]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
percpu_counter: Make __percpu_counter_add an inline function on UP
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
7c941438 236#ifdef CONFIG_CGROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
68318b8e 246 struct cgroup_subsys_state css;
6c415b92 247
052f1dc7 248#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
052f1dc7
PZ
254#endif
255
256#ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
d0b27fa7 260 struct rt_bandwidth rt_bandwidth;
052f1dc7 261#endif
6b2d7700 262
ae8393e5 263 struct rcu_head rcu;
6f505b16 264 struct list_head list;
f473aa5e
PZ
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
29f59db3
SV
269};
270
eff766a6 271#define root_task_group init_task_group
6f505b16 272
8ed36996 273/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
274 * a task group's cpu shares.
275 */
8ed36996 276static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 277
e9036b36
CG
278#ifdef CONFIG_FAIR_GROUP_SCHED
279
57310a98
PZ
280#ifdef CONFIG_SMP
281static int root_task_group_empty(void)
282{
283 return list_empty(&root_task_group.children);
284}
285#endif
286
052f1dc7 287# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 288
cb4ad1ff 289/*
2e084786
LJ
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
cb4ad1ff
MX
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
18d95a28 297#define MIN_SHARES 2
2e084786 298#define MAX_SHARES (1UL << 18)
18d95a28 299
052f1dc7
PZ
300static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301#endif
302
29f59db3 303/* Default task group.
3a252015 304 * Every task in system belong to this group at bootup.
29f59db3 305 */
434d53b0 306struct task_group init_task_group;
29f59db3
SV
307
308/* return group to which a task belongs */
4cf86d77 309static inline struct task_group *task_group(struct task_struct *p)
29f59db3 310{
4cf86d77 311 struct task_group *tg;
9b5b7751 312
7c941438 313#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
24e377a8 316#else
41a2d6cf 317 tg = &init_task_group;
24e377a8 318#endif
9b5b7751 319 return tg;
29f59db3
SV
320}
321
322/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 323static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 324{
052f1dc7 325#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
052f1dc7 328#endif
6f505b16 329
052f1dc7 330#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 333#endif
29f59db3
SV
334}
335
336#else
337
6f505b16 338static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
339static inline struct task_group *task_group(struct task_struct *p)
340{
341 return NULL;
342}
29f59db3 343
7c941438 344#endif /* CONFIG_CGROUP_SCHED */
29f59db3 345
6aa645ea
IM
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
6aa645ea 351 u64 exec_clock;
e9acbff6 352 u64 min_vruntime;
6aa645ea
IM
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
4a55bd5e
PZ
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
4793241b 364 struct sched_entity *curr, *next, *last;
ddc97297 365
5ac5c4d6 366 unsigned int nr_spread_over;
ddc97297 367
62160e3f 368#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
41a2d6cf
IM
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
41a2d6cf
IM
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
381
382#ifdef CONFIG_SMP
c09595f6 383 /*
c8cba857 384 * the part of load.weight contributed by tasks
c09595f6 385 */
c8cba857 386 unsigned long task_weight;
c09595f6 387
c8cba857
PZ
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
c09595f6 395
c8cba857
PZ
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
f1d239f7
PZ
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
c09595f6 405#endif
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
414 struct {
415 int curr; /* highest queued rt task prio */
398a153b 416#ifdef CONFIG_SMP
e864c499 417 int next; /* next highest */
398a153b 418#endif
e864c499 419 } highest_prio;
6f505b16 420#endif
fa85ae24 421#ifdef CONFIG_SMP
73fe6aae 422 unsigned long rt_nr_migratory;
a1ba4d8b 423 unsigned long rt_nr_total;
a22d7fc1 424 int overloaded;
917b627d 425 struct plist_head pushable_tasks;
fa85ae24 426#endif
6f505b16 427 int rt_throttled;
fa85ae24 428 u64 rt_time;
ac086bc2 429 u64 rt_runtime;
ea736ed5 430 /* Nests inside the rq lock: */
0986b11b 431 raw_spinlock_t rt_runtime_lock;
6f505b16 432
052f1dc7 433#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
434 unsigned long rt_nr_boosted;
435
6f505b16
PZ
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
6f505b16 439#endif
6aa645ea
IM
440};
441
57d885fe
GH
442#ifdef CONFIG_SMP
443
444/*
445 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
57d885fe
GH
451 */
452struct root_domain {
453 atomic_t refcount;
c6c4927b
RR
454 cpumask_var_t span;
455 cpumask_var_t online;
637f5085 456
0eab9146 457 /*
637f5085
GH
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
c6c4927b 461 cpumask_var_t rto_mask;
0eab9146 462 atomic_t rto_count;
6e0534f2
GH
463#ifdef CONFIG_SMP
464 struct cpupri cpupri;
465#endif
57d885fe
GH
466};
467
dc938520
GH
468/*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
57d885fe
GH
472static struct root_domain def_root_domain;
473
474#endif
475
1da177e4
LT
476/*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
70b97a7f 483struct rq {
d8016491 484 /* runqueue lock: */
05fa785c 485 raw_spinlock_t lock;
1da177e4
LT
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
6aa645ea
IM
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
494#ifdef CONFIG_NO_HZ
495 unsigned char in_nohz_recently;
496#endif
d8016491
IM
497 /* capture load from *all* tasks on this cpu: */
498 struct load_weight load;
6aa645ea
IM
499 unsigned long nr_load_updates;
500 u64 nr_switches;
501
502 struct cfs_rq cfs;
6f505b16 503 struct rt_rq rt;
6f505b16 504
6aa645ea 505#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
506 /* list of leaf cfs_rq on this cpu: */
507 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
508#endif
509#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 510 struct list_head leaf_rt_rq_list;
1da177e4 511#endif
1da177e4
LT
512
513 /*
514 * This is part of a global counter where only the total sum
515 * over all CPUs matters. A task can increase this counter on
516 * one CPU and if it got migrated afterwards it may decrease
517 * it on another CPU. Always updated under the runqueue lock:
518 */
519 unsigned long nr_uninterruptible;
520
36c8b586 521 struct task_struct *curr, *idle;
c9819f45 522 unsigned long next_balance;
1da177e4 523 struct mm_struct *prev_mm;
6aa645ea 524
3e51f33f 525 u64 clock;
6aa645ea 526
1da177e4
LT
527 atomic_t nr_iowait;
528
529#ifdef CONFIG_SMP
0eab9146 530 struct root_domain *rd;
1da177e4
LT
531 struct sched_domain *sd;
532
a0a522ce 533 unsigned char idle_at_tick;
1da177e4 534 /* For active balancing */
3f029d3c 535 int post_schedule;
1da177e4
LT
536 int active_balance;
537 int push_cpu;
d8016491
IM
538 /* cpu of this runqueue: */
539 int cpu;
1f11eb6a 540 int online;
1da177e4 541
a8a51d5e 542 unsigned long avg_load_per_task;
1da177e4 543
36c8b586 544 struct task_struct *migration_thread;
1da177e4 545 struct list_head migration_queue;
e9e9250b
PZ
546
547 u64 rt_avg;
548 u64 age_stamp;
1b9508f6
MG
549 u64 idle_stamp;
550 u64 avg_idle;
1da177e4
LT
551#endif
552
dce48a84
TG
553 /* calc_load related fields */
554 unsigned long calc_load_update;
555 long calc_load_active;
556
8f4d37ec 557#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
558#ifdef CONFIG_SMP
559 int hrtick_csd_pending;
560 struct call_single_data hrtick_csd;
561#endif
8f4d37ec
PZ
562 struct hrtimer hrtick_timer;
563#endif
564
1da177e4
LT
565#ifdef CONFIG_SCHEDSTATS
566 /* latency stats */
567 struct sched_info rq_sched_info;
9c2c4802
KC
568 unsigned long long rq_cpu_time;
569 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
570
571 /* sys_sched_yield() stats */
480b9434 572 unsigned int yld_count;
1da177e4
LT
573
574 /* schedule() stats */
480b9434
KC
575 unsigned int sched_switch;
576 unsigned int sched_count;
577 unsigned int sched_goidle;
1da177e4
LT
578
579 /* try_to_wake_up() stats */
480b9434
KC
580 unsigned int ttwu_count;
581 unsigned int ttwu_local;
b8efb561
IM
582
583 /* BKL stats */
480b9434 584 unsigned int bkl_count;
1da177e4
LT
585#endif
586};
587
f34e3b61 588static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 589
7d478721
PZ
590static inline
591void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 592{
7d478721 593 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
594}
595
0a2966b4
CL
596static inline int cpu_of(struct rq *rq)
597{
598#ifdef CONFIG_SMP
599 return rq->cpu;
600#else
601 return 0;
602#endif
603}
604
674311d5
NP
605/*
606 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 607 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
608 *
609 * The domain tree of any CPU may only be accessed from within
610 * preempt-disabled sections.
611 */
48f24c4d
IM
612#define for_each_domain(cpu, __sd) \
613 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
614
615#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
616#define this_rq() (&__get_cpu_var(runqueues))
617#define task_rq(p) cpu_rq(task_cpu(p))
618#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 619#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 620
aa9c4c0f 621inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
622{
623 rq->clock = sched_clock_cpu(cpu_of(rq));
624}
625
bf5c91ba
IM
626/*
627 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
628 */
629#ifdef CONFIG_SCHED_DEBUG
630# define const_debug __read_mostly
631#else
632# define const_debug static const
633#endif
634
017730c1
IM
635/**
636 * runqueue_is_locked
e17b38bf 637 * @cpu: the processor in question.
017730c1
IM
638 *
639 * Returns true if the current cpu runqueue is locked.
640 * This interface allows printk to be called with the runqueue lock
641 * held and know whether or not it is OK to wake up the klogd.
642 */
89f19f04 643int runqueue_is_locked(int cpu)
017730c1 644{
05fa785c 645 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
646}
647
bf5c91ba
IM
648/*
649 * Debugging: various feature bits
650 */
f00b45c1
PZ
651
652#define SCHED_FEAT(name, enabled) \
653 __SCHED_FEAT_##name ,
654
bf5c91ba 655enum {
f00b45c1 656#include "sched_features.h"
bf5c91ba
IM
657};
658
f00b45c1
PZ
659#undef SCHED_FEAT
660
661#define SCHED_FEAT(name, enabled) \
662 (1UL << __SCHED_FEAT_##name) * enabled |
663
bf5c91ba 664const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
665#include "sched_features.h"
666 0;
667
668#undef SCHED_FEAT
669
670#ifdef CONFIG_SCHED_DEBUG
671#define SCHED_FEAT(name, enabled) \
672 #name ,
673
983ed7a6 674static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
675#include "sched_features.h"
676 NULL
677};
678
679#undef SCHED_FEAT
680
34f3a814 681static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 682{
f00b45c1
PZ
683 int i;
684
685 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
686 if (!(sysctl_sched_features & (1UL << i)))
687 seq_puts(m, "NO_");
688 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 689 }
34f3a814 690 seq_puts(m, "\n");
f00b45c1 691
34f3a814 692 return 0;
f00b45c1
PZ
693}
694
695static ssize_t
696sched_feat_write(struct file *filp, const char __user *ubuf,
697 size_t cnt, loff_t *ppos)
698{
699 char buf[64];
700 char *cmp = buf;
701 int neg = 0;
702 int i;
703
704 if (cnt > 63)
705 cnt = 63;
706
707 if (copy_from_user(&buf, ubuf, cnt))
708 return -EFAULT;
709
710 buf[cnt] = 0;
711
c24b7c52 712 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
713 neg = 1;
714 cmp += 3;
715 }
716
717 for (i = 0; sched_feat_names[i]; i++) {
718 int len = strlen(sched_feat_names[i]);
719
720 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
721 if (neg)
722 sysctl_sched_features &= ~(1UL << i);
723 else
724 sysctl_sched_features |= (1UL << i);
725 break;
726 }
727 }
728
729 if (!sched_feat_names[i])
730 return -EINVAL;
731
42994724 732 *ppos += cnt;
f00b45c1
PZ
733
734 return cnt;
735}
736
34f3a814
LZ
737static int sched_feat_open(struct inode *inode, struct file *filp)
738{
739 return single_open(filp, sched_feat_show, NULL);
740}
741
828c0950 742static const struct file_operations sched_feat_fops = {
34f3a814
LZ
743 .open = sched_feat_open,
744 .write = sched_feat_write,
745 .read = seq_read,
746 .llseek = seq_lseek,
747 .release = single_release,
f00b45c1
PZ
748};
749
750static __init int sched_init_debug(void)
751{
f00b45c1
PZ
752 debugfs_create_file("sched_features", 0644, NULL, NULL,
753 &sched_feat_fops);
754
755 return 0;
756}
757late_initcall(sched_init_debug);
758
759#endif
760
761#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 762
b82d9fdd
PZ
763/*
764 * Number of tasks to iterate in a single balance run.
765 * Limited because this is done with IRQs disabled.
766 */
767const_debug unsigned int sysctl_sched_nr_migrate = 32;
768
2398f2c6
PZ
769/*
770 * ratelimit for updating the group shares.
55cd5340 771 * default: 0.25ms
2398f2c6 772 */
55cd5340 773unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 774unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 775
ffda12a1
PZ
776/*
777 * Inject some fuzzyness into changing the per-cpu group shares
778 * this avoids remote rq-locks at the expense of fairness.
779 * default: 4
780 */
781unsigned int sysctl_sched_shares_thresh = 4;
782
e9e9250b
PZ
783/*
784 * period over which we average the RT time consumption, measured
785 * in ms.
786 *
787 * default: 1s
788 */
789const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
790
fa85ae24 791/*
9f0c1e56 792 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
793 * default: 1s
794 */
9f0c1e56 795unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 796
6892b75e
IM
797static __read_mostly int scheduler_running;
798
9f0c1e56
PZ
799/*
800 * part of the period that we allow rt tasks to run in us.
801 * default: 0.95s
802 */
803int sysctl_sched_rt_runtime = 950000;
fa85ae24 804
d0b27fa7
PZ
805static inline u64 global_rt_period(void)
806{
807 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
808}
809
810static inline u64 global_rt_runtime(void)
811{
e26873bb 812 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
813 return RUNTIME_INF;
814
815 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
816}
fa85ae24 817
1da177e4 818#ifndef prepare_arch_switch
4866cde0
NP
819# define prepare_arch_switch(next) do { } while (0)
820#endif
821#ifndef finish_arch_switch
822# define finish_arch_switch(prev) do { } while (0)
823#endif
824
051a1d1a
DA
825static inline int task_current(struct rq *rq, struct task_struct *p)
826{
827 return rq->curr == p;
828}
829
4866cde0 830#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 831static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 832{
051a1d1a 833 return task_current(rq, p);
4866cde0
NP
834}
835
70b97a7f 836static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
837{
838}
839
70b97a7f 840static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 841{
da04c035
IM
842#ifdef CONFIG_DEBUG_SPINLOCK
843 /* this is a valid case when another task releases the spinlock */
844 rq->lock.owner = current;
845#endif
8a25d5de
IM
846 /*
847 * If we are tracking spinlock dependencies then we have to
848 * fix up the runqueue lock - which gets 'carried over' from
849 * prev into current:
850 */
851 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
852
05fa785c 853 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
854}
855
856#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 857static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
858{
859#ifdef CONFIG_SMP
860 return p->oncpu;
861#else
051a1d1a 862 return task_current(rq, p);
4866cde0
NP
863#endif
864}
865
70b97a7f 866static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
867{
868#ifdef CONFIG_SMP
869 /*
870 * We can optimise this out completely for !SMP, because the
871 * SMP rebalancing from interrupt is the only thing that cares
872 * here.
873 */
874 next->oncpu = 1;
875#endif
876#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 877 raw_spin_unlock_irq(&rq->lock);
4866cde0 878#else
05fa785c 879 raw_spin_unlock(&rq->lock);
4866cde0
NP
880#endif
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
884{
885#ifdef CONFIG_SMP
886 /*
887 * After ->oncpu is cleared, the task can be moved to a different CPU.
888 * We must ensure this doesn't happen until the switch is completely
889 * finished.
890 */
891 smp_wmb();
892 prev->oncpu = 0;
893#endif
894#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
895 local_irq_enable();
1da177e4 896#endif
4866cde0
NP
897}
898#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 899
b29739f9
IM
900/*
901 * __task_rq_lock - lock the runqueue a given task resides on.
902 * Must be called interrupts disabled.
903 */
70b97a7f 904static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
905 __acquires(rq->lock)
906{
3a5c359a
AK
907 for (;;) {
908 struct rq *rq = task_rq(p);
05fa785c 909 raw_spin_lock(&rq->lock);
3a5c359a
AK
910 if (likely(rq == task_rq(p)))
911 return rq;
05fa785c 912 raw_spin_unlock(&rq->lock);
b29739f9 913 }
b29739f9
IM
914}
915
1da177e4
LT
916/*
917 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 918 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
919 * explicitly disabling preemption.
920 */
70b97a7f 921static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
922 __acquires(rq->lock)
923{
70b97a7f 924 struct rq *rq;
1da177e4 925
3a5c359a
AK
926 for (;;) {
927 local_irq_save(*flags);
928 rq = task_rq(p);
05fa785c 929 raw_spin_lock(&rq->lock);
3a5c359a
AK
930 if (likely(rq == task_rq(p)))
931 return rq;
05fa785c 932 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 933 }
1da177e4
LT
934}
935
ad474cac
ON
936void task_rq_unlock_wait(struct task_struct *p)
937{
938 struct rq *rq = task_rq(p);
939
940 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 941 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
942}
943
a9957449 944static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
945 __releases(rq->lock)
946{
05fa785c 947 raw_spin_unlock(&rq->lock);
b29739f9
IM
948}
949
70b97a7f 950static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
951 __releases(rq->lock)
952{
05fa785c 953 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
954}
955
1da177e4 956/*
cc2a73b5 957 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 958 */
a9957449 959static struct rq *this_rq_lock(void)
1da177e4
LT
960 __acquires(rq->lock)
961{
70b97a7f 962 struct rq *rq;
1da177e4
LT
963
964 local_irq_disable();
965 rq = this_rq();
05fa785c 966 raw_spin_lock(&rq->lock);
1da177e4
LT
967
968 return rq;
969}
970
8f4d37ec
PZ
971#ifdef CONFIG_SCHED_HRTICK
972/*
973 * Use HR-timers to deliver accurate preemption points.
974 *
975 * Its all a bit involved since we cannot program an hrt while holding the
976 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
977 * reschedule event.
978 *
979 * When we get rescheduled we reprogram the hrtick_timer outside of the
980 * rq->lock.
981 */
8f4d37ec
PZ
982
983/*
984 * Use hrtick when:
985 * - enabled by features
986 * - hrtimer is actually high res
987 */
988static inline int hrtick_enabled(struct rq *rq)
989{
990 if (!sched_feat(HRTICK))
991 return 0;
ba42059f 992 if (!cpu_active(cpu_of(rq)))
b328ca18 993 return 0;
8f4d37ec
PZ
994 return hrtimer_is_hres_active(&rq->hrtick_timer);
995}
996
8f4d37ec
PZ
997static void hrtick_clear(struct rq *rq)
998{
999 if (hrtimer_active(&rq->hrtick_timer))
1000 hrtimer_cancel(&rq->hrtick_timer);
1001}
1002
8f4d37ec
PZ
1003/*
1004 * High-resolution timer tick.
1005 * Runs from hardirq context with interrupts disabled.
1006 */
1007static enum hrtimer_restart hrtick(struct hrtimer *timer)
1008{
1009 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1010
1011 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1012
05fa785c 1013 raw_spin_lock(&rq->lock);
3e51f33f 1014 update_rq_clock(rq);
8f4d37ec 1015 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1016 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1017
1018 return HRTIMER_NORESTART;
1019}
1020
95e904c7 1021#ifdef CONFIG_SMP
31656519
PZ
1022/*
1023 * called from hardirq (IPI) context
1024 */
1025static void __hrtick_start(void *arg)
b328ca18 1026{
31656519 1027 struct rq *rq = arg;
b328ca18 1028
05fa785c 1029 raw_spin_lock(&rq->lock);
31656519
PZ
1030 hrtimer_restart(&rq->hrtick_timer);
1031 rq->hrtick_csd_pending = 0;
05fa785c 1032 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1033}
1034
31656519
PZ
1035/*
1036 * Called to set the hrtick timer state.
1037 *
1038 * called with rq->lock held and irqs disabled
1039 */
1040static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1041{
31656519
PZ
1042 struct hrtimer *timer = &rq->hrtick_timer;
1043 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1044
cc584b21 1045 hrtimer_set_expires(timer, time);
31656519
PZ
1046
1047 if (rq == this_rq()) {
1048 hrtimer_restart(timer);
1049 } else if (!rq->hrtick_csd_pending) {
6e275637 1050 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1051 rq->hrtick_csd_pending = 1;
1052 }
b328ca18
PZ
1053}
1054
1055static int
1056hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1057{
1058 int cpu = (int)(long)hcpu;
1059
1060 switch (action) {
1061 case CPU_UP_CANCELED:
1062 case CPU_UP_CANCELED_FROZEN:
1063 case CPU_DOWN_PREPARE:
1064 case CPU_DOWN_PREPARE_FROZEN:
1065 case CPU_DEAD:
1066 case CPU_DEAD_FROZEN:
31656519 1067 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1068 return NOTIFY_OK;
1069 }
1070
1071 return NOTIFY_DONE;
1072}
1073
fa748203 1074static __init void init_hrtick(void)
b328ca18
PZ
1075{
1076 hotcpu_notifier(hotplug_hrtick, 0);
1077}
31656519
PZ
1078#else
1079/*
1080 * Called to set the hrtick timer state.
1081 *
1082 * called with rq->lock held and irqs disabled
1083 */
1084static void hrtick_start(struct rq *rq, u64 delay)
1085{
7f1e2ca9 1086 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1087 HRTIMER_MODE_REL_PINNED, 0);
31656519 1088}
b328ca18 1089
006c75f1 1090static inline void init_hrtick(void)
8f4d37ec 1091{
8f4d37ec 1092}
31656519 1093#endif /* CONFIG_SMP */
8f4d37ec 1094
31656519 1095static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1096{
31656519
PZ
1097#ifdef CONFIG_SMP
1098 rq->hrtick_csd_pending = 0;
8f4d37ec 1099
31656519
PZ
1100 rq->hrtick_csd.flags = 0;
1101 rq->hrtick_csd.func = __hrtick_start;
1102 rq->hrtick_csd.info = rq;
1103#endif
8f4d37ec 1104
31656519
PZ
1105 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1106 rq->hrtick_timer.function = hrtick;
8f4d37ec 1107}
006c75f1 1108#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1109static inline void hrtick_clear(struct rq *rq)
1110{
1111}
1112
8f4d37ec
PZ
1113static inline void init_rq_hrtick(struct rq *rq)
1114{
1115}
1116
b328ca18
PZ
1117static inline void init_hrtick(void)
1118{
1119}
006c75f1 1120#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1121
c24d20db
IM
1122/*
1123 * resched_task - mark a task 'to be rescheduled now'.
1124 *
1125 * On UP this means the setting of the need_resched flag, on SMP it
1126 * might also involve a cross-CPU call to trigger the scheduler on
1127 * the target CPU.
1128 */
1129#ifdef CONFIG_SMP
1130
1131#ifndef tsk_is_polling
1132#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1133#endif
1134
31656519 1135static void resched_task(struct task_struct *p)
c24d20db
IM
1136{
1137 int cpu;
1138
05fa785c 1139 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1140
5ed0cec0 1141 if (test_tsk_need_resched(p))
c24d20db
IM
1142 return;
1143
5ed0cec0 1144 set_tsk_need_resched(p);
c24d20db
IM
1145
1146 cpu = task_cpu(p);
1147 if (cpu == smp_processor_id())
1148 return;
1149
1150 /* NEED_RESCHED must be visible before we test polling */
1151 smp_mb();
1152 if (!tsk_is_polling(p))
1153 smp_send_reschedule(cpu);
1154}
1155
1156static void resched_cpu(int cpu)
1157{
1158 struct rq *rq = cpu_rq(cpu);
1159 unsigned long flags;
1160
05fa785c 1161 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1162 return;
1163 resched_task(cpu_curr(cpu));
05fa785c 1164 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1165}
06d8308c
TG
1166
1167#ifdef CONFIG_NO_HZ
1168/*
1169 * When add_timer_on() enqueues a timer into the timer wheel of an
1170 * idle CPU then this timer might expire before the next timer event
1171 * which is scheduled to wake up that CPU. In case of a completely
1172 * idle system the next event might even be infinite time into the
1173 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1174 * leaves the inner idle loop so the newly added timer is taken into
1175 * account when the CPU goes back to idle and evaluates the timer
1176 * wheel for the next timer event.
1177 */
1178void wake_up_idle_cpu(int cpu)
1179{
1180 struct rq *rq = cpu_rq(cpu);
1181
1182 if (cpu == smp_processor_id())
1183 return;
1184
1185 /*
1186 * This is safe, as this function is called with the timer
1187 * wheel base lock of (cpu) held. When the CPU is on the way
1188 * to idle and has not yet set rq->curr to idle then it will
1189 * be serialized on the timer wheel base lock and take the new
1190 * timer into account automatically.
1191 */
1192 if (rq->curr != rq->idle)
1193 return;
1194
1195 /*
1196 * We can set TIF_RESCHED on the idle task of the other CPU
1197 * lockless. The worst case is that the other CPU runs the
1198 * idle task through an additional NOOP schedule()
1199 */
5ed0cec0 1200 set_tsk_need_resched(rq->idle);
06d8308c
TG
1201
1202 /* NEED_RESCHED must be visible before we test polling */
1203 smp_mb();
1204 if (!tsk_is_polling(rq->idle))
1205 smp_send_reschedule(cpu);
1206}
6d6bc0ad 1207#endif /* CONFIG_NO_HZ */
06d8308c 1208
e9e9250b
PZ
1209static u64 sched_avg_period(void)
1210{
1211 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1212}
1213
1214static void sched_avg_update(struct rq *rq)
1215{
1216 s64 period = sched_avg_period();
1217
1218 while ((s64)(rq->clock - rq->age_stamp) > period) {
1219 rq->age_stamp += period;
1220 rq->rt_avg /= 2;
1221 }
1222}
1223
1224static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1225{
1226 rq->rt_avg += rt_delta;
1227 sched_avg_update(rq);
1228}
1229
6d6bc0ad 1230#else /* !CONFIG_SMP */
31656519 1231static void resched_task(struct task_struct *p)
c24d20db 1232{
05fa785c 1233 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1234 set_tsk_need_resched(p);
c24d20db 1235}
e9e9250b
PZ
1236
1237static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1238{
1239}
6d6bc0ad 1240#endif /* CONFIG_SMP */
c24d20db 1241
45bf76df
IM
1242#if BITS_PER_LONG == 32
1243# define WMULT_CONST (~0UL)
1244#else
1245# define WMULT_CONST (1UL << 32)
1246#endif
1247
1248#define WMULT_SHIFT 32
1249
194081eb
IM
1250/*
1251 * Shift right and round:
1252 */
cf2ab469 1253#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1254
a7be37ac
PZ
1255/*
1256 * delta *= weight / lw
1257 */
cb1c4fc9 1258static unsigned long
45bf76df
IM
1259calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1260 struct load_weight *lw)
1261{
1262 u64 tmp;
1263
7a232e03
LJ
1264 if (!lw->inv_weight) {
1265 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1266 lw->inv_weight = 1;
1267 else
1268 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1269 / (lw->weight+1);
1270 }
45bf76df
IM
1271
1272 tmp = (u64)delta_exec * weight;
1273 /*
1274 * Check whether we'd overflow the 64-bit multiplication:
1275 */
194081eb 1276 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1277 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1278 WMULT_SHIFT/2);
1279 else
cf2ab469 1280 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1281
ecf691da 1282 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1283}
1284
1091985b 1285static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1286{
1287 lw->weight += inc;
e89996ae 1288 lw->inv_weight = 0;
45bf76df
IM
1289}
1290
1091985b 1291static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1292{
1293 lw->weight -= dec;
e89996ae 1294 lw->inv_weight = 0;
45bf76df
IM
1295}
1296
2dd73a4f
PW
1297/*
1298 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1299 * of tasks with abnormal "nice" values across CPUs the contribution that
1300 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1301 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1302 * scaled version of the new time slice allocation that they receive on time
1303 * slice expiry etc.
1304 */
1305
cce7ade8
PZ
1306#define WEIGHT_IDLEPRIO 3
1307#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1308
1309/*
1310 * Nice levels are multiplicative, with a gentle 10% change for every
1311 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1312 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1313 * that remained on nice 0.
1314 *
1315 * The "10% effect" is relative and cumulative: from _any_ nice level,
1316 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1317 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1318 * If a task goes up by ~10% and another task goes down by ~10% then
1319 * the relative distance between them is ~25%.)
dd41f596
IM
1320 */
1321static const int prio_to_weight[40] = {
254753dc
IM
1322 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1323 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1324 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1325 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1326 /* 0 */ 1024, 820, 655, 526, 423,
1327 /* 5 */ 335, 272, 215, 172, 137,
1328 /* 10 */ 110, 87, 70, 56, 45,
1329 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1330};
1331
5714d2de
IM
1332/*
1333 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1334 *
1335 * In cases where the weight does not change often, we can use the
1336 * precalculated inverse to speed up arithmetics by turning divisions
1337 * into multiplications:
1338 */
dd41f596 1339static const u32 prio_to_wmult[40] = {
254753dc
IM
1340 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1341 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1342 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1343 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1344 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1345 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1346 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1347 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1348};
2dd73a4f 1349
ef12fefa
BR
1350/* Time spent by the tasks of the cpu accounting group executing in ... */
1351enum cpuacct_stat_index {
1352 CPUACCT_STAT_USER, /* ... user mode */
1353 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1354
1355 CPUACCT_STAT_NSTATS,
1356};
1357
d842de87
SV
1358#ifdef CONFIG_CGROUP_CPUACCT
1359static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1360static void cpuacct_update_stats(struct task_struct *tsk,
1361 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1362#else
1363static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1364static inline void cpuacct_update_stats(struct task_struct *tsk,
1365 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1366#endif
1367
18d95a28
PZ
1368static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1369{
1370 update_load_add(&rq->load, load);
1371}
1372
1373static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1374{
1375 update_load_sub(&rq->load, load);
1376}
1377
7940ca36 1378#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1379typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1380
1381/*
1382 * Iterate the full tree, calling @down when first entering a node and @up when
1383 * leaving it for the final time.
1384 */
eb755805 1385static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1386{
1387 struct task_group *parent, *child;
eb755805 1388 int ret;
c09595f6
PZ
1389
1390 rcu_read_lock();
1391 parent = &root_task_group;
1392down:
eb755805
PZ
1393 ret = (*down)(parent, data);
1394 if (ret)
1395 goto out_unlock;
c09595f6
PZ
1396 list_for_each_entry_rcu(child, &parent->children, siblings) {
1397 parent = child;
1398 goto down;
1399
1400up:
1401 continue;
1402 }
eb755805
PZ
1403 ret = (*up)(parent, data);
1404 if (ret)
1405 goto out_unlock;
c09595f6
PZ
1406
1407 child = parent;
1408 parent = parent->parent;
1409 if (parent)
1410 goto up;
eb755805 1411out_unlock:
c09595f6 1412 rcu_read_unlock();
eb755805
PZ
1413
1414 return ret;
c09595f6
PZ
1415}
1416
eb755805
PZ
1417static int tg_nop(struct task_group *tg, void *data)
1418{
1419 return 0;
c09595f6 1420}
eb755805
PZ
1421#endif
1422
1423#ifdef CONFIG_SMP
f5f08f39
PZ
1424/* Used instead of source_load when we know the type == 0 */
1425static unsigned long weighted_cpuload(const int cpu)
1426{
1427 return cpu_rq(cpu)->load.weight;
1428}
1429
1430/*
1431 * Return a low guess at the load of a migration-source cpu weighted
1432 * according to the scheduling class and "nice" value.
1433 *
1434 * We want to under-estimate the load of migration sources, to
1435 * balance conservatively.
1436 */
1437static unsigned long source_load(int cpu, int type)
1438{
1439 struct rq *rq = cpu_rq(cpu);
1440 unsigned long total = weighted_cpuload(cpu);
1441
1442 if (type == 0 || !sched_feat(LB_BIAS))
1443 return total;
1444
1445 return min(rq->cpu_load[type-1], total);
1446}
1447
1448/*
1449 * Return a high guess at the load of a migration-target cpu weighted
1450 * according to the scheduling class and "nice" value.
1451 */
1452static unsigned long target_load(int cpu, int type)
1453{
1454 struct rq *rq = cpu_rq(cpu);
1455 unsigned long total = weighted_cpuload(cpu);
1456
1457 if (type == 0 || !sched_feat(LB_BIAS))
1458 return total;
1459
1460 return max(rq->cpu_load[type-1], total);
1461}
1462
ae154be1
PZ
1463static struct sched_group *group_of(int cpu)
1464{
1465 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1466
1467 if (!sd)
1468 return NULL;
1469
1470 return sd->groups;
1471}
1472
1473static unsigned long power_of(int cpu)
1474{
1475 struct sched_group *group = group_of(cpu);
1476
1477 if (!group)
1478 return SCHED_LOAD_SCALE;
1479
1480 return group->cpu_power;
1481}
1482
eb755805
PZ
1483static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1484
1485static unsigned long cpu_avg_load_per_task(int cpu)
1486{
1487 struct rq *rq = cpu_rq(cpu);
af6d596f 1488 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1489
4cd42620
SR
1490 if (nr_running)
1491 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1492 else
1493 rq->avg_load_per_task = 0;
eb755805
PZ
1494
1495 return rq->avg_load_per_task;
1496}
1497
1498#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1499
4a6cc4bd 1500static __read_mostly unsigned long *update_shares_data;
34d76c41 1501
c09595f6
PZ
1502static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1503
1504/*
1505 * Calculate and set the cpu's group shares.
1506 */
34d76c41
PZ
1507static void update_group_shares_cpu(struct task_group *tg, int cpu,
1508 unsigned long sd_shares,
1509 unsigned long sd_rq_weight,
4a6cc4bd 1510 unsigned long *usd_rq_weight)
18d95a28 1511{
34d76c41 1512 unsigned long shares, rq_weight;
a5004278 1513 int boost = 0;
c09595f6 1514
4a6cc4bd 1515 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1516 if (!rq_weight) {
1517 boost = 1;
1518 rq_weight = NICE_0_LOAD;
1519 }
c8cba857 1520
c09595f6 1521 /*
a8af7246
PZ
1522 * \Sum_j shares_j * rq_weight_i
1523 * shares_i = -----------------------------
1524 * \Sum_j rq_weight_j
c09595f6 1525 */
ec4e0e2f 1526 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1527 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1528
ffda12a1
PZ
1529 if (abs(shares - tg->se[cpu]->load.weight) >
1530 sysctl_sched_shares_thresh) {
1531 struct rq *rq = cpu_rq(cpu);
1532 unsigned long flags;
c09595f6 1533
05fa785c 1534 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1535 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1536 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1537 __set_se_shares(tg->se[cpu], shares);
05fa785c 1538 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1539 }
18d95a28 1540}
c09595f6
PZ
1541
1542/*
c8cba857
PZ
1543 * Re-compute the task group their per cpu shares over the given domain.
1544 * This needs to be done in a bottom-up fashion because the rq weight of a
1545 * parent group depends on the shares of its child groups.
c09595f6 1546 */
eb755805 1547static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1548{
cd8ad40d 1549 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1550 unsigned long *usd_rq_weight;
eb755805 1551 struct sched_domain *sd = data;
34d76c41 1552 unsigned long flags;
c8cba857 1553 int i;
c09595f6 1554
34d76c41
PZ
1555 if (!tg->se[0])
1556 return 0;
1557
1558 local_irq_save(flags);
4a6cc4bd 1559 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1560
758b2cdc 1561 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1562 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1563 usd_rq_weight[i] = weight;
34d76c41 1564
cd8ad40d 1565 rq_weight += weight;
ec4e0e2f
KC
1566 /*
1567 * If there are currently no tasks on the cpu pretend there
1568 * is one of average load so that when a new task gets to
1569 * run here it will not get delayed by group starvation.
1570 */
ec4e0e2f
KC
1571 if (!weight)
1572 weight = NICE_0_LOAD;
1573
cd8ad40d 1574 sum_weight += weight;
c8cba857 1575 shares += tg->cfs_rq[i]->shares;
c09595f6 1576 }
c09595f6 1577
cd8ad40d
PZ
1578 if (!rq_weight)
1579 rq_weight = sum_weight;
1580
c8cba857
PZ
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
c09595f6 1586
758b2cdc 1587 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1588 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1589
1590 local_irq_restore(flags);
eb755805
PZ
1591
1592 return 0;
c09595f6
PZ
1593}
1594
1595/*
c8cba857
PZ
1596 * Compute the cpu's hierarchical load factor for each task group.
1597 * This needs to be done in a top-down fashion because the load of a child
1598 * group is a fraction of its parents load.
c09595f6 1599 */
eb755805 1600static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1601{
c8cba857 1602 unsigned long load;
eb755805 1603 long cpu = (long)data;
c09595f6 1604
c8cba857
PZ
1605 if (!tg->parent) {
1606 load = cpu_rq(cpu)->load.weight;
1607 } else {
1608 load = tg->parent->cfs_rq[cpu]->h_load;
1609 load *= tg->cfs_rq[cpu]->shares;
1610 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1611 }
c09595f6 1612
c8cba857 1613 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1614
eb755805 1615 return 0;
c09595f6
PZ
1616}
1617
c8cba857 1618static void update_shares(struct sched_domain *sd)
4d8d595d 1619{
e7097159
PZ
1620 s64 elapsed;
1621 u64 now;
1622
1623 if (root_task_group_empty())
1624 return;
1625
1626 now = cpu_clock(raw_smp_processor_id());
1627 elapsed = now - sd->last_update;
2398f2c6
PZ
1628
1629 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1630 sd->last_update = now;
eb755805 1631 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1632 }
4d8d595d
PZ
1633}
1634
eb755805 1635static void update_h_load(long cpu)
c09595f6 1636{
e7097159
PZ
1637 if (root_task_group_empty())
1638 return;
1639
eb755805 1640 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1641}
1642
c09595f6
PZ
1643#else
1644
c8cba857 1645static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1646{
1647}
1648
18d95a28
PZ
1649#endif
1650
8f45e2b5
GH
1651#ifdef CONFIG_PREEMPT
1652
b78bb868
PZ
1653static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1654
70574a99 1655/*
8f45e2b5
GH
1656 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1657 * way at the expense of forcing extra atomic operations in all
1658 * invocations. This assures that the double_lock is acquired using the
1659 * same underlying policy as the spinlock_t on this architecture, which
1660 * reduces latency compared to the unfair variant below. However, it
1661 * also adds more overhead and therefore may reduce throughput.
70574a99 1662 */
8f45e2b5
GH
1663static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1664 __releases(this_rq->lock)
1665 __acquires(busiest->lock)
1666 __acquires(this_rq->lock)
1667{
05fa785c 1668 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1669 double_rq_lock(this_rq, busiest);
1670
1671 return 1;
1672}
1673
1674#else
1675/*
1676 * Unfair double_lock_balance: Optimizes throughput at the expense of
1677 * latency by eliminating extra atomic operations when the locks are
1678 * already in proper order on entry. This favors lower cpu-ids and will
1679 * grant the double lock to lower cpus over higher ids under contention,
1680 * regardless of entry order into the function.
1681 */
1682static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1683 __releases(this_rq->lock)
1684 __acquires(busiest->lock)
1685 __acquires(this_rq->lock)
1686{
1687 int ret = 0;
1688
05fa785c 1689 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1690 if (busiest < this_rq) {
05fa785c
TG
1691 raw_spin_unlock(&this_rq->lock);
1692 raw_spin_lock(&busiest->lock);
1693 raw_spin_lock_nested(&this_rq->lock,
1694 SINGLE_DEPTH_NESTING);
70574a99
AD
1695 ret = 1;
1696 } else
05fa785c
TG
1697 raw_spin_lock_nested(&busiest->lock,
1698 SINGLE_DEPTH_NESTING);
70574a99
AD
1699 }
1700 return ret;
1701}
1702
8f45e2b5
GH
1703#endif /* CONFIG_PREEMPT */
1704
1705/*
1706 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1707 */
1708static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1709{
1710 if (unlikely(!irqs_disabled())) {
1711 /* printk() doesn't work good under rq->lock */
05fa785c 1712 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1713 BUG_ON(1);
1714 }
1715
1716 return _double_lock_balance(this_rq, busiest);
1717}
1718
70574a99
AD
1719static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1720 __releases(busiest->lock)
1721{
05fa785c 1722 raw_spin_unlock(&busiest->lock);
70574a99
AD
1723 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1724}
1e3c88bd
PZ
1725
1726/*
1727 * double_rq_lock - safely lock two runqueues
1728 *
1729 * Note this does not disable interrupts like task_rq_lock,
1730 * you need to do so manually before calling.
1731 */
1732static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1733 __acquires(rq1->lock)
1734 __acquires(rq2->lock)
1735{
1736 BUG_ON(!irqs_disabled());
1737 if (rq1 == rq2) {
1738 raw_spin_lock(&rq1->lock);
1739 __acquire(rq2->lock); /* Fake it out ;) */
1740 } else {
1741 if (rq1 < rq2) {
1742 raw_spin_lock(&rq1->lock);
1743 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1744 } else {
1745 raw_spin_lock(&rq2->lock);
1746 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1747 }
1748 }
1749 update_rq_clock(rq1);
1750 update_rq_clock(rq2);
1751}
1752
1753/*
1754 * double_rq_unlock - safely unlock two runqueues
1755 *
1756 * Note this does not restore interrupts like task_rq_unlock,
1757 * you need to do so manually after calling.
1758 */
1759static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1760 __releases(rq1->lock)
1761 __releases(rq2->lock)
1762{
1763 raw_spin_unlock(&rq1->lock);
1764 if (rq1 != rq2)
1765 raw_spin_unlock(&rq2->lock);
1766 else
1767 __release(rq2->lock);
1768}
1769
18d95a28
PZ
1770#endif
1771
30432094 1772#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1773static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1774{
30432094 1775#ifdef CONFIG_SMP
34e83e85
IM
1776 cfs_rq->shares = shares;
1777#endif
1778}
30432094 1779#endif
e7693a36 1780
dce48a84 1781static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1782static void update_sysctl(void);
acb4a848 1783static int get_update_sysctl_factor(void);
dce48a84 1784
cd29fe6f
PZ
1785static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1786{
1787 set_task_rq(p, cpu);
1788#ifdef CONFIG_SMP
1789 /*
1790 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1791 * successfuly executed on another CPU. We must ensure that updates of
1792 * per-task data have been completed by this moment.
1793 */
1794 smp_wmb();
1795 task_thread_info(p)->cpu = cpu;
1796#endif
1797}
dce48a84 1798
1e3c88bd 1799static const struct sched_class rt_sched_class;
dd41f596
IM
1800
1801#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1802#define for_each_class(class) \
1803 for (class = sched_class_highest; class; class = class->next)
dd41f596 1804
1e3c88bd
PZ
1805#include "sched_stats.h"
1806
c09595f6 1807static void inc_nr_running(struct rq *rq)
9c217245
IM
1808{
1809 rq->nr_running++;
9c217245
IM
1810}
1811
c09595f6 1812static void dec_nr_running(struct rq *rq)
9c217245
IM
1813{
1814 rq->nr_running--;
9c217245
IM
1815}
1816
45bf76df
IM
1817static void set_load_weight(struct task_struct *p)
1818{
1819 if (task_has_rt_policy(p)) {
dd41f596
IM
1820 p->se.load.weight = prio_to_weight[0] * 2;
1821 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1822 return;
1823 }
45bf76df 1824
dd41f596
IM
1825 /*
1826 * SCHED_IDLE tasks get minimal weight:
1827 */
1828 if (p->policy == SCHED_IDLE) {
1829 p->se.load.weight = WEIGHT_IDLEPRIO;
1830 p->se.load.inv_weight = WMULT_IDLEPRIO;
1831 return;
1832 }
71f8bd46 1833
dd41f596
IM
1834 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1835 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1836}
1837
2087a1ad
GH
1838static void update_avg(u64 *avg, u64 sample)
1839{
1840 s64 diff = sample - *avg;
1841 *avg += diff >> 3;
1842}
1843
ea87bb78
TG
1844static void
1845enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
71f8bd46 1846{
831451ac
PZ
1847 if (wakeup)
1848 p->se.start_runtime = p->se.sum_exec_runtime;
1849
dd41f596 1850 sched_info_queued(p);
ea87bb78 1851 p->sched_class->enqueue_task(rq, p, wakeup, head);
dd41f596 1852 p->se.on_rq = 1;
71f8bd46
IM
1853}
1854
69be72c1 1855static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1856{
831451ac
PZ
1857 if (sleep) {
1858 if (p->se.last_wakeup) {
1859 update_avg(&p->se.avg_overlap,
1860 p->se.sum_exec_runtime - p->se.last_wakeup);
1861 p->se.last_wakeup = 0;
1862 } else {
1863 update_avg(&p->se.avg_wakeup,
1864 sysctl_sched_wakeup_granularity);
1865 }
2087a1ad
GH
1866 }
1867
46ac22ba 1868 sched_info_dequeued(p);
f02231e5 1869 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1870 p->se.on_rq = 0;
71f8bd46
IM
1871}
1872
1e3c88bd
PZ
1873/*
1874 * activate_task - move a task to the runqueue.
1875 */
1876static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1877{
1878 if (task_contributes_to_load(p))
1879 rq->nr_uninterruptible--;
1880
ea87bb78 1881 enqueue_task(rq, p, wakeup, false);
1e3c88bd
PZ
1882 inc_nr_running(rq);
1883}
1884
1885/*
1886 * deactivate_task - remove a task from the runqueue.
1887 */
1888static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1889{
1890 if (task_contributes_to_load(p))
1891 rq->nr_uninterruptible++;
1892
1893 dequeue_task(rq, p, sleep);
1894 dec_nr_running(rq);
1895}
1896
1897#include "sched_idletask.c"
1898#include "sched_fair.c"
1899#include "sched_rt.c"
1900#ifdef CONFIG_SCHED_DEBUG
1901# include "sched_debug.c"
1902#endif
1903
14531189 1904/*
dd41f596 1905 * __normal_prio - return the priority that is based on the static prio
14531189 1906 */
14531189
IM
1907static inline int __normal_prio(struct task_struct *p)
1908{
dd41f596 1909 return p->static_prio;
14531189
IM
1910}
1911
b29739f9
IM
1912/*
1913 * Calculate the expected normal priority: i.e. priority
1914 * without taking RT-inheritance into account. Might be
1915 * boosted by interactivity modifiers. Changes upon fork,
1916 * setprio syscalls, and whenever the interactivity
1917 * estimator recalculates.
1918 */
36c8b586 1919static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1920{
1921 int prio;
1922
e05606d3 1923 if (task_has_rt_policy(p))
b29739f9
IM
1924 prio = MAX_RT_PRIO-1 - p->rt_priority;
1925 else
1926 prio = __normal_prio(p);
1927 return prio;
1928}
1929
1930/*
1931 * Calculate the current priority, i.e. the priority
1932 * taken into account by the scheduler. This value might
1933 * be boosted by RT tasks, or might be boosted by
1934 * interactivity modifiers. Will be RT if the task got
1935 * RT-boosted. If not then it returns p->normal_prio.
1936 */
36c8b586 1937static int effective_prio(struct task_struct *p)
b29739f9
IM
1938{
1939 p->normal_prio = normal_prio(p);
1940 /*
1941 * If we are RT tasks or we were boosted to RT priority,
1942 * keep the priority unchanged. Otherwise, update priority
1943 * to the normal priority:
1944 */
1945 if (!rt_prio(p->prio))
1946 return p->normal_prio;
1947 return p->prio;
1948}
1949
1da177e4
LT
1950/**
1951 * task_curr - is this task currently executing on a CPU?
1952 * @p: the task in question.
1953 */
36c8b586 1954inline int task_curr(const struct task_struct *p)
1da177e4
LT
1955{
1956 return cpu_curr(task_cpu(p)) == p;
1957}
1958
cb469845
SR
1959static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1960 const struct sched_class *prev_class,
1961 int oldprio, int running)
1962{
1963 if (prev_class != p->sched_class) {
1964 if (prev_class->switched_from)
1965 prev_class->switched_from(rq, p, running);
1966 p->sched_class->switched_to(rq, p, running);
1967 } else
1968 p->sched_class->prio_changed(rq, p, oldprio, running);
1969}
1970
1da177e4 1971#ifdef CONFIG_SMP
cc367732
IM
1972/*
1973 * Is this task likely cache-hot:
1974 */
e7693a36 1975static int
cc367732
IM
1976task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1977{
1978 s64 delta;
1979
e6c8fba7
PZ
1980 if (p->sched_class != &fair_sched_class)
1981 return 0;
1982
f540a608
IM
1983 /*
1984 * Buddy candidates are cache hot:
1985 */
f685ceac 1986 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
1987 (&p->se == cfs_rq_of(&p->se)->next ||
1988 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1989 return 1;
1990
6bc1665b
IM
1991 if (sysctl_sched_migration_cost == -1)
1992 return 1;
1993 if (sysctl_sched_migration_cost == 0)
1994 return 0;
1995
cc367732
IM
1996 delta = now - p->se.exec_start;
1997
1998 return delta < (s64)sysctl_sched_migration_cost;
1999}
2000
dd41f596 2001void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2002{
e2912009
PZ
2003#ifdef CONFIG_SCHED_DEBUG
2004 /*
2005 * We should never call set_task_cpu() on a blocked task,
2006 * ttwu() will sort out the placement.
2007 */
077614ee
PZ
2008 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2009 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2010#endif
2011
de1d7286 2012 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2013
0c69774e
PZ
2014 if (task_cpu(p) != new_cpu) {
2015 p->se.nr_migrations++;
2016 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2017 }
dd41f596
IM
2018
2019 __set_task_cpu(p, new_cpu);
c65cc870
IM
2020}
2021
70b97a7f 2022struct migration_req {
1da177e4 2023 struct list_head list;
1da177e4 2024
36c8b586 2025 struct task_struct *task;
1da177e4
LT
2026 int dest_cpu;
2027
1da177e4 2028 struct completion done;
70b97a7f 2029};
1da177e4
LT
2030
2031/*
2032 * The task's runqueue lock must be held.
2033 * Returns true if you have to wait for migration thread.
2034 */
36c8b586 2035static int
70b97a7f 2036migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2037{
70b97a7f 2038 struct rq *rq = task_rq(p);
1da177e4
LT
2039
2040 /*
2041 * If the task is not on a runqueue (and not running), then
e2912009 2042 * the next wake-up will properly place the task.
1da177e4 2043 */
e2912009 2044 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2045 return 0;
1da177e4
LT
2046
2047 init_completion(&req->done);
1da177e4
LT
2048 req->task = p;
2049 req->dest_cpu = dest_cpu;
2050 list_add(&req->list, &rq->migration_queue);
48f24c4d 2051
1da177e4
LT
2052 return 1;
2053}
2054
a26b89f0
MM
2055/*
2056 * wait_task_context_switch - wait for a thread to complete at least one
2057 * context switch.
2058 *
2059 * @p must not be current.
2060 */
2061void wait_task_context_switch(struct task_struct *p)
2062{
2063 unsigned long nvcsw, nivcsw, flags;
2064 int running;
2065 struct rq *rq;
2066
2067 nvcsw = p->nvcsw;
2068 nivcsw = p->nivcsw;
2069 for (;;) {
2070 /*
2071 * The runqueue is assigned before the actual context
2072 * switch. We need to take the runqueue lock.
2073 *
2074 * We could check initially without the lock but it is
2075 * very likely that we need to take the lock in every
2076 * iteration.
2077 */
2078 rq = task_rq_lock(p, &flags);
2079 running = task_running(rq, p);
2080 task_rq_unlock(rq, &flags);
2081
2082 if (likely(!running))
2083 break;
2084 /*
2085 * The switch count is incremented before the actual
2086 * context switch. We thus wait for two switches to be
2087 * sure at least one completed.
2088 */
2089 if ((p->nvcsw - nvcsw) > 1)
2090 break;
2091 if ((p->nivcsw - nivcsw) > 1)
2092 break;
2093
2094 cpu_relax();
2095 }
2096}
2097
1da177e4
LT
2098/*
2099 * wait_task_inactive - wait for a thread to unschedule.
2100 *
85ba2d86
RM
2101 * If @match_state is nonzero, it's the @p->state value just checked and
2102 * not expected to change. If it changes, i.e. @p might have woken up,
2103 * then return zero. When we succeed in waiting for @p to be off its CPU,
2104 * we return a positive number (its total switch count). If a second call
2105 * a short while later returns the same number, the caller can be sure that
2106 * @p has remained unscheduled the whole time.
2107 *
1da177e4
LT
2108 * The caller must ensure that the task *will* unschedule sometime soon,
2109 * else this function might spin for a *long* time. This function can't
2110 * be called with interrupts off, or it may introduce deadlock with
2111 * smp_call_function() if an IPI is sent by the same process we are
2112 * waiting to become inactive.
2113 */
85ba2d86 2114unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2115{
2116 unsigned long flags;
dd41f596 2117 int running, on_rq;
85ba2d86 2118 unsigned long ncsw;
70b97a7f 2119 struct rq *rq;
1da177e4 2120
3a5c359a
AK
2121 for (;;) {
2122 /*
2123 * We do the initial early heuristics without holding
2124 * any task-queue locks at all. We'll only try to get
2125 * the runqueue lock when things look like they will
2126 * work out!
2127 */
2128 rq = task_rq(p);
fa490cfd 2129
3a5c359a
AK
2130 /*
2131 * If the task is actively running on another CPU
2132 * still, just relax and busy-wait without holding
2133 * any locks.
2134 *
2135 * NOTE! Since we don't hold any locks, it's not
2136 * even sure that "rq" stays as the right runqueue!
2137 * But we don't care, since "task_running()" will
2138 * return false if the runqueue has changed and p
2139 * is actually now running somewhere else!
2140 */
85ba2d86
RM
2141 while (task_running(rq, p)) {
2142 if (match_state && unlikely(p->state != match_state))
2143 return 0;
3a5c359a 2144 cpu_relax();
85ba2d86 2145 }
fa490cfd 2146
3a5c359a
AK
2147 /*
2148 * Ok, time to look more closely! We need the rq
2149 * lock now, to be *sure*. If we're wrong, we'll
2150 * just go back and repeat.
2151 */
2152 rq = task_rq_lock(p, &flags);
0a16b607 2153 trace_sched_wait_task(rq, p);
3a5c359a
AK
2154 running = task_running(rq, p);
2155 on_rq = p->se.on_rq;
85ba2d86 2156 ncsw = 0;
f31e11d8 2157 if (!match_state || p->state == match_state)
93dcf55f 2158 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2159 task_rq_unlock(rq, &flags);
fa490cfd 2160
85ba2d86
RM
2161 /*
2162 * If it changed from the expected state, bail out now.
2163 */
2164 if (unlikely(!ncsw))
2165 break;
2166
3a5c359a
AK
2167 /*
2168 * Was it really running after all now that we
2169 * checked with the proper locks actually held?
2170 *
2171 * Oops. Go back and try again..
2172 */
2173 if (unlikely(running)) {
2174 cpu_relax();
2175 continue;
2176 }
fa490cfd 2177
3a5c359a
AK
2178 /*
2179 * It's not enough that it's not actively running,
2180 * it must be off the runqueue _entirely_, and not
2181 * preempted!
2182 *
80dd99b3 2183 * So if it was still runnable (but just not actively
3a5c359a
AK
2184 * running right now), it's preempted, and we should
2185 * yield - it could be a while.
2186 */
2187 if (unlikely(on_rq)) {
2188 schedule_timeout_uninterruptible(1);
2189 continue;
2190 }
fa490cfd 2191
3a5c359a
AK
2192 /*
2193 * Ahh, all good. It wasn't running, and it wasn't
2194 * runnable, which means that it will never become
2195 * running in the future either. We're all done!
2196 */
2197 break;
2198 }
85ba2d86
RM
2199
2200 return ncsw;
1da177e4
LT
2201}
2202
2203/***
2204 * kick_process - kick a running thread to enter/exit the kernel
2205 * @p: the to-be-kicked thread
2206 *
2207 * Cause a process which is running on another CPU to enter
2208 * kernel-mode, without any delay. (to get signals handled.)
2209 *
2210 * NOTE: this function doesnt have to take the runqueue lock,
2211 * because all it wants to ensure is that the remote task enters
2212 * the kernel. If the IPI races and the task has been migrated
2213 * to another CPU then no harm is done and the purpose has been
2214 * achieved as well.
2215 */
36c8b586 2216void kick_process(struct task_struct *p)
1da177e4
LT
2217{
2218 int cpu;
2219
2220 preempt_disable();
2221 cpu = task_cpu(p);
2222 if ((cpu != smp_processor_id()) && task_curr(p))
2223 smp_send_reschedule(cpu);
2224 preempt_enable();
2225}
b43e3521 2226EXPORT_SYMBOL_GPL(kick_process);
476d139c 2227#endif /* CONFIG_SMP */
1da177e4 2228
0793a61d
TG
2229/**
2230 * task_oncpu_function_call - call a function on the cpu on which a task runs
2231 * @p: the task to evaluate
2232 * @func: the function to be called
2233 * @info: the function call argument
2234 *
2235 * Calls the function @func when the task is currently running. This might
2236 * be on the current CPU, which just calls the function directly
2237 */
2238void task_oncpu_function_call(struct task_struct *p,
2239 void (*func) (void *info), void *info)
2240{
2241 int cpu;
2242
2243 preempt_disable();
2244 cpu = task_cpu(p);
2245 if (task_curr(p))
2246 smp_call_function_single(cpu, func, info, 1);
2247 preempt_enable();
2248}
2249
970b13ba 2250#ifdef CONFIG_SMP
5da9a0fb
PZ
2251static int select_fallback_rq(int cpu, struct task_struct *p)
2252{
2253 int dest_cpu;
2254 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2255
2256 /* Look for allowed, online CPU in same node. */
2257 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2258 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2259 return dest_cpu;
2260
2261 /* Any allowed, online CPU? */
2262 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2263 if (dest_cpu < nr_cpu_ids)
2264 return dest_cpu;
2265
2266 /* No more Mr. Nice Guy. */
2267 if (dest_cpu >= nr_cpu_ids) {
2268 rcu_read_lock();
2269 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2270 rcu_read_unlock();
2271 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2272
2273 /*
2274 * Don't tell them about moving exiting tasks or
2275 * kernel threads (both mm NULL), since they never
2276 * leave kernel.
2277 */
2278 if (p->mm && printk_ratelimit()) {
2279 printk(KERN_INFO "process %d (%s) no "
2280 "longer affine to cpu%d\n",
2281 task_pid_nr(p), p->comm, cpu);
2282 }
2283 }
2284
2285 return dest_cpu;
2286}
2287
e2912009 2288/*
fabf318e
PZ
2289 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2290 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2291 * by:
e2912009 2292 *
fabf318e
PZ
2293 * exec: is unstable, retry loop
2294 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
e2912009 2295 */
970b13ba
PZ
2296static inline
2297int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2298{
e2912009
PZ
2299 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2300
2301 /*
2302 * In order not to call set_task_cpu() on a blocking task we need
2303 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2304 * cpu.
2305 *
2306 * Since this is common to all placement strategies, this lives here.
2307 *
2308 * [ this allows ->select_task() to simply return task_cpu(p) and
2309 * not worry about this generic constraint ]
2310 */
2311 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2312 !cpu_online(cpu)))
5da9a0fb 2313 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2314
2315 return cpu;
970b13ba
PZ
2316}
2317#endif
2318
1da177e4
LT
2319/***
2320 * try_to_wake_up - wake up a thread
2321 * @p: the to-be-woken-up thread
2322 * @state: the mask of task states that can be woken
2323 * @sync: do a synchronous wakeup?
2324 *
2325 * Put it on the run-queue if it's not already there. The "current"
2326 * thread is always on the run-queue (except when the actual
2327 * re-schedule is in progress), and as such you're allowed to do
2328 * the simpler "current->state = TASK_RUNNING" to mark yourself
2329 * runnable without the overhead of this.
2330 *
2331 * returns failure only if the task is already active.
2332 */
7d478721
PZ
2333static int try_to_wake_up(struct task_struct *p, unsigned int state,
2334 int wake_flags)
1da177e4 2335{
cc367732 2336 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2337 unsigned long flags;
f5dc3753 2338 struct rq *rq, *orig_rq;
1da177e4 2339
b85d0667 2340 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2341 wake_flags &= ~WF_SYNC;
2398f2c6 2342
e9c84311 2343 this_cpu = get_cpu();
2398f2c6 2344
04e2f174 2345 smp_wmb();
f5dc3753 2346 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2347 update_rq_clock(rq);
e9c84311 2348 if (!(p->state & state))
1da177e4
LT
2349 goto out;
2350
dd41f596 2351 if (p->se.on_rq)
1da177e4
LT
2352 goto out_running;
2353
2354 cpu = task_cpu(p);
cc367732 2355 orig_cpu = cpu;
1da177e4
LT
2356
2357#ifdef CONFIG_SMP
2358 if (unlikely(task_running(rq, p)))
2359 goto out_activate;
2360
e9c84311
PZ
2361 /*
2362 * In order to handle concurrent wakeups and release the rq->lock
2363 * we put the task in TASK_WAKING state.
eb24073b
IM
2364 *
2365 * First fix up the nr_uninterruptible count:
e9c84311 2366 */
eb24073b
IM
2367 if (task_contributes_to_load(p))
2368 rq->nr_uninterruptible--;
e9c84311 2369 p->state = TASK_WAKING;
efbbd05a
PZ
2370
2371 if (p->sched_class->task_waking)
2372 p->sched_class->task_waking(rq, p);
2373
ab19cb23 2374 __task_rq_unlock(rq);
e9c84311 2375
970b13ba 2376 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2377 if (cpu != orig_cpu)
5d2f5a61 2378 set_task_cpu(p, cpu);
ab19cb23
PZ
2379
2380 rq = __task_rq_lock(p);
2381 update_rq_clock(rq);
f5dc3753 2382
e9c84311
PZ
2383 WARN_ON(p->state != TASK_WAKING);
2384 cpu = task_cpu(p);
1da177e4 2385
e7693a36
GH
2386#ifdef CONFIG_SCHEDSTATS
2387 schedstat_inc(rq, ttwu_count);
2388 if (cpu == this_cpu)
2389 schedstat_inc(rq, ttwu_local);
2390 else {
2391 struct sched_domain *sd;
2392 for_each_domain(this_cpu, sd) {
758b2cdc 2393 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2394 schedstat_inc(sd, ttwu_wake_remote);
2395 break;
2396 }
2397 }
2398 }
6d6bc0ad 2399#endif /* CONFIG_SCHEDSTATS */
e7693a36 2400
1da177e4
LT
2401out_activate:
2402#endif /* CONFIG_SMP */
cc367732 2403 schedstat_inc(p, se.nr_wakeups);
7d478721 2404 if (wake_flags & WF_SYNC)
cc367732
IM
2405 schedstat_inc(p, se.nr_wakeups_sync);
2406 if (orig_cpu != cpu)
2407 schedstat_inc(p, se.nr_wakeups_migrate);
2408 if (cpu == this_cpu)
2409 schedstat_inc(p, se.nr_wakeups_local);
2410 else
2411 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2412 activate_task(rq, p, 1);
1da177e4
LT
2413 success = 1;
2414
831451ac
PZ
2415 /*
2416 * Only attribute actual wakeups done by this task.
2417 */
2418 if (!in_interrupt()) {
2419 struct sched_entity *se = &current->se;
2420 u64 sample = se->sum_exec_runtime;
2421
2422 if (se->last_wakeup)
2423 sample -= se->last_wakeup;
2424 else
2425 sample -= se->start_runtime;
2426 update_avg(&se->avg_wakeup, sample);
2427
2428 se->last_wakeup = se->sum_exec_runtime;
2429 }
2430
1da177e4 2431out_running:
468a15bb 2432 trace_sched_wakeup(rq, p, success);
7d478721 2433 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2434
1da177e4 2435 p->state = TASK_RUNNING;
9a897c5a 2436#ifdef CONFIG_SMP
efbbd05a
PZ
2437 if (p->sched_class->task_woken)
2438 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2439
2440 if (unlikely(rq->idle_stamp)) {
2441 u64 delta = rq->clock - rq->idle_stamp;
2442 u64 max = 2*sysctl_sched_migration_cost;
2443
2444 if (delta > max)
2445 rq->avg_idle = max;
2446 else
2447 update_avg(&rq->avg_idle, delta);
2448 rq->idle_stamp = 0;
2449 }
9a897c5a 2450#endif
1da177e4
LT
2451out:
2452 task_rq_unlock(rq, &flags);
e9c84311 2453 put_cpu();
1da177e4
LT
2454
2455 return success;
2456}
2457
50fa610a
DH
2458/**
2459 * wake_up_process - Wake up a specific process
2460 * @p: The process to be woken up.
2461 *
2462 * Attempt to wake up the nominated process and move it to the set of runnable
2463 * processes. Returns 1 if the process was woken up, 0 if it was already
2464 * running.
2465 *
2466 * It may be assumed that this function implies a write memory barrier before
2467 * changing the task state if and only if any tasks are woken up.
2468 */
7ad5b3a5 2469int wake_up_process(struct task_struct *p)
1da177e4 2470{
d9514f6c 2471 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2472}
1da177e4
LT
2473EXPORT_SYMBOL(wake_up_process);
2474
7ad5b3a5 2475int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2476{
2477 return try_to_wake_up(p, state, 0);
2478}
2479
1da177e4
LT
2480/*
2481 * Perform scheduler related setup for a newly forked process p.
2482 * p is forked by current.
dd41f596
IM
2483 *
2484 * __sched_fork() is basic setup used by init_idle() too:
2485 */
2486static void __sched_fork(struct task_struct *p)
2487{
dd41f596
IM
2488 p->se.exec_start = 0;
2489 p->se.sum_exec_runtime = 0;
f6cf891c 2490 p->se.prev_sum_exec_runtime = 0;
6c594c21 2491 p->se.nr_migrations = 0;
4ae7d5ce
IM
2492 p->se.last_wakeup = 0;
2493 p->se.avg_overlap = 0;
831451ac
PZ
2494 p->se.start_runtime = 0;
2495 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2496
2497#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2498 p->se.wait_start = 0;
2499 p->se.wait_max = 0;
2500 p->se.wait_count = 0;
2501 p->se.wait_sum = 0;
2502
2503 p->se.sleep_start = 0;
2504 p->se.sleep_max = 0;
2505 p->se.sum_sleep_runtime = 0;
2506
2507 p->se.block_start = 0;
2508 p->se.block_max = 0;
2509 p->se.exec_max = 0;
2510 p->se.slice_max = 0;
2511
2512 p->se.nr_migrations_cold = 0;
2513 p->se.nr_failed_migrations_affine = 0;
2514 p->se.nr_failed_migrations_running = 0;
2515 p->se.nr_failed_migrations_hot = 0;
2516 p->se.nr_forced_migrations = 0;
7793527b
LDM
2517
2518 p->se.nr_wakeups = 0;
2519 p->se.nr_wakeups_sync = 0;
2520 p->se.nr_wakeups_migrate = 0;
2521 p->se.nr_wakeups_local = 0;
2522 p->se.nr_wakeups_remote = 0;
2523 p->se.nr_wakeups_affine = 0;
2524 p->se.nr_wakeups_affine_attempts = 0;
2525 p->se.nr_wakeups_passive = 0;
2526 p->se.nr_wakeups_idle = 0;
2527
6cfb0d5d 2528#endif
476d139c 2529
fa717060 2530 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2531 p->se.on_rq = 0;
4a55bd5e 2532 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2533
e107be36
AK
2534#ifdef CONFIG_PREEMPT_NOTIFIERS
2535 INIT_HLIST_HEAD(&p->preempt_notifiers);
2536#endif
dd41f596
IM
2537}
2538
2539/*
2540 * fork()/clone()-time setup:
2541 */
2542void sched_fork(struct task_struct *p, int clone_flags)
2543{
2544 int cpu = get_cpu();
2545
2546 __sched_fork(p);
06b83b5f
PZ
2547 /*
2548 * We mark the process as waking here. This guarantees that
2549 * nobody will actually run it, and a signal or other external
2550 * event cannot wake it up and insert it on the runqueue either.
2551 */
2552 p->state = TASK_WAKING;
dd41f596 2553
b9dc29e7
MG
2554 /*
2555 * Revert to default priority/policy on fork if requested.
2556 */
2557 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2558 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2559 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2560 p->normal_prio = p->static_prio;
2561 }
b9dc29e7 2562
6c697bdf
MG
2563 if (PRIO_TO_NICE(p->static_prio) < 0) {
2564 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2565 p->normal_prio = p->static_prio;
6c697bdf
MG
2566 set_load_weight(p);
2567 }
2568
b9dc29e7
MG
2569 /*
2570 * We don't need the reset flag anymore after the fork. It has
2571 * fulfilled its duty:
2572 */
2573 p->sched_reset_on_fork = 0;
2574 }
ca94c442 2575
f83f9ac2
PW
2576 /*
2577 * Make sure we do not leak PI boosting priority to the child.
2578 */
2579 p->prio = current->normal_prio;
2580
2ddbf952
HS
2581 if (!rt_prio(p->prio))
2582 p->sched_class = &fair_sched_class;
b29739f9 2583
cd29fe6f
PZ
2584 if (p->sched_class->task_fork)
2585 p->sched_class->task_fork(p);
2586
5f3edc1b
PZ
2587 set_task_cpu(p, cpu);
2588
52f17b6c 2589#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2590 if (likely(sched_info_on()))
52f17b6c 2591 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2592#endif
d6077cb8 2593#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2594 p->oncpu = 0;
2595#endif
1da177e4 2596#ifdef CONFIG_PREEMPT
4866cde0 2597 /* Want to start with kernel preemption disabled. */
a1261f54 2598 task_thread_info(p)->preempt_count = 1;
1da177e4 2599#endif
917b627d
GH
2600 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2601
476d139c 2602 put_cpu();
1da177e4
LT
2603}
2604
2605/*
2606 * wake_up_new_task - wake up a newly created task for the first time.
2607 *
2608 * This function will do some initial scheduler statistics housekeeping
2609 * that must be done for every newly created context, then puts the task
2610 * on the runqueue and wakes it.
2611 */
7ad5b3a5 2612void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2613{
2614 unsigned long flags;
dd41f596 2615 struct rq *rq;
50200df4 2616 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2617
2618#ifdef CONFIG_SMP
2619 /*
2620 * Fork balancing, do it here and not earlier because:
2621 * - cpus_allowed can change in the fork path
2622 * - any previously selected cpu might disappear through hotplug
2623 *
2624 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2625 * ->cpus_allowed is stable, we have preemption disabled, meaning
2626 * cpu_online_mask is stable.
2627 */
2628 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2629 set_task_cpu(p, cpu);
2630#endif
1da177e4
LT
2631
2632 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2633 BUG_ON(p->state != TASK_WAKING);
2634 p->state = TASK_RUNNING;
a8e504d2 2635 update_rq_clock(rq);
cd29fe6f 2636 activate_task(rq, p, 0);
c71dd42d 2637 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2638 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2639#ifdef CONFIG_SMP
efbbd05a
PZ
2640 if (p->sched_class->task_woken)
2641 p->sched_class->task_woken(rq, p);
9a897c5a 2642#endif
dd41f596 2643 task_rq_unlock(rq, &flags);
fabf318e 2644 put_cpu();
1da177e4
LT
2645}
2646
e107be36
AK
2647#ifdef CONFIG_PREEMPT_NOTIFIERS
2648
2649/**
80dd99b3 2650 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2651 * @notifier: notifier struct to register
e107be36
AK
2652 */
2653void preempt_notifier_register(struct preempt_notifier *notifier)
2654{
2655 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2656}
2657EXPORT_SYMBOL_GPL(preempt_notifier_register);
2658
2659/**
2660 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2661 * @notifier: notifier struct to unregister
e107be36
AK
2662 *
2663 * This is safe to call from within a preemption notifier.
2664 */
2665void preempt_notifier_unregister(struct preempt_notifier *notifier)
2666{
2667 hlist_del(&notifier->link);
2668}
2669EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2670
2671static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2672{
2673 struct preempt_notifier *notifier;
2674 struct hlist_node *node;
2675
2676 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2677 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2678}
2679
2680static void
2681fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682 struct task_struct *next)
2683{
2684 struct preempt_notifier *notifier;
2685 struct hlist_node *node;
2686
2687 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2688 notifier->ops->sched_out(notifier, next);
2689}
2690
6d6bc0ad 2691#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2692
2693static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2694{
2695}
2696
2697static void
2698fire_sched_out_preempt_notifiers(struct task_struct *curr,
2699 struct task_struct *next)
2700{
2701}
2702
6d6bc0ad 2703#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2704
4866cde0
NP
2705/**
2706 * prepare_task_switch - prepare to switch tasks
2707 * @rq: the runqueue preparing to switch
421cee29 2708 * @prev: the current task that is being switched out
4866cde0
NP
2709 * @next: the task we are going to switch to.
2710 *
2711 * This is called with the rq lock held and interrupts off. It must
2712 * be paired with a subsequent finish_task_switch after the context
2713 * switch.
2714 *
2715 * prepare_task_switch sets up locking and calls architecture specific
2716 * hooks.
2717 */
e107be36
AK
2718static inline void
2719prepare_task_switch(struct rq *rq, struct task_struct *prev,
2720 struct task_struct *next)
4866cde0 2721{
e107be36 2722 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2723 prepare_lock_switch(rq, next);
2724 prepare_arch_switch(next);
2725}
2726
1da177e4
LT
2727/**
2728 * finish_task_switch - clean up after a task-switch
344babaa 2729 * @rq: runqueue associated with task-switch
1da177e4
LT
2730 * @prev: the thread we just switched away from.
2731 *
4866cde0
NP
2732 * finish_task_switch must be called after the context switch, paired
2733 * with a prepare_task_switch call before the context switch.
2734 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2735 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2736 *
2737 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2738 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2739 * with the lock held can cause deadlocks; see schedule() for
2740 * details.)
2741 */
a9957449 2742static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2743 __releases(rq->lock)
2744{
1da177e4 2745 struct mm_struct *mm = rq->prev_mm;
55a101f8 2746 long prev_state;
1da177e4
LT
2747
2748 rq->prev_mm = NULL;
2749
2750 /*
2751 * A task struct has one reference for the use as "current".
c394cc9f 2752 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2753 * schedule one last time. The schedule call will never return, and
2754 * the scheduled task must drop that reference.
c394cc9f 2755 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2756 * still held, otherwise prev could be scheduled on another cpu, die
2757 * there before we look at prev->state, and then the reference would
2758 * be dropped twice.
2759 * Manfred Spraul <manfred@colorfullife.com>
2760 */
55a101f8 2761 prev_state = prev->state;
4866cde0 2762 finish_arch_switch(prev);
cdd6c482 2763 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2764 finish_lock_switch(rq, prev);
e8fa1362 2765
e107be36 2766 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2767 if (mm)
2768 mmdrop(mm);
c394cc9f 2769 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2770 /*
2771 * Remove function-return probe instances associated with this
2772 * task and put them back on the free list.
9761eea8 2773 */
c6fd91f0 2774 kprobe_flush_task(prev);
1da177e4 2775 put_task_struct(prev);
c6fd91f0 2776 }
1da177e4
LT
2777}
2778
3f029d3c
GH
2779#ifdef CONFIG_SMP
2780
2781/* assumes rq->lock is held */
2782static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2783{
2784 if (prev->sched_class->pre_schedule)
2785 prev->sched_class->pre_schedule(rq, prev);
2786}
2787
2788/* rq->lock is NOT held, but preemption is disabled */
2789static inline void post_schedule(struct rq *rq)
2790{
2791 if (rq->post_schedule) {
2792 unsigned long flags;
2793
05fa785c 2794 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2795 if (rq->curr->sched_class->post_schedule)
2796 rq->curr->sched_class->post_schedule(rq);
05fa785c 2797 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2798
2799 rq->post_schedule = 0;
2800 }
2801}
2802
2803#else
da19ab51 2804
3f029d3c
GH
2805static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2806{
2807}
2808
2809static inline void post_schedule(struct rq *rq)
2810{
1da177e4
LT
2811}
2812
3f029d3c
GH
2813#endif
2814
1da177e4
LT
2815/**
2816 * schedule_tail - first thing a freshly forked thread must call.
2817 * @prev: the thread we just switched away from.
2818 */
36c8b586 2819asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2820 __releases(rq->lock)
2821{
70b97a7f
IM
2822 struct rq *rq = this_rq();
2823
4866cde0 2824 finish_task_switch(rq, prev);
da19ab51 2825
3f029d3c
GH
2826 /*
2827 * FIXME: do we need to worry about rq being invalidated by the
2828 * task_switch?
2829 */
2830 post_schedule(rq);
70b97a7f 2831
4866cde0
NP
2832#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2833 /* In this case, finish_task_switch does not reenable preemption */
2834 preempt_enable();
2835#endif
1da177e4 2836 if (current->set_child_tid)
b488893a 2837 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2838}
2839
2840/*
2841 * context_switch - switch to the new MM and the new
2842 * thread's register state.
2843 */
dd41f596 2844static inline void
70b97a7f 2845context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2846 struct task_struct *next)
1da177e4 2847{
dd41f596 2848 struct mm_struct *mm, *oldmm;
1da177e4 2849
e107be36 2850 prepare_task_switch(rq, prev, next);
0a16b607 2851 trace_sched_switch(rq, prev, next);
dd41f596
IM
2852 mm = next->mm;
2853 oldmm = prev->active_mm;
9226d125
ZA
2854 /*
2855 * For paravirt, this is coupled with an exit in switch_to to
2856 * combine the page table reload and the switch backend into
2857 * one hypercall.
2858 */
224101ed 2859 arch_start_context_switch(prev);
9226d125 2860
710390d9 2861 if (likely(!mm)) {
1da177e4
LT
2862 next->active_mm = oldmm;
2863 atomic_inc(&oldmm->mm_count);
2864 enter_lazy_tlb(oldmm, next);
2865 } else
2866 switch_mm(oldmm, mm, next);
2867
710390d9 2868 if (likely(!prev->mm)) {
1da177e4 2869 prev->active_mm = NULL;
1da177e4
LT
2870 rq->prev_mm = oldmm;
2871 }
3a5f5e48
IM
2872 /*
2873 * Since the runqueue lock will be released by the next
2874 * task (which is an invalid locking op but in the case
2875 * of the scheduler it's an obvious special-case), so we
2876 * do an early lockdep release here:
2877 */
2878#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2879 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2880#endif
1da177e4
LT
2881
2882 /* Here we just switch the register state and the stack. */
2883 switch_to(prev, next, prev);
2884
dd41f596
IM
2885 barrier();
2886 /*
2887 * this_rq must be evaluated again because prev may have moved
2888 * CPUs since it called schedule(), thus the 'rq' on its stack
2889 * frame will be invalid.
2890 */
2891 finish_task_switch(this_rq(), prev);
1da177e4
LT
2892}
2893
2894/*
2895 * nr_running, nr_uninterruptible and nr_context_switches:
2896 *
2897 * externally visible scheduler statistics: current number of runnable
2898 * threads, current number of uninterruptible-sleeping threads, total
2899 * number of context switches performed since bootup.
2900 */
2901unsigned long nr_running(void)
2902{
2903 unsigned long i, sum = 0;
2904
2905 for_each_online_cpu(i)
2906 sum += cpu_rq(i)->nr_running;
2907
2908 return sum;
2909}
2910
2911unsigned long nr_uninterruptible(void)
2912{
2913 unsigned long i, sum = 0;
2914
0a945022 2915 for_each_possible_cpu(i)
1da177e4
LT
2916 sum += cpu_rq(i)->nr_uninterruptible;
2917
2918 /*
2919 * Since we read the counters lockless, it might be slightly
2920 * inaccurate. Do not allow it to go below zero though:
2921 */
2922 if (unlikely((long)sum < 0))
2923 sum = 0;
2924
2925 return sum;
2926}
2927
2928unsigned long long nr_context_switches(void)
2929{
cc94abfc
SR
2930 int i;
2931 unsigned long long sum = 0;
1da177e4 2932
0a945022 2933 for_each_possible_cpu(i)
1da177e4
LT
2934 sum += cpu_rq(i)->nr_switches;
2935
2936 return sum;
2937}
2938
2939unsigned long nr_iowait(void)
2940{
2941 unsigned long i, sum = 0;
2942
0a945022 2943 for_each_possible_cpu(i)
1da177e4
LT
2944 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2945
2946 return sum;
2947}
2948
69d25870
AV
2949unsigned long nr_iowait_cpu(void)
2950{
2951 struct rq *this = this_rq();
2952 return atomic_read(&this->nr_iowait);
2953}
2954
2955unsigned long this_cpu_load(void)
2956{
2957 struct rq *this = this_rq();
2958 return this->cpu_load[0];
2959}
2960
2961
dce48a84
TG
2962/* Variables and functions for calc_load */
2963static atomic_long_t calc_load_tasks;
2964static unsigned long calc_load_update;
2965unsigned long avenrun[3];
2966EXPORT_SYMBOL(avenrun);
2967
2d02494f
TG
2968/**
2969 * get_avenrun - get the load average array
2970 * @loads: pointer to dest load array
2971 * @offset: offset to add
2972 * @shift: shift count to shift the result left
2973 *
2974 * These values are estimates at best, so no need for locking.
2975 */
2976void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2977{
2978 loads[0] = (avenrun[0] + offset) << shift;
2979 loads[1] = (avenrun[1] + offset) << shift;
2980 loads[2] = (avenrun[2] + offset) << shift;
2981}
2982
dce48a84
TG
2983static unsigned long
2984calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2985{
dce48a84
TG
2986 load *= exp;
2987 load += active * (FIXED_1 - exp);
2988 return load >> FSHIFT;
2989}
db1b1fef 2990
dce48a84
TG
2991/*
2992 * calc_load - update the avenrun load estimates 10 ticks after the
2993 * CPUs have updated calc_load_tasks.
2994 */
2995void calc_global_load(void)
2996{
2997 unsigned long upd = calc_load_update + 10;
2998 long active;
2999
3000 if (time_before(jiffies, upd))
3001 return;
db1b1fef 3002
dce48a84
TG
3003 active = atomic_long_read(&calc_load_tasks);
3004 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3005
dce48a84
TG
3006 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3007 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3008 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3009
3010 calc_load_update += LOAD_FREQ;
3011}
3012
3013/*
3014 * Either called from update_cpu_load() or from a cpu going idle
3015 */
3016static void calc_load_account_active(struct rq *this_rq)
3017{
3018 long nr_active, delta;
3019
3020 nr_active = this_rq->nr_running;
3021 nr_active += (long) this_rq->nr_uninterruptible;
3022
3023 if (nr_active != this_rq->calc_load_active) {
3024 delta = nr_active - this_rq->calc_load_active;
3025 this_rq->calc_load_active = nr_active;
3026 atomic_long_add(delta, &calc_load_tasks);
3027 }
db1b1fef
JS
3028}
3029
48f24c4d 3030/*
dd41f596
IM
3031 * Update rq->cpu_load[] statistics. This function is usually called every
3032 * scheduler tick (TICK_NSEC).
48f24c4d 3033 */
dd41f596 3034static void update_cpu_load(struct rq *this_rq)
48f24c4d 3035{
495eca49 3036 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3037 int i, scale;
3038
3039 this_rq->nr_load_updates++;
dd41f596
IM
3040
3041 /* Update our load: */
3042 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3043 unsigned long old_load, new_load;
3044
3045 /* scale is effectively 1 << i now, and >> i divides by scale */
3046
3047 old_load = this_rq->cpu_load[i];
3048 new_load = this_load;
a25707f3
IM
3049 /*
3050 * Round up the averaging division if load is increasing. This
3051 * prevents us from getting stuck on 9 if the load is 10, for
3052 * example.
3053 */
3054 if (new_load > old_load)
3055 new_load += scale-1;
dd41f596
IM
3056 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3057 }
dce48a84
TG
3058
3059 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3060 this_rq->calc_load_update += LOAD_FREQ;
3061 calc_load_account_active(this_rq);
3062 }
48f24c4d
IM
3063}
3064
dd41f596
IM
3065#ifdef CONFIG_SMP
3066
1da177e4 3067/*
38022906
PZ
3068 * sched_exec - execve() is a valuable balancing opportunity, because at
3069 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3070 */
38022906 3071void sched_exec(void)
1da177e4 3072{
38022906 3073 struct task_struct *p = current;
70b97a7f 3074 struct migration_req req;
38022906 3075 int dest_cpu, this_cpu;
1da177e4 3076 unsigned long flags;
70b97a7f 3077 struct rq *rq;
1da177e4 3078
38022906
PZ
3079again:
3080 this_cpu = get_cpu();
3081 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3082 if (dest_cpu == this_cpu) {
3083 put_cpu();
3084 return;
3085 }
3086
1da177e4 3087 rq = task_rq_lock(p, &flags);
38022906
PZ
3088 put_cpu();
3089
3090 /*
3091 * select_task_rq() can race against ->cpus_allowed
3092 */
96f874e2 3093 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3094 || unlikely(!cpu_active(dest_cpu))) {
3095 task_rq_unlock(rq, &flags);
3096 goto again;
3097 }
1da177e4
LT
3098
3099 /* force the process onto the specified CPU */
3100 if (migrate_task(p, dest_cpu, &req)) {
3101 /* Need to wait for migration thread (might exit: take ref). */
3102 struct task_struct *mt = rq->migration_thread;
36c8b586 3103
1da177e4
LT
3104 get_task_struct(mt);
3105 task_rq_unlock(rq, &flags);
3106 wake_up_process(mt);
3107 put_task_struct(mt);
3108 wait_for_completion(&req.done);
36c8b586 3109
1da177e4
LT
3110 return;
3111 }
1da177e4
LT
3112 task_rq_unlock(rq, &flags);
3113}
3114
1da177e4
LT
3115#endif
3116
1da177e4
LT
3117DEFINE_PER_CPU(struct kernel_stat, kstat);
3118
3119EXPORT_PER_CPU_SYMBOL(kstat);
3120
3121/*
c5f8d995 3122 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3123 * @p in case that task is currently running.
c5f8d995
HS
3124 *
3125 * Called with task_rq_lock() held on @rq.
1da177e4 3126 */
c5f8d995
HS
3127static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3128{
3129 u64 ns = 0;
3130
3131 if (task_current(rq, p)) {
3132 update_rq_clock(rq);
3133 ns = rq->clock - p->se.exec_start;
3134 if ((s64)ns < 0)
3135 ns = 0;
3136 }
3137
3138 return ns;
3139}
3140
bb34d92f 3141unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3142{
1da177e4 3143 unsigned long flags;
41b86e9c 3144 struct rq *rq;
bb34d92f 3145 u64 ns = 0;
48f24c4d 3146
41b86e9c 3147 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3148 ns = do_task_delta_exec(p, rq);
3149 task_rq_unlock(rq, &flags);
1508487e 3150
c5f8d995
HS
3151 return ns;
3152}
f06febc9 3153
c5f8d995
HS
3154/*
3155 * Return accounted runtime for the task.
3156 * In case the task is currently running, return the runtime plus current's
3157 * pending runtime that have not been accounted yet.
3158 */
3159unsigned long long task_sched_runtime(struct task_struct *p)
3160{
3161 unsigned long flags;
3162 struct rq *rq;
3163 u64 ns = 0;
3164
3165 rq = task_rq_lock(p, &flags);
3166 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3167 task_rq_unlock(rq, &flags);
3168
3169 return ns;
3170}
48f24c4d 3171
c5f8d995
HS
3172/*
3173 * Return sum_exec_runtime for the thread group.
3174 * In case the task is currently running, return the sum plus current's
3175 * pending runtime that have not been accounted yet.
3176 *
3177 * Note that the thread group might have other running tasks as well,
3178 * so the return value not includes other pending runtime that other
3179 * running tasks might have.
3180 */
3181unsigned long long thread_group_sched_runtime(struct task_struct *p)
3182{
3183 struct task_cputime totals;
3184 unsigned long flags;
3185 struct rq *rq;
3186 u64 ns;
3187
3188 rq = task_rq_lock(p, &flags);
3189 thread_group_cputime(p, &totals);
3190 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3191 task_rq_unlock(rq, &flags);
48f24c4d 3192
1da177e4
LT
3193 return ns;
3194}
3195
1da177e4
LT
3196/*
3197 * Account user cpu time to a process.
3198 * @p: the process that the cpu time gets accounted to
1da177e4 3199 * @cputime: the cpu time spent in user space since the last update
457533a7 3200 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3201 */
457533a7
MS
3202void account_user_time(struct task_struct *p, cputime_t cputime,
3203 cputime_t cputime_scaled)
1da177e4
LT
3204{
3205 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3206 cputime64_t tmp;
3207
457533a7 3208 /* Add user time to process. */
1da177e4 3209 p->utime = cputime_add(p->utime, cputime);
457533a7 3210 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3211 account_group_user_time(p, cputime);
1da177e4
LT
3212
3213 /* Add user time to cpustat. */
3214 tmp = cputime_to_cputime64(cputime);
3215 if (TASK_NICE(p) > 0)
3216 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3217 else
3218 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3219
3220 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3221 /* Account for user time used */
3222 acct_update_integrals(p);
1da177e4
LT
3223}
3224
94886b84
LV
3225/*
3226 * Account guest cpu time to a process.
3227 * @p: the process that the cpu time gets accounted to
3228 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3229 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3230 */
457533a7
MS
3231static void account_guest_time(struct task_struct *p, cputime_t cputime,
3232 cputime_t cputime_scaled)
94886b84
LV
3233{
3234 cputime64_t tmp;
3235 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3236
3237 tmp = cputime_to_cputime64(cputime);
3238
457533a7 3239 /* Add guest time to process. */
94886b84 3240 p->utime = cputime_add(p->utime, cputime);
457533a7 3241 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3242 account_group_user_time(p, cputime);
94886b84
LV
3243 p->gtime = cputime_add(p->gtime, cputime);
3244
457533a7 3245 /* Add guest time to cpustat. */
ce0e7b28
RO
3246 if (TASK_NICE(p) > 0) {
3247 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3248 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3249 } else {
3250 cpustat->user = cputime64_add(cpustat->user, tmp);
3251 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3252 }
94886b84
LV
3253}
3254
1da177e4
LT
3255/*
3256 * Account system cpu time to a process.
3257 * @p: the process that the cpu time gets accounted to
3258 * @hardirq_offset: the offset to subtract from hardirq_count()
3259 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3260 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3261 */
3262void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3263 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3264{
3265 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3266 cputime64_t tmp;
3267
983ed7a6 3268 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3269 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3270 return;
3271 }
94886b84 3272
457533a7 3273 /* Add system time to process. */
1da177e4 3274 p->stime = cputime_add(p->stime, cputime);
457533a7 3275 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3276 account_group_system_time(p, cputime);
1da177e4
LT
3277
3278 /* Add system time to cpustat. */
3279 tmp = cputime_to_cputime64(cputime);
3280 if (hardirq_count() - hardirq_offset)
3281 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3282 else if (softirq_count())
3283 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3284 else
79741dd3
MS
3285 cpustat->system = cputime64_add(cpustat->system, tmp);
3286
ef12fefa
BR
3287 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3288
1da177e4
LT
3289 /* Account for system time used */
3290 acct_update_integrals(p);
1da177e4
LT
3291}
3292
c66f08be 3293/*
1da177e4 3294 * Account for involuntary wait time.
1da177e4 3295 * @steal: the cpu time spent in involuntary wait
c66f08be 3296 */
79741dd3 3297void account_steal_time(cputime_t cputime)
c66f08be 3298{
79741dd3
MS
3299 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3300 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3301
3302 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3303}
3304
1da177e4 3305/*
79741dd3
MS
3306 * Account for idle time.
3307 * @cputime: the cpu time spent in idle wait
1da177e4 3308 */
79741dd3 3309void account_idle_time(cputime_t cputime)
1da177e4
LT
3310{
3311 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3312 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3313 struct rq *rq = this_rq();
1da177e4 3314
79741dd3
MS
3315 if (atomic_read(&rq->nr_iowait) > 0)
3316 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3317 else
3318 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3319}
3320
79741dd3
MS
3321#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3322
3323/*
3324 * Account a single tick of cpu time.
3325 * @p: the process that the cpu time gets accounted to
3326 * @user_tick: indicates if the tick is a user or a system tick
3327 */
3328void account_process_tick(struct task_struct *p, int user_tick)
3329{
a42548a1 3330 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3331 struct rq *rq = this_rq();
3332
3333 if (user_tick)
a42548a1 3334 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3335 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3336 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3337 one_jiffy_scaled);
3338 else
a42548a1 3339 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3340}
3341
3342/*
3343 * Account multiple ticks of steal time.
3344 * @p: the process from which the cpu time has been stolen
3345 * @ticks: number of stolen ticks
3346 */
3347void account_steal_ticks(unsigned long ticks)
3348{
3349 account_steal_time(jiffies_to_cputime(ticks));
3350}
3351
3352/*
3353 * Account multiple ticks of idle time.
3354 * @ticks: number of stolen ticks
3355 */
3356void account_idle_ticks(unsigned long ticks)
3357{
3358 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3359}
3360
79741dd3
MS
3361#endif
3362
49048622
BS
3363/*
3364 * Use precise platform statistics if available:
3365 */
3366#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3367void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3368{
d99ca3b9
HS
3369 *ut = p->utime;
3370 *st = p->stime;
49048622
BS
3371}
3372
0cf55e1e 3373void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3374{
0cf55e1e
HS
3375 struct task_cputime cputime;
3376
3377 thread_group_cputime(p, &cputime);
3378
3379 *ut = cputime.utime;
3380 *st = cputime.stime;
49048622
BS
3381}
3382#else
761b1d26
HS
3383
3384#ifndef nsecs_to_cputime
b7b20df9 3385# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3386#endif
3387
d180c5bc 3388void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3389{
d99ca3b9 3390 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3391
3392 /*
3393 * Use CFS's precise accounting:
3394 */
d180c5bc 3395 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3396
3397 if (total) {
d180c5bc
HS
3398 u64 temp;
3399
3400 temp = (u64)(rtime * utime);
49048622 3401 do_div(temp, total);
d180c5bc
HS
3402 utime = (cputime_t)temp;
3403 } else
3404 utime = rtime;
49048622 3405
d180c5bc
HS
3406 /*
3407 * Compare with previous values, to keep monotonicity:
3408 */
761b1d26 3409 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3410 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3411
d99ca3b9
HS
3412 *ut = p->prev_utime;
3413 *st = p->prev_stime;
49048622
BS
3414}
3415
0cf55e1e
HS
3416/*
3417 * Must be called with siglock held.
3418 */
3419void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3420{
0cf55e1e
HS
3421 struct signal_struct *sig = p->signal;
3422 struct task_cputime cputime;
3423 cputime_t rtime, utime, total;
49048622 3424
0cf55e1e 3425 thread_group_cputime(p, &cputime);
49048622 3426
0cf55e1e
HS
3427 total = cputime_add(cputime.utime, cputime.stime);
3428 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3429
0cf55e1e
HS
3430 if (total) {
3431 u64 temp;
49048622 3432
0cf55e1e
HS
3433 temp = (u64)(rtime * cputime.utime);
3434 do_div(temp, total);
3435 utime = (cputime_t)temp;
3436 } else
3437 utime = rtime;
3438
3439 sig->prev_utime = max(sig->prev_utime, utime);
3440 sig->prev_stime = max(sig->prev_stime,
3441 cputime_sub(rtime, sig->prev_utime));
3442
3443 *ut = sig->prev_utime;
3444 *st = sig->prev_stime;
49048622 3445}
49048622 3446#endif
49048622 3447
7835b98b
CL
3448/*
3449 * This function gets called by the timer code, with HZ frequency.
3450 * We call it with interrupts disabled.
3451 *
3452 * It also gets called by the fork code, when changing the parent's
3453 * timeslices.
3454 */
3455void scheduler_tick(void)
3456{
7835b98b
CL
3457 int cpu = smp_processor_id();
3458 struct rq *rq = cpu_rq(cpu);
dd41f596 3459 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3460
3461 sched_clock_tick();
dd41f596 3462
05fa785c 3463 raw_spin_lock(&rq->lock);
3e51f33f 3464 update_rq_clock(rq);
f1a438d8 3465 update_cpu_load(rq);
fa85ae24 3466 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3467 raw_spin_unlock(&rq->lock);
7835b98b 3468
cdd6c482 3469 perf_event_task_tick(curr, cpu);
e220d2dc 3470
e418e1c2 3471#ifdef CONFIG_SMP
dd41f596
IM
3472 rq->idle_at_tick = idle_cpu(cpu);
3473 trigger_load_balance(rq, cpu);
e418e1c2 3474#endif
1da177e4
LT
3475}
3476
132380a0 3477notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3478{
3479 if (in_lock_functions(addr)) {
3480 addr = CALLER_ADDR2;
3481 if (in_lock_functions(addr))
3482 addr = CALLER_ADDR3;
3483 }
3484 return addr;
3485}
1da177e4 3486
7e49fcce
SR
3487#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3488 defined(CONFIG_PREEMPT_TRACER))
3489
43627582 3490void __kprobes add_preempt_count(int val)
1da177e4 3491{
6cd8a4bb 3492#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3493 /*
3494 * Underflow?
3495 */
9a11b49a
IM
3496 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3497 return;
6cd8a4bb 3498#endif
1da177e4 3499 preempt_count() += val;
6cd8a4bb 3500#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3501 /*
3502 * Spinlock count overflowing soon?
3503 */
33859f7f
MOS
3504 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3505 PREEMPT_MASK - 10);
6cd8a4bb
SR
3506#endif
3507 if (preempt_count() == val)
3508 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3509}
3510EXPORT_SYMBOL(add_preempt_count);
3511
43627582 3512void __kprobes sub_preempt_count(int val)
1da177e4 3513{
6cd8a4bb 3514#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3515 /*
3516 * Underflow?
3517 */
01e3eb82 3518 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3519 return;
1da177e4
LT
3520 /*
3521 * Is the spinlock portion underflowing?
3522 */
9a11b49a
IM
3523 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3524 !(preempt_count() & PREEMPT_MASK)))
3525 return;
6cd8a4bb 3526#endif
9a11b49a 3527
6cd8a4bb
SR
3528 if (preempt_count() == val)
3529 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3530 preempt_count() -= val;
3531}
3532EXPORT_SYMBOL(sub_preempt_count);
3533
3534#endif
3535
3536/*
dd41f596 3537 * Print scheduling while atomic bug:
1da177e4 3538 */
dd41f596 3539static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3540{
838225b4
SS
3541 struct pt_regs *regs = get_irq_regs();
3542
3df0fc5b
PZ
3543 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3544 prev->comm, prev->pid, preempt_count());
838225b4 3545
dd41f596 3546 debug_show_held_locks(prev);
e21f5b15 3547 print_modules();
dd41f596
IM
3548 if (irqs_disabled())
3549 print_irqtrace_events(prev);
838225b4
SS
3550
3551 if (regs)
3552 show_regs(regs);
3553 else
3554 dump_stack();
dd41f596 3555}
1da177e4 3556
dd41f596
IM
3557/*
3558 * Various schedule()-time debugging checks and statistics:
3559 */
3560static inline void schedule_debug(struct task_struct *prev)
3561{
1da177e4 3562 /*
41a2d6cf 3563 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3564 * schedule() atomically, we ignore that path for now.
3565 * Otherwise, whine if we are scheduling when we should not be.
3566 */
3f33a7ce 3567 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3568 __schedule_bug(prev);
3569
1da177e4
LT
3570 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3571
2d72376b 3572 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3573#ifdef CONFIG_SCHEDSTATS
3574 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3575 schedstat_inc(this_rq(), bkl_count);
3576 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3577 }
3578#endif
dd41f596
IM
3579}
3580
6cecd084 3581static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3582{
6cecd084
PZ
3583 if (prev->state == TASK_RUNNING) {
3584 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 3585
6cecd084
PZ
3586 runtime -= prev->se.prev_sum_exec_runtime;
3587 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
3588
3589 /*
3590 * In order to avoid avg_overlap growing stale when we are
3591 * indeed overlapping and hence not getting put to sleep, grow
3592 * the avg_overlap on preemption.
3593 *
3594 * We use the average preemption runtime because that
3595 * correlates to the amount of cache footprint a task can
3596 * build up.
3597 */
6cecd084 3598 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 3599 }
6cecd084 3600 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3601}
3602
dd41f596
IM
3603/*
3604 * Pick up the highest-prio task:
3605 */
3606static inline struct task_struct *
b67802ea 3607pick_next_task(struct rq *rq)
dd41f596 3608{
5522d5d5 3609 const struct sched_class *class;
dd41f596 3610 struct task_struct *p;
1da177e4
LT
3611
3612 /*
dd41f596
IM
3613 * Optimization: we know that if all tasks are in
3614 * the fair class we can call that function directly:
1da177e4 3615 */
dd41f596 3616 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3617 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3618 if (likely(p))
3619 return p;
1da177e4
LT
3620 }
3621
dd41f596
IM
3622 class = sched_class_highest;
3623 for ( ; ; ) {
fb8d4724 3624 p = class->pick_next_task(rq);
dd41f596
IM
3625 if (p)
3626 return p;
3627 /*
3628 * Will never be NULL as the idle class always
3629 * returns a non-NULL p:
3630 */
3631 class = class->next;
3632 }
3633}
1da177e4 3634
dd41f596
IM
3635/*
3636 * schedule() is the main scheduler function.
3637 */
ff743345 3638asmlinkage void __sched schedule(void)
dd41f596
IM
3639{
3640 struct task_struct *prev, *next;
67ca7bde 3641 unsigned long *switch_count;
dd41f596 3642 struct rq *rq;
31656519 3643 int cpu;
dd41f596 3644
ff743345
PZ
3645need_resched:
3646 preempt_disable();
dd41f596
IM
3647 cpu = smp_processor_id();
3648 rq = cpu_rq(cpu);
d6714c22 3649 rcu_sched_qs(cpu);
dd41f596
IM
3650 prev = rq->curr;
3651 switch_count = &prev->nivcsw;
3652
3653 release_kernel_lock(prev);
3654need_resched_nonpreemptible:
3655
3656 schedule_debug(prev);
1da177e4 3657
31656519 3658 if (sched_feat(HRTICK))
f333fdc9 3659 hrtick_clear(rq);
8f4d37ec 3660
05fa785c 3661 raw_spin_lock_irq(&rq->lock);
3e51f33f 3662 update_rq_clock(rq);
1e819950 3663 clear_tsk_need_resched(prev);
1da177e4 3664
1da177e4 3665 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3666 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3667 prev->state = TASK_RUNNING;
16882c1e 3668 else
2e1cb74a 3669 deactivate_task(rq, prev, 1);
dd41f596 3670 switch_count = &prev->nvcsw;
1da177e4
LT
3671 }
3672
3f029d3c 3673 pre_schedule(rq, prev);
f65eda4f 3674
dd41f596 3675 if (unlikely(!rq->nr_running))
1da177e4 3676 idle_balance(cpu, rq);
1da177e4 3677
df1c99d4 3678 put_prev_task(rq, prev);
b67802ea 3679 next = pick_next_task(rq);
1da177e4 3680
1da177e4 3681 if (likely(prev != next)) {
673a90a1 3682 sched_info_switch(prev, next);
cdd6c482 3683 perf_event_task_sched_out(prev, next, cpu);
673a90a1 3684
1da177e4
LT
3685 rq->nr_switches++;
3686 rq->curr = next;
3687 ++*switch_count;
3688
dd41f596 3689 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3690 /*
3691 * the context switch might have flipped the stack from under
3692 * us, hence refresh the local variables.
3693 */
3694 cpu = smp_processor_id();
3695 rq = cpu_rq(cpu);
1da177e4 3696 } else
05fa785c 3697 raw_spin_unlock_irq(&rq->lock);
1da177e4 3698
3f029d3c 3699 post_schedule(rq);
1da177e4 3700
6d558c3a
YZ
3701 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3702 prev = rq->curr;
3703 switch_count = &prev->nivcsw;
1da177e4 3704 goto need_resched_nonpreemptible;
6d558c3a 3705 }
8f4d37ec 3706
1da177e4 3707 preempt_enable_no_resched();
ff743345 3708 if (need_resched())
1da177e4
LT
3709 goto need_resched;
3710}
1da177e4
LT
3711EXPORT_SYMBOL(schedule);
3712
c08f7829 3713#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3714/*
3715 * Look out! "owner" is an entirely speculative pointer
3716 * access and not reliable.
3717 */
3718int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3719{
3720 unsigned int cpu;
3721 struct rq *rq;
3722
3723 if (!sched_feat(OWNER_SPIN))
3724 return 0;
3725
3726#ifdef CONFIG_DEBUG_PAGEALLOC
3727 /*
3728 * Need to access the cpu field knowing that
3729 * DEBUG_PAGEALLOC could have unmapped it if
3730 * the mutex owner just released it and exited.
3731 */
3732 if (probe_kernel_address(&owner->cpu, cpu))
3733 goto out;
3734#else
3735 cpu = owner->cpu;
3736#endif
3737
3738 /*
3739 * Even if the access succeeded (likely case),
3740 * the cpu field may no longer be valid.
3741 */
3742 if (cpu >= nr_cpumask_bits)
3743 goto out;
3744
3745 /*
3746 * We need to validate that we can do a
3747 * get_cpu() and that we have the percpu area.
3748 */
3749 if (!cpu_online(cpu))
3750 goto out;
3751
3752 rq = cpu_rq(cpu);
3753
3754 for (;;) {
3755 /*
3756 * Owner changed, break to re-assess state.
3757 */
3758 if (lock->owner != owner)
3759 break;
3760
3761 /*
3762 * Is that owner really running on that cpu?
3763 */
3764 if (task_thread_info(rq->curr) != owner || need_resched())
3765 return 0;
3766
3767 cpu_relax();
3768 }
3769out:
3770 return 1;
3771}
3772#endif
3773
1da177e4
LT
3774#ifdef CONFIG_PREEMPT
3775/*
2ed6e34f 3776 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3777 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3778 * occur there and call schedule directly.
3779 */
3780asmlinkage void __sched preempt_schedule(void)
3781{
3782 struct thread_info *ti = current_thread_info();
6478d880 3783
1da177e4
LT
3784 /*
3785 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3786 * we do not want to preempt the current task. Just return..
1da177e4 3787 */
beed33a8 3788 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3789 return;
3790
3a5c359a
AK
3791 do {
3792 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3793 schedule();
3a5c359a 3794 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3795
3a5c359a
AK
3796 /*
3797 * Check again in case we missed a preemption opportunity
3798 * between schedule and now.
3799 */
3800 barrier();
5ed0cec0 3801 } while (need_resched());
1da177e4 3802}
1da177e4
LT
3803EXPORT_SYMBOL(preempt_schedule);
3804
3805/*
2ed6e34f 3806 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3807 * off of irq context.
3808 * Note, that this is called and return with irqs disabled. This will
3809 * protect us against recursive calling from irq.
3810 */
3811asmlinkage void __sched preempt_schedule_irq(void)
3812{
3813 struct thread_info *ti = current_thread_info();
6478d880 3814
2ed6e34f 3815 /* Catch callers which need to be fixed */
1da177e4
LT
3816 BUG_ON(ti->preempt_count || !irqs_disabled());
3817
3a5c359a
AK
3818 do {
3819 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3820 local_irq_enable();
3821 schedule();
3822 local_irq_disable();
3a5c359a 3823 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3824
3a5c359a
AK
3825 /*
3826 * Check again in case we missed a preemption opportunity
3827 * between schedule and now.
3828 */
3829 barrier();
5ed0cec0 3830 } while (need_resched());
1da177e4
LT
3831}
3832
3833#endif /* CONFIG_PREEMPT */
3834
63859d4f 3835int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3836 void *key)
1da177e4 3837{
63859d4f 3838 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3839}
1da177e4
LT
3840EXPORT_SYMBOL(default_wake_function);
3841
3842/*
41a2d6cf
IM
3843 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3844 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3845 * number) then we wake all the non-exclusive tasks and one exclusive task.
3846 *
3847 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3848 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3849 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3850 */
78ddb08f 3851static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3852 int nr_exclusive, int wake_flags, void *key)
1da177e4 3853{
2e45874c 3854 wait_queue_t *curr, *next;
1da177e4 3855
2e45874c 3856 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3857 unsigned flags = curr->flags;
3858
63859d4f 3859 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3860 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3861 break;
3862 }
3863}
3864
3865/**
3866 * __wake_up - wake up threads blocked on a waitqueue.
3867 * @q: the waitqueue
3868 * @mode: which threads
3869 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3870 * @key: is directly passed to the wakeup function
50fa610a
DH
3871 *
3872 * It may be assumed that this function implies a write memory barrier before
3873 * changing the task state if and only if any tasks are woken up.
1da177e4 3874 */
7ad5b3a5 3875void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3876 int nr_exclusive, void *key)
1da177e4
LT
3877{
3878 unsigned long flags;
3879
3880 spin_lock_irqsave(&q->lock, flags);
3881 __wake_up_common(q, mode, nr_exclusive, 0, key);
3882 spin_unlock_irqrestore(&q->lock, flags);
3883}
1da177e4
LT
3884EXPORT_SYMBOL(__wake_up);
3885
3886/*
3887 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3888 */
7ad5b3a5 3889void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3890{
3891 __wake_up_common(q, mode, 1, 0, NULL);
3892}
3893
4ede816a
DL
3894void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3895{
3896 __wake_up_common(q, mode, 1, 0, key);
3897}
3898
1da177e4 3899/**
4ede816a 3900 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3901 * @q: the waitqueue
3902 * @mode: which threads
3903 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3904 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3905 *
3906 * The sync wakeup differs that the waker knows that it will schedule
3907 * away soon, so while the target thread will be woken up, it will not
3908 * be migrated to another CPU - ie. the two threads are 'synchronized'
3909 * with each other. This can prevent needless bouncing between CPUs.
3910 *
3911 * On UP it can prevent extra preemption.
50fa610a
DH
3912 *
3913 * It may be assumed that this function implies a write memory barrier before
3914 * changing the task state if and only if any tasks are woken up.
1da177e4 3915 */
4ede816a
DL
3916void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3917 int nr_exclusive, void *key)
1da177e4
LT
3918{
3919 unsigned long flags;
7d478721 3920 int wake_flags = WF_SYNC;
1da177e4
LT
3921
3922 if (unlikely(!q))
3923 return;
3924
3925 if (unlikely(!nr_exclusive))
7d478721 3926 wake_flags = 0;
1da177e4
LT
3927
3928 spin_lock_irqsave(&q->lock, flags);
7d478721 3929 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3930 spin_unlock_irqrestore(&q->lock, flags);
3931}
4ede816a
DL
3932EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3933
3934/*
3935 * __wake_up_sync - see __wake_up_sync_key()
3936 */
3937void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3938{
3939 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3940}
1da177e4
LT
3941EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3942
65eb3dc6
KD
3943/**
3944 * complete: - signals a single thread waiting on this completion
3945 * @x: holds the state of this particular completion
3946 *
3947 * This will wake up a single thread waiting on this completion. Threads will be
3948 * awakened in the same order in which they were queued.
3949 *
3950 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3951 *
3952 * It may be assumed that this function implies a write memory barrier before
3953 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3954 */
b15136e9 3955void complete(struct completion *x)
1da177e4
LT
3956{
3957 unsigned long flags;
3958
3959 spin_lock_irqsave(&x->wait.lock, flags);
3960 x->done++;
d9514f6c 3961 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3962 spin_unlock_irqrestore(&x->wait.lock, flags);
3963}
3964EXPORT_SYMBOL(complete);
3965
65eb3dc6
KD
3966/**
3967 * complete_all: - signals all threads waiting on this completion
3968 * @x: holds the state of this particular completion
3969 *
3970 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3971 *
3972 * It may be assumed that this function implies a write memory barrier before
3973 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3974 */
b15136e9 3975void complete_all(struct completion *x)
1da177e4
LT
3976{
3977 unsigned long flags;
3978
3979 spin_lock_irqsave(&x->wait.lock, flags);
3980 x->done += UINT_MAX/2;
d9514f6c 3981 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3982 spin_unlock_irqrestore(&x->wait.lock, flags);
3983}
3984EXPORT_SYMBOL(complete_all);
3985
8cbbe86d
AK
3986static inline long __sched
3987do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3988{
1da177e4
LT
3989 if (!x->done) {
3990 DECLARE_WAITQUEUE(wait, current);
3991
3992 wait.flags |= WQ_FLAG_EXCLUSIVE;
3993 __add_wait_queue_tail(&x->wait, &wait);
3994 do {
94d3d824 3995 if (signal_pending_state(state, current)) {
ea71a546
ON
3996 timeout = -ERESTARTSYS;
3997 break;
8cbbe86d
AK
3998 }
3999 __set_current_state(state);
1da177e4
LT
4000 spin_unlock_irq(&x->wait.lock);
4001 timeout = schedule_timeout(timeout);
4002 spin_lock_irq(&x->wait.lock);
ea71a546 4003 } while (!x->done && timeout);
1da177e4 4004 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4005 if (!x->done)
4006 return timeout;
1da177e4
LT
4007 }
4008 x->done--;
ea71a546 4009 return timeout ?: 1;
1da177e4 4010}
1da177e4 4011
8cbbe86d
AK
4012static long __sched
4013wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4014{
1da177e4
LT
4015 might_sleep();
4016
4017 spin_lock_irq(&x->wait.lock);
8cbbe86d 4018 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4019 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4020 return timeout;
4021}
1da177e4 4022
65eb3dc6
KD
4023/**
4024 * wait_for_completion: - waits for completion of a task
4025 * @x: holds the state of this particular completion
4026 *
4027 * This waits to be signaled for completion of a specific task. It is NOT
4028 * interruptible and there is no timeout.
4029 *
4030 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4031 * and interrupt capability. Also see complete().
4032 */
b15136e9 4033void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4034{
4035 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4036}
8cbbe86d 4037EXPORT_SYMBOL(wait_for_completion);
1da177e4 4038
65eb3dc6
KD
4039/**
4040 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4041 * @x: holds the state of this particular completion
4042 * @timeout: timeout value in jiffies
4043 *
4044 * This waits for either a completion of a specific task to be signaled or for a
4045 * specified timeout to expire. The timeout is in jiffies. It is not
4046 * interruptible.
4047 */
b15136e9 4048unsigned long __sched
8cbbe86d 4049wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4050{
8cbbe86d 4051 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4052}
8cbbe86d 4053EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4054
65eb3dc6
KD
4055/**
4056 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4057 * @x: holds the state of this particular completion
4058 *
4059 * This waits for completion of a specific task to be signaled. It is
4060 * interruptible.
4061 */
8cbbe86d 4062int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4063{
51e97990
AK
4064 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4065 if (t == -ERESTARTSYS)
4066 return t;
4067 return 0;
0fec171c 4068}
8cbbe86d 4069EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4070
65eb3dc6
KD
4071/**
4072 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4073 * @x: holds the state of this particular completion
4074 * @timeout: timeout value in jiffies
4075 *
4076 * This waits for either a completion of a specific task to be signaled or for a
4077 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4078 */
b15136e9 4079unsigned long __sched
8cbbe86d
AK
4080wait_for_completion_interruptible_timeout(struct completion *x,
4081 unsigned long timeout)
0fec171c 4082{
8cbbe86d 4083 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4084}
8cbbe86d 4085EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4086
65eb3dc6
KD
4087/**
4088 * wait_for_completion_killable: - waits for completion of a task (killable)
4089 * @x: holds the state of this particular completion
4090 *
4091 * This waits to be signaled for completion of a specific task. It can be
4092 * interrupted by a kill signal.
4093 */
009e577e
MW
4094int __sched wait_for_completion_killable(struct completion *x)
4095{
4096 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4097 if (t == -ERESTARTSYS)
4098 return t;
4099 return 0;
4100}
4101EXPORT_SYMBOL(wait_for_completion_killable);
4102
be4de352
DC
4103/**
4104 * try_wait_for_completion - try to decrement a completion without blocking
4105 * @x: completion structure
4106 *
4107 * Returns: 0 if a decrement cannot be done without blocking
4108 * 1 if a decrement succeeded.
4109 *
4110 * If a completion is being used as a counting completion,
4111 * attempt to decrement the counter without blocking. This
4112 * enables us to avoid waiting if the resource the completion
4113 * is protecting is not available.
4114 */
4115bool try_wait_for_completion(struct completion *x)
4116{
7539a3b3 4117 unsigned long flags;
be4de352
DC
4118 int ret = 1;
4119
7539a3b3 4120 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4121 if (!x->done)
4122 ret = 0;
4123 else
4124 x->done--;
7539a3b3 4125 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4126 return ret;
4127}
4128EXPORT_SYMBOL(try_wait_for_completion);
4129
4130/**
4131 * completion_done - Test to see if a completion has any waiters
4132 * @x: completion structure
4133 *
4134 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4135 * 1 if there are no waiters.
4136 *
4137 */
4138bool completion_done(struct completion *x)
4139{
7539a3b3 4140 unsigned long flags;
be4de352
DC
4141 int ret = 1;
4142
7539a3b3 4143 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4144 if (!x->done)
4145 ret = 0;
7539a3b3 4146 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4147 return ret;
4148}
4149EXPORT_SYMBOL(completion_done);
4150
8cbbe86d
AK
4151static long __sched
4152sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4153{
0fec171c
IM
4154 unsigned long flags;
4155 wait_queue_t wait;
4156
4157 init_waitqueue_entry(&wait, current);
1da177e4 4158
8cbbe86d 4159 __set_current_state(state);
1da177e4 4160
8cbbe86d
AK
4161 spin_lock_irqsave(&q->lock, flags);
4162 __add_wait_queue(q, &wait);
4163 spin_unlock(&q->lock);
4164 timeout = schedule_timeout(timeout);
4165 spin_lock_irq(&q->lock);
4166 __remove_wait_queue(q, &wait);
4167 spin_unlock_irqrestore(&q->lock, flags);
4168
4169 return timeout;
4170}
4171
4172void __sched interruptible_sleep_on(wait_queue_head_t *q)
4173{
4174 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4175}
1da177e4
LT
4176EXPORT_SYMBOL(interruptible_sleep_on);
4177
0fec171c 4178long __sched
95cdf3b7 4179interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4180{
8cbbe86d 4181 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4182}
1da177e4
LT
4183EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4184
0fec171c 4185void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4186{
8cbbe86d 4187 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4188}
1da177e4
LT
4189EXPORT_SYMBOL(sleep_on);
4190
0fec171c 4191long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4192{
8cbbe86d 4193 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4194}
1da177e4
LT
4195EXPORT_SYMBOL(sleep_on_timeout);
4196
b29739f9
IM
4197#ifdef CONFIG_RT_MUTEXES
4198
4199/*
4200 * rt_mutex_setprio - set the current priority of a task
4201 * @p: task
4202 * @prio: prio value (kernel-internal form)
4203 *
4204 * This function changes the 'effective' priority of a task. It does
4205 * not touch ->normal_prio like __setscheduler().
4206 *
4207 * Used by the rt_mutex code to implement priority inheritance logic.
4208 */
36c8b586 4209void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4210{
4211 unsigned long flags;
83b699ed 4212 int oldprio, on_rq, running;
70b97a7f 4213 struct rq *rq;
cb469845 4214 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4215
4216 BUG_ON(prio < 0 || prio > MAX_PRIO);
4217
4218 rq = task_rq_lock(p, &flags);
a8e504d2 4219 update_rq_clock(rq);
b29739f9 4220
d5f9f942 4221 oldprio = p->prio;
dd41f596 4222 on_rq = p->se.on_rq;
051a1d1a 4223 running = task_current(rq, p);
0e1f3483 4224 if (on_rq)
69be72c1 4225 dequeue_task(rq, p, 0);
0e1f3483
HS
4226 if (running)
4227 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4228
4229 if (rt_prio(prio))
4230 p->sched_class = &rt_sched_class;
4231 else
4232 p->sched_class = &fair_sched_class;
4233
b29739f9
IM
4234 p->prio = prio;
4235
0e1f3483
HS
4236 if (running)
4237 p->sched_class->set_curr_task(rq);
dd41f596 4238 if (on_rq) {
60db48ca 4239 enqueue_task(rq, p, 0, oldprio < prio);
cb469845
SR
4240
4241 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4242 }
4243 task_rq_unlock(rq, &flags);
4244}
4245
4246#endif
4247
36c8b586 4248void set_user_nice(struct task_struct *p, long nice)
1da177e4 4249{
dd41f596 4250 int old_prio, delta, on_rq;
1da177e4 4251 unsigned long flags;
70b97a7f 4252 struct rq *rq;
1da177e4
LT
4253
4254 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4255 return;
4256 /*
4257 * We have to be careful, if called from sys_setpriority(),
4258 * the task might be in the middle of scheduling on another CPU.
4259 */
4260 rq = task_rq_lock(p, &flags);
a8e504d2 4261 update_rq_clock(rq);
1da177e4
LT
4262 /*
4263 * The RT priorities are set via sched_setscheduler(), but we still
4264 * allow the 'normal' nice value to be set - but as expected
4265 * it wont have any effect on scheduling until the task is
dd41f596 4266 * SCHED_FIFO/SCHED_RR:
1da177e4 4267 */
e05606d3 4268 if (task_has_rt_policy(p)) {
1da177e4
LT
4269 p->static_prio = NICE_TO_PRIO(nice);
4270 goto out_unlock;
4271 }
dd41f596 4272 on_rq = p->se.on_rq;
c09595f6 4273 if (on_rq)
69be72c1 4274 dequeue_task(rq, p, 0);
1da177e4 4275
1da177e4 4276 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4277 set_load_weight(p);
b29739f9
IM
4278 old_prio = p->prio;
4279 p->prio = effective_prio(p);
4280 delta = p->prio - old_prio;
1da177e4 4281
dd41f596 4282 if (on_rq) {
ea87bb78 4283 enqueue_task(rq, p, 0, false);
1da177e4 4284 /*
d5f9f942
AM
4285 * If the task increased its priority or is running and
4286 * lowered its priority, then reschedule its CPU:
1da177e4 4287 */
d5f9f942 4288 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4289 resched_task(rq->curr);
4290 }
4291out_unlock:
4292 task_rq_unlock(rq, &flags);
4293}
1da177e4
LT
4294EXPORT_SYMBOL(set_user_nice);
4295
e43379f1
MM
4296/*
4297 * can_nice - check if a task can reduce its nice value
4298 * @p: task
4299 * @nice: nice value
4300 */
36c8b586 4301int can_nice(const struct task_struct *p, const int nice)
e43379f1 4302{
024f4747
MM
4303 /* convert nice value [19,-20] to rlimit style value [1,40] */
4304 int nice_rlim = 20 - nice;
48f24c4d 4305
e43379f1
MM
4306 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4307 capable(CAP_SYS_NICE));
4308}
4309
1da177e4
LT
4310#ifdef __ARCH_WANT_SYS_NICE
4311
4312/*
4313 * sys_nice - change the priority of the current process.
4314 * @increment: priority increment
4315 *
4316 * sys_setpriority is a more generic, but much slower function that
4317 * does similar things.
4318 */
5add95d4 4319SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4320{
48f24c4d 4321 long nice, retval;
1da177e4
LT
4322
4323 /*
4324 * Setpriority might change our priority at the same moment.
4325 * We don't have to worry. Conceptually one call occurs first
4326 * and we have a single winner.
4327 */
e43379f1
MM
4328 if (increment < -40)
4329 increment = -40;
1da177e4
LT
4330 if (increment > 40)
4331 increment = 40;
4332
2b8f836f 4333 nice = TASK_NICE(current) + increment;
1da177e4
LT
4334 if (nice < -20)
4335 nice = -20;
4336 if (nice > 19)
4337 nice = 19;
4338
e43379f1
MM
4339 if (increment < 0 && !can_nice(current, nice))
4340 return -EPERM;
4341
1da177e4
LT
4342 retval = security_task_setnice(current, nice);
4343 if (retval)
4344 return retval;
4345
4346 set_user_nice(current, nice);
4347 return 0;
4348}
4349
4350#endif
4351
4352/**
4353 * task_prio - return the priority value of a given task.
4354 * @p: the task in question.
4355 *
4356 * This is the priority value as seen by users in /proc.
4357 * RT tasks are offset by -200. Normal tasks are centered
4358 * around 0, value goes from -16 to +15.
4359 */
36c8b586 4360int task_prio(const struct task_struct *p)
1da177e4
LT
4361{
4362 return p->prio - MAX_RT_PRIO;
4363}
4364
4365/**
4366 * task_nice - return the nice value of a given task.
4367 * @p: the task in question.
4368 */
36c8b586 4369int task_nice(const struct task_struct *p)
1da177e4
LT
4370{
4371 return TASK_NICE(p);
4372}
150d8bed 4373EXPORT_SYMBOL(task_nice);
1da177e4
LT
4374
4375/**
4376 * idle_cpu - is a given cpu idle currently?
4377 * @cpu: the processor in question.
4378 */
4379int idle_cpu(int cpu)
4380{
4381 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4382}
4383
1da177e4
LT
4384/**
4385 * idle_task - return the idle task for a given cpu.
4386 * @cpu: the processor in question.
4387 */
36c8b586 4388struct task_struct *idle_task(int cpu)
1da177e4
LT
4389{
4390 return cpu_rq(cpu)->idle;
4391}
4392
4393/**
4394 * find_process_by_pid - find a process with a matching PID value.
4395 * @pid: the pid in question.
4396 */
a9957449 4397static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4398{
228ebcbe 4399 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4400}
4401
4402/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4403static void
4404__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4405{
dd41f596 4406 BUG_ON(p->se.on_rq);
48f24c4d 4407
1da177e4
LT
4408 p->policy = policy;
4409 p->rt_priority = prio;
b29739f9
IM
4410 p->normal_prio = normal_prio(p);
4411 /* we are holding p->pi_lock already */
4412 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4413 if (rt_prio(p->prio))
4414 p->sched_class = &rt_sched_class;
4415 else
4416 p->sched_class = &fair_sched_class;
2dd73a4f 4417 set_load_weight(p);
1da177e4
LT
4418}
4419
c69e8d9c
DH
4420/*
4421 * check the target process has a UID that matches the current process's
4422 */
4423static bool check_same_owner(struct task_struct *p)
4424{
4425 const struct cred *cred = current_cred(), *pcred;
4426 bool match;
4427
4428 rcu_read_lock();
4429 pcred = __task_cred(p);
4430 match = (cred->euid == pcred->euid ||
4431 cred->euid == pcred->uid);
4432 rcu_read_unlock();
4433 return match;
4434}
4435
961ccddd
RR
4436static int __sched_setscheduler(struct task_struct *p, int policy,
4437 struct sched_param *param, bool user)
1da177e4 4438{
83b699ed 4439 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4440 unsigned long flags;
cb469845 4441 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4442 struct rq *rq;
ca94c442 4443 int reset_on_fork;
1da177e4 4444
66e5393a
SR
4445 /* may grab non-irq protected spin_locks */
4446 BUG_ON(in_interrupt());
1da177e4
LT
4447recheck:
4448 /* double check policy once rq lock held */
ca94c442
LP
4449 if (policy < 0) {
4450 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4451 policy = oldpolicy = p->policy;
ca94c442
LP
4452 } else {
4453 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4454 policy &= ~SCHED_RESET_ON_FORK;
4455
4456 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4457 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4458 policy != SCHED_IDLE)
4459 return -EINVAL;
4460 }
4461
1da177e4
LT
4462 /*
4463 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4464 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4465 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4466 */
4467 if (param->sched_priority < 0 ||
95cdf3b7 4468 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4469 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4470 return -EINVAL;
e05606d3 4471 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4472 return -EINVAL;
4473
37e4ab3f
OC
4474 /*
4475 * Allow unprivileged RT tasks to decrease priority:
4476 */
961ccddd 4477 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4478 if (rt_policy(policy)) {
8dc3e909 4479 unsigned long rlim_rtprio;
8dc3e909
ON
4480
4481 if (!lock_task_sighand(p, &flags))
4482 return -ESRCH;
4483 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4484 unlock_task_sighand(p, &flags);
4485
4486 /* can't set/change the rt policy */
4487 if (policy != p->policy && !rlim_rtprio)
4488 return -EPERM;
4489
4490 /* can't increase priority */
4491 if (param->sched_priority > p->rt_priority &&
4492 param->sched_priority > rlim_rtprio)
4493 return -EPERM;
4494 }
dd41f596
IM
4495 /*
4496 * Like positive nice levels, dont allow tasks to
4497 * move out of SCHED_IDLE either:
4498 */
4499 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4500 return -EPERM;
5fe1d75f 4501
37e4ab3f 4502 /* can't change other user's priorities */
c69e8d9c 4503 if (!check_same_owner(p))
37e4ab3f 4504 return -EPERM;
ca94c442
LP
4505
4506 /* Normal users shall not reset the sched_reset_on_fork flag */
4507 if (p->sched_reset_on_fork && !reset_on_fork)
4508 return -EPERM;
37e4ab3f 4509 }
1da177e4 4510
725aad24 4511 if (user) {
b68aa230 4512#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4513 /*
4514 * Do not allow realtime tasks into groups that have no runtime
4515 * assigned.
4516 */
9a7e0b18
PZ
4517 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4518 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4519 return -EPERM;
b68aa230
PZ
4520#endif
4521
725aad24
JF
4522 retval = security_task_setscheduler(p, policy, param);
4523 if (retval)
4524 return retval;
4525 }
4526
b29739f9
IM
4527 /*
4528 * make sure no PI-waiters arrive (or leave) while we are
4529 * changing the priority of the task:
4530 */
1d615482 4531 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4532 /*
4533 * To be able to change p->policy safely, the apropriate
4534 * runqueue lock must be held.
4535 */
b29739f9 4536 rq = __task_rq_lock(p);
1da177e4
LT
4537 /* recheck policy now with rq lock held */
4538 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4539 policy = oldpolicy = -1;
b29739f9 4540 __task_rq_unlock(rq);
1d615482 4541 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4542 goto recheck;
4543 }
2daa3577 4544 update_rq_clock(rq);
dd41f596 4545 on_rq = p->se.on_rq;
051a1d1a 4546 running = task_current(rq, p);
0e1f3483 4547 if (on_rq)
2e1cb74a 4548 deactivate_task(rq, p, 0);
0e1f3483
HS
4549 if (running)
4550 p->sched_class->put_prev_task(rq, p);
f6b53205 4551
ca94c442
LP
4552 p->sched_reset_on_fork = reset_on_fork;
4553
1da177e4 4554 oldprio = p->prio;
dd41f596 4555 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4556
0e1f3483
HS
4557 if (running)
4558 p->sched_class->set_curr_task(rq);
dd41f596
IM
4559 if (on_rq) {
4560 activate_task(rq, p, 0);
cb469845
SR
4561
4562 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4563 }
b29739f9 4564 __task_rq_unlock(rq);
1d615482 4565 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4566
95e02ca9
TG
4567 rt_mutex_adjust_pi(p);
4568
1da177e4
LT
4569 return 0;
4570}
961ccddd
RR
4571
4572/**
4573 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4574 * @p: the task in question.
4575 * @policy: new policy.
4576 * @param: structure containing the new RT priority.
4577 *
4578 * NOTE that the task may be already dead.
4579 */
4580int sched_setscheduler(struct task_struct *p, int policy,
4581 struct sched_param *param)
4582{
4583 return __sched_setscheduler(p, policy, param, true);
4584}
1da177e4
LT
4585EXPORT_SYMBOL_GPL(sched_setscheduler);
4586
961ccddd
RR
4587/**
4588 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4589 * @p: the task in question.
4590 * @policy: new policy.
4591 * @param: structure containing the new RT priority.
4592 *
4593 * Just like sched_setscheduler, only don't bother checking if the
4594 * current context has permission. For example, this is needed in
4595 * stop_machine(): we create temporary high priority worker threads,
4596 * but our caller might not have that capability.
4597 */
4598int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4599 struct sched_param *param)
4600{
4601 return __sched_setscheduler(p, policy, param, false);
4602}
4603
95cdf3b7
IM
4604static int
4605do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4606{
1da177e4
LT
4607 struct sched_param lparam;
4608 struct task_struct *p;
36c8b586 4609 int retval;
1da177e4
LT
4610
4611 if (!param || pid < 0)
4612 return -EINVAL;
4613 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4614 return -EFAULT;
5fe1d75f
ON
4615
4616 rcu_read_lock();
4617 retval = -ESRCH;
1da177e4 4618 p = find_process_by_pid(pid);
5fe1d75f
ON
4619 if (p != NULL)
4620 retval = sched_setscheduler(p, policy, &lparam);
4621 rcu_read_unlock();
36c8b586 4622
1da177e4
LT
4623 return retval;
4624}
4625
4626/**
4627 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4628 * @pid: the pid in question.
4629 * @policy: new policy.
4630 * @param: structure containing the new RT priority.
4631 */
5add95d4
HC
4632SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4633 struct sched_param __user *, param)
1da177e4 4634{
c21761f1
JB
4635 /* negative values for policy are not valid */
4636 if (policy < 0)
4637 return -EINVAL;
4638
1da177e4
LT
4639 return do_sched_setscheduler(pid, policy, param);
4640}
4641
4642/**
4643 * sys_sched_setparam - set/change the RT priority of a thread
4644 * @pid: the pid in question.
4645 * @param: structure containing the new RT priority.
4646 */
5add95d4 4647SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4648{
4649 return do_sched_setscheduler(pid, -1, param);
4650}
4651
4652/**
4653 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4654 * @pid: the pid in question.
4655 */
5add95d4 4656SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4657{
36c8b586 4658 struct task_struct *p;
3a5c359a 4659 int retval;
1da177e4
LT
4660
4661 if (pid < 0)
3a5c359a 4662 return -EINVAL;
1da177e4
LT
4663
4664 retval = -ESRCH;
5fe85be0 4665 rcu_read_lock();
1da177e4
LT
4666 p = find_process_by_pid(pid);
4667 if (p) {
4668 retval = security_task_getscheduler(p);
4669 if (!retval)
ca94c442
LP
4670 retval = p->policy
4671 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4672 }
5fe85be0 4673 rcu_read_unlock();
1da177e4
LT
4674 return retval;
4675}
4676
4677/**
ca94c442 4678 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4679 * @pid: the pid in question.
4680 * @param: structure containing the RT priority.
4681 */
5add95d4 4682SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4683{
4684 struct sched_param lp;
36c8b586 4685 struct task_struct *p;
3a5c359a 4686 int retval;
1da177e4
LT
4687
4688 if (!param || pid < 0)
3a5c359a 4689 return -EINVAL;
1da177e4 4690
5fe85be0 4691 rcu_read_lock();
1da177e4
LT
4692 p = find_process_by_pid(pid);
4693 retval = -ESRCH;
4694 if (!p)
4695 goto out_unlock;
4696
4697 retval = security_task_getscheduler(p);
4698 if (retval)
4699 goto out_unlock;
4700
4701 lp.sched_priority = p->rt_priority;
5fe85be0 4702 rcu_read_unlock();
1da177e4
LT
4703
4704 /*
4705 * This one might sleep, we cannot do it with a spinlock held ...
4706 */
4707 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4708
1da177e4
LT
4709 return retval;
4710
4711out_unlock:
5fe85be0 4712 rcu_read_unlock();
1da177e4
LT
4713 return retval;
4714}
4715
96f874e2 4716long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4717{
5a16f3d3 4718 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4719 struct task_struct *p;
4720 int retval;
1da177e4 4721
95402b38 4722 get_online_cpus();
23f5d142 4723 rcu_read_lock();
1da177e4
LT
4724
4725 p = find_process_by_pid(pid);
4726 if (!p) {
23f5d142 4727 rcu_read_unlock();
95402b38 4728 put_online_cpus();
1da177e4
LT
4729 return -ESRCH;
4730 }
4731
23f5d142 4732 /* Prevent p going away */
1da177e4 4733 get_task_struct(p);
23f5d142 4734 rcu_read_unlock();
1da177e4 4735
5a16f3d3
RR
4736 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4737 retval = -ENOMEM;
4738 goto out_put_task;
4739 }
4740 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4741 retval = -ENOMEM;
4742 goto out_free_cpus_allowed;
4743 }
1da177e4 4744 retval = -EPERM;
c69e8d9c 4745 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4746 goto out_unlock;
4747
e7834f8f
DQ
4748 retval = security_task_setscheduler(p, 0, NULL);
4749 if (retval)
4750 goto out_unlock;
4751
5a16f3d3
RR
4752 cpuset_cpus_allowed(p, cpus_allowed);
4753 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4754 again:
5a16f3d3 4755 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4756
8707d8b8 4757 if (!retval) {
5a16f3d3
RR
4758 cpuset_cpus_allowed(p, cpus_allowed);
4759 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4760 /*
4761 * We must have raced with a concurrent cpuset
4762 * update. Just reset the cpus_allowed to the
4763 * cpuset's cpus_allowed
4764 */
5a16f3d3 4765 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4766 goto again;
4767 }
4768 }
1da177e4 4769out_unlock:
5a16f3d3
RR
4770 free_cpumask_var(new_mask);
4771out_free_cpus_allowed:
4772 free_cpumask_var(cpus_allowed);
4773out_put_task:
1da177e4 4774 put_task_struct(p);
95402b38 4775 put_online_cpus();
1da177e4
LT
4776 return retval;
4777}
4778
4779static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4780 struct cpumask *new_mask)
1da177e4 4781{
96f874e2
RR
4782 if (len < cpumask_size())
4783 cpumask_clear(new_mask);
4784 else if (len > cpumask_size())
4785 len = cpumask_size();
4786
1da177e4
LT
4787 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4788}
4789
4790/**
4791 * sys_sched_setaffinity - set the cpu affinity of a process
4792 * @pid: pid of the process
4793 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4794 * @user_mask_ptr: user-space pointer to the new cpu mask
4795 */
5add95d4
HC
4796SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4797 unsigned long __user *, user_mask_ptr)
1da177e4 4798{
5a16f3d3 4799 cpumask_var_t new_mask;
1da177e4
LT
4800 int retval;
4801
5a16f3d3
RR
4802 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4803 return -ENOMEM;
1da177e4 4804
5a16f3d3
RR
4805 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4806 if (retval == 0)
4807 retval = sched_setaffinity(pid, new_mask);
4808 free_cpumask_var(new_mask);
4809 return retval;
1da177e4
LT
4810}
4811
96f874e2 4812long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4813{
36c8b586 4814 struct task_struct *p;
31605683
TG
4815 unsigned long flags;
4816 struct rq *rq;
1da177e4 4817 int retval;
1da177e4 4818
95402b38 4819 get_online_cpus();
23f5d142 4820 rcu_read_lock();
1da177e4
LT
4821
4822 retval = -ESRCH;
4823 p = find_process_by_pid(pid);
4824 if (!p)
4825 goto out_unlock;
4826
e7834f8f
DQ
4827 retval = security_task_getscheduler(p);
4828 if (retval)
4829 goto out_unlock;
4830
31605683 4831 rq = task_rq_lock(p, &flags);
96f874e2 4832 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4833 task_rq_unlock(rq, &flags);
1da177e4
LT
4834
4835out_unlock:
23f5d142 4836 rcu_read_unlock();
95402b38 4837 put_online_cpus();
1da177e4 4838
9531b62f 4839 return retval;
1da177e4
LT
4840}
4841
4842/**
4843 * sys_sched_getaffinity - get the cpu affinity of a process
4844 * @pid: pid of the process
4845 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4846 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4847 */
5add95d4
HC
4848SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4849 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4850{
4851 int ret;
f17c8607 4852 cpumask_var_t mask;
1da177e4 4853
f17c8607 4854 if (len < cpumask_size())
1da177e4
LT
4855 return -EINVAL;
4856
f17c8607
RR
4857 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4858 return -ENOMEM;
1da177e4 4859
f17c8607
RR
4860 ret = sched_getaffinity(pid, mask);
4861 if (ret == 0) {
4862 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
4863 ret = -EFAULT;
4864 else
4865 ret = cpumask_size();
4866 }
4867 free_cpumask_var(mask);
1da177e4 4868
f17c8607 4869 return ret;
1da177e4
LT
4870}
4871
4872/**
4873 * sys_sched_yield - yield the current processor to other threads.
4874 *
dd41f596
IM
4875 * This function yields the current CPU to other tasks. If there are no
4876 * other threads running on this CPU then this function will return.
1da177e4 4877 */
5add95d4 4878SYSCALL_DEFINE0(sched_yield)
1da177e4 4879{
70b97a7f 4880 struct rq *rq = this_rq_lock();
1da177e4 4881
2d72376b 4882 schedstat_inc(rq, yld_count);
4530d7ab 4883 current->sched_class->yield_task(rq);
1da177e4
LT
4884
4885 /*
4886 * Since we are going to call schedule() anyway, there's
4887 * no need to preempt or enable interrupts:
4888 */
4889 __release(rq->lock);
8a25d5de 4890 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4891 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4892 preempt_enable_no_resched();
4893
4894 schedule();
4895
4896 return 0;
4897}
4898
d86ee480
PZ
4899static inline int should_resched(void)
4900{
4901 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4902}
4903
e7b38404 4904static void __cond_resched(void)
1da177e4 4905{
e7aaaa69
FW
4906 add_preempt_count(PREEMPT_ACTIVE);
4907 schedule();
4908 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4909}
4910
02b67cc3 4911int __sched _cond_resched(void)
1da177e4 4912{
d86ee480 4913 if (should_resched()) {
1da177e4
LT
4914 __cond_resched();
4915 return 1;
4916 }
4917 return 0;
4918}
02b67cc3 4919EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4920
4921/*
613afbf8 4922 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4923 * call schedule, and on return reacquire the lock.
4924 *
41a2d6cf 4925 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4926 * operations here to prevent schedule() from being called twice (once via
4927 * spin_unlock(), once by hand).
4928 */
613afbf8 4929int __cond_resched_lock(spinlock_t *lock)
1da177e4 4930{
d86ee480 4931 int resched = should_resched();
6df3cecb
JK
4932 int ret = 0;
4933
f607c668
PZ
4934 lockdep_assert_held(lock);
4935
95c354fe 4936 if (spin_needbreak(lock) || resched) {
1da177e4 4937 spin_unlock(lock);
d86ee480 4938 if (resched)
95c354fe
NP
4939 __cond_resched();
4940 else
4941 cpu_relax();
6df3cecb 4942 ret = 1;
1da177e4 4943 spin_lock(lock);
1da177e4 4944 }
6df3cecb 4945 return ret;
1da177e4 4946}
613afbf8 4947EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4948
613afbf8 4949int __sched __cond_resched_softirq(void)
1da177e4
LT
4950{
4951 BUG_ON(!in_softirq());
4952
d86ee480 4953 if (should_resched()) {
98d82567 4954 local_bh_enable();
1da177e4
LT
4955 __cond_resched();
4956 local_bh_disable();
4957 return 1;
4958 }
4959 return 0;
4960}
613afbf8 4961EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4962
1da177e4
LT
4963/**
4964 * yield - yield the current processor to other threads.
4965 *
72fd4a35 4966 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4967 * thread runnable and calls sys_sched_yield().
4968 */
4969void __sched yield(void)
4970{
4971 set_current_state(TASK_RUNNING);
4972 sys_sched_yield();
4973}
1da177e4
LT
4974EXPORT_SYMBOL(yield);
4975
4976/*
41a2d6cf 4977 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4978 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4979 */
4980void __sched io_schedule(void)
4981{
54d35f29 4982 struct rq *rq = raw_rq();
1da177e4 4983
0ff92245 4984 delayacct_blkio_start();
1da177e4 4985 atomic_inc(&rq->nr_iowait);
8f0dfc34 4986 current->in_iowait = 1;
1da177e4 4987 schedule();
8f0dfc34 4988 current->in_iowait = 0;
1da177e4 4989 atomic_dec(&rq->nr_iowait);
0ff92245 4990 delayacct_blkio_end();
1da177e4 4991}
1da177e4
LT
4992EXPORT_SYMBOL(io_schedule);
4993
4994long __sched io_schedule_timeout(long timeout)
4995{
54d35f29 4996 struct rq *rq = raw_rq();
1da177e4
LT
4997 long ret;
4998
0ff92245 4999 delayacct_blkio_start();
1da177e4 5000 atomic_inc(&rq->nr_iowait);
8f0dfc34 5001 current->in_iowait = 1;
1da177e4 5002 ret = schedule_timeout(timeout);
8f0dfc34 5003 current->in_iowait = 0;
1da177e4 5004 atomic_dec(&rq->nr_iowait);
0ff92245 5005 delayacct_blkio_end();
1da177e4
LT
5006 return ret;
5007}
5008
5009/**
5010 * sys_sched_get_priority_max - return maximum RT priority.
5011 * @policy: scheduling class.
5012 *
5013 * this syscall returns the maximum rt_priority that can be used
5014 * by a given scheduling class.
5015 */
5add95d4 5016SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5017{
5018 int ret = -EINVAL;
5019
5020 switch (policy) {
5021 case SCHED_FIFO:
5022 case SCHED_RR:
5023 ret = MAX_USER_RT_PRIO-1;
5024 break;
5025 case SCHED_NORMAL:
b0a9499c 5026 case SCHED_BATCH:
dd41f596 5027 case SCHED_IDLE:
1da177e4
LT
5028 ret = 0;
5029 break;
5030 }
5031 return ret;
5032}
5033
5034/**
5035 * sys_sched_get_priority_min - return minimum RT priority.
5036 * @policy: scheduling class.
5037 *
5038 * this syscall returns the minimum rt_priority that can be used
5039 * by a given scheduling class.
5040 */
5add95d4 5041SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5042{
5043 int ret = -EINVAL;
5044
5045 switch (policy) {
5046 case SCHED_FIFO:
5047 case SCHED_RR:
5048 ret = 1;
5049 break;
5050 case SCHED_NORMAL:
b0a9499c 5051 case SCHED_BATCH:
dd41f596 5052 case SCHED_IDLE:
1da177e4
LT
5053 ret = 0;
5054 }
5055 return ret;
5056}
5057
5058/**
5059 * sys_sched_rr_get_interval - return the default timeslice of a process.
5060 * @pid: pid of the process.
5061 * @interval: userspace pointer to the timeslice value.
5062 *
5063 * this syscall writes the default timeslice value of a given process
5064 * into the user-space timespec buffer. A value of '0' means infinity.
5065 */
17da2bd9 5066SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5067 struct timespec __user *, interval)
1da177e4 5068{
36c8b586 5069 struct task_struct *p;
a4ec24b4 5070 unsigned int time_slice;
dba091b9
TG
5071 unsigned long flags;
5072 struct rq *rq;
3a5c359a 5073 int retval;
1da177e4 5074 struct timespec t;
1da177e4
LT
5075
5076 if (pid < 0)
3a5c359a 5077 return -EINVAL;
1da177e4
LT
5078
5079 retval = -ESRCH;
1a551ae7 5080 rcu_read_lock();
1da177e4
LT
5081 p = find_process_by_pid(pid);
5082 if (!p)
5083 goto out_unlock;
5084
5085 retval = security_task_getscheduler(p);
5086 if (retval)
5087 goto out_unlock;
5088
dba091b9
TG
5089 rq = task_rq_lock(p, &flags);
5090 time_slice = p->sched_class->get_rr_interval(rq, p);
5091 task_rq_unlock(rq, &flags);
a4ec24b4 5092
1a551ae7 5093 rcu_read_unlock();
a4ec24b4 5094 jiffies_to_timespec(time_slice, &t);
1da177e4 5095 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5096 return retval;
3a5c359a 5097
1da177e4 5098out_unlock:
1a551ae7 5099 rcu_read_unlock();
1da177e4
LT
5100 return retval;
5101}
5102
7c731e0a 5103static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5104
82a1fcb9 5105void sched_show_task(struct task_struct *p)
1da177e4 5106{
1da177e4 5107 unsigned long free = 0;
36c8b586 5108 unsigned state;
1da177e4 5109
1da177e4 5110 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5111 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5112 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5113#if BITS_PER_LONG == 32
1da177e4 5114 if (state == TASK_RUNNING)
3df0fc5b 5115 printk(KERN_CONT " running ");
1da177e4 5116 else
3df0fc5b 5117 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5118#else
5119 if (state == TASK_RUNNING)
3df0fc5b 5120 printk(KERN_CONT " running task ");
1da177e4 5121 else
3df0fc5b 5122 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5123#endif
5124#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5125 free = stack_not_used(p);
1da177e4 5126#endif
3df0fc5b 5127 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5128 task_pid_nr(p), task_pid_nr(p->real_parent),
5129 (unsigned long)task_thread_info(p)->flags);
1da177e4 5130
5fb5e6de 5131 show_stack(p, NULL);
1da177e4
LT
5132}
5133
e59e2ae2 5134void show_state_filter(unsigned long state_filter)
1da177e4 5135{
36c8b586 5136 struct task_struct *g, *p;
1da177e4 5137
4bd77321 5138#if BITS_PER_LONG == 32
3df0fc5b
PZ
5139 printk(KERN_INFO
5140 " task PC stack pid father\n");
1da177e4 5141#else
3df0fc5b
PZ
5142 printk(KERN_INFO
5143 " task PC stack pid father\n");
1da177e4
LT
5144#endif
5145 read_lock(&tasklist_lock);
5146 do_each_thread(g, p) {
5147 /*
5148 * reset the NMI-timeout, listing all files on a slow
5149 * console might take alot of time:
5150 */
5151 touch_nmi_watchdog();
39bc89fd 5152 if (!state_filter || (p->state & state_filter))
82a1fcb9 5153 sched_show_task(p);
1da177e4
LT
5154 } while_each_thread(g, p);
5155
04c9167f
JF
5156 touch_all_softlockup_watchdogs();
5157
dd41f596
IM
5158#ifdef CONFIG_SCHED_DEBUG
5159 sysrq_sched_debug_show();
5160#endif
1da177e4 5161 read_unlock(&tasklist_lock);
e59e2ae2
IM
5162 /*
5163 * Only show locks if all tasks are dumped:
5164 */
93335a21 5165 if (!state_filter)
e59e2ae2 5166 debug_show_all_locks();
1da177e4
LT
5167}
5168
1df21055
IM
5169void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5170{
dd41f596 5171 idle->sched_class = &idle_sched_class;
1df21055
IM
5172}
5173
f340c0d1
IM
5174/**
5175 * init_idle - set up an idle thread for a given CPU
5176 * @idle: task in question
5177 * @cpu: cpu the idle task belongs to
5178 *
5179 * NOTE: this function does not set the idle thread's NEED_RESCHED
5180 * flag, to make booting more robust.
5181 */
5c1e1767 5182void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5183{
70b97a7f 5184 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5185 unsigned long flags;
5186
05fa785c 5187 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5188
dd41f596 5189 __sched_fork(idle);
06b83b5f 5190 idle->state = TASK_RUNNING;
dd41f596
IM
5191 idle->se.exec_start = sched_clock();
5192
96f874e2 5193 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5194 __set_task_cpu(idle, cpu);
1da177e4 5195
1da177e4 5196 rq->curr = rq->idle = idle;
4866cde0
NP
5197#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5198 idle->oncpu = 1;
5199#endif
05fa785c 5200 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5201
5202 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5203#if defined(CONFIG_PREEMPT)
5204 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5205#else
a1261f54 5206 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5207#endif
dd41f596
IM
5208 /*
5209 * The idle tasks have their own, simple scheduling class:
5210 */
5211 idle->sched_class = &idle_sched_class;
fb52607a 5212 ftrace_graph_init_task(idle);
1da177e4
LT
5213}
5214
5215/*
5216 * In a system that switches off the HZ timer nohz_cpu_mask
5217 * indicates which cpus entered this state. This is used
5218 * in the rcu update to wait only for active cpus. For system
5219 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5220 * always be CPU_BITS_NONE.
1da177e4 5221 */
6a7b3dc3 5222cpumask_var_t nohz_cpu_mask;
1da177e4 5223
19978ca6
IM
5224/*
5225 * Increase the granularity value when there are more CPUs,
5226 * because with more CPUs the 'effective latency' as visible
5227 * to users decreases. But the relationship is not linear,
5228 * so pick a second-best guess by going with the log2 of the
5229 * number of CPUs.
5230 *
5231 * This idea comes from the SD scheduler of Con Kolivas:
5232 */
acb4a848 5233static int get_update_sysctl_factor(void)
19978ca6 5234{
4ca3ef71 5235 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5236 unsigned int factor;
5237
5238 switch (sysctl_sched_tunable_scaling) {
5239 case SCHED_TUNABLESCALING_NONE:
5240 factor = 1;
5241 break;
5242 case SCHED_TUNABLESCALING_LINEAR:
5243 factor = cpus;
5244 break;
5245 case SCHED_TUNABLESCALING_LOG:
5246 default:
5247 factor = 1 + ilog2(cpus);
5248 break;
5249 }
19978ca6 5250
acb4a848
CE
5251 return factor;
5252}
19978ca6 5253
acb4a848
CE
5254static void update_sysctl(void)
5255{
5256 unsigned int factor = get_update_sysctl_factor();
19978ca6 5257
0bcdcf28
CE
5258#define SET_SYSCTL(name) \
5259 (sysctl_##name = (factor) * normalized_sysctl_##name)
5260 SET_SYSCTL(sched_min_granularity);
5261 SET_SYSCTL(sched_latency);
5262 SET_SYSCTL(sched_wakeup_granularity);
5263 SET_SYSCTL(sched_shares_ratelimit);
5264#undef SET_SYSCTL
5265}
55cd5340 5266
0bcdcf28
CE
5267static inline void sched_init_granularity(void)
5268{
5269 update_sysctl();
19978ca6
IM
5270}
5271
1da177e4
LT
5272#ifdef CONFIG_SMP
5273/*
5274 * This is how migration works:
5275 *
70b97a7f 5276 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5277 * runqueue and wake up that CPU's migration thread.
5278 * 2) we down() the locked semaphore => thread blocks.
5279 * 3) migration thread wakes up (implicitly it forces the migrated
5280 * thread off the CPU)
5281 * 4) it gets the migration request and checks whether the migrated
5282 * task is still in the wrong runqueue.
5283 * 5) if it's in the wrong runqueue then the migration thread removes
5284 * it and puts it into the right queue.
5285 * 6) migration thread up()s the semaphore.
5286 * 7) we wake up and the migration is done.
5287 */
5288
5289/*
5290 * Change a given task's CPU affinity. Migrate the thread to a
5291 * proper CPU and schedule it away if the CPU it's executing on
5292 * is removed from the allowed bitmask.
5293 *
5294 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5295 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5296 * call is not atomic; no spinlocks may be held.
5297 */
96f874e2 5298int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5299{
70b97a7f 5300 struct migration_req req;
1da177e4 5301 unsigned long flags;
70b97a7f 5302 struct rq *rq;
48f24c4d 5303 int ret = 0;
1da177e4 5304
e2912009
PZ
5305 /*
5306 * Since we rely on wake-ups to migrate sleeping tasks, don't change
5307 * the ->cpus_allowed mask from under waking tasks, which would be
5308 * possible when we change rq->lock in ttwu(), so synchronize against
5309 * TASK_WAKING to avoid that.
fabf318e
PZ
5310 *
5311 * Make an exception for freshly cloned tasks, since cpuset namespaces
5312 * might move the task about, we have to validate the target in
5313 * wake_up_new_task() anyway since the cpu might have gone away.
e2912009
PZ
5314 */
5315again:
fabf318e 5316 while (p->state == TASK_WAKING && !(p->flags & PF_STARTING))
e2912009
PZ
5317 cpu_relax();
5318
1da177e4 5319 rq = task_rq_lock(p, &flags);
e2912009 5320
fabf318e 5321 if (p->state == TASK_WAKING && !(p->flags & PF_STARTING)) {
e2912009
PZ
5322 task_rq_unlock(rq, &flags);
5323 goto again;
5324 }
5325
6ad4c188 5326 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5327 ret = -EINVAL;
5328 goto out;
5329 }
5330
9985b0ba 5331 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5332 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5333 ret = -EINVAL;
5334 goto out;
5335 }
5336
73fe6aae 5337 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5338 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5339 else {
96f874e2
RR
5340 cpumask_copy(&p->cpus_allowed, new_mask);
5341 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5342 }
5343
1da177e4 5344 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5345 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5346 goto out;
5347
6ad4c188 5348 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5349 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5350 struct task_struct *mt = rq->migration_thread;
5351
5352 get_task_struct(mt);
1da177e4
LT
5353 task_rq_unlock(rq, &flags);
5354 wake_up_process(rq->migration_thread);
693525e3 5355 put_task_struct(mt);
1da177e4
LT
5356 wait_for_completion(&req.done);
5357 tlb_migrate_finish(p->mm);
5358 return 0;
5359 }
5360out:
5361 task_rq_unlock(rq, &flags);
48f24c4d 5362
1da177e4
LT
5363 return ret;
5364}
cd8ba7cd 5365EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5366
5367/*
41a2d6cf 5368 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5369 * this because either it can't run here any more (set_cpus_allowed()
5370 * away from this CPU, or CPU going down), or because we're
5371 * attempting to rebalance this task on exec (sched_exec).
5372 *
5373 * So we race with normal scheduler movements, but that's OK, as long
5374 * as the task is no longer on this CPU.
efc30814
KK
5375 *
5376 * Returns non-zero if task was successfully migrated.
1da177e4 5377 */
efc30814 5378static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5379{
70b97a7f 5380 struct rq *rq_dest, *rq_src;
e2912009 5381 int ret = 0;
1da177e4 5382
e761b772 5383 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5384 return ret;
1da177e4
LT
5385
5386 rq_src = cpu_rq(src_cpu);
5387 rq_dest = cpu_rq(dest_cpu);
5388
5389 double_rq_lock(rq_src, rq_dest);
5390 /* Already moved. */
5391 if (task_cpu(p) != src_cpu)
b1e38734 5392 goto done;
1da177e4 5393 /* Affinity changed (again). */
96f874e2 5394 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5395 goto fail;
1da177e4 5396
e2912009
PZ
5397 /*
5398 * If we're not on a rq, the next wake-up will ensure we're
5399 * placed properly.
5400 */
5401 if (p->se.on_rq) {
2e1cb74a 5402 deactivate_task(rq_src, p, 0);
e2912009 5403 set_task_cpu(p, dest_cpu);
dd41f596 5404 activate_task(rq_dest, p, 0);
15afe09b 5405 check_preempt_curr(rq_dest, p, 0);
1da177e4 5406 }
b1e38734 5407done:
efc30814 5408 ret = 1;
b1e38734 5409fail:
1da177e4 5410 double_rq_unlock(rq_src, rq_dest);
efc30814 5411 return ret;
1da177e4
LT
5412}
5413
03b042bf
PM
5414#define RCU_MIGRATION_IDLE 0
5415#define RCU_MIGRATION_NEED_QS 1
5416#define RCU_MIGRATION_GOT_QS 2
5417#define RCU_MIGRATION_MUST_SYNC 3
5418
1da177e4
LT
5419/*
5420 * migration_thread - this is a highprio system thread that performs
5421 * thread migration by bumping thread off CPU then 'pushing' onto
5422 * another runqueue.
5423 */
95cdf3b7 5424static int migration_thread(void *data)
1da177e4 5425{
03b042bf 5426 int badcpu;
1da177e4 5427 int cpu = (long)data;
70b97a7f 5428 struct rq *rq;
1da177e4
LT
5429
5430 rq = cpu_rq(cpu);
5431 BUG_ON(rq->migration_thread != current);
5432
5433 set_current_state(TASK_INTERRUPTIBLE);
5434 while (!kthread_should_stop()) {
70b97a7f 5435 struct migration_req *req;
1da177e4 5436 struct list_head *head;
1da177e4 5437
05fa785c 5438 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5439
5440 if (cpu_is_offline(cpu)) {
05fa785c 5441 raw_spin_unlock_irq(&rq->lock);
371cbb38 5442 break;
1da177e4
LT
5443 }
5444
5445 if (rq->active_balance) {
5446 active_load_balance(rq, cpu);
5447 rq->active_balance = 0;
5448 }
5449
5450 head = &rq->migration_queue;
5451
5452 if (list_empty(head)) {
05fa785c 5453 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5454 schedule();
5455 set_current_state(TASK_INTERRUPTIBLE);
5456 continue;
5457 }
70b97a7f 5458 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5459 list_del_init(head->next);
5460
03b042bf 5461 if (req->task != NULL) {
05fa785c 5462 raw_spin_unlock(&rq->lock);
03b042bf
PM
5463 __migrate_task(req->task, cpu, req->dest_cpu);
5464 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5465 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5466 raw_spin_unlock(&rq->lock);
03b042bf
PM
5467 } else {
5468 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5469 raw_spin_unlock(&rq->lock);
03b042bf
PM
5470 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5471 }
674311d5 5472 local_irq_enable();
1da177e4
LT
5473
5474 complete(&req->done);
5475 }
5476 __set_current_state(TASK_RUNNING);
1da177e4 5477
1da177e4
LT
5478 return 0;
5479}
5480
5481#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5482
5483static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5484{
5485 int ret;
5486
5487 local_irq_disable();
5488 ret = __migrate_task(p, src_cpu, dest_cpu);
5489 local_irq_enable();
5490 return ret;
5491}
5492
054b9108 5493/*
3a4fa0a2 5494 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5495 */
48f24c4d 5496static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5497{
70b97a7f 5498 int dest_cpu;
e76bd8d9
RR
5499
5500again:
5da9a0fb 5501 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 5502
e76bd8d9
RR
5503 /* It can have affinity changed while we were choosing. */
5504 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5505 goto again;
1da177e4
LT
5506}
5507
5508/*
5509 * While a dead CPU has no uninterruptible tasks queued at this point,
5510 * it might still have a nonzero ->nr_uninterruptible counter, because
5511 * for performance reasons the counter is not stricly tracking tasks to
5512 * their home CPUs. So we just add the counter to another CPU's counter,
5513 * to keep the global sum constant after CPU-down:
5514 */
70b97a7f 5515static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5516{
6ad4c188 5517 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5518 unsigned long flags;
5519
5520 local_irq_save(flags);
5521 double_rq_lock(rq_src, rq_dest);
5522 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5523 rq_src->nr_uninterruptible = 0;
5524 double_rq_unlock(rq_src, rq_dest);
5525 local_irq_restore(flags);
5526}
5527
5528/* Run through task list and migrate tasks from the dead cpu. */
5529static void migrate_live_tasks(int src_cpu)
5530{
48f24c4d 5531 struct task_struct *p, *t;
1da177e4 5532
f7b4cddc 5533 read_lock(&tasklist_lock);
1da177e4 5534
48f24c4d
IM
5535 do_each_thread(t, p) {
5536 if (p == current)
1da177e4
LT
5537 continue;
5538
48f24c4d
IM
5539 if (task_cpu(p) == src_cpu)
5540 move_task_off_dead_cpu(src_cpu, p);
5541 } while_each_thread(t, p);
1da177e4 5542
f7b4cddc 5543 read_unlock(&tasklist_lock);
1da177e4
LT
5544}
5545
dd41f596
IM
5546/*
5547 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5548 * It does so by boosting its priority to highest possible.
5549 * Used by CPU offline code.
1da177e4
LT
5550 */
5551void sched_idle_next(void)
5552{
48f24c4d 5553 int this_cpu = smp_processor_id();
70b97a7f 5554 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5555 struct task_struct *p = rq->idle;
5556 unsigned long flags;
5557
5558 /* cpu has to be offline */
48f24c4d 5559 BUG_ON(cpu_online(this_cpu));
1da177e4 5560
48f24c4d
IM
5561 /*
5562 * Strictly not necessary since rest of the CPUs are stopped by now
5563 * and interrupts disabled on the current cpu.
1da177e4 5564 */
05fa785c 5565 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5566
dd41f596 5567 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5568
94bc9a7b
DA
5569 update_rq_clock(rq);
5570 activate_task(rq, p, 0);
1da177e4 5571
05fa785c 5572 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5573}
5574
48f24c4d
IM
5575/*
5576 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5577 * offline.
5578 */
5579void idle_task_exit(void)
5580{
5581 struct mm_struct *mm = current->active_mm;
5582
5583 BUG_ON(cpu_online(smp_processor_id()));
5584
5585 if (mm != &init_mm)
5586 switch_mm(mm, &init_mm, current);
5587 mmdrop(mm);
5588}
5589
054b9108 5590/* called under rq->lock with disabled interrupts */
36c8b586 5591static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5592{
70b97a7f 5593 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5594
5595 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5596 BUG_ON(!p->exit_state);
1da177e4
LT
5597
5598 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5599 BUG_ON(p->state == TASK_DEAD);
1da177e4 5600
48f24c4d 5601 get_task_struct(p);
1da177e4
LT
5602
5603 /*
5604 * Drop lock around migration; if someone else moves it,
41a2d6cf 5605 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5606 * fine.
5607 */
05fa785c 5608 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5609 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5610 raw_spin_lock_irq(&rq->lock);
1da177e4 5611
48f24c4d 5612 put_task_struct(p);
1da177e4
LT
5613}
5614
5615/* release_task() removes task from tasklist, so we won't find dead tasks. */
5616static void migrate_dead_tasks(unsigned int dead_cpu)
5617{
70b97a7f 5618 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5619 struct task_struct *next;
48f24c4d 5620
dd41f596
IM
5621 for ( ; ; ) {
5622 if (!rq->nr_running)
5623 break;
a8e504d2 5624 update_rq_clock(rq);
b67802ea 5625 next = pick_next_task(rq);
dd41f596
IM
5626 if (!next)
5627 break;
79c53799 5628 next->sched_class->put_prev_task(rq, next);
dd41f596 5629 migrate_dead(dead_cpu, next);
e692ab53 5630
1da177e4
LT
5631 }
5632}
dce48a84
TG
5633
5634/*
5635 * remove the tasks which were accounted by rq from calc_load_tasks.
5636 */
5637static void calc_global_load_remove(struct rq *rq)
5638{
5639 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5640 rq->calc_load_active = 0;
dce48a84 5641}
1da177e4
LT
5642#endif /* CONFIG_HOTPLUG_CPU */
5643
e692ab53
NP
5644#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5645
5646static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5647 {
5648 .procname = "sched_domain",
c57baf1e 5649 .mode = 0555,
e0361851 5650 },
56992309 5651 {}
e692ab53
NP
5652};
5653
5654static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5655 {
5656 .procname = "kernel",
c57baf1e 5657 .mode = 0555,
e0361851
AD
5658 .child = sd_ctl_dir,
5659 },
56992309 5660 {}
e692ab53
NP
5661};
5662
5663static struct ctl_table *sd_alloc_ctl_entry(int n)
5664{
5665 struct ctl_table *entry =
5cf9f062 5666 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5667
e692ab53
NP
5668 return entry;
5669}
5670
6382bc90
MM
5671static void sd_free_ctl_entry(struct ctl_table **tablep)
5672{
cd790076 5673 struct ctl_table *entry;
6382bc90 5674
cd790076
MM
5675 /*
5676 * In the intermediate directories, both the child directory and
5677 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5678 * will always be set. In the lowest directory the names are
cd790076
MM
5679 * static strings and all have proc handlers.
5680 */
5681 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5682 if (entry->child)
5683 sd_free_ctl_entry(&entry->child);
cd790076
MM
5684 if (entry->proc_handler == NULL)
5685 kfree(entry->procname);
5686 }
6382bc90
MM
5687
5688 kfree(*tablep);
5689 *tablep = NULL;
5690}
5691
e692ab53 5692static void
e0361851 5693set_table_entry(struct ctl_table *entry,
e692ab53
NP
5694 const char *procname, void *data, int maxlen,
5695 mode_t mode, proc_handler *proc_handler)
5696{
e692ab53
NP
5697 entry->procname = procname;
5698 entry->data = data;
5699 entry->maxlen = maxlen;
5700 entry->mode = mode;
5701 entry->proc_handler = proc_handler;
5702}
5703
5704static struct ctl_table *
5705sd_alloc_ctl_domain_table(struct sched_domain *sd)
5706{
a5d8c348 5707 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5708
ad1cdc1d
MM
5709 if (table == NULL)
5710 return NULL;
5711
e0361851 5712 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5713 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5714 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5715 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5716 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5717 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5718 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5719 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5720 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5721 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5722 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5723 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5724 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5725 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5726 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5727 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5728 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5729 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5730 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5731 &sd->cache_nice_tries,
5732 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5733 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5734 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5735 set_table_entry(&table[11], "name", sd->name,
5736 CORENAME_MAX_SIZE, 0444, proc_dostring);
5737 /* &table[12] is terminator */
e692ab53
NP
5738
5739 return table;
5740}
5741
9a4e7159 5742static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5743{
5744 struct ctl_table *entry, *table;
5745 struct sched_domain *sd;
5746 int domain_num = 0, i;
5747 char buf[32];
5748
5749 for_each_domain(cpu, sd)
5750 domain_num++;
5751 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5752 if (table == NULL)
5753 return NULL;
e692ab53
NP
5754
5755 i = 0;
5756 for_each_domain(cpu, sd) {
5757 snprintf(buf, 32, "domain%d", i);
e692ab53 5758 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5759 entry->mode = 0555;
e692ab53
NP
5760 entry->child = sd_alloc_ctl_domain_table(sd);
5761 entry++;
5762 i++;
5763 }
5764 return table;
5765}
5766
5767static struct ctl_table_header *sd_sysctl_header;
6382bc90 5768static void register_sched_domain_sysctl(void)
e692ab53 5769{
6ad4c188 5770 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5771 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5772 char buf[32];
5773
7378547f
MM
5774 WARN_ON(sd_ctl_dir[0].child);
5775 sd_ctl_dir[0].child = entry;
5776
ad1cdc1d
MM
5777 if (entry == NULL)
5778 return;
5779
6ad4c188 5780 for_each_possible_cpu(i) {
e692ab53 5781 snprintf(buf, 32, "cpu%d", i);
e692ab53 5782 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5783 entry->mode = 0555;
e692ab53 5784 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5785 entry++;
e692ab53 5786 }
7378547f
MM
5787
5788 WARN_ON(sd_sysctl_header);
e692ab53
NP
5789 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5790}
6382bc90 5791
7378547f 5792/* may be called multiple times per register */
6382bc90
MM
5793static void unregister_sched_domain_sysctl(void)
5794{
7378547f
MM
5795 if (sd_sysctl_header)
5796 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5797 sd_sysctl_header = NULL;
7378547f
MM
5798 if (sd_ctl_dir[0].child)
5799 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5800}
e692ab53 5801#else
6382bc90
MM
5802static void register_sched_domain_sysctl(void)
5803{
5804}
5805static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5806{
5807}
5808#endif
5809
1f11eb6a
GH
5810static void set_rq_online(struct rq *rq)
5811{
5812 if (!rq->online) {
5813 const struct sched_class *class;
5814
c6c4927b 5815 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5816 rq->online = 1;
5817
5818 for_each_class(class) {
5819 if (class->rq_online)
5820 class->rq_online(rq);
5821 }
5822 }
5823}
5824
5825static void set_rq_offline(struct rq *rq)
5826{
5827 if (rq->online) {
5828 const struct sched_class *class;
5829
5830 for_each_class(class) {
5831 if (class->rq_offline)
5832 class->rq_offline(rq);
5833 }
5834
c6c4927b 5835 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5836 rq->online = 0;
5837 }
5838}
5839
1da177e4
LT
5840/*
5841 * migration_call - callback that gets triggered when a CPU is added.
5842 * Here we can start up the necessary migration thread for the new CPU.
5843 */
48f24c4d
IM
5844static int __cpuinit
5845migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5846{
1da177e4 5847 struct task_struct *p;
48f24c4d 5848 int cpu = (long)hcpu;
1da177e4 5849 unsigned long flags;
70b97a7f 5850 struct rq *rq;
1da177e4
LT
5851
5852 switch (action) {
5be9361c 5853
1da177e4 5854 case CPU_UP_PREPARE:
8bb78442 5855 case CPU_UP_PREPARE_FROZEN:
dd41f596 5856 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5857 if (IS_ERR(p))
5858 return NOTIFY_BAD;
1da177e4
LT
5859 kthread_bind(p, cpu);
5860 /* Must be high prio: stop_machine expects to yield to it. */
5861 rq = task_rq_lock(p, &flags);
dd41f596 5862 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5863 task_rq_unlock(rq, &flags);
371cbb38 5864 get_task_struct(p);
1da177e4 5865 cpu_rq(cpu)->migration_thread = p;
a468d389 5866 rq->calc_load_update = calc_load_update;
1da177e4 5867 break;
48f24c4d 5868
1da177e4 5869 case CPU_ONLINE:
8bb78442 5870 case CPU_ONLINE_FROZEN:
3a4fa0a2 5871 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5872 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5873
5874 /* Update our root-domain */
5875 rq = cpu_rq(cpu);
05fa785c 5876 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5877 if (rq->rd) {
c6c4927b 5878 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5879
5880 set_rq_online(rq);
1f94ef59 5881 }
05fa785c 5882 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5883 break;
48f24c4d 5884
1da177e4
LT
5885#ifdef CONFIG_HOTPLUG_CPU
5886 case CPU_UP_CANCELED:
8bb78442 5887 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5888 if (!cpu_rq(cpu)->migration_thread)
5889 break;
41a2d6cf 5890 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5891 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5892 cpumask_any(cpu_online_mask));
1da177e4 5893 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5894 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5895 cpu_rq(cpu)->migration_thread = NULL;
5896 break;
48f24c4d 5897
1da177e4 5898 case CPU_DEAD:
8bb78442 5899 case CPU_DEAD_FROZEN:
470fd646 5900 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5901 migrate_live_tasks(cpu);
5902 rq = cpu_rq(cpu);
5903 kthread_stop(rq->migration_thread);
371cbb38 5904 put_task_struct(rq->migration_thread);
1da177e4
LT
5905 rq->migration_thread = NULL;
5906 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5907 raw_spin_lock_irq(&rq->lock);
a8e504d2 5908 update_rq_clock(rq);
2e1cb74a 5909 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5910 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5911 rq->idle->sched_class = &idle_sched_class;
1da177e4 5912 migrate_dead_tasks(cpu);
05fa785c 5913 raw_spin_unlock_irq(&rq->lock);
470fd646 5914 cpuset_unlock();
1da177e4
LT
5915 migrate_nr_uninterruptible(rq);
5916 BUG_ON(rq->nr_running != 0);
dce48a84 5917 calc_global_load_remove(rq);
41a2d6cf
IM
5918 /*
5919 * No need to migrate the tasks: it was best-effort if
5920 * they didn't take sched_hotcpu_mutex. Just wake up
5921 * the requestors.
5922 */
05fa785c 5923 raw_spin_lock_irq(&rq->lock);
1da177e4 5924 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5925 struct migration_req *req;
5926
1da177e4 5927 req = list_entry(rq->migration_queue.next,
70b97a7f 5928 struct migration_req, list);
1da177e4 5929 list_del_init(&req->list);
05fa785c 5930 raw_spin_unlock_irq(&rq->lock);
1da177e4 5931 complete(&req->done);
05fa785c 5932 raw_spin_lock_irq(&rq->lock);
1da177e4 5933 }
05fa785c 5934 raw_spin_unlock_irq(&rq->lock);
1da177e4 5935 break;
57d885fe 5936
08f503b0
GH
5937 case CPU_DYING:
5938 case CPU_DYING_FROZEN:
57d885fe
GH
5939 /* Update our root-domain */
5940 rq = cpu_rq(cpu);
05fa785c 5941 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5942 if (rq->rd) {
c6c4927b 5943 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5944 set_rq_offline(rq);
57d885fe 5945 }
05fa785c 5946 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5947 break;
1da177e4
LT
5948#endif
5949 }
5950 return NOTIFY_OK;
5951}
5952
f38b0820
PM
5953/*
5954 * Register at high priority so that task migration (migrate_all_tasks)
5955 * happens before everything else. This has to be lower priority than
cdd6c482 5956 * the notifier in the perf_event subsystem, though.
1da177e4 5957 */
26c2143b 5958static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5959 .notifier_call = migration_call,
5960 .priority = 10
5961};
5962
7babe8db 5963static int __init migration_init(void)
1da177e4
LT
5964{
5965 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5966 int err;
48f24c4d
IM
5967
5968 /* Start one for the boot CPU: */
07dccf33
AM
5969 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5970 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5971 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5972 register_cpu_notifier(&migration_notifier);
7babe8db 5973
a004cd42 5974 return 0;
1da177e4 5975}
7babe8db 5976early_initcall(migration_init);
1da177e4
LT
5977#endif
5978
5979#ifdef CONFIG_SMP
476f3534 5980
3e9830dc 5981#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5982
f6630114
MT
5983static __read_mostly int sched_domain_debug_enabled;
5984
5985static int __init sched_domain_debug_setup(char *str)
5986{
5987 sched_domain_debug_enabled = 1;
5988
5989 return 0;
5990}
5991early_param("sched_debug", sched_domain_debug_setup);
5992
7c16ec58 5993static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5994 struct cpumask *groupmask)
1da177e4 5995{
4dcf6aff 5996 struct sched_group *group = sd->groups;
434d53b0 5997 char str[256];
1da177e4 5998
968ea6d8 5999 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6000 cpumask_clear(groupmask);
4dcf6aff
IM
6001
6002 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6003
6004 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6005 printk("does not load-balance\n");
4dcf6aff 6006 if (sd->parent)
3df0fc5b
PZ
6007 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6008 " has parent");
4dcf6aff 6009 return -1;
41c7ce9a
NP
6010 }
6011
3df0fc5b 6012 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6013
758b2cdc 6014 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6015 printk(KERN_ERR "ERROR: domain->span does not contain "
6016 "CPU%d\n", cpu);
4dcf6aff 6017 }
758b2cdc 6018 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6019 printk(KERN_ERR "ERROR: domain->groups does not contain"
6020 " CPU%d\n", cpu);
4dcf6aff 6021 }
1da177e4 6022
4dcf6aff 6023 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6024 do {
4dcf6aff 6025 if (!group) {
3df0fc5b
PZ
6026 printk("\n");
6027 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6028 break;
6029 }
6030
18a3885f 6031 if (!group->cpu_power) {
3df0fc5b
PZ
6032 printk(KERN_CONT "\n");
6033 printk(KERN_ERR "ERROR: domain->cpu_power not "
6034 "set\n");
4dcf6aff
IM
6035 break;
6036 }
1da177e4 6037
758b2cdc 6038 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6039 printk(KERN_CONT "\n");
6040 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6041 break;
6042 }
1da177e4 6043
758b2cdc 6044 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6045 printk(KERN_CONT "\n");
6046 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6047 break;
6048 }
1da177e4 6049
758b2cdc 6050 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6051
968ea6d8 6052 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6053
3df0fc5b 6054 printk(KERN_CONT " %s", str);
18a3885f 6055 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6056 printk(KERN_CONT " (cpu_power = %d)",
6057 group->cpu_power);
381512cf 6058 }
1da177e4 6059
4dcf6aff
IM
6060 group = group->next;
6061 } while (group != sd->groups);
3df0fc5b 6062 printk(KERN_CONT "\n");
1da177e4 6063
758b2cdc 6064 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6065 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6066
758b2cdc
RR
6067 if (sd->parent &&
6068 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6069 printk(KERN_ERR "ERROR: parent span is not a superset "
6070 "of domain->span\n");
4dcf6aff
IM
6071 return 0;
6072}
1da177e4 6073
4dcf6aff
IM
6074static void sched_domain_debug(struct sched_domain *sd, int cpu)
6075{
d5dd3db1 6076 cpumask_var_t groupmask;
4dcf6aff 6077 int level = 0;
1da177e4 6078
f6630114
MT
6079 if (!sched_domain_debug_enabled)
6080 return;
6081
4dcf6aff
IM
6082 if (!sd) {
6083 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6084 return;
6085 }
1da177e4 6086
4dcf6aff
IM
6087 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6088
d5dd3db1 6089 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6090 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6091 return;
6092 }
6093
4dcf6aff 6094 for (;;) {
7c16ec58 6095 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6096 break;
1da177e4
LT
6097 level++;
6098 sd = sd->parent;
33859f7f 6099 if (!sd)
4dcf6aff
IM
6100 break;
6101 }
d5dd3db1 6102 free_cpumask_var(groupmask);
1da177e4 6103}
6d6bc0ad 6104#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6105# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6106#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6107
1a20ff27 6108static int sd_degenerate(struct sched_domain *sd)
245af2c7 6109{
758b2cdc 6110 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6111 return 1;
6112
6113 /* Following flags need at least 2 groups */
6114 if (sd->flags & (SD_LOAD_BALANCE |
6115 SD_BALANCE_NEWIDLE |
6116 SD_BALANCE_FORK |
89c4710e
SS
6117 SD_BALANCE_EXEC |
6118 SD_SHARE_CPUPOWER |
6119 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6120 if (sd->groups != sd->groups->next)
6121 return 0;
6122 }
6123
6124 /* Following flags don't use groups */
c88d5910 6125 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6126 return 0;
6127
6128 return 1;
6129}
6130
48f24c4d
IM
6131static int
6132sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6133{
6134 unsigned long cflags = sd->flags, pflags = parent->flags;
6135
6136 if (sd_degenerate(parent))
6137 return 1;
6138
758b2cdc 6139 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6140 return 0;
6141
245af2c7
SS
6142 /* Flags needing groups don't count if only 1 group in parent */
6143 if (parent->groups == parent->groups->next) {
6144 pflags &= ~(SD_LOAD_BALANCE |
6145 SD_BALANCE_NEWIDLE |
6146 SD_BALANCE_FORK |
89c4710e
SS
6147 SD_BALANCE_EXEC |
6148 SD_SHARE_CPUPOWER |
6149 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6150 if (nr_node_ids == 1)
6151 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6152 }
6153 if (~cflags & pflags)
6154 return 0;
6155
6156 return 1;
6157}
6158
c6c4927b
RR
6159static void free_rootdomain(struct root_domain *rd)
6160{
047106ad
PZ
6161 synchronize_sched();
6162
68e74568
RR
6163 cpupri_cleanup(&rd->cpupri);
6164
c6c4927b
RR
6165 free_cpumask_var(rd->rto_mask);
6166 free_cpumask_var(rd->online);
6167 free_cpumask_var(rd->span);
6168 kfree(rd);
6169}
6170
57d885fe
GH
6171static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6172{
a0490fa3 6173 struct root_domain *old_rd = NULL;
57d885fe 6174 unsigned long flags;
57d885fe 6175
05fa785c 6176 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6177
6178 if (rq->rd) {
a0490fa3 6179 old_rd = rq->rd;
57d885fe 6180
c6c4927b 6181 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6182 set_rq_offline(rq);
57d885fe 6183
c6c4927b 6184 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6185
a0490fa3
IM
6186 /*
6187 * If we dont want to free the old_rt yet then
6188 * set old_rd to NULL to skip the freeing later
6189 * in this function:
6190 */
6191 if (!atomic_dec_and_test(&old_rd->refcount))
6192 old_rd = NULL;
57d885fe
GH
6193 }
6194
6195 atomic_inc(&rd->refcount);
6196 rq->rd = rd;
6197
c6c4927b 6198 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6199 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6200 set_rq_online(rq);
57d885fe 6201
05fa785c 6202 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6203
6204 if (old_rd)
6205 free_rootdomain(old_rd);
57d885fe
GH
6206}
6207
fd5e1b5d 6208static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6209{
36b7b6d4
PE
6210 gfp_t gfp = GFP_KERNEL;
6211
57d885fe
GH
6212 memset(rd, 0, sizeof(*rd));
6213
36b7b6d4
PE
6214 if (bootmem)
6215 gfp = GFP_NOWAIT;
c6c4927b 6216
36b7b6d4 6217 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6218 goto out;
36b7b6d4 6219 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6220 goto free_span;
36b7b6d4 6221 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6222 goto free_online;
6e0534f2 6223
0fb53029 6224 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6225 goto free_rto_mask;
c6c4927b 6226 return 0;
6e0534f2 6227
68e74568
RR
6228free_rto_mask:
6229 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6230free_online:
6231 free_cpumask_var(rd->online);
6232free_span:
6233 free_cpumask_var(rd->span);
0c910d28 6234out:
c6c4927b 6235 return -ENOMEM;
57d885fe
GH
6236}
6237
6238static void init_defrootdomain(void)
6239{
c6c4927b
RR
6240 init_rootdomain(&def_root_domain, true);
6241
57d885fe
GH
6242 atomic_set(&def_root_domain.refcount, 1);
6243}
6244
dc938520 6245static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6246{
6247 struct root_domain *rd;
6248
6249 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6250 if (!rd)
6251 return NULL;
6252
c6c4927b
RR
6253 if (init_rootdomain(rd, false) != 0) {
6254 kfree(rd);
6255 return NULL;
6256 }
57d885fe
GH
6257
6258 return rd;
6259}
6260
1da177e4 6261/*
0eab9146 6262 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6263 * hold the hotplug lock.
6264 */
0eab9146
IM
6265static void
6266cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6267{
70b97a7f 6268 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6269 struct sched_domain *tmp;
6270
6271 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6272 for (tmp = sd; tmp; ) {
245af2c7
SS
6273 struct sched_domain *parent = tmp->parent;
6274 if (!parent)
6275 break;
f29c9b1c 6276
1a848870 6277 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6278 tmp->parent = parent->parent;
1a848870
SS
6279 if (parent->parent)
6280 parent->parent->child = tmp;
f29c9b1c
LZ
6281 } else
6282 tmp = tmp->parent;
245af2c7
SS
6283 }
6284
1a848870 6285 if (sd && sd_degenerate(sd)) {
245af2c7 6286 sd = sd->parent;
1a848870
SS
6287 if (sd)
6288 sd->child = NULL;
6289 }
1da177e4
LT
6290
6291 sched_domain_debug(sd, cpu);
6292
57d885fe 6293 rq_attach_root(rq, rd);
674311d5 6294 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6295}
6296
6297/* cpus with isolated domains */
dcc30a35 6298static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6299
6300/* Setup the mask of cpus configured for isolated domains */
6301static int __init isolated_cpu_setup(char *str)
6302{
bdddd296 6303 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6304 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6305 return 1;
6306}
6307
8927f494 6308__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6309
6310/*
6711cab4
SS
6311 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6312 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6313 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6314 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6315 *
6316 * init_sched_build_groups will build a circular linked list of the groups
6317 * covered by the given span, and will set each group's ->cpumask correctly,
6318 * and ->cpu_power to 0.
6319 */
a616058b 6320static void
96f874e2
RR
6321init_sched_build_groups(const struct cpumask *span,
6322 const struct cpumask *cpu_map,
6323 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6324 struct sched_group **sg,
96f874e2
RR
6325 struct cpumask *tmpmask),
6326 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6327{
6328 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6329 int i;
6330
96f874e2 6331 cpumask_clear(covered);
7c16ec58 6332
abcd083a 6333 for_each_cpu(i, span) {
6711cab4 6334 struct sched_group *sg;
7c16ec58 6335 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6336 int j;
6337
758b2cdc 6338 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6339 continue;
6340
758b2cdc 6341 cpumask_clear(sched_group_cpus(sg));
18a3885f 6342 sg->cpu_power = 0;
1da177e4 6343
abcd083a 6344 for_each_cpu(j, span) {
7c16ec58 6345 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6346 continue;
6347
96f874e2 6348 cpumask_set_cpu(j, covered);
758b2cdc 6349 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6350 }
6351 if (!first)
6352 first = sg;
6353 if (last)
6354 last->next = sg;
6355 last = sg;
6356 }
6357 last->next = first;
6358}
6359
9c1cfda2 6360#define SD_NODES_PER_DOMAIN 16
1da177e4 6361
9c1cfda2 6362#ifdef CONFIG_NUMA
198e2f18 6363
9c1cfda2
JH
6364/**
6365 * find_next_best_node - find the next node to include in a sched_domain
6366 * @node: node whose sched_domain we're building
6367 * @used_nodes: nodes already in the sched_domain
6368 *
41a2d6cf 6369 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6370 * finds the closest node not already in the @used_nodes map.
6371 *
6372 * Should use nodemask_t.
6373 */
c5f59f08 6374static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6375{
6376 int i, n, val, min_val, best_node = 0;
6377
6378 min_val = INT_MAX;
6379
076ac2af 6380 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6381 /* Start at @node */
076ac2af 6382 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6383
6384 if (!nr_cpus_node(n))
6385 continue;
6386
6387 /* Skip already used nodes */
c5f59f08 6388 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6389 continue;
6390
6391 /* Simple min distance search */
6392 val = node_distance(node, n);
6393
6394 if (val < min_val) {
6395 min_val = val;
6396 best_node = n;
6397 }
6398 }
6399
c5f59f08 6400 node_set(best_node, *used_nodes);
9c1cfda2
JH
6401 return best_node;
6402}
6403
6404/**
6405 * sched_domain_node_span - get a cpumask for a node's sched_domain
6406 * @node: node whose cpumask we're constructing
73486722 6407 * @span: resulting cpumask
9c1cfda2 6408 *
41a2d6cf 6409 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6410 * should be one that prevents unnecessary balancing, but also spreads tasks
6411 * out optimally.
6412 */
96f874e2 6413static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6414{
c5f59f08 6415 nodemask_t used_nodes;
48f24c4d 6416 int i;
9c1cfda2 6417
6ca09dfc 6418 cpumask_clear(span);
c5f59f08 6419 nodes_clear(used_nodes);
9c1cfda2 6420
6ca09dfc 6421 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6422 node_set(node, used_nodes);
9c1cfda2
JH
6423
6424 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6425 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6426
6ca09dfc 6427 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6428 }
9c1cfda2 6429}
6d6bc0ad 6430#endif /* CONFIG_NUMA */
9c1cfda2 6431
5c45bf27 6432int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6433
6c99e9ad
RR
6434/*
6435 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6436 *
6437 * ( See the the comments in include/linux/sched.h:struct sched_group
6438 * and struct sched_domain. )
6c99e9ad
RR
6439 */
6440struct static_sched_group {
6441 struct sched_group sg;
6442 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6443};
6444
6445struct static_sched_domain {
6446 struct sched_domain sd;
6447 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6448};
6449
49a02c51
AH
6450struct s_data {
6451#ifdef CONFIG_NUMA
6452 int sd_allnodes;
6453 cpumask_var_t domainspan;
6454 cpumask_var_t covered;
6455 cpumask_var_t notcovered;
6456#endif
6457 cpumask_var_t nodemask;
6458 cpumask_var_t this_sibling_map;
6459 cpumask_var_t this_core_map;
6460 cpumask_var_t send_covered;
6461 cpumask_var_t tmpmask;
6462 struct sched_group **sched_group_nodes;
6463 struct root_domain *rd;
6464};
6465
2109b99e
AH
6466enum s_alloc {
6467 sa_sched_groups = 0,
6468 sa_rootdomain,
6469 sa_tmpmask,
6470 sa_send_covered,
6471 sa_this_core_map,
6472 sa_this_sibling_map,
6473 sa_nodemask,
6474 sa_sched_group_nodes,
6475#ifdef CONFIG_NUMA
6476 sa_notcovered,
6477 sa_covered,
6478 sa_domainspan,
6479#endif
6480 sa_none,
6481};
6482
9c1cfda2 6483/*
48f24c4d 6484 * SMT sched-domains:
9c1cfda2 6485 */
1da177e4 6486#ifdef CONFIG_SCHED_SMT
6c99e9ad 6487static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6488static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6489
41a2d6cf 6490static int
96f874e2
RR
6491cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6492 struct sched_group **sg, struct cpumask *unused)
1da177e4 6493{
6711cab4 6494 if (sg)
1871e52c 6495 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6496 return cpu;
6497}
6d6bc0ad 6498#endif /* CONFIG_SCHED_SMT */
1da177e4 6499
48f24c4d
IM
6500/*
6501 * multi-core sched-domains:
6502 */
1e9f28fa 6503#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6504static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6505static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6506#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6507
6508#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6509static int
96f874e2
RR
6510cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6511 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6512{
6711cab4 6513 int group;
7c16ec58 6514
c69fc56d 6515 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6516 group = cpumask_first(mask);
6711cab4 6517 if (sg)
6c99e9ad 6518 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6519 return group;
1e9f28fa
SS
6520}
6521#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6522static int
96f874e2
RR
6523cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6524 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6525{
6711cab4 6526 if (sg)
6c99e9ad 6527 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6528 return cpu;
6529}
6530#endif
6531
6c99e9ad
RR
6532static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6533static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6534
41a2d6cf 6535static int
96f874e2
RR
6536cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6537 struct sched_group **sg, struct cpumask *mask)
1da177e4 6538{
6711cab4 6539 int group;
48f24c4d 6540#ifdef CONFIG_SCHED_MC
6ca09dfc 6541 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6542 group = cpumask_first(mask);
1e9f28fa 6543#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6544 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6545 group = cpumask_first(mask);
1da177e4 6546#else
6711cab4 6547 group = cpu;
1da177e4 6548#endif
6711cab4 6549 if (sg)
6c99e9ad 6550 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6551 return group;
1da177e4
LT
6552}
6553
6554#ifdef CONFIG_NUMA
1da177e4 6555/*
9c1cfda2
JH
6556 * The init_sched_build_groups can't handle what we want to do with node
6557 * groups, so roll our own. Now each node has its own list of groups which
6558 * gets dynamically allocated.
1da177e4 6559 */
62ea9ceb 6560static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6561static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6562
62ea9ceb 6563static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6564static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6565
96f874e2
RR
6566static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6567 struct sched_group **sg,
6568 struct cpumask *nodemask)
9c1cfda2 6569{
6711cab4
SS
6570 int group;
6571
6ca09dfc 6572 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6573 group = cpumask_first(nodemask);
6711cab4
SS
6574
6575 if (sg)
6c99e9ad 6576 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6577 return group;
1da177e4 6578}
6711cab4 6579
08069033
SS
6580static void init_numa_sched_groups_power(struct sched_group *group_head)
6581{
6582 struct sched_group *sg = group_head;
6583 int j;
6584
6585 if (!sg)
6586 return;
3a5c359a 6587 do {
758b2cdc 6588 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6589 struct sched_domain *sd;
08069033 6590
6c99e9ad 6591 sd = &per_cpu(phys_domains, j).sd;
13318a71 6592 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6593 /*
6594 * Only add "power" once for each
6595 * physical package.
6596 */
6597 continue;
6598 }
08069033 6599
18a3885f 6600 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6601 }
6602 sg = sg->next;
6603 } while (sg != group_head);
08069033 6604}
0601a88d
AH
6605
6606static int build_numa_sched_groups(struct s_data *d,
6607 const struct cpumask *cpu_map, int num)
6608{
6609 struct sched_domain *sd;
6610 struct sched_group *sg, *prev;
6611 int n, j;
6612
6613 cpumask_clear(d->covered);
6614 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6615 if (cpumask_empty(d->nodemask)) {
6616 d->sched_group_nodes[num] = NULL;
6617 goto out;
6618 }
6619
6620 sched_domain_node_span(num, d->domainspan);
6621 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6622
6623 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6624 GFP_KERNEL, num);
6625 if (!sg) {
3df0fc5b
PZ
6626 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6627 num);
0601a88d
AH
6628 return -ENOMEM;
6629 }
6630 d->sched_group_nodes[num] = sg;
6631
6632 for_each_cpu(j, d->nodemask) {
6633 sd = &per_cpu(node_domains, j).sd;
6634 sd->groups = sg;
6635 }
6636
18a3885f 6637 sg->cpu_power = 0;
0601a88d
AH
6638 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6639 sg->next = sg;
6640 cpumask_or(d->covered, d->covered, d->nodemask);
6641
6642 prev = sg;
6643 for (j = 0; j < nr_node_ids; j++) {
6644 n = (num + j) % nr_node_ids;
6645 cpumask_complement(d->notcovered, d->covered);
6646 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6647 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6648 if (cpumask_empty(d->tmpmask))
6649 break;
6650 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6651 if (cpumask_empty(d->tmpmask))
6652 continue;
6653 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6654 GFP_KERNEL, num);
6655 if (!sg) {
3df0fc5b
PZ
6656 printk(KERN_WARNING
6657 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6658 return -ENOMEM;
6659 }
18a3885f 6660 sg->cpu_power = 0;
0601a88d
AH
6661 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6662 sg->next = prev->next;
6663 cpumask_or(d->covered, d->covered, d->tmpmask);
6664 prev->next = sg;
6665 prev = sg;
6666 }
6667out:
6668 return 0;
6669}
6d6bc0ad 6670#endif /* CONFIG_NUMA */
1da177e4 6671
a616058b 6672#ifdef CONFIG_NUMA
51888ca2 6673/* Free memory allocated for various sched_group structures */
96f874e2
RR
6674static void free_sched_groups(const struct cpumask *cpu_map,
6675 struct cpumask *nodemask)
51888ca2 6676{
a616058b 6677 int cpu, i;
51888ca2 6678
abcd083a 6679 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6680 struct sched_group **sched_group_nodes
6681 = sched_group_nodes_bycpu[cpu];
6682
51888ca2
SV
6683 if (!sched_group_nodes)
6684 continue;
6685
076ac2af 6686 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6687 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6688
6ca09dfc 6689 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6690 if (cpumask_empty(nodemask))
51888ca2
SV
6691 continue;
6692
6693 if (sg == NULL)
6694 continue;
6695 sg = sg->next;
6696next_sg:
6697 oldsg = sg;
6698 sg = sg->next;
6699 kfree(oldsg);
6700 if (oldsg != sched_group_nodes[i])
6701 goto next_sg;
6702 }
6703 kfree(sched_group_nodes);
6704 sched_group_nodes_bycpu[cpu] = NULL;
6705 }
51888ca2 6706}
6d6bc0ad 6707#else /* !CONFIG_NUMA */
96f874e2
RR
6708static void free_sched_groups(const struct cpumask *cpu_map,
6709 struct cpumask *nodemask)
a616058b
SS
6710{
6711}
6d6bc0ad 6712#endif /* CONFIG_NUMA */
51888ca2 6713
89c4710e
SS
6714/*
6715 * Initialize sched groups cpu_power.
6716 *
6717 * cpu_power indicates the capacity of sched group, which is used while
6718 * distributing the load between different sched groups in a sched domain.
6719 * Typically cpu_power for all the groups in a sched domain will be same unless
6720 * there are asymmetries in the topology. If there are asymmetries, group
6721 * having more cpu_power will pickup more load compared to the group having
6722 * less cpu_power.
89c4710e
SS
6723 */
6724static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6725{
6726 struct sched_domain *child;
6727 struct sched_group *group;
f93e65c1
PZ
6728 long power;
6729 int weight;
89c4710e
SS
6730
6731 WARN_ON(!sd || !sd->groups);
6732
13318a71 6733 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6734 return;
6735
6736 child = sd->child;
6737
18a3885f 6738 sd->groups->cpu_power = 0;
5517d86b 6739
f93e65c1
PZ
6740 if (!child) {
6741 power = SCHED_LOAD_SCALE;
6742 weight = cpumask_weight(sched_domain_span(sd));
6743 /*
6744 * SMT siblings share the power of a single core.
a52bfd73
PZ
6745 * Usually multiple threads get a better yield out of
6746 * that one core than a single thread would have,
6747 * reflect that in sd->smt_gain.
f93e65c1 6748 */
a52bfd73
PZ
6749 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6750 power *= sd->smt_gain;
f93e65c1 6751 power /= weight;
a52bfd73
PZ
6752 power >>= SCHED_LOAD_SHIFT;
6753 }
18a3885f 6754 sd->groups->cpu_power += power;
89c4710e
SS
6755 return;
6756 }
6757
89c4710e 6758 /*
f93e65c1 6759 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6760 */
6761 group = child->groups;
6762 do {
18a3885f 6763 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6764 group = group->next;
6765 } while (group != child->groups);
6766}
6767
7c16ec58
MT
6768/*
6769 * Initializers for schedule domains
6770 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6771 */
6772
a5d8c348
IM
6773#ifdef CONFIG_SCHED_DEBUG
6774# define SD_INIT_NAME(sd, type) sd->name = #type
6775#else
6776# define SD_INIT_NAME(sd, type) do { } while (0)
6777#endif
6778
7c16ec58 6779#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6780
7c16ec58
MT
6781#define SD_INIT_FUNC(type) \
6782static noinline void sd_init_##type(struct sched_domain *sd) \
6783{ \
6784 memset(sd, 0, sizeof(*sd)); \
6785 *sd = SD_##type##_INIT; \
1d3504fc 6786 sd->level = SD_LV_##type; \
a5d8c348 6787 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6788}
6789
6790SD_INIT_FUNC(CPU)
6791#ifdef CONFIG_NUMA
6792 SD_INIT_FUNC(ALLNODES)
6793 SD_INIT_FUNC(NODE)
6794#endif
6795#ifdef CONFIG_SCHED_SMT
6796 SD_INIT_FUNC(SIBLING)
6797#endif
6798#ifdef CONFIG_SCHED_MC
6799 SD_INIT_FUNC(MC)
6800#endif
6801
1d3504fc
HS
6802static int default_relax_domain_level = -1;
6803
6804static int __init setup_relax_domain_level(char *str)
6805{
30e0e178
LZ
6806 unsigned long val;
6807
6808 val = simple_strtoul(str, NULL, 0);
6809 if (val < SD_LV_MAX)
6810 default_relax_domain_level = val;
6811
1d3504fc
HS
6812 return 1;
6813}
6814__setup("relax_domain_level=", setup_relax_domain_level);
6815
6816static void set_domain_attribute(struct sched_domain *sd,
6817 struct sched_domain_attr *attr)
6818{
6819 int request;
6820
6821 if (!attr || attr->relax_domain_level < 0) {
6822 if (default_relax_domain_level < 0)
6823 return;
6824 else
6825 request = default_relax_domain_level;
6826 } else
6827 request = attr->relax_domain_level;
6828 if (request < sd->level) {
6829 /* turn off idle balance on this domain */
c88d5910 6830 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6831 } else {
6832 /* turn on idle balance on this domain */
c88d5910 6833 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6834 }
6835}
6836
2109b99e
AH
6837static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6838 const struct cpumask *cpu_map)
6839{
6840 switch (what) {
6841 case sa_sched_groups:
6842 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6843 d->sched_group_nodes = NULL;
6844 case sa_rootdomain:
6845 free_rootdomain(d->rd); /* fall through */
6846 case sa_tmpmask:
6847 free_cpumask_var(d->tmpmask); /* fall through */
6848 case sa_send_covered:
6849 free_cpumask_var(d->send_covered); /* fall through */
6850 case sa_this_core_map:
6851 free_cpumask_var(d->this_core_map); /* fall through */
6852 case sa_this_sibling_map:
6853 free_cpumask_var(d->this_sibling_map); /* fall through */
6854 case sa_nodemask:
6855 free_cpumask_var(d->nodemask); /* fall through */
6856 case sa_sched_group_nodes:
d1b55138 6857#ifdef CONFIG_NUMA
2109b99e
AH
6858 kfree(d->sched_group_nodes); /* fall through */
6859 case sa_notcovered:
6860 free_cpumask_var(d->notcovered); /* fall through */
6861 case sa_covered:
6862 free_cpumask_var(d->covered); /* fall through */
6863 case sa_domainspan:
6864 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6865#endif
2109b99e
AH
6866 case sa_none:
6867 break;
6868 }
6869}
3404c8d9 6870
2109b99e
AH
6871static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6872 const struct cpumask *cpu_map)
6873{
3404c8d9 6874#ifdef CONFIG_NUMA
2109b99e
AH
6875 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6876 return sa_none;
6877 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6878 return sa_domainspan;
6879 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6880 return sa_covered;
6881 /* Allocate the per-node list of sched groups */
6882 d->sched_group_nodes = kcalloc(nr_node_ids,
6883 sizeof(struct sched_group *), GFP_KERNEL);
6884 if (!d->sched_group_nodes) {
3df0fc5b 6885 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6886 return sa_notcovered;
d1b55138 6887 }
2109b99e 6888 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6889#endif
2109b99e
AH
6890 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6891 return sa_sched_group_nodes;
6892 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6893 return sa_nodemask;
6894 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6895 return sa_this_sibling_map;
6896 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6897 return sa_this_core_map;
6898 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6899 return sa_send_covered;
6900 d->rd = alloc_rootdomain();
6901 if (!d->rd) {
3df0fc5b 6902 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6903 return sa_tmpmask;
57d885fe 6904 }
2109b99e
AH
6905 return sa_rootdomain;
6906}
57d885fe 6907
7f4588f3
AH
6908static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6909 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6910{
6911 struct sched_domain *sd = NULL;
7c16ec58 6912#ifdef CONFIG_NUMA
7f4588f3 6913 struct sched_domain *parent;
1da177e4 6914
7f4588f3
AH
6915 d->sd_allnodes = 0;
6916 if (cpumask_weight(cpu_map) >
6917 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6918 sd = &per_cpu(allnodes_domains, i).sd;
6919 SD_INIT(sd, ALLNODES);
1d3504fc 6920 set_domain_attribute(sd, attr);
7f4588f3
AH
6921 cpumask_copy(sched_domain_span(sd), cpu_map);
6922 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6923 d->sd_allnodes = 1;
6924 }
6925 parent = sd;
6926
6927 sd = &per_cpu(node_domains, i).sd;
6928 SD_INIT(sd, NODE);
6929 set_domain_attribute(sd, attr);
6930 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6931 sd->parent = parent;
6932 if (parent)
6933 parent->child = sd;
6934 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6935#endif
7f4588f3
AH
6936 return sd;
6937}
1da177e4 6938
87cce662
AH
6939static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6940 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6941 struct sched_domain *parent, int i)
6942{
6943 struct sched_domain *sd;
6944 sd = &per_cpu(phys_domains, i).sd;
6945 SD_INIT(sd, CPU);
6946 set_domain_attribute(sd, attr);
6947 cpumask_copy(sched_domain_span(sd), d->nodemask);
6948 sd->parent = parent;
6949 if (parent)
6950 parent->child = sd;
6951 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6952 return sd;
6953}
1da177e4 6954
410c4081
AH
6955static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6956 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6957 struct sched_domain *parent, int i)
6958{
6959 struct sched_domain *sd = parent;
1e9f28fa 6960#ifdef CONFIG_SCHED_MC
410c4081
AH
6961 sd = &per_cpu(core_domains, i).sd;
6962 SD_INIT(sd, MC);
6963 set_domain_attribute(sd, attr);
6964 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6965 sd->parent = parent;
6966 parent->child = sd;
6967 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6968#endif
410c4081
AH
6969 return sd;
6970}
1e9f28fa 6971
d8173535
AH
6972static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6973 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6974 struct sched_domain *parent, int i)
6975{
6976 struct sched_domain *sd = parent;
1da177e4 6977#ifdef CONFIG_SCHED_SMT
d8173535
AH
6978 sd = &per_cpu(cpu_domains, i).sd;
6979 SD_INIT(sd, SIBLING);
6980 set_domain_attribute(sd, attr);
6981 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6982 sd->parent = parent;
6983 parent->child = sd;
6984 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6985#endif
d8173535
AH
6986 return sd;
6987}
1da177e4 6988
0e8e85c9
AH
6989static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6990 const struct cpumask *cpu_map, int cpu)
6991{
6992 switch (l) {
1da177e4 6993#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6994 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6995 cpumask_and(d->this_sibling_map, cpu_map,
6996 topology_thread_cpumask(cpu));
6997 if (cpu == cpumask_first(d->this_sibling_map))
6998 init_sched_build_groups(d->this_sibling_map, cpu_map,
6999 &cpu_to_cpu_group,
7000 d->send_covered, d->tmpmask);
7001 break;
1da177e4 7002#endif
1e9f28fa 7003#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7004 case SD_LV_MC: /* set up multi-core groups */
7005 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7006 if (cpu == cpumask_first(d->this_core_map))
7007 init_sched_build_groups(d->this_core_map, cpu_map,
7008 &cpu_to_core_group,
7009 d->send_covered, d->tmpmask);
7010 break;
1e9f28fa 7011#endif
86548096
AH
7012 case SD_LV_CPU: /* set up physical groups */
7013 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7014 if (!cpumask_empty(d->nodemask))
7015 init_sched_build_groups(d->nodemask, cpu_map,
7016 &cpu_to_phys_group,
7017 d->send_covered, d->tmpmask);
7018 break;
1da177e4 7019#ifdef CONFIG_NUMA
de616e36
AH
7020 case SD_LV_ALLNODES:
7021 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7022 d->send_covered, d->tmpmask);
7023 break;
7024#endif
0e8e85c9
AH
7025 default:
7026 break;
7c16ec58 7027 }
0e8e85c9 7028}
9c1cfda2 7029
2109b99e
AH
7030/*
7031 * Build sched domains for a given set of cpus and attach the sched domains
7032 * to the individual cpus
7033 */
7034static int __build_sched_domains(const struct cpumask *cpu_map,
7035 struct sched_domain_attr *attr)
7036{
7037 enum s_alloc alloc_state = sa_none;
7038 struct s_data d;
294b0c96 7039 struct sched_domain *sd;
2109b99e 7040 int i;
7c16ec58 7041#ifdef CONFIG_NUMA
2109b99e 7042 d.sd_allnodes = 0;
7c16ec58 7043#endif
9c1cfda2 7044
2109b99e
AH
7045 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7046 if (alloc_state != sa_rootdomain)
7047 goto error;
7048 alloc_state = sa_sched_groups;
9c1cfda2 7049
1da177e4 7050 /*
1a20ff27 7051 * Set up domains for cpus specified by the cpu_map.
1da177e4 7052 */
abcd083a 7053 for_each_cpu(i, cpu_map) {
49a02c51
AH
7054 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7055 cpu_map);
9761eea8 7056
7f4588f3 7057 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7058 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7059 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7060 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7061 }
9c1cfda2 7062
abcd083a 7063 for_each_cpu(i, cpu_map) {
0e8e85c9 7064 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7065 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7066 }
9c1cfda2 7067
1da177e4 7068 /* Set up physical groups */
86548096
AH
7069 for (i = 0; i < nr_node_ids; i++)
7070 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7071
1da177e4
LT
7072#ifdef CONFIG_NUMA
7073 /* Set up node groups */
de616e36
AH
7074 if (d.sd_allnodes)
7075 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7076
0601a88d
AH
7077 for (i = 0; i < nr_node_ids; i++)
7078 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7079 goto error;
1da177e4
LT
7080#endif
7081
7082 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7083#ifdef CONFIG_SCHED_SMT
abcd083a 7084 for_each_cpu(i, cpu_map) {
294b0c96 7085 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7086 init_sched_groups_power(i, sd);
5c45bf27 7087 }
1da177e4 7088#endif
1e9f28fa 7089#ifdef CONFIG_SCHED_MC
abcd083a 7090 for_each_cpu(i, cpu_map) {
294b0c96 7091 sd = &per_cpu(core_domains, i).sd;
89c4710e 7092 init_sched_groups_power(i, sd);
5c45bf27
SS
7093 }
7094#endif
1e9f28fa 7095
abcd083a 7096 for_each_cpu(i, cpu_map) {
294b0c96 7097 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7098 init_sched_groups_power(i, sd);
1da177e4
LT
7099 }
7100
9c1cfda2 7101#ifdef CONFIG_NUMA
076ac2af 7102 for (i = 0; i < nr_node_ids; i++)
49a02c51 7103 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7104
49a02c51 7105 if (d.sd_allnodes) {
6711cab4 7106 struct sched_group *sg;
f712c0c7 7107
96f874e2 7108 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7109 d.tmpmask);
f712c0c7
SS
7110 init_numa_sched_groups_power(sg);
7111 }
9c1cfda2
JH
7112#endif
7113
1da177e4 7114 /* Attach the domains */
abcd083a 7115 for_each_cpu(i, cpu_map) {
1da177e4 7116#ifdef CONFIG_SCHED_SMT
6c99e9ad 7117 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7118#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7119 sd = &per_cpu(core_domains, i).sd;
1da177e4 7120#else
6c99e9ad 7121 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7122#endif
49a02c51 7123 cpu_attach_domain(sd, d.rd, i);
1da177e4 7124 }
51888ca2 7125
2109b99e
AH
7126 d.sched_group_nodes = NULL; /* don't free this we still need it */
7127 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7128 return 0;
51888ca2 7129
51888ca2 7130error:
2109b99e
AH
7131 __free_domain_allocs(&d, alloc_state, cpu_map);
7132 return -ENOMEM;
1da177e4 7133}
029190c5 7134
96f874e2 7135static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7136{
7137 return __build_sched_domains(cpu_map, NULL);
7138}
7139
acc3f5d7 7140static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7141static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7142static struct sched_domain_attr *dattr_cur;
7143 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7144
7145/*
7146 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7147 * cpumask) fails, then fallback to a single sched domain,
7148 * as determined by the single cpumask fallback_doms.
029190c5 7149 */
4212823f 7150static cpumask_var_t fallback_doms;
029190c5 7151
ee79d1bd
HC
7152/*
7153 * arch_update_cpu_topology lets virtualized architectures update the
7154 * cpu core maps. It is supposed to return 1 if the topology changed
7155 * or 0 if it stayed the same.
7156 */
7157int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7158{
ee79d1bd 7159 return 0;
22e52b07
HC
7160}
7161
acc3f5d7
RR
7162cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7163{
7164 int i;
7165 cpumask_var_t *doms;
7166
7167 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7168 if (!doms)
7169 return NULL;
7170 for (i = 0; i < ndoms; i++) {
7171 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7172 free_sched_domains(doms, i);
7173 return NULL;
7174 }
7175 }
7176 return doms;
7177}
7178
7179void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7180{
7181 unsigned int i;
7182 for (i = 0; i < ndoms; i++)
7183 free_cpumask_var(doms[i]);
7184 kfree(doms);
7185}
7186
1a20ff27 7187/*
41a2d6cf 7188 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7189 * For now this just excludes isolated cpus, but could be used to
7190 * exclude other special cases in the future.
1a20ff27 7191 */
96f874e2 7192static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7193{
7378547f
MM
7194 int err;
7195
22e52b07 7196 arch_update_cpu_topology();
029190c5 7197 ndoms_cur = 1;
acc3f5d7 7198 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7199 if (!doms_cur)
acc3f5d7
RR
7200 doms_cur = &fallback_doms;
7201 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7202 dattr_cur = NULL;
acc3f5d7 7203 err = build_sched_domains(doms_cur[0]);
6382bc90 7204 register_sched_domain_sysctl();
7378547f
MM
7205
7206 return err;
1a20ff27
DG
7207}
7208
96f874e2
RR
7209static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7210 struct cpumask *tmpmask)
1da177e4 7211{
7c16ec58 7212 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7213}
1da177e4 7214
1a20ff27
DG
7215/*
7216 * Detach sched domains from a group of cpus specified in cpu_map
7217 * These cpus will now be attached to the NULL domain
7218 */
96f874e2 7219static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7220{
96f874e2
RR
7221 /* Save because hotplug lock held. */
7222 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7223 int i;
7224
abcd083a 7225 for_each_cpu(i, cpu_map)
57d885fe 7226 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7227 synchronize_sched();
96f874e2 7228 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7229}
7230
1d3504fc
HS
7231/* handle null as "default" */
7232static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7233 struct sched_domain_attr *new, int idx_new)
7234{
7235 struct sched_domain_attr tmp;
7236
7237 /* fast path */
7238 if (!new && !cur)
7239 return 1;
7240
7241 tmp = SD_ATTR_INIT;
7242 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7243 new ? (new + idx_new) : &tmp,
7244 sizeof(struct sched_domain_attr));
7245}
7246
029190c5
PJ
7247/*
7248 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7249 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7250 * doms_new[] to the current sched domain partitioning, doms_cur[].
7251 * It destroys each deleted domain and builds each new domain.
7252 *
acc3f5d7 7253 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7254 * The masks don't intersect (don't overlap.) We should setup one
7255 * sched domain for each mask. CPUs not in any of the cpumasks will
7256 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7257 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7258 * it as it is.
7259 *
acc3f5d7
RR
7260 * The passed in 'doms_new' should be allocated using
7261 * alloc_sched_domains. This routine takes ownership of it and will
7262 * free_sched_domains it when done with it. If the caller failed the
7263 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7264 * and partition_sched_domains() will fallback to the single partition
7265 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7266 *
96f874e2 7267 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7268 * ndoms_new == 0 is a special case for destroying existing domains,
7269 * and it will not create the default domain.
dfb512ec 7270 *
029190c5
PJ
7271 * Call with hotplug lock held
7272 */
acc3f5d7 7273void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7274 struct sched_domain_attr *dattr_new)
029190c5 7275{
dfb512ec 7276 int i, j, n;
d65bd5ec 7277 int new_topology;
029190c5 7278
712555ee 7279 mutex_lock(&sched_domains_mutex);
a1835615 7280
7378547f
MM
7281 /* always unregister in case we don't destroy any domains */
7282 unregister_sched_domain_sysctl();
7283
d65bd5ec
HC
7284 /* Let architecture update cpu core mappings. */
7285 new_topology = arch_update_cpu_topology();
7286
dfb512ec 7287 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7288
7289 /* Destroy deleted domains */
7290 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7291 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7292 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7293 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7294 goto match1;
7295 }
7296 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7297 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7298match1:
7299 ;
7300 }
7301
e761b772
MK
7302 if (doms_new == NULL) {
7303 ndoms_cur = 0;
acc3f5d7 7304 doms_new = &fallback_doms;
6ad4c188 7305 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7306 WARN_ON_ONCE(dattr_new);
e761b772
MK
7307 }
7308
029190c5
PJ
7309 /* Build new domains */
7310 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7311 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7312 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7313 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7314 goto match2;
7315 }
7316 /* no match - add a new doms_new */
acc3f5d7 7317 __build_sched_domains(doms_new[i],
1d3504fc 7318 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7319match2:
7320 ;
7321 }
7322
7323 /* Remember the new sched domains */
acc3f5d7
RR
7324 if (doms_cur != &fallback_doms)
7325 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7326 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7327 doms_cur = doms_new;
1d3504fc 7328 dattr_cur = dattr_new;
029190c5 7329 ndoms_cur = ndoms_new;
7378547f
MM
7330
7331 register_sched_domain_sysctl();
a1835615 7332
712555ee 7333 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7334}
7335
5c45bf27 7336#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7337static void arch_reinit_sched_domains(void)
5c45bf27 7338{
95402b38 7339 get_online_cpus();
dfb512ec
MK
7340
7341 /* Destroy domains first to force the rebuild */
7342 partition_sched_domains(0, NULL, NULL);
7343
e761b772 7344 rebuild_sched_domains();
95402b38 7345 put_online_cpus();
5c45bf27
SS
7346}
7347
7348static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7349{
afb8a9b7 7350 unsigned int level = 0;
5c45bf27 7351
afb8a9b7
GS
7352 if (sscanf(buf, "%u", &level) != 1)
7353 return -EINVAL;
7354
7355 /*
7356 * level is always be positive so don't check for
7357 * level < POWERSAVINGS_BALANCE_NONE which is 0
7358 * What happens on 0 or 1 byte write,
7359 * need to check for count as well?
7360 */
7361
7362 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7363 return -EINVAL;
7364
7365 if (smt)
afb8a9b7 7366 sched_smt_power_savings = level;
5c45bf27 7367 else
afb8a9b7 7368 sched_mc_power_savings = level;
5c45bf27 7369
c70f22d2 7370 arch_reinit_sched_domains();
5c45bf27 7371
c70f22d2 7372 return count;
5c45bf27
SS
7373}
7374
5c45bf27 7375#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7376static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7377 char *page)
5c45bf27
SS
7378{
7379 return sprintf(page, "%u\n", sched_mc_power_savings);
7380}
f718cd4a 7381static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7382 const char *buf, size_t count)
5c45bf27
SS
7383{
7384 return sched_power_savings_store(buf, count, 0);
7385}
f718cd4a
AK
7386static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7387 sched_mc_power_savings_show,
7388 sched_mc_power_savings_store);
5c45bf27
SS
7389#endif
7390
7391#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7392static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7393 char *page)
5c45bf27
SS
7394{
7395 return sprintf(page, "%u\n", sched_smt_power_savings);
7396}
f718cd4a 7397static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7398 const char *buf, size_t count)
5c45bf27
SS
7399{
7400 return sched_power_savings_store(buf, count, 1);
7401}
f718cd4a
AK
7402static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7403 sched_smt_power_savings_show,
6707de00
AB
7404 sched_smt_power_savings_store);
7405#endif
7406
39aac648 7407int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7408{
7409 int err = 0;
7410
7411#ifdef CONFIG_SCHED_SMT
7412 if (smt_capable())
7413 err = sysfs_create_file(&cls->kset.kobj,
7414 &attr_sched_smt_power_savings.attr);
7415#endif
7416#ifdef CONFIG_SCHED_MC
7417 if (!err && mc_capable())
7418 err = sysfs_create_file(&cls->kset.kobj,
7419 &attr_sched_mc_power_savings.attr);
7420#endif
7421 return err;
7422}
6d6bc0ad 7423#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7424
e761b772 7425#ifndef CONFIG_CPUSETS
1da177e4 7426/*
e761b772
MK
7427 * Add online and remove offline CPUs from the scheduler domains.
7428 * When cpusets are enabled they take over this function.
1da177e4
LT
7429 */
7430static int update_sched_domains(struct notifier_block *nfb,
7431 unsigned long action, void *hcpu)
e761b772
MK
7432{
7433 switch (action) {
7434 case CPU_ONLINE:
7435 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7436 case CPU_DOWN_PREPARE:
7437 case CPU_DOWN_PREPARE_FROZEN:
7438 case CPU_DOWN_FAILED:
7439 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7440 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7441 return NOTIFY_OK;
7442
7443 default:
7444 return NOTIFY_DONE;
7445 }
7446}
7447#endif
7448
7449static int update_runtime(struct notifier_block *nfb,
7450 unsigned long action, void *hcpu)
1da177e4 7451{
7def2be1
PZ
7452 int cpu = (int)(long)hcpu;
7453
1da177e4 7454 switch (action) {
1da177e4 7455 case CPU_DOWN_PREPARE:
8bb78442 7456 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7457 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7458 return NOTIFY_OK;
7459
1da177e4 7460 case CPU_DOWN_FAILED:
8bb78442 7461 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7462 case CPU_ONLINE:
8bb78442 7463 case CPU_ONLINE_FROZEN:
7def2be1 7464 enable_runtime(cpu_rq(cpu));
e761b772
MK
7465 return NOTIFY_OK;
7466
1da177e4
LT
7467 default:
7468 return NOTIFY_DONE;
7469 }
1da177e4 7470}
1da177e4
LT
7471
7472void __init sched_init_smp(void)
7473{
dcc30a35
RR
7474 cpumask_var_t non_isolated_cpus;
7475
7476 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7477 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7478
434d53b0
MT
7479#if defined(CONFIG_NUMA)
7480 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7481 GFP_KERNEL);
7482 BUG_ON(sched_group_nodes_bycpu == NULL);
7483#endif
95402b38 7484 get_online_cpus();
712555ee 7485 mutex_lock(&sched_domains_mutex);
6ad4c188 7486 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7487 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7488 if (cpumask_empty(non_isolated_cpus))
7489 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7490 mutex_unlock(&sched_domains_mutex);
95402b38 7491 put_online_cpus();
e761b772
MK
7492
7493#ifndef CONFIG_CPUSETS
1da177e4
LT
7494 /* XXX: Theoretical race here - CPU may be hotplugged now */
7495 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7496#endif
7497
7498 /* RT runtime code needs to handle some hotplug events */
7499 hotcpu_notifier(update_runtime, 0);
7500
b328ca18 7501 init_hrtick();
5c1e1767
NP
7502
7503 /* Move init over to a non-isolated CPU */
dcc30a35 7504 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7505 BUG();
19978ca6 7506 sched_init_granularity();
dcc30a35 7507 free_cpumask_var(non_isolated_cpus);
4212823f 7508
0e3900e6 7509 init_sched_rt_class();
1da177e4
LT
7510}
7511#else
7512void __init sched_init_smp(void)
7513{
19978ca6 7514 sched_init_granularity();
1da177e4
LT
7515}
7516#endif /* CONFIG_SMP */
7517
cd1bb94b
AB
7518const_debug unsigned int sysctl_timer_migration = 1;
7519
1da177e4
LT
7520int in_sched_functions(unsigned long addr)
7521{
1da177e4
LT
7522 return in_lock_functions(addr) ||
7523 (addr >= (unsigned long)__sched_text_start
7524 && addr < (unsigned long)__sched_text_end);
7525}
7526
a9957449 7527static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7528{
7529 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7530 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7531#ifdef CONFIG_FAIR_GROUP_SCHED
7532 cfs_rq->rq = rq;
7533#endif
67e9fb2a 7534 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7535}
7536
fa85ae24
PZ
7537static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7538{
7539 struct rt_prio_array *array;
7540 int i;
7541
7542 array = &rt_rq->active;
7543 for (i = 0; i < MAX_RT_PRIO; i++) {
7544 INIT_LIST_HEAD(array->queue + i);
7545 __clear_bit(i, array->bitmap);
7546 }
7547 /* delimiter for bitsearch: */
7548 __set_bit(MAX_RT_PRIO, array->bitmap);
7549
052f1dc7 7550#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7551 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7552#ifdef CONFIG_SMP
e864c499 7553 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7554#endif
48d5e258 7555#endif
fa85ae24
PZ
7556#ifdef CONFIG_SMP
7557 rt_rq->rt_nr_migratory = 0;
fa85ae24 7558 rt_rq->overloaded = 0;
05fa785c 7559 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7560#endif
7561
7562 rt_rq->rt_time = 0;
7563 rt_rq->rt_throttled = 0;
ac086bc2 7564 rt_rq->rt_runtime = 0;
0986b11b 7565 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7566
052f1dc7 7567#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7568 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7569 rt_rq->rq = rq;
7570#endif
fa85ae24
PZ
7571}
7572
6f505b16 7573#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7574static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7575 struct sched_entity *se, int cpu, int add,
7576 struct sched_entity *parent)
6f505b16 7577{
ec7dc8ac 7578 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7579 tg->cfs_rq[cpu] = cfs_rq;
7580 init_cfs_rq(cfs_rq, rq);
7581 cfs_rq->tg = tg;
7582 if (add)
7583 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7584
7585 tg->se[cpu] = se;
354d60c2
DG
7586 /* se could be NULL for init_task_group */
7587 if (!se)
7588 return;
7589
ec7dc8ac
DG
7590 if (!parent)
7591 se->cfs_rq = &rq->cfs;
7592 else
7593 se->cfs_rq = parent->my_q;
7594
6f505b16
PZ
7595 se->my_q = cfs_rq;
7596 se->load.weight = tg->shares;
e05510d0 7597 se->load.inv_weight = 0;
ec7dc8ac 7598 se->parent = parent;
6f505b16 7599}
052f1dc7 7600#endif
6f505b16 7601
052f1dc7 7602#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7603static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7604 struct sched_rt_entity *rt_se, int cpu, int add,
7605 struct sched_rt_entity *parent)
6f505b16 7606{
ec7dc8ac
DG
7607 struct rq *rq = cpu_rq(cpu);
7608
6f505b16
PZ
7609 tg->rt_rq[cpu] = rt_rq;
7610 init_rt_rq(rt_rq, rq);
7611 rt_rq->tg = tg;
ac086bc2 7612 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7613 if (add)
7614 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7615
7616 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7617 if (!rt_se)
7618 return;
7619
ec7dc8ac
DG
7620 if (!parent)
7621 rt_se->rt_rq = &rq->rt;
7622 else
7623 rt_se->rt_rq = parent->my_q;
7624
6f505b16 7625 rt_se->my_q = rt_rq;
ec7dc8ac 7626 rt_se->parent = parent;
6f505b16
PZ
7627 INIT_LIST_HEAD(&rt_se->run_list);
7628}
7629#endif
7630
1da177e4
LT
7631void __init sched_init(void)
7632{
dd41f596 7633 int i, j;
434d53b0
MT
7634 unsigned long alloc_size = 0, ptr;
7635
7636#ifdef CONFIG_FAIR_GROUP_SCHED
7637 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7638#endif
7639#ifdef CONFIG_RT_GROUP_SCHED
7640 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7641#endif
df7c8e84 7642#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7643 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7644#endif
434d53b0 7645 if (alloc_size) {
36b7b6d4 7646 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7647
7648#ifdef CONFIG_FAIR_GROUP_SCHED
7649 init_task_group.se = (struct sched_entity **)ptr;
7650 ptr += nr_cpu_ids * sizeof(void **);
7651
7652 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7653 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7654
6d6bc0ad 7655#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7656#ifdef CONFIG_RT_GROUP_SCHED
7657 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7658 ptr += nr_cpu_ids * sizeof(void **);
7659
7660 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7661 ptr += nr_cpu_ids * sizeof(void **);
7662
6d6bc0ad 7663#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7664#ifdef CONFIG_CPUMASK_OFFSTACK
7665 for_each_possible_cpu(i) {
7666 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7667 ptr += cpumask_size();
7668 }
7669#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7670 }
dd41f596 7671
57d885fe
GH
7672#ifdef CONFIG_SMP
7673 init_defrootdomain();
7674#endif
7675
d0b27fa7
PZ
7676 init_rt_bandwidth(&def_rt_bandwidth,
7677 global_rt_period(), global_rt_runtime());
7678
7679#ifdef CONFIG_RT_GROUP_SCHED
7680 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7681 global_rt_period(), global_rt_runtime());
6d6bc0ad 7682#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7683
7c941438 7684#ifdef CONFIG_CGROUP_SCHED
6f505b16 7685 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7686 INIT_LIST_HEAD(&init_task_group.children);
7687
7c941438 7688#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7689
4a6cc4bd
JK
7690#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7691 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7692 __alignof__(unsigned long));
7693#endif
0a945022 7694 for_each_possible_cpu(i) {
70b97a7f 7695 struct rq *rq;
1da177e4
LT
7696
7697 rq = cpu_rq(i);
05fa785c 7698 raw_spin_lock_init(&rq->lock);
7897986b 7699 rq->nr_running = 0;
dce48a84
TG
7700 rq->calc_load_active = 0;
7701 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7702 init_cfs_rq(&rq->cfs, rq);
6f505b16 7703 init_rt_rq(&rq->rt, rq);
dd41f596 7704#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7705 init_task_group.shares = init_task_group_load;
6f505b16 7706 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7707#ifdef CONFIG_CGROUP_SCHED
7708 /*
7709 * How much cpu bandwidth does init_task_group get?
7710 *
7711 * In case of task-groups formed thr' the cgroup filesystem, it
7712 * gets 100% of the cpu resources in the system. This overall
7713 * system cpu resource is divided among the tasks of
7714 * init_task_group and its child task-groups in a fair manner,
7715 * based on each entity's (task or task-group's) weight
7716 * (se->load.weight).
7717 *
7718 * In other words, if init_task_group has 10 tasks of weight
7719 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7720 * then A0's share of the cpu resource is:
7721 *
0d905bca 7722 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7723 *
7724 * We achieve this by letting init_task_group's tasks sit
7725 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7726 */
ec7dc8ac 7727 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7728#endif
354d60c2
DG
7729#endif /* CONFIG_FAIR_GROUP_SCHED */
7730
7731 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7732#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7733 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7734#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7735 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7736#endif
dd41f596 7737#endif
1da177e4 7738
dd41f596
IM
7739 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7740 rq->cpu_load[j] = 0;
1da177e4 7741#ifdef CONFIG_SMP
41c7ce9a 7742 rq->sd = NULL;
57d885fe 7743 rq->rd = NULL;
3f029d3c 7744 rq->post_schedule = 0;
1da177e4 7745 rq->active_balance = 0;
dd41f596 7746 rq->next_balance = jiffies;
1da177e4 7747 rq->push_cpu = 0;
0a2966b4 7748 rq->cpu = i;
1f11eb6a 7749 rq->online = 0;
1da177e4 7750 rq->migration_thread = NULL;
eae0c9df
MG
7751 rq->idle_stamp = 0;
7752 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7753 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7754 rq_attach_root(rq, &def_root_domain);
1da177e4 7755#endif
8f4d37ec 7756 init_rq_hrtick(rq);
1da177e4 7757 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7758 }
7759
2dd73a4f 7760 set_load_weight(&init_task);
b50f60ce 7761
e107be36
AK
7762#ifdef CONFIG_PREEMPT_NOTIFIERS
7763 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7764#endif
7765
c9819f45 7766#ifdef CONFIG_SMP
962cf36c 7767 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7768#endif
7769
b50f60ce 7770#ifdef CONFIG_RT_MUTEXES
1d615482 7771 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7772#endif
7773
1da177e4
LT
7774 /*
7775 * The boot idle thread does lazy MMU switching as well:
7776 */
7777 atomic_inc(&init_mm.mm_count);
7778 enter_lazy_tlb(&init_mm, current);
7779
7780 /*
7781 * Make us the idle thread. Technically, schedule() should not be
7782 * called from this thread, however somewhere below it might be,
7783 * but because we are the idle thread, we just pick up running again
7784 * when this runqueue becomes "idle".
7785 */
7786 init_idle(current, smp_processor_id());
dce48a84
TG
7787
7788 calc_load_update = jiffies + LOAD_FREQ;
7789
dd41f596
IM
7790 /*
7791 * During early bootup we pretend to be a normal task:
7792 */
7793 current->sched_class = &fair_sched_class;
6892b75e 7794
6a7b3dc3 7795 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7796 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7797#ifdef CONFIG_SMP
7d1e6a9b 7798#ifdef CONFIG_NO_HZ
49557e62 7799 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7800 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7801#endif
bdddd296
RR
7802 /* May be allocated at isolcpus cmdline parse time */
7803 if (cpu_isolated_map == NULL)
7804 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7805#endif /* SMP */
6a7b3dc3 7806
cdd6c482 7807 perf_event_init();
0d905bca 7808
6892b75e 7809 scheduler_running = 1;
1da177e4
LT
7810}
7811
7812#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7813static inline int preempt_count_equals(int preempt_offset)
7814{
234da7bc 7815 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7816
7817 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7818}
7819
d894837f 7820void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7821{
48f24c4d 7822#ifdef in_atomic
1da177e4
LT
7823 static unsigned long prev_jiffy; /* ratelimiting */
7824
e4aafea2
FW
7825 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7826 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7827 return;
7828 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7829 return;
7830 prev_jiffy = jiffies;
7831
3df0fc5b
PZ
7832 printk(KERN_ERR
7833 "BUG: sleeping function called from invalid context at %s:%d\n",
7834 file, line);
7835 printk(KERN_ERR
7836 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7837 in_atomic(), irqs_disabled(),
7838 current->pid, current->comm);
aef745fc
IM
7839
7840 debug_show_held_locks(current);
7841 if (irqs_disabled())
7842 print_irqtrace_events(current);
7843 dump_stack();
1da177e4
LT
7844#endif
7845}
7846EXPORT_SYMBOL(__might_sleep);
7847#endif
7848
7849#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7850static void normalize_task(struct rq *rq, struct task_struct *p)
7851{
7852 int on_rq;
3e51f33f 7853
3a5e4dc1
AK
7854 update_rq_clock(rq);
7855 on_rq = p->se.on_rq;
7856 if (on_rq)
7857 deactivate_task(rq, p, 0);
7858 __setscheduler(rq, p, SCHED_NORMAL, 0);
7859 if (on_rq) {
7860 activate_task(rq, p, 0);
7861 resched_task(rq->curr);
7862 }
7863}
7864
1da177e4
LT
7865void normalize_rt_tasks(void)
7866{
a0f98a1c 7867 struct task_struct *g, *p;
1da177e4 7868 unsigned long flags;
70b97a7f 7869 struct rq *rq;
1da177e4 7870
4cf5d77a 7871 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7872 do_each_thread(g, p) {
178be793
IM
7873 /*
7874 * Only normalize user tasks:
7875 */
7876 if (!p->mm)
7877 continue;
7878
6cfb0d5d 7879 p->se.exec_start = 0;
6cfb0d5d 7880#ifdef CONFIG_SCHEDSTATS
dd41f596 7881 p->se.wait_start = 0;
dd41f596 7882 p->se.sleep_start = 0;
dd41f596 7883 p->se.block_start = 0;
6cfb0d5d 7884#endif
dd41f596
IM
7885
7886 if (!rt_task(p)) {
7887 /*
7888 * Renice negative nice level userspace
7889 * tasks back to 0:
7890 */
7891 if (TASK_NICE(p) < 0 && p->mm)
7892 set_user_nice(p, 0);
1da177e4 7893 continue;
dd41f596 7894 }
1da177e4 7895
1d615482 7896 raw_spin_lock(&p->pi_lock);
b29739f9 7897 rq = __task_rq_lock(p);
1da177e4 7898
178be793 7899 normalize_task(rq, p);
3a5e4dc1 7900
b29739f9 7901 __task_rq_unlock(rq);
1d615482 7902 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7903 } while_each_thread(g, p);
7904
4cf5d77a 7905 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7906}
7907
7908#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7909
7910#ifdef CONFIG_IA64
7911/*
7912 * These functions are only useful for the IA64 MCA handling.
7913 *
7914 * They can only be called when the whole system has been
7915 * stopped - every CPU needs to be quiescent, and no scheduling
7916 * activity can take place. Using them for anything else would
7917 * be a serious bug, and as a result, they aren't even visible
7918 * under any other configuration.
7919 */
7920
7921/**
7922 * curr_task - return the current task for a given cpu.
7923 * @cpu: the processor in question.
7924 *
7925 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7926 */
36c8b586 7927struct task_struct *curr_task(int cpu)
1df5c10a
LT
7928{
7929 return cpu_curr(cpu);
7930}
7931
7932/**
7933 * set_curr_task - set the current task for a given cpu.
7934 * @cpu: the processor in question.
7935 * @p: the task pointer to set.
7936 *
7937 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7938 * are serviced on a separate stack. It allows the architecture to switch the
7939 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7940 * must be called with all CPU's synchronized, and interrupts disabled, the
7941 * and caller must save the original value of the current task (see
7942 * curr_task() above) and restore that value before reenabling interrupts and
7943 * re-starting the system.
7944 *
7945 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7946 */
36c8b586 7947void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7948{
7949 cpu_curr(cpu) = p;
7950}
7951
7952#endif
29f59db3 7953
bccbe08a
PZ
7954#ifdef CONFIG_FAIR_GROUP_SCHED
7955static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7956{
7957 int i;
7958
7959 for_each_possible_cpu(i) {
7960 if (tg->cfs_rq)
7961 kfree(tg->cfs_rq[i]);
7962 if (tg->se)
7963 kfree(tg->se[i]);
6f505b16
PZ
7964 }
7965
7966 kfree(tg->cfs_rq);
7967 kfree(tg->se);
6f505b16
PZ
7968}
7969
ec7dc8ac
DG
7970static
7971int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7972{
29f59db3 7973 struct cfs_rq *cfs_rq;
eab17229 7974 struct sched_entity *se;
9b5b7751 7975 struct rq *rq;
29f59db3
SV
7976 int i;
7977
434d53b0 7978 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7979 if (!tg->cfs_rq)
7980 goto err;
434d53b0 7981 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7982 if (!tg->se)
7983 goto err;
052f1dc7
PZ
7984
7985 tg->shares = NICE_0_LOAD;
29f59db3
SV
7986
7987 for_each_possible_cpu(i) {
9b5b7751 7988 rq = cpu_rq(i);
29f59db3 7989
eab17229
LZ
7990 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7991 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7992 if (!cfs_rq)
7993 goto err;
7994
eab17229
LZ
7995 se = kzalloc_node(sizeof(struct sched_entity),
7996 GFP_KERNEL, cpu_to_node(i));
29f59db3 7997 if (!se)
dfc12eb2 7998 goto err_free_rq;
29f59db3 7999
eab17229 8000 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8001 }
8002
8003 return 1;
8004
dfc12eb2
PC
8005 err_free_rq:
8006 kfree(cfs_rq);
bccbe08a
PZ
8007 err:
8008 return 0;
8009}
8010
8011static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8012{
8013 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8014 &cpu_rq(cpu)->leaf_cfs_rq_list);
8015}
8016
8017static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8018{
8019 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8020}
6d6bc0ad 8021#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8022static inline void free_fair_sched_group(struct task_group *tg)
8023{
8024}
8025
ec7dc8ac
DG
8026static inline
8027int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8028{
8029 return 1;
8030}
8031
8032static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8033{
8034}
8035
8036static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8037{
8038}
6d6bc0ad 8039#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8040
8041#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8042static void free_rt_sched_group(struct task_group *tg)
8043{
8044 int i;
8045
d0b27fa7
PZ
8046 destroy_rt_bandwidth(&tg->rt_bandwidth);
8047
bccbe08a
PZ
8048 for_each_possible_cpu(i) {
8049 if (tg->rt_rq)
8050 kfree(tg->rt_rq[i]);
8051 if (tg->rt_se)
8052 kfree(tg->rt_se[i]);
8053 }
8054
8055 kfree(tg->rt_rq);
8056 kfree(tg->rt_se);
8057}
8058
ec7dc8ac
DG
8059static
8060int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8061{
8062 struct rt_rq *rt_rq;
eab17229 8063 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8064 struct rq *rq;
8065 int i;
8066
434d53b0 8067 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8068 if (!tg->rt_rq)
8069 goto err;
434d53b0 8070 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8071 if (!tg->rt_se)
8072 goto err;
8073
d0b27fa7
PZ
8074 init_rt_bandwidth(&tg->rt_bandwidth,
8075 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8076
8077 for_each_possible_cpu(i) {
8078 rq = cpu_rq(i);
8079
eab17229
LZ
8080 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8081 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8082 if (!rt_rq)
8083 goto err;
29f59db3 8084
eab17229
LZ
8085 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8086 GFP_KERNEL, cpu_to_node(i));
6f505b16 8087 if (!rt_se)
dfc12eb2 8088 goto err_free_rq;
29f59db3 8089
eab17229 8090 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8091 }
8092
bccbe08a
PZ
8093 return 1;
8094
dfc12eb2
PC
8095 err_free_rq:
8096 kfree(rt_rq);
bccbe08a
PZ
8097 err:
8098 return 0;
8099}
8100
8101static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8102{
8103 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8104 &cpu_rq(cpu)->leaf_rt_rq_list);
8105}
8106
8107static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8108{
8109 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8110}
6d6bc0ad 8111#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8112static inline void free_rt_sched_group(struct task_group *tg)
8113{
8114}
8115
ec7dc8ac
DG
8116static inline
8117int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8118{
8119 return 1;
8120}
8121
8122static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8123{
8124}
8125
8126static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8127{
8128}
6d6bc0ad 8129#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8130
7c941438 8131#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8132static void free_sched_group(struct task_group *tg)
8133{
8134 free_fair_sched_group(tg);
8135 free_rt_sched_group(tg);
8136 kfree(tg);
8137}
8138
8139/* allocate runqueue etc for a new task group */
ec7dc8ac 8140struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8141{
8142 struct task_group *tg;
8143 unsigned long flags;
8144 int i;
8145
8146 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8147 if (!tg)
8148 return ERR_PTR(-ENOMEM);
8149
ec7dc8ac 8150 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8151 goto err;
8152
ec7dc8ac 8153 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8154 goto err;
8155
8ed36996 8156 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8157 for_each_possible_cpu(i) {
bccbe08a
PZ
8158 register_fair_sched_group(tg, i);
8159 register_rt_sched_group(tg, i);
9b5b7751 8160 }
6f505b16 8161 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8162
8163 WARN_ON(!parent); /* root should already exist */
8164
8165 tg->parent = parent;
f473aa5e 8166 INIT_LIST_HEAD(&tg->children);
09f2724a 8167 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8168 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8169
9b5b7751 8170 return tg;
29f59db3
SV
8171
8172err:
6f505b16 8173 free_sched_group(tg);
29f59db3
SV
8174 return ERR_PTR(-ENOMEM);
8175}
8176
9b5b7751 8177/* rcu callback to free various structures associated with a task group */
6f505b16 8178static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8179{
29f59db3 8180 /* now it should be safe to free those cfs_rqs */
6f505b16 8181 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8182}
8183
9b5b7751 8184/* Destroy runqueue etc associated with a task group */
4cf86d77 8185void sched_destroy_group(struct task_group *tg)
29f59db3 8186{
8ed36996 8187 unsigned long flags;
9b5b7751 8188 int i;
29f59db3 8189
8ed36996 8190 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8191 for_each_possible_cpu(i) {
bccbe08a
PZ
8192 unregister_fair_sched_group(tg, i);
8193 unregister_rt_sched_group(tg, i);
9b5b7751 8194 }
6f505b16 8195 list_del_rcu(&tg->list);
f473aa5e 8196 list_del_rcu(&tg->siblings);
8ed36996 8197 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8198
9b5b7751 8199 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8200 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8201}
8202
9b5b7751 8203/* change task's runqueue when it moves between groups.
3a252015
IM
8204 * The caller of this function should have put the task in its new group
8205 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8206 * reflect its new group.
9b5b7751
SV
8207 */
8208void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8209{
8210 int on_rq, running;
8211 unsigned long flags;
8212 struct rq *rq;
8213
8214 rq = task_rq_lock(tsk, &flags);
8215
29f59db3
SV
8216 update_rq_clock(rq);
8217
051a1d1a 8218 running = task_current(rq, tsk);
29f59db3
SV
8219 on_rq = tsk->se.on_rq;
8220
0e1f3483 8221 if (on_rq)
29f59db3 8222 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8223 if (unlikely(running))
8224 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8225
6f505b16 8226 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8227
810b3817
PZ
8228#ifdef CONFIG_FAIR_GROUP_SCHED
8229 if (tsk->sched_class->moved_group)
88ec22d3 8230 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8231#endif
8232
0e1f3483
HS
8233 if (unlikely(running))
8234 tsk->sched_class->set_curr_task(rq);
8235 if (on_rq)
ea87bb78 8236 enqueue_task(rq, tsk, 0, false);
29f59db3 8237
29f59db3
SV
8238 task_rq_unlock(rq, &flags);
8239}
7c941438 8240#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8241
052f1dc7 8242#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8243static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8244{
8245 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8246 int on_rq;
8247
29f59db3 8248 on_rq = se->on_rq;
62fb1851 8249 if (on_rq)
29f59db3
SV
8250 dequeue_entity(cfs_rq, se, 0);
8251
8252 se->load.weight = shares;
e05510d0 8253 se->load.inv_weight = 0;
29f59db3 8254
62fb1851 8255 if (on_rq)
29f59db3 8256 enqueue_entity(cfs_rq, se, 0);
c09595f6 8257}
62fb1851 8258
c09595f6
PZ
8259static void set_se_shares(struct sched_entity *se, unsigned long shares)
8260{
8261 struct cfs_rq *cfs_rq = se->cfs_rq;
8262 struct rq *rq = cfs_rq->rq;
8263 unsigned long flags;
8264
05fa785c 8265 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8266 __set_se_shares(se, shares);
05fa785c 8267 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8268}
8269
8ed36996
PZ
8270static DEFINE_MUTEX(shares_mutex);
8271
4cf86d77 8272int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8273{
8274 int i;
8ed36996 8275 unsigned long flags;
c61935fd 8276
ec7dc8ac
DG
8277 /*
8278 * We can't change the weight of the root cgroup.
8279 */
8280 if (!tg->se[0])
8281 return -EINVAL;
8282
18d95a28
PZ
8283 if (shares < MIN_SHARES)
8284 shares = MIN_SHARES;
cb4ad1ff
MX
8285 else if (shares > MAX_SHARES)
8286 shares = MAX_SHARES;
62fb1851 8287
8ed36996 8288 mutex_lock(&shares_mutex);
9b5b7751 8289 if (tg->shares == shares)
5cb350ba 8290 goto done;
29f59db3 8291
8ed36996 8292 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8293 for_each_possible_cpu(i)
8294 unregister_fair_sched_group(tg, i);
f473aa5e 8295 list_del_rcu(&tg->siblings);
8ed36996 8296 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8297
8298 /* wait for any ongoing reference to this group to finish */
8299 synchronize_sched();
8300
8301 /*
8302 * Now we are free to modify the group's share on each cpu
8303 * w/o tripping rebalance_share or load_balance_fair.
8304 */
9b5b7751 8305 tg->shares = shares;
c09595f6
PZ
8306 for_each_possible_cpu(i) {
8307 /*
8308 * force a rebalance
8309 */
8310 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8311 set_se_shares(tg->se[i], shares);
c09595f6 8312 }
29f59db3 8313
6b2d7700
SV
8314 /*
8315 * Enable load balance activity on this group, by inserting it back on
8316 * each cpu's rq->leaf_cfs_rq_list.
8317 */
8ed36996 8318 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8319 for_each_possible_cpu(i)
8320 register_fair_sched_group(tg, i);
f473aa5e 8321 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8322 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8323done:
8ed36996 8324 mutex_unlock(&shares_mutex);
9b5b7751 8325 return 0;
29f59db3
SV
8326}
8327
5cb350ba
DG
8328unsigned long sched_group_shares(struct task_group *tg)
8329{
8330 return tg->shares;
8331}
052f1dc7 8332#endif
5cb350ba 8333
052f1dc7 8334#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8335/*
9f0c1e56 8336 * Ensure that the real time constraints are schedulable.
6f505b16 8337 */
9f0c1e56
PZ
8338static DEFINE_MUTEX(rt_constraints_mutex);
8339
8340static unsigned long to_ratio(u64 period, u64 runtime)
8341{
8342 if (runtime == RUNTIME_INF)
9a7e0b18 8343 return 1ULL << 20;
9f0c1e56 8344
9a7e0b18 8345 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8346}
8347
9a7e0b18
PZ
8348/* Must be called with tasklist_lock held */
8349static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8350{
9a7e0b18 8351 struct task_struct *g, *p;
b40b2e8e 8352
9a7e0b18
PZ
8353 do_each_thread(g, p) {
8354 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8355 return 1;
8356 } while_each_thread(g, p);
b40b2e8e 8357
9a7e0b18
PZ
8358 return 0;
8359}
b40b2e8e 8360
9a7e0b18
PZ
8361struct rt_schedulable_data {
8362 struct task_group *tg;
8363 u64 rt_period;
8364 u64 rt_runtime;
8365};
b40b2e8e 8366
9a7e0b18
PZ
8367static int tg_schedulable(struct task_group *tg, void *data)
8368{
8369 struct rt_schedulable_data *d = data;
8370 struct task_group *child;
8371 unsigned long total, sum = 0;
8372 u64 period, runtime;
b40b2e8e 8373
9a7e0b18
PZ
8374 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8375 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8376
9a7e0b18
PZ
8377 if (tg == d->tg) {
8378 period = d->rt_period;
8379 runtime = d->rt_runtime;
b40b2e8e 8380 }
b40b2e8e 8381
4653f803
PZ
8382 /*
8383 * Cannot have more runtime than the period.
8384 */
8385 if (runtime > period && runtime != RUNTIME_INF)
8386 return -EINVAL;
6f505b16 8387
4653f803
PZ
8388 /*
8389 * Ensure we don't starve existing RT tasks.
8390 */
9a7e0b18
PZ
8391 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8392 return -EBUSY;
6f505b16 8393
9a7e0b18 8394 total = to_ratio(period, runtime);
6f505b16 8395
4653f803
PZ
8396 /*
8397 * Nobody can have more than the global setting allows.
8398 */
8399 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8400 return -EINVAL;
6f505b16 8401
4653f803
PZ
8402 /*
8403 * The sum of our children's runtime should not exceed our own.
8404 */
9a7e0b18
PZ
8405 list_for_each_entry_rcu(child, &tg->children, siblings) {
8406 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8407 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8408
9a7e0b18
PZ
8409 if (child == d->tg) {
8410 period = d->rt_period;
8411 runtime = d->rt_runtime;
8412 }
6f505b16 8413
9a7e0b18 8414 sum += to_ratio(period, runtime);
9f0c1e56 8415 }
6f505b16 8416
9a7e0b18
PZ
8417 if (sum > total)
8418 return -EINVAL;
8419
8420 return 0;
6f505b16
PZ
8421}
8422
9a7e0b18 8423static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8424{
9a7e0b18
PZ
8425 struct rt_schedulable_data data = {
8426 .tg = tg,
8427 .rt_period = period,
8428 .rt_runtime = runtime,
8429 };
8430
8431 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8432}
8433
d0b27fa7
PZ
8434static int tg_set_bandwidth(struct task_group *tg,
8435 u64 rt_period, u64 rt_runtime)
6f505b16 8436{
ac086bc2 8437 int i, err = 0;
9f0c1e56 8438
9f0c1e56 8439 mutex_lock(&rt_constraints_mutex);
521f1a24 8440 read_lock(&tasklist_lock);
9a7e0b18
PZ
8441 err = __rt_schedulable(tg, rt_period, rt_runtime);
8442 if (err)
9f0c1e56 8443 goto unlock;
ac086bc2 8444
0986b11b 8445 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8446 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8447 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8448
8449 for_each_possible_cpu(i) {
8450 struct rt_rq *rt_rq = tg->rt_rq[i];
8451
0986b11b 8452 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8453 rt_rq->rt_runtime = rt_runtime;
0986b11b 8454 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8455 }
0986b11b 8456 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8457 unlock:
521f1a24 8458 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8459 mutex_unlock(&rt_constraints_mutex);
8460
8461 return err;
6f505b16
PZ
8462}
8463
d0b27fa7
PZ
8464int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8465{
8466 u64 rt_runtime, rt_period;
8467
8468 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8469 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8470 if (rt_runtime_us < 0)
8471 rt_runtime = RUNTIME_INF;
8472
8473 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8474}
8475
9f0c1e56
PZ
8476long sched_group_rt_runtime(struct task_group *tg)
8477{
8478 u64 rt_runtime_us;
8479
d0b27fa7 8480 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8481 return -1;
8482
d0b27fa7 8483 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8484 do_div(rt_runtime_us, NSEC_PER_USEC);
8485 return rt_runtime_us;
8486}
d0b27fa7
PZ
8487
8488int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8489{
8490 u64 rt_runtime, rt_period;
8491
8492 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8493 rt_runtime = tg->rt_bandwidth.rt_runtime;
8494
619b0488
R
8495 if (rt_period == 0)
8496 return -EINVAL;
8497
d0b27fa7
PZ
8498 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8499}
8500
8501long sched_group_rt_period(struct task_group *tg)
8502{
8503 u64 rt_period_us;
8504
8505 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8506 do_div(rt_period_us, NSEC_PER_USEC);
8507 return rt_period_us;
8508}
8509
8510static int sched_rt_global_constraints(void)
8511{
4653f803 8512 u64 runtime, period;
d0b27fa7
PZ
8513 int ret = 0;
8514
ec5d4989
HS
8515 if (sysctl_sched_rt_period <= 0)
8516 return -EINVAL;
8517
4653f803
PZ
8518 runtime = global_rt_runtime();
8519 period = global_rt_period();
8520
8521 /*
8522 * Sanity check on the sysctl variables.
8523 */
8524 if (runtime > period && runtime != RUNTIME_INF)
8525 return -EINVAL;
10b612f4 8526
d0b27fa7 8527 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8528 read_lock(&tasklist_lock);
4653f803 8529 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8530 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8531 mutex_unlock(&rt_constraints_mutex);
8532
8533 return ret;
8534}
54e99124
DG
8535
8536int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8537{
8538 /* Don't accept realtime tasks when there is no way for them to run */
8539 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8540 return 0;
8541
8542 return 1;
8543}
8544
6d6bc0ad 8545#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8546static int sched_rt_global_constraints(void)
8547{
ac086bc2
PZ
8548 unsigned long flags;
8549 int i;
8550
ec5d4989
HS
8551 if (sysctl_sched_rt_period <= 0)
8552 return -EINVAL;
8553
60aa605d
PZ
8554 /*
8555 * There's always some RT tasks in the root group
8556 * -- migration, kstopmachine etc..
8557 */
8558 if (sysctl_sched_rt_runtime == 0)
8559 return -EBUSY;
8560
0986b11b 8561 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8562 for_each_possible_cpu(i) {
8563 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8564
0986b11b 8565 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8566 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8567 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8568 }
0986b11b 8569 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8570
d0b27fa7
PZ
8571 return 0;
8572}
6d6bc0ad 8573#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8574
8575int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8576 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8577 loff_t *ppos)
8578{
8579 int ret;
8580 int old_period, old_runtime;
8581 static DEFINE_MUTEX(mutex);
8582
8583 mutex_lock(&mutex);
8584 old_period = sysctl_sched_rt_period;
8585 old_runtime = sysctl_sched_rt_runtime;
8586
8d65af78 8587 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8588
8589 if (!ret && write) {
8590 ret = sched_rt_global_constraints();
8591 if (ret) {
8592 sysctl_sched_rt_period = old_period;
8593 sysctl_sched_rt_runtime = old_runtime;
8594 } else {
8595 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8596 def_rt_bandwidth.rt_period =
8597 ns_to_ktime(global_rt_period());
8598 }
8599 }
8600 mutex_unlock(&mutex);
8601
8602 return ret;
8603}
68318b8e 8604
052f1dc7 8605#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8606
8607/* return corresponding task_group object of a cgroup */
2b01dfe3 8608static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8609{
2b01dfe3
PM
8610 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8611 struct task_group, css);
68318b8e
SV
8612}
8613
8614static struct cgroup_subsys_state *
2b01dfe3 8615cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8616{
ec7dc8ac 8617 struct task_group *tg, *parent;
68318b8e 8618
2b01dfe3 8619 if (!cgrp->parent) {
68318b8e 8620 /* This is early initialization for the top cgroup */
68318b8e
SV
8621 return &init_task_group.css;
8622 }
8623
ec7dc8ac
DG
8624 parent = cgroup_tg(cgrp->parent);
8625 tg = sched_create_group(parent);
68318b8e
SV
8626 if (IS_ERR(tg))
8627 return ERR_PTR(-ENOMEM);
8628
68318b8e
SV
8629 return &tg->css;
8630}
8631
41a2d6cf
IM
8632static void
8633cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8634{
2b01dfe3 8635 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8636
8637 sched_destroy_group(tg);
8638}
8639
41a2d6cf 8640static int
be367d09 8641cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8642{
b68aa230 8643#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8644 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8645 return -EINVAL;
8646#else
68318b8e
SV
8647 /* We don't support RT-tasks being in separate groups */
8648 if (tsk->sched_class != &fair_sched_class)
8649 return -EINVAL;
b68aa230 8650#endif
be367d09
BB
8651 return 0;
8652}
68318b8e 8653
be367d09
BB
8654static int
8655cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8656 struct task_struct *tsk, bool threadgroup)
8657{
8658 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8659 if (retval)
8660 return retval;
8661 if (threadgroup) {
8662 struct task_struct *c;
8663 rcu_read_lock();
8664 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8665 retval = cpu_cgroup_can_attach_task(cgrp, c);
8666 if (retval) {
8667 rcu_read_unlock();
8668 return retval;
8669 }
8670 }
8671 rcu_read_unlock();
8672 }
68318b8e
SV
8673 return 0;
8674}
8675
8676static void
2b01dfe3 8677cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8678 struct cgroup *old_cont, struct task_struct *tsk,
8679 bool threadgroup)
68318b8e
SV
8680{
8681 sched_move_task(tsk);
be367d09
BB
8682 if (threadgroup) {
8683 struct task_struct *c;
8684 rcu_read_lock();
8685 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8686 sched_move_task(c);
8687 }
8688 rcu_read_unlock();
8689 }
68318b8e
SV
8690}
8691
052f1dc7 8692#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8693static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8694 u64 shareval)
68318b8e 8695{
2b01dfe3 8696 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8697}
8698
f4c753b7 8699static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8700{
2b01dfe3 8701 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8702
8703 return (u64) tg->shares;
8704}
6d6bc0ad 8705#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8706
052f1dc7 8707#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8708static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8709 s64 val)
6f505b16 8710{
06ecb27c 8711 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8712}
8713
06ecb27c 8714static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8715{
06ecb27c 8716 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8717}
d0b27fa7
PZ
8718
8719static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8720 u64 rt_period_us)
8721{
8722 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8723}
8724
8725static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8726{
8727 return sched_group_rt_period(cgroup_tg(cgrp));
8728}
6d6bc0ad 8729#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8730
fe5c7cc2 8731static struct cftype cpu_files[] = {
052f1dc7 8732#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8733 {
8734 .name = "shares",
f4c753b7
PM
8735 .read_u64 = cpu_shares_read_u64,
8736 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8737 },
052f1dc7
PZ
8738#endif
8739#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8740 {
9f0c1e56 8741 .name = "rt_runtime_us",
06ecb27c
PM
8742 .read_s64 = cpu_rt_runtime_read,
8743 .write_s64 = cpu_rt_runtime_write,
6f505b16 8744 },
d0b27fa7
PZ
8745 {
8746 .name = "rt_period_us",
f4c753b7
PM
8747 .read_u64 = cpu_rt_period_read_uint,
8748 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8749 },
052f1dc7 8750#endif
68318b8e
SV
8751};
8752
8753static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8754{
fe5c7cc2 8755 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8756}
8757
8758struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8759 .name = "cpu",
8760 .create = cpu_cgroup_create,
8761 .destroy = cpu_cgroup_destroy,
8762 .can_attach = cpu_cgroup_can_attach,
8763 .attach = cpu_cgroup_attach,
8764 .populate = cpu_cgroup_populate,
8765 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8766 .early_init = 1,
8767};
8768
052f1dc7 8769#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8770
8771#ifdef CONFIG_CGROUP_CPUACCT
8772
8773/*
8774 * CPU accounting code for task groups.
8775 *
8776 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8777 * (balbir@in.ibm.com).
8778 */
8779
934352f2 8780/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8781struct cpuacct {
8782 struct cgroup_subsys_state css;
8783 /* cpuusage holds pointer to a u64-type object on every cpu */
8784 u64 *cpuusage;
ef12fefa 8785 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8786 struct cpuacct *parent;
d842de87
SV
8787};
8788
8789struct cgroup_subsys cpuacct_subsys;
8790
8791/* return cpu accounting group corresponding to this container */
32cd756a 8792static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8793{
32cd756a 8794 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8795 struct cpuacct, css);
8796}
8797
8798/* return cpu accounting group to which this task belongs */
8799static inline struct cpuacct *task_ca(struct task_struct *tsk)
8800{
8801 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8802 struct cpuacct, css);
8803}
8804
8805/* create a new cpu accounting group */
8806static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8807 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8808{
8809 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8810 int i;
d842de87
SV
8811
8812 if (!ca)
ef12fefa 8813 goto out;
d842de87
SV
8814
8815 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8816 if (!ca->cpuusage)
8817 goto out_free_ca;
8818
8819 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8820 if (percpu_counter_init(&ca->cpustat[i], 0))
8821 goto out_free_counters;
d842de87 8822
934352f2
BR
8823 if (cgrp->parent)
8824 ca->parent = cgroup_ca(cgrp->parent);
8825
d842de87 8826 return &ca->css;
ef12fefa
BR
8827
8828out_free_counters:
8829 while (--i >= 0)
8830 percpu_counter_destroy(&ca->cpustat[i]);
8831 free_percpu(ca->cpuusage);
8832out_free_ca:
8833 kfree(ca);
8834out:
8835 return ERR_PTR(-ENOMEM);
d842de87
SV
8836}
8837
8838/* destroy an existing cpu accounting group */
41a2d6cf 8839static void
32cd756a 8840cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8841{
32cd756a 8842 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8843 int i;
d842de87 8844
ef12fefa
BR
8845 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8846 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8847 free_percpu(ca->cpuusage);
8848 kfree(ca);
8849}
8850
720f5498
KC
8851static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8852{
b36128c8 8853 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8854 u64 data;
8855
8856#ifndef CONFIG_64BIT
8857 /*
8858 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8859 */
05fa785c 8860 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8861 data = *cpuusage;
05fa785c 8862 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8863#else
8864 data = *cpuusage;
8865#endif
8866
8867 return data;
8868}
8869
8870static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8871{
b36128c8 8872 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8873
8874#ifndef CONFIG_64BIT
8875 /*
8876 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8877 */
05fa785c 8878 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8879 *cpuusage = val;
05fa785c 8880 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8881#else
8882 *cpuusage = val;
8883#endif
8884}
8885
d842de87 8886/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8887static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8888{
32cd756a 8889 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8890 u64 totalcpuusage = 0;
8891 int i;
8892
720f5498
KC
8893 for_each_present_cpu(i)
8894 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8895
8896 return totalcpuusage;
8897}
8898
0297b803
DG
8899static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8900 u64 reset)
8901{
8902 struct cpuacct *ca = cgroup_ca(cgrp);
8903 int err = 0;
8904 int i;
8905
8906 if (reset) {
8907 err = -EINVAL;
8908 goto out;
8909 }
8910
720f5498
KC
8911 for_each_present_cpu(i)
8912 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8913
0297b803
DG
8914out:
8915 return err;
8916}
8917
e9515c3c
KC
8918static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8919 struct seq_file *m)
8920{
8921 struct cpuacct *ca = cgroup_ca(cgroup);
8922 u64 percpu;
8923 int i;
8924
8925 for_each_present_cpu(i) {
8926 percpu = cpuacct_cpuusage_read(ca, i);
8927 seq_printf(m, "%llu ", (unsigned long long) percpu);
8928 }
8929 seq_printf(m, "\n");
8930 return 0;
8931}
8932
ef12fefa
BR
8933static const char *cpuacct_stat_desc[] = {
8934 [CPUACCT_STAT_USER] = "user",
8935 [CPUACCT_STAT_SYSTEM] = "system",
8936};
8937
8938static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8939 struct cgroup_map_cb *cb)
8940{
8941 struct cpuacct *ca = cgroup_ca(cgrp);
8942 int i;
8943
8944 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8945 s64 val = percpu_counter_read(&ca->cpustat[i]);
8946 val = cputime64_to_clock_t(val);
8947 cb->fill(cb, cpuacct_stat_desc[i], val);
8948 }
8949 return 0;
8950}
8951
d842de87
SV
8952static struct cftype files[] = {
8953 {
8954 .name = "usage",
f4c753b7
PM
8955 .read_u64 = cpuusage_read,
8956 .write_u64 = cpuusage_write,
d842de87 8957 },
e9515c3c
KC
8958 {
8959 .name = "usage_percpu",
8960 .read_seq_string = cpuacct_percpu_seq_read,
8961 },
ef12fefa
BR
8962 {
8963 .name = "stat",
8964 .read_map = cpuacct_stats_show,
8965 },
d842de87
SV
8966};
8967
32cd756a 8968static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8969{
32cd756a 8970 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8971}
8972
8973/*
8974 * charge this task's execution time to its accounting group.
8975 *
8976 * called with rq->lock held.
8977 */
8978static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8979{
8980 struct cpuacct *ca;
934352f2 8981 int cpu;
d842de87 8982
c40c6f85 8983 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8984 return;
8985
934352f2 8986 cpu = task_cpu(tsk);
a18b83b7
BR
8987
8988 rcu_read_lock();
8989
d842de87 8990 ca = task_ca(tsk);
d842de87 8991
934352f2 8992 for (; ca; ca = ca->parent) {
b36128c8 8993 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8994 *cpuusage += cputime;
8995 }
a18b83b7
BR
8996
8997 rcu_read_unlock();
d842de87
SV
8998}
8999
ef12fefa
BR
9000/*
9001 * Charge the system/user time to the task's accounting group.
9002 */
9003static void cpuacct_update_stats(struct task_struct *tsk,
9004 enum cpuacct_stat_index idx, cputime_t val)
9005{
9006 struct cpuacct *ca;
9007
9008 if (unlikely(!cpuacct_subsys.active))
9009 return;
9010
9011 rcu_read_lock();
9012 ca = task_ca(tsk);
9013
9014 do {
9015 percpu_counter_add(&ca->cpustat[idx], val);
9016 ca = ca->parent;
9017 } while (ca);
9018 rcu_read_unlock();
9019}
9020
d842de87
SV
9021struct cgroup_subsys cpuacct_subsys = {
9022 .name = "cpuacct",
9023 .create = cpuacct_create,
9024 .destroy = cpuacct_destroy,
9025 .populate = cpuacct_populate,
9026 .subsys_id = cpuacct_subsys_id,
9027};
9028#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9029
9030#ifndef CONFIG_SMP
9031
9032int rcu_expedited_torture_stats(char *page)
9033{
9034 return 0;
9035}
9036EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9037
9038void synchronize_sched_expedited(void)
9039{
9040}
9041EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9042
9043#else /* #ifndef CONFIG_SMP */
9044
9045static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9046static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9047
9048#define RCU_EXPEDITED_STATE_POST -2
9049#define RCU_EXPEDITED_STATE_IDLE -1
9050
9051static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9052
9053int rcu_expedited_torture_stats(char *page)
9054{
9055 int cnt = 0;
9056 int cpu;
9057
9058 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9059 for_each_online_cpu(cpu) {
9060 cnt += sprintf(&page[cnt], " %d:%d",
9061 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9062 }
9063 cnt += sprintf(&page[cnt], "\n");
9064 return cnt;
9065}
9066EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9067
9068static long synchronize_sched_expedited_count;
9069
9070/*
9071 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9072 * approach to force grace period to end quickly. This consumes
9073 * significant time on all CPUs, and is thus not recommended for
9074 * any sort of common-case code.
9075 *
9076 * Note that it is illegal to call this function while holding any
9077 * lock that is acquired by a CPU-hotplug notifier. Failing to
9078 * observe this restriction will result in deadlock.
9079 */
9080void synchronize_sched_expedited(void)
9081{
9082 int cpu;
9083 unsigned long flags;
9084 bool need_full_sync = 0;
9085 struct rq *rq;
9086 struct migration_req *req;
9087 long snap;
9088 int trycount = 0;
9089
9090 smp_mb(); /* ensure prior mod happens before capturing snap. */
9091 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9092 get_online_cpus();
9093 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9094 put_online_cpus();
9095 if (trycount++ < 10)
9096 udelay(trycount * num_online_cpus());
9097 else {
9098 synchronize_sched();
9099 return;
9100 }
9101 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9102 smp_mb(); /* ensure test happens before caller kfree */
9103 return;
9104 }
9105 get_online_cpus();
9106 }
9107 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9108 for_each_online_cpu(cpu) {
9109 rq = cpu_rq(cpu);
9110 req = &per_cpu(rcu_migration_req, cpu);
9111 init_completion(&req->done);
9112 req->task = NULL;
9113 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9114 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9115 list_add(&req->list, &rq->migration_queue);
05fa785c 9116 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9117 wake_up_process(rq->migration_thread);
9118 }
9119 for_each_online_cpu(cpu) {
9120 rcu_expedited_state = cpu;
9121 req = &per_cpu(rcu_migration_req, cpu);
9122 rq = cpu_rq(cpu);
9123 wait_for_completion(&req->done);
05fa785c 9124 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9125 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9126 need_full_sync = 1;
9127 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9128 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9129 }
9130 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9131 synchronize_sched_expedited_count++;
03b042bf
PM
9132 mutex_unlock(&rcu_sched_expedited_mutex);
9133 put_online_cpus();
9134 if (need_full_sync)
9135 synchronize_sched();
9136}
9137EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9138
9139#endif /* #else #ifndef CONFIG_SMP */