]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
cpumask: Simplify sched_rt.c
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
380static inline struct task_group *task_group(struct task_struct *p)
381{
382 return NULL;
383}
29f59db3 384
052f1dc7 385#endif /* CONFIG_GROUP_SCHED */
29f59db3 386
6aa645ea
IM
387/* CFS-related fields in a runqueue */
388struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
6aa645ea 392 u64 exec_clock;
e9acbff6 393 u64 min_vruntime;
6aa645ea
IM
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
4a55bd5e
PZ
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
4793241b 405 struct sched_entity *curr, *next, *last;
ddc97297 406
5ac5c4d6 407 unsigned int nr_spread_over;
ddc97297 408
62160e3f 409#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
41a2d6cf
IM
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
41a2d6cf
IM
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
422
423#ifdef CONFIG_SMP
c09595f6 424 /*
c8cba857 425 * the part of load.weight contributed by tasks
c09595f6 426 */
c8cba857 427 unsigned long task_weight;
c09595f6 428
c8cba857
PZ
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
c09595f6 436
c8cba857
PZ
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
f1d239f7
PZ
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
c09595f6 446#endif
6aa645ea
IM
447#endif
448};
1da177e4 449
6aa645ea
IM
450/* Real-Time classes' related field in a runqueue: */
451struct rt_rq {
452 struct rt_prio_array active;
63489e45 453 unsigned long rt_nr_running;
052f1dc7 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
455 struct {
456 int curr; /* highest queued rt task prio */
398a153b 457#ifdef CONFIG_SMP
e864c499 458 int next; /* next highest */
398a153b 459#endif
e864c499 460 } highest_prio;
6f505b16 461#endif
fa85ae24 462#ifdef CONFIG_SMP
73fe6aae 463 unsigned long rt_nr_migratory;
a1ba4d8b 464 unsigned long rt_nr_total;
a22d7fc1 465 int overloaded;
917b627d 466 struct plist_head pushable_tasks;
fa85ae24 467#endif
6f505b16 468 int rt_throttled;
fa85ae24 469 u64 rt_time;
ac086bc2 470 u64 rt_runtime;
ea736ed5 471 /* Nests inside the rq lock: */
ac086bc2 472 spinlock_t rt_runtime_lock;
6f505b16 473
052f1dc7 474#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
475 unsigned long rt_nr_boosted;
476
6f505b16
PZ
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481#endif
6aa645ea
IM
482};
483
57d885fe
GH
484#ifdef CONFIG_SMP
485
486/*
487 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
57d885fe
GH
493 */
494struct root_domain {
495 atomic_t refcount;
c6c4927b
RR
496 cpumask_var_t span;
497 cpumask_var_t online;
637f5085 498
0eab9146 499 /*
637f5085
GH
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
c6c4927b 503 cpumask_var_t rto_mask;
0eab9146 504 atomic_t rto_count;
6e0534f2
GH
505#ifdef CONFIG_SMP
506 struct cpupri cpupri;
507#endif
57d885fe
GH
508};
509
dc938520
GH
510/*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
57d885fe
GH
514static struct root_domain def_root_domain;
515
516#endif
517
1da177e4
LT
518/*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
70b97a7f 525struct rq {
d8016491
IM
526 /* runqueue lock: */
527 spinlock_t lock;
1da177e4
LT
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
6aa645ea
IM
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 536#ifdef CONFIG_NO_HZ
15934a37 537 unsigned long last_tick_seen;
46cb4b7c
SS
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1da177e4
LT
592#endif
593
dce48a84
TG
594 /* calc_load related fields */
595 unsigned long calc_load_update;
596 long calc_load_active;
597
8f4d37ec 598#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
599#ifdef CONFIG_SMP
600 int hrtick_csd_pending;
601 struct call_single_data hrtick_csd;
602#endif
8f4d37ec
PZ
603 struct hrtimer hrtick_timer;
604#endif
605
1da177e4
LT
606#ifdef CONFIG_SCHEDSTATS
607 /* latency stats */
608 struct sched_info rq_sched_info;
9c2c4802
KC
609 unsigned long long rq_cpu_time;
610 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
611
612 /* sys_sched_yield() stats */
480b9434 613 unsigned int yld_count;
1da177e4
LT
614
615 /* schedule() stats */
480b9434
KC
616 unsigned int sched_switch;
617 unsigned int sched_count;
618 unsigned int sched_goidle;
1da177e4
LT
619
620 /* try_to_wake_up() stats */
480b9434
KC
621 unsigned int ttwu_count;
622 unsigned int ttwu_local;
b8efb561
IM
623
624 /* BKL stats */
480b9434 625 unsigned int bkl_count;
1da177e4
LT
626#endif
627};
628
f34e3b61 629static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 630
7d478721
PZ
631static inline
632void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 633{
7d478721 634 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
635}
636
0a2966b4
CL
637static inline int cpu_of(struct rq *rq)
638{
639#ifdef CONFIG_SMP
640 return rq->cpu;
641#else
642 return 0;
643#endif
644}
645
674311d5
NP
646/*
647 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 648 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
649 *
650 * The domain tree of any CPU may only be accessed from within
651 * preempt-disabled sections.
652 */
48f24c4d
IM
653#define for_each_domain(cpu, __sd) \
654 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
655
656#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
657#define this_rq() (&__get_cpu_var(runqueues))
658#define task_rq(p) cpu_rq(task_cpu(p))
659#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 660#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 661
aa9c4c0f 662inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
663{
664 rq->clock = sched_clock_cpu(cpu_of(rq));
665}
666
bf5c91ba
IM
667/*
668 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
669 */
670#ifdef CONFIG_SCHED_DEBUG
671# define const_debug __read_mostly
672#else
673# define const_debug static const
674#endif
675
017730c1
IM
676/**
677 * runqueue_is_locked
e17b38bf 678 * @cpu: the processor in question.
017730c1
IM
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
89f19f04 684int runqueue_is_locked(int cpu)
017730c1 685{
89f19f04 686 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
687}
688
bf5c91ba
IM
689/*
690 * Debugging: various feature bits
691 */
f00b45c1
PZ
692
693#define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
695
bf5c91ba 696enum {
f00b45c1 697#include "sched_features.h"
bf5c91ba
IM
698};
699
f00b45c1
PZ
700#undef SCHED_FEAT
701
702#define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
704
bf5c91ba 705const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
706#include "sched_features.h"
707 0;
708
709#undef SCHED_FEAT
710
711#ifdef CONFIG_SCHED_DEBUG
712#define SCHED_FEAT(name, enabled) \
713 #name ,
714
983ed7a6 715static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
716#include "sched_features.h"
717 NULL
718};
719
720#undef SCHED_FEAT
721
34f3a814 722static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 723{
f00b45c1
PZ
724 int i;
725
726 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
727 if (!(sysctl_sched_features & (1UL << i)))
728 seq_puts(m, "NO_");
729 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 730 }
34f3a814 731 seq_puts(m, "\n");
f00b45c1 732
34f3a814 733 return 0;
f00b45c1
PZ
734}
735
736static ssize_t
737sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
739{
740 char buf[64];
741 char *cmp = buf;
742 int neg = 0;
743 int i;
744
745 if (cnt > 63)
746 cnt = 63;
747
748 if (copy_from_user(&buf, ubuf, cnt))
749 return -EFAULT;
750
751 buf[cnt] = 0;
752
c24b7c52 753 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
754 neg = 1;
755 cmp += 3;
756 }
757
758 for (i = 0; sched_feat_names[i]; i++) {
759 int len = strlen(sched_feat_names[i]);
760
761 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
762 if (neg)
763 sysctl_sched_features &= ~(1UL << i);
764 else
765 sysctl_sched_features |= (1UL << i);
766 break;
767 }
768 }
769
770 if (!sched_feat_names[i])
771 return -EINVAL;
772
773 filp->f_pos += cnt;
774
775 return cnt;
776}
777
34f3a814
LZ
778static int sched_feat_open(struct inode *inode, struct file *filp)
779{
780 return single_open(filp, sched_feat_show, NULL);
781}
782
828c0950 783static const struct file_operations sched_feat_fops = {
34f3a814
LZ
784 .open = sched_feat_open,
785 .write = sched_feat_write,
786 .read = seq_read,
787 .llseek = seq_lseek,
788 .release = single_release,
f00b45c1
PZ
789};
790
791static __init int sched_init_debug(void)
792{
f00b45c1
PZ
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
794 &sched_feat_fops);
795
796 return 0;
797}
798late_initcall(sched_init_debug);
799
800#endif
801
802#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 803
b82d9fdd
PZ
804/*
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
807 */
808const_debug unsigned int sysctl_sched_nr_migrate = 32;
809
2398f2c6
PZ
810/*
811 * ratelimit for updating the group shares.
55cd5340 812 * default: 0.25ms
2398f2c6 813 */
55cd5340 814unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 815
ffda12a1
PZ
816/*
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
819 * default: 4
820 */
821unsigned int sysctl_sched_shares_thresh = 4;
822
e9e9250b
PZ
823/*
824 * period over which we average the RT time consumption, measured
825 * in ms.
826 *
827 * default: 1s
828 */
829const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
830
fa85ae24 831/*
9f0c1e56 832 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
833 * default: 1s
834 */
9f0c1e56 835unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 836
6892b75e
IM
837static __read_mostly int scheduler_running;
838
9f0c1e56
PZ
839/*
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
842 */
843int sysctl_sched_rt_runtime = 950000;
fa85ae24 844
d0b27fa7
PZ
845static inline u64 global_rt_period(void)
846{
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
848}
849
850static inline u64 global_rt_runtime(void)
851{
e26873bb 852 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
853 return RUNTIME_INF;
854
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
856}
fa85ae24 857
1da177e4 858#ifndef prepare_arch_switch
4866cde0
NP
859# define prepare_arch_switch(next) do { } while (0)
860#endif
861#ifndef finish_arch_switch
862# define finish_arch_switch(prev) do { } while (0)
863#endif
864
051a1d1a
DA
865static inline int task_current(struct rq *rq, struct task_struct *p)
866{
867 return rq->curr == p;
868}
869
4866cde0 870#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 871static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 872{
051a1d1a 873 return task_current(rq, p);
4866cde0
NP
874}
875
70b97a7f 876static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
877{
878}
879
70b97a7f 880static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 881{
da04c035
IM
882#ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885#endif
8a25d5de
IM
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
4866cde0
NP
893 spin_unlock_irq(&rq->lock);
894}
895
896#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 897static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 return p->oncpu;
901#else
051a1d1a 902 return task_current(rq, p);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
913 */
914 next->oncpu = 1;
915#endif
916#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918#else
919 spin_unlock(&rq->lock);
920#endif
921}
922
70b97a7f 923static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
924{
925#ifdef CONFIG_SMP
926 /*
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
930 */
931 smp_wmb();
932 prev->oncpu = 0;
933#endif
934#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
1da177e4 936#endif
4866cde0
NP
937}
938#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 939
b29739f9
IM
940/*
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
943 */
70b97a7f 944static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
945 __acquires(rq->lock)
946{
3a5c359a
AK
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
b29739f9 952 spin_unlock(&rq->lock);
b29739f9 953 }
b29739f9
IM
954}
955
1da177e4
LT
956/*
957 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 958 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
959 * explicitly disabling preemption.
960 */
70b97a7f 961static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
962 __acquires(rq->lock)
963{
70b97a7f 964 struct rq *rq;
1da177e4 965
3a5c359a
AK
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
1da177e4 972 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 973 }
1da177e4
LT
974}
975
ad474cac
ON
976void task_rq_unlock_wait(struct task_struct *p)
977{
978 struct rq *rq = task_rq(p);
979
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq->lock);
982}
983
a9957449 984static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
985 __releases(rq->lock)
986{
987 spin_unlock(&rq->lock);
988}
989
70b97a7f 990static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
991 __releases(rq->lock)
992{
993 spin_unlock_irqrestore(&rq->lock, *flags);
994}
995
1da177e4 996/*
cc2a73b5 997 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 998 */
a9957449 999static struct rq *this_rq_lock(void)
1da177e4
LT
1000 __acquires(rq->lock)
1001{
70b97a7f 1002 struct rq *rq;
1da177e4
LT
1003
1004 local_irq_disable();
1005 rq = this_rq();
1006 spin_lock(&rq->lock);
1007
1008 return rq;
1009}
1010
8f4d37ec
PZ
1011#ifdef CONFIG_SCHED_HRTICK
1012/*
1013 * Use HR-timers to deliver accurate preemption points.
1014 *
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1018 *
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1021 */
8f4d37ec
PZ
1022
1023/*
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1027 */
1028static inline int hrtick_enabled(struct rq *rq)
1029{
1030 if (!sched_feat(HRTICK))
1031 return 0;
ba42059f 1032 if (!cpu_active(cpu_of(rq)))
b328ca18 1033 return 0;
8f4d37ec
PZ
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1035}
1036
8f4d37ec
PZ
1037static void hrtick_clear(struct rq *rq)
1038{
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1041}
1042
8f4d37ec
PZ
1043/*
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1046 */
1047static enum hrtimer_restart hrtick(struct hrtimer *timer)
1048{
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1050
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1052
1053 spin_lock(&rq->lock);
3e51f33f 1054 update_rq_clock(rq);
8f4d37ec
PZ
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 spin_unlock(&rq->lock);
1057
1058 return HRTIMER_NORESTART;
1059}
1060
95e904c7 1061#ifdef CONFIG_SMP
31656519
PZ
1062/*
1063 * called from hardirq (IPI) context
1064 */
1065static void __hrtick_start(void *arg)
b328ca18 1066{
31656519 1067 struct rq *rq = arg;
b328ca18 1068
31656519
PZ
1069 spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 spin_unlock(&rq->lock);
b328ca18
PZ
1073}
1074
31656519
PZ
1075/*
1076 * Called to set the hrtick timer state.
1077 *
1078 * called with rq->lock held and irqs disabled
1079 */
1080static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1081{
31656519
PZ
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1084
cc584b21 1085 hrtimer_set_expires(timer, time);
31656519
PZ
1086
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
6e275637 1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1091 rq->hrtick_csd_pending = 1;
1092 }
b328ca18
PZ
1093}
1094
1095static int
1096hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1097{
1098 int cpu = (int)(long)hcpu;
1099
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
31656519 1107 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1108 return NOTIFY_OK;
1109 }
1110
1111 return NOTIFY_DONE;
1112}
1113
fa748203 1114static __init void init_hrtick(void)
b328ca18
PZ
1115{
1116 hotcpu_notifier(hotplug_hrtick, 0);
1117}
31656519
PZ
1118#else
1119/*
1120 * Called to set the hrtick timer state.
1121 *
1122 * called with rq->lock held and irqs disabled
1123 */
1124static void hrtick_start(struct rq *rq, u64 delay)
1125{
7f1e2ca9 1126 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1127 HRTIMER_MODE_REL_PINNED, 0);
31656519 1128}
b328ca18 1129
006c75f1 1130static inline void init_hrtick(void)
8f4d37ec 1131{
8f4d37ec 1132}
31656519 1133#endif /* CONFIG_SMP */
8f4d37ec 1134
31656519 1135static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1136{
31656519
PZ
1137#ifdef CONFIG_SMP
1138 rq->hrtick_csd_pending = 0;
8f4d37ec 1139
31656519
PZ
1140 rq->hrtick_csd.flags = 0;
1141 rq->hrtick_csd.func = __hrtick_start;
1142 rq->hrtick_csd.info = rq;
1143#endif
8f4d37ec 1144
31656519
PZ
1145 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1146 rq->hrtick_timer.function = hrtick;
8f4d37ec 1147}
006c75f1 1148#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1149static inline void hrtick_clear(struct rq *rq)
1150{
1151}
1152
8f4d37ec
PZ
1153static inline void init_rq_hrtick(struct rq *rq)
1154{
1155}
1156
b328ca18
PZ
1157static inline void init_hrtick(void)
1158{
1159}
006c75f1 1160#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1161
c24d20db
IM
1162/*
1163 * resched_task - mark a task 'to be rescheduled now'.
1164 *
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1168 */
1169#ifdef CONFIG_SMP
1170
1171#ifndef tsk_is_polling
1172#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173#endif
1174
31656519 1175static void resched_task(struct task_struct *p)
c24d20db
IM
1176{
1177 int cpu;
1178
1179 assert_spin_locked(&task_rq(p)->lock);
1180
5ed0cec0 1181 if (test_tsk_need_resched(p))
c24d20db
IM
1182 return;
1183
5ed0cec0 1184 set_tsk_need_resched(p);
c24d20db
IM
1185
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1189
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1194}
1195
1196static void resched_cpu(int cpu)
1197{
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1200
1201 if (!spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 spin_unlock_irqrestore(&rq->lock, flags);
1205}
06d8308c
TG
1206
1207#ifdef CONFIG_NO_HZ
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
5ed0cec0 1240 set_tsk_need_resched(rq->idle);
06d8308c
TG
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
6d6bc0ad 1247#endif /* CONFIG_NO_HZ */
06d8308c 1248
e9e9250b
PZ
1249static u64 sched_avg_period(void)
1250{
1251 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1252}
1253
1254static void sched_avg_update(struct rq *rq)
1255{
1256 s64 period = sched_avg_period();
1257
1258 while ((s64)(rq->clock - rq->age_stamp) > period) {
1259 rq->age_stamp += period;
1260 rq->rt_avg /= 2;
1261 }
1262}
1263
1264static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1265{
1266 rq->rt_avg += rt_delta;
1267 sched_avg_update(rq);
1268}
1269
6d6bc0ad 1270#else /* !CONFIG_SMP */
31656519 1271static void resched_task(struct task_struct *p)
c24d20db
IM
1272{
1273 assert_spin_locked(&task_rq(p)->lock);
31656519 1274 set_tsk_need_resched(p);
c24d20db 1275}
e9e9250b
PZ
1276
1277static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1278{
1279}
6d6bc0ad 1280#endif /* CONFIG_SMP */
c24d20db 1281
45bf76df
IM
1282#if BITS_PER_LONG == 32
1283# define WMULT_CONST (~0UL)
1284#else
1285# define WMULT_CONST (1UL << 32)
1286#endif
1287
1288#define WMULT_SHIFT 32
1289
194081eb
IM
1290/*
1291 * Shift right and round:
1292 */
cf2ab469 1293#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1294
a7be37ac
PZ
1295/*
1296 * delta *= weight / lw
1297 */
cb1c4fc9 1298static unsigned long
45bf76df
IM
1299calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1301{
1302 u64 tmp;
1303
7a232e03
LJ
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1310 }
45bf76df
IM
1311
1312 tmp = (u64)delta_exec * weight;
1313 /*
1314 * Check whether we'd overflow the 64-bit multiplication:
1315 */
194081eb 1316 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1318 WMULT_SHIFT/2);
1319 else
cf2ab469 1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1321
ecf691da 1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1323}
1324
1091985b 1325static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1326{
1327 lw->weight += inc;
e89996ae 1328 lw->inv_weight = 0;
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1332{
1333 lw->weight -= dec;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
2dd73a4f
PW
1337/*
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1344 */
1345
cce7ade8
PZ
1346#define WEIGHT_IDLEPRIO 3
1347#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1348
1349/*
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1354 *
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
dd41f596
IM
1360 */
1361static const int prio_to_weight[40] = {
254753dc
IM
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1370};
1371
5714d2de
IM
1372/*
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 *
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1378 */
dd41f596 1379static const u32 prio_to_wmult[40] = {
254753dc
IM
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1388};
2dd73a4f 1389
dd41f596
IM
1390static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1391
1392/*
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1396 */
1397struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1401};
1402
e1d1484f
PW
1403#ifdef CONFIG_SMP
1404static unsigned long
1405balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1409
1410static int
1411iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
e1d1484f 1414#endif
dd41f596 1415
ef12fefa
BR
1416/* Time spent by the tasks of the cpu accounting group executing in ... */
1417enum cpuacct_stat_index {
1418 CPUACCT_STAT_USER, /* ... user mode */
1419 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1420
1421 CPUACCT_STAT_NSTATS,
1422};
1423
d842de87
SV
1424#ifdef CONFIG_CGROUP_CPUACCT
1425static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1426static void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1428#else
1429static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1430static inline void cpuacct_update_stats(struct task_struct *tsk,
1431 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1432#endif
1433
18d95a28
PZ
1434static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_add(&rq->load, load);
1437}
1438
1439static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_sub(&rq->load, load);
1442}
1443
7940ca36 1444#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1445typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1446
1447/*
1448 * Iterate the full tree, calling @down when first entering a node and @up when
1449 * leaving it for the final time.
1450 */
eb755805 1451static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1452{
1453 struct task_group *parent, *child;
eb755805 1454 int ret;
c09595f6
PZ
1455
1456 rcu_read_lock();
1457 parent = &root_task_group;
1458down:
eb755805
PZ
1459 ret = (*down)(parent, data);
1460 if (ret)
1461 goto out_unlock;
c09595f6
PZ
1462 list_for_each_entry_rcu(child, &parent->children, siblings) {
1463 parent = child;
1464 goto down;
1465
1466up:
1467 continue;
1468 }
eb755805
PZ
1469 ret = (*up)(parent, data);
1470 if (ret)
1471 goto out_unlock;
c09595f6
PZ
1472
1473 child = parent;
1474 parent = parent->parent;
1475 if (parent)
1476 goto up;
eb755805 1477out_unlock:
c09595f6 1478 rcu_read_unlock();
eb755805
PZ
1479
1480 return ret;
c09595f6
PZ
1481}
1482
eb755805
PZ
1483static int tg_nop(struct task_group *tg, void *data)
1484{
1485 return 0;
c09595f6 1486}
eb755805
PZ
1487#endif
1488
1489#ifdef CONFIG_SMP
f5f08f39
PZ
1490/* Used instead of source_load when we know the type == 0 */
1491static unsigned long weighted_cpuload(const int cpu)
1492{
1493 return cpu_rq(cpu)->load.weight;
1494}
1495
1496/*
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1499 *
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1502 */
1503static unsigned long source_load(int cpu, int type)
1504{
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long total = weighted_cpuload(cpu);
1507
1508 if (type == 0 || !sched_feat(LB_BIAS))
1509 return total;
1510
1511 return min(rq->cpu_load[type-1], total);
1512}
1513
1514/*
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1517 */
1518static unsigned long target_load(int cpu, int type)
1519{
1520 struct rq *rq = cpu_rq(cpu);
1521 unsigned long total = weighted_cpuload(cpu);
1522
1523 if (type == 0 || !sched_feat(LB_BIAS))
1524 return total;
1525
1526 return max(rq->cpu_load[type-1], total);
1527}
1528
ae154be1
PZ
1529static struct sched_group *group_of(int cpu)
1530{
1531 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1532
1533 if (!sd)
1534 return NULL;
1535
1536 return sd->groups;
1537}
1538
1539static unsigned long power_of(int cpu)
1540{
1541 struct sched_group *group = group_of(cpu);
1542
1543 if (!group)
1544 return SCHED_LOAD_SCALE;
1545
1546 return group->cpu_power;
1547}
1548
eb755805
PZ
1549static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1550
1551static unsigned long cpu_avg_load_per_task(int cpu)
1552{
1553 struct rq *rq = cpu_rq(cpu);
af6d596f 1554 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1555
4cd42620
SR
1556 if (nr_running)
1557 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1558 else
1559 rq->avg_load_per_task = 0;
eb755805
PZ
1560
1561 return rq->avg_load_per_task;
1562}
1563
1564#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1565
34d76c41
PZ
1566struct update_shares_data {
1567 unsigned long rq_weight[NR_CPUS];
1568};
1569
1570static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1571
c09595f6
PZ
1572static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1573
1574/*
1575 * Calculate and set the cpu's group shares.
1576 */
34d76c41
PZ
1577static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd)
18d95a28 1581{
34d76c41 1582 unsigned long shares, rq_weight;
a5004278 1583 int boost = 0;
c09595f6 1584
34d76c41 1585 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1589 }
c8cba857 1590
c09595f6 1591 /*
a8af7246
PZ
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
c09595f6 1595 */
ec4e0e2f 1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1598
ffda12a1
PZ
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
c09595f6 1603
ffda12a1 1604 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1609 }
18d95a28 1610}
c09595f6
PZ
1611
1612/*
c8cba857
PZ
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
c09595f6 1616 */
eb755805 1617static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1618{
34d76c41
PZ
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 struct update_shares_data *usd;
eb755805 1621 struct sched_domain *sd = data;
34d76c41 1622 unsigned long flags;
c8cba857 1623 int i;
c09595f6 1624
34d76c41
PZ
1625 if (!tg->se[0])
1626 return 0;
1627
1628 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data);
1630
758b2cdc 1631 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight;
1634
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
ec4e0e2f 1643 rq_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
c8cba857
PZ
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1649
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
c09595f6 1652
758b2cdc 1653 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1655
1656 local_irq_restore(flags);
eb755805
PZ
1657
1658 return 0;
c09595f6
PZ
1659}
1660
1661/*
c8cba857
PZ
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
c09595f6 1665 */
eb755805 1666static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1667{
c8cba857 1668 unsigned long load;
eb755805 1669 long cpu = (long)data;
c09595f6 1670
c8cba857
PZ
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1677 }
c09595f6 1678
c8cba857 1679 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1680
eb755805 1681 return 0;
c09595f6
PZ
1682}
1683
c8cba857 1684static void update_shares(struct sched_domain *sd)
4d8d595d 1685{
e7097159
PZ
1686 s64 elapsed;
1687 u64 now;
1688
1689 if (root_task_group_empty())
1690 return;
1691
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
2398f2c6
PZ
1694
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
eb755805 1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1698 }
4d8d595d
PZ
1699}
1700
3e5459b4
PZ
1701static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1702{
e7097159
PZ
1703 if (root_task_group_empty())
1704 return;
1705
3e5459b4
PZ
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1709}
1710
eb755805 1711static void update_h_load(long cpu)
c09595f6 1712{
e7097159
PZ
1713 if (root_task_group_empty())
1714 return;
1715
eb755805 1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1717}
1718
c09595f6
PZ
1719#else
1720
c8cba857 1721static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1722{
1723}
1724
3e5459b4
PZ
1725static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1726{
1727}
1728
18d95a28
PZ
1729#endif
1730
8f45e2b5
GH
1731#ifdef CONFIG_PREEMPT
1732
b78bb868
PZ
1733static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1734
70574a99 1735/*
8f45e2b5
GH
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
70574a99 1742 */
8f45e2b5
GH
1743static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1747{
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1750
1751 return 1;
1752}
1753
1754#else
1755/*
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1761 */
1762static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1766{
1767 int ret = 0;
1768
70574a99
AD
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1777 }
1778 return ret;
1779}
1780
8f45e2b5
GH
1781#endif /* CONFIG_PREEMPT */
1782
1783/*
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1785 */
1786static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1787{
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1792 }
1793
1794 return _double_lock_balance(this_rq, busiest);
1795}
1796
70574a99
AD
1797static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1799{
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1802}
18d95a28
PZ
1803#endif
1804
30432094 1805#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1806static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1807{
30432094 1808#ifdef CONFIG_SMP
34e83e85
IM
1809 cfs_rq->shares = shares;
1810#endif
1811}
30432094 1812#endif
e7693a36 1813
dce48a84
TG
1814static void calc_load_account_active(struct rq *this_rq);
1815
dd41f596 1816#include "sched_stats.h"
dd41f596 1817#include "sched_idletask.c"
5522d5d5
IM
1818#include "sched_fair.c"
1819#include "sched_rt.c"
dd41f596
IM
1820#ifdef CONFIG_SCHED_DEBUG
1821# include "sched_debug.c"
1822#endif
1823
1824#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1825#define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
dd41f596 1827
c09595f6 1828static void inc_nr_running(struct rq *rq)
9c217245
IM
1829{
1830 rq->nr_running++;
9c217245
IM
1831}
1832
c09595f6 1833static void dec_nr_running(struct rq *rq)
9c217245
IM
1834{
1835 rq->nr_running--;
9c217245
IM
1836}
1837
45bf76df
IM
1838static void set_load_weight(struct task_struct *p)
1839{
1840 if (task_has_rt_policy(p)) {
dd41f596
IM
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1844 }
45bf76df 1845
dd41f596
IM
1846 /*
1847 * SCHED_IDLE tasks get minimal weight:
1848 */
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1853 }
71f8bd46 1854
dd41f596
IM
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1857}
1858
2087a1ad
GH
1859static void update_avg(u64 *avg, u64 sample)
1860{
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1863}
1864
8159f87e 1865static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1866{
831451ac
PZ
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1869
dd41f596 1870 sched_info_queued(p);
fd390f6a 1871 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1872 p->se.on_rq = 1;
71f8bd46
IM
1873}
1874
69be72c1 1875static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1876{
831451ac
PZ
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1885 }
2087a1ad
GH
1886 }
1887
46ac22ba 1888 sched_info_dequeued(p);
f02231e5 1889 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1890 p->se.on_rq = 0;
71f8bd46
IM
1891}
1892
14531189 1893/*
dd41f596 1894 * __normal_prio - return the priority that is based on the static prio
14531189 1895 */
14531189
IM
1896static inline int __normal_prio(struct task_struct *p)
1897{
dd41f596 1898 return p->static_prio;
14531189
IM
1899}
1900
b29739f9
IM
1901/*
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1907 */
36c8b586 1908static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1909{
1910 int prio;
1911
e05606d3 1912 if (task_has_rt_policy(p))
b29739f9
IM
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1917}
1918
1919/*
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1925 */
36c8b586 1926static int effective_prio(struct task_struct *p)
b29739f9
IM
1927{
1928 p->normal_prio = normal_prio(p);
1929 /*
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1933 */
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1937}
1938
1da177e4 1939/*
dd41f596 1940 * activate_task - move a task to the runqueue.
1da177e4 1941 */
dd41f596 1942static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1943{
d9514f6c 1944 if (task_contributes_to_load(p))
dd41f596 1945 rq->nr_uninterruptible--;
1da177e4 1946
8159f87e 1947 enqueue_task(rq, p, wakeup);
c09595f6 1948 inc_nr_running(rq);
1da177e4
LT
1949}
1950
1da177e4
LT
1951/*
1952 * deactivate_task - remove a task from the runqueue.
1953 */
2e1cb74a 1954static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1955{
d9514f6c 1956 if (task_contributes_to_load(p))
dd41f596
IM
1957 rq->nr_uninterruptible++;
1958
69be72c1 1959 dequeue_task(rq, p, sleep);
c09595f6 1960 dec_nr_running(rq);
1da177e4
LT
1961}
1962
1da177e4
LT
1963/**
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1966 */
36c8b586 1967inline int task_curr(const struct task_struct *p)
1da177e4
LT
1968{
1969 return cpu_curr(task_cpu(p)) == p;
1970}
1971
dd41f596
IM
1972static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1973{
6f505b16 1974 set_task_rq(p, cpu);
dd41f596 1975#ifdef CONFIG_SMP
ce96b5ac
DA
1976 /*
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1980 */
1981 smp_wmb();
dd41f596 1982 task_thread_info(p)->cpu = cpu;
dd41f596 1983#endif
2dd73a4f
PW
1984}
1985
cb469845
SR
1986static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1989{
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1996}
1997
1da177e4 1998#ifdef CONFIG_SMP
cc367732
IM
1999/*
2000 * Is this task likely cache-hot:
2001 */
e7693a36 2002static int
cc367732
IM
2003task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004{
2005 s64 delta;
2006
f540a608
IM
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
4793241b
PZ
2010 if (sched_feat(CACHE_HOT_BUDDY) &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2013 return 1;
2014
cc367732
IM
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
6bc1665b
IM
2018 if (sysctl_sched_migration_cost == -1)
2019 return 1;
2020 if (sysctl_sched_migration_cost == 0)
2021 return 0;
2022
cc367732
IM
2023 delta = now - p->se.exec_start;
2024
2025 return delta < (s64)sysctl_sched_migration_cost;
2026}
2027
2028
dd41f596 2029void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2030{
dd41f596
IM
2031 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2035 u64 clock_offset;
dd41f596
IM
2036
2037 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2038
de1d7286 2039 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2040
6cfb0d5d
IM
2041#ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
dd41f596
IM
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
6c594c21 2048#endif
cc367732 2049 if (old_cpu != new_cpu) {
6c594c21
IM
2050 p->se.nr_migrations++;
2051#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2052 if (task_hot(p, old_rq->clock, NULL))
2053 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2054#endif
cdd6c482 2055 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2056 1, 1, NULL, 0);
6c594c21 2057 }
2830cf8c
SV
2058 p->se.vruntime -= old_cfsrq->min_vruntime -
2059 new_cfsrq->min_vruntime;
dd41f596
IM
2060
2061 __set_task_cpu(p, new_cpu);
c65cc870
IM
2062}
2063
70b97a7f 2064struct migration_req {
1da177e4 2065 struct list_head list;
1da177e4 2066
36c8b586 2067 struct task_struct *task;
1da177e4
LT
2068 int dest_cpu;
2069
1da177e4 2070 struct completion done;
70b97a7f 2071};
1da177e4
LT
2072
2073/*
2074 * The task's runqueue lock must be held.
2075 * Returns true if you have to wait for migration thread.
2076 */
36c8b586 2077static int
70b97a7f 2078migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2079{
70b97a7f 2080 struct rq *rq = task_rq(p);
1da177e4
LT
2081
2082 /*
2083 * If the task is not on a runqueue (and not running), then
2084 * it is sufficient to simply update the task's cpu field.
2085 */
dd41f596 2086 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2087 set_task_cpu(p, dest_cpu);
2088 return 0;
2089 }
2090
2091 init_completion(&req->done);
1da177e4
LT
2092 req->task = p;
2093 req->dest_cpu = dest_cpu;
2094 list_add(&req->list, &rq->migration_queue);
48f24c4d 2095
1da177e4
LT
2096 return 1;
2097}
2098
a26b89f0
MM
2099/*
2100 * wait_task_context_switch - wait for a thread to complete at least one
2101 * context switch.
2102 *
2103 * @p must not be current.
2104 */
2105void wait_task_context_switch(struct task_struct *p)
2106{
2107 unsigned long nvcsw, nivcsw, flags;
2108 int running;
2109 struct rq *rq;
2110
2111 nvcsw = p->nvcsw;
2112 nivcsw = p->nivcsw;
2113 for (;;) {
2114 /*
2115 * The runqueue is assigned before the actual context
2116 * switch. We need to take the runqueue lock.
2117 *
2118 * We could check initially without the lock but it is
2119 * very likely that we need to take the lock in every
2120 * iteration.
2121 */
2122 rq = task_rq_lock(p, &flags);
2123 running = task_running(rq, p);
2124 task_rq_unlock(rq, &flags);
2125
2126 if (likely(!running))
2127 break;
2128 /*
2129 * The switch count is incremented before the actual
2130 * context switch. We thus wait for two switches to be
2131 * sure at least one completed.
2132 */
2133 if ((p->nvcsw - nvcsw) > 1)
2134 break;
2135 if ((p->nivcsw - nivcsw) > 1)
2136 break;
2137
2138 cpu_relax();
2139 }
2140}
2141
1da177e4
LT
2142/*
2143 * wait_task_inactive - wait for a thread to unschedule.
2144 *
85ba2d86
RM
2145 * If @match_state is nonzero, it's the @p->state value just checked and
2146 * not expected to change. If it changes, i.e. @p might have woken up,
2147 * then return zero. When we succeed in waiting for @p to be off its CPU,
2148 * we return a positive number (its total switch count). If a second call
2149 * a short while later returns the same number, the caller can be sure that
2150 * @p has remained unscheduled the whole time.
2151 *
1da177e4
LT
2152 * The caller must ensure that the task *will* unschedule sometime soon,
2153 * else this function might spin for a *long* time. This function can't
2154 * be called with interrupts off, or it may introduce deadlock with
2155 * smp_call_function() if an IPI is sent by the same process we are
2156 * waiting to become inactive.
2157 */
85ba2d86 2158unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2159{
2160 unsigned long flags;
dd41f596 2161 int running, on_rq;
85ba2d86 2162 unsigned long ncsw;
70b97a7f 2163 struct rq *rq;
1da177e4 2164
3a5c359a
AK
2165 for (;;) {
2166 /*
2167 * We do the initial early heuristics without holding
2168 * any task-queue locks at all. We'll only try to get
2169 * the runqueue lock when things look like they will
2170 * work out!
2171 */
2172 rq = task_rq(p);
fa490cfd 2173
3a5c359a
AK
2174 /*
2175 * If the task is actively running on another CPU
2176 * still, just relax and busy-wait without holding
2177 * any locks.
2178 *
2179 * NOTE! Since we don't hold any locks, it's not
2180 * even sure that "rq" stays as the right runqueue!
2181 * But we don't care, since "task_running()" will
2182 * return false if the runqueue has changed and p
2183 * is actually now running somewhere else!
2184 */
85ba2d86
RM
2185 while (task_running(rq, p)) {
2186 if (match_state && unlikely(p->state != match_state))
2187 return 0;
3a5c359a 2188 cpu_relax();
85ba2d86 2189 }
fa490cfd 2190
3a5c359a
AK
2191 /*
2192 * Ok, time to look more closely! We need the rq
2193 * lock now, to be *sure*. If we're wrong, we'll
2194 * just go back and repeat.
2195 */
2196 rq = task_rq_lock(p, &flags);
0a16b607 2197 trace_sched_wait_task(rq, p);
3a5c359a
AK
2198 running = task_running(rq, p);
2199 on_rq = p->se.on_rq;
85ba2d86 2200 ncsw = 0;
f31e11d8 2201 if (!match_state || p->state == match_state)
93dcf55f 2202 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2203 task_rq_unlock(rq, &flags);
fa490cfd 2204
85ba2d86
RM
2205 /*
2206 * If it changed from the expected state, bail out now.
2207 */
2208 if (unlikely(!ncsw))
2209 break;
2210
3a5c359a
AK
2211 /*
2212 * Was it really running after all now that we
2213 * checked with the proper locks actually held?
2214 *
2215 * Oops. Go back and try again..
2216 */
2217 if (unlikely(running)) {
2218 cpu_relax();
2219 continue;
2220 }
fa490cfd 2221
3a5c359a
AK
2222 /*
2223 * It's not enough that it's not actively running,
2224 * it must be off the runqueue _entirely_, and not
2225 * preempted!
2226 *
80dd99b3 2227 * So if it was still runnable (but just not actively
3a5c359a
AK
2228 * running right now), it's preempted, and we should
2229 * yield - it could be a while.
2230 */
2231 if (unlikely(on_rq)) {
2232 schedule_timeout_uninterruptible(1);
2233 continue;
2234 }
fa490cfd 2235
3a5c359a
AK
2236 /*
2237 * Ahh, all good. It wasn't running, and it wasn't
2238 * runnable, which means that it will never become
2239 * running in the future either. We're all done!
2240 */
2241 break;
2242 }
85ba2d86
RM
2243
2244 return ncsw;
1da177e4
LT
2245}
2246
2247/***
2248 * kick_process - kick a running thread to enter/exit the kernel
2249 * @p: the to-be-kicked thread
2250 *
2251 * Cause a process which is running on another CPU to enter
2252 * kernel-mode, without any delay. (to get signals handled.)
2253 *
2254 * NOTE: this function doesnt have to take the runqueue lock,
2255 * because all it wants to ensure is that the remote task enters
2256 * the kernel. If the IPI races and the task has been migrated
2257 * to another CPU then no harm is done and the purpose has been
2258 * achieved as well.
2259 */
36c8b586 2260void kick_process(struct task_struct *p)
1da177e4
LT
2261{
2262 int cpu;
2263
2264 preempt_disable();
2265 cpu = task_cpu(p);
2266 if ((cpu != smp_processor_id()) && task_curr(p))
2267 smp_send_reschedule(cpu);
2268 preempt_enable();
2269}
b43e3521 2270EXPORT_SYMBOL_GPL(kick_process);
476d139c 2271#endif /* CONFIG_SMP */
1da177e4 2272
0793a61d
TG
2273/**
2274 * task_oncpu_function_call - call a function on the cpu on which a task runs
2275 * @p: the task to evaluate
2276 * @func: the function to be called
2277 * @info: the function call argument
2278 *
2279 * Calls the function @func when the task is currently running. This might
2280 * be on the current CPU, which just calls the function directly
2281 */
2282void task_oncpu_function_call(struct task_struct *p,
2283 void (*func) (void *info), void *info)
2284{
2285 int cpu;
2286
2287 preempt_disable();
2288 cpu = task_cpu(p);
2289 if (task_curr(p))
2290 smp_call_function_single(cpu, func, info, 1);
2291 preempt_enable();
2292}
2293
1da177e4
LT
2294/***
2295 * try_to_wake_up - wake up a thread
2296 * @p: the to-be-woken-up thread
2297 * @state: the mask of task states that can be woken
2298 * @sync: do a synchronous wakeup?
2299 *
2300 * Put it on the run-queue if it's not already there. The "current"
2301 * thread is always on the run-queue (except when the actual
2302 * re-schedule is in progress), and as such you're allowed to do
2303 * the simpler "current->state = TASK_RUNNING" to mark yourself
2304 * runnable without the overhead of this.
2305 *
2306 * returns failure only if the task is already active.
2307 */
7d478721
PZ
2308static int try_to_wake_up(struct task_struct *p, unsigned int state,
2309 int wake_flags)
1da177e4 2310{
cc367732 2311 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2312 unsigned long flags;
f5dc3753 2313 struct rq *rq, *orig_rq;
1da177e4 2314
b85d0667 2315 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2316 wake_flags &= ~WF_SYNC;
2398f2c6 2317
e9c84311 2318 this_cpu = get_cpu();
2398f2c6 2319
04e2f174 2320 smp_wmb();
f5dc3753 2321 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2322 update_rq_clock(rq);
e9c84311 2323 if (!(p->state & state))
1da177e4
LT
2324 goto out;
2325
dd41f596 2326 if (p->se.on_rq)
1da177e4
LT
2327 goto out_running;
2328
2329 cpu = task_cpu(p);
cc367732 2330 orig_cpu = cpu;
1da177e4
LT
2331
2332#ifdef CONFIG_SMP
2333 if (unlikely(task_running(rq, p)))
2334 goto out_activate;
2335
e9c84311
PZ
2336 /*
2337 * In order to handle concurrent wakeups and release the rq->lock
2338 * we put the task in TASK_WAKING state.
eb24073b
IM
2339 *
2340 * First fix up the nr_uninterruptible count:
e9c84311 2341 */
eb24073b
IM
2342 if (task_contributes_to_load(p))
2343 rq->nr_uninterruptible--;
e9c84311
PZ
2344 p->state = TASK_WAKING;
2345 task_rq_unlock(rq, &flags);
2346
7d478721 2347 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
e9c84311 2348 if (cpu != orig_cpu)
5d2f5a61 2349 set_task_cpu(p, cpu);
1da177e4 2350
e9c84311 2351 rq = task_rq_lock(p, &flags);
f5dc3753
MG
2352
2353 if (rq != orig_rq)
2354 update_rq_clock(rq);
2355
e9c84311
PZ
2356 WARN_ON(p->state != TASK_WAKING);
2357 cpu = task_cpu(p);
1da177e4 2358
e7693a36
GH
2359#ifdef CONFIG_SCHEDSTATS
2360 schedstat_inc(rq, ttwu_count);
2361 if (cpu == this_cpu)
2362 schedstat_inc(rq, ttwu_local);
2363 else {
2364 struct sched_domain *sd;
2365 for_each_domain(this_cpu, sd) {
758b2cdc 2366 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2367 schedstat_inc(sd, ttwu_wake_remote);
2368 break;
2369 }
2370 }
2371 }
6d6bc0ad 2372#endif /* CONFIG_SCHEDSTATS */
e7693a36 2373
1da177e4
LT
2374out_activate:
2375#endif /* CONFIG_SMP */
cc367732 2376 schedstat_inc(p, se.nr_wakeups);
7d478721 2377 if (wake_flags & WF_SYNC)
cc367732
IM
2378 schedstat_inc(p, se.nr_wakeups_sync);
2379 if (orig_cpu != cpu)
2380 schedstat_inc(p, se.nr_wakeups_migrate);
2381 if (cpu == this_cpu)
2382 schedstat_inc(p, se.nr_wakeups_local);
2383 else
2384 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2385 activate_task(rq, p, 1);
1da177e4
LT
2386 success = 1;
2387
831451ac
PZ
2388 /*
2389 * Only attribute actual wakeups done by this task.
2390 */
2391 if (!in_interrupt()) {
2392 struct sched_entity *se = &current->se;
2393 u64 sample = se->sum_exec_runtime;
2394
2395 if (se->last_wakeup)
2396 sample -= se->last_wakeup;
2397 else
2398 sample -= se->start_runtime;
2399 update_avg(&se->avg_wakeup, sample);
2400
2401 se->last_wakeup = se->sum_exec_runtime;
2402 }
2403
1da177e4 2404out_running:
468a15bb 2405 trace_sched_wakeup(rq, p, success);
7d478721 2406 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2407
1da177e4 2408 p->state = TASK_RUNNING;
9a897c5a
SR
2409#ifdef CONFIG_SMP
2410 if (p->sched_class->task_wake_up)
2411 p->sched_class->task_wake_up(rq, p);
2412#endif
1da177e4
LT
2413out:
2414 task_rq_unlock(rq, &flags);
e9c84311 2415 put_cpu();
1da177e4
LT
2416
2417 return success;
2418}
2419
50fa610a
DH
2420/**
2421 * wake_up_process - Wake up a specific process
2422 * @p: The process to be woken up.
2423 *
2424 * Attempt to wake up the nominated process and move it to the set of runnable
2425 * processes. Returns 1 if the process was woken up, 0 if it was already
2426 * running.
2427 *
2428 * It may be assumed that this function implies a write memory barrier before
2429 * changing the task state if and only if any tasks are woken up.
2430 */
7ad5b3a5 2431int wake_up_process(struct task_struct *p)
1da177e4 2432{
d9514f6c 2433 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2434}
1da177e4
LT
2435EXPORT_SYMBOL(wake_up_process);
2436
7ad5b3a5 2437int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2438{
2439 return try_to_wake_up(p, state, 0);
2440}
2441
1da177e4
LT
2442/*
2443 * Perform scheduler related setup for a newly forked process p.
2444 * p is forked by current.
dd41f596
IM
2445 *
2446 * __sched_fork() is basic setup used by init_idle() too:
2447 */
2448static void __sched_fork(struct task_struct *p)
2449{
dd41f596
IM
2450 p->se.exec_start = 0;
2451 p->se.sum_exec_runtime = 0;
f6cf891c 2452 p->se.prev_sum_exec_runtime = 0;
6c594c21 2453 p->se.nr_migrations = 0;
4ae7d5ce
IM
2454 p->se.last_wakeup = 0;
2455 p->se.avg_overlap = 0;
831451ac
PZ
2456 p->se.start_runtime = 0;
2457 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2458 p->se.avg_running = 0;
6cfb0d5d
IM
2459
2460#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2461 p->se.wait_start = 0;
2462 p->se.wait_max = 0;
2463 p->se.wait_count = 0;
2464 p->se.wait_sum = 0;
2465
2466 p->se.sleep_start = 0;
2467 p->se.sleep_max = 0;
2468 p->se.sum_sleep_runtime = 0;
2469
2470 p->se.block_start = 0;
2471 p->se.block_max = 0;
2472 p->se.exec_max = 0;
2473 p->se.slice_max = 0;
2474
2475 p->se.nr_migrations_cold = 0;
2476 p->se.nr_failed_migrations_affine = 0;
2477 p->se.nr_failed_migrations_running = 0;
2478 p->se.nr_failed_migrations_hot = 0;
2479 p->se.nr_forced_migrations = 0;
2480 p->se.nr_forced2_migrations = 0;
2481
2482 p->se.nr_wakeups = 0;
2483 p->se.nr_wakeups_sync = 0;
2484 p->se.nr_wakeups_migrate = 0;
2485 p->se.nr_wakeups_local = 0;
2486 p->se.nr_wakeups_remote = 0;
2487 p->se.nr_wakeups_affine = 0;
2488 p->se.nr_wakeups_affine_attempts = 0;
2489 p->se.nr_wakeups_passive = 0;
2490 p->se.nr_wakeups_idle = 0;
2491
6cfb0d5d 2492#endif
476d139c 2493
fa717060 2494 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2495 p->se.on_rq = 0;
4a55bd5e 2496 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2497
e107be36
AK
2498#ifdef CONFIG_PREEMPT_NOTIFIERS
2499 INIT_HLIST_HEAD(&p->preempt_notifiers);
2500#endif
2501
1da177e4
LT
2502 /*
2503 * We mark the process as running here, but have not actually
2504 * inserted it onto the runqueue yet. This guarantees that
2505 * nobody will actually run it, and a signal or other external
2506 * event cannot wake it up and insert it on the runqueue either.
2507 */
2508 p->state = TASK_RUNNING;
dd41f596
IM
2509}
2510
2511/*
2512 * fork()/clone()-time setup:
2513 */
2514void sched_fork(struct task_struct *p, int clone_flags)
2515{
2516 int cpu = get_cpu();
2517
2518 __sched_fork(p);
2519
b9dc29e7
MG
2520 /*
2521 * Revert to default priority/policy on fork if requested.
2522 */
2523 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2524 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2525 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2526 p->normal_prio = p->static_prio;
2527 }
b9dc29e7 2528
6c697bdf
MG
2529 if (PRIO_TO_NICE(p->static_prio) < 0) {
2530 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2531 p->normal_prio = p->static_prio;
6c697bdf
MG
2532 set_load_weight(p);
2533 }
2534
b9dc29e7
MG
2535 /*
2536 * We don't need the reset flag anymore after the fork. It has
2537 * fulfilled its duty:
2538 */
2539 p->sched_reset_on_fork = 0;
2540 }
ca94c442 2541
f83f9ac2
PW
2542 /*
2543 * Make sure we do not leak PI boosting priority to the child.
2544 */
2545 p->prio = current->normal_prio;
2546
2ddbf952
HS
2547 if (!rt_prio(p->prio))
2548 p->sched_class = &fair_sched_class;
b29739f9 2549
5f3edc1b
PZ
2550#ifdef CONFIG_SMP
2551 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2552#endif
2553 set_task_cpu(p, cpu);
2554
52f17b6c 2555#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2556 if (likely(sched_info_on()))
52f17b6c 2557 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2558#endif
d6077cb8 2559#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2560 p->oncpu = 0;
2561#endif
1da177e4 2562#ifdef CONFIG_PREEMPT
4866cde0 2563 /* Want to start with kernel preemption disabled. */
a1261f54 2564 task_thread_info(p)->preempt_count = 1;
1da177e4 2565#endif
917b627d
GH
2566 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2567
476d139c 2568 put_cpu();
1da177e4
LT
2569}
2570
2571/*
2572 * wake_up_new_task - wake up a newly created task for the first time.
2573 *
2574 * This function will do some initial scheduler statistics housekeeping
2575 * that must be done for every newly created context, then puts the task
2576 * on the runqueue and wakes it.
2577 */
7ad5b3a5 2578void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2579{
2580 unsigned long flags;
dd41f596 2581 struct rq *rq;
1da177e4
LT
2582
2583 rq = task_rq_lock(p, &flags);
147cbb4b 2584 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2585 update_rq_clock(rq);
1da177e4 2586
b9dca1e0 2587 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2588 activate_task(rq, p, 0);
1da177e4 2589 } else {
1da177e4 2590 /*
dd41f596
IM
2591 * Let the scheduling class do new task startup
2592 * management (if any):
1da177e4 2593 */
ee0827d8 2594 p->sched_class->task_new(rq, p);
c09595f6 2595 inc_nr_running(rq);
1da177e4 2596 }
c71dd42d 2597 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2598 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2599#ifdef CONFIG_SMP
2600 if (p->sched_class->task_wake_up)
2601 p->sched_class->task_wake_up(rq, p);
2602#endif
dd41f596 2603 task_rq_unlock(rq, &flags);
1da177e4
LT
2604}
2605
e107be36
AK
2606#ifdef CONFIG_PREEMPT_NOTIFIERS
2607
2608/**
80dd99b3 2609 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2610 * @notifier: notifier struct to register
e107be36
AK
2611 */
2612void preempt_notifier_register(struct preempt_notifier *notifier)
2613{
2614 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2615}
2616EXPORT_SYMBOL_GPL(preempt_notifier_register);
2617
2618/**
2619 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2620 * @notifier: notifier struct to unregister
e107be36
AK
2621 *
2622 * This is safe to call from within a preemption notifier.
2623 */
2624void preempt_notifier_unregister(struct preempt_notifier *notifier)
2625{
2626 hlist_del(&notifier->link);
2627}
2628EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2629
2630static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2631{
2632 struct preempt_notifier *notifier;
2633 struct hlist_node *node;
2634
2635 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2636 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2637}
2638
2639static void
2640fire_sched_out_preempt_notifiers(struct task_struct *curr,
2641 struct task_struct *next)
2642{
2643 struct preempt_notifier *notifier;
2644 struct hlist_node *node;
2645
2646 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2647 notifier->ops->sched_out(notifier, next);
2648}
2649
6d6bc0ad 2650#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2651
2652static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2653{
2654}
2655
2656static void
2657fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659{
2660}
2661
6d6bc0ad 2662#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2663
4866cde0
NP
2664/**
2665 * prepare_task_switch - prepare to switch tasks
2666 * @rq: the runqueue preparing to switch
421cee29 2667 * @prev: the current task that is being switched out
4866cde0
NP
2668 * @next: the task we are going to switch to.
2669 *
2670 * This is called with the rq lock held and interrupts off. It must
2671 * be paired with a subsequent finish_task_switch after the context
2672 * switch.
2673 *
2674 * prepare_task_switch sets up locking and calls architecture specific
2675 * hooks.
2676 */
e107be36
AK
2677static inline void
2678prepare_task_switch(struct rq *rq, struct task_struct *prev,
2679 struct task_struct *next)
4866cde0 2680{
e107be36 2681 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2682 prepare_lock_switch(rq, next);
2683 prepare_arch_switch(next);
2684}
2685
1da177e4
LT
2686/**
2687 * finish_task_switch - clean up after a task-switch
344babaa 2688 * @rq: runqueue associated with task-switch
1da177e4
LT
2689 * @prev: the thread we just switched away from.
2690 *
4866cde0
NP
2691 * finish_task_switch must be called after the context switch, paired
2692 * with a prepare_task_switch call before the context switch.
2693 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2694 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2695 *
2696 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2697 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2698 * with the lock held can cause deadlocks; see schedule() for
2699 * details.)
2700 */
a9957449 2701static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2702 __releases(rq->lock)
2703{
1da177e4 2704 struct mm_struct *mm = rq->prev_mm;
55a101f8 2705 long prev_state;
1da177e4
LT
2706
2707 rq->prev_mm = NULL;
2708
2709 /*
2710 * A task struct has one reference for the use as "current".
c394cc9f 2711 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2712 * schedule one last time. The schedule call will never return, and
2713 * the scheduled task must drop that reference.
c394cc9f 2714 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2715 * still held, otherwise prev could be scheduled on another cpu, die
2716 * there before we look at prev->state, and then the reference would
2717 * be dropped twice.
2718 * Manfred Spraul <manfred@colorfullife.com>
2719 */
55a101f8 2720 prev_state = prev->state;
4866cde0 2721 finish_arch_switch(prev);
cdd6c482 2722 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2723 finish_lock_switch(rq, prev);
e8fa1362 2724
e107be36 2725 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2726 if (mm)
2727 mmdrop(mm);
c394cc9f 2728 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2729 /*
2730 * Remove function-return probe instances associated with this
2731 * task and put them back on the free list.
9761eea8 2732 */
c6fd91f0 2733 kprobe_flush_task(prev);
1da177e4 2734 put_task_struct(prev);
c6fd91f0 2735 }
1da177e4
LT
2736}
2737
3f029d3c
GH
2738#ifdef CONFIG_SMP
2739
2740/* assumes rq->lock is held */
2741static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2742{
2743 if (prev->sched_class->pre_schedule)
2744 prev->sched_class->pre_schedule(rq, prev);
2745}
2746
2747/* rq->lock is NOT held, but preemption is disabled */
2748static inline void post_schedule(struct rq *rq)
2749{
2750 if (rq->post_schedule) {
2751 unsigned long flags;
2752
2753 spin_lock_irqsave(&rq->lock, flags);
2754 if (rq->curr->sched_class->post_schedule)
2755 rq->curr->sched_class->post_schedule(rq);
2756 spin_unlock_irqrestore(&rq->lock, flags);
2757
2758 rq->post_schedule = 0;
2759 }
2760}
2761
2762#else
da19ab51 2763
3f029d3c
GH
2764static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2765{
2766}
2767
2768static inline void post_schedule(struct rq *rq)
2769{
1da177e4
LT
2770}
2771
3f029d3c
GH
2772#endif
2773
1da177e4
LT
2774/**
2775 * schedule_tail - first thing a freshly forked thread must call.
2776 * @prev: the thread we just switched away from.
2777 */
36c8b586 2778asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2779 __releases(rq->lock)
2780{
70b97a7f
IM
2781 struct rq *rq = this_rq();
2782
4866cde0 2783 finish_task_switch(rq, prev);
da19ab51 2784
3f029d3c
GH
2785 /*
2786 * FIXME: do we need to worry about rq being invalidated by the
2787 * task_switch?
2788 */
2789 post_schedule(rq);
70b97a7f 2790
4866cde0
NP
2791#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2792 /* In this case, finish_task_switch does not reenable preemption */
2793 preempt_enable();
2794#endif
1da177e4 2795 if (current->set_child_tid)
b488893a 2796 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2797}
2798
2799/*
2800 * context_switch - switch to the new MM and the new
2801 * thread's register state.
2802 */
dd41f596 2803static inline void
70b97a7f 2804context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2805 struct task_struct *next)
1da177e4 2806{
dd41f596 2807 struct mm_struct *mm, *oldmm;
1da177e4 2808
e107be36 2809 prepare_task_switch(rq, prev, next);
0a16b607 2810 trace_sched_switch(rq, prev, next);
dd41f596
IM
2811 mm = next->mm;
2812 oldmm = prev->active_mm;
9226d125
ZA
2813 /*
2814 * For paravirt, this is coupled with an exit in switch_to to
2815 * combine the page table reload and the switch backend into
2816 * one hypercall.
2817 */
224101ed 2818 arch_start_context_switch(prev);
9226d125 2819
dd41f596 2820 if (unlikely(!mm)) {
1da177e4
LT
2821 next->active_mm = oldmm;
2822 atomic_inc(&oldmm->mm_count);
2823 enter_lazy_tlb(oldmm, next);
2824 } else
2825 switch_mm(oldmm, mm, next);
2826
dd41f596 2827 if (unlikely(!prev->mm)) {
1da177e4 2828 prev->active_mm = NULL;
1da177e4
LT
2829 rq->prev_mm = oldmm;
2830 }
3a5f5e48
IM
2831 /*
2832 * Since the runqueue lock will be released by the next
2833 * task (which is an invalid locking op but in the case
2834 * of the scheduler it's an obvious special-case), so we
2835 * do an early lockdep release here:
2836 */
2837#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2838 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2839#endif
1da177e4
LT
2840
2841 /* Here we just switch the register state and the stack. */
2842 switch_to(prev, next, prev);
2843
dd41f596
IM
2844 barrier();
2845 /*
2846 * this_rq must be evaluated again because prev may have moved
2847 * CPUs since it called schedule(), thus the 'rq' on its stack
2848 * frame will be invalid.
2849 */
2850 finish_task_switch(this_rq(), prev);
1da177e4
LT
2851}
2852
2853/*
2854 * nr_running, nr_uninterruptible and nr_context_switches:
2855 *
2856 * externally visible scheduler statistics: current number of runnable
2857 * threads, current number of uninterruptible-sleeping threads, total
2858 * number of context switches performed since bootup.
2859 */
2860unsigned long nr_running(void)
2861{
2862 unsigned long i, sum = 0;
2863
2864 for_each_online_cpu(i)
2865 sum += cpu_rq(i)->nr_running;
2866
2867 return sum;
2868}
2869
2870unsigned long nr_uninterruptible(void)
2871{
2872 unsigned long i, sum = 0;
2873
0a945022 2874 for_each_possible_cpu(i)
1da177e4
LT
2875 sum += cpu_rq(i)->nr_uninterruptible;
2876
2877 /*
2878 * Since we read the counters lockless, it might be slightly
2879 * inaccurate. Do not allow it to go below zero though:
2880 */
2881 if (unlikely((long)sum < 0))
2882 sum = 0;
2883
2884 return sum;
2885}
2886
2887unsigned long long nr_context_switches(void)
2888{
cc94abfc
SR
2889 int i;
2890 unsigned long long sum = 0;
1da177e4 2891
0a945022 2892 for_each_possible_cpu(i)
1da177e4
LT
2893 sum += cpu_rq(i)->nr_switches;
2894
2895 return sum;
2896}
2897
2898unsigned long nr_iowait(void)
2899{
2900 unsigned long i, sum = 0;
2901
0a945022 2902 for_each_possible_cpu(i)
1da177e4
LT
2903 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2904
2905 return sum;
2906}
2907
69d25870
AV
2908unsigned long nr_iowait_cpu(void)
2909{
2910 struct rq *this = this_rq();
2911 return atomic_read(&this->nr_iowait);
2912}
2913
2914unsigned long this_cpu_load(void)
2915{
2916 struct rq *this = this_rq();
2917 return this->cpu_load[0];
2918}
2919
2920
dce48a84
TG
2921/* Variables and functions for calc_load */
2922static atomic_long_t calc_load_tasks;
2923static unsigned long calc_load_update;
2924unsigned long avenrun[3];
2925EXPORT_SYMBOL(avenrun);
2926
2d02494f
TG
2927/**
2928 * get_avenrun - get the load average array
2929 * @loads: pointer to dest load array
2930 * @offset: offset to add
2931 * @shift: shift count to shift the result left
2932 *
2933 * These values are estimates at best, so no need for locking.
2934 */
2935void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2936{
2937 loads[0] = (avenrun[0] + offset) << shift;
2938 loads[1] = (avenrun[1] + offset) << shift;
2939 loads[2] = (avenrun[2] + offset) << shift;
2940}
2941
dce48a84
TG
2942static unsigned long
2943calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2944{
dce48a84
TG
2945 load *= exp;
2946 load += active * (FIXED_1 - exp);
2947 return load >> FSHIFT;
2948}
db1b1fef 2949
dce48a84
TG
2950/*
2951 * calc_load - update the avenrun load estimates 10 ticks after the
2952 * CPUs have updated calc_load_tasks.
2953 */
2954void calc_global_load(void)
2955{
2956 unsigned long upd = calc_load_update + 10;
2957 long active;
2958
2959 if (time_before(jiffies, upd))
2960 return;
db1b1fef 2961
dce48a84
TG
2962 active = atomic_long_read(&calc_load_tasks);
2963 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2964
dce48a84
TG
2965 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2966 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2967 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2968
2969 calc_load_update += LOAD_FREQ;
2970}
2971
2972/*
2973 * Either called from update_cpu_load() or from a cpu going idle
2974 */
2975static void calc_load_account_active(struct rq *this_rq)
2976{
2977 long nr_active, delta;
2978
2979 nr_active = this_rq->nr_running;
2980 nr_active += (long) this_rq->nr_uninterruptible;
2981
2982 if (nr_active != this_rq->calc_load_active) {
2983 delta = nr_active - this_rq->calc_load_active;
2984 this_rq->calc_load_active = nr_active;
2985 atomic_long_add(delta, &calc_load_tasks);
2986 }
db1b1fef
JS
2987}
2988
48f24c4d 2989/*
dd41f596
IM
2990 * Update rq->cpu_load[] statistics. This function is usually called every
2991 * scheduler tick (TICK_NSEC).
48f24c4d 2992 */
dd41f596 2993static void update_cpu_load(struct rq *this_rq)
48f24c4d 2994{
495eca49 2995 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2996 int i, scale;
2997
2998 this_rq->nr_load_updates++;
dd41f596
IM
2999
3000 /* Update our load: */
3001 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3002 unsigned long old_load, new_load;
3003
3004 /* scale is effectively 1 << i now, and >> i divides by scale */
3005
3006 old_load = this_rq->cpu_load[i];
3007 new_load = this_load;
a25707f3
IM
3008 /*
3009 * Round up the averaging division if load is increasing. This
3010 * prevents us from getting stuck on 9 if the load is 10, for
3011 * example.
3012 */
3013 if (new_load > old_load)
3014 new_load += scale-1;
dd41f596
IM
3015 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3016 }
dce48a84
TG
3017
3018 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3019 this_rq->calc_load_update += LOAD_FREQ;
3020 calc_load_account_active(this_rq);
3021 }
48f24c4d
IM
3022}
3023
dd41f596
IM
3024#ifdef CONFIG_SMP
3025
1da177e4
LT
3026/*
3027 * double_rq_lock - safely lock two runqueues
3028 *
3029 * Note this does not disable interrupts like task_rq_lock,
3030 * you need to do so manually before calling.
3031 */
70b97a7f 3032static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3033 __acquires(rq1->lock)
3034 __acquires(rq2->lock)
3035{
054b9108 3036 BUG_ON(!irqs_disabled());
1da177e4
LT
3037 if (rq1 == rq2) {
3038 spin_lock(&rq1->lock);
3039 __acquire(rq2->lock); /* Fake it out ;) */
3040 } else {
c96d145e 3041 if (rq1 < rq2) {
1da177e4 3042 spin_lock(&rq1->lock);
5e710e37 3043 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3044 } else {
3045 spin_lock(&rq2->lock);
5e710e37 3046 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3047 }
3048 }
6e82a3be
IM
3049 update_rq_clock(rq1);
3050 update_rq_clock(rq2);
1da177e4
LT
3051}
3052
3053/*
3054 * double_rq_unlock - safely unlock two runqueues
3055 *
3056 * Note this does not restore interrupts like task_rq_unlock,
3057 * you need to do so manually after calling.
3058 */
70b97a7f 3059static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3060 __releases(rq1->lock)
3061 __releases(rq2->lock)
3062{
3063 spin_unlock(&rq1->lock);
3064 if (rq1 != rq2)
3065 spin_unlock(&rq2->lock);
3066 else
3067 __release(rq2->lock);
3068}
3069
1da177e4
LT
3070/*
3071 * If dest_cpu is allowed for this process, migrate the task to it.
3072 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3073 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3074 * the cpu_allowed mask is restored.
3075 */
36c8b586 3076static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3077{
70b97a7f 3078 struct migration_req req;
1da177e4 3079 unsigned long flags;
70b97a7f 3080 struct rq *rq;
1da177e4
LT
3081
3082 rq = task_rq_lock(p, &flags);
96f874e2 3083 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3084 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3085 goto out;
3086
3087 /* force the process onto the specified CPU */
3088 if (migrate_task(p, dest_cpu, &req)) {
3089 /* Need to wait for migration thread (might exit: take ref). */
3090 struct task_struct *mt = rq->migration_thread;
36c8b586 3091
1da177e4
LT
3092 get_task_struct(mt);
3093 task_rq_unlock(rq, &flags);
3094 wake_up_process(mt);
3095 put_task_struct(mt);
3096 wait_for_completion(&req.done);
36c8b586 3097
1da177e4
LT
3098 return;
3099 }
3100out:
3101 task_rq_unlock(rq, &flags);
3102}
3103
3104/*
476d139c
NP
3105 * sched_exec - execve() is a valuable balancing opportunity, because at
3106 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3107 */
3108void sched_exec(void)
3109{
1da177e4 3110 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3111 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3112 put_cpu();
476d139c
NP
3113 if (new_cpu != this_cpu)
3114 sched_migrate_task(current, new_cpu);
1da177e4
LT
3115}
3116
3117/*
3118 * pull_task - move a task from a remote runqueue to the local runqueue.
3119 * Both runqueues must be locked.
3120 */
dd41f596
IM
3121static void pull_task(struct rq *src_rq, struct task_struct *p,
3122 struct rq *this_rq, int this_cpu)
1da177e4 3123{
2e1cb74a 3124 deactivate_task(src_rq, p, 0);
1da177e4 3125 set_task_cpu(p, this_cpu);
dd41f596 3126 activate_task(this_rq, p, 0);
1da177e4
LT
3127 /*
3128 * Note that idle threads have a prio of MAX_PRIO, for this test
3129 * to be always true for them.
3130 */
15afe09b 3131 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3132}
3133
3134/*
3135 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3136 */
858119e1 3137static
70b97a7f 3138int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3139 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3140 int *all_pinned)
1da177e4 3141{
708dc512 3142 int tsk_cache_hot = 0;
1da177e4
LT
3143 /*
3144 * We do not migrate tasks that are:
3145 * 1) running (obviously), or
3146 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3147 * 3) are cache-hot on their current CPU.
3148 */
96f874e2 3149 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3150 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3151 return 0;
cc367732 3152 }
81026794
NP
3153 *all_pinned = 0;
3154
cc367732
IM
3155 if (task_running(rq, p)) {
3156 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3157 return 0;
cc367732 3158 }
1da177e4 3159
da84d961
IM
3160 /*
3161 * Aggressive migration if:
3162 * 1) task is cache cold, or
3163 * 2) too many balance attempts have failed.
3164 */
3165
708dc512
LH
3166 tsk_cache_hot = task_hot(p, rq->clock, sd);
3167 if (!tsk_cache_hot ||
3168 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3169#ifdef CONFIG_SCHEDSTATS
708dc512 3170 if (tsk_cache_hot) {
da84d961 3171 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3172 schedstat_inc(p, se.nr_forced_migrations);
3173 }
da84d961
IM
3174#endif
3175 return 1;
3176 }
3177
708dc512 3178 if (tsk_cache_hot) {
cc367732 3179 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3180 return 0;
cc367732 3181 }
1da177e4
LT
3182 return 1;
3183}
3184
e1d1484f
PW
3185static unsigned long
3186balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3187 unsigned long max_load_move, struct sched_domain *sd,
3188 enum cpu_idle_type idle, int *all_pinned,
3189 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3190{
051c6764 3191 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3192 struct task_struct *p;
3193 long rem_load_move = max_load_move;
1da177e4 3194
e1d1484f 3195 if (max_load_move == 0)
1da177e4
LT
3196 goto out;
3197
81026794
NP
3198 pinned = 1;
3199
1da177e4 3200 /*
dd41f596 3201 * Start the load-balancing iterator:
1da177e4 3202 */
dd41f596
IM
3203 p = iterator->start(iterator->arg);
3204next:
b82d9fdd 3205 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3206 goto out;
051c6764
PZ
3207
3208 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3209 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3210 p = iterator->next(iterator->arg);
3211 goto next;
1da177e4
LT
3212 }
3213
dd41f596 3214 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3215 pulled++;
dd41f596 3216 rem_load_move -= p->se.load.weight;
1da177e4 3217
7e96fa58
GH
3218#ifdef CONFIG_PREEMPT
3219 /*
3220 * NEWIDLE balancing is a source of latency, so preemptible kernels
3221 * will stop after the first task is pulled to minimize the critical
3222 * section.
3223 */
3224 if (idle == CPU_NEWLY_IDLE)
3225 goto out;
3226#endif
3227
2dd73a4f 3228 /*
b82d9fdd 3229 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3230 */
e1d1484f 3231 if (rem_load_move > 0) {
a4ac01c3
PW
3232 if (p->prio < *this_best_prio)
3233 *this_best_prio = p->prio;
dd41f596
IM
3234 p = iterator->next(iterator->arg);
3235 goto next;
1da177e4
LT
3236 }
3237out:
3238 /*
e1d1484f 3239 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3240 * so we can safely collect pull_task() stats here rather than
3241 * inside pull_task().
3242 */
3243 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3244
3245 if (all_pinned)
3246 *all_pinned = pinned;
e1d1484f
PW
3247
3248 return max_load_move - rem_load_move;
1da177e4
LT
3249}
3250
dd41f596 3251/*
43010659
PW
3252 * move_tasks tries to move up to max_load_move weighted load from busiest to
3253 * this_rq, as part of a balancing operation within domain "sd".
3254 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3255 *
3256 * Called with both runqueues locked.
3257 */
3258static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3259 unsigned long max_load_move,
dd41f596
IM
3260 struct sched_domain *sd, enum cpu_idle_type idle,
3261 int *all_pinned)
3262{
5522d5d5 3263 const struct sched_class *class = sched_class_highest;
43010659 3264 unsigned long total_load_moved = 0;
a4ac01c3 3265 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3266
3267 do {
43010659
PW
3268 total_load_moved +=
3269 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3270 max_load_move - total_load_moved,
a4ac01c3 3271 sd, idle, all_pinned, &this_best_prio);
dd41f596 3272 class = class->next;
c4acb2c0 3273
7e96fa58
GH
3274#ifdef CONFIG_PREEMPT
3275 /*
3276 * NEWIDLE balancing is a source of latency, so preemptible
3277 * kernels will stop after the first task is pulled to minimize
3278 * the critical section.
3279 */
c4acb2c0
GH
3280 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3281 break;
7e96fa58 3282#endif
43010659 3283 } while (class && max_load_move > total_load_moved);
dd41f596 3284
43010659
PW
3285 return total_load_moved > 0;
3286}
3287
e1d1484f
PW
3288static int
3289iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3290 struct sched_domain *sd, enum cpu_idle_type idle,
3291 struct rq_iterator *iterator)
3292{
3293 struct task_struct *p = iterator->start(iterator->arg);
3294 int pinned = 0;
3295
3296 while (p) {
3297 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3298 pull_task(busiest, p, this_rq, this_cpu);
3299 /*
3300 * Right now, this is only the second place pull_task()
3301 * is called, so we can safely collect pull_task()
3302 * stats here rather than inside pull_task().
3303 */
3304 schedstat_inc(sd, lb_gained[idle]);
3305
3306 return 1;
3307 }
3308 p = iterator->next(iterator->arg);
3309 }
3310
3311 return 0;
3312}
3313
43010659
PW
3314/*
3315 * move_one_task tries to move exactly one task from busiest to this_rq, as
3316 * part of active balancing operations within "domain".
3317 * Returns 1 if successful and 0 otherwise.
3318 *
3319 * Called with both runqueues locked.
3320 */
3321static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3322 struct sched_domain *sd, enum cpu_idle_type idle)
3323{
5522d5d5 3324 const struct sched_class *class;
43010659 3325
cde7e5ca 3326 for_each_class(class) {
e1d1484f 3327 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3328 return 1;
cde7e5ca 3329 }
43010659
PW
3330
3331 return 0;
dd41f596 3332}
67bb6c03 3333/********** Helpers for find_busiest_group ************************/
1da177e4 3334/*
222d656d
GS
3335 * sd_lb_stats - Structure to store the statistics of a sched_domain
3336 * during load balancing.
1da177e4 3337 */
222d656d
GS
3338struct sd_lb_stats {
3339 struct sched_group *busiest; /* Busiest group in this sd */
3340 struct sched_group *this; /* Local group in this sd */
3341 unsigned long total_load; /* Total load of all groups in sd */
3342 unsigned long total_pwr; /* Total power of all groups in sd */
3343 unsigned long avg_load; /* Average load across all groups in sd */
3344
3345 /** Statistics of this group */
3346 unsigned long this_load;
3347 unsigned long this_load_per_task;
3348 unsigned long this_nr_running;
3349
3350 /* Statistics of the busiest group */
3351 unsigned long max_load;
3352 unsigned long busiest_load_per_task;
3353 unsigned long busiest_nr_running;
3354
3355 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3356#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3357 int power_savings_balance; /* Is powersave balance needed for this sd */
3358 struct sched_group *group_min; /* Least loaded group in sd */
3359 struct sched_group *group_leader; /* Group which relieves group_min */
3360 unsigned long min_load_per_task; /* load_per_task in group_min */
3361 unsigned long leader_nr_running; /* Nr running of group_leader */
3362 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3363#endif
222d656d 3364};
1da177e4 3365
d5ac537e 3366/*
381be78f
GS
3367 * sg_lb_stats - stats of a sched_group required for load_balancing
3368 */
3369struct sg_lb_stats {
3370 unsigned long avg_load; /*Avg load across the CPUs of the group */
3371 unsigned long group_load; /* Total load over the CPUs of the group */
3372 unsigned long sum_nr_running; /* Nr tasks running in the group */
3373 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3374 unsigned long group_capacity;
3375 int group_imb; /* Is there an imbalance in the group ? */
3376};
408ed066 3377
67bb6c03
GS
3378/**
3379 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3380 * @group: The group whose first cpu is to be returned.
3381 */
3382static inline unsigned int group_first_cpu(struct sched_group *group)
3383{
3384 return cpumask_first(sched_group_cpus(group));
3385}
3386
3387/**
3388 * get_sd_load_idx - Obtain the load index for a given sched domain.
3389 * @sd: The sched_domain whose load_idx is to be obtained.
3390 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3391 */
3392static inline int get_sd_load_idx(struct sched_domain *sd,
3393 enum cpu_idle_type idle)
3394{
3395 int load_idx;
3396
3397 switch (idle) {
3398 case CPU_NOT_IDLE:
7897986b 3399 load_idx = sd->busy_idx;
67bb6c03
GS
3400 break;
3401
3402 case CPU_NEWLY_IDLE:
7897986b 3403 load_idx = sd->newidle_idx;
67bb6c03
GS
3404 break;
3405 default:
7897986b 3406 load_idx = sd->idle_idx;
67bb6c03
GS
3407 break;
3408 }
1da177e4 3409
67bb6c03
GS
3410 return load_idx;
3411}
1da177e4 3412
1da177e4 3413
c071df18
GS
3414#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3415/**
3416 * init_sd_power_savings_stats - Initialize power savings statistics for
3417 * the given sched_domain, during load balancing.
3418 *
3419 * @sd: Sched domain whose power-savings statistics are to be initialized.
3420 * @sds: Variable containing the statistics for sd.
3421 * @idle: Idle status of the CPU at which we're performing load-balancing.
3422 */
3423static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3424 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3425{
3426 /*
3427 * Busy processors will not participate in power savings
3428 * balance.
3429 */
3430 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3431 sds->power_savings_balance = 0;
3432 else {
3433 sds->power_savings_balance = 1;
3434 sds->min_nr_running = ULONG_MAX;
3435 sds->leader_nr_running = 0;
3436 }
3437}
783609c6 3438
c071df18
GS
3439/**
3440 * update_sd_power_savings_stats - Update the power saving stats for a
3441 * sched_domain while performing load balancing.
3442 *
3443 * @group: sched_group belonging to the sched_domain under consideration.
3444 * @sds: Variable containing the statistics of the sched_domain
3445 * @local_group: Does group contain the CPU for which we're performing
3446 * load balancing ?
3447 * @sgs: Variable containing the statistics of the group.
3448 */
3449static inline void update_sd_power_savings_stats(struct sched_group *group,
3450 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3451{
408ed066 3452
c071df18
GS
3453 if (!sds->power_savings_balance)
3454 return;
1da177e4 3455
c071df18
GS
3456 /*
3457 * If the local group is idle or completely loaded
3458 * no need to do power savings balance at this domain
3459 */
3460 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3461 !sds->this_nr_running))
3462 sds->power_savings_balance = 0;
2dd73a4f 3463
c071df18
GS
3464 /*
3465 * If a group is already running at full capacity or idle,
3466 * don't include that group in power savings calculations
3467 */
3468 if (!sds->power_savings_balance ||
3469 sgs->sum_nr_running >= sgs->group_capacity ||
3470 !sgs->sum_nr_running)
3471 return;
5969fe06 3472
c071df18
GS
3473 /*
3474 * Calculate the group which has the least non-idle load.
3475 * This is the group from where we need to pick up the load
3476 * for saving power
3477 */
3478 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3479 (sgs->sum_nr_running == sds->min_nr_running &&
3480 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3481 sds->group_min = group;
3482 sds->min_nr_running = sgs->sum_nr_running;
3483 sds->min_load_per_task = sgs->sum_weighted_load /
3484 sgs->sum_nr_running;
3485 }
783609c6 3486
c071df18
GS
3487 /*
3488 * Calculate the group which is almost near its
3489 * capacity but still has some space to pick up some load
3490 * from other group and save more power
3491 */
d899a789 3492 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3493 return;
1da177e4 3494
c071df18
GS
3495 if (sgs->sum_nr_running > sds->leader_nr_running ||
3496 (sgs->sum_nr_running == sds->leader_nr_running &&
3497 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3498 sds->group_leader = group;
3499 sds->leader_nr_running = sgs->sum_nr_running;
3500 }
3501}
408ed066 3502
c071df18 3503/**
d5ac537e 3504 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3505 * @sds: Variable containing the statistics of the sched_domain
3506 * under consideration.
3507 * @this_cpu: Cpu at which we're currently performing load-balancing.
3508 * @imbalance: Variable to store the imbalance.
3509 *
d5ac537e
RD
3510 * Description:
3511 * Check if we have potential to perform some power-savings balance.
3512 * If yes, set the busiest group to be the least loaded group in the
3513 * sched_domain, so that it's CPUs can be put to idle.
3514 *
c071df18
GS
3515 * Returns 1 if there is potential to perform power-savings balance.
3516 * Else returns 0.
3517 */
3518static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3519 int this_cpu, unsigned long *imbalance)
3520{
3521 if (!sds->power_savings_balance)
3522 return 0;
1da177e4 3523
c071df18
GS
3524 if (sds->this != sds->group_leader ||
3525 sds->group_leader == sds->group_min)
3526 return 0;
783609c6 3527
c071df18
GS
3528 *imbalance = sds->min_load_per_task;
3529 sds->busiest = sds->group_min;
1da177e4 3530
c071df18 3531 return 1;
1da177e4 3532
c071df18
GS
3533}
3534#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3535static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3536 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3537{
3538 return;
3539}
408ed066 3540
c071df18
GS
3541static inline void update_sd_power_savings_stats(struct sched_group *group,
3542 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3543{
3544 return;
3545}
3546
3547static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3548 int this_cpu, unsigned long *imbalance)
3549{
3550 return 0;
3551}
3552#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3553
d6a59aa3
PZ
3554
3555unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3556{
3557 return SCHED_LOAD_SCALE;
3558}
3559
3560unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3561{
3562 return default_scale_freq_power(sd, cpu);
3563}
3564
3565unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3566{
3567 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3568 unsigned long smt_gain = sd->smt_gain;
3569
3570 smt_gain /= weight;
3571
3572 return smt_gain;
3573}
3574
d6a59aa3
PZ
3575unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3576{
3577 return default_scale_smt_power(sd, cpu);
3578}
3579
e9e9250b
PZ
3580unsigned long scale_rt_power(int cpu)
3581{
3582 struct rq *rq = cpu_rq(cpu);
3583 u64 total, available;
3584
3585 sched_avg_update(rq);
3586
3587 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3588 available = total - rq->rt_avg;
3589
3590 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3591 total = SCHED_LOAD_SCALE;
3592
3593 total >>= SCHED_LOAD_SHIFT;
3594
3595 return div_u64(available, total);
3596}
3597
ab29230e
PZ
3598static void update_cpu_power(struct sched_domain *sd, int cpu)
3599{
3600 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3601 unsigned long power = SCHED_LOAD_SCALE;
3602 struct sched_group *sdg = sd->groups;
ab29230e 3603
8e6598af
PZ
3604 if (sched_feat(ARCH_POWER))
3605 power *= arch_scale_freq_power(sd, cpu);
3606 else
3607 power *= default_scale_freq_power(sd, cpu);
3608
d6a59aa3 3609 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3610
3611 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3612 if (sched_feat(ARCH_POWER))
3613 power *= arch_scale_smt_power(sd, cpu);
3614 else
3615 power *= default_scale_smt_power(sd, cpu);
3616
ab29230e
PZ
3617 power >>= SCHED_LOAD_SHIFT;
3618 }
3619
e9e9250b
PZ
3620 power *= scale_rt_power(cpu);
3621 power >>= SCHED_LOAD_SHIFT;
3622
3623 if (!power)
3624 power = 1;
ab29230e 3625
18a3885f 3626 sdg->cpu_power = power;
ab29230e
PZ
3627}
3628
3629static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3630{
3631 struct sched_domain *child = sd->child;
3632 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3633 unsigned long power;
cc9fba7d
PZ
3634
3635 if (!child) {
ab29230e 3636 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3637 return;
3638 }
3639
d7ea17a7 3640 power = 0;
cc9fba7d
PZ
3641
3642 group = child->groups;
3643 do {
d7ea17a7 3644 power += group->cpu_power;
cc9fba7d
PZ
3645 group = group->next;
3646 } while (group != child->groups);
d7ea17a7
IM
3647
3648 sdg->cpu_power = power;
cc9fba7d 3649}
c071df18 3650
1f8c553d
GS
3651/**
3652 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3653 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3654 * @group: sched_group whose statistics are to be updated.
3655 * @this_cpu: Cpu for which load balance is currently performed.
3656 * @idle: Idle status of this_cpu
3657 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3658 * @sd_idle: Idle status of the sched_domain containing group.
3659 * @local_group: Does group contain this_cpu.
3660 * @cpus: Set of cpus considered for load balancing.
3661 * @balance: Should we balance.
3662 * @sgs: variable to hold the statistics for this group.
3663 */
cc9fba7d
PZ
3664static inline void update_sg_lb_stats(struct sched_domain *sd,
3665 struct sched_group *group, int this_cpu,
1f8c553d
GS
3666 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3667 int local_group, const struct cpumask *cpus,
3668 int *balance, struct sg_lb_stats *sgs)
3669{
3670 unsigned long load, max_cpu_load, min_cpu_load;
3671 int i;
3672 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3673 unsigned long sum_avg_load_per_task;
3674 unsigned long avg_load_per_task;
3675
cc9fba7d 3676 if (local_group) {
1f8c553d 3677 balance_cpu = group_first_cpu(group);
cc9fba7d 3678 if (balance_cpu == this_cpu)
ab29230e 3679 update_group_power(sd, this_cpu);
cc9fba7d 3680 }
1f8c553d
GS
3681
3682 /* Tally up the load of all CPUs in the group */
3683 sum_avg_load_per_task = avg_load_per_task = 0;
3684 max_cpu_load = 0;
3685 min_cpu_load = ~0UL;
408ed066 3686
1f8c553d
GS
3687 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3688 struct rq *rq = cpu_rq(i);
908a7c1b 3689
1f8c553d
GS
3690 if (*sd_idle && rq->nr_running)
3691 *sd_idle = 0;
5c45bf27 3692
1f8c553d 3693 /* Bias balancing toward cpus of our domain */
1da177e4 3694 if (local_group) {
1f8c553d
GS
3695 if (idle_cpu(i) && !first_idle_cpu) {
3696 first_idle_cpu = 1;
3697 balance_cpu = i;
3698 }
3699
3700 load = target_load(i, load_idx);
3701 } else {
3702 load = source_load(i, load_idx);
3703 if (load > max_cpu_load)
3704 max_cpu_load = load;
3705 if (min_cpu_load > load)
3706 min_cpu_load = load;
1da177e4 3707 }
5c45bf27 3708
1f8c553d
GS
3709 sgs->group_load += load;
3710 sgs->sum_nr_running += rq->nr_running;
3711 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3712
1f8c553d
GS
3713 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3714 }
5c45bf27 3715
1f8c553d
GS
3716 /*
3717 * First idle cpu or the first cpu(busiest) in this sched group
3718 * is eligible for doing load balancing at this and above
3719 * domains. In the newly idle case, we will allow all the cpu's
3720 * to do the newly idle load balance.
3721 */
3722 if (idle != CPU_NEWLY_IDLE && local_group &&
3723 balance_cpu != this_cpu && balance) {
3724 *balance = 0;
3725 return;
3726 }
5c45bf27 3727
1f8c553d 3728 /* Adjust by relative CPU power of the group */
18a3885f 3729 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3730
1f8c553d
GS
3731
3732 /*
3733 * Consider the group unbalanced when the imbalance is larger
3734 * than the average weight of two tasks.
3735 *
3736 * APZ: with cgroup the avg task weight can vary wildly and
3737 * might not be a suitable number - should we keep a
3738 * normalized nr_running number somewhere that negates
3739 * the hierarchy?
3740 */
18a3885f
PZ
3741 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3742 group->cpu_power;
1f8c553d
GS
3743
3744 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3745 sgs->group_imb = 1;
3746
bdb94aa5 3747 sgs->group_capacity =
18a3885f 3748 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3749}
dd41f596 3750
37abe198
GS
3751/**
3752 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3753 * @sd: sched_domain whose statistics are to be updated.
3754 * @this_cpu: Cpu for which load balance is currently performed.
3755 * @idle: Idle status of this_cpu
3756 * @sd_idle: Idle status of the sched_domain containing group.
3757 * @cpus: Set of cpus considered for load balancing.
3758 * @balance: Should we balance.
3759 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3760 */
37abe198
GS
3761static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3762 enum cpu_idle_type idle, int *sd_idle,
3763 const struct cpumask *cpus, int *balance,
3764 struct sd_lb_stats *sds)
1da177e4 3765{
b5d978e0 3766 struct sched_domain *child = sd->child;
222d656d 3767 struct sched_group *group = sd->groups;
37abe198 3768 struct sg_lb_stats sgs;
b5d978e0
PZ
3769 int load_idx, prefer_sibling = 0;
3770
3771 if (child && child->flags & SD_PREFER_SIBLING)
3772 prefer_sibling = 1;
222d656d 3773
c071df18 3774 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3775 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3776
3777 do {
1da177e4 3778 int local_group;
1da177e4 3779
758b2cdc
RR
3780 local_group = cpumask_test_cpu(this_cpu,
3781 sched_group_cpus(group));
381be78f 3782 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3783 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3784 local_group, cpus, balance, &sgs);
1da177e4 3785
37abe198
GS
3786 if (local_group && balance && !(*balance))
3787 return;
783609c6 3788
37abe198 3789 sds->total_load += sgs.group_load;
18a3885f 3790 sds->total_pwr += group->cpu_power;
1da177e4 3791
b5d978e0
PZ
3792 /*
3793 * In case the child domain prefers tasks go to siblings
3794 * first, lower the group capacity to one so that we'll try
3795 * and move all the excess tasks away.
3796 */
3797 if (prefer_sibling)
bdb94aa5 3798 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3799
1da177e4 3800 if (local_group) {
37abe198
GS
3801 sds->this_load = sgs.avg_load;
3802 sds->this = group;
3803 sds->this_nr_running = sgs.sum_nr_running;
3804 sds->this_load_per_task = sgs.sum_weighted_load;
3805 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3806 (sgs.sum_nr_running > sgs.group_capacity ||
3807 sgs.group_imb)) {
37abe198
GS
3808 sds->max_load = sgs.avg_load;
3809 sds->busiest = group;
3810 sds->busiest_nr_running = sgs.sum_nr_running;
3811 sds->busiest_load_per_task = sgs.sum_weighted_load;
3812 sds->group_imb = sgs.group_imb;
48f24c4d 3813 }
5c45bf27 3814
c071df18 3815 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3816 group = group->next;
3817 } while (group != sd->groups);
37abe198 3818}
1da177e4 3819
2e6f44ae
GS
3820/**
3821 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3822 * amongst the groups of a sched_domain, during
3823 * load balancing.
2e6f44ae
GS
3824 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3825 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3826 * @imbalance: Variable to store the imbalance.
3827 */
3828static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3829 int this_cpu, unsigned long *imbalance)
3830{
3831 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3832 unsigned int imbn = 2;
3833
3834 if (sds->this_nr_running) {
3835 sds->this_load_per_task /= sds->this_nr_running;
3836 if (sds->busiest_load_per_task >
3837 sds->this_load_per_task)
3838 imbn = 1;
3839 } else
3840 sds->this_load_per_task =
3841 cpu_avg_load_per_task(this_cpu);
1da177e4 3842
2e6f44ae
GS
3843 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3844 sds->busiest_load_per_task * imbn) {
3845 *imbalance = sds->busiest_load_per_task;
3846 return;
3847 }
908a7c1b 3848
1da177e4 3849 /*
2e6f44ae
GS
3850 * OK, we don't have enough imbalance to justify moving tasks,
3851 * however we may be able to increase total CPU power used by
3852 * moving them.
1da177e4 3853 */
2dd73a4f 3854
18a3885f 3855 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3856 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3857 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3858 min(sds->this_load_per_task, sds->this_load);
3859 pwr_now /= SCHED_LOAD_SCALE;
3860
3861 /* Amount of load we'd subtract */
18a3885f
PZ
3862 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3863 sds->busiest->cpu_power;
2e6f44ae 3864 if (sds->max_load > tmp)
18a3885f 3865 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3866 min(sds->busiest_load_per_task, sds->max_load - tmp);
3867
3868 /* Amount of load we'd add */
18a3885f 3869 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3870 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3871 tmp = (sds->max_load * sds->busiest->cpu_power) /
3872 sds->this->cpu_power;
2e6f44ae 3873 else
18a3885f
PZ
3874 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3875 sds->this->cpu_power;
3876 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3877 min(sds->this_load_per_task, sds->this_load + tmp);
3878 pwr_move /= SCHED_LOAD_SCALE;
3879
3880 /* Move if we gain throughput */
3881 if (pwr_move > pwr_now)
3882 *imbalance = sds->busiest_load_per_task;
3883}
dbc523a3
GS
3884
3885/**
3886 * calculate_imbalance - Calculate the amount of imbalance present within the
3887 * groups of a given sched_domain during load balance.
3888 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3889 * @this_cpu: Cpu for which currently load balance is being performed.
3890 * @imbalance: The variable to store the imbalance.
3891 */
3892static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3893 unsigned long *imbalance)
3894{
3895 unsigned long max_pull;
2dd73a4f
PW
3896 /*
3897 * In the presence of smp nice balancing, certain scenarios can have
3898 * max load less than avg load(as we skip the groups at or below
3899 * its cpu_power, while calculating max_load..)
3900 */
dbc523a3 3901 if (sds->max_load < sds->avg_load) {
2dd73a4f 3902 *imbalance = 0;
dbc523a3 3903 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3904 }
0c117f1b
SS
3905
3906 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3907 max_pull = min(sds->max_load - sds->avg_load,
3908 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3909
1da177e4 3910 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3911 *imbalance = min(max_pull * sds->busiest->cpu_power,
3912 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3913 / SCHED_LOAD_SCALE;
3914
2dd73a4f
PW
3915 /*
3916 * if *imbalance is less than the average load per runnable task
3917 * there is no gaurantee that any tasks will be moved so we'll have
3918 * a think about bumping its value to force at least one task to be
3919 * moved
3920 */
dbc523a3
GS
3921 if (*imbalance < sds->busiest_load_per_task)
3922 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3923
dbc523a3 3924}
37abe198 3925/******* find_busiest_group() helpers end here *********************/
1da177e4 3926
b7bb4c9b
GS
3927/**
3928 * find_busiest_group - Returns the busiest group within the sched_domain
3929 * if there is an imbalance. If there isn't an imbalance, and
3930 * the user has opted for power-savings, it returns a group whose
3931 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3932 * such a group exists.
3933 *
3934 * Also calculates the amount of weighted load which should be moved
3935 * to restore balance.
3936 *
3937 * @sd: The sched_domain whose busiest group is to be returned.
3938 * @this_cpu: The cpu for which load balancing is currently being performed.
3939 * @imbalance: Variable which stores amount of weighted load which should
3940 * be moved to restore balance/put a group to idle.
3941 * @idle: The idle status of this_cpu.
3942 * @sd_idle: The idleness of sd
3943 * @cpus: The set of CPUs under consideration for load-balancing.
3944 * @balance: Pointer to a variable indicating if this_cpu
3945 * is the appropriate cpu to perform load balancing at this_level.
3946 *
3947 * Returns: - the busiest group if imbalance exists.
3948 * - If no imbalance and user has opted for power-savings balance,
3949 * return the least loaded group whose CPUs can be
3950 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3951 */
3952static struct sched_group *
3953find_busiest_group(struct sched_domain *sd, int this_cpu,
3954 unsigned long *imbalance, enum cpu_idle_type idle,
3955 int *sd_idle, const struct cpumask *cpus, int *balance)
3956{
3957 struct sd_lb_stats sds;
1da177e4 3958
37abe198 3959 memset(&sds, 0, sizeof(sds));
1da177e4 3960
37abe198
GS
3961 /*
3962 * Compute the various statistics relavent for load balancing at
3963 * this level.
3964 */
3965 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3966 balance, &sds);
3967
b7bb4c9b
GS
3968 /* Cases where imbalance does not exist from POV of this_cpu */
3969 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3970 * at this level.
3971 * 2) There is no busy sibling group to pull from.
3972 * 3) This group is the busiest group.
3973 * 4) This group is more busy than the avg busieness at this
3974 * sched_domain.
3975 * 5) The imbalance is within the specified limit.
3976 * 6) Any rebalance would lead to ping-pong
3977 */
37abe198
GS
3978 if (balance && !(*balance))
3979 goto ret;
1da177e4 3980
b7bb4c9b
GS
3981 if (!sds.busiest || sds.busiest_nr_running == 0)
3982 goto out_balanced;
1da177e4 3983
b7bb4c9b 3984 if (sds.this_load >= sds.max_load)
1da177e4 3985 goto out_balanced;
1da177e4 3986
222d656d 3987 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3988
b7bb4c9b
GS
3989 if (sds.this_load >= sds.avg_load)
3990 goto out_balanced;
3991
3992 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3993 goto out_balanced;
3994
222d656d
GS
3995 sds.busiest_load_per_task /= sds.busiest_nr_running;
3996 if (sds.group_imb)
3997 sds.busiest_load_per_task =
3998 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3999
1da177e4
LT
4000 /*
4001 * We're trying to get all the cpus to the average_load, so we don't
4002 * want to push ourselves above the average load, nor do we wish to
4003 * reduce the max loaded cpu below the average load, as either of these
4004 * actions would just result in more rebalancing later, and ping-pong
4005 * tasks around. Thus we look for the minimum possible imbalance.
4006 * Negative imbalances (*we* are more loaded than anyone else) will
4007 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4008 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4009 * appear as very large values with unsigned longs.
4010 */
222d656d 4011 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4012 goto out_balanced;
4013
dbc523a3
GS
4014 /* Looks like there is an imbalance. Compute it */
4015 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4016 return sds.busiest;
1da177e4
LT
4017
4018out_balanced:
c071df18
GS
4019 /*
4020 * There is no obvious imbalance. But check if we can do some balancing
4021 * to save power.
4022 */
4023 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4024 return sds.busiest;
783609c6 4025ret:
1da177e4
LT
4026 *imbalance = 0;
4027 return NULL;
4028}
4029
4030/*
4031 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4032 */
70b97a7f 4033static struct rq *
d15bcfdb 4034find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4035 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4036{
70b97a7f 4037 struct rq *busiest = NULL, *rq;
2dd73a4f 4038 unsigned long max_load = 0;
1da177e4
LT
4039 int i;
4040
758b2cdc 4041 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4042 unsigned long power = power_of(i);
4043 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4044 unsigned long wl;
0a2966b4 4045
96f874e2 4046 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4047 continue;
4048
48f24c4d 4049 rq = cpu_rq(i);
bdb94aa5
PZ
4050 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4051 wl /= power;
2dd73a4f 4052
bdb94aa5 4053 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4054 continue;
1da177e4 4055
dd41f596
IM
4056 if (wl > max_load) {
4057 max_load = wl;
48f24c4d 4058 busiest = rq;
1da177e4
LT
4059 }
4060 }
4061
4062 return busiest;
4063}
4064
77391d71
NP
4065/*
4066 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4067 * so long as it is large enough.
4068 */
4069#define MAX_PINNED_INTERVAL 512
4070
df7c8e84
RR
4071/* Working cpumask for load_balance and load_balance_newidle. */
4072static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4073
1da177e4
LT
4074/*
4075 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4076 * tasks if there is an imbalance.
1da177e4 4077 */
70b97a7f 4078static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4079 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4080 int *balance)
1da177e4 4081{
43010659 4082 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4083 struct sched_group *group;
1da177e4 4084 unsigned long imbalance;
70b97a7f 4085 struct rq *busiest;
fe2eea3f 4086 unsigned long flags;
df7c8e84 4087 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4088
96f874e2 4089 cpumask_setall(cpus);
7c16ec58 4090
89c4710e
SS
4091 /*
4092 * When power savings policy is enabled for the parent domain, idle
4093 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4094 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4095 * portraying it as CPU_NOT_IDLE.
89c4710e 4096 */
d15bcfdb 4097 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4098 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4099 sd_idle = 1;
1da177e4 4100
2d72376b 4101 schedstat_inc(sd, lb_count[idle]);
1da177e4 4102
0a2966b4 4103redo:
c8cba857 4104 update_shares(sd);
0a2966b4 4105 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4106 cpus, balance);
783609c6 4107
06066714 4108 if (*balance == 0)
783609c6 4109 goto out_balanced;
783609c6 4110
1da177e4
LT
4111 if (!group) {
4112 schedstat_inc(sd, lb_nobusyg[idle]);
4113 goto out_balanced;
4114 }
4115
7c16ec58 4116 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4117 if (!busiest) {
4118 schedstat_inc(sd, lb_nobusyq[idle]);
4119 goto out_balanced;
4120 }
4121
db935dbd 4122 BUG_ON(busiest == this_rq);
1da177e4
LT
4123
4124 schedstat_add(sd, lb_imbalance[idle], imbalance);
4125
43010659 4126 ld_moved = 0;
1da177e4
LT
4127 if (busiest->nr_running > 1) {
4128 /*
4129 * Attempt to move tasks. If find_busiest_group has found
4130 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4131 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4132 * correctly treated as an imbalance.
4133 */
fe2eea3f 4134 local_irq_save(flags);
e17224bf 4135 double_rq_lock(this_rq, busiest);
43010659 4136 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4137 imbalance, sd, idle, &all_pinned);
e17224bf 4138 double_rq_unlock(this_rq, busiest);
fe2eea3f 4139 local_irq_restore(flags);
81026794 4140
46cb4b7c
SS
4141 /*
4142 * some other cpu did the load balance for us.
4143 */
43010659 4144 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4145 resched_cpu(this_cpu);
4146
81026794 4147 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4148 if (unlikely(all_pinned)) {
96f874e2
RR
4149 cpumask_clear_cpu(cpu_of(busiest), cpus);
4150 if (!cpumask_empty(cpus))
0a2966b4 4151 goto redo;
81026794 4152 goto out_balanced;
0a2966b4 4153 }
1da177e4 4154 }
81026794 4155
43010659 4156 if (!ld_moved) {
1da177e4
LT
4157 schedstat_inc(sd, lb_failed[idle]);
4158 sd->nr_balance_failed++;
4159
4160 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4161
fe2eea3f 4162 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4163
4164 /* don't kick the migration_thread, if the curr
4165 * task on busiest cpu can't be moved to this_cpu
4166 */
96f874e2
RR
4167 if (!cpumask_test_cpu(this_cpu,
4168 &busiest->curr->cpus_allowed)) {
fe2eea3f 4169 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4170 all_pinned = 1;
4171 goto out_one_pinned;
4172 }
4173
1da177e4
LT
4174 if (!busiest->active_balance) {
4175 busiest->active_balance = 1;
4176 busiest->push_cpu = this_cpu;
81026794 4177 active_balance = 1;
1da177e4 4178 }
fe2eea3f 4179 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4180 if (active_balance)
1da177e4
LT
4181 wake_up_process(busiest->migration_thread);
4182
4183 /*
4184 * We've kicked active balancing, reset the failure
4185 * counter.
4186 */
39507451 4187 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4188 }
81026794 4189 } else
1da177e4
LT
4190 sd->nr_balance_failed = 0;
4191
81026794 4192 if (likely(!active_balance)) {
1da177e4
LT
4193 /* We were unbalanced, so reset the balancing interval */
4194 sd->balance_interval = sd->min_interval;
81026794
NP
4195 } else {
4196 /*
4197 * If we've begun active balancing, start to back off. This
4198 * case may not be covered by the all_pinned logic if there
4199 * is only 1 task on the busy runqueue (because we don't call
4200 * move_tasks).
4201 */
4202 if (sd->balance_interval < sd->max_interval)
4203 sd->balance_interval *= 2;
1da177e4
LT
4204 }
4205
43010659 4206 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4207 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4208 ld_moved = -1;
4209
4210 goto out;
1da177e4
LT
4211
4212out_balanced:
1da177e4
LT
4213 schedstat_inc(sd, lb_balanced[idle]);
4214
16cfb1c0 4215 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4216
4217out_one_pinned:
1da177e4 4218 /* tune up the balancing interval */
77391d71
NP
4219 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4220 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4221 sd->balance_interval *= 2;
4222
48f24c4d 4223 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4224 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4225 ld_moved = -1;
4226 else
4227 ld_moved = 0;
4228out:
c8cba857
PZ
4229 if (ld_moved)
4230 update_shares(sd);
c09595f6 4231 return ld_moved;
1da177e4
LT
4232}
4233
4234/*
4235 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4236 * tasks if there is an imbalance.
4237 *
d15bcfdb 4238 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4239 * this_rq is locked.
4240 */
48f24c4d 4241static int
df7c8e84 4242load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4243{
4244 struct sched_group *group;
70b97a7f 4245 struct rq *busiest = NULL;
1da177e4 4246 unsigned long imbalance;
43010659 4247 int ld_moved = 0;
5969fe06 4248 int sd_idle = 0;
969bb4e4 4249 int all_pinned = 0;
df7c8e84 4250 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4251
96f874e2 4252 cpumask_setall(cpus);
5969fe06 4253
89c4710e
SS
4254 /*
4255 * When power savings policy is enabled for the parent domain, idle
4256 * sibling can pick up load irrespective of busy siblings. In this case,
4257 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4258 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4259 */
4260 if (sd->flags & SD_SHARE_CPUPOWER &&
4261 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4262 sd_idle = 1;
1da177e4 4263
2d72376b 4264 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4265redo:
3e5459b4 4266 update_shares_locked(this_rq, sd);
d15bcfdb 4267 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4268 &sd_idle, cpus, NULL);
1da177e4 4269 if (!group) {
d15bcfdb 4270 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4271 goto out_balanced;
1da177e4
LT
4272 }
4273
7c16ec58 4274 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4275 if (!busiest) {
d15bcfdb 4276 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4277 goto out_balanced;
1da177e4
LT
4278 }
4279
db935dbd
NP
4280 BUG_ON(busiest == this_rq);
4281
d15bcfdb 4282 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4283
43010659 4284 ld_moved = 0;
d6d5cfaf
NP
4285 if (busiest->nr_running > 1) {
4286 /* Attempt to move tasks */
4287 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4288 /* this_rq->clock is already updated */
4289 update_rq_clock(busiest);
43010659 4290 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4291 imbalance, sd, CPU_NEWLY_IDLE,
4292 &all_pinned);
1b12bbc7 4293 double_unlock_balance(this_rq, busiest);
0a2966b4 4294
969bb4e4 4295 if (unlikely(all_pinned)) {
96f874e2
RR
4296 cpumask_clear_cpu(cpu_of(busiest), cpus);
4297 if (!cpumask_empty(cpus))
0a2966b4
CL
4298 goto redo;
4299 }
d6d5cfaf
NP
4300 }
4301
43010659 4302 if (!ld_moved) {
36dffab6 4303 int active_balance = 0;
ad273b32 4304
d15bcfdb 4305 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4306 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4307 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4308 return -1;
ad273b32
VS
4309
4310 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4311 return -1;
4312
4313 if (sd->nr_balance_failed++ < 2)
4314 return -1;
4315
4316 /*
4317 * The only task running in a non-idle cpu can be moved to this
4318 * cpu in an attempt to completely freeup the other CPU
4319 * package. The same method used to move task in load_balance()
4320 * have been extended for load_balance_newidle() to speedup
4321 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4322 *
4323 * The package power saving logic comes from
4324 * find_busiest_group(). If there are no imbalance, then
4325 * f_b_g() will return NULL. However when sched_mc={1,2} then
4326 * f_b_g() will select a group from which a running task may be
4327 * pulled to this cpu in order to make the other package idle.
4328 * If there is no opportunity to make a package idle and if
4329 * there are no imbalance, then f_b_g() will return NULL and no
4330 * action will be taken in load_balance_newidle().
4331 *
4332 * Under normal task pull operation due to imbalance, there
4333 * will be more than one task in the source run queue and
4334 * move_tasks() will succeed. ld_moved will be true and this
4335 * active balance code will not be triggered.
4336 */
4337
4338 /* Lock busiest in correct order while this_rq is held */
4339 double_lock_balance(this_rq, busiest);
4340
4341 /*
4342 * don't kick the migration_thread, if the curr
4343 * task on busiest cpu can't be moved to this_cpu
4344 */
6ca09dfc 4345 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4346 double_unlock_balance(this_rq, busiest);
4347 all_pinned = 1;
4348 return ld_moved;
4349 }
4350
4351 if (!busiest->active_balance) {
4352 busiest->active_balance = 1;
4353 busiest->push_cpu = this_cpu;
4354 active_balance = 1;
4355 }
4356
4357 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4358 /*
4359 * Should not call ttwu while holding a rq->lock
4360 */
4361 spin_unlock(&this_rq->lock);
ad273b32
VS
4362 if (active_balance)
4363 wake_up_process(busiest->migration_thread);
da8d5089 4364 spin_lock(&this_rq->lock);
ad273b32 4365
5969fe06 4366 } else
16cfb1c0 4367 sd->nr_balance_failed = 0;
1da177e4 4368
3e5459b4 4369 update_shares_locked(this_rq, sd);
43010659 4370 return ld_moved;
16cfb1c0
NP
4371
4372out_balanced:
d15bcfdb 4373 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4374 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4375 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4376 return -1;
16cfb1c0 4377 sd->nr_balance_failed = 0;
48f24c4d 4378
16cfb1c0 4379 return 0;
1da177e4
LT
4380}
4381
4382/*
4383 * idle_balance is called by schedule() if this_cpu is about to become
4384 * idle. Attempts to pull tasks from other CPUs.
4385 */
70b97a7f 4386static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4387{
4388 struct sched_domain *sd;
efbe027e 4389 int pulled_task = 0;
dd41f596 4390 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4391
4392 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4393 unsigned long interval;
4394
4395 if (!(sd->flags & SD_LOAD_BALANCE))
4396 continue;
4397
4398 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4399 /* If we've pulled tasks over stop searching: */
7c16ec58 4400 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4401 sd);
92c4ca5c
CL
4402
4403 interval = msecs_to_jiffies(sd->balance_interval);
4404 if (time_after(next_balance, sd->last_balance + interval))
4405 next_balance = sd->last_balance + interval;
4406 if (pulled_task)
4407 break;
1da177e4 4408 }
dd41f596 4409 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4410 /*
4411 * We are going idle. next_balance may be set based on
4412 * a busy processor. So reset next_balance.
4413 */
4414 this_rq->next_balance = next_balance;
dd41f596 4415 }
1da177e4
LT
4416}
4417
4418/*
4419 * active_load_balance is run by migration threads. It pushes running tasks
4420 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4421 * running on each physical CPU where possible, and avoids physical /
4422 * logical imbalances.
4423 *
4424 * Called with busiest_rq locked.
4425 */
70b97a7f 4426static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4427{
39507451 4428 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4429 struct sched_domain *sd;
4430 struct rq *target_rq;
39507451 4431
48f24c4d 4432 /* Is there any task to move? */
39507451 4433 if (busiest_rq->nr_running <= 1)
39507451
NP
4434 return;
4435
4436 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4437
4438 /*
39507451 4439 * This condition is "impossible", if it occurs
41a2d6cf 4440 * we need to fix it. Originally reported by
39507451 4441 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4442 */
39507451 4443 BUG_ON(busiest_rq == target_rq);
1da177e4 4444
39507451
NP
4445 /* move a task from busiest_rq to target_rq */
4446 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4447 update_rq_clock(busiest_rq);
4448 update_rq_clock(target_rq);
39507451
NP
4449
4450 /* Search for an sd spanning us and the target CPU. */
c96d145e 4451 for_each_domain(target_cpu, sd) {
39507451 4452 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4453 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4454 break;
c96d145e 4455 }
39507451 4456
48f24c4d 4457 if (likely(sd)) {
2d72376b 4458 schedstat_inc(sd, alb_count);
39507451 4459
43010659
PW
4460 if (move_one_task(target_rq, target_cpu, busiest_rq,
4461 sd, CPU_IDLE))
48f24c4d
IM
4462 schedstat_inc(sd, alb_pushed);
4463 else
4464 schedstat_inc(sd, alb_failed);
4465 }
1b12bbc7 4466 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4467}
4468
46cb4b7c
SS
4469#ifdef CONFIG_NO_HZ
4470static struct {
4471 atomic_t load_balancer;
7d1e6a9b 4472 cpumask_var_t cpu_mask;
f711f609 4473 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4474} nohz ____cacheline_aligned = {
4475 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4476};
4477
eea08f32
AB
4478int get_nohz_load_balancer(void)
4479{
4480 return atomic_read(&nohz.load_balancer);
4481}
4482
f711f609
GS
4483#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4484/**
4485 * lowest_flag_domain - Return lowest sched_domain containing flag.
4486 * @cpu: The cpu whose lowest level of sched domain is to
4487 * be returned.
4488 * @flag: The flag to check for the lowest sched_domain
4489 * for the given cpu.
4490 *
4491 * Returns the lowest sched_domain of a cpu which contains the given flag.
4492 */
4493static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4494{
4495 struct sched_domain *sd;
4496
4497 for_each_domain(cpu, sd)
4498 if (sd && (sd->flags & flag))
4499 break;
4500
4501 return sd;
4502}
4503
4504/**
4505 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4506 * @cpu: The cpu whose domains we're iterating over.
4507 * @sd: variable holding the value of the power_savings_sd
4508 * for cpu.
4509 * @flag: The flag to filter the sched_domains to be iterated.
4510 *
4511 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4512 * set, starting from the lowest sched_domain to the highest.
4513 */
4514#define for_each_flag_domain(cpu, sd, flag) \
4515 for (sd = lowest_flag_domain(cpu, flag); \
4516 (sd && (sd->flags & flag)); sd = sd->parent)
4517
4518/**
4519 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4520 * @ilb_group: group to be checked for semi-idleness
4521 *
4522 * Returns: 1 if the group is semi-idle. 0 otherwise.
4523 *
4524 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4525 * and atleast one non-idle CPU. This helper function checks if the given
4526 * sched_group is semi-idle or not.
4527 */
4528static inline int is_semi_idle_group(struct sched_group *ilb_group)
4529{
4530 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4531 sched_group_cpus(ilb_group));
4532
4533 /*
4534 * A sched_group is semi-idle when it has atleast one busy cpu
4535 * and atleast one idle cpu.
4536 */
4537 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4538 return 0;
4539
4540 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4541 return 0;
4542
4543 return 1;
4544}
4545/**
4546 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4547 * @cpu: The cpu which is nominating a new idle_load_balancer.
4548 *
4549 * Returns: Returns the id of the idle load balancer if it exists,
4550 * Else, returns >= nr_cpu_ids.
4551 *
4552 * This algorithm picks the idle load balancer such that it belongs to a
4553 * semi-idle powersavings sched_domain. The idea is to try and avoid
4554 * completely idle packages/cores just for the purpose of idle load balancing
4555 * when there are other idle cpu's which are better suited for that job.
4556 */
4557static int find_new_ilb(int cpu)
4558{
4559 struct sched_domain *sd;
4560 struct sched_group *ilb_group;
4561
4562 /*
4563 * Have idle load balancer selection from semi-idle packages only
4564 * when power-aware load balancing is enabled
4565 */
4566 if (!(sched_smt_power_savings || sched_mc_power_savings))
4567 goto out_done;
4568
4569 /*
4570 * Optimize for the case when we have no idle CPUs or only one
4571 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4572 */
4573 if (cpumask_weight(nohz.cpu_mask) < 2)
4574 goto out_done;
4575
4576 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4577 ilb_group = sd->groups;
4578
4579 do {
4580 if (is_semi_idle_group(ilb_group))
4581 return cpumask_first(nohz.ilb_grp_nohz_mask);
4582
4583 ilb_group = ilb_group->next;
4584
4585 } while (ilb_group != sd->groups);
4586 }
4587
4588out_done:
4589 return cpumask_first(nohz.cpu_mask);
4590}
4591#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4592static inline int find_new_ilb(int call_cpu)
4593{
6e29ec57 4594 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4595}
4596#endif
4597
7835b98b 4598/*
46cb4b7c
SS
4599 * This routine will try to nominate the ilb (idle load balancing)
4600 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4601 * load balancing on behalf of all those cpus. If all the cpus in the system
4602 * go into this tickless mode, then there will be no ilb owner (as there is
4603 * no need for one) and all the cpus will sleep till the next wakeup event
4604 * arrives...
4605 *
4606 * For the ilb owner, tick is not stopped. And this tick will be used
4607 * for idle load balancing. ilb owner will still be part of
4608 * nohz.cpu_mask..
7835b98b 4609 *
46cb4b7c
SS
4610 * While stopping the tick, this cpu will become the ilb owner if there
4611 * is no other owner. And will be the owner till that cpu becomes busy
4612 * or if all cpus in the system stop their ticks at which point
4613 * there is no need for ilb owner.
4614 *
4615 * When the ilb owner becomes busy, it nominates another owner, during the
4616 * next busy scheduler_tick()
4617 */
4618int select_nohz_load_balancer(int stop_tick)
4619{
4620 int cpu = smp_processor_id();
4621
4622 if (stop_tick) {
46cb4b7c
SS
4623 cpu_rq(cpu)->in_nohz_recently = 1;
4624
483b4ee6
SS
4625 if (!cpu_active(cpu)) {
4626 if (atomic_read(&nohz.load_balancer) != cpu)
4627 return 0;
4628
4629 /*
4630 * If we are going offline and still the leader,
4631 * give up!
4632 */
46cb4b7c
SS
4633 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4634 BUG();
483b4ee6 4635
46cb4b7c
SS
4636 return 0;
4637 }
4638
483b4ee6
SS
4639 cpumask_set_cpu(cpu, nohz.cpu_mask);
4640
46cb4b7c 4641 /* time for ilb owner also to sleep */
7d1e6a9b 4642 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4643 if (atomic_read(&nohz.load_balancer) == cpu)
4644 atomic_set(&nohz.load_balancer, -1);
4645 return 0;
4646 }
4647
4648 if (atomic_read(&nohz.load_balancer) == -1) {
4649 /* make me the ilb owner */
4650 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4651 return 1;
e790fb0b
GS
4652 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4653 int new_ilb;
4654
4655 if (!(sched_smt_power_savings ||
4656 sched_mc_power_savings))
4657 return 1;
4658 /*
4659 * Check to see if there is a more power-efficient
4660 * ilb.
4661 */
4662 new_ilb = find_new_ilb(cpu);
4663 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4664 atomic_set(&nohz.load_balancer, -1);
4665 resched_cpu(new_ilb);
4666 return 0;
4667 }
46cb4b7c 4668 return 1;
e790fb0b 4669 }
46cb4b7c 4670 } else {
7d1e6a9b 4671 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4672 return 0;
4673
7d1e6a9b 4674 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4675
4676 if (atomic_read(&nohz.load_balancer) == cpu)
4677 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4678 BUG();
4679 }
4680 return 0;
4681}
4682#endif
4683
4684static DEFINE_SPINLOCK(balancing);
4685
4686/*
7835b98b
CL
4687 * It checks each scheduling domain to see if it is due to be balanced,
4688 * and initiates a balancing operation if so.
4689 *
4690 * Balancing parameters are set up in arch_init_sched_domains.
4691 */
a9957449 4692static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4693{
46cb4b7c
SS
4694 int balance = 1;
4695 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4696 unsigned long interval;
4697 struct sched_domain *sd;
46cb4b7c 4698 /* Earliest time when we have to do rebalance again */
c9819f45 4699 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4700 int update_next_balance = 0;
d07355f5 4701 int need_serialize;
1da177e4 4702
46cb4b7c 4703 for_each_domain(cpu, sd) {
1da177e4
LT
4704 if (!(sd->flags & SD_LOAD_BALANCE))
4705 continue;
4706
4707 interval = sd->balance_interval;
d15bcfdb 4708 if (idle != CPU_IDLE)
1da177e4
LT
4709 interval *= sd->busy_factor;
4710
4711 /* scale ms to jiffies */
4712 interval = msecs_to_jiffies(interval);
4713 if (unlikely(!interval))
4714 interval = 1;
dd41f596
IM
4715 if (interval > HZ*NR_CPUS/10)
4716 interval = HZ*NR_CPUS/10;
4717
d07355f5 4718 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4719
d07355f5 4720 if (need_serialize) {
08c183f3
CL
4721 if (!spin_trylock(&balancing))
4722 goto out;
4723 }
4724
c9819f45 4725 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4726 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4727 /*
4728 * We've pulled tasks over so either we're no
5969fe06
NP
4729 * longer idle, or one of our SMT siblings is
4730 * not idle.
4731 */
d15bcfdb 4732 idle = CPU_NOT_IDLE;
1da177e4 4733 }
1bd77f2d 4734 sd->last_balance = jiffies;
1da177e4 4735 }
d07355f5 4736 if (need_serialize)
08c183f3
CL
4737 spin_unlock(&balancing);
4738out:
f549da84 4739 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4740 next_balance = sd->last_balance + interval;
f549da84
SS
4741 update_next_balance = 1;
4742 }
783609c6
SS
4743
4744 /*
4745 * Stop the load balance at this level. There is another
4746 * CPU in our sched group which is doing load balancing more
4747 * actively.
4748 */
4749 if (!balance)
4750 break;
1da177e4 4751 }
f549da84
SS
4752
4753 /*
4754 * next_balance will be updated only when there is a need.
4755 * When the cpu is attached to null domain for ex, it will not be
4756 * updated.
4757 */
4758 if (likely(update_next_balance))
4759 rq->next_balance = next_balance;
46cb4b7c
SS
4760}
4761
4762/*
4763 * run_rebalance_domains is triggered when needed from the scheduler tick.
4764 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4765 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4766 */
4767static void run_rebalance_domains(struct softirq_action *h)
4768{
dd41f596
IM
4769 int this_cpu = smp_processor_id();
4770 struct rq *this_rq = cpu_rq(this_cpu);
4771 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4772 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4773
dd41f596 4774 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4775
4776#ifdef CONFIG_NO_HZ
4777 /*
4778 * If this cpu is the owner for idle load balancing, then do the
4779 * balancing on behalf of the other idle cpus whose ticks are
4780 * stopped.
4781 */
dd41f596
IM
4782 if (this_rq->idle_at_tick &&
4783 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4784 struct rq *rq;
4785 int balance_cpu;
4786
7d1e6a9b
RR
4787 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4788 if (balance_cpu == this_cpu)
4789 continue;
4790
46cb4b7c
SS
4791 /*
4792 * If this cpu gets work to do, stop the load balancing
4793 * work being done for other cpus. Next load
4794 * balancing owner will pick it up.
4795 */
4796 if (need_resched())
4797 break;
4798
de0cf899 4799 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4800
4801 rq = cpu_rq(balance_cpu);
dd41f596
IM
4802 if (time_after(this_rq->next_balance, rq->next_balance))
4803 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4804 }
4805 }
4806#endif
4807}
4808
8a0be9ef
FW
4809static inline int on_null_domain(int cpu)
4810{
4811 return !rcu_dereference(cpu_rq(cpu)->sd);
4812}
4813
46cb4b7c
SS
4814/*
4815 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4816 *
4817 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4818 * idle load balancing owner or decide to stop the periodic load balancing,
4819 * if the whole system is idle.
4820 */
dd41f596 4821static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4822{
46cb4b7c
SS
4823#ifdef CONFIG_NO_HZ
4824 /*
4825 * If we were in the nohz mode recently and busy at the current
4826 * scheduler tick, then check if we need to nominate new idle
4827 * load balancer.
4828 */
4829 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4830 rq->in_nohz_recently = 0;
4831
4832 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4833 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4834 atomic_set(&nohz.load_balancer, -1);
4835 }
4836
4837 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4838 int ilb = find_new_ilb(cpu);
46cb4b7c 4839
434d53b0 4840 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4841 resched_cpu(ilb);
4842 }
4843 }
4844
4845 /*
4846 * If this cpu is idle and doing idle load balancing for all the
4847 * cpus with ticks stopped, is it time for that to stop?
4848 */
4849 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4850 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4851 resched_cpu(cpu);
4852 return;
4853 }
4854
4855 /*
4856 * If this cpu is idle and the idle load balancing is done by
4857 * someone else, then no need raise the SCHED_SOFTIRQ
4858 */
4859 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4860 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4861 return;
4862#endif
8a0be9ef
FW
4863 /* Don't need to rebalance while attached to NULL domain */
4864 if (time_after_eq(jiffies, rq->next_balance) &&
4865 likely(!on_null_domain(cpu)))
46cb4b7c 4866 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4867}
dd41f596
IM
4868
4869#else /* CONFIG_SMP */
4870
1da177e4
LT
4871/*
4872 * on UP we do not need to balance between CPUs:
4873 */
70b97a7f 4874static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4875{
4876}
dd41f596 4877
1da177e4
LT
4878#endif
4879
1da177e4
LT
4880DEFINE_PER_CPU(struct kernel_stat, kstat);
4881
4882EXPORT_PER_CPU_SYMBOL(kstat);
4883
4884/*
c5f8d995 4885 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4886 * @p in case that task is currently running.
c5f8d995
HS
4887 *
4888 * Called with task_rq_lock() held on @rq.
1da177e4 4889 */
c5f8d995
HS
4890static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4891{
4892 u64 ns = 0;
4893
4894 if (task_current(rq, p)) {
4895 update_rq_clock(rq);
4896 ns = rq->clock - p->se.exec_start;
4897 if ((s64)ns < 0)
4898 ns = 0;
4899 }
4900
4901 return ns;
4902}
4903
bb34d92f 4904unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4905{
1da177e4 4906 unsigned long flags;
41b86e9c 4907 struct rq *rq;
bb34d92f 4908 u64 ns = 0;
48f24c4d 4909
41b86e9c 4910 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4911 ns = do_task_delta_exec(p, rq);
4912 task_rq_unlock(rq, &flags);
1508487e 4913
c5f8d995
HS
4914 return ns;
4915}
f06febc9 4916
c5f8d995
HS
4917/*
4918 * Return accounted runtime for the task.
4919 * In case the task is currently running, return the runtime plus current's
4920 * pending runtime that have not been accounted yet.
4921 */
4922unsigned long long task_sched_runtime(struct task_struct *p)
4923{
4924 unsigned long flags;
4925 struct rq *rq;
4926 u64 ns = 0;
4927
4928 rq = task_rq_lock(p, &flags);
4929 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4930 task_rq_unlock(rq, &flags);
4931
4932 return ns;
4933}
48f24c4d 4934
c5f8d995
HS
4935/*
4936 * Return sum_exec_runtime for the thread group.
4937 * In case the task is currently running, return the sum plus current's
4938 * pending runtime that have not been accounted yet.
4939 *
4940 * Note that the thread group might have other running tasks as well,
4941 * so the return value not includes other pending runtime that other
4942 * running tasks might have.
4943 */
4944unsigned long long thread_group_sched_runtime(struct task_struct *p)
4945{
4946 struct task_cputime totals;
4947 unsigned long flags;
4948 struct rq *rq;
4949 u64 ns;
4950
4951 rq = task_rq_lock(p, &flags);
4952 thread_group_cputime(p, &totals);
4953 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4954 task_rq_unlock(rq, &flags);
48f24c4d 4955
1da177e4
LT
4956 return ns;
4957}
4958
1da177e4
LT
4959/*
4960 * Account user cpu time to a process.
4961 * @p: the process that the cpu time gets accounted to
1da177e4 4962 * @cputime: the cpu time spent in user space since the last update
457533a7 4963 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4964 */
457533a7
MS
4965void account_user_time(struct task_struct *p, cputime_t cputime,
4966 cputime_t cputime_scaled)
1da177e4
LT
4967{
4968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4969 cputime64_t tmp;
4970
457533a7 4971 /* Add user time to process. */
1da177e4 4972 p->utime = cputime_add(p->utime, cputime);
457533a7 4973 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4974 account_group_user_time(p, cputime);
1da177e4
LT
4975
4976 /* Add user time to cpustat. */
4977 tmp = cputime_to_cputime64(cputime);
4978 if (TASK_NICE(p) > 0)
4979 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4980 else
4981 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4982
4983 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4984 /* Account for user time used */
4985 acct_update_integrals(p);
1da177e4
LT
4986}
4987
94886b84
LV
4988/*
4989 * Account guest cpu time to a process.
4990 * @p: the process that the cpu time gets accounted to
4991 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4992 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4993 */
457533a7
MS
4994static void account_guest_time(struct task_struct *p, cputime_t cputime,
4995 cputime_t cputime_scaled)
94886b84
LV
4996{
4997 cputime64_t tmp;
4998 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4999
5000 tmp = cputime_to_cputime64(cputime);
5001
457533a7 5002 /* Add guest time to process. */
94886b84 5003 p->utime = cputime_add(p->utime, cputime);
457533a7 5004 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5005 account_group_user_time(p, cputime);
94886b84
LV
5006 p->gtime = cputime_add(p->gtime, cputime);
5007
457533a7 5008 /* Add guest time to cpustat. */
ce0e7b28
RO
5009 if (TASK_NICE(p) > 0) {
5010 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5011 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5012 } else {
5013 cpustat->user = cputime64_add(cpustat->user, tmp);
5014 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5015 }
94886b84
LV
5016}
5017
1da177e4
LT
5018/*
5019 * Account system cpu time to a process.
5020 * @p: the process that the cpu time gets accounted to
5021 * @hardirq_offset: the offset to subtract from hardirq_count()
5022 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5023 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5024 */
5025void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5026 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5027{
5028 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5029 cputime64_t tmp;
5030
983ed7a6 5031 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5032 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5033 return;
5034 }
94886b84 5035
457533a7 5036 /* Add system time to process. */
1da177e4 5037 p->stime = cputime_add(p->stime, cputime);
457533a7 5038 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5039 account_group_system_time(p, cputime);
1da177e4
LT
5040
5041 /* Add system time to cpustat. */
5042 tmp = cputime_to_cputime64(cputime);
5043 if (hardirq_count() - hardirq_offset)
5044 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5045 else if (softirq_count())
5046 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5047 else
79741dd3
MS
5048 cpustat->system = cputime64_add(cpustat->system, tmp);
5049
ef12fefa
BR
5050 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5051
1da177e4
LT
5052 /* Account for system time used */
5053 acct_update_integrals(p);
1da177e4
LT
5054}
5055
c66f08be 5056/*
1da177e4 5057 * Account for involuntary wait time.
1da177e4 5058 * @steal: the cpu time spent in involuntary wait
c66f08be 5059 */
79741dd3 5060void account_steal_time(cputime_t cputime)
c66f08be 5061{
79741dd3
MS
5062 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5063 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5064
5065 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5066}
5067
1da177e4 5068/*
79741dd3
MS
5069 * Account for idle time.
5070 * @cputime: the cpu time spent in idle wait
1da177e4 5071 */
79741dd3 5072void account_idle_time(cputime_t cputime)
1da177e4
LT
5073{
5074 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5075 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5076 struct rq *rq = this_rq();
1da177e4 5077
79741dd3
MS
5078 if (atomic_read(&rq->nr_iowait) > 0)
5079 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5080 else
5081 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5082}
5083
79741dd3
MS
5084#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5085
5086/*
5087 * Account a single tick of cpu time.
5088 * @p: the process that the cpu time gets accounted to
5089 * @user_tick: indicates if the tick is a user or a system tick
5090 */
5091void account_process_tick(struct task_struct *p, int user_tick)
5092{
a42548a1 5093 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5094 struct rq *rq = this_rq();
5095
5096 if (user_tick)
a42548a1 5097 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5098 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5099 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5100 one_jiffy_scaled);
5101 else
a42548a1 5102 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5103}
5104
5105/*
5106 * Account multiple ticks of steal time.
5107 * @p: the process from which the cpu time has been stolen
5108 * @ticks: number of stolen ticks
5109 */
5110void account_steal_ticks(unsigned long ticks)
5111{
5112 account_steal_time(jiffies_to_cputime(ticks));
5113}
5114
5115/*
5116 * Account multiple ticks of idle time.
5117 * @ticks: number of stolen ticks
5118 */
5119void account_idle_ticks(unsigned long ticks)
5120{
5121 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5122}
5123
79741dd3
MS
5124#endif
5125
49048622
BS
5126/*
5127 * Use precise platform statistics if available:
5128 */
5129#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5130cputime_t task_utime(struct task_struct *p)
5131{
5132 return p->utime;
5133}
5134
5135cputime_t task_stime(struct task_struct *p)
5136{
5137 return p->stime;
5138}
5139#else
5140cputime_t task_utime(struct task_struct *p)
5141{
5142 clock_t utime = cputime_to_clock_t(p->utime),
5143 total = utime + cputime_to_clock_t(p->stime);
5144 u64 temp;
5145
5146 /*
5147 * Use CFS's precise accounting:
5148 */
5149 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5150
5151 if (total) {
5152 temp *= utime;
5153 do_div(temp, total);
5154 }
5155 utime = (clock_t)temp;
5156
5157 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5158 return p->prev_utime;
5159}
5160
5161cputime_t task_stime(struct task_struct *p)
5162{
5163 clock_t stime;
5164
5165 /*
5166 * Use CFS's precise accounting. (we subtract utime from
5167 * the total, to make sure the total observed by userspace
5168 * grows monotonically - apps rely on that):
5169 */
5170 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5171 cputime_to_clock_t(task_utime(p));
5172
5173 if (stime >= 0)
5174 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5175
5176 return p->prev_stime;
5177}
5178#endif
5179
5180inline cputime_t task_gtime(struct task_struct *p)
5181{
5182 return p->gtime;
5183}
5184
7835b98b
CL
5185/*
5186 * This function gets called by the timer code, with HZ frequency.
5187 * We call it with interrupts disabled.
5188 *
5189 * It also gets called by the fork code, when changing the parent's
5190 * timeslices.
5191 */
5192void scheduler_tick(void)
5193{
7835b98b
CL
5194 int cpu = smp_processor_id();
5195 struct rq *rq = cpu_rq(cpu);
dd41f596 5196 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5197
5198 sched_clock_tick();
dd41f596
IM
5199
5200 spin_lock(&rq->lock);
3e51f33f 5201 update_rq_clock(rq);
f1a438d8 5202 update_cpu_load(rq);
fa85ae24 5203 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5204 spin_unlock(&rq->lock);
7835b98b 5205
cdd6c482 5206 perf_event_task_tick(curr, cpu);
e220d2dc 5207
e418e1c2 5208#ifdef CONFIG_SMP
dd41f596
IM
5209 rq->idle_at_tick = idle_cpu(cpu);
5210 trigger_load_balance(rq, cpu);
e418e1c2 5211#endif
1da177e4
LT
5212}
5213
132380a0 5214notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5215{
5216 if (in_lock_functions(addr)) {
5217 addr = CALLER_ADDR2;
5218 if (in_lock_functions(addr))
5219 addr = CALLER_ADDR3;
5220 }
5221 return addr;
5222}
1da177e4 5223
7e49fcce
SR
5224#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5225 defined(CONFIG_PREEMPT_TRACER))
5226
43627582 5227void __kprobes add_preempt_count(int val)
1da177e4 5228{
6cd8a4bb 5229#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5230 /*
5231 * Underflow?
5232 */
9a11b49a
IM
5233 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5234 return;
6cd8a4bb 5235#endif
1da177e4 5236 preempt_count() += val;
6cd8a4bb 5237#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5238 /*
5239 * Spinlock count overflowing soon?
5240 */
33859f7f
MOS
5241 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5242 PREEMPT_MASK - 10);
6cd8a4bb
SR
5243#endif
5244 if (preempt_count() == val)
5245 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5246}
5247EXPORT_SYMBOL(add_preempt_count);
5248
43627582 5249void __kprobes sub_preempt_count(int val)
1da177e4 5250{
6cd8a4bb 5251#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5252 /*
5253 * Underflow?
5254 */
01e3eb82 5255 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5256 return;
1da177e4
LT
5257 /*
5258 * Is the spinlock portion underflowing?
5259 */
9a11b49a
IM
5260 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5261 !(preempt_count() & PREEMPT_MASK)))
5262 return;
6cd8a4bb 5263#endif
9a11b49a 5264
6cd8a4bb
SR
5265 if (preempt_count() == val)
5266 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5267 preempt_count() -= val;
5268}
5269EXPORT_SYMBOL(sub_preempt_count);
5270
5271#endif
5272
5273/*
dd41f596 5274 * Print scheduling while atomic bug:
1da177e4 5275 */
dd41f596 5276static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5277{
838225b4
SS
5278 struct pt_regs *regs = get_irq_regs();
5279
5280 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5281 prev->comm, prev->pid, preempt_count());
5282
dd41f596 5283 debug_show_held_locks(prev);
e21f5b15 5284 print_modules();
dd41f596
IM
5285 if (irqs_disabled())
5286 print_irqtrace_events(prev);
838225b4
SS
5287
5288 if (regs)
5289 show_regs(regs);
5290 else
5291 dump_stack();
dd41f596 5292}
1da177e4 5293
dd41f596
IM
5294/*
5295 * Various schedule()-time debugging checks and statistics:
5296 */
5297static inline void schedule_debug(struct task_struct *prev)
5298{
1da177e4 5299 /*
41a2d6cf 5300 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5301 * schedule() atomically, we ignore that path for now.
5302 * Otherwise, whine if we are scheduling when we should not be.
5303 */
3f33a7ce 5304 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5305 __schedule_bug(prev);
5306
1da177e4
LT
5307 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5308
2d72376b 5309 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5310#ifdef CONFIG_SCHEDSTATS
5311 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5312 schedstat_inc(this_rq(), bkl_count);
5313 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5314 }
5315#endif
dd41f596
IM
5316}
5317
ad4b78bb 5318static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5319{
ad4b78bb 5320 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5321
ad4b78bb 5322 update_avg(&p->se.avg_running, runtime);
df1c99d4 5323
ad4b78bb 5324 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5325 /*
5326 * In order to avoid avg_overlap growing stale when we are
5327 * indeed overlapping and hence not getting put to sleep, grow
5328 * the avg_overlap on preemption.
5329 *
5330 * We use the average preemption runtime because that
5331 * correlates to the amount of cache footprint a task can
5332 * build up.
5333 */
ad4b78bb
PZ
5334 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5335 update_avg(&p->se.avg_overlap, runtime);
5336 } else {
5337 update_avg(&p->se.avg_running, 0);
df1c99d4 5338 }
ad4b78bb 5339 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5340}
5341
dd41f596
IM
5342/*
5343 * Pick up the highest-prio task:
5344 */
5345static inline struct task_struct *
b67802ea 5346pick_next_task(struct rq *rq)
dd41f596 5347{
5522d5d5 5348 const struct sched_class *class;
dd41f596 5349 struct task_struct *p;
1da177e4
LT
5350
5351 /*
dd41f596
IM
5352 * Optimization: we know that if all tasks are in
5353 * the fair class we can call that function directly:
1da177e4 5354 */
dd41f596 5355 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5356 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5357 if (likely(p))
5358 return p;
1da177e4
LT
5359 }
5360
dd41f596
IM
5361 class = sched_class_highest;
5362 for ( ; ; ) {
fb8d4724 5363 p = class->pick_next_task(rq);
dd41f596
IM
5364 if (p)
5365 return p;
5366 /*
5367 * Will never be NULL as the idle class always
5368 * returns a non-NULL p:
5369 */
5370 class = class->next;
5371 }
5372}
1da177e4 5373
dd41f596
IM
5374/*
5375 * schedule() is the main scheduler function.
5376 */
ff743345 5377asmlinkage void __sched schedule(void)
dd41f596
IM
5378{
5379 struct task_struct *prev, *next;
67ca7bde 5380 unsigned long *switch_count;
dd41f596 5381 struct rq *rq;
31656519 5382 int cpu;
dd41f596 5383
ff743345
PZ
5384need_resched:
5385 preempt_disable();
dd41f596
IM
5386 cpu = smp_processor_id();
5387 rq = cpu_rq(cpu);
d6714c22 5388 rcu_sched_qs(cpu);
dd41f596
IM
5389 prev = rq->curr;
5390 switch_count = &prev->nivcsw;
5391
5392 release_kernel_lock(prev);
5393need_resched_nonpreemptible:
5394
5395 schedule_debug(prev);
1da177e4 5396
31656519 5397 if (sched_feat(HRTICK))
f333fdc9 5398 hrtick_clear(rq);
8f4d37ec 5399
8cd162ce 5400 spin_lock_irq(&rq->lock);
3e51f33f 5401 update_rq_clock(rq);
1e819950 5402 clear_tsk_need_resched(prev);
1da177e4 5403
1da177e4 5404 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5405 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5406 prev->state = TASK_RUNNING;
16882c1e 5407 else
2e1cb74a 5408 deactivate_task(rq, prev, 1);
dd41f596 5409 switch_count = &prev->nvcsw;
1da177e4
LT
5410 }
5411
3f029d3c 5412 pre_schedule(rq, prev);
f65eda4f 5413
dd41f596 5414 if (unlikely(!rq->nr_running))
1da177e4 5415 idle_balance(cpu, rq);
1da177e4 5416
df1c99d4 5417 put_prev_task(rq, prev);
b67802ea 5418 next = pick_next_task(rq);
1da177e4 5419
1da177e4 5420 if (likely(prev != next)) {
673a90a1 5421 sched_info_switch(prev, next);
cdd6c482 5422 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5423
1da177e4
LT
5424 rq->nr_switches++;
5425 rq->curr = next;
5426 ++*switch_count;
5427
dd41f596 5428 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5429 /*
5430 * the context switch might have flipped the stack from under
5431 * us, hence refresh the local variables.
5432 */
5433 cpu = smp_processor_id();
5434 rq = cpu_rq(cpu);
1da177e4
LT
5435 } else
5436 spin_unlock_irq(&rq->lock);
5437
3f029d3c 5438 post_schedule(rq);
1da177e4 5439
8f4d37ec 5440 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5441 goto need_resched_nonpreemptible;
8f4d37ec 5442
1da177e4 5443 preempt_enable_no_resched();
ff743345 5444 if (need_resched())
1da177e4
LT
5445 goto need_resched;
5446}
1da177e4
LT
5447EXPORT_SYMBOL(schedule);
5448
0d66bf6d
PZ
5449#ifdef CONFIG_SMP
5450/*
5451 * Look out! "owner" is an entirely speculative pointer
5452 * access and not reliable.
5453 */
5454int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5455{
5456 unsigned int cpu;
5457 struct rq *rq;
5458
5459 if (!sched_feat(OWNER_SPIN))
5460 return 0;
5461
5462#ifdef CONFIG_DEBUG_PAGEALLOC
5463 /*
5464 * Need to access the cpu field knowing that
5465 * DEBUG_PAGEALLOC could have unmapped it if
5466 * the mutex owner just released it and exited.
5467 */
5468 if (probe_kernel_address(&owner->cpu, cpu))
5469 goto out;
5470#else
5471 cpu = owner->cpu;
5472#endif
5473
5474 /*
5475 * Even if the access succeeded (likely case),
5476 * the cpu field may no longer be valid.
5477 */
5478 if (cpu >= nr_cpumask_bits)
5479 goto out;
5480
5481 /*
5482 * We need to validate that we can do a
5483 * get_cpu() and that we have the percpu area.
5484 */
5485 if (!cpu_online(cpu))
5486 goto out;
5487
5488 rq = cpu_rq(cpu);
5489
5490 for (;;) {
5491 /*
5492 * Owner changed, break to re-assess state.
5493 */
5494 if (lock->owner != owner)
5495 break;
5496
5497 /*
5498 * Is that owner really running on that cpu?
5499 */
5500 if (task_thread_info(rq->curr) != owner || need_resched())
5501 return 0;
5502
5503 cpu_relax();
5504 }
5505out:
5506 return 1;
5507}
5508#endif
5509
1da177e4
LT
5510#ifdef CONFIG_PREEMPT
5511/*
2ed6e34f 5512 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5513 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5514 * occur there and call schedule directly.
5515 */
5516asmlinkage void __sched preempt_schedule(void)
5517{
5518 struct thread_info *ti = current_thread_info();
6478d880 5519
1da177e4
LT
5520 /*
5521 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5522 * we do not want to preempt the current task. Just return..
1da177e4 5523 */
beed33a8 5524 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5525 return;
5526
3a5c359a
AK
5527 do {
5528 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5529 schedule();
3a5c359a 5530 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5531
3a5c359a
AK
5532 /*
5533 * Check again in case we missed a preemption opportunity
5534 * between schedule and now.
5535 */
5536 barrier();
5ed0cec0 5537 } while (need_resched());
1da177e4 5538}
1da177e4
LT
5539EXPORT_SYMBOL(preempt_schedule);
5540
5541/*
2ed6e34f 5542 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5543 * off of irq context.
5544 * Note, that this is called and return with irqs disabled. This will
5545 * protect us against recursive calling from irq.
5546 */
5547asmlinkage void __sched preempt_schedule_irq(void)
5548{
5549 struct thread_info *ti = current_thread_info();
6478d880 5550
2ed6e34f 5551 /* Catch callers which need to be fixed */
1da177e4
LT
5552 BUG_ON(ti->preempt_count || !irqs_disabled());
5553
3a5c359a
AK
5554 do {
5555 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5556 local_irq_enable();
5557 schedule();
5558 local_irq_disable();
3a5c359a 5559 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5560
3a5c359a
AK
5561 /*
5562 * Check again in case we missed a preemption opportunity
5563 * between schedule and now.
5564 */
5565 barrier();
5ed0cec0 5566 } while (need_resched());
1da177e4
LT
5567}
5568
5569#endif /* CONFIG_PREEMPT */
5570
63859d4f 5571int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5572 void *key)
1da177e4 5573{
63859d4f 5574 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5575}
1da177e4
LT
5576EXPORT_SYMBOL(default_wake_function);
5577
5578/*
41a2d6cf
IM
5579 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5580 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5581 * number) then we wake all the non-exclusive tasks and one exclusive task.
5582 *
5583 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5584 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5585 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5586 */
78ddb08f 5587static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5588 int nr_exclusive, int wake_flags, void *key)
1da177e4 5589{
2e45874c 5590 wait_queue_t *curr, *next;
1da177e4 5591
2e45874c 5592 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5593 unsigned flags = curr->flags;
5594
63859d4f 5595 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5596 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5597 break;
5598 }
5599}
5600
5601/**
5602 * __wake_up - wake up threads blocked on a waitqueue.
5603 * @q: the waitqueue
5604 * @mode: which threads
5605 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5606 * @key: is directly passed to the wakeup function
50fa610a
DH
5607 *
5608 * It may be assumed that this function implies a write memory barrier before
5609 * changing the task state if and only if any tasks are woken up.
1da177e4 5610 */
7ad5b3a5 5611void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5612 int nr_exclusive, void *key)
1da177e4
LT
5613{
5614 unsigned long flags;
5615
5616 spin_lock_irqsave(&q->lock, flags);
5617 __wake_up_common(q, mode, nr_exclusive, 0, key);
5618 spin_unlock_irqrestore(&q->lock, flags);
5619}
1da177e4
LT
5620EXPORT_SYMBOL(__wake_up);
5621
5622/*
5623 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5624 */
7ad5b3a5 5625void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5626{
5627 __wake_up_common(q, mode, 1, 0, NULL);
5628}
5629
4ede816a
DL
5630void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5631{
5632 __wake_up_common(q, mode, 1, 0, key);
5633}
5634
1da177e4 5635/**
4ede816a 5636 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5637 * @q: the waitqueue
5638 * @mode: which threads
5639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5640 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5641 *
5642 * The sync wakeup differs that the waker knows that it will schedule
5643 * away soon, so while the target thread will be woken up, it will not
5644 * be migrated to another CPU - ie. the two threads are 'synchronized'
5645 * with each other. This can prevent needless bouncing between CPUs.
5646 *
5647 * On UP it can prevent extra preemption.
50fa610a
DH
5648 *
5649 * It may be assumed that this function implies a write memory barrier before
5650 * changing the task state if and only if any tasks are woken up.
1da177e4 5651 */
4ede816a
DL
5652void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5653 int nr_exclusive, void *key)
1da177e4
LT
5654{
5655 unsigned long flags;
7d478721 5656 int wake_flags = WF_SYNC;
1da177e4
LT
5657
5658 if (unlikely(!q))
5659 return;
5660
5661 if (unlikely(!nr_exclusive))
7d478721 5662 wake_flags = 0;
1da177e4
LT
5663
5664 spin_lock_irqsave(&q->lock, flags);
7d478721 5665 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5666 spin_unlock_irqrestore(&q->lock, flags);
5667}
4ede816a
DL
5668EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5669
5670/*
5671 * __wake_up_sync - see __wake_up_sync_key()
5672 */
5673void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5674{
5675 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5676}
1da177e4
LT
5677EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5678
65eb3dc6
KD
5679/**
5680 * complete: - signals a single thread waiting on this completion
5681 * @x: holds the state of this particular completion
5682 *
5683 * This will wake up a single thread waiting on this completion. Threads will be
5684 * awakened in the same order in which they were queued.
5685 *
5686 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5687 *
5688 * It may be assumed that this function implies a write memory barrier before
5689 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5690 */
b15136e9 5691void complete(struct completion *x)
1da177e4
LT
5692{
5693 unsigned long flags;
5694
5695 spin_lock_irqsave(&x->wait.lock, flags);
5696 x->done++;
d9514f6c 5697 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5698 spin_unlock_irqrestore(&x->wait.lock, flags);
5699}
5700EXPORT_SYMBOL(complete);
5701
65eb3dc6
KD
5702/**
5703 * complete_all: - signals all threads waiting on this completion
5704 * @x: holds the state of this particular completion
5705 *
5706 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5707 *
5708 * It may be assumed that this function implies a write memory barrier before
5709 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5710 */
b15136e9 5711void complete_all(struct completion *x)
1da177e4
LT
5712{
5713 unsigned long flags;
5714
5715 spin_lock_irqsave(&x->wait.lock, flags);
5716 x->done += UINT_MAX/2;
d9514f6c 5717 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5718 spin_unlock_irqrestore(&x->wait.lock, flags);
5719}
5720EXPORT_SYMBOL(complete_all);
5721
8cbbe86d
AK
5722static inline long __sched
5723do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5724{
1da177e4
LT
5725 if (!x->done) {
5726 DECLARE_WAITQUEUE(wait, current);
5727
5728 wait.flags |= WQ_FLAG_EXCLUSIVE;
5729 __add_wait_queue_tail(&x->wait, &wait);
5730 do {
94d3d824 5731 if (signal_pending_state(state, current)) {
ea71a546
ON
5732 timeout = -ERESTARTSYS;
5733 break;
8cbbe86d
AK
5734 }
5735 __set_current_state(state);
1da177e4
LT
5736 spin_unlock_irq(&x->wait.lock);
5737 timeout = schedule_timeout(timeout);
5738 spin_lock_irq(&x->wait.lock);
ea71a546 5739 } while (!x->done && timeout);
1da177e4 5740 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5741 if (!x->done)
5742 return timeout;
1da177e4
LT
5743 }
5744 x->done--;
ea71a546 5745 return timeout ?: 1;
1da177e4 5746}
1da177e4 5747
8cbbe86d
AK
5748static long __sched
5749wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5750{
1da177e4
LT
5751 might_sleep();
5752
5753 spin_lock_irq(&x->wait.lock);
8cbbe86d 5754 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5755 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5756 return timeout;
5757}
1da177e4 5758
65eb3dc6
KD
5759/**
5760 * wait_for_completion: - waits for completion of a task
5761 * @x: holds the state of this particular completion
5762 *
5763 * This waits to be signaled for completion of a specific task. It is NOT
5764 * interruptible and there is no timeout.
5765 *
5766 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5767 * and interrupt capability. Also see complete().
5768 */
b15136e9 5769void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5770{
5771 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5772}
8cbbe86d 5773EXPORT_SYMBOL(wait_for_completion);
1da177e4 5774
65eb3dc6
KD
5775/**
5776 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5777 * @x: holds the state of this particular completion
5778 * @timeout: timeout value in jiffies
5779 *
5780 * This waits for either a completion of a specific task to be signaled or for a
5781 * specified timeout to expire. The timeout is in jiffies. It is not
5782 * interruptible.
5783 */
b15136e9 5784unsigned long __sched
8cbbe86d 5785wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5786{
8cbbe86d 5787 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5788}
8cbbe86d 5789EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5790
65eb3dc6
KD
5791/**
5792 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5793 * @x: holds the state of this particular completion
5794 *
5795 * This waits for completion of a specific task to be signaled. It is
5796 * interruptible.
5797 */
8cbbe86d 5798int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5799{
51e97990
AK
5800 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5801 if (t == -ERESTARTSYS)
5802 return t;
5803 return 0;
0fec171c 5804}
8cbbe86d 5805EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5806
65eb3dc6
KD
5807/**
5808 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5809 * @x: holds the state of this particular completion
5810 * @timeout: timeout value in jiffies
5811 *
5812 * This waits for either a completion of a specific task to be signaled or for a
5813 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5814 */
b15136e9 5815unsigned long __sched
8cbbe86d
AK
5816wait_for_completion_interruptible_timeout(struct completion *x,
5817 unsigned long timeout)
0fec171c 5818{
8cbbe86d 5819 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5820}
8cbbe86d 5821EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5822
65eb3dc6
KD
5823/**
5824 * wait_for_completion_killable: - waits for completion of a task (killable)
5825 * @x: holds the state of this particular completion
5826 *
5827 * This waits to be signaled for completion of a specific task. It can be
5828 * interrupted by a kill signal.
5829 */
009e577e
MW
5830int __sched wait_for_completion_killable(struct completion *x)
5831{
5832 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5833 if (t == -ERESTARTSYS)
5834 return t;
5835 return 0;
5836}
5837EXPORT_SYMBOL(wait_for_completion_killable);
5838
be4de352
DC
5839/**
5840 * try_wait_for_completion - try to decrement a completion without blocking
5841 * @x: completion structure
5842 *
5843 * Returns: 0 if a decrement cannot be done without blocking
5844 * 1 if a decrement succeeded.
5845 *
5846 * If a completion is being used as a counting completion,
5847 * attempt to decrement the counter without blocking. This
5848 * enables us to avoid waiting if the resource the completion
5849 * is protecting is not available.
5850 */
5851bool try_wait_for_completion(struct completion *x)
5852{
5853 int ret = 1;
5854
5855 spin_lock_irq(&x->wait.lock);
5856 if (!x->done)
5857 ret = 0;
5858 else
5859 x->done--;
5860 spin_unlock_irq(&x->wait.lock);
5861 return ret;
5862}
5863EXPORT_SYMBOL(try_wait_for_completion);
5864
5865/**
5866 * completion_done - Test to see if a completion has any waiters
5867 * @x: completion structure
5868 *
5869 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5870 * 1 if there are no waiters.
5871 *
5872 */
5873bool completion_done(struct completion *x)
5874{
5875 int ret = 1;
5876
5877 spin_lock_irq(&x->wait.lock);
5878 if (!x->done)
5879 ret = 0;
5880 spin_unlock_irq(&x->wait.lock);
5881 return ret;
5882}
5883EXPORT_SYMBOL(completion_done);
5884
8cbbe86d
AK
5885static long __sched
5886sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5887{
0fec171c
IM
5888 unsigned long flags;
5889 wait_queue_t wait;
5890
5891 init_waitqueue_entry(&wait, current);
1da177e4 5892
8cbbe86d 5893 __set_current_state(state);
1da177e4 5894
8cbbe86d
AK
5895 spin_lock_irqsave(&q->lock, flags);
5896 __add_wait_queue(q, &wait);
5897 spin_unlock(&q->lock);
5898 timeout = schedule_timeout(timeout);
5899 spin_lock_irq(&q->lock);
5900 __remove_wait_queue(q, &wait);
5901 spin_unlock_irqrestore(&q->lock, flags);
5902
5903 return timeout;
5904}
5905
5906void __sched interruptible_sleep_on(wait_queue_head_t *q)
5907{
5908 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5909}
1da177e4
LT
5910EXPORT_SYMBOL(interruptible_sleep_on);
5911
0fec171c 5912long __sched
95cdf3b7 5913interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5914{
8cbbe86d 5915 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5916}
1da177e4
LT
5917EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5918
0fec171c 5919void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5920{
8cbbe86d 5921 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5922}
1da177e4
LT
5923EXPORT_SYMBOL(sleep_on);
5924
0fec171c 5925long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5926{
8cbbe86d 5927 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5928}
1da177e4
LT
5929EXPORT_SYMBOL(sleep_on_timeout);
5930
b29739f9
IM
5931#ifdef CONFIG_RT_MUTEXES
5932
5933/*
5934 * rt_mutex_setprio - set the current priority of a task
5935 * @p: task
5936 * @prio: prio value (kernel-internal form)
5937 *
5938 * This function changes the 'effective' priority of a task. It does
5939 * not touch ->normal_prio like __setscheduler().
5940 *
5941 * Used by the rt_mutex code to implement priority inheritance logic.
5942 */
36c8b586 5943void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5944{
5945 unsigned long flags;
83b699ed 5946 int oldprio, on_rq, running;
70b97a7f 5947 struct rq *rq;
cb469845 5948 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5949
5950 BUG_ON(prio < 0 || prio > MAX_PRIO);
5951
5952 rq = task_rq_lock(p, &flags);
a8e504d2 5953 update_rq_clock(rq);
b29739f9 5954
d5f9f942 5955 oldprio = p->prio;
dd41f596 5956 on_rq = p->se.on_rq;
051a1d1a 5957 running = task_current(rq, p);
0e1f3483 5958 if (on_rq)
69be72c1 5959 dequeue_task(rq, p, 0);
0e1f3483
HS
5960 if (running)
5961 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5962
5963 if (rt_prio(prio))
5964 p->sched_class = &rt_sched_class;
5965 else
5966 p->sched_class = &fair_sched_class;
5967
b29739f9
IM
5968 p->prio = prio;
5969
0e1f3483
HS
5970 if (running)
5971 p->sched_class->set_curr_task(rq);
dd41f596 5972 if (on_rq) {
8159f87e 5973 enqueue_task(rq, p, 0);
cb469845
SR
5974
5975 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5976 }
5977 task_rq_unlock(rq, &flags);
5978}
5979
5980#endif
5981
36c8b586 5982void set_user_nice(struct task_struct *p, long nice)
1da177e4 5983{
dd41f596 5984 int old_prio, delta, on_rq;
1da177e4 5985 unsigned long flags;
70b97a7f 5986 struct rq *rq;
1da177e4
LT
5987
5988 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5989 return;
5990 /*
5991 * We have to be careful, if called from sys_setpriority(),
5992 * the task might be in the middle of scheduling on another CPU.
5993 */
5994 rq = task_rq_lock(p, &flags);
a8e504d2 5995 update_rq_clock(rq);
1da177e4
LT
5996 /*
5997 * The RT priorities are set via sched_setscheduler(), but we still
5998 * allow the 'normal' nice value to be set - but as expected
5999 * it wont have any effect on scheduling until the task is
dd41f596 6000 * SCHED_FIFO/SCHED_RR:
1da177e4 6001 */
e05606d3 6002 if (task_has_rt_policy(p)) {
1da177e4
LT
6003 p->static_prio = NICE_TO_PRIO(nice);
6004 goto out_unlock;
6005 }
dd41f596 6006 on_rq = p->se.on_rq;
c09595f6 6007 if (on_rq)
69be72c1 6008 dequeue_task(rq, p, 0);
1da177e4 6009
1da177e4 6010 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6011 set_load_weight(p);
b29739f9
IM
6012 old_prio = p->prio;
6013 p->prio = effective_prio(p);
6014 delta = p->prio - old_prio;
1da177e4 6015
dd41f596 6016 if (on_rq) {
8159f87e 6017 enqueue_task(rq, p, 0);
1da177e4 6018 /*
d5f9f942
AM
6019 * If the task increased its priority or is running and
6020 * lowered its priority, then reschedule its CPU:
1da177e4 6021 */
d5f9f942 6022 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6023 resched_task(rq->curr);
6024 }
6025out_unlock:
6026 task_rq_unlock(rq, &flags);
6027}
1da177e4
LT
6028EXPORT_SYMBOL(set_user_nice);
6029
e43379f1
MM
6030/*
6031 * can_nice - check if a task can reduce its nice value
6032 * @p: task
6033 * @nice: nice value
6034 */
36c8b586 6035int can_nice(const struct task_struct *p, const int nice)
e43379f1 6036{
024f4747
MM
6037 /* convert nice value [19,-20] to rlimit style value [1,40] */
6038 int nice_rlim = 20 - nice;
48f24c4d 6039
e43379f1
MM
6040 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6041 capable(CAP_SYS_NICE));
6042}
6043
1da177e4
LT
6044#ifdef __ARCH_WANT_SYS_NICE
6045
6046/*
6047 * sys_nice - change the priority of the current process.
6048 * @increment: priority increment
6049 *
6050 * sys_setpriority is a more generic, but much slower function that
6051 * does similar things.
6052 */
5add95d4 6053SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6054{
48f24c4d 6055 long nice, retval;
1da177e4
LT
6056
6057 /*
6058 * Setpriority might change our priority at the same moment.
6059 * We don't have to worry. Conceptually one call occurs first
6060 * and we have a single winner.
6061 */
e43379f1
MM
6062 if (increment < -40)
6063 increment = -40;
1da177e4
LT
6064 if (increment > 40)
6065 increment = 40;
6066
2b8f836f 6067 nice = TASK_NICE(current) + increment;
1da177e4
LT
6068 if (nice < -20)
6069 nice = -20;
6070 if (nice > 19)
6071 nice = 19;
6072
e43379f1
MM
6073 if (increment < 0 && !can_nice(current, nice))
6074 return -EPERM;
6075
1da177e4
LT
6076 retval = security_task_setnice(current, nice);
6077 if (retval)
6078 return retval;
6079
6080 set_user_nice(current, nice);
6081 return 0;
6082}
6083
6084#endif
6085
6086/**
6087 * task_prio - return the priority value of a given task.
6088 * @p: the task in question.
6089 *
6090 * This is the priority value as seen by users in /proc.
6091 * RT tasks are offset by -200. Normal tasks are centered
6092 * around 0, value goes from -16 to +15.
6093 */
36c8b586 6094int task_prio(const struct task_struct *p)
1da177e4
LT
6095{
6096 return p->prio - MAX_RT_PRIO;
6097}
6098
6099/**
6100 * task_nice - return the nice value of a given task.
6101 * @p: the task in question.
6102 */
36c8b586 6103int task_nice(const struct task_struct *p)
1da177e4
LT
6104{
6105 return TASK_NICE(p);
6106}
150d8bed 6107EXPORT_SYMBOL(task_nice);
1da177e4
LT
6108
6109/**
6110 * idle_cpu - is a given cpu idle currently?
6111 * @cpu: the processor in question.
6112 */
6113int idle_cpu(int cpu)
6114{
6115 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6116}
6117
1da177e4
LT
6118/**
6119 * idle_task - return the idle task for a given cpu.
6120 * @cpu: the processor in question.
6121 */
36c8b586 6122struct task_struct *idle_task(int cpu)
1da177e4
LT
6123{
6124 return cpu_rq(cpu)->idle;
6125}
6126
6127/**
6128 * find_process_by_pid - find a process with a matching PID value.
6129 * @pid: the pid in question.
6130 */
a9957449 6131static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6132{
228ebcbe 6133 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6134}
6135
6136/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6137static void
6138__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6139{
dd41f596 6140 BUG_ON(p->se.on_rq);
48f24c4d 6141
1da177e4 6142 p->policy = policy;
dd41f596
IM
6143 switch (p->policy) {
6144 case SCHED_NORMAL:
6145 case SCHED_BATCH:
6146 case SCHED_IDLE:
6147 p->sched_class = &fair_sched_class;
6148 break;
6149 case SCHED_FIFO:
6150 case SCHED_RR:
6151 p->sched_class = &rt_sched_class;
6152 break;
6153 }
6154
1da177e4 6155 p->rt_priority = prio;
b29739f9
IM
6156 p->normal_prio = normal_prio(p);
6157 /* we are holding p->pi_lock already */
6158 p->prio = rt_mutex_getprio(p);
2dd73a4f 6159 set_load_weight(p);
1da177e4
LT
6160}
6161
c69e8d9c
DH
6162/*
6163 * check the target process has a UID that matches the current process's
6164 */
6165static bool check_same_owner(struct task_struct *p)
6166{
6167 const struct cred *cred = current_cred(), *pcred;
6168 bool match;
6169
6170 rcu_read_lock();
6171 pcred = __task_cred(p);
6172 match = (cred->euid == pcred->euid ||
6173 cred->euid == pcred->uid);
6174 rcu_read_unlock();
6175 return match;
6176}
6177
961ccddd
RR
6178static int __sched_setscheduler(struct task_struct *p, int policy,
6179 struct sched_param *param, bool user)
1da177e4 6180{
83b699ed 6181 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6182 unsigned long flags;
cb469845 6183 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6184 struct rq *rq;
ca94c442 6185 int reset_on_fork;
1da177e4 6186
66e5393a
SR
6187 /* may grab non-irq protected spin_locks */
6188 BUG_ON(in_interrupt());
1da177e4
LT
6189recheck:
6190 /* double check policy once rq lock held */
ca94c442
LP
6191 if (policy < 0) {
6192 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6193 policy = oldpolicy = p->policy;
ca94c442
LP
6194 } else {
6195 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6196 policy &= ~SCHED_RESET_ON_FORK;
6197
6198 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6199 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6200 policy != SCHED_IDLE)
6201 return -EINVAL;
6202 }
6203
1da177e4
LT
6204 /*
6205 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6206 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6207 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6208 */
6209 if (param->sched_priority < 0 ||
95cdf3b7 6210 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6211 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6212 return -EINVAL;
e05606d3 6213 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6214 return -EINVAL;
6215
37e4ab3f
OC
6216 /*
6217 * Allow unprivileged RT tasks to decrease priority:
6218 */
961ccddd 6219 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6220 if (rt_policy(policy)) {
8dc3e909 6221 unsigned long rlim_rtprio;
8dc3e909
ON
6222
6223 if (!lock_task_sighand(p, &flags))
6224 return -ESRCH;
6225 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6226 unlock_task_sighand(p, &flags);
6227
6228 /* can't set/change the rt policy */
6229 if (policy != p->policy && !rlim_rtprio)
6230 return -EPERM;
6231
6232 /* can't increase priority */
6233 if (param->sched_priority > p->rt_priority &&
6234 param->sched_priority > rlim_rtprio)
6235 return -EPERM;
6236 }
dd41f596
IM
6237 /*
6238 * Like positive nice levels, dont allow tasks to
6239 * move out of SCHED_IDLE either:
6240 */
6241 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6242 return -EPERM;
5fe1d75f 6243
37e4ab3f 6244 /* can't change other user's priorities */
c69e8d9c 6245 if (!check_same_owner(p))
37e4ab3f 6246 return -EPERM;
ca94c442
LP
6247
6248 /* Normal users shall not reset the sched_reset_on_fork flag */
6249 if (p->sched_reset_on_fork && !reset_on_fork)
6250 return -EPERM;
37e4ab3f 6251 }
1da177e4 6252
725aad24 6253 if (user) {
b68aa230 6254#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6255 /*
6256 * Do not allow realtime tasks into groups that have no runtime
6257 * assigned.
6258 */
9a7e0b18
PZ
6259 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6260 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6261 return -EPERM;
b68aa230
PZ
6262#endif
6263
725aad24
JF
6264 retval = security_task_setscheduler(p, policy, param);
6265 if (retval)
6266 return retval;
6267 }
6268
b29739f9
IM
6269 /*
6270 * make sure no PI-waiters arrive (or leave) while we are
6271 * changing the priority of the task:
6272 */
6273 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6274 /*
6275 * To be able to change p->policy safely, the apropriate
6276 * runqueue lock must be held.
6277 */
b29739f9 6278 rq = __task_rq_lock(p);
1da177e4
LT
6279 /* recheck policy now with rq lock held */
6280 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6281 policy = oldpolicy = -1;
b29739f9
IM
6282 __task_rq_unlock(rq);
6283 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6284 goto recheck;
6285 }
2daa3577 6286 update_rq_clock(rq);
dd41f596 6287 on_rq = p->se.on_rq;
051a1d1a 6288 running = task_current(rq, p);
0e1f3483 6289 if (on_rq)
2e1cb74a 6290 deactivate_task(rq, p, 0);
0e1f3483
HS
6291 if (running)
6292 p->sched_class->put_prev_task(rq, p);
f6b53205 6293
ca94c442
LP
6294 p->sched_reset_on_fork = reset_on_fork;
6295
1da177e4 6296 oldprio = p->prio;
dd41f596 6297 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6298
0e1f3483
HS
6299 if (running)
6300 p->sched_class->set_curr_task(rq);
dd41f596
IM
6301 if (on_rq) {
6302 activate_task(rq, p, 0);
cb469845
SR
6303
6304 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6305 }
b29739f9
IM
6306 __task_rq_unlock(rq);
6307 spin_unlock_irqrestore(&p->pi_lock, flags);
6308
95e02ca9
TG
6309 rt_mutex_adjust_pi(p);
6310
1da177e4
LT
6311 return 0;
6312}
961ccddd
RR
6313
6314/**
6315 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6316 * @p: the task in question.
6317 * @policy: new policy.
6318 * @param: structure containing the new RT priority.
6319 *
6320 * NOTE that the task may be already dead.
6321 */
6322int sched_setscheduler(struct task_struct *p, int policy,
6323 struct sched_param *param)
6324{
6325 return __sched_setscheduler(p, policy, param, true);
6326}
1da177e4
LT
6327EXPORT_SYMBOL_GPL(sched_setscheduler);
6328
961ccddd
RR
6329/**
6330 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6331 * @p: the task in question.
6332 * @policy: new policy.
6333 * @param: structure containing the new RT priority.
6334 *
6335 * Just like sched_setscheduler, only don't bother checking if the
6336 * current context has permission. For example, this is needed in
6337 * stop_machine(): we create temporary high priority worker threads,
6338 * but our caller might not have that capability.
6339 */
6340int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6341 struct sched_param *param)
6342{
6343 return __sched_setscheduler(p, policy, param, false);
6344}
6345
95cdf3b7
IM
6346static int
6347do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6348{
1da177e4
LT
6349 struct sched_param lparam;
6350 struct task_struct *p;
36c8b586 6351 int retval;
1da177e4
LT
6352
6353 if (!param || pid < 0)
6354 return -EINVAL;
6355 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6356 return -EFAULT;
5fe1d75f
ON
6357
6358 rcu_read_lock();
6359 retval = -ESRCH;
1da177e4 6360 p = find_process_by_pid(pid);
5fe1d75f
ON
6361 if (p != NULL)
6362 retval = sched_setscheduler(p, policy, &lparam);
6363 rcu_read_unlock();
36c8b586 6364
1da177e4
LT
6365 return retval;
6366}
6367
6368/**
6369 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6370 * @pid: the pid in question.
6371 * @policy: new policy.
6372 * @param: structure containing the new RT priority.
6373 */
5add95d4
HC
6374SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6375 struct sched_param __user *, param)
1da177e4 6376{
c21761f1
JB
6377 /* negative values for policy are not valid */
6378 if (policy < 0)
6379 return -EINVAL;
6380
1da177e4
LT
6381 return do_sched_setscheduler(pid, policy, param);
6382}
6383
6384/**
6385 * sys_sched_setparam - set/change the RT priority of a thread
6386 * @pid: the pid in question.
6387 * @param: structure containing the new RT priority.
6388 */
5add95d4 6389SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6390{
6391 return do_sched_setscheduler(pid, -1, param);
6392}
6393
6394/**
6395 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6396 * @pid: the pid in question.
6397 */
5add95d4 6398SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6399{
36c8b586 6400 struct task_struct *p;
3a5c359a 6401 int retval;
1da177e4
LT
6402
6403 if (pid < 0)
3a5c359a 6404 return -EINVAL;
1da177e4
LT
6405
6406 retval = -ESRCH;
6407 read_lock(&tasklist_lock);
6408 p = find_process_by_pid(pid);
6409 if (p) {
6410 retval = security_task_getscheduler(p);
6411 if (!retval)
ca94c442
LP
6412 retval = p->policy
6413 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6414 }
6415 read_unlock(&tasklist_lock);
1da177e4
LT
6416 return retval;
6417}
6418
6419/**
ca94c442 6420 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6421 * @pid: the pid in question.
6422 * @param: structure containing the RT priority.
6423 */
5add95d4 6424SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6425{
6426 struct sched_param lp;
36c8b586 6427 struct task_struct *p;
3a5c359a 6428 int retval;
1da177e4
LT
6429
6430 if (!param || pid < 0)
3a5c359a 6431 return -EINVAL;
1da177e4
LT
6432
6433 read_lock(&tasklist_lock);
6434 p = find_process_by_pid(pid);
6435 retval = -ESRCH;
6436 if (!p)
6437 goto out_unlock;
6438
6439 retval = security_task_getscheduler(p);
6440 if (retval)
6441 goto out_unlock;
6442
6443 lp.sched_priority = p->rt_priority;
6444 read_unlock(&tasklist_lock);
6445
6446 /*
6447 * This one might sleep, we cannot do it with a spinlock held ...
6448 */
6449 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6450
1da177e4
LT
6451 return retval;
6452
6453out_unlock:
6454 read_unlock(&tasklist_lock);
6455 return retval;
6456}
6457
96f874e2 6458long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6459{
5a16f3d3 6460 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6461 struct task_struct *p;
6462 int retval;
1da177e4 6463
95402b38 6464 get_online_cpus();
1da177e4
LT
6465 read_lock(&tasklist_lock);
6466
6467 p = find_process_by_pid(pid);
6468 if (!p) {
6469 read_unlock(&tasklist_lock);
95402b38 6470 put_online_cpus();
1da177e4
LT
6471 return -ESRCH;
6472 }
6473
6474 /*
6475 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6476 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6477 * usage count and then drop tasklist_lock.
6478 */
6479 get_task_struct(p);
6480 read_unlock(&tasklist_lock);
6481
5a16f3d3
RR
6482 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6483 retval = -ENOMEM;
6484 goto out_put_task;
6485 }
6486 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6487 retval = -ENOMEM;
6488 goto out_free_cpus_allowed;
6489 }
1da177e4 6490 retval = -EPERM;
c69e8d9c 6491 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6492 goto out_unlock;
6493
e7834f8f
DQ
6494 retval = security_task_setscheduler(p, 0, NULL);
6495 if (retval)
6496 goto out_unlock;
6497
5a16f3d3
RR
6498 cpuset_cpus_allowed(p, cpus_allowed);
6499 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6500 again:
5a16f3d3 6501 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6502
8707d8b8 6503 if (!retval) {
5a16f3d3
RR
6504 cpuset_cpus_allowed(p, cpus_allowed);
6505 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6506 /*
6507 * We must have raced with a concurrent cpuset
6508 * update. Just reset the cpus_allowed to the
6509 * cpuset's cpus_allowed
6510 */
5a16f3d3 6511 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6512 goto again;
6513 }
6514 }
1da177e4 6515out_unlock:
5a16f3d3
RR
6516 free_cpumask_var(new_mask);
6517out_free_cpus_allowed:
6518 free_cpumask_var(cpus_allowed);
6519out_put_task:
1da177e4 6520 put_task_struct(p);
95402b38 6521 put_online_cpus();
1da177e4
LT
6522 return retval;
6523}
6524
6525static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6526 struct cpumask *new_mask)
1da177e4 6527{
96f874e2
RR
6528 if (len < cpumask_size())
6529 cpumask_clear(new_mask);
6530 else if (len > cpumask_size())
6531 len = cpumask_size();
6532
1da177e4
LT
6533 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6534}
6535
6536/**
6537 * sys_sched_setaffinity - set the cpu affinity of a process
6538 * @pid: pid of the process
6539 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6540 * @user_mask_ptr: user-space pointer to the new cpu mask
6541 */
5add95d4
HC
6542SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6543 unsigned long __user *, user_mask_ptr)
1da177e4 6544{
5a16f3d3 6545 cpumask_var_t new_mask;
1da177e4
LT
6546 int retval;
6547
5a16f3d3
RR
6548 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6549 return -ENOMEM;
1da177e4 6550
5a16f3d3
RR
6551 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6552 if (retval == 0)
6553 retval = sched_setaffinity(pid, new_mask);
6554 free_cpumask_var(new_mask);
6555 return retval;
1da177e4
LT
6556}
6557
96f874e2 6558long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6559{
36c8b586 6560 struct task_struct *p;
1da177e4 6561 int retval;
1da177e4 6562
95402b38 6563 get_online_cpus();
1da177e4
LT
6564 read_lock(&tasklist_lock);
6565
6566 retval = -ESRCH;
6567 p = find_process_by_pid(pid);
6568 if (!p)
6569 goto out_unlock;
6570
e7834f8f
DQ
6571 retval = security_task_getscheduler(p);
6572 if (retval)
6573 goto out_unlock;
6574
96f874e2 6575 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6576
6577out_unlock:
6578 read_unlock(&tasklist_lock);
95402b38 6579 put_online_cpus();
1da177e4 6580
9531b62f 6581 return retval;
1da177e4
LT
6582}
6583
6584/**
6585 * sys_sched_getaffinity - get the cpu affinity of a process
6586 * @pid: pid of the process
6587 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6588 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6589 */
5add95d4
HC
6590SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6591 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6592{
6593 int ret;
f17c8607 6594 cpumask_var_t mask;
1da177e4 6595
f17c8607 6596 if (len < cpumask_size())
1da177e4
LT
6597 return -EINVAL;
6598
f17c8607
RR
6599 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6600 return -ENOMEM;
1da177e4 6601
f17c8607
RR
6602 ret = sched_getaffinity(pid, mask);
6603 if (ret == 0) {
6604 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6605 ret = -EFAULT;
6606 else
6607 ret = cpumask_size();
6608 }
6609 free_cpumask_var(mask);
1da177e4 6610
f17c8607 6611 return ret;
1da177e4
LT
6612}
6613
6614/**
6615 * sys_sched_yield - yield the current processor to other threads.
6616 *
dd41f596
IM
6617 * This function yields the current CPU to other tasks. If there are no
6618 * other threads running on this CPU then this function will return.
1da177e4 6619 */
5add95d4 6620SYSCALL_DEFINE0(sched_yield)
1da177e4 6621{
70b97a7f 6622 struct rq *rq = this_rq_lock();
1da177e4 6623
2d72376b 6624 schedstat_inc(rq, yld_count);
4530d7ab 6625 current->sched_class->yield_task(rq);
1da177e4
LT
6626
6627 /*
6628 * Since we are going to call schedule() anyway, there's
6629 * no need to preempt or enable interrupts:
6630 */
6631 __release(rq->lock);
8a25d5de 6632 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6633 _raw_spin_unlock(&rq->lock);
6634 preempt_enable_no_resched();
6635
6636 schedule();
6637
6638 return 0;
6639}
6640
d86ee480
PZ
6641static inline int should_resched(void)
6642{
6643 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6644}
6645
e7b38404 6646static void __cond_resched(void)
1da177e4 6647{
e7aaaa69
FW
6648 add_preempt_count(PREEMPT_ACTIVE);
6649 schedule();
6650 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6651}
6652
02b67cc3 6653int __sched _cond_resched(void)
1da177e4 6654{
d86ee480 6655 if (should_resched()) {
1da177e4
LT
6656 __cond_resched();
6657 return 1;
6658 }
6659 return 0;
6660}
02b67cc3 6661EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6662
6663/*
613afbf8 6664 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6665 * call schedule, and on return reacquire the lock.
6666 *
41a2d6cf 6667 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6668 * operations here to prevent schedule() from being called twice (once via
6669 * spin_unlock(), once by hand).
6670 */
613afbf8 6671int __cond_resched_lock(spinlock_t *lock)
1da177e4 6672{
d86ee480 6673 int resched = should_resched();
6df3cecb
JK
6674 int ret = 0;
6675
f607c668
PZ
6676 lockdep_assert_held(lock);
6677
95c354fe 6678 if (spin_needbreak(lock) || resched) {
1da177e4 6679 spin_unlock(lock);
d86ee480 6680 if (resched)
95c354fe
NP
6681 __cond_resched();
6682 else
6683 cpu_relax();
6df3cecb 6684 ret = 1;
1da177e4 6685 spin_lock(lock);
1da177e4 6686 }
6df3cecb 6687 return ret;
1da177e4 6688}
613afbf8 6689EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6690
613afbf8 6691int __sched __cond_resched_softirq(void)
1da177e4
LT
6692{
6693 BUG_ON(!in_softirq());
6694
d86ee480 6695 if (should_resched()) {
98d82567 6696 local_bh_enable();
1da177e4
LT
6697 __cond_resched();
6698 local_bh_disable();
6699 return 1;
6700 }
6701 return 0;
6702}
613afbf8 6703EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6704
1da177e4
LT
6705/**
6706 * yield - yield the current processor to other threads.
6707 *
72fd4a35 6708 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6709 * thread runnable and calls sys_sched_yield().
6710 */
6711void __sched yield(void)
6712{
6713 set_current_state(TASK_RUNNING);
6714 sys_sched_yield();
6715}
1da177e4
LT
6716EXPORT_SYMBOL(yield);
6717
6718/*
41a2d6cf 6719 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6720 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6721 */
6722void __sched io_schedule(void)
6723{
54d35f29 6724 struct rq *rq = raw_rq();
1da177e4 6725
0ff92245 6726 delayacct_blkio_start();
1da177e4 6727 atomic_inc(&rq->nr_iowait);
8f0dfc34 6728 current->in_iowait = 1;
1da177e4 6729 schedule();
8f0dfc34 6730 current->in_iowait = 0;
1da177e4 6731 atomic_dec(&rq->nr_iowait);
0ff92245 6732 delayacct_blkio_end();
1da177e4 6733}
1da177e4
LT
6734EXPORT_SYMBOL(io_schedule);
6735
6736long __sched io_schedule_timeout(long timeout)
6737{
54d35f29 6738 struct rq *rq = raw_rq();
1da177e4
LT
6739 long ret;
6740
0ff92245 6741 delayacct_blkio_start();
1da177e4 6742 atomic_inc(&rq->nr_iowait);
8f0dfc34 6743 current->in_iowait = 1;
1da177e4 6744 ret = schedule_timeout(timeout);
8f0dfc34 6745 current->in_iowait = 0;
1da177e4 6746 atomic_dec(&rq->nr_iowait);
0ff92245 6747 delayacct_blkio_end();
1da177e4
LT
6748 return ret;
6749}
6750
6751/**
6752 * sys_sched_get_priority_max - return maximum RT priority.
6753 * @policy: scheduling class.
6754 *
6755 * this syscall returns the maximum rt_priority that can be used
6756 * by a given scheduling class.
6757 */
5add95d4 6758SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6759{
6760 int ret = -EINVAL;
6761
6762 switch (policy) {
6763 case SCHED_FIFO:
6764 case SCHED_RR:
6765 ret = MAX_USER_RT_PRIO-1;
6766 break;
6767 case SCHED_NORMAL:
b0a9499c 6768 case SCHED_BATCH:
dd41f596 6769 case SCHED_IDLE:
1da177e4
LT
6770 ret = 0;
6771 break;
6772 }
6773 return ret;
6774}
6775
6776/**
6777 * sys_sched_get_priority_min - return minimum RT priority.
6778 * @policy: scheduling class.
6779 *
6780 * this syscall returns the minimum rt_priority that can be used
6781 * by a given scheduling class.
6782 */
5add95d4 6783SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6784{
6785 int ret = -EINVAL;
6786
6787 switch (policy) {
6788 case SCHED_FIFO:
6789 case SCHED_RR:
6790 ret = 1;
6791 break;
6792 case SCHED_NORMAL:
b0a9499c 6793 case SCHED_BATCH:
dd41f596 6794 case SCHED_IDLE:
1da177e4
LT
6795 ret = 0;
6796 }
6797 return ret;
6798}
6799
6800/**
6801 * sys_sched_rr_get_interval - return the default timeslice of a process.
6802 * @pid: pid of the process.
6803 * @interval: userspace pointer to the timeslice value.
6804 *
6805 * this syscall writes the default timeslice value of a given process
6806 * into the user-space timespec buffer. A value of '0' means infinity.
6807 */
17da2bd9 6808SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6809 struct timespec __user *, interval)
1da177e4 6810{
36c8b586 6811 struct task_struct *p;
a4ec24b4 6812 unsigned int time_slice;
3a5c359a 6813 int retval;
1da177e4 6814 struct timespec t;
1da177e4
LT
6815
6816 if (pid < 0)
3a5c359a 6817 return -EINVAL;
1da177e4
LT
6818
6819 retval = -ESRCH;
6820 read_lock(&tasklist_lock);
6821 p = find_process_by_pid(pid);
6822 if (!p)
6823 goto out_unlock;
6824
6825 retval = security_task_getscheduler(p);
6826 if (retval)
6827 goto out_unlock;
6828
0d721cea 6829 time_slice = p->sched_class->get_rr_interval(p);
a4ec24b4 6830
1da177e4 6831 read_unlock(&tasklist_lock);
a4ec24b4 6832 jiffies_to_timespec(time_slice, &t);
1da177e4 6833 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6834 return retval;
3a5c359a 6835
1da177e4
LT
6836out_unlock:
6837 read_unlock(&tasklist_lock);
6838 return retval;
6839}
6840
7c731e0a 6841static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6842
82a1fcb9 6843void sched_show_task(struct task_struct *p)
1da177e4 6844{
1da177e4 6845 unsigned long free = 0;
36c8b586 6846 unsigned state;
1da177e4 6847
1da177e4 6848 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6849 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6850 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6851#if BITS_PER_LONG == 32
1da177e4 6852 if (state == TASK_RUNNING)
cc4ea795 6853 printk(KERN_CONT " running ");
1da177e4 6854 else
cc4ea795 6855 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6856#else
6857 if (state == TASK_RUNNING)
cc4ea795 6858 printk(KERN_CONT " running task ");
1da177e4 6859 else
cc4ea795 6860 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6861#endif
6862#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6863 free = stack_not_used(p);
1da177e4 6864#endif
aa47b7e0
DR
6865 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6866 task_pid_nr(p), task_pid_nr(p->real_parent),
6867 (unsigned long)task_thread_info(p)->flags);
1da177e4 6868
5fb5e6de 6869 show_stack(p, NULL);
1da177e4
LT
6870}
6871
e59e2ae2 6872void show_state_filter(unsigned long state_filter)
1da177e4 6873{
36c8b586 6874 struct task_struct *g, *p;
1da177e4 6875
4bd77321
IM
6876#if BITS_PER_LONG == 32
6877 printk(KERN_INFO
6878 " task PC stack pid father\n");
1da177e4 6879#else
4bd77321
IM
6880 printk(KERN_INFO
6881 " task PC stack pid father\n");
1da177e4
LT
6882#endif
6883 read_lock(&tasklist_lock);
6884 do_each_thread(g, p) {
6885 /*
6886 * reset the NMI-timeout, listing all files on a slow
6887 * console might take alot of time:
6888 */
6889 touch_nmi_watchdog();
39bc89fd 6890 if (!state_filter || (p->state & state_filter))
82a1fcb9 6891 sched_show_task(p);
1da177e4
LT
6892 } while_each_thread(g, p);
6893
04c9167f
JF
6894 touch_all_softlockup_watchdogs();
6895
dd41f596
IM
6896#ifdef CONFIG_SCHED_DEBUG
6897 sysrq_sched_debug_show();
6898#endif
1da177e4 6899 read_unlock(&tasklist_lock);
e59e2ae2
IM
6900 /*
6901 * Only show locks if all tasks are dumped:
6902 */
6903 if (state_filter == -1)
6904 debug_show_all_locks();
1da177e4
LT
6905}
6906
1df21055
IM
6907void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6908{
dd41f596 6909 idle->sched_class = &idle_sched_class;
1df21055
IM
6910}
6911
f340c0d1
IM
6912/**
6913 * init_idle - set up an idle thread for a given CPU
6914 * @idle: task in question
6915 * @cpu: cpu the idle task belongs to
6916 *
6917 * NOTE: this function does not set the idle thread's NEED_RESCHED
6918 * flag, to make booting more robust.
6919 */
5c1e1767 6920void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6921{
70b97a7f 6922 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6923 unsigned long flags;
6924
5cbd54ef
IM
6925 spin_lock_irqsave(&rq->lock, flags);
6926
dd41f596
IM
6927 __sched_fork(idle);
6928 idle->se.exec_start = sched_clock();
6929
b29739f9 6930 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6931 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6932 __set_task_cpu(idle, cpu);
1da177e4 6933
1da177e4 6934 rq->curr = rq->idle = idle;
4866cde0
NP
6935#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6936 idle->oncpu = 1;
6937#endif
1da177e4
LT
6938 spin_unlock_irqrestore(&rq->lock, flags);
6939
6940 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6941#if defined(CONFIG_PREEMPT)
6942 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6943#else
a1261f54 6944 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6945#endif
dd41f596
IM
6946 /*
6947 * The idle tasks have their own, simple scheduling class:
6948 */
6949 idle->sched_class = &idle_sched_class;
fb52607a 6950 ftrace_graph_init_task(idle);
1da177e4
LT
6951}
6952
6953/*
6954 * In a system that switches off the HZ timer nohz_cpu_mask
6955 * indicates which cpus entered this state. This is used
6956 * in the rcu update to wait only for active cpus. For system
6957 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6958 * always be CPU_BITS_NONE.
1da177e4 6959 */
6a7b3dc3 6960cpumask_var_t nohz_cpu_mask;
1da177e4 6961
19978ca6
IM
6962/*
6963 * Increase the granularity value when there are more CPUs,
6964 * because with more CPUs the 'effective latency' as visible
6965 * to users decreases. But the relationship is not linear,
6966 * so pick a second-best guess by going with the log2 of the
6967 * number of CPUs.
6968 *
6969 * This idea comes from the SD scheduler of Con Kolivas:
6970 */
6971static inline void sched_init_granularity(void)
6972{
6973 unsigned int factor = 1 + ilog2(num_online_cpus());
6974 const unsigned long limit = 200000000;
6975
6976 sysctl_sched_min_granularity *= factor;
6977 if (sysctl_sched_min_granularity > limit)
6978 sysctl_sched_min_granularity = limit;
6979
6980 sysctl_sched_latency *= factor;
6981 if (sysctl_sched_latency > limit)
6982 sysctl_sched_latency = limit;
6983
6984 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6985
6986 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6987}
6988
1da177e4
LT
6989#ifdef CONFIG_SMP
6990/*
6991 * This is how migration works:
6992 *
70b97a7f 6993 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6994 * runqueue and wake up that CPU's migration thread.
6995 * 2) we down() the locked semaphore => thread blocks.
6996 * 3) migration thread wakes up (implicitly it forces the migrated
6997 * thread off the CPU)
6998 * 4) it gets the migration request and checks whether the migrated
6999 * task is still in the wrong runqueue.
7000 * 5) if it's in the wrong runqueue then the migration thread removes
7001 * it and puts it into the right queue.
7002 * 6) migration thread up()s the semaphore.
7003 * 7) we wake up and the migration is done.
7004 */
7005
7006/*
7007 * Change a given task's CPU affinity. Migrate the thread to a
7008 * proper CPU and schedule it away if the CPU it's executing on
7009 * is removed from the allowed bitmask.
7010 *
7011 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7012 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7013 * call is not atomic; no spinlocks may be held.
7014 */
96f874e2 7015int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7016{
70b97a7f 7017 struct migration_req req;
1da177e4 7018 unsigned long flags;
70b97a7f 7019 struct rq *rq;
48f24c4d 7020 int ret = 0;
1da177e4
LT
7021
7022 rq = task_rq_lock(p, &flags);
96f874e2 7023 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7024 ret = -EINVAL;
7025 goto out;
7026 }
7027
9985b0ba 7028 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7029 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7030 ret = -EINVAL;
7031 goto out;
7032 }
7033
73fe6aae 7034 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7035 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7036 else {
96f874e2
RR
7037 cpumask_copy(&p->cpus_allowed, new_mask);
7038 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7039 }
7040
1da177e4 7041 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7042 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7043 goto out;
7044
1e5ce4f4 7045 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7046 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7047 struct task_struct *mt = rq->migration_thread;
7048
7049 get_task_struct(mt);
1da177e4
LT
7050 task_rq_unlock(rq, &flags);
7051 wake_up_process(rq->migration_thread);
693525e3 7052 put_task_struct(mt);
1da177e4
LT
7053 wait_for_completion(&req.done);
7054 tlb_migrate_finish(p->mm);
7055 return 0;
7056 }
7057out:
7058 task_rq_unlock(rq, &flags);
48f24c4d 7059
1da177e4
LT
7060 return ret;
7061}
cd8ba7cd 7062EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7063
7064/*
41a2d6cf 7065 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7066 * this because either it can't run here any more (set_cpus_allowed()
7067 * away from this CPU, or CPU going down), or because we're
7068 * attempting to rebalance this task on exec (sched_exec).
7069 *
7070 * So we race with normal scheduler movements, but that's OK, as long
7071 * as the task is no longer on this CPU.
efc30814
KK
7072 *
7073 * Returns non-zero if task was successfully migrated.
1da177e4 7074 */
efc30814 7075static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7076{
70b97a7f 7077 struct rq *rq_dest, *rq_src;
dd41f596 7078 int ret = 0, on_rq;
1da177e4 7079
e761b772 7080 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7081 return ret;
1da177e4
LT
7082
7083 rq_src = cpu_rq(src_cpu);
7084 rq_dest = cpu_rq(dest_cpu);
7085
7086 double_rq_lock(rq_src, rq_dest);
7087 /* Already moved. */
7088 if (task_cpu(p) != src_cpu)
b1e38734 7089 goto done;
1da177e4 7090 /* Affinity changed (again). */
96f874e2 7091 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7092 goto fail;
1da177e4 7093
dd41f596 7094 on_rq = p->se.on_rq;
6e82a3be 7095 if (on_rq)
2e1cb74a 7096 deactivate_task(rq_src, p, 0);
6e82a3be 7097
1da177e4 7098 set_task_cpu(p, dest_cpu);
dd41f596
IM
7099 if (on_rq) {
7100 activate_task(rq_dest, p, 0);
15afe09b 7101 check_preempt_curr(rq_dest, p, 0);
1da177e4 7102 }
b1e38734 7103done:
efc30814 7104 ret = 1;
b1e38734 7105fail:
1da177e4 7106 double_rq_unlock(rq_src, rq_dest);
efc30814 7107 return ret;
1da177e4
LT
7108}
7109
03b042bf
PM
7110#define RCU_MIGRATION_IDLE 0
7111#define RCU_MIGRATION_NEED_QS 1
7112#define RCU_MIGRATION_GOT_QS 2
7113#define RCU_MIGRATION_MUST_SYNC 3
7114
1da177e4
LT
7115/*
7116 * migration_thread - this is a highprio system thread that performs
7117 * thread migration by bumping thread off CPU then 'pushing' onto
7118 * another runqueue.
7119 */
95cdf3b7 7120static int migration_thread(void *data)
1da177e4 7121{
03b042bf 7122 int badcpu;
1da177e4 7123 int cpu = (long)data;
70b97a7f 7124 struct rq *rq;
1da177e4
LT
7125
7126 rq = cpu_rq(cpu);
7127 BUG_ON(rq->migration_thread != current);
7128
7129 set_current_state(TASK_INTERRUPTIBLE);
7130 while (!kthread_should_stop()) {
70b97a7f 7131 struct migration_req *req;
1da177e4 7132 struct list_head *head;
1da177e4 7133
1da177e4
LT
7134 spin_lock_irq(&rq->lock);
7135
7136 if (cpu_is_offline(cpu)) {
7137 spin_unlock_irq(&rq->lock);
371cbb38 7138 break;
1da177e4
LT
7139 }
7140
7141 if (rq->active_balance) {
7142 active_load_balance(rq, cpu);
7143 rq->active_balance = 0;
7144 }
7145
7146 head = &rq->migration_queue;
7147
7148 if (list_empty(head)) {
7149 spin_unlock_irq(&rq->lock);
7150 schedule();
7151 set_current_state(TASK_INTERRUPTIBLE);
7152 continue;
7153 }
70b97a7f 7154 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7155 list_del_init(head->next);
7156
03b042bf
PM
7157 if (req->task != NULL) {
7158 spin_unlock(&rq->lock);
7159 __migrate_task(req->task, cpu, req->dest_cpu);
7160 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7161 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7162 spin_unlock(&rq->lock);
7163 } else {
7164 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7165 spin_unlock(&rq->lock);
7166 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7167 }
674311d5 7168 local_irq_enable();
1da177e4
LT
7169
7170 complete(&req->done);
7171 }
7172 __set_current_state(TASK_RUNNING);
1da177e4 7173
1da177e4
LT
7174 return 0;
7175}
7176
7177#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7178
7179static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7180{
7181 int ret;
7182
7183 local_irq_disable();
7184 ret = __migrate_task(p, src_cpu, dest_cpu);
7185 local_irq_enable();
7186 return ret;
7187}
7188
054b9108 7189/*
3a4fa0a2 7190 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7191 */
48f24c4d 7192static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7193{
70b97a7f 7194 int dest_cpu;
6ca09dfc 7195 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7196
7197again:
7198 /* Look for allowed, online CPU in same node. */
7199 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7200 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7201 goto move;
7202
7203 /* Any allowed, online CPU? */
7204 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7205 if (dest_cpu < nr_cpu_ids)
7206 goto move;
7207
7208 /* No more Mr. Nice Guy. */
7209 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7210 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7211 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7212
e76bd8d9
RR
7213 /*
7214 * Don't tell them about moving exiting tasks or
7215 * kernel threads (both mm NULL), since they never
7216 * leave kernel.
7217 */
7218 if (p->mm && printk_ratelimit()) {
7219 printk(KERN_INFO "process %d (%s) no "
7220 "longer affine to cpu%d\n",
7221 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7222 }
e76bd8d9
RR
7223 }
7224
7225move:
7226 /* It can have affinity changed while we were choosing. */
7227 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7228 goto again;
1da177e4
LT
7229}
7230
7231/*
7232 * While a dead CPU has no uninterruptible tasks queued at this point,
7233 * it might still have a nonzero ->nr_uninterruptible counter, because
7234 * for performance reasons the counter is not stricly tracking tasks to
7235 * their home CPUs. So we just add the counter to another CPU's counter,
7236 * to keep the global sum constant after CPU-down:
7237 */
70b97a7f 7238static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7239{
1e5ce4f4 7240 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7241 unsigned long flags;
7242
7243 local_irq_save(flags);
7244 double_rq_lock(rq_src, rq_dest);
7245 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7246 rq_src->nr_uninterruptible = 0;
7247 double_rq_unlock(rq_src, rq_dest);
7248 local_irq_restore(flags);
7249}
7250
7251/* Run through task list and migrate tasks from the dead cpu. */
7252static void migrate_live_tasks(int src_cpu)
7253{
48f24c4d 7254 struct task_struct *p, *t;
1da177e4 7255
f7b4cddc 7256 read_lock(&tasklist_lock);
1da177e4 7257
48f24c4d
IM
7258 do_each_thread(t, p) {
7259 if (p == current)
1da177e4
LT
7260 continue;
7261
48f24c4d
IM
7262 if (task_cpu(p) == src_cpu)
7263 move_task_off_dead_cpu(src_cpu, p);
7264 } while_each_thread(t, p);
1da177e4 7265
f7b4cddc 7266 read_unlock(&tasklist_lock);
1da177e4
LT
7267}
7268
dd41f596
IM
7269/*
7270 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7271 * It does so by boosting its priority to highest possible.
7272 * Used by CPU offline code.
1da177e4
LT
7273 */
7274void sched_idle_next(void)
7275{
48f24c4d 7276 int this_cpu = smp_processor_id();
70b97a7f 7277 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7278 struct task_struct *p = rq->idle;
7279 unsigned long flags;
7280
7281 /* cpu has to be offline */
48f24c4d 7282 BUG_ON(cpu_online(this_cpu));
1da177e4 7283
48f24c4d
IM
7284 /*
7285 * Strictly not necessary since rest of the CPUs are stopped by now
7286 * and interrupts disabled on the current cpu.
1da177e4
LT
7287 */
7288 spin_lock_irqsave(&rq->lock, flags);
7289
dd41f596 7290 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7291
94bc9a7b
DA
7292 update_rq_clock(rq);
7293 activate_task(rq, p, 0);
1da177e4
LT
7294
7295 spin_unlock_irqrestore(&rq->lock, flags);
7296}
7297
48f24c4d
IM
7298/*
7299 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7300 * offline.
7301 */
7302void idle_task_exit(void)
7303{
7304 struct mm_struct *mm = current->active_mm;
7305
7306 BUG_ON(cpu_online(smp_processor_id()));
7307
7308 if (mm != &init_mm)
7309 switch_mm(mm, &init_mm, current);
7310 mmdrop(mm);
7311}
7312
054b9108 7313/* called under rq->lock with disabled interrupts */
36c8b586 7314static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7315{
70b97a7f 7316 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7317
7318 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7319 BUG_ON(!p->exit_state);
1da177e4
LT
7320
7321 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7322 BUG_ON(p->state == TASK_DEAD);
1da177e4 7323
48f24c4d 7324 get_task_struct(p);
1da177e4
LT
7325
7326 /*
7327 * Drop lock around migration; if someone else moves it,
41a2d6cf 7328 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7329 * fine.
7330 */
f7b4cddc 7331 spin_unlock_irq(&rq->lock);
48f24c4d 7332 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7333 spin_lock_irq(&rq->lock);
1da177e4 7334
48f24c4d 7335 put_task_struct(p);
1da177e4
LT
7336}
7337
7338/* release_task() removes task from tasklist, so we won't find dead tasks. */
7339static void migrate_dead_tasks(unsigned int dead_cpu)
7340{
70b97a7f 7341 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7342 struct task_struct *next;
48f24c4d 7343
dd41f596
IM
7344 for ( ; ; ) {
7345 if (!rq->nr_running)
7346 break;
a8e504d2 7347 update_rq_clock(rq);
b67802ea 7348 next = pick_next_task(rq);
dd41f596
IM
7349 if (!next)
7350 break;
79c53799 7351 next->sched_class->put_prev_task(rq, next);
dd41f596 7352 migrate_dead(dead_cpu, next);
e692ab53 7353
1da177e4
LT
7354 }
7355}
dce48a84
TG
7356
7357/*
7358 * remove the tasks which were accounted by rq from calc_load_tasks.
7359 */
7360static void calc_global_load_remove(struct rq *rq)
7361{
7362 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7363 rq->calc_load_active = 0;
dce48a84 7364}
1da177e4
LT
7365#endif /* CONFIG_HOTPLUG_CPU */
7366
e692ab53
NP
7367#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7368
7369static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7370 {
7371 .procname = "sched_domain",
c57baf1e 7372 .mode = 0555,
e0361851 7373 },
38605cae 7374 {0, },
e692ab53
NP
7375};
7376
7377static struct ctl_table sd_ctl_root[] = {
e0361851 7378 {
c57baf1e 7379 .ctl_name = CTL_KERN,
e0361851 7380 .procname = "kernel",
c57baf1e 7381 .mode = 0555,
e0361851
AD
7382 .child = sd_ctl_dir,
7383 },
38605cae 7384 {0, },
e692ab53
NP
7385};
7386
7387static struct ctl_table *sd_alloc_ctl_entry(int n)
7388{
7389 struct ctl_table *entry =
5cf9f062 7390 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7391
e692ab53
NP
7392 return entry;
7393}
7394
6382bc90
MM
7395static void sd_free_ctl_entry(struct ctl_table **tablep)
7396{
cd790076 7397 struct ctl_table *entry;
6382bc90 7398
cd790076
MM
7399 /*
7400 * In the intermediate directories, both the child directory and
7401 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7402 * will always be set. In the lowest directory the names are
cd790076
MM
7403 * static strings and all have proc handlers.
7404 */
7405 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7406 if (entry->child)
7407 sd_free_ctl_entry(&entry->child);
cd790076
MM
7408 if (entry->proc_handler == NULL)
7409 kfree(entry->procname);
7410 }
6382bc90
MM
7411
7412 kfree(*tablep);
7413 *tablep = NULL;
7414}
7415
e692ab53 7416static void
e0361851 7417set_table_entry(struct ctl_table *entry,
e692ab53
NP
7418 const char *procname, void *data, int maxlen,
7419 mode_t mode, proc_handler *proc_handler)
7420{
e692ab53
NP
7421 entry->procname = procname;
7422 entry->data = data;
7423 entry->maxlen = maxlen;
7424 entry->mode = mode;
7425 entry->proc_handler = proc_handler;
7426}
7427
7428static struct ctl_table *
7429sd_alloc_ctl_domain_table(struct sched_domain *sd)
7430{
a5d8c348 7431 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7432
ad1cdc1d
MM
7433 if (table == NULL)
7434 return NULL;
7435
e0361851 7436 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7437 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7438 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7439 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7440 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7441 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7442 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7443 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7444 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7445 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7446 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7447 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7448 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7449 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7450 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7451 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7452 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7453 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7454 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7455 &sd->cache_nice_tries,
7456 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7457 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7458 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7459 set_table_entry(&table[11], "name", sd->name,
7460 CORENAME_MAX_SIZE, 0444, proc_dostring);
7461 /* &table[12] is terminator */
e692ab53
NP
7462
7463 return table;
7464}
7465
9a4e7159 7466static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7467{
7468 struct ctl_table *entry, *table;
7469 struct sched_domain *sd;
7470 int domain_num = 0, i;
7471 char buf[32];
7472
7473 for_each_domain(cpu, sd)
7474 domain_num++;
7475 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7476 if (table == NULL)
7477 return NULL;
e692ab53
NP
7478
7479 i = 0;
7480 for_each_domain(cpu, sd) {
7481 snprintf(buf, 32, "domain%d", i);
e692ab53 7482 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7483 entry->mode = 0555;
e692ab53
NP
7484 entry->child = sd_alloc_ctl_domain_table(sd);
7485 entry++;
7486 i++;
7487 }
7488 return table;
7489}
7490
7491static struct ctl_table_header *sd_sysctl_header;
6382bc90 7492static void register_sched_domain_sysctl(void)
e692ab53
NP
7493{
7494 int i, cpu_num = num_online_cpus();
7495 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7496 char buf[32];
7497
7378547f
MM
7498 WARN_ON(sd_ctl_dir[0].child);
7499 sd_ctl_dir[0].child = entry;
7500
ad1cdc1d
MM
7501 if (entry == NULL)
7502 return;
7503
97b6ea7b 7504 for_each_online_cpu(i) {
e692ab53 7505 snprintf(buf, 32, "cpu%d", i);
e692ab53 7506 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7507 entry->mode = 0555;
e692ab53 7508 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7509 entry++;
e692ab53 7510 }
7378547f
MM
7511
7512 WARN_ON(sd_sysctl_header);
e692ab53
NP
7513 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7514}
6382bc90 7515
7378547f 7516/* may be called multiple times per register */
6382bc90
MM
7517static void unregister_sched_domain_sysctl(void)
7518{
7378547f
MM
7519 if (sd_sysctl_header)
7520 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7521 sd_sysctl_header = NULL;
7378547f
MM
7522 if (sd_ctl_dir[0].child)
7523 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7524}
e692ab53 7525#else
6382bc90
MM
7526static void register_sched_domain_sysctl(void)
7527{
7528}
7529static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7530{
7531}
7532#endif
7533
1f11eb6a
GH
7534static void set_rq_online(struct rq *rq)
7535{
7536 if (!rq->online) {
7537 const struct sched_class *class;
7538
c6c4927b 7539 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7540 rq->online = 1;
7541
7542 for_each_class(class) {
7543 if (class->rq_online)
7544 class->rq_online(rq);
7545 }
7546 }
7547}
7548
7549static void set_rq_offline(struct rq *rq)
7550{
7551 if (rq->online) {
7552 const struct sched_class *class;
7553
7554 for_each_class(class) {
7555 if (class->rq_offline)
7556 class->rq_offline(rq);
7557 }
7558
c6c4927b 7559 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7560 rq->online = 0;
7561 }
7562}
7563
1da177e4
LT
7564/*
7565 * migration_call - callback that gets triggered when a CPU is added.
7566 * Here we can start up the necessary migration thread for the new CPU.
7567 */
48f24c4d
IM
7568static int __cpuinit
7569migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7570{
1da177e4 7571 struct task_struct *p;
48f24c4d 7572 int cpu = (long)hcpu;
1da177e4 7573 unsigned long flags;
70b97a7f 7574 struct rq *rq;
1da177e4
LT
7575
7576 switch (action) {
5be9361c 7577
1da177e4 7578 case CPU_UP_PREPARE:
8bb78442 7579 case CPU_UP_PREPARE_FROZEN:
dd41f596 7580 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7581 if (IS_ERR(p))
7582 return NOTIFY_BAD;
1da177e4
LT
7583 kthread_bind(p, cpu);
7584 /* Must be high prio: stop_machine expects to yield to it. */
7585 rq = task_rq_lock(p, &flags);
dd41f596 7586 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7587 task_rq_unlock(rq, &flags);
371cbb38 7588 get_task_struct(p);
1da177e4 7589 cpu_rq(cpu)->migration_thread = p;
a468d389 7590 rq->calc_load_update = calc_load_update;
1da177e4 7591 break;
48f24c4d 7592
1da177e4 7593 case CPU_ONLINE:
8bb78442 7594 case CPU_ONLINE_FROZEN:
3a4fa0a2 7595 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7596 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7597
7598 /* Update our root-domain */
7599 rq = cpu_rq(cpu);
7600 spin_lock_irqsave(&rq->lock, flags);
7601 if (rq->rd) {
c6c4927b 7602 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7603
7604 set_rq_online(rq);
1f94ef59
GH
7605 }
7606 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7607 break;
48f24c4d 7608
1da177e4
LT
7609#ifdef CONFIG_HOTPLUG_CPU
7610 case CPU_UP_CANCELED:
8bb78442 7611 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7612 if (!cpu_rq(cpu)->migration_thread)
7613 break;
41a2d6cf 7614 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7615 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7616 cpumask_any(cpu_online_mask));
1da177e4 7617 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7618 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7619 cpu_rq(cpu)->migration_thread = NULL;
7620 break;
48f24c4d 7621
1da177e4 7622 case CPU_DEAD:
8bb78442 7623 case CPU_DEAD_FROZEN:
470fd646 7624 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7625 migrate_live_tasks(cpu);
7626 rq = cpu_rq(cpu);
7627 kthread_stop(rq->migration_thread);
371cbb38 7628 put_task_struct(rq->migration_thread);
1da177e4
LT
7629 rq->migration_thread = NULL;
7630 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7631 spin_lock_irq(&rq->lock);
a8e504d2 7632 update_rq_clock(rq);
2e1cb74a 7633 deactivate_task(rq, rq->idle, 0);
1da177e4 7634 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7635 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7636 rq->idle->sched_class = &idle_sched_class;
1da177e4 7637 migrate_dead_tasks(cpu);
d2da272a 7638 spin_unlock_irq(&rq->lock);
470fd646 7639 cpuset_unlock();
1da177e4
LT
7640 migrate_nr_uninterruptible(rq);
7641 BUG_ON(rq->nr_running != 0);
dce48a84 7642 calc_global_load_remove(rq);
41a2d6cf
IM
7643 /*
7644 * No need to migrate the tasks: it was best-effort if
7645 * they didn't take sched_hotcpu_mutex. Just wake up
7646 * the requestors.
7647 */
1da177e4
LT
7648 spin_lock_irq(&rq->lock);
7649 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7650 struct migration_req *req;
7651
1da177e4 7652 req = list_entry(rq->migration_queue.next,
70b97a7f 7653 struct migration_req, list);
1da177e4 7654 list_del_init(&req->list);
9a2bd244 7655 spin_unlock_irq(&rq->lock);
1da177e4 7656 complete(&req->done);
9a2bd244 7657 spin_lock_irq(&rq->lock);
1da177e4
LT
7658 }
7659 spin_unlock_irq(&rq->lock);
7660 break;
57d885fe 7661
08f503b0
GH
7662 case CPU_DYING:
7663 case CPU_DYING_FROZEN:
57d885fe
GH
7664 /* Update our root-domain */
7665 rq = cpu_rq(cpu);
7666 spin_lock_irqsave(&rq->lock, flags);
7667 if (rq->rd) {
c6c4927b 7668 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7669 set_rq_offline(rq);
57d885fe
GH
7670 }
7671 spin_unlock_irqrestore(&rq->lock, flags);
7672 break;
1da177e4
LT
7673#endif
7674 }
7675 return NOTIFY_OK;
7676}
7677
f38b0820
PM
7678/*
7679 * Register at high priority so that task migration (migrate_all_tasks)
7680 * happens before everything else. This has to be lower priority than
cdd6c482 7681 * the notifier in the perf_event subsystem, though.
1da177e4 7682 */
26c2143b 7683static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7684 .notifier_call = migration_call,
7685 .priority = 10
7686};
7687
7babe8db 7688static int __init migration_init(void)
1da177e4
LT
7689{
7690 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7691 int err;
48f24c4d
IM
7692
7693 /* Start one for the boot CPU: */
07dccf33
AM
7694 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7695 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7696 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7697 register_cpu_notifier(&migration_notifier);
7babe8db 7698
a004cd42 7699 return 0;
1da177e4 7700}
7babe8db 7701early_initcall(migration_init);
1da177e4
LT
7702#endif
7703
7704#ifdef CONFIG_SMP
476f3534 7705
3e9830dc 7706#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7707
7c16ec58 7708static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7709 struct cpumask *groupmask)
1da177e4 7710{
4dcf6aff 7711 struct sched_group *group = sd->groups;
434d53b0 7712 char str[256];
1da177e4 7713
968ea6d8 7714 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7715 cpumask_clear(groupmask);
4dcf6aff
IM
7716
7717 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7718
7719 if (!(sd->flags & SD_LOAD_BALANCE)) {
7720 printk("does not load-balance\n");
7721 if (sd->parent)
7722 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7723 " has parent");
7724 return -1;
41c7ce9a
NP
7725 }
7726
eefd796a 7727 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7728
758b2cdc 7729 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7730 printk(KERN_ERR "ERROR: domain->span does not contain "
7731 "CPU%d\n", cpu);
7732 }
758b2cdc 7733 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7734 printk(KERN_ERR "ERROR: domain->groups does not contain"
7735 " CPU%d\n", cpu);
7736 }
1da177e4 7737
4dcf6aff 7738 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7739 do {
4dcf6aff
IM
7740 if (!group) {
7741 printk("\n");
7742 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7743 break;
7744 }
7745
18a3885f 7746 if (!group->cpu_power) {
4dcf6aff
IM
7747 printk(KERN_CONT "\n");
7748 printk(KERN_ERR "ERROR: domain->cpu_power not "
7749 "set\n");
7750 break;
7751 }
1da177e4 7752
758b2cdc 7753 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7754 printk(KERN_CONT "\n");
7755 printk(KERN_ERR "ERROR: empty group\n");
7756 break;
7757 }
1da177e4 7758
758b2cdc 7759 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7760 printk(KERN_CONT "\n");
7761 printk(KERN_ERR "ERROR: repeated CPUs\n");
7762 break;
7763 }
1da177e4 7764
758b2cdc 7765 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7766
968ea6d8 7767 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7768
7769 printk(KERN_CONT " %s", str);
18a3885f
PZ
7770 if (group->cpu_power != SCHED_LOAD_SCALE) {
7771 printk(KERN_CONT " (cpu_power = %d)",
7772 group->cpu_power);
381512cf 7773 }
1da177e4 7774
4dcf6aff
IM
7775 group = group->next;
7776 } while (group != sd->groups);
7777 printk(KERN_CONT "\n");
1da177e4 7778
758b2cdc 7779 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7780 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7781
758b2cdc
RR
7782 if (sd->parent &&
7783 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7784 printk(KERN_ERR "ERROR: parent span is not a superset "
7785 "of domain->span\n");
7786 return 0;
7787}
1da177e4 7788
4dcf6aff
IM
7789static void sched_domain_debug(struct sched_domain *sd, int cpu)
7790{
d5dd3db1 7791 cpumask_var_t groupmask;
4dcf6aff 7792 int level = 0;
1da177e4 7793
4dcf6aff
IM
7794 if (!sd) {
7795 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7796 return;
7797 }
1da177e4 7798
4dcf6aff
IM
7799 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7800
d5dd3db1 7801 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7802 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7803 return;
7804 }
7805
4dcf6aff 7806 for (;;) {
7c16ec58 7807 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7808 break;
1da177e4
LT
7809 level++;
7810 sd = sd->parent;
33859f7f 7811 if (!sd)
4dcf6aff
IM
7812 break;
7813 }
d5dd3db1 7814 free_cpumask_var(groupmask);
1da177e4 7815}
6d6bc0ad 7816#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7817# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7818#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7819
1a20ff27 7820static int sd_degenerate(struct sched_domain *sd)
245af2c7 7821{
758b2cdc 7822 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7823 return 1;
7824
7825 /* Following flags need at least 2 groups */
7826 if (sd->flags & (SD_LOAD_BALANCE |
7827 SD_BALANCE_NEWIDLE |
7828 SD_BALANCE_FORK |
89c4710e
SS
7829 SD_BALANCE_EXEC |
7830 SD_SHARE_CPUPOWER |
7831 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7832 if (sd->groups != sd->groups->next)
7833 return 0;
7834 }
7835
7836 /* Following flags don't use groups */
c88d5910 7837 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7838 return 0;
7839
7840 return 1;
7841}
7842
48f24c4d
IM
7843static int
7844sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7845{
7846 unsigned long cflags = sd->flags, pflags = parent->flags;
7847
7848 if (sd_degenerate(parent))
7849 return 1;
7850
758b2cdc 7851 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7852 return 0;
7853
245af2c7
SS
7854 /* Flags needing groups don't count if only 1 group in parent */
7855 if (parent->groups == parent->groups->next) {
7856 pflags &= ~(SD_LOAD_BALANCE |
7857 SD_BALANCE_NEWIDLE |
7858 SD_BALANCE_FORK |
89c4710e
SS
7859 SD_BALANCE_EXEC |
7860 SD_SHARE_CPUPOWER |
7861 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7862 if (nr_node_ids == 1)
7863 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7864 }
7865 if (~cflags & pflags)
7866 return 0;
7867
7868 return 1;
7869}
7870
c6c4927b
RR
7871static void free_rootdomain(struct root_domain *rd)
7872{
68e74568
RR
7873 cpupri_cleanup(&rd->cpupri);
7874
c6c4927b
RR
7875 free_cpumask_var(rd->rto_mask);
7876 free_cpumask_var(rd->online);
7877 free_cpumask_var(rd->span);
7878 kfree(rd);
7879}
7880
57d885fe
GH
7881static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7882{
a0490fa3 7883 struct root_domain *old_rd = NULL;
57d885fe 7884 unsigned long flags;
57d885fe
GH
7885
7886 spin_lock_irqsave(&rq->lock, flags);
7887
7888 if (rq->rd) {
a0490fa3 7889 old_rd = rq->rd;
57d885fe 7890
c6c4927b 7891 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7892 set_rq_offline(rq);
57d885fe 7893
c6c4927b 7894 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7895
a0490fa3
IM
7896 /*
7897 * If we dont want to free the old_rt yet then
7898 * set old_rd to NULL to skip the freeing later
7899 * in this function:
7900 */
7901 if (!atomic_dec_and_test(&old_rd->refcount))
7902 old_rd = NULL;
57d885fe
GH
7903 }
7904
7905 atomic_inc(&rd->refcount);
7906 rq->rd = rd;
7907
c6c4927b 7908 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7909 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7910 set_rq_online(rq);
57d885fe
GH
7911
7912 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7913
7914 if (old_rd)
7915 free_rootdomain(old_rd);
57d885fe
GH
7916}
7917
fd5e1b5d 7918static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7919{
36b7b6d4
PE
7920 gfp_t gfp = GFP_KERNEL;
7921
57d885fe
GH
7922 memset(rd, 0, sizeof(*rd));
7923
36b7b6d4
PE
7924 if (bootmem)
7925 gfp = GFP_NOWAIT;
c6c4927b 7926
36b7b6d4 7927 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7928 goto out;
36b7b6d4 7929 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7930 goto free_span;
36b7b6d4 7931 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7932 goto free_online;
6e0534f2 7933
0fb53029 7934 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7935 goto free_rto_mask;
c6c4927b 7936 return 0;
6e0534f2 7937
68e74568
RR
7938free_rto_mask:
7939 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7940free_online:
7941 free_cpumask_var(rd->online);
7942free_span:
7943 free_cpumask_var(rd->span);
0c910d28 7944out:
c6c4927b 7945 return -ENOMEM;
57d885fe
GH
7946}
7947
7948static void init_defrootdomain(void)
7949{
c6c4927b
RR
7950 init_rootdomain(&def_root_domain, true);
7951
57d885fe
GH
7952 atomic_set(&def_root_domain.refcount, 1);
7953}
7954
dc938520 7955static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7956{
7957 struct root_domain *rd;
7958
7959 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7960 if (!rd)
7961 return NULL;
7962
c6c4927b
RR
7963 if (init_rootdomain(rd, false) != 0) {
7964 kfree(rd);
7965 return NULL;
7966 }
57d885fe
GH
7967
7968 return rd;
7969}
7970
1da177e4 7971/*
0eab9146 7972 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7973 * hold the hotplug lock.
7974 */
0eab9146
IM
7975static void
7976cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7977{
70b97a7f 7978 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7979 struct sched_domain *tmp;
7980
7981 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7982 for (tmp = sd; tmp; ) {
245af2c7
SS
7983 struct sched_domain *parent = tmp->parent;
7984 if (!parent)
7985 break;
f29c9b1c 7986
1a848870 7987 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7988 tmp->parent = parent->parent;
1a848870
SS
7989 if (parent->parent)
7990 parent->parent->child = tmp;
f29c9b1c
LZ
7991 } else
7992 tmp = tmp->parent;
245af2c7
SS
7993 }
7994
1a848870 7995 if (sd && sd_degenerate(sd)) {
245af2c7 7996 sd = sd->parent;
1a848870
SS
7997 if (sd)
7998 sd->child = NULL;
7999 }
1da177e4
LT
8000
8001 sched_domain_debug(sd, cpu);
8002
57d885fe 8003 rq_attach_root(rq, rd);
674311d5 8004 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8005}
8006
8007/* cpus with isolated domains */
dcc30a35 8008static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8009
8010/* Setup the mask of cpus configured for isolated domains */
8011static int __init isolated_cpu_setup(char *str)
8012{
968ea6d8 8013 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8014 return 1;
8015}
8016
8927f494 8017__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8018
8019/*
6711cab4
SS
8020 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8021 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8022 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8023 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8024 *
8025 * init_sched_build_groups will build a circular linked list of the groups
8026 * covered by the given span, and will set each group's ->cpumask correctly,
8027 * and ->cpu_power to 0.
8028 */
a616058b 8029static void
96f874e2
RR
8030init_sched_build_groups(const struct cpumask *span,
8031 const struct cpumask *cpu_map,
8032 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8033 struct sched_group **sg,
96f874e2
RR
8034 struct cpumask *tmpmask),
8035 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8036{
8037 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8038 int i;
8039
96f874e2 8040 cpumask_clear(covered);
7c16ec58 8041
abcd083a 8042 for_each_cpu(i, span) {
6711cab4 8043 struct sched_group *sg;
7c16ec58 8044 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8045 int j;
8046
758b2cdc 8047 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8048 continue;
8049
758b2cdc 8050 cpumask_clear(sched_group_cpus(sg));
18a3885f 8051 sg->cpu_power = 0;
1da177e4 8052
abcd083a 8053 for_each_cpu(j, span) {
7c16ec58 8054 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8055 continue;
8056
96f874e2 8057 cpumask_set_cpu(j, covered);
758b2cdc 8058 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8059 }
8060 if (!first)
8061 first = sg;
8062 if (last)
8063 last->next = sg;
8064 last = sg;
8065 }
8066 last->next = first;
8067}
8068
9c1cfda2 8069#define SD_NODES_PER_DOMAIN 16
1da177e4 8070
9c1cfda2 8071#ifdef CONFIG_NUMA
198e2f18 8072
9c1cfda2
JH
8073/**
8074 * find_next_best_node - find the next node to include in a sched_domain
8075 * @node: node whose sched_domain we're building
8076 * @used_nodes: nodes already in the sched_domain
8077 *
41a2d6cf 8078 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8079 * finds the closest node not already in the @used_nodes map.
8080 *
8081 * Should use nodemask_t.
8082 */
c5f59f08 8083static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8084{
8085 int i, n, val, min_val, best_node = 0;
8086
8087 min_val = INT_MAX;
8088
076ac2af 8089 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8090 /* Start at @node */
076ac2af 8091 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8092
8093 if (!nr_cpus_node(n))
8094 continue;
8095
8096 /* Skip already used nodes */
c5f59f08 8097 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8098 continue;
8099
8100 /* Simple min distance search */
8101 val = node_distance(node, n);
8102
8103 if (val < min_val) {
8104 min_val = val;
8105 best_node = n;
8106 }
8107 }
8108
c5f59f08 8109 node_set(best_node, *used_nodes);
9c1cfda2
JH
8110 return best_node;
8111}
8112
8113/**
8114 * sched_domain_node_span - get a cpumask for a node's sched_domain
8115 * @node: node whose cpumask we're constructing
73486722 8116 * @span: resulting cpumask
9c1cfda2 8117 *
41a2d6cf 8118 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8119 * should be one that prevents unnecessary balancing, but also spreads tasks
8120 * out optimally.
8121 */
96f874e2 8122static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8123{
c5f59f08 8124 nodemask_t used_nodes;
48f24c4d 8125 int i;
9c1cfda2 8126
6ca09dfc 8127 cpumask_clear(span);
c5f59f08 8128 nodes_clear(used_nodes);
9c1cfda2 8129
6ca09dfc 8130 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8131 node_set(node, used_nodes);
9c1cfda2
JH
8132
8133 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8134 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8135
6ca09dfc 8136 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8137 }
9c1cfda2 8138}
6d6bc0ad 8139#endif /* CONFIG_NUMA */
9c1cfda2 8140
5c45bf27 8141int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8142
6c99e9ad
RR
8143/*
8144 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8145 *
8146 * ( See the the comments in include/linux/sched.h:struct sched_group
8147 * and struct sched_domain. )
6c99e9ad
RR
8148 */
8149struct static_sched_group {
8150 struct sched_group sg;
8151 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8152};
8153
8154struct static_sched_domain {
8155 struct sched_domain sd;
8156 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8157};
8158
49a02c51
AH
8159struct s_data {
8160#ifdef CONFIG_NUMA
8161 int sd_allnodes;
8162 cpumask_var_t domainspan;
8163 cpumask_var_t covered;
8164 cpumask_var_t notcovered;
8165#endif
8166 cpumask_var_t nodemask;
8167 cpumask_var_t this_sibling_map;
8168 cpumask_var_t this_core_map;
8169 cpumask_var_t send_covered;
8170 cpumask_var_t tmpmask;
8171 struct sched_group **sched_group_nodes;
8172 struct root_domain *rd;
8173};
8174
2109b99e
AH
8175enum s_alloc {
8176 sa_sched_groups = 0,
8177 sa_rootdomain,
8178 sa_tmpmask,
8179 sa_send_covered,
8180 sa_this_core_map,
8181 sa_this_sibling_map,
8182 sa_nodemask,
8183 sa_sched_group_nodes,
8184#ifdef CONFIG_NUMA
8185 sa_notcovered,
8186 sa_covered,
8187 sa_domainspan,
8188#endif
8189 sa_none,
8190};
8191
9c1cfda2 8192/*
48f24c4d 8193 * SMT sched-domains:
9c1cfda2 8194 */
1da177e4 8195#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8196static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8197static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8198
41a2d6cf 8199static int
96f874e2
RR
8200cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8201 struct sched_group **sg, struct cpumask *unused)
1da177e4 8202{
6711cab4 8203 if (sg)
6c99e9ad 8204 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8205 return cpu;
8206}
6d6bc0ad 8207#endif /* CONFIG_SCHED_SMT */
1da177e4 8208
48f24c4d
IM
8209/*
8210 * multi-core sched-domains:
8211 */
1e9f28fa 8212#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8213static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8214static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8215#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8216
8217#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8218static int
96f874e2
RR
8219cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8220 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8221{
6711cab4 8222 int group;
7c16ec58 8223
c69fc56d 8224 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8225 group = cpumask_first(mask);
6711cab4 8226 if (sg)
6c99e9ad 8227 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8228 return group;
1e9f28fa
SS
8229}
8230#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8231static int
96f874e2
RR
8232cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8233 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8234{
6711cab4 8235 if (sg)
6c99e9ad 8236 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8237 return cpu;
8238}
8239#endif
8240
6c99e9ad
RR
8241static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8242static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8243
41a2d6cf 8244static int
96f874e2
RR
8245cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8246 struct sched_group **sg, struct cpumask *mask)
1da177e4 8247{
6711cab4 8248 int group;
48f24c4d 8249#ifdef CONFIG_SCHED_MC
6ca09dfc 8250 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8251 group = cpumask_first(mask);
1e9f28fa 8252#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8253 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8254 group = cpumask_first(mask);
1da177e4 8255#else
6711cab4 8256 group = cpu;
1da177e4 8257#endif
6711cab4 8258 if (sg)
6c99e9ad 8259 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8260 return group;
1da177e4
LT
8261}
8262
8263#ifdef CONFIG_NUMA
1da177e4 8264/*
9c1cfda2
JH
8265 * The init_sched_build_groups can't handle what we want to do with node
8266 * groups, so roll our own. Now each node has its own list of groups which
8267 * gets dynamically allocated.
1da177e4 8268 */
62ea9ceb 8269static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8270static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8271
62ea9ceb 8272static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8273static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8274
96f874e2
RR
8275static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8276 struct sched_group **sg,
8277 struct cpumask *nodemask)
9c1cfda2 8278{
6711cab4
SS
8279 int group;
8280
6ca09dfc 8281 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8282 group = cpumask_first(nodemask);
6711cab4
SS
8283
8284 if (sg)
6c99e9ad 8285 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8286 return group;
1da177e4 8287}
6711cab4 8288
08069033
SS
8289static void init_numa_sched_groups_power(struct sched_group *group_head)
8290{
8291 struct sched_group *sg = group_head;
8292 int j;
8293
8294 if (!sg)
8295 return;
3a5c359a 8296 do {
758b2cdc 8297 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8298 struct sched_domain *sd;
08069033 8299
6c99e9ad 8300 sd = &per_cpu(phys_domains, j).sd;
13318a71 8301 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8302 /*
8303 * Only add "power" once for each
8304 * physical package.
8305 */
8306 continue;
8307 }
08069033 8308
18a3885f 8309 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8310 }
8311 sg = sg->next;
8312 } while (sg != group_head);
08069033 8313}
0601a88d
AH
8314
8315static int build_numa_sched_groups(struct s_data *d,
8316 const struct cpumask *cpu_map, int num)
8317{
8318 struct sched_domain *sd;
8319 struct sched_group *sg, *prev;
8320 int n, j;
8321
8322 cpumask_clear(d->covered);
8323 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8324 if (cpumask_empty(d->nodemask)) {
8325 d->sched_group_nodes[num] = NULL;
8326 goto out;
8327 }
8328
8329 sched_domain_node_span(num, d->domainspan);
8330 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8331
8332 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8333 GFP_KERNEL, num);
8334 if (!sg) {
8335 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8336 num);
8337 return -ENOMEM;
8338 }
8339 d->sched_group_nodes[num] = sg;
8340
8341 for_each_cpu(j, d->nodemask) {
8342 sd = &per_cpu(node_domains, j).sd;
8343 sd->groups = sg;
8344 }
8345
18a3885f 8346 sg->cpu_power = 0;
0601a88d
AH
8347 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8348 sg->next = sg;
8349 cpumask_or(d->covered, d->covered, d->nodemask);
8350
8351 prev = sg;
8352 for (j = 0; j < nr_node_ids; j++) {
8353 n = (num + j) % nr_node_ids;
8354 cpumask_complement(d->notcovered, d->covered);
8355 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8356 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8357 if (cpumask_empty(d->tmpmask))
8358 break;
8359 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8360 if (cpumask_empty(d->tmpmask))
8361 continue;
8362 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8363 GFP_KERNEL, num);
8364 if (!sg) {
8365 printk(KERN_WARNING
8366 "Can not alloc domain group for node %d\n", j);
8367 return -ENOMEM;
8368 }
18a3885f 8369 sg->cpu_power = 0;
0601a88d
AH
8370 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8371 sg->next = prev->next;
8372 cpumask_or(d->covered, d->covered, d->tmpmask);
8373 prev->next = sg;
8374 prev = sg;
8375 }
8376out:
8377 return 0;
8378}
6d6bc0ad 8379#endif /* CONFIG_NUMA */
1da177e4 8380
a616058b 8381#ifdef CONFIG_NUMA
51888ca2 8382/* Free memory allocated for various sched_group structures */
96f874e2
RR
8383static void free_sched_groups(const struct cpumask *cpu_map,
8384 struct cpumask *nodemask)
51888ca2 8385{
a616058b 8386 int cpu, i;
51888ca2 8387
abcd083a 8388 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8389 struct sched_group **sched_group_nodes
8390 = sched_group_nodes_bycpu[cpu];
8391
51888ca2
SV
8392 if (!sched_group_nodes)
8393 continue;
8394
076ac2af 8395 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8396 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8397
6ca09dfc 8398 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8399 if (cpumask_empty(nodemask))
51888ca2
SV
8400 continue;
8401
8402 if (sg == NULL)
8403 continue;
8404 sg = sg->next;
8405next_sg:
8406 oldsg = sg;
8407 sg = sg->next;
8408 kfree(oldsg);
8409 if (oldsg != sched_group_nodes[i])
8410 goto next_sg;
8411 }
8412 kfree(sched_group_nodes);
8413 sched_group_nodes_bycpu[cpu] = NULL;
8414 }
51888ca2 8415}
6d6bc0ad 8416#else /* !CONFIG_NUMA */
96f874e2
RR
8417static void free_sched_groups(const struct cpumask *cpu_map,
8418 struct cpumask *nodemask)
a616058b
SS
8419{
8420}
6d6bc0ad 8421#endif /* CONFIG_NUMA */
51888ca2 8422
89c4710e
SS
8423/*
8424 * Initialize sched groups cpu_power.
8425 *
8426 * cpu_power indicates the capacity of sched group, which is used while
8427 * distributing the load between different sched groups in a sched domain.
8428 * Typically cpu_power for all the groups in a sched domain will be same unless
8429 * there are asymmetries in the topology. If there are asymmetries, group
8430 * having more cpu_power will pickup more load compared to the group having
8431 * less cpu_power.
89c4710e
SS
8432 */
8433static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8434{
8435 struct sched_domain *child;
8436 struct sched_group *group;
f93e65c1
PZ
8437 long power;
8438 int weight;
89c4710e
SS
8439
8440 WARN_ON(!sd || !sd->groups);
8441
13318a71 8442 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8443 return;
8444
8445 child = sd->child;
8446
18a3885f 8447 sd->groups->cpu_power = 0;
5517d86b 8448
f93e65c1
PZ
8449 if (!child) {
8450 power = SCHED_LOAD_SCALE;
8451 weight = cpumask_weight(sched_domain_span(sd));
8452 /*
8453 * SMT siblings share the power of a single core.
a52bfd73
PZ
8454 * Usually multiple threads get a better yield out of
8455 * that one core than a single thread would have,
8456 * reflect that in sd->smt_gain.
f93e65c1 8457 */
a52bfd73
PZ
8458 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8459 power *= sd->smt_gain;
f93e65c1 8460 power /= weight;
a52bfd73
PZ
8461 power >>= SCHED_LOAD_SHIFT;
8462 }
18a3885f 8463 sd->groups->cpu_power += power;
89c4710e
SS
8464 return;
8465 }
8466
89c4710e 8467 /*
f93e65c1 8468 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8469 */
8470 group = child->groups;
8471 do {
18a3885f 8472 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8473 group = group->next;
8474 } while (group != child->groups);
8475}
8476
7c16ec58
MT
8477/*
8478 * Initializers for schedule domains
8479 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8480 */
8481
a5d8c348
IM
8482#ifdef CONFIG_SCHED_DEBUG
8483# define SD_INIT_NAME(sd, type) sd->name = #type
8484#else
8485# define SD_INIT_NAME(sd, type) do { } while (0)
8486#endif
8487
7c16ec58 8488#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8489
7c16ec58
MT
8490#define SD_INIT_FUNC(type) \
8491static noinline void sd_init_##type(struct sched_domain *sd) \
8492{ \
8493 memset(sd, 0, sizeof(*sd)); \
8494 *sd = SD_##type##_INIT; \
1d3504fc 8495 sd->level = SD_LV_##type; \
a5d8c348 8496 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8497}
8498
8499SD_INIT_FUNC(CPU)
8500#ifdef CONFIG_NUMA
8501 SD_INIT_FUNC(ALLNODES)
8502 SD_INIT_FUNC(NODE)
8503#endif
8504#ifdef CONFIG_SCHED_SMT
8505 SD_INIT_FUNC(SIBLING)
8506#endif
8507#ifdef CONFIG_SCHED_MC
8508 SD_INIT_FUNC(MC)
8509#endif
8510
1d3504fc
HS
8511static int default_relax_domain_level = -1;
8512
8513static int __init setup_relax_domain_level(char *str)
8514{
30e0e178
LZ
8515 unsigned long val;
8516
8517 val = simple_strtoul(str, NULL, 0);
8518 if (val < SD_LV_MAX)
8519 default_relax_domain_level = val;
8520
1d3504fc
HS
8521 return 1;
8522}
8523__setup("relax_domain_level=", setup_relax_domain_level);
8524
8525static void set_domain_attribute(struct sched_domain *sd,
8526 struct sched_domain_attr *attr)
8527{
8528 int request;
8529
8530 if (!attr || attr->relax_domain_level < 0) {
8531 if (default_relax_domain_level < 0)
8532 return;
8533 else
8534 request = default_relax_domain_level;
8535 } else
8536 request = attr->relax_domain_level;
8537 if (request < sd->level) {
8538 /* turn off idle balance on this domain */
c88d5910 8539 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8540 } else {
8541 /* turn on idle balance on this domain */
c88d5910 8542 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8543 }
8544}
8545
2109b99e
AH
8546static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8547 const struct cpumask *cpu_map)
8548{
8549 switch (what) {
8550 case sa_sched_groups:
8551 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8552 d->sched_group_nodes = NULL;
8553 case sa_rootdomain:
8554 free_rootdomain(d->rd); /* fall through */
8555 case sa_tmpmask:
8556 free_cpumask_var(d->tmpmask); /* fall through */
8557 case sa_send_covered:
8558 free_cpumask_var(d->send_covered); /* fall through */
8559 case sa_this_core_map:
8560 free_cpumask_var(d->this_core_map); /* fall through */
8561 case sa_this_sibling_map:
8562 free_cpumask_var(d->this_sibling_map); /* fall through */
8563 case sa_nodemask:
8564 free_cpumask_var(d->nodemask); /* fall through */
8565 case sa_sched_group_nodes:
d1b55138 8566#ifdef CONFIG_NUMA
2109b99e
AH
8567 kfree(d->sched_group_nodes); /* fall through */
8568 case sa_notcovered:
8569 free_cpumask_var(d->notcovered); /* fall through */
8570 case sa_covered:
8571 free_cpumask_var(d->covered); /* fall through */
8572 case sa_domainspan:
8573 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8574#endif
2109b99e
AH
8575 case sa_none:
8576 break;
8577 }
8578}
3404c8d9 8579
2109b99e
AH
8580static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8581 const struct cpumask *cpu_map)
8582{
3404c8d9 8583#ifdef CONFIG_NUMA
2109b99e
AH
8584 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8585 return sa_none;
8586 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8587 return sa_domainspan;
8588 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8589 return sa_covered;
8590 /* Allocate the per-node list of sched groups */
8591 d->sched_group_nodes = kcalloc(nr_node_ids,
8592 sizeof(struct sched_group *), GFP_KERNEL);
8593 if (!d->sched_group_nodes) {
d1b55138 8594 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8595 return sa_notcovered;
d1b55138 8596 }
2109b99e 8597 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8598#endif
2109b99e
AH
8599 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8600 return sa_sched_group_nodes;
8601 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8602 return sa_nodemask;
8603 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8604 return sa_this_sibling_map;
8605 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8606 return sa_this_core_map;
8607 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8608 return sa_send_covered;
8609 d->rd = alloc_rootdomain();
8610 if (!d->rd) {
57d885fe 8611 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8612 return sa_tmpmask;
57d885fe 8613 }
2109b99e
AH
8614 return sa_rootdomain;
8615}
57d885fe 8616
7f4588f3
AH
8617static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8618 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8619{
8620 struct sched_domain *sd = NULL;
7c16ec58 8621#ifdef CONFIG_NUMA
7f4588f3 8622 struct sched_domain *parent;
1da177e4 8623
7f4588f3
AH
8624 d->sd_allnodes = 0;
8625 if (cpumask_weight(cpu_map) >
8626 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8627 sd = &per_cpu(allnodes_domains, i).sd;
8628 SD_INIT(sd, ALLNODES);
1d3504fc 8629 set_domain_attribute(sd, attr);
7f4588f3
AH
8630 cpumask_copy(sched_domain_span(sd), cpu_map);
8631 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8632 d->sd_allnodes = 1;
8633 }
8634 parent = sd;
8635
8636 sd = &per_cpu(node_domains, i).sd;
8637 SD_INIT(sd, NODE);
8638 set_domain_attribute(sd, attr);
8639 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8640 sd->parent = parent;
8641 if (parent)
8642 parent->child = sd;
8643 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8644#endif
7f4588f3
AH
8645 return sd;
8646}
1da177e4 8647
87cce662
AH
8648static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8649 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8650 struct sched_domain *parent, int i)
8651{
8652 struct sched_domain *sd;
8653 sd = &per_cpu(phys_domains, i).sd;
8654 SD_INIT(sd, CPU);
8655 set_domain_attribute(sd, attr);
8656 cpumask_copy(sched_domain_span(sd), d->nodemask);
8657 sd->parent = parent;
8658 if (parent)
8659 parent->child = sd;
8660 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8661 return sd;
8662}
1da177e4 8663
410c4081
AH
8664static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8665 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8666 struct sched_domain *parent, int i)
8667{
8668 struct sched_domain *sd = parent;
1e9f28fa 8669#ifdef CONFIG_SCHED_MC
410c4081
AH
8670 sd = &per_cpu(core_domains, i).sd;
8671 SD_INIT(sd, MC);
8672 set_domain_attribute(sd, attr);
8673 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8674 sd->parent = parent;
8675 parent->child = sd;
8676 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8677#endif
410c4081
AH
8678 return sd;
8679}
1e9f28fa 8680
d8173535
AH
8681static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8682 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8683 struct sched_domain *parent, int i)
8684{
8685 struct sched_domain *sd = parent;
1da177e4 8686#ifdef CONFIG_SCHED_SMT
d8173535
AH
8687 sd = &per_cpu(cpu_domains, i).sd;
8688 SD_INIT(sd, SIBLING);
8689 set_domain_attribute(sd, attr);
8690 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8691 sd->parent = parent;
8692 parent->child = sd;
8693 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8694#endif
d8173535
AH
8695 return sd;
8696}
1da177e4 8697
0e8e85c9
AH
8698static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8699 const struct cpumask *cpu_map, int cpu)
8700{
8701 switch (l) {
1da177e4 8702#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8703 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8704 cpumask_and(d->this_sibling_map, cpu_map,
8705 topology_thread_cpumask(cpu));
8706 if (cpu == cpumask_first(d->this_sibling_map))
8707 init_sched_build_groups(d->this_sibling_map, cpu_map,
8708 &cpu_to_cpu_group,
8709 d->send_covered, d->tmpmask);
8710 break;
1da177e4 8711#endif
1e9f28fa 8712#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8713 case SD_LV_MC: /* set up multi-core groups */
8714 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8715 if (cpu == cpumask_first(d->this_core_map))
8716 init_sched_build_groups(d->this_core_map, cpu_map,
8717 &cpu_to_core_group,
8718 d->send_covered, d->tmpmask);
8719 break;
1e9f28fa 8720#endif
86548096
AH
8721 case SD_LV_CPU: /* set up physical groups */
8722 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8723 if (!cpumask_empty(d->nodemask))
8724 init_sched_build_groups(d->nodemask, cpu_map,
8725 &cpu_to_phys_group,
8726 d->send_covered, d->tmpmask);
8727 break;
1da177e4 8728#ifdef CONFIG_NUMA
de616e36
AH
8729 case SD_LV_ALLNODES:
8730 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8731 d->send_covered, d->tmpmask);
8732 break;
8733#endif
0e8e85c9
AH
8734 default:
8735 break;
7c16ec58 8736 }
0e8e85c9 8737}
9c1cfda2 8738
2109b99e
AH
8739/*
8740 * Build sched domains for a given set of cpus and attach the sched domains
8741 * to the individual cpus
8742 */
8743static int __build_sched_domains(const struct cpumask *cpu_map,
8744 struct sched_domain_attr *attr)
8745{
8746 enum s_alloc alloc_state = sa_none;
8747 struct s_data d;
294b0c96 8748 struct sched_domain *sd;
2109b99e 8749 int i;
7c16ec58 8750#ifdef CONFIG_NUMA
2109b99e 8751 d.sd_allnodes = 0;
7c16ec58 8752#endif
9c1cfda2 8753
2109b99e
AH
8754 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8755 if (alloc_state != sa_rootdomain)
8756 goto error;
8757 alloc_state = sa_sched_groups;
9c1cfda2 8758
1da177e4 8759 /*
1a20ff27 8760 * Set up domains for cpus specified by the cpu_map.
1da177e4 8761 */
abcd083a 8762 for_each_cpu(i, cpu_map) {
49a02c51
AH
8763 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8764 cpu_map);
9761eea8 8765
7f4588f3 8766 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8767 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8768 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8769 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8770 }
9c1cfda2 8771
abcd083a 8772 for_each_cpu(i, cpu_map) {
0e8e85c9 8773 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8774 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8775 }
9c1cfda2 8776
1da177e4 8777 /* Set up physical groups */
86548096
AH
8778 for (i = 0; i < nr_node_ids; i++)
8779 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8780
1da177e4
LT
8781#ifdef CONFIG_NUMA
8782 /* Set up node groups */
de616e36
AH
8783 if (d.sd_allnodes)
8784 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8785
0601a88d
AH
8786 for (i = 0; i < nr_node_ids; i++)
8787 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8788 goto error;
1da177e4
LT
8789#endif
8790
8791 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8792#ifdef CONFIG_SCHED_SMT
abcd083a 8793 for_each_cpu(i, cpu_map) {
294b0c96 8794 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8795 init_sched_groups_power(i, sd);
5c45bf27 8796 }
1da177e4 8797#endif
1e9f28fa 8798#ifdef CONFIG_SCHED_MC
abcd083a 8799 for_each_cpu(i, cpu_map) {
294b0c96 8800 sd = &per_cpu(core_domains, i).sd;
89c4710e 8801 init_sched_groups_power(i, sd);
5c45bf27
SS
8802 }
8803#endif
1e9f28fa 8804
abcd083a 8805 for_each_cpu(i, cpu_map) {
294b0c96 8806 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8807 init_sched_groups_power(i, sd);
1da177e4
LT
8808 }
8809
9c1cfda2 8810#ifdef CONFIG_NUMA
076ac2af 8811 for (i = 0; i < nr_node_ids; i++)
49a02c51 8812 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8813
49a02c51 8814 if (d.sd_allnodes) {
6711cab4 8815 struct sched_group *sg;
f712c0c7 8816
96f874e2 8817 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8818 d.tmpmask);
f712c0c7
SS
8819 init_numa_sched_groups_power(sg);
8820 }
9c1cfda2
JH
8821#endif
8822
1da177e4 8823 /* Attach the domains */
abcd083a 8824 for_each_cpu(i, cpu_map) {
1da177e4 8825#ifdef CONFIG_SCHED_SMT
6c99e9ad 8826 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8827#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8828 sd = &per_cpu(core_domains, i).sd;
1da177e4 8829#else
6c99e9ad 8830 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8831#endif
49a02c51 8832 cpu_attach_domain(sd, d.rd, i);
1da177e4 8833 }
51888ca2 8834
2109b99e
AH
8835 d.sched_group_nodes = NULL; /* don't free this we still need it */
8836 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8837 return 0;
51888ca2 8838
51888ca2 8839error:
2109b99e
AH
8840 __free_domain_allocs(&d, alloc_state, cpu_map);
8841 return -ENOMEM;
1da177e4 8842}
029190c5 8843
96f874e2 8844static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8845{
8846 return __build_sched_domains(cpu_map, NULL);
8847}
8848
96f874e2 8849static struct cpumask *doms_cur; /* current sched domains */
029190c5 8850static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8851static struct sched_domain_attr *dattr_cur;
8852 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8853
8854/*
8855 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8856 * cpumask) fails, then fallback to a single sched domain,
8857 * as determined by the single cpumask fallback_doms.
029190c5 8858 */
4212823f 8859static cpumask_var_t fallback_doms;
029190c5 8860
ee79d1bd
HC
8861/*
8862 * arch_update_cpu_topology lets virtualized architectures update the
8863 * cpu core maps. It is supposed to return 1 if the topology changed
8864 * or 0 if it stayed the same.
8865 */
8866int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8867{
ee79d1bd 8868 return 0;
22e52b07
HC
8869}
8870
1a20ff27 8871/*
41a2d6cf 8872 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8873 * For now this just excludes isolated cpus, but could be used to
8874 * exclude other special cases in the future.
1a20ff27 8875 */
96f874e2 8876static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8877{
7378547f
MM
8878 int err;
8879
22e52b07 8880 arch_update_cpu_topology();
029190c5 8881 ndoms_cur = 1;
96f874e2 8882 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8883 if (!doms_cur)
4212823f 8884 doms_cur = fallback_doms;
dcc30a35 8885 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8886 dattr_cur = NULL;
7378547f 8887 err = build_sched_domains(doms_cur);
6382bc90 8888 register_sched_domain_sysctl();
7378547f
MM
8889
8890 return err;
1a20ff27
DG
8891}
8892
96f874e2
RR
8893static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8894 struct cpumask *tmpmask)
1da177e4 8895{
7c16ec58 8896 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8897}
1da177e4 8898
1a20ff27
DG
8899/*
8900 * Detach sched domains from a group of cpus specified in cpu_map
8901 * These cpus will now be attached to the NULL domain
8902 */
96f874e2 8903static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8904{
96f874e2
RR
8905 /* Save because hotplug lock held. */
8906 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8907 int i;
8908
abcd083a 8909 for_each_cpu(i, cpu_map)
57d885fe 8910 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8911 synchronize_sched();
96f874e2 8912 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8913}
8914
1d3504fc
HS
8915/* handle null as "default" */
8916static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8917 struct sched_domain_attr *new, int idx_new)
8918{
8919 struct sched_domain_attr tmp;
8920
8921 /* fast path */
8922 if (!new && !cur)
8923 return 1;
8924
8925 tmp = SD_ATTR_INIT;
8926 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8927 new ? (new + idx_new) : &tmp,
8928 sizeof(struct sched_domain_attr));
8929}
8930
029190c5
PJ
8931/*
8932 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8933 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8934 * doms_new[] to the current sched domain partitioning, doms_cur[].
8935 * It destroys each deleted domain and builds each new domain.
8936 *
96f874e2 8937 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8938 * The masks don't intersect (don't overlap.) We should setup one
8939 * sched domain for each mask. CPUs not in any of the cpumasks will
8940 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8941 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8942 * it as it is.
8943 *
41a2d6cf
IM
8944 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8945 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8946 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8947 * ndoms_new == 1, and partition_sched_domains() will fallback to
8948 * the single partition 'fallback_doms', it also forces the domains
8949 * to be rebuilt.
029190c5 8950 *
96f874e2 8951 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8952 * ndoms_new == 0 is a special case for destroying existing domains,
8953 * and it will not create the default domain.
dfb512ec 8954 *
029190c5
PJ
8955 * Call with hotplug lock held
8956 */
96f874e2
RR
8957/* FIXME: Change to struct cpumask *doms_new[] */
8958void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8959 struct sched_domain_attr *dattr_new)
029190c5 8960{
dfb512ec 8961 int i, j, n;
d65bd5ec 8962 int new_topology;
029190c5 8963
712555ee 8964 mutex_lock(&sched_domains_mutex);
a1835615 8965
7378547f
MM
8966 /* always unregister in case we don't destroy any domains */
8967 unregister_sched_domain_sysctl();
8968
d65bd5ec
HC
8969 /* Let architecture update cpu core mappings. */
8970 new_topology = arch_update_cpu_topology();
8971
dfb512ec 8972 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8973
8974 /* Destroy deleted domains */
8975 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8976 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8977 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8978 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8979 goto match1;
8980 }
8981 /* no match - a current sched domain not in new doms_new[] */
8982 detach_destroy_domains(doms_cur + i);
8983match1:
8984 ;
8985 }
8986
e761b772
MK
8987 if (doms_new == NULL) {
8988 ndoms_cur = 0;
4212823f 8989 doms_new = fallback_doms;
dcc30a35 8990 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8991 WARN_ON_ONCE(dattr_new);
e761b772
MK
8992 }
8993
029190c5
PJ
8994 /* Build new domains */
8995 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8996 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8997 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8998 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8999 goto match2;
9000 }
9001 /* no match - add a new doms_new */
1d3504fc
HS
9002 __build_sched_domains(doms_new + i,
9003 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9004match2:
9005 ;
9006 }
9007
9008 /* Remember the new sched domains */
4212823f 9009 if (doms_cur != fallback_doms)
029190c5 9010 kfree(doms_cur);
1d3504fc 9011 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9012 doms_cur = doms_new;
1d3504fc 9013 dattr_cur = dattr_new;
029190c5 9014 ndoms_cur = ndoms_new;
7378547f
MM
9015
9016 register_sched_domain_sysctl();
a1835615 9017
712555ee 9018 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9019}
9020
5c45bf27 9021#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9022static void arch_reinit_sched_domains(void)
5c45bf27 9023{
95402b38 9024 get_online_cpus();
dfb512ec
MK
9025
9026 /* Destroy domains first to force the rebuild */
9027 partition_sched_domains(0, NULL, NULL);
9028
e761b772 9029 rebuild_sched_domains();
95402b38 9030 put_online_cpus();
5c45bf27
SS
9031}
9032
9033static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9034{
afb8a9b7 9035 unsigned int level = 0;
5c45bf27 9036
afb8a9b7
GS
9037 if (sscanf(buf, "%u", &level) != 1)
9038 return -EINVAL;
9039
9040 /*
9041 * level is always be positive so don't check for
9042 * level < POWERSAVINGS_BALANCE_NONE which is 0
9043 * What happens on 0 or 1 byte write,
9044 * need to check for count as well?
9045 */
9046
9047 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9048 return -EINVAL;
9049
9050 if (smt)
afb8a9b7 9051 sched_smt_power_savings = level;
5c45bf27 9052 else
afb8a9b7 9053 sched_mc_power_savings = level;
5c45bf27 9054
c70f22d2 9055 arch_reinit_sched_domains();
5c45bf27 9056
c70f22d2 9057 return count;
5c45bf27
SS
9058}
9059
5c45bf27 9060#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9061static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9062 char *page)
5c45bf27
SS
9063{
9064 return sprintf(page, "%u\n", sched_mc_power_savings);
9065}
f718cd4a 9066static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9067 const char *buf, size_t count)
5c45bf27
SS
9068{
9069 return sched_power_savings_store(buf, count, 0);
9070}
f718cd4a
AK
9071static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9072 sched_mc_power_savings_show,
9073 sched_mc_power_savings_store);
5c45bf27
SS
9074#endif
9075
9076#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9077static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9078 char *page)
5c45bf27
SS
9079{
9080 return sprintf(page, "%u\n", sched_smt_power_savings);
9081}
f718cd4a 9082static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9083 const char *buf, size_t count)
5c45bf27
SS
9084{
9085 return sched_power_savings_store(buf, count, 1);
9086}
f718cd4a
AK
9087static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9088 sched_smt_power_savings_show,
6707de00
AB
9089 sched_smt_power_savings_store);
9090#endif
9091
39aac648 9092int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9093{
9094 int err = 0;
9095
9096#ifdef CONFIG_SCHED_SMT
9097 if (smt_capable())
9098 err = sysfs_create_file(&cls->kset.kobj,
9099 &attr_sched_smt_power_savings.attr);
9100#endif
9101#ifdef CONFIG_SCHED_MC
9102 if (!err && mc_capable())
9103 err = sysfs_create_file(&cls->kset.kobj,
9104 &attr_sched_mc_power_savings.attr);
9105#endif
9106 return err;
9107}
6d6bc0ad 9108#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9109
e761b772 9110#ifndef CONFIG_CPUSETS
1da177e4 9111/*
e761b772
MK
9112 * Add online and remove offline CPUs from the scheduler domains.
9113 * When cpusets are enabled they take over this function.
1da177e4
LT
9114 */
9115static int update_sched_domains(struct notifier_block *nfb,
9116 unsigned long action, void *hcpu)
e761b772
MK
9117{
9118 switch (action) {
9119 case CPU_ONLINE:
9120 case CPU_ONLINE_FROZEN:
9121 case CPU_DEAD:
9122 case CPU_DEAD_FROZEN:
dfb512ec 9123 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9124 return NOTIFY_OK;
9125
9126 default:
9127 return NOTIFY_DONE;
9128 }
9129}
9130#endif
9131
9132static int update_runtime(struct notifier_block *nfb,
9133 unsigned long action, void *hcpu)
1da177e4 9134{
7def2be1
PZ
9135 int cpu = (int)(long)hcpu;
9136
1da177e4 9137 switch (action) {
1da177e4 9138 case CPU_DOWN_PREPARE:
8bb78442 9139 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9140 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9141 return NOTIFY_OK;
9142
1da177e4 9143 case CPU_DOWN_FAILED:
8bb78442 9144 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9145 case CPU_ONLINE:
8bb78442 9146 case CPU_ONLINE_FROZEN:
7def2be1 9147 enable_runtime(cpu_rq(cpu));
e761b772
MK
9148 return NOTIFY_OK;
9149
1da177e4
LT
9150 default:
9151 return NOTIFY_DONE;
9152 }
1da177e4 9153}
1da177e4
LT
9154
9155void __init sched_init_smp(void)
9156{
dcc30a35
RR
9157 cpumask_var_t non_isolated_cpus;
9158
9159 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9160 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9161
434d53b0
MT
9162#if defined(CONFIG_NUMA)
9163 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9164 GFP_KERNEL);
9165 BUG_ON(sched_group_nodes_bycpu == NULL);
9166#endif
95402b38 9167 get_online_cpus();
712555ee 9168 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9169 arch_init_sched_domains(cpu_online_mask);
9170 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9171 if (cpumask_empty(non_isolated_cpus))
9172 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9173 mutex_unlock(&sched_domains_mutex);
95402b38 9174 put_online_cpus();
e761b772
MK
9175
9176#ifndef CONFIG_CPUSETS
1da177e4
LT
9177 /* XXX: Theoretical race here - CPU may be hotplugged now */
9178 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9179#endif
9180
9181 /* RT runtime code needs to handle some hotplug events */
9182 hotcpu_notifier(update_runtime, 0);
9183
b328ca18 9184 init_hrtick();
5c1e1767
NP
9185
9186 /* Move init over to a non-isolated CPU */
dcc30a35 9187 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9188 BUG();
19978ca6 9189 sched_init_granularity();
dcc30a35 9190 free_cpumask_var(non_isolated_cpus);
4212823f 9191
0e3900e6 9192 init_sched_rt_class();
1da177e4
LT
9193}
9194#else
9195void __init sched_init_smp(void)
9196{
19978ca6 9197 sched_init_granularity();
1da177e4
LT
9198}
9199#endif /* CONFIG_SMP */
9200
cd1bb94b
AB
9201const_debug unsigned int sysctl_timer_migration = 1;
9202
1da177e4
LT
9203int in_sched_functions(unsigned long addr)
9204{
1da177e4
LT
9205 return in_lock_functions(addr) ||
9206 (addr >= (unsigned long)__sched_text_start
9207 && addr < (unsigned long)__sched_text_end);
9208}
9209
a9957449 9210static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9211{
9212 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9213 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9214#ifdef CONFIG_FAIR_GROUP_SCHED
9215 cfs_rq->rq = rq;
9216#endif
67e9fb2a 9217 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9218}
9219
fa85ae24
PZ
9220static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9221{
9222 struct rt_prio_array *array;
9223 int i;
9224
9225 array = &rt_rq->active;
9226 for (i = 0; i < MAX_RT_PRIO; i++) {
9227 INIT_LIST_HEAD(array->queue + i);
9228 __clear_bit(i, array->bitmap);
9229 }
9230 /* delimiter for bitsearch: */
9231 __set_bit(MAX_RT_PRIO, array->bitmap);
9232
052f1dc7 9233#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9234 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9235#ifdef CONFIG_SMP
e864c499 9236 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9237#endif
48d5e258 9238#endif
fa85ae24
PZ
9239#ifdef CONFIG_SMP
9240 rt_rq->rt_nr_migratory = 0;
fa85ae24 9241 rt_rq->overloaded = 0;
c20b08e3 9242 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9243#endif
9244
9245 rt_rq->rt_time = 0;
9246 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9247 rt_rq->rt_runtime = 0;
9248 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9249
052f1dc7 9250#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9251 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9252 rt_rq->rq = rq;
9253#endif
fa85ae24
PZ
9254}
9255
6f505b16 9256#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9257static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9258 struct sched_entity *se, int cpu, int add,
9259 struct sched_entity *parent)
6f505b16 9260{
ec7dc8ac 9261 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9262 tg->cfs_rq[cpu] = cfs_rq;
9263 init_cfs_rq(cfs_rq, rq);
9264 cfs_rq->tg = tg;
9265 if (add)
9266 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9267
9268 tg->se[cpu] = se;
354d60c2
DG
9269 /* se could be NULL for init_task_group */
9270 if (!se)
9271 return;
9272
ec7dc8ac
DG
9273 if (!parent)
9274 se->cfs_rq = &rq->cfs;
9275 else
9276 se->cfs_rq = parent->my_q;
9277
6f505b16
PZ
9278 se->my_q = cfs_rq;
9279 se->load.weight = tg->shares;
e05510d0 9280 se->load.inv_weight = 0;
ec7dc8ac 9281 se->parent = parent;
6f505b16 9282}
052f1dc7 9283#endif
6f505b16 9284
052f1dc7 9285#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9286static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9287 struct sched_rt_entity *rt_se, int cpu, int add,
9288 struct sched_rt_entity *parent)
6f505b16 9289{
ec7dc8ac
DG
9290 struct rq *rq = cpu_rq(cpu);
9291
6f505b16
PZ
9292 tg->rt_rq[cpu] = rt_rq;
9293 init_rt_rq(rt_rq, rq);
9294 rt_rq->tg = tg;
9295 rt_rq->rt_se = rt_se;
ac086bc2 9296 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9297 if (add)
9298 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9299
9300 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9301 if (!rt_se)
9302 return;
9303
ec7dc8ac
DG
9304 if (!parent)
9305 rt_se->rt_rq = &rq->rt;
9306 else
9307 rt_se->rt_rq = parent->my_q;
9308
6f505b16 9309 rt_se->my_q = rt_rq;
ec7dc8ac 9310 rt_se->parent = parent;
6f505b16
PZ
9311 INIT_LIST_HEAD(&rt_se->run_list);
9312}
9313#endif
9314
1da177e4
LT
9315void __init sched_init(void)
9316{
dd41f596 9317 int i, j;
434d53b0
MT
9318 unsigned long alloc_size = 0, ptr;
9319
9320#ifdef CONFIG_FAIR_GROUP_SCHED
9321 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9322#endif
9323#ifdef CONFIG_RT_GROUP_SCHED
9324 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9325#endif
9326#ifdef CONFIG_USER_SCHED
9327 alloc_size *= 2;
df7c8e84
RR
9328#endif
9329#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9330 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9331#endif
434d53b0 9332 if (alloc_size) {
36b7b6d4 9333 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9334
9335#ifdef CONFIG_FAIR_GROUP_SCHED
9336 init_task_group.se = (struct sched_entity **)ptr;
9337 ptr += nr_cpu_ids * sizeof(void **);
9338
9339 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9340 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9341
9342#ifdef CONFIG_USER_SCHED
9343 root_task_group.se = (struct sched_entity **)ptr;
9344 ptr += nr_cpu_ids * sizeof(void **);
9345
9346 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9347 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9348#endif /* CONFIG_USER_SCHED */
9349#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9350#ifdef CONFIG_RT_GROUP_SCHED
9351 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9352 ptr += nr_cpu_ids * sizeof(void **);
9353
9354 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9355 ptr += nr_cpu_ids * sizeof(void **);
9356
9357#ifdef CONFIG_USER_SCHED
9358 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9359 ptr += nr_cpu_ids * sizeof(void **);
9360
9361 root_task_group.rt_rq = (struct rt_rq **)ptr;
9362 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9363#endif /* CONFIG_USER_SCHED */
9364#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9365#ifdef CONFIG_CPUMASK_OFFSTACK
9366 for_each_possible_cpu(i) {
9367 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9368 ptr += cpumask_size();
9369 }
9370#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9371 }
dd41f596 9372
57d885fe
GH
9373#ifdef CONFIG_SMP
9374 init_defrootdomain();
9375#endif
9376
d0b27fa7
PZ
9377 init_rt_bandwidth(&def_rt_bandwidth,
9378 global_rt_period(), global_rt_runtime());
9379
9380#ifdef CONFIG_RT_GROUP_SCHED
9381 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9382 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9383#ifdef CONFIG_USER_SCHED
9384 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9385 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9386#endif /* CONFIG_USER_SCHED */
9387#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9388
052f1dc7 9389#ifdef CONFIG_GROUP_SCHED
6f505b16 9390 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9391 INIT_LIST_HEAD(&init_task_group.children);
9392
9393#ifdef CONFIG_USER_SCHED
9394 INIT_LIST_HEAD(&root_task_group.children);
9395 init_task_group.parent = &root_task_group;
9396 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9397#endif /* CONFIG_USER_SCHED */
9398#endif /* CONFIG_GROUP_SCHED */
6f505b16 9399
0a945022 9400 for_each_possible_cpu(i) {
70b97a7f 9401 struct rq *rq;
1da177e4
LT
9402
9403 rq = cpu_rq(i);
9404 spin_lock_init(&rq->lock);
7897986b 9405 rq->nr_running = 0;
dce48a84
TG
9406 rq->calc_load_active = 0;
9407 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9408 init_cfs_rq(&rq->cfs, rq);
6f505b16 9409 init_rt_rq(&rq->rt, rq);
dd41f596 9410#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9411 init_task_group.shares = init_task_group_load;
6f505b16 9412 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9413#ifdef CONFIG_CGROUP_SCHED
9414 /*
9415 * How much cpu bandwidth does init_task_group get?
9416 *
9417 * In case of task-groups formed thr' the cgroup filesystem, it
9418 * gets 100% of the cpu resources in the system. This overall
9419 * system cpu resource is divided among the tasks of
9420 * init_task_group and its child task-groups in a fair manner,
9421 * based on each entity's (task or task-group's) weight
9422 * (se->load.weight).
9423 *
9424 * In other words, if init_task_group has 10 tasks of weight
9425 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9426 * then A0's share of the cpu resource is:
9427 *
0d905bca 9428 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9429 *
9430 * We achieve this by letting init_task_group's tasks sit
9431 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9432 */
ec7dc8ac 9433 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9434#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9435 root_task_group.shares = NICE_0_LOAD;
9436 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9437 /*
9438 * In case of task-groups formed thr' the user id of tasks,
9439 * init_task_group represents tasks belonging to root user.
9440 * Hence it forms a sibling of all subsequent groups formed.
9441 * In this case, init_task_group gets only a fraction of overall
9442 * system cpu resource, based on the weight assigned to root
9443 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9444 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9445 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9446 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9447 */
ec7dc8ac 9448 init_tg_cfs_entry(&init_task_group,
84e9dabf 9449 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9450 &per_cpu(init_sched_entity, i), i, 1,
9451 root_task_group.se[i]);
6f505b16 9452
052f1dc7 9453#endif
354d60c2
DG
9454#endif /* CONFIG_FAIR_GROUP_SCHED */
9455
9456 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9457#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9458 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9459#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9460 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9461#elif defined CONFIG_USER_SCHED
eff766a6 9462 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9463 init_tg_rt_entry(&init_task_group,
6f505b16 9464 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9465 &per_cpu(init_sched_rt_entity, i), i, 1,
9466 root_task_group.rt_se[i]);
354d60c2 9467#endif
dd41f596 9468#endif
1da177e4 9469
dd41f596
IM
9470 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9471 rq->cpu_load[j] = 0;
1da177e4 9472#ifdef CONFIG_SMP
41c7ce9a 9473 rq->sd = NULL;
57d885fe 9474 rq->rd = NULL;
3f029d3c 9475 rq->post_schedule = 0;
1da177e4 9476 rq->active_balance = 0;
dd41f596 9477 rq->next_balance = jiffies;
1da177e4 9478 rq->push_cpu = 0;
0a2966b4 9479 rq->cpu = i;
1f11eb6a 9480 rq->online = 0;
1da177e4
LT
9481 rq->migration_thread = NULL;
9482 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9483 rq_attach_root(rq, &def_root_domain);
1da177e4 9484#endif
8f4d37ec 9485 init_rq_hrtick(rq);
1da177e4 9486 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9487 }
9488
2dd73a4f 9489 set_load_weight(&init_task);
b50f60ce 9490
e107be36
AK
9491#ifdef CONFIG_PREEMPT_NOTIFIERS
9492 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9493#endif
9494
c9819f45 9495#ifdef CONFIG_SMP
962cf36c 9496 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9497#endif
9498
b50f60ce
HC
9499#ifdef CONFIG_RT_MUTEXES
9500 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9501#endif
9502
1da177e4
LT
9503 /*
9504 * The boot idle thread does lazy MMU switching as well:
9505 */
9506 atomic_inc(&init_mm.mm_count);
9507 enter_lazy_tlb(&init_mm, current);
9508
9509 /*
9510 * Make us the idle thread. Technically, schedule() should not be
9511 * called from this thread, however somewhere below it might be,
9512 * but because we are the idle thread, we just pick up running again
9513 * when this runqueue becomes "idle".
9514 */
9515 init_idle(current, smp_processor_id());
dce48a84
TG
9516
9517 calc_load_update = jiffies + LOAD_FREQ;
9518
dd41f596
IM
9519 /*
9520 * During early bootup we pretend to be a normal task:
9521 */
9522 current->sched_class = &fair_sched_class;
6892b75e 9523
6a7b3dc3 9524 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9525 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9526#ifdef CONFIG_SMP
7d1e6a9b 9527#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9528 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9529 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9530#endif
4bdddf8f 9531 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9532#endif /* SMP */
6a7b3dc3 9533
cdd6c482 9534 perf_event_init();
0d905bca 9535
6892b75e 9536 scheduler_running = 1;
1da177e4
LT
9537}
9538
9539#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9540static inline int preempt_count_equals(int preempt_offset)
9541{
9542 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9543
9544 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9545}
9546
9547void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9548{
48f24c4d 9549#ifdef in_atomic
1da177e4
LT
9550 static unsigned long prev_jiffy; /* ratelimiting */
9551
e4aafea2
FW
9552 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9553 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9554 return;
9555 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9556 return;
9557 prev_jiffy = jiffies;
9558
9559 printk(KERN_ERR
9560 "BUG: sleeping function called from invalid context at %s:%d\n",
9561 file, line);
9562 printk(KERN_ERR
9563 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9564 in_atomic(), irqs_disabled(),
9565 current->pid, current->comm);
9566
9567 debug_show_held_locks(current);
9568 if (irqs_disabled())
9569 print_irqtrace_events(current);
9570 dump_stack();
1da177e4
LT
9571#endif
9572}
9573EXPORT_SYMBOL(__might_sleep);
9574#endif
9575
9576#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9577static void normalize_task(struct rq *rq, struct task_struct *p)
9578{
9579 int on_rq;
3e51f33f 9580
3a5e4dc1
AK
9581 update_rq_clock(rq);
9582 on_rq = p->se.on_rq;
9583 if (on_rq)
9584 deactivate_task(rq, p, 0);
9585 __setscheduler(rq, p, SCHED_NORMAL, 0);
9586 if (on_rq) {
9587 activate_task(rq, p, 0);
9588 resched_task(rq->curr);
9589 }
9590}
9591
1da177e4
LT
9592void normalize_rt_tasks(void)
9593{
a0f98a1c 9594 struct task_struct *g, *p;
1da177e4 9595 unsigned long flags;
70b97a7f 9596 struct rq *rq;
1da177e4 9597
4cf5d77a 9598 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9599 do_each_thread(g, p) {
178be793
IM
9600 /*
9601 * Only normalize user tasks:
9602 */
9603 if (!p->mm)
9604 continue;
9605
6cfb0d5d 9606 p->se.exec_start = 0;
6cfb0d5d 9607#ifdef CONFIG_SCHEDSTATS
dd41f596 9608 p->se.wait_start = 0;
dd41f596 9609 p->se.sleep_start = 0;
dd41f596 9610 p->se.block_start = 0;
6cfb0d5d 9611#endif
dd41f596
IM
9612
9613 if (!rt_task(p)) {
9614 /*
9615 * Renice negative nice level userspace
9616 * tasks back to 0:
9617 */
9618 if (TASK_NICE(p) < 0 && p->mm)
9619 set_user_nice(p, 0);
1da177e4 9620 continue;
dd41f596 9621 }
1da177e4 9622
4cf5d77a 9623 spin_lock(&p->pi_lock);
b29739f9 9624 rq = __task_rq_lock(p);
1da177e4 9625
178be793 9626 normalize_task(rq, p);
3a5e4dc1 9627
b29739f9 9628 __task_rq_unlock(rq);
4cf5d77a 9629 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9630 } while_each_thread(g, p);
9631
4cf5d77a 9632 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9633}
9634
9635#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9636
9637#ifdef CONFIG_IA64
9638/*
9639 * These functions are only useful for the IA64 MCA handling.
9640 *
9641 * They can only be called when the whole system has been
9642 * stopped - every CPU needs to be quiescent, and no scheduling
9643 * activity can take place. Using them for anything else would
9644 * be a serious bug, and as a result, they aren't even visible
9645 * under any other configuration.
9646 */
9647
9648/**
9649 * curr_task - return the current task for a given cpu.
9650 * @cpu: the processor in question.
9651 *
9652 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9653 */
36c8b586 9654struct task_struct *curr_task(int cpu)
1df5c10a
LT
9655{
9656 return cpu_curr(cpu);
9657}
9658
9659/**
9660 * set_curr_task - set the current task for a given cpu.
9661 * @cpu: the processor in question.
9662 * @p: the task pointer to set.
9663 *
9664 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9665 * are serviced on a separate stack. It allows the architecture to switch the
9666 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9667 * must be called with all CPU's synchronized, and interrupts disabled, the
9668 * and caller must save the original value of the current task (see
9669 * curr_task() above) and restore that value before reenabling interrupts and
9670 * re-starting the system.
9671 *
9672 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9673 */
36c8b586 9674void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9675{
9676 cpu_curr(cpu) = p;
9677}
9678
9679#endif
29f59db3 9680
bccbe08a
PZ
9681#ifdef CONFIG_FAIR_GROUP_SCHED
9682static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9683{
9684 int i;
9685
9686 for_each_possible_cpu(i) {
9687 if (tg->cfs_rq)
9688 kfree(tg->cfs_rq[i]);
9689 if (tg->se)
9690 kfree(tg->se[i]);
6f505b16
PZ
9691 }
9692
9693 kfree(tg->cfs_rq);
9694 kfree(tg->se);
6f505b16
PZ
9695}
9696
ec7dc8ac
DG
9697static
9698int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9699{
29f59db3 9700 struct cfs_rq *cfs_rq;
eab17229 9701 struct sched_entity *se;
9b5b7751 9702 struct rq *rq;
29f59db3
SV
9703 int i;
9704
434d53b0 9705 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9706 if (!tg->cfs_rq)
9707 goto err;
434d53b0 9708 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9709 if (!tg->se)
9710 goto err;
052f1dc7
PZ
9711
9712 tg->shares = NICE_0_LOAD;
29f59db3
SV
9713
9714 for_each_possible_cpu(i) {
9b5b7751 9715 rq = cpu_rq(i);
29f59db3 9716
eab17229
LZ
9717 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9718 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9719 if (!cfs_rq)
9720 goto err;
9721
eab17229
LZ
9722 se = kzalloc_node(sizeof(struct sched_entity),
9723 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9724 if (!se)
9725 goto err;
9726
eab17229 9727 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9728 }
9729
9730 return 1;
9731
9732 err:
9733 return 0;
9734}
9735
9736static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9737{
9738 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9739 &cpu_rq(cpu)->leaf_cfs_rq_list);
9740}
9741
9742static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9743{
9744 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9745}
6d6bc0ad 9746#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9747static inline void free_fair_sched_group(struct task_group *tg)
9748{
9749}
9750
ec7dc8ac
DG
9751static inline
9752int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9753{
9754 return 1;
9755}
9756
9757static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9758{
9759}
9760
9761static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9762{
9763}
6d6bc0ad 9764#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9765
9766#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9767static void free_rt_sched_group(struct task_group *tg)
9768{
9769 int i;
9770
d0b27fa7
PZ
9771 destroy_rt_bandwidth(&tg->rt_bandwidth);
9772
bccbe08a
PZ
9773 for_each_possible_cpu(i) {
9774 if (tg->rt_rq)
9775 kfree(tg->rt_rq[i]);
9776 if (tg->rt_se)
9777 kfree(tg->rt_se[i]);
9778 }
9779
9780 kfree(tg->rt_rq);
9781 kfree(tg->rt_se);
9782}
9783
ec7dc8ac
DG
9784static
9785int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9786{
9787 struct rt_rq *rt_rq;
eab17229 9788 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9789 struct rq *rq;
9790 int i;
9791
434d53b0 9792 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9793 if (!tg->rt_rq)
9794 goto err;
434d53b0 9795 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9796 if (!tg->rt_se)
9797 goto err;
9798
d0b27fa7
PZ
9799 init_rt_bandwidth(&tg->rt_bandwidth,
9800 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9801
9802 for_each_possible_cpu(i) {
9803 rq = cpu_rq(i);
9804
eab17229
LZ
9805 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9806 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9807 if (!rt_rq)
9808 goto err;
29f59db3 9809
eab17229
LZ
9810 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9811 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9812 if (!rt_se)
9813 goto err;
29f59db3 9814
eab17229 9815 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9816 }
9817
bccbe08a
PZ
9818 return 1;
9819
9820 err:
9821 return 0;
9822}
9823
9824static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9825{
9826 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9827 &cpu_rq(cpu)->leaf_rt_rq_list);
9828}
9829
9830static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9831{
9832 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9833}
6d6bc0ad 9834#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9835static inline void free_rt_sched_group(struct task_group *tg)
9836{
9837}
9838
ec7dc8ac
DG
9839static inline
9840int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9841{
9842 return 1;
9843}
9844
9845static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9846{
9847}
9848
9849static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9850{
9851}
6d6bc0ad 9852#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9853
d0b27fa7 9854#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9855static void free_sched_group(struct task_group *tg)
9856{
9857 free_fair_sched_group(tg);
9858 free_rt_sched_group(tg);
9859 kfree(tg);
9860}
9861
9862/* allocate runqueue etc for a new task group */
ec7dc8ac 9863struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9864{
9865 struct task_group *tg;
9866 unsigned long flags;
9867 int i;
9868
9869 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9870 if (!tg)
9871 return ERR_PTR(-ENOMEM);
9872
ec7dc8ac 9873 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9874 goto err;
9875
ec7dc8ac 9876 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9877 goto err;
9878
8ed36996 9879 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9880 for_each_possible_cpu(i) {
bccbe08a
PZ
9881 register_fair_sched_group(tg, i);
9882 register_rt_sched_group(tg, i);
9b5b7751 9883 }
6f505b16 9884 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9885
9886 WARN_ON(!parent); /* root should already exist */
9887
9888 tg->parent = parent;
f473aa5e 9889 INIT_LIST_HEAD(&tg->children);
09f2724a 9890 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9891 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9892
9b5b7751 9893 return tg;
29f59db3
SV
9894
9895err:
6f505b16 9896 free_sched_group(tg);
29f59db3
SV
9897 return ERR_PTR(-ENOMEM);
9898}
9899
9b5b7751 9900/* rcu callback to free various structures associated with a task group */
6f505b16 9901static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9902{
29f59db3 9903 /* now it should be safe to free those cfs_rqs */
6f505b16 9904 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9905}
9906
9b5b7751 9907/* Destroy runqueue etc associated with a task group */
4cf86d77 9908void sched_destroy_group(struct task_group *tg)
29f59db3 9909{
8ed36996 9910 unsigned long flags;
9b5b7751 9911 int i;
29f59db3 9912
8ed36996 9913 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9914 for_each_possible_cpu(i) {
bccbe08a
PZ
9915 unregister_fair_sched_group(tg, i);
9916 unregister_rt_sched_group(tg, i);
9b5b7751 9917 }
6f505b16 9918 list_del_rcu(&tg->list);
f473aa5e 9919 list_del_rcu(&tg->siblings);
8ed36996 9920 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9921
9b5b7751 9922 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9923 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9924}
9925
9b5b7751 9926/* change task's runqueue when it moves between groups.
3a252015
IM
9927 * The caller of this function should have put the task in its new group
9928 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9929 * reflect its new group.
9b5b7751
SV
9930 */
9931void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9932{
9933 int on_rq, running;
9934 unsigned long flags;
9935 struct rq *rq;
9936
9937 rq = task_rq_lock(tsk, &flags);
9938
29f59db3
SV
9939 update_rq_clock(rq);
9940
051a1d1a 9941 running = task_current(rq, tsk);
29f59db3
SV
9942 on_rq = tsk->se.on_rq;
9943
0e1f3483 9944 if (on_rq)
29f59db3 9945 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9946 if (unlikely(running))
9947 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9948
6f505b16 9949 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9950
810b3817
PZ
9951#ifdef CONFIG_FAIR_GROUP_SCHED
9952 if (tsk->sched_class->moved_group)
9953 tsk->sched_class->moved_group(tsk);
9954#endif
9955
0e1f3483
HS
9956 if (unlikely(running))
9957 tsk->sched_class->set_curr_task(rq);
9958 if (on_rq)
7074badb 9959 enqueue_task(rq, tsk, 0);
29f59db3 9960
29f59db3
SV
9961 task_rq_unlock(rq, &flags);
9962}
6d6bc0ad 9963#endif /* CONFIG_GROUP_SCHED */
29f59db3 9964
052f1dc7 9965#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9966static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9967{
9968 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9969 int on_rq;
9970
29f59db3 9971 on_rq = se->on_rq;
62fb1851 9972 if (on_rq)
29f59db3
SV
9973 dequeue_entity(cfs_rq, se, 0);
9974
9975 se->load.weight = shares;
e05510d0 9976 se->load.inv_weight = 0;
29f59db3 9977
62fb1851 9978 if (on_rq)
29f59db3 9979 enqueue_entity(cfs_rq, se, 0);
c09595f6 9980}
62fb1851 9981
c09595f6
PZ
9982static void set_se_shares(struct sched_entity *se, unsigned long shares)
9983{
9984 struct cfs_rq *cfs_rq = se->cfs_rq;
9985 struct rq *rq = cfs_rq->rq;
9986 unsigned long flags;
9987
9988 spin_lock_irqsave(&rq->lock, flags);
9989 __set_se_shares(se, shares);
9990 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9991}
9992
8ed36996
PZ
9993static DEFINE_MUTEX(shares_mutex);
9994
4cf86d77 9995int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9996{
9997 int i;
8ed36996 9998 unsigned long flags;
c61935fd 9999
ec7dc8ac
DG
10000 /*
10001 * We can't change the weight of the root cgroup.
10002 */
10003 if (!tg->se[0])
10004 return -EINVAL;
10005
18d95a28
PZ
10006 if (shares < MIN_SHARES)
10007 shares = MIN_SHARES;
cb4ad1ff
MX
10008 else if (shares > MAX_SHARES)
10009 shares = MAX_SHARES;
62fb1851 10010
8ed36996 10011 mutex_lock(&shares_mutex);
9b5b7751 10012 if (tg->shares == shares)
5cb350ba 10013 goto done;
29f59db3 10014
8ed36996 10015 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10016 for_each_possible_cpu(i)
10017 unregister_fair_sched_group(tg, i);
f473aa5e 10018 list_del_rcu(&tg->siblings);
8ed36996 10019 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10020
10021 /* wait for any ongoing reference to this group to finish */
10022 synchronize_sched();
10023
10024 /*
10025 * Now we are free to modify the group's share on each cpu
10026 * w/o tripping rebalance_share or load_balance_fair.
10027 */
9b5b7751 10028 tg->shares = shares;
c09595f6
PZ
10029 for_each_possible_cpu(i) {
10030 /*
10031 * force a rebalance
10032 */
10033 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10034 set_se_shares(tg->se[i], shares);
c09595f6 10035 }
29f59db3 10036
6b2d7700
SV
10037 /*
10038 * Enable load balance activity on this group, by inserting it back on
10039 * each cpu's rq->leaf_cfs_rq_list.
10040 */
8ed36996 10041 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10042 for_each_possible_cpu(i)
10043 register_fair_sched_group(tg, i);
f473aa5e 10044 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10045 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10046done:
8ed36996 10047 mutex_unlock(&shares_mutex);
9b5b7751 10048 return 0;
29f59db3
SV
10049}
10050
5cb350ba
DG
10051unsigned long sched_group_shares(struct task_group *tg)
10052{
10053 return tg->shares;
10054}
052f1dc7 10055#endif
5cb350ba 10056
052f1dc7 10057#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10058/*
9f0c1e56 10059 * Ensure that the real time constraints are schedulable.
6f505b16 10060 */
9f0c1e56
PZ
10061static DEFINE_MUTEX(rt_constraints_mutex);
10062
10063static unsigned long to_ratio(u64 period, u64 runtime)
10064{
10065 if (runtime == RUNTIME_INF)
9a7e0b18 10066 return 1ULL << 20;
9f0c1e56 10067
9a7e0b18 10068 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10069}
10070
9a7e0b18
PZ
10071/* Must be called with tasklist_lock held */
10072static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10073{
9a7e0b18 10074 struct task_struct *g, *p;
b40b2e8e 10075
9a7e0b18
PZ
10076 do_each_thread(g, p) {
10077 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10078 return 1;
10079 } while_each_thread(g, p);
b40b2e8e 10080
9a7e0b18
PZ
10081 return 0;
10082}
b40b2e8e 10083
9a7e0b18
PZ
10084struct rt_schedulable_data {
10085 struct task_group *tg;
10086 u64 rt_period;
10087 u64 rt_runtime;
10088};
b40b2e8e 10089
9a7e0b18
PZ
10090static int tg_schedulable(struct task_group *tg, void *data)
10091{
10092 struct rt_schedulable_data *d = data;
10093 struct task_group *child;
10094 unsigned long total, sum = 0;
10095 u64 period, runtime;
b40b2e8e 10096
9a7e0b18
PZ
10097 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10098 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10099
9a7e0b18
PZ
10100 if (tg == d->tg) {
10101 period = d->rt_period;
10102 runtime = d->rt_runtime;
b40b2e8e 10103 }
b40b2e8e 10104
98a4826b
PZ
10105#ifdef CONFIG_USER_SCHED
10106 if (tg == &root_task_group) {
10107 period = global_rt_period();
10108 runtime = global_rt_runtime();
10109 }
10110#endif
10111
4653f803
PZ
10112 /*
10113 * Cannot have more runtime than the period.
10114 */
10115 if (runtime > period && runtime != RUNTIME_INF)
10116 return -EINVAL;
6f505b16 10117
4653f803
PZ
10118 /*
10119 * Ensure we don't starve existing RT tasks.
10120 */
9a7e0b18
PZ
10121 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10122 return -EBUSY;
6f505b16 10123
9a7e0b18 10124 total = to_ratio(period, runtime);
6f505b16 10125
4653f803
PZ
10126 /*
10127 * Nobody can have more than the global setting allows.
10128 */
10129 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10130 return -EINVAL;
6f505b16 10131
4653f803
PZ
10132 /*
10133 * The sum of our children's runtime should not exceed our own.
10134 */
9a7e0b18
PZ
10135 list_for_each_entry_rcu(child, &tg->children, siblings) {
10136 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10137 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10138
9a7e0b18
PZ
10139 if (child == d->tg) {
10140 period = d->rt_period;
10141 runtime = d->rt_runtime;
10142 }
6f505b16 10143
9a7e0b18 10144 sum += to_ratio(period, runtime);
9f0c1e56 10145 }
6f505b16 10146
9a7e0b18
PZ
10147 if (sum > total)
10148 return -EINVAL;
10149
10150 return 0;
6f505b16
PZ
10151}
10152
9a7e0b18 10153static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10154{
9a7e0b18
PZ
10155 struct rt_schedulable_data data = {
10156 .tg = tg,
10157 .rt_period = period,
10158 .rt_runtime = runtime,
10159 };
10160
10161 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10162}
10163
d0b27fa7
PZ
10164static int tg_set_bandwidth(struct task_group *tg,
10165 u64 rt_period, u64 rt_runtime)
6f505b16 10166{
ac086bc2 10167 int i, err = 0;
9f0c1e56 10168
9f0c1e56 10169 mutex_lock(&rt_constraints_mutex);
521f1a24 10170 read_lock(&tasklist_lock);
9a7e0b18
PZ
10171 err = __rt_schedulable(tg, rt_period, rt_runtime);
10172 if (err)
9f0c1e56 10173 goto unlock;
ac086bc2
PZ
10174
10175 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10176 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10177 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10178
10179 for_each_possible_cpu(i) {
10180 struct rt_rq *rt_rq = tg->rt_rq[i];
10181
10182 spin_lock(&rt_rq->rt_runtime_lock);
10183 rt_rq->rt_runtime = rt_runtime;
10184 spin_unlock(&rt_rq->rt_runtime_lock);
10185 }
10186 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10187 unlock:
521f1a24 10188 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10189 mutex_unlock(&rt_constraints_mutex);
10190
10191 return err;
6f505b16
PZ
10192}
10193
d0b27fa7
PZ
10194int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10195{
10196 u64 rt_runtime, rt_period;
10197
10198 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10199 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10200 if (rt_runtime_us < 0)
10201 rt_runtime = RUNTIME_INF;
10202
10203 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10204}
10205
9f0c1e56
PZ
10206long sched_group_rt_runtime(struct task_group *tg)
10207{
10208 u64 rt_runtime_us;
10209
d0b27fa7 10210 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10211 return -1;
10212
d0b27fa7 10213 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10214 do_div(rt_runtime_us, NSEC_PER_USEC);
10215 return rt_runtime_us;
10216}
d0b27fa7
PZ
10217
10218int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10219{
10220 u64 rt_runtime, rt_period;
10221
10222 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10223 rt_runtime = tg->rt_bandwidth.rt_runtime;
10224
619b0488
R
10225 if (rt_period == 0)
10226 return -EINVAL;
10227
d0b27fa7
PZ
10228 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10229}
10230
10231long sched_group_rt_period(struct task_group *tg)
10232{
10233 u64 rt_period_us;
10234
10235 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10236 do_div(rt_period_us, NSEC_PER_USEC);
10237 return rt_period_us;
10238}
10239
10240static int sched_rt_global_constraints(void)
10241{
4653f803 10242 u64 runtime, period;
d0b27fa7
PZ
10243 int ret = 0;
10244
ec5d4989
HS
10245 if (sysctl_sched_rt_period <= 0)
10246 return -EINVAL;
10247
4653f803
PZ
10248 runtime = global_rt_runtime();
10249 period = global_rt_period();
10250
10251 /*
10252 * Sanity check on the sysctl variables.
10253 */
10254 if (runtime > period && runtime != RUNTIME_INF)
10255 return -EINVAL;
10b612f4 10256
d0b27fa7 10257 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10258 read_lock(&tasklist_lock);
4653f803 10259 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10260 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10261 mutex_unlock(&rt_constraints_mutex);
10262
10263 return ret;
10264}
54e99124
DG
10265
10266int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10267{
10268 /* Don't accept realtime tasks when there is no way for them to run */
10269 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10270 return 0;
10271
10272 return 1;
10273}
10274
6d6bc0ad 10275#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10276static int sched_rt_global_constraints(void)
10277{
ac086bc2
PZ
10278 unsigned long flags;
10279 int i;
10280
ec5d4989
HS
10281 if (sysctl_sched_rt_period <= 0)
10282 return -EINVAL;
10283
60aa605d
PZ
10284 /*
10285 * There's always some RT tasks in the root group
10286 * -- migration, kstopmachine etc..
10287 */
10288 if (sysctl_sched_rt_runtime == 0)
10289 return -EBUSY;
10290
ac086bc2
PZ
10291 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10292 for_each_possible_cpu(i) {
10293 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10294
10295 spin_lock(&rt_rq->rt_runtime_lock);
10296 rt_rq->rt_runtime = global_rt_runtime();
10297 spin_unlock(&rt_rq->rt_runtime_lock);
10298 }
10299 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10300
d0b27fa7
PZ
10301 return 0;
10302}
6d6bc0ad 10303#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10304
10305int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10306 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10307 loff_t *ppos)
10308{
10309 int ret;
10310 int old_period, old_runtime;
10311 static DEFINE_MUTEX(mutex);
10312
10313 mutex_lock(&mutex);
10314 old_period = sysctl_sched_rt_period;
10315 old_runtime = sysctl_sched_rt_runtime;
10316
8d65af78 10317 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10318
10319 if (!ret && write) {
10320 ret = sched_rt_global_constraints();
10321 if (ret) {
10322 sysctl_sched_rt_period = old_period;
10323 sysctl_sched_rt_runtime = old_runtime;
10324 } else {
10325 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10326 def_rt_bandwidth.rt_period =
10327 ns_to_ktime(global_rt_period());
10328 }
10329 }
10330 mutex_unlock(&mutex);
10331
10332 return ret;
10333}
68318b8e 10334
052f1dc7 10335#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10336
10337/* return corresponding task_group object of a cgroup */
2b01dfe3 10338static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10339{
2b01dfe3
PM
10340 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10341 struct task_group, css);
68318b8e
SV
10342}
10343
10344static struct cgroup_subsys_state *
2b01dfe3 10345cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10346{
ec7dc8ac 10347 struct task_group *tg, *parent;
68318b8e 10348
2b01dfe3 10349 if (!cgrp->parent) {
68318b8e 10350 /* This is early initialization for the top cgroup */
68318b8e
SV
10351 return &init_task_group.css;
10352 }
10353
ec7dc8ac
DG
10354 parent = cgroup_tg(cgrp->parent);
10355 tg = sched_create_group(parent);
68318b8e
SV
10356 if (IS_ERR(tg))
10357 return ERR_PTR(-ENOMEM);
10358
68318b8e
SV
10359 return &tg->css;
10360}
10361
41a2d6cf
IM
10362static void
10363cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10364{
2b01dfe3 10365 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10366
10367 sched_destroy_group(tg);
10368}
10369
41a2d6cf 10370static int
be367d09 10371cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10372{
b68aa230 10373#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10374 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10375 return -EINVAL;
10376#else
68318b8e
SV
10377 /* We don't support RT-tasks being in separate groups */
10378 if (tsk->sched_class != &fair_sched_class)
10379 return -EINVAL;
b68aa230 10380#endif
be367d09
BB
10381 return 0;
10382}
68318b8e 10383
be367d09
BB
10384static int
10385cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10386 struct task_struct *tsk, bool threadgroup)
10387{
10388 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10389 if (retval)
10390 return retval;
10391 if (threadgroup) {
10392 struct task_struct *c;
10393 rcu_read_lock();
10394 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10395 retval = cpu_cgroup_can_attach_task(cgrp, c);
10396 if (retval) {
10397 rcu_read_unlock();
10398 return retval;
10399 }
10400 }
10401 rcu_read_unlock();
10402 }
68318b8e
SV
10403 return 0;
10404}
10405
10406static void
2b01dfe3 10407cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10408 struct cgroup *old_cont, struct task_struct *tsk,
10409 bool threadgroup)
68318b8e
SV
10410{
10411 sched_move_task(tsk);
be367d09
BB
10412 if (threadgroup) {
10413 struct task_struct *c;
10414 rcu_read_lock();
10415 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10416 sched_move_task(c);
10417 }
10418 rcu_read_unlock();
10419 }
68318b8e
SV
10420}
10421
052f1dc7 10422#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10423static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10424 u64 shareval)
68318b8e 10425{
2b01dfe3 10426 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10427}
10428
f4c753b7 10429static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10430{
2b01dfe3 10431 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10432
10433 return (u64) tg->shares;
10434}
6d6bc0ad 10435#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10436
052f1dc7 10437#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10438static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10439 s64 val)
6f505b16 10440{
06ecb27c 10441 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10442}
10443
06ecb27c 10444static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10445{
06ecb27c 10446 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10447}
d0b27fa7
PZ
10448
10449static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10450 u64 rt_period_us)
10451{
10452 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10453}
10454
10455static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10456{
10457 return sched_group_rt_period(cgroup_tg(cgrp));
10458}
6d6bc0ad 10459#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10460
fe5c7cc2 10461static struct cftype cpu_files[] = {
052f1dc7 10462#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10463 {
10464 .name = "shares",
f4c753b7
PM
10465 .read_u64 = cpu_shares_read_u64,
10466 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10467 },
052f1dc7
PZ
10468#endif
10469#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10470 {
9f0c1e56 10471 .name = "rt_runtime_us",
06ecb27c
PM
10472 .read_s64 = cpu_rt_runtime_read,
10473 .write_s64 = cpu_rt_runtime_write,
6f505b16 10474 },
d0b27fa7
PZ
10475 {
10476 .name = "rt_period_us",
f4c753b7
PM
10477 .read_u64 = cpu_rt_period_read_uint,
10478 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10479 },
052f1dc7 10480#endif
68318b8e
SV
10481};
10482
10483static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10484{
fe5c7cc2 10485 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10486}
10487
10488struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10489 .name = "cpu",
10490 .create = cpu_cgroup_create,
10491 .destroy = cpu_cgroup_destroy,
10492 .can_attach = cpu_cgroup_can_attach,
10493 .attach = cpu_cgroup_attach,
10494 .populate = cpu_cgroup_populate,
10495 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10496 .early_init = 1,
10497};
10498
052f1dc7 10499#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10500
10501#ifdef CONFIG_CGROUP_CPUACCT
10502
10503/*
10504 * CPU accounting code for task groups.
10505 *
10506 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10507 * (balbir@in.ibm.com).
10508 */
10509
934352f2 10510/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10511struct cpuacct {
10512 struct cgroup_subsys_state css;
10513 /* cpuusage holds pointer to a u64-type object on every cpu */
10514 u64 *cpuusage;
ef12fefa 10515 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10516 struct cpuacct *parent;
d842de87
SV
10517};
10518
10519struct cgroup_subsys cpuacct_subsys;
10520
10521/* return cpu accounting group corresponding to this container */
32cd756a 10522static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10523{
32cd756a 10524 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10525 struct cpuacct, css);
10526}
10527
10528/* return cpu accounting group to which this task belongs */
10529static inline struct cpuacct *task_ca(struct task_struct *tsk)
10530{
10531 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10532 struct cpuacct, css);
10533}
10534
10535/* create a new cpu accounting group */
10536static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10537 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10538{
10539 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10540 int i;
d842de87
SV
10541
10542 if (!ca)
ef12fefa 10543 goto out;
d842de87
SV
10544
10545 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10546 if (!ca->cpuusage)
10547 goto out_free_ca;
10548
10549 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10550 if (percpu_counter_init(&ca->cpustat[i], 0))
10551 goto out_free_counters;
d842de87 10552
934352f2
BR
10553 if (cgrp->parent)
10554 ca->parent = cgroup_ca(cgrp->parent);
10555
d842de87 10556 return &ca->css;
ef12fefa
BR
10557
10558out_free_counters:
10559 while (--i >= 0)
10560 percpu_counter_destroy(&ca->cpustat[i]);
10561 free_percpu(ca->cpuusage);
10562out_free_ca:
10563 kfree(ca);
10564out:
10565 return ERR_PTR(-ENOMEM);
d842de87
SV
10566}
10567
10568/* destroy an existing cpu accounting group */
41a2d6cf 10569static void
32cd756a 10570cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10571{
32cd756a 10572 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10573 int i;
d842de87 10574
ef12fefa
BR
10575 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10576 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10577 free_percpu(ca->cpuusage);
10578 kfree(ca);
10579}
10580
720f5498
KC
10581static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10582{
b36128c8 10583 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10584 u64 data;
10585
10586#ifndef CONFIG_64BIT
10587 /*
10588 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10589 */
10590 spin_lock_irq(&cpu_rq(cpu)->lock);
10591 data = *cpuusage;
10592 spin_unlock_irq(&cpu_rq(cpu)->lock);
10593#else
10594 data = *cpuusage;
10595#endif
10596
10597 return data;
10598}
10599
10600static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10601{
b36128c8 10602 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10603
10604#ifndef CONFIG_64BIT
10605 /*
10606 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10607 */
10608 spin_lock_irq(&cpu_rq(cpu)->lock);
10609 *cpuusage = val;
10610 spin_unlock_irq(&cpu_rq(cpu)->lock);
10611#else
10612 *cpuusage = val;
10613#endif
10614}
10615
d842de87 10616/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10617static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10618{
32cd756a 10619 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10620 u64 totalcpuusage = 0;
10621 int i;
10622
720f5498
KC
10623 for_each_present_cpu(i)
10624 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10625
10626 return totalcpuusage;
10627}
10628
0297b803
DG
10629static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10630 u64 reset)
10631{
10632 struct cpuacct *ca = cgroup_ca(cgrp);
10633 int err = 0;
10634 int i;
10635
10636 if (reset) {
10637 err = -EINVAL;
10638 goto out;
10639 }
10640
720f5498
KC
10641 for_each_present_cpu(i)
10642 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10643
0297b803
DG
10644out:
10645 return err;
10646}
10647
e9515c3c
KC
10648static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10649 struct seq_file *m)
10650{
10651 struct cpuacct *ca = cgroup_ca(cgroup);
10652 u64 percpu;
10653 int i;
10654
10655 for_each_present_cpu(i) {
10656 percpu = cpuacct_cpuusage_read(ca, i);
10657 seq_printf(m, "%llu ", (unsigned long long) percpu);
10658 }
10659 seq_printf(m, "\n");
10660 return 0;
10661}
10662
ef12fefa
BR
10663static const char *cpuacct_stat_desc[] = {
10664 [CPUACCT_STAT_USER] = "user",
10665 [CPUACCT_STAT_SYSTEM] = "system",
10666};
10667
10668static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10669 struct cgroup_map_cb *cb)
10670{
10671 struct cpuacct *ca = cgroup_ca(cgrp);
10672 int i;
10673
10674 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10675 s64 val = percpu_counter_read(&ca->cpustat[i]);
10676 val = cputime64_to_clock_t(val);
10677 cb->fill(cb, cpuacct_stat_desc[i], val);
10678 }
10679 return 0;
10680}
10681
d842de87
SV
10682static struct cftype files[] = {
10683 {
10684 .name = "usage",
f4c753b7
PM
10685 .read_u64 = cpuusage_read,
10686 .write_u64 = cpuusage_write,
d842de87 10687 },
e9515c3c
KC
10688 {
10689 .name = "usage_percpu",
10690 .read_seq_string = cpuacct_percpu_seq_read,
10691 },
ef12fefa
BR
10692 {
10693 .name = "stat",
10694 .read_map = cpuacct_stats_show,
10695 },
d842de87
SV
10696};
10697
32cd756a 10698static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10699{
32cd756a 10700 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10701}
10702
10703/*
10704 * charge this task's execution time to its accounting group.
10705 *
10706 * called with rq->lock held.
10707 */
10708static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10709{
10710 struct cpuacct *ca;
934352f2 10711 int cpu;
d842de87 10712
c40c6f85 10713 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10714 return;
10715
934352f2 10716 cpu = task_cpu(tsk);
a18b83b7
BR
10717
10718 rcu_read_lock();
10719
d842de87 10720 ca = task_ca(tsk);
d842de87 10721
934352f2 10722 for (; ca; ca = ca->parent) {
b36128c8 10723 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10724 *cpuusage += cputime;
10725 }
a18b83b7
BR
10726
10727 rcu_read_unlock();
d842de87
SV
10728}
10729
ef12fefa
BR
10730/*
10731 * Charge the system/user time to the task's accounting group.
10732 */
10733static void cpuacct_update_stats(struct task_struct *tsk,
10734 enum cpuacct_stat_index idx, cputime_t val)
10735{
10736 struct cpuacct *ca;
10737
10738 if (unlikely(!cpuacct_subsys.active))
10739 return;
10740
10741 rcu_read_lock();
10742 ca = task_ca(tsk);
10743
10744 do {
10745 percpu_counter_add(&ca->cpustat[idx], val);
10746 ca = ca->parent;
10747 } while (ca);
10748 rcu_read_unlock();
10749}
10750
d842de87
SV
10751struct cgroup_subsys cpuacct_subsys = {
10752 .name = "cpuacct",
10753 .create = cpuacct_create,
10754 .destroy = cpuacct_destroy,
10755 .populate = cpuacct_populate,
10756 .subsys_id = cpuacct_subsys_id,
10757};
10758#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10759
10760#ifndef CONFIG_SMP
10761
10762int rcu_expedited_torture_stats(char *page)
10763{
10764 return 0;
10765}
10766EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10767
10768void synchronize_sched_expedited(void)
10769{
10770}
10771EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10772
10773#else /* #ifndef CONFIG_SMP */
10774
10775static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10776static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10777
10778#define RCU_EXPEDITED_STATE_POST -2
10779#define RCU_EXPEDITED_STATE_IDLE -1
10780
10781static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10782
10783int rcu_expedited_torture_stats(char *page)
10784{
10785 int cnt = 0;
10786 int cpu;
10787
10788 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10789 for_each_online_cpu(cpu) {
10790 cnt += sprintf(&page[cnt], " %d:%d",
10791 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10792 }
10793 cnt += sprintf(&page[cnt], "\n");
10794 return cnt;
10795}
10796EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10797
10798static long synchronize_sched_expedited_count;
10799
10800/*
10801 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10802 * approach to force grace period to end quickly. This consumes
10803 * significant time on all CPUs, and is thus not recommended for
10804 * any sort of common-case code.
10805 *
10806 * Note that it is illegal to call this function while holding any
10807 * lock that is acquired by a CPU-hotplug notifier. Failing to
10808 * observe this restriction will result in deadlock.
10809 */
10810void synchronize_sched_expedited(void)
10811{
10812 int cpu;
10813 unsigned long flags;
10814 bool need_full_sync = 0;
10815 struct rq *rq;
10816 struct migration_req *req;
10817 long snap;
10818 int trycount = 0;
10819
10820 smp_mb(); /* ensure prior mod happens before capturing snap. */
10821 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10822 get_online_cpus();
10823 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10824 put_online_cpus();
10825 if (trycount++ < 10)
10826 udelay(trycount * num_online_cpus());
10827 else {
10828 synchronize_sched();
10829 return;
10830 }
10831 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10832 smp_mb(); /* ensure test happens before caller kfree */
10833 return;
10834 }
10835 get_online_cpus();
10836 }
10837 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10838 for_each_online_cpu(cpu) {
10839 rq = cpu_rq(cpu);
10840 req = &per_cpu(rcu_migration_req, cpu);
10841 init_completion(&req->done);
10842 req->task = NULL;
10843 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10844 spin_lock_irqsave(&rq->lock, flags);
10845 list_add(&req->list, &rq->migration_queue);
10846 spin_unlock_irqrestore(&rq->lock, flags);
10847 wake_up_process(rq->migration_thread);
10848 }
10849 for_each_online_cpu(cpu) {
10850 rcu_expedited_state = cpu;
10851 req = &per_cpu(rcu_migration_req, cpu);
10852 rq = cpu_rq(cpu);
10853 wait_for_completion(&req->done);
10854 spin_lock_irqsave(&rq->lock, flags);
10855 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10856 need_full_sync = 1;
10857 req->dest_cpu = RCU_MIGRATION_IDLE;
10858 spin_unlock_irqrestore(&rq->lock, flags);
10859 }
10860 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10861 mutex_unlock(&rcu_sched_expedited_mutex);
10862 put_online_cpus();
10863 if (need_full_sync)
10864 synchronize_sched();
10865}
10866EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10867
10868#endif /* #else #ifndef CONFIG_SMP */