions are only useful for the IA64 MCA handling.
6903 *
6904 * They can only be called when the whole system has been
6905 * stopped - every CPU needs to be quiescent, and no scheduling
6906 * activity can take place. Using them for anything else would
6907 * be a serious bug, and as a result, they aren't even visible
6908 * under any other configuration.
6909 */
6910
6911/**
6912 * curr_task - return the current task for a given cpu.
6913 * @cpu: the processor in question.
6914 *
6915 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6916 */
36c8b586 6917struct task_struct *curr_task(int cpu)
1df5c10a
LT
6918{
6919 return cpu_curr(cpu);
6920}
6921
6922/**
6923 * set_curr_task - set the current task for a given cpu.
6924 * @cpu: the processor in question.
6925 * @p: the task pointer to set.
6926 *
6927 * Description: This function must only be used when non-maskable interrupts
6928 * are serviced on a separate stack. It allows the architecture to switch the
6929 * notion of the current task on a cpu in a non-blocking manner. This function
6930 * must be called with all CPU's synchronized, and interrupts disabled, the
6931 * and caller must save the original value of the current task (see
6932 * curr_task() above) and restore that value before reenabling interrupts and
6933 * re-starting the system.
6934 *
6935 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6936 */
36c8b586 6937void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6938{
6939 cpu_curr(cpu) = p;
6940}
6941
6942#endif
29f59db3
SV
6943
6944#ifdef CONFIG_FAIR_GROUP_SCHED
6945
29f59db3 6946/* allocate runqueue etc for a new task group */
4cf86d77 6947struct task_group *sched_create_group(void)
29f59db3 6948{
4cf86d77 6949 struct task_group *tg;
29f59db3
SV
6950 struct cfs_rq *cfs_rq;
6951 struct sched_entity *se;
9b5b7751 6952 struct rq *rq;
29f59db3
SV
6953 int i;
6954
29f59db3
SV
6955 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6956 if (!tg)
6957 return ERR_PTR(-ENOMEM);
6958
9b5b7751 6959 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6960 if (!tg->cfs_rq)
6961 goto err;
9b5b7751 6962 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6963 if (!tg->se)
6964 goto err;
6965
6966 for_each_possible_cpu(i) {
9b5b7751 6967 rq = cpu_rq(i);
29f59db3
SV
6968
6969 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6970 cpu_to_node(i));
6971 if (!cfs_rq)
6972 goto err;
6973
6974 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6975 cpu_to_node(i));
6976 if (!se)
6977 goto err;
6978
6979 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6980 memset(se, 0, sizeof(struct sched_entity));
6981
6982 tg->cfs_rq[i] = cfs_rq;
6983 init_cfs_rq(cfs_rq, rq);
6984 cfs_rq->tg = tg;
29f59db3
SV
6985
6986 tg->se[i] = se;
6987 se->cfs_rq = &rq->cfs;
6988 se->my_q = cfs_rq;
6989 se->load.weight = NICE_0_LOAD;
6990 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6991 se->parent = NULL;
6992 }
6993
9b5b7751
SV
6994 for_each_possible_cpu(i) {
6995 rq = cpu_rq(i);
6996 cfs_rq = tg->cfs_rq[i];
6997 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6998 }
29f59db3 6999
9b5b7751 7000 tg->shares = NICE_0_LOAD;
5cb350ba 7001 spin_lock_init(&tg->lock);
29f59db3 7002
9b5b7751 7003 return tg;
29f59db3
SV
7004
7005err:
7006 for_each_possible_cpu(i) {
a65914b3 7007 if (tg->cfs_rq)
29f59db3 7008 kfree(tg->cfs_rq[i]);
a65914b3 7009 if (tg->se)
29f59db3
SV
7010 kfree(tg->se[i]);
7011 }
a65914b3
IM
7012 kfree(tg->cfs_rq);
7013 kfree(tg->se);
7014 kfree(tg);
29f59db3
SV
7015
7016 return ERR_PTR(-ENOMEM);
7017}
7018
9b5b7751
SV
7019/* rcu callback to free various structures associated with a task group */
7020static void free_sched_group(struct rcu_head *rhp)
29f59db3 7021{
ae8393e5
SV
7022 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7023 struct cfs_rq *cfs_rq;
29f59db3
SV
7024 struct sched_entity *se;
7025 int i;
7026
29f59db3
SV
7027 /* now it should be safe to free those cfs_rqs */
7028 for_each_possible_cpu(i) {
7029 cfs_rq = tg->cfs_rq[i];
7030 kfree(cfs_rq);
7031
7032 se = tg->se[i];
7033 kfree(se);
7034 }
7035
7036 kfree(tg->cfs_rq);
7037 kfree(tg->se);
7038 kfree(tg);
7039}
7040
9b5b7751 7041/* Destroy runqueue etc associated with a task group */
4cf86d77 7042void sched_destroy_group(struct task_group *tg)
29f59db3 7043{
7bae49d4 7044 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7045 int i;
29f59db3 7046
9b5b7751
SV
7047 for_each_possible_cpu(i) {
7048 cfs_rq = tg->cfs_rq[i];
7049 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7050 }
7051
7bae49d4 7052 BUG_ON(!cfs_rq);
9b5b7751
SV
7053
7054 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7055 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7056}
7057
9b5b7751 7058/* change task's runqueue when it moves between groups.
3a252015
IM
7059 * The caller of this function should have put the task in its new group
7060 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7061 * reflect its new group.
9b5b7751
SV
7062 */
7063void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7064{
7065 int on_rq, running;
7066 unsigned long flags;
7067 struct rq *rq;
7068
7069 rq = task_rq_lock(tsk, &flags);
7070
7071 if (tsk->sched_class != &fair_sched_class)
7072 goto done;
7073
7074 update_rq_clock(rq);
7075
7076 running = task_running(rq, tsk);
7077 on_rq = tsk->se.on_rq;
7078
83b699ed 7079 if (on_rq) {
29f59db3 7080 dequeue_task(rq, tsk, 0);
83b699ed
SV
7081 if (unlikely(running))
7082 tsk->sched_class->put_prev_task(rq, tsk);
7083 }
29f59db3
SV
7084
7085 set_task_cfs_rq(tsk);
7086
83b699ed
SV
7087 if (on_rq) {
7088 if (unlikely(running))
7089 tsk->sched_class->set_curr_task(rq);
7074badb 7090 enqueue_task(rq, tsk, 0);
83b699ed 7091 }
29f59db3
SV
7092
7093done:
7094 task_rq_unlock(rq, &flags);
7095}
7096
7097static void set_se_shares(struct sched_entity *se, unsigned long shares)
7098{
7099 struct cfs_rq *cfs_rq = se->cfs_rq;
7100 struct rq *rq = cfs_rq->rq;
7101 int on_rq;
7102
7103 spin_lock_irq(&rq->lock);
7104
7105 on_rq = se->on_rq;
7106 if (on_rq)
7107 dequeue_entity(cfs_rq, se, 0);
7108
7109 se->load.weight = shares;
7110 se->load.inv_weight = div64_64((1ULL<<32), shares);
7111
7112 if (on_rq)
7113 enqueue_entity(cfs_rq, se, 0);
7114
7115 spin_unlock_irq(&rq->lock);
7116}
7117
4cf86d77 7118int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7119{
7120 int i;
29f59db3 7121
5cb350ba 7122 spin_lock(&tg->lock);
9b5b7751 7123 if (tg->shares == shares)
5cb350ba 7124 goto done;
29f59db3 7125
9b5b7751 7126 tg->shares = shares;
29f59db3 7127 for_each_possible_cpu(i)
9b5b7751 7128 set_se_shares(tg->se[i], shares);
29f59db3 7129
5cb350ba
DG
7130done:
7131 spin_unlock(&tg->lock);
9b5b7751 7132 return 0;
29f59db3
SV
7133}
7134
5cb350ba
DG
7135unsigned long sched_group_shares(struct task_group *tg)
7136{
7137 return tg->shares;
7138}
7139
3a252015 7140#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7141
7142#ifdef CONFIG_FAIR_CGROUP_SCHED
7143
7144/* return corresponding task_group object of a cgroup */
2b01dfe3 7145static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7146{
2b01dfe3
PM
7147 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7148 struct task_group, css);
68318b8e
SV
7149}
7150
7151static struct cgroup_subsys_state *
2b01dfe3 7152cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7153{
7154 struct task_group *tg;
7155
2b01dfe3 7156 if (!cgrp->parent) {
68318b8e 7157 /* This is early initialization for the top cgroup */
2b01dfe3 7158 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7159 return &init_task_group.css;
7160 }
7161
7162 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7163 if (cgrp->parent->parent)
68318b8e
SV
7164 return ERR_PTR(-EINVAL);
7165
7166 tg = sched_create_group();
7167 if (IS_ERR(tg))
7168 return ERR_PTR(-ENOMEM);
7169
7170 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7171 tg->css.cgroup = cgrp;
68318b8e
SV
7172
7173 return &tg->css;
7174}
7175
7176static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
2b01dfe3 7177 struct cgroup *cgrp)
68318b8e 7178{
2b01dfe3 7179 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7180
7181 sched_destroy_group(tg);
7182}
7183
7184static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
2b01dfe3 7185 struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
7186{
7187 /* We don't support RT-tasks being in separate groups */
7188 if (tsk->sched_class != &fair_sched_class)
7189 return -EINVAL;
7190
7191 return 0;
7192}
7193
7194static void
2b01dfe3 7195cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7196 struct cgroup *old_cont, struct task_struct *tsk)
7197{
7198 sched_move_task(tsk);
7199}
7200
2b01dfe3
PM
7201static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7202 u64 shareval)
68318b8e 7203{
2b01dfe3 7204 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7205}
7206
2b01dfe3 7207static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7208{
2b01dfe3 7209 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7210
7211 return (u64) tg->shares;
7212}
7213
fe5c7cc2
PM
7214static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
7215{
7216 struct task_group *tg = cgroup_tg(cgrp);
7217 unsigned long flags;
7218 u64 res = 0;
7219 int i;
7220
7221 for_each_possible_cpu(i) {
7222 /*
7223 * Lock to prevent races with updating 64-bit counters
7224 * on 32-bit arches.
7225 */
7226 spin_lock_irqsave(&cpu_rq(i)->lock, flags);
7227 res += tg->se[i]->sum_exec_runtime;
7228 spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
7229 }
7230 /* Convert from ns to ms */
7231 do_div(res, 1000000);
7232
7233 return res;
7234}
7235
7236static struct cftype cpu_files[] = {
7237 {
7238 .name = "shares",
7239 .read_uint = cpu_shares_read_uint,
7240 .write_uint = cpu_shares_write_uint,
7241 },
7242 {
7243 .name = "usage",
7244 .read_uint = cpu_usage_read,
7245 },
68318b8e
SV
7246};
7247
7248static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7249{
fe5c7cc2 7250 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7251}
7252
7253struct cgroup_subsys cpu_cgroup_subsys = {
7254 .name = "cpu",
7255 .create = cpu_cgroup_create,
7256 .destroy = cpu_cgroup_destroy,
7257 .can_attach = cpu_cgroup_can_attach,
7258 .attach = cpu_cgroup_attach,
7259 .populate = cpu_cgroup_populate,
7260 .subsys_id = cpu_cgroup_subsys_id,
7261 .early_init = 1,
7262};
7263
7264#endif /* CONFIG_FAIR_CGROUP_SCHED */