]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
Merge branch 'x86-setup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
fd2ab30b
SN
122static void double_rq_lock(struct rq *rq1, struct rq *rq2);
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5
IM
145 /* nests inside the rq lock: */
146 spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
ac086bc2
PZ
183 spin_lock_init(&rt_b->rt_runtime_lock);
184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
221 }
222 spin_unlock(&rt_b->rt_runtime_lock);
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
052f1dc7 238#ifdef CONFIG_GROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
052f1dc7 248#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
249 struct cgroup_subsys_state css;
250#endif
052f1dc7 251
6c415b92
AB
252#ifdef CONFIG_USER_SCHED
253 uid_t uid;
254#endif
255
052f1dc7 256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6 280
6c415b92
AB
281/* Helper function to pass uid information to create_sched_user() */
282void set_tg_uid(struct user_struct *user)
283{
284 user->tg->uid = user->uid;
285}
286
eff766a6
PZ
287/*
288 * Root task group.
84e9dabf
AS
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
eff766a6
PZ
291 */
292struct task_group root_task_group;
293
052f1dc7 294#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
295/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */
84e9dabf 298static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 299#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
300
301#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 304#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 305#else /* !CONFIG_USER_SCHED */
eff766a6 306#define root_task_group init_task_group
9a7e0b18 307#endif /* CONFIG_USER_SCHED */
6f505b16 308
8ed36996 309/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
310 * a task group's cpu shares.
311 */
8ed36996 312static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7 321#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
322#ifdef CONFIG_USER_SCHED
323# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 324#else /* !CONFIG_USER_SCHED */
052f1dc7 325# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 326#endif /* CONFIG_USER_SCHED */
052f1dc7 327
cb4ad1ff 328/*
2e084786
LJ
329 * A weight of 0 or 1 can cause arithmetics problems.
330 * A weight of a cfs_rq is the sum of weights of which entities
331 * are queued on this cfs_rq, so a weight of a entity should not be
332 * too large, so as the shares value of a task group.
cb4ad1ff
MX
333 * (The default weight is 1024 - so there's no practical
334 * limitation from this.)
335 */
18d95a28 336#define MIN_SHARES 2
2e084786 337#define MAX_SHARES (1UL << 18)
18d95a28 338
052f1dc7
PZ
339static int init_task_group_load = INIT_TASK_GROUP_LOAD;
340#endif
341
29f59db3 342/* Default task group.
3a252015 343 * Every task in system belong to this group at bootup.
29f59db3 344 */
434d53b0 345struct task_group init_task_group;
29f59db3
SV
346
347/* return group to which a task belongs */
4cf86d77 348static inline struct task_group *task_group(struct task_struct *p)
29f59db3 349{
4cf86d77 350 struct task_group *tg;
9b5b7751 351
052f1dc7 352#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
353 rcu_read_lock();
354 tg = __task_cred(p)->user->tg;
355 rcu_read_unlock();
052f1dc7 356#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
357 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
358 struct task_group, css);
24e377a8 359#else
41a2d6cf 360 tg = &init_task_group;
24e377a8 361#endif
9b5b7751 362 return tg;
29f59db3
SV
363}
364
365/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 366static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 367{
052f1dc7 368#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
369 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
370 p->se.parent = task_group(p)->se[cpu];
052f1dc7 371#endif
6f505b16 372
052f1dc7 373#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
374 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
375 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 376#endif
29f59db3
SV
377}
378
379#else
380
57310a98
PZ
381#ifdef CONFIG_SMP
382static int root_task_group_empty(void)
383{
384 return 1;
385}
386#endif
387
6f505b16 388static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
389static inline struct task_group *task_group(struct task_struct *p)
390{
391 return NULL;
392}
29f59db3 393
052f1dc7 394#endif /* CONFIG_GROUP_SCHED */
29f59db3 395
6aa645ea
IM
396/* CFS-related fields in a runqueue */
397struct cfs_rq {
398 struct load_weight load;
399 unsigned long nr_running;
400
6aa645ea 401 u64 exec_clock;
e9acbff6 402 u64 min_vruntime;
6aa645ea
IM
403
404 struct rb_root tasks_timeline;
405 struct rb_node *rb_leftmost;
4a55bd5e
PZ
406
407 struct list_head tasks;
408 struct list_head *balance_iterator;
409
410 /*
411 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
412 * It is set to NULL otherwise (i.e when none are currently running).
413 */
4793241b 414 struct sched_entity *curr, *next, *last;
ddc97297 415
5ac5c4d6 416 unsigned int nr_spread_over;
ddc97297 417
62160e3f 418#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
419 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
420
41a2d6cf
IM
421 /*
422 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
423 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
424 * (like users, containers etc.)
425 *
426 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
427 * list is used during load balance.
428 */
41a2d6cf
IM
429 struct list_head leaf_cfs_rq_list;
430 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
431
432#ifdef CONFIG_SMP
c09595f6 433 /*
c8cba857 434 * the part of load.weight contributed by tasks
c09595f6 435 */
c8cba857 436 unsigned long task_weight;
c09595f6 437
c8cba857
PZ
438 /*
439 * h_load = weight * f(tg)
440 *
441 * Where f(tg) is the recursive weight fraction assigned to
442 * this group.
443 */
444 unsigned long h_load;
c09595f6 445
c8cba857
PZ
446 /*
447 * this cpu's part of tg->shares
448 */
449 unsigned long shares;
f1d239f7
PZ
450
451 /*
452 * load.weight at the time we set shares
453 */
454 unsigned long rq_weight;
c09595f6 455#endif
6aa645ea
IM
456#endif
457};
1da177e4 458
6aa645ea
IM
459/* Real-Time classes' related field in a runqueue: */
460struct rt_rq {
461 struct rt_prio_array active;
63489e45 462 unsigned long rt_nr_running;
052f1dc7 463#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
464 struct {
465 int curr; /* highest queued rt task prio */
398a153b 466#ifdef CONFIG_SMP
e864c499 467 int next; /* next highest */
398a153b 468#endif
e864c499 469 } highest_prio;
6f505b16 470#endif
fa85ae24 471#ifdef CONFIG_SMP
73fe6aae 472 unsigned long rt_nr_migratory;
a1ba4d8b 473 unsigned long rt_nr_total;
a22d7fc1 474 int overloaded;
917b627d 475 struct plist_head pushable_tasks;
fa85ae24 476#endif
6f505b16 477 int rt_throttled;
fa85ae24 478 u64 rt_time;
ac086bc2 479 u64 rt_runtime;
ea736ed5 480 /* Nests inside the rq lock: */
ac086bc2 481 spinlock_t rt_runtime_lock;
6f505b16 482
052f1dc7 483#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
484 unsigned long rt_nr_boosted;
485
6f505b16
PZ
486 struct rq *rq;
487 struct list_head leaf_rt_rq_list;
488 struct task_group *tg;
489 struct sched_rt_entity *rt_se;
490#endif
6aa645ea
IM
491};
492
57d885fe
GH
493#ifdef CONFIG_SMP
494
495/*
496 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
497 * variables. Each exclusive cpuset essentially defines an island domain by
498 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
499 * exclusive cpuset is created, we also create and attach a new root-domain
500 * object.
501 *
57d885fe
GH
502 */
503struct root_domain {
504 atomic_t refcount;
c6c4927b
RR
505 cpumask_var_t span;
506 cpumask_var_t online;
637f5085 507
0eab9146 508 /*
637f5085
GH
509 * The "RT overload" flag: it gets set if a CPU has more than
510 * one runnable RT task.
511 */
c6c4927b 512 cpumask_var_t rto_mask;
0eab9146 513 atomic_t rto_count;
6e0534f2
GH
514#ifdef CONFIG_SMP
515 struct cpupri cpupri;
516#endif
7a09b1a2
VS
517#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
518 /*
519 * Preferred wake up cpu nominated by sched_mc balance that will be
520 * used when most cpus are idle in the system indicating overall very
521 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
522 */
523 unsigned int sched_mc_preferred_wakeup_cpu;
524#endif
57d885fe
GH
525};
526
dc938520
GH
527/*
528 * By default the system creates a single root-domain with all cpus as
529 * members (mimicking the global state we have today).
530 */
57d885fe
GH
531static struct root_domain def_root_domain;
532
533#endif
534
1da177e4
LT
535/*
536 * This is the main, per-CPU runqueue data structure.
537 *
538 * Locking rule: those places that want to lock multiple runqueues
539 * (such as the load balancing or the thread migration code), lock
540 * acquire operations must be ordered by ascending &runqueue.
541 */
70b97a7f 542struct rq {
d8016491
IM
543 /* runqueue lock: */
544 spinlock_t lock;
1da177e4
LT
545
546 /*
547 * nr_running and cpu_load should be in the same cacheline because
548 * remote CPUs use both these fields when doing load calculation.
549 */
550 unsigned long nr_running;
6aa645ea
IM
551 #define CPU_LOAD_IDX_MAX 5
552 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 553#ifdef CONFIG_NO_HZ
15934a37 554 unsigned long last_tick_seen;
46cb4b7c
SS
555 unsigned char in_nohz_recently;
556#endif
d8016491
IM
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
6aa645ea
IM
559 unsigned long nr_load_updates;
560 u64 nr_switches;
23a185ca 561 u64 nr_migrations_in;
6aa645ea
IM
562
563 struct cfs_rq cfs;
6f505b16 564 struct rt_rq rt;
6f505b16 565
6aa645ea 566#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
567 /* list of leaf cfs_rq on this cpu: */
568 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
569#endif
570#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 571 struct list_head leaf_rt_rq_list;
1da177e4 572#endif
1da177e4
LT
573
574 /*
575 * This is part of a global counter where only the total sum
576 * over all CPUs matters. A task can increase this counter on
577 * one CPU and if it got migrated afterwards it may decrease
578 * it on another CPU. Always updated under the runqueue lock:
579 */
580 unsigned long nr_uninterruptible;
581
36c8b586 582 struct task_struct *curr, *idle;
c9819f45 583 unsigned long next_balance;
1da177e4 584 struct mm_struct *prev_mm;
6aa645ea 585
3e51f33f 586 u64 clock;
6aa645ea 587
1da177e4
LT
588 atomic_t nr_iowait;
589
590#ifdef CONFIG_SMP
0eab9146 591 struct root_domain *rd;
1da177e4
LT
592 struct sched_domain *sd;
593
a0a522ce 594 unsigned char idle_at_tick;
1da177e4 595 /* For active balancing */
3f029d3c 596 int post_schedule;
1da177e4
LT
597 int active_balance;
598 int push_cpu;
d8016491
IM
599 /* cpu of this runqueue: */
600 int cpu;
1f11eb6a 601 int online;
1da177e4 602
a8a51d5e 603 unsigned long avg_load_per_task;
1da177e4 604
36c8b586 605 struct task_struct *migration_thread;
1da177e4 606 struct list_head migration_queue;
e9e9250b
PZ
607
608 u64 rt_avg;
609 u64 age_stamp;
1da177e4
LT
610#endif
611
dce48a84
TG
612 /* calc_load related fields */
613 unsigned long calc_load_update;
614 long calc_load_active;
615
8f4d37ec 616#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
617#ifdef CONFIG_SMP
618 int hrtick_csd_pending;
619 struct call_single_data hrtick_csd;
620#endif
8f4d37ec
PZ
621 struct hrtimer hrtick_timer;
622#endif
623
1da177e4
LT
624#ifdef CONFIG_SCHEDSTATS
625 /* latency stats */
626 struct sched_info rq_sched_info;
9c2c4802
KC
627 unsigned long long rq_cpu_time;
628 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
629
630 /* sys_sched_yield() stats */
480b9434 631 unsigned int yld_count;
1da177e4
LT
632
633 /* schedule() stats */
480b9434
KC
634 unsigned int sched_switch;
635 unsigned int sched_count;
636 unsigned int sched_goidle;
1da177e4
LT
637
638 /* try_to_wake_up() stats */
480b9434
KC
639 unsigned int ttwu_count;
640 unsigned int ttwu_local;
b8efb561
IM
641
642 /* BKL stats */
480b9434 643 unsigned int bkl_count;
1da177e4
LT
644#endif
645};
646
f34e3b61 647static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 648
15afe09b 649static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 650{
15afe09b 651 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
652}
653
0a2966b4
CL
654static inline int cpu_of(struct rq *rq)
655{
656#ifdef CONFIG_SMP
657 return rq->cpu;
658#else
659 return 0;
660#endif
661}
662
674311d5
NP
663/*
664 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 665 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
666 *
667 * The domain tree of any CPU may only be accessed from within
668 * preempt-disabled sections.
669 */
48f24c4d
IM
670#define for_each_domain(cpu, __sd) \
671 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
672
673#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
674#define this_rq() (&__get_cpu_var(runqueues))
675#define task_rq(p) cpu_rq(task_cpu(p))
676#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 677#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 678
aa9c4c0f 679inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
680{
681 rq->clock = sched_clock_cpu(cpu_of(rq));
682}
683
bf5c91ba
IM
684/*
685 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
686 */
687#ifdef CONFIG_SCHED_DEBUG
688# define const_debug __read_mostly
689#else
690# define const_debug static const
691#endif
692
017730c1
IM
693/**
694 * runqueue_is_locked
695 *
696 * Returns true if the current cpu runqueue is locked.
697 * This interface allows printk to be called with the runqueue lock
698 * held and know whether or not it is OK to wake up the klogd.
699 */
700int runqueue_is_locked(void)
701{
702 int cpu = get_cpu();
703 struct rq *rq = cpu_rq(cpu);
704 int ret;
705
706 ret = spin_is_locked(&rq->lock);
707 put_cpu();
708 return ret;
709}
710
bf5c91ba
IM
711/*
712 * Debugging: various feature bits
713 */
f00b45c1
PZ
714
715#define SCHED_FEAT(name, enabled) \
716 __SCHED_FEAT_##name ,
717
bf5c91ba 718enum {
f00b45c1 719#include "sched_features.h"
bf5c91ba
IM
720};
721
f00b45c1
PZ
722#undef SCHED_FEAT
723
724#define SCHED_FEAT(name, enabled) \
725 (1UL << __SCHED_FEAT_##name) * enabled |
726
bf5c91ba 727const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
728#include "sched_features.h"
729 0;
730
731#undef SCHED_FEAT
732
733#ifdef CONFIG_SCHED_DEBUG
734#define SCHED_FEAT(name, enabled) \
735 #name ,
736
983ed7a6 737static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
738#include "sched_features.h"
739 NULL
740};
741
742#undef SCHED_FEAT
743
34f3a814 744static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 745{
f00b45c1
PZ
746 int i;
747
748 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
749 if (!(sysctl_sched_features & (1UL << i)))
750 seq_puts(m, "NO_");
751 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 752 }
34f3a814 753 seq_puts(m, "\n");
f00b45c1 754
34f3a814 755 return 0;
f00b45c1
PZ
756}
757
758static ssize_t
759sched_feat_write(struct file *filp, const char __user *ubuf,
760 size_t cnt, loff_t *ppos)
761{
762 char buf[64];
763 char *cmp = buf;
764 int neg = 0;
765 int i;
766
767 if (cnt > 63)
768 cnt = 63;
769
770 if (copy_from_user(&buf, ubuf, cnt))
771 return -EFAULT;
772
773 buf[cnt] = 0;
774
c24b7c52 775 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
776 neg = 1;
777 cmp += 3;
778 }
779
780 for (i = 0; sched_feat_names[i]; i++) {
781 int len = strlen(sched_feat_names[i]);
782
783 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
784 if (neg)
785 sysctl_sched_features &= ~(1UL << i);
786 else
787 sysctl_sched_features |= (1UL << i);
788 break;
789 }
790 }
791
792 if (!sched_feat_names[i])
793 return -EINVAL;
794
795 filp->f_pos += cnt;
796
797 return cnt;
798}
799
34f3a814
LZ
800static int sched_feat_open(struct inode *inode, struct file *filp)
801{
802 return single_open(filp, sched_feat_show, NULL);
803}
804
f00b45c1 805static struct file_operations sched_feat_fops = {
34f3a814
LZ
806 .open = sched_feat_open,
807 .write = sched_feat_write,
808 .read = seq_read,
809 .llseek = seq_lseek,
810 .release = single_release,
f00b45c1
PZ
811};
812
813static __init int sched_init_debug(void)
814{
f00b45c1
PZ
815 debugfs_create_file("sched_features", 0644, NULL, NULL,
816 &sched_feat_fops);
817
818 return 0;
819}
820late_initcall(sched_init_debug);
821
822#endif
823
824#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 825
b82d9fdd
PZ
826/*
827 * Number of tasks to iterate in a single balance run.
828 * Limited because this is done with IRQs disabled.
829 */
830const_debug unsigned int sysctl_sched_nr_migrate = 32;
831
2398f2c6
PZ
832/*
833 * ratelimit for updating the group shares.
55cd5340 834 * default: 0.25ms
2398f2c6 835 */
55cd5340 836unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 837
ffda12a1
PZ
838/*
839 * Inject some fuzzyness into changing the per-cpu group shares
840 * this avoids remote rq-locks at the expense of fairness.
841 * default: 4
842 */
843unsigned int sysctl_sched_shares_thresh = 4;
844
e9e9250b
PZ
845/*
846 * period over which we average the RT time consumption, measured
847 * in ms.
848 *
849 * default: 1s
850 */
851const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
852
fa85ae24 853/*
9f0c1e56 854 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
855 * default: 1s
856 */
9f0c1e56 857unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 858
6892b75e
IM
859static __read_mostly int scheduler_running;
860
9f0c1e56
PZ
861/*
862 * part of the period that we allow rt tasks to run in us.
863 * default: 0.95s
864 */
865int sysctl_sched_rt_runtime = 950000;
fa85ae24 866
d0b27fa7
PZ
867static inline u64 global_rt_period(void)
868{
869 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
870}
871
872static inline u64 global_rt_runtime(void)
873{
e26873bb 874 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
875 return RUNTIME_INF;
876
877 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
878}
fa85ae24 879
1da177e4 880#ifndef prepare_arch_switch
4866cde0
NP
881# define prepare_arch_switch(next) do { } while (0)
882#endif
883#ifndef finish_arch_switch
884# define finish_arch_switch(prev) do { } while (0)
885#endif
886
051a1d1a
DA
887static inline int task_current(struct rq *rq, struct task_struct *p)
888{
889 return rq->curr == p;
890}
891
4866cde0 892#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 893static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 894{
051a1d1a 895 return task_current(rq, p);
4866cde0
NP
896}
897
70b97a7f 898static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
899{
900}
901
70b97a7f 902static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 903{
da04c035
IM
904#ifdef CONFIG_DEBUG_SPINLOCK
905 /* this is a valid case when another task releases the spinlock */
906 rq->lock.owner = current;
907#endif
8a25d5de
IM
908 /*
909 * If we are tracking spinlock dependencies then we have to
910 * fix up the runqueue lock - which gets 'carried over' from
911 * prev into current:
912 */
913 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
914
4866cde0
NP
915 spin_unlock_irq(&rq->lock);
916}
917
918#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 919static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
920{
921#ifdef CONFIG_SMP
922 return p->oncpu;
923#else
051a1d1a 924 return task_current(rq, p);
4866cde0
NP
925#endif
926}
927
70b97a7f 928static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 /*
932 * We can optimise this out completely for !SMP, because the
933 * SMP rebalancing from interrupt is the only thing that cares
934 * here.
935 */
936 next->oncpu = 1;
937#endif
938#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
939 spin_unlock_irq(&rq->lock);
940#else
941 spin_unlock(&rq->lock);
942#endif
943}
944
70b97a7f 945static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
946{
947#ifdef CONFIG_SMP
948 /*
949 * After ->oncpu is cleared, the task can be moved to a different CPU.
950 * We must ensure this doesn't happen until the switch is completely
951 * finished.
952 */
953 smp_wmb();
954 prev->oncpu = 0;
955#endif
956#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
957 local_irq_enable();
1da177e4 958#endif
4866cde0
NP
959}
960#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 961
b29739f9
IM
962/*
963 * __task_rq_lock - lock the runqueue a given task resides on.
964 * Must be called interrupts disabled.
965 */
70b97a7f 966static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
967 __acquires(rq->lock)
968{
3a5c359a
AK
969 for (;;) {
970 struct rq *rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
b29739f9 974 spin_unlock(&rq->lock);
b29739f9 975 }
b29739f9
IM
976}
977
1da177e4
LT
978/*
979 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 980 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
981 * explicitly disabling preemption.
982 */
70b97a7f 983static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
984 __acquires(rq->lock)
985{
70b97a7f 986 struct rq *rq;
1da177e4 987
3a5c359a
AK
988 for (;;) {
989 local_irq_save(*flags);
990 rq = task_rq(p);
991 spin_lock(&rq->lock);
992 if (likely(rq == task_rq(p)))
993 return rq;
1da177e4 994 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 995 }
1da177e4
LT
996}
997
ad474cac
ON
998void task_rq_unlock_wait(struct task_struct *p)
999{
1000 struct rq *rq = task_rq(p);
1001
1002 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1003 spin_unlock_wait(&rq->lock);
1004}
1005
a9957449 1006static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1007 __releases(rq->lock)
1008{
1009 spin_unlock(&rq->lock);
1010}
1011
70b97a7f 1012static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1013 __releases(rq->lock)
1014{
1015 spin_unlock_irqrestore(&rq->lock, *flags);
1016}
1017
1da177e4 1018/*
cc2a73b5 1019 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1020 */
a9957449 1021static struct rq *this_rq_lock(void)
1da177e4
LT
1022 __acquires(rq->lock)
1023{
70b97a7f 1024 struct rq *rq;
1da177e4
LT
1025
1026 local_irq_disable();
1027 rq = this_rq();
1028 spin_lock(&rq->lock);
1029
1030 return rq;
1031}
1032
8f4d37ec
PZ
1033#ifdef CONFIG_SCHED_HRTICK
1034/*
1035 * Use HR-timers to deliver accurate preemption points.
1036 *
1037 * Its all a bit involved since we cannot program an hrt while holding the
1038 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1039 * reschedule event.
1040 *
1041 * When we get rescheduled we reprogram the hrtick_timer outside of the
1042 * rq->lock.
1043 */
8f4d37ec
PZ
1044
1045/*
1046 * Use hrtick when:
1047 * - enabled by features
1048 * - hrtimer is actually high res
1049 */
1050static inline int hrtick_enabled(struct rq *rq)
1051{
1052 if (!sched_feat(HRTICK))
1053 return 0;
ba42059f 1054 if (!cpu_active(cpu_of(rq)))
b328ca18 1055 return 0;
8f4d37ec
PZ
1056 return hrtimer_is_hres_active(&rq->hrtick_timer);
1057}
1058
8f4d37ec
PZ
1059static void hrtick_clear(struct rq *rq)
1060{
1061 if (hrtimer_active(&rq->hrtick_timer))
1062 hrtimer_cancel(&rq->hrtick_timer);
1063}
1064
8f4d37ec
PZ
1065/*
1066 * High-resolution timer tick.
1067 * Runs from hardirq context with interrupts disabled.
1068 */
1069static enum hrtimer_restart hrtick(struct hrtimer *timer)
1070{
1071 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1072
1073 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1074
1075 spin_lock(&rq->lock);
3e51f33f 1076 update_rq_clock(rq);
8f4d37ec
PZ
1077 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1078 spin_unlock(&rq->lock);
1079
1080 return HRTIMER_NORESTART;
1081}
1082
95e904c7 1083#ifdef CONFIG_SMP
31656519
PZ
1084/*
1085 * called from hardirq (IPI) context
1086 */
1087static void __hrtick_start(void *arg)
b328ca18 1088{
31656519 1089 struct rq *rq = arg;
b328ca18 1090
31656519
PZ
1091 spin_lock(&rq->lock);
1092 hrtimer_restart(&rq->hrtick_timer);
1093 rq->hrtick_csd_pending = 0;
1094 spin_unlock(&rq->lock);
b328ca18
PZ
1095}
1096
31656519
PZ
1097/*
1098 * Called to set the hrtick timer state.
1099 *
1100 * called with rq->lock held and irqs disabled
1101 */
1102static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1103{
31656519
PZ
1104 struct hrtimer *timer = &rq->hrtick_timer;
1105 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1106
cc584b21 1107 hrtimer_set_expires(timer, time);
31656519
PZ
1108
1109 if (rq == this_rq()) {
1110 hrtimer_restart(timer);
1111 } else if (!rq->hrtick_csd_pending) {
6e275637 1112 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1113 rq->hrtick_csd_pending = 1;
1114 }
b328ca18
PZ
1115}
1116
1117static int
1118hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1119{
1120 int cpu = (int)(long)hcpu;
1121
1122 switch (action) {
1123 case CPU_UP_CANCELED:
1124 case CPU_UP_CANCELED_FROZEN:
1125 case CPU_DOWN_PREPARE:
1126 case CPU_DOWN_PREPARE_FROZEN:
1127 case CPU_DEAD:
1128 case CPU_DEAD_FROZEN:
31656519 1129 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1130 return NOTIFY_OK;
1131 }
1132
1133 return NOTIFY_DONE;
1134}
1135
fa748203 1136static __init void init_hrtick(void)
b328ca18
PZ
1137{
1138 hotcpu_notifier(hotplug_hrtick, 0);
1139}
31656519
PZ
1140#else
1141/*
1142 * Called to set the hrtick timer state.
1143 *
1144 * called with rq->lock held and irqs disabled
1145 */
1146static void hrtick_start(struct rq *rq, u64 delay)
1147{
7f1e2ca9 1148 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1149 HRTIMER_MODE_REL_PINNED, 0);
31656519 1150}
b328ca18 1151
006c75f1 1152static inline void init_hrtick(void)
8f4d37ec 1153{
8f4d37ec 1154}
31656519 1155#endif /* CONFIG_SMP */
8f4d37ec 1156
31656519 1157static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1158{
31656519
PZ
1159#ifdef CONFIG_SMP
1160 rq->hrtick_csd_pending = 0;
8f4d37ec 1161
31656519
PZ
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1165#endif
8f4d37ec 1166
31656519
PZ
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
8f4d37ec 1169}
006c75f1 1170#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1171static inline void hrtick_clear(struct rq *rq)
1172{
1173}
1174
8f4d37ec
PZ
1175static inline void init_rq_hrtick(struct rq *rq)
1176{
1177}
1178
b328ca18
PZ
1179static inline void init_hrtick(void)
1180{
1181}
006c75f1 1182#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1183
c24d20db
IM
1184/*
1185 * resched_task - mark a task 'to be rescheduled now'.
1186 *
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1190 */
1191#ifdef CONFIG_SMP
1192
1193#ifndef tsk_is_polling
1194#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195#endif
1196
31656519 1197static void resched_task(struct task_struct *p)
c24d20db
IM
1198{
1199 int cpu;
1200
1201 assert_spin_locked(&task_rq(p)->lock);
1202
5ed0cec0 1203 if (test_tsk_need_resched(p))
c24d20db
IM
1204 return;
1205
5ed0cec0 1206 set_tsk_need_resched(p);
c24d20db
IM
1207
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1216}
1217
1218static void resched_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1222
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1227}
06d8308c
TG
1228
1229#ifdef CONFIG_NO_HZ
1230/*
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1239 */
1240void wake_up_idle_cpu(int cpu)
1241{
1242 struct rq *rq = cpu_rq(cpu);
1243
1244 if (cpu == smp_processor_id())
1245 return;
1246
1247 /*
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1253 */
1254 if (rq->curr != rq->idle)
1255 return;
1256
1257 /*
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1261 */
5ed0cec0 1262 set_tsk_need_resched(rq->idle);
06d8308c
TG
1263
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1268}
6d6bc0ad 1269#endif /* CONFIG_NO_HZ */
06d8308c 1270
e9e9250b
PZ
1271static u64 sched_avg_period(void)
1272{
1273 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1274}
1275
1276static void sched_avg_update(struct rq *rq)
1277{
1278 s64 period = sched_avg_period();
1279
1280 while ((s64)(rq->clock - rq->age_stamp) > period) {
1281 rq->age_stamp += period;
1282 rq->rt_avg /= 2;
1283 }
1284}
1285
1286static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1287{
1288 rq->rt_avg += rt_delta;
1289 sched_avg_update(rq);
1290}
1291
6d6bc0ad 1292#else /* !CONFIG_SMP */
31656519 1293static void resched_task(struct task_struct *p)
c24d20db
IM
1294{
1295 assert_spin_locked(&task_rq(p)->lock);
31656519 1296 set_tsk_need_resched(p);
c24d20db 1297}
e9e9250b
PZ
1298
1299static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1300{
1301}
6d6bc0ad 1302#endif /* CONFIG_SMP */
c24d20db 1303
45bf76df
IM
1304#if BITS_PER_LONG == 32
1305# define WMULT_CONST (~0UL)
1306#else
1307# define WMULT_CONST (1UL << 32)
1308#endif
1309
1310#define WMULT_SHIFT 32
1311
194081eb
IM
1312/*
1313 * Shift right and round:
1314 */
cf2ab469 1315#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1316
a7be37ac
PZ
1317/*
1318 * delta *= weight / lw
1319 */
cb1c4fc9 1320static unsigned long
45bf76df
IM
1321calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1322 struct load_weight *lw)
1323{
1324 u64 tmp;
1325
7a232e03
LJ
1326 if (!lw->inv_weight) {
1327 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1328 lw->inv_weight = 1;
1329 else
1330 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1331 / (lw->weight+1);
1332 }
45bf76df
IM
1333
1334 tmp = (u64)delta_exec * weight;
1335 /*
1336 * Check whether we'd overflow the 64-bit multiplication:
1337 */
194081eb 1338 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1339 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1340 WMULT_SHIFT/2);
1341 else
cf2ab469 1342 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1343
ecf691da 1344 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1345}
1346
1091985b 1347static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1348{
1349 lw->weight += inc;
e89996ae 1350 lw->inv_weight = 0;
45bf76df
IM
1351}
1352
1091985b 1353static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1354{
1355 lw->weight -= dec;
e89996ae 1356 lw->inv_weight = 0;
45bf76df
IM
1357}
1358
2dd73a4f
PW
1359/*
1360 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1361 * of tasks with abnormal "nice" values across CPUs the contribution that
1362 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1363 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1364 * scaled version of the new time slice allocation that they receive on time
1365 * slice expiry etc.
1366 */
1367
cce7ade8
PZ
1368#define WEIGHT_IDLEPRIO 3
1369#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1370
1371/*
1372 * Nice levels are multiplicative, with a gentle 10% change for every
1373 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1374 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1375 * that remained on nice 0.
1376 *
1377 * The "10% effect" is relative and cumulative: from _any_ nice level,
1378 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1379 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1380 * If a task goes up by ~10% and another task goes down by ~10% then
1381 * the relative distance between them is ~25%.)
dd41f596
IM
1382 */
1383static const int prio_to_weight[40] = {
254753dc
IM
1384 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1385 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1386 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1387 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1388 /* 0 */ 1024, 820, 655, 526, 423,
1389 /* 5 */ 335, 272, 215, 172, 137,
1390 /* 10 */ 110, 87, 70, 56, 45,
1391 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1392};
1393
5714d2de
IM
1394/*
1395 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1396 *
1397 * In cases where the weight does not change often, we can use the
1398 * precalculated inverse to speed up arithmetics by turning divisions
1399 * into multiplications:
1400 */
dd41f596 1401static const u32 prio_to_wmult[40] = {
254753dc
IM
1402 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1403 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1404 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1405 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1406 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1407 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1408 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1409 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1410};
2dd73a4f 1411
dd41f596
IM
1412static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1413
1414/*
1415 * runqueue iterator, to support SMP load-balancing between different
1416 * scheduling classes, without having to expose their internal data
1417 * structures to the load-balancing proper:
1418 */
1419struct rq_iterator {
1420 void *arg;
1421 struct task_struct *(*start)(void *);
1422 struct task_struct *(*next)(void *);
1423};
1424
e1d1484f
PW
1425#ifdef CONFIG_SMP
1426static unsigned long
1427balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1428 unsigned long max_load_move, struct sched_domain *sd,
1429 enum cpu_idle_type idle, int *all_pinned,
1430 int *this_best_prio, struct rq_iterator *iterator);
1431
1432static int
1433iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1434 struct sched_domain *sd, enum cpu_idle_type idle,
1435 struct rq_iterator *iterator);
e1d1484f 1436#endif
dd41f596 1437
ef12fefa
BR
1438/* Time spent by the tasks of the cpu accounting group executing in ... */
1439enum cpuacct_stat_index {
1440 CPUACCT_STAT_USER, /* ... user mode */
1441 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1442
1443 CPUACCT_STAT_NSTATS,
1444};
1445
d842de87
SV
1446#ifdef CONFIG_CGROUP_CPUACCT
1447static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1448static void cpuacct_update_stats(struct task_struct *tsk,
1449 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1450#else
1451static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1452static inline void cpuacct_update_stats(struct task_struct *tsk,
1453 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1454#endif
1455
18d95a28
PZ
1456static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1457{
1458 update_load_add(&rq->load, load);
1459}
1460
1461static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1462{
1463 update_load_sub(&rq->load, load);
1464}
1465
7940ca36 1466#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1467typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1468
1469/*
1470 * Iterate the full tree, calling @down when first entering a node and @up when
1471 * leaving it for the final time.
1472 */
eb755805 1473static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1474{
1475 struct task_group *parent, *child;
eb755805 1476 int ret;
c09595f6
PZ
1477
1478 rcu_read_lock();
1479 parent = &root_task_group;
1480down:
eb755805
PZ
1481 ret = (*down)(parent, data);
1482 if (ret)
1483 goto out_unlock;
c09595f6
PZ
1484 list_for_each_entry_rcu(child, &parent->children, siblings) {
1485 parent = child;
1486 goto down;
1487
1488up:
1489 continue;
1490 }
eb755805
PZ
1491 ret = (*up)(parent, data);
1492 if (ret)
1493 goto out_unlock;
c09595f6
PZ
1494
1495 child = parent;
1496 parent = parent->parent;
1497 if (parent)
1498 goto up;
eb755805 1499out_unlock:
c09595f6 1500 rcu_read_unlock();
eb755805
PZ
1501
1502 return ret;
c09595f6
PZ
1503}
1504
eb755805
PZ
1505static int tg_nop(struct task_group *tg, void *data)
1506{
1507 return 0;
c09595f6 1508}
eb755805
PZ
1509#endif
1510
1511#ifdef CONFIG_SMP
1512static unsigned long source_load(int cpu, int type);
1513static unsigned long target_load(int cpu, int type);
1514static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1515
1516static unsigned long cpu_avg_load_per_task(int cpu)
1517{
1518 struct rq *rq = cpu_rq(cpu);
af6d596f 1519 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1520
4cd42620
SR
1521 if (nr_running)
1522 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1523 else
1524 rq->avg_load_per_task = 0;
eb755805
PZ
1525
1526 return rq->avg_load_per_task;
1527}
1528
1529#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1530
34d76c41
PZ
1531struct update_shares_data {
1532 unsigned long rq_weight[NR_CPUS];
1533};
1534
1535static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1536
c09595f6
PZ
1537static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1538
1539/*
1540 * Calculate and set the cpu's group shares.
1541 */
34d76c41
PZ
1542static void update_group_shares_cpu(struct task_group *tg, int cpu,
1543 unsigned long sd_shares,
1544 unsigned long sd_rq_weight,
1545 struct update_shares_data *usd)
18d95a28 1546{
34d76c41 1547 unsigned long shares, rq_weight;
a5004278 1548 int boost = 0;
c09595f6 1549
34d76c41 1550 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1551 if (!rq_weight) {
1552 boost = 1;
1553 rq_weight = NICE_0_LOAD;
1554 }
c8cba857 1555
c09595f6 1556 /*
a8af7246
PZ
1557 * \Sum_j shares_j * rq_weight_i
1558 * shares_i = -----------------------------
1559 * \Sum_j rq_weight_j
c09595f6 1560 */
ec4e0e2f 1561 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1562 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1563
ffda12a1
PZ
1564 if (abs(shares - tg->se[cpu]->load.weight) >
1565 sysctl_sched_shares_thresh) {
1566 struct rq *rq = cpu_rq(cpu);
1567 unsigned long flags;
c09595f6 1568
ffda12a1 1569 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1570 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1571 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1572 __set_se_shares(tg->se[cpu], shares);
1573 spin_unlock_irqrestore(&rq->lock, flags);
1574 }
18d95a28 1575}
c09595f6
PZ
1576
1577/*
c8cba857
PZ
1578 * Re-compute the task group their per cpu shares over the given domain.
1579 * This needs to be done in a bottom-up fashion because the rq weight of a
1580 * parent group depends on the shares of its child groups.
c09595f6 1581 */
eb755805 1582static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1583{
34d76c41
PZ
1584 unsigned long weight, rq_weight = 0, shares = 0;
1585 struct update_shares_data *usd;
eb755805 1586 struct sched_domain *sd = data;
34d76c41 1587 unsigned long flags;
c8cba857 1588 int i;
c09595f6 1589
34d76c41
PZ
1590 if (!tg->se[0])
1591 return 0;
1592
1593 local_irq_save(flags);
1594 usd = &__get_cpu_var(update_shares_data);
1595
758b2cdc 1596 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1597 weight = tg->cfs_rq[i]->load.weight;
1598 usd->rq_weight[i] = weight;
1599
ec4e0e2f
KC
1600 /*
1601 * If there are currently no tasks on the cpu pretend there
1602 * is one of average load so that when a new task gets to
1603 * run here it will not get delayed by group starvation.
1604 */
ec4e0e2f
KC
1605 if (!weight)
1606 weight = NICE_0_LOAD;
1607
ec4e0e2f 1608 rq_weight += weight;
c8cba857 1609 shares += tg->cfs_rq[i]->shares;
c09595f6 1610 }
c09595f6 1611
c8cba857
PZ
1612 if ((!shares && rq_weight) || shares > tg->shares)
1613 shares = tg->shares;
1614
1615 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1616 shares = tg->shares;
c09595f6 1617
758b2cdc 1618 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1619 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1620
1621 local_irq_restore(flags);
eb755805
PZ
1622
1623 return 0;
c09595f6
PZ
1624}
1625
1626/*
c8cba857
PZ
1627 * Compute the cpu's hierarchical load factor for each task group.
1628 * This needs to be done in a top-down fashion because the load of a child
1629 * group is a fraction of its parents load.
c09595f6 1630 */
eb755805 1631static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1632{
c8cba857 1633 unsigned long load;
eb755805 1634 long cpu = (long)data;
c09595f6 1635
c8cba857
PZ
1636 if (!tg->parent) {
1637 load = cpu_rq(cpu)->load.weight;
1638 } else {
1639 load = tg->parent->cfs_rq[cpu]->h_load;
1640 load *= tg->cfs_rq[cpu]->shares;
1641 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1642 }
c09595f6 1643
c8cba857 1644 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1645
eb755805 1646 return 0;
c09595f6
PZ
1647}
1648
c8cba857 1649static void update_shares(struct sched_domain *sd)
4d8d595d 1650{
e7097159
PZ
1651 s64 elapsed;
1652 u64 now;
1653
1654 if (root_task_group_empty())
1655 return;
1656
1657 now = cpu_clock(raw_smp_processor_id());
1658 elapsed = now - sd->last_update;
2398f2c6
PZ
1659
1660 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1661 sd->last_update = now;
eb755805 1662 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1663 }
4d8d595d
PZ
1664}
1665
3e5459b4
PZ
1666static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1667{
e7097159
PZ
1668 if (root_task_group_empty())
1669 return;
1670
3e5459b4
PZ
1671 spin_unlock(&rq->lock);
1672 update_shares(sd);
1673 spin_lock(&rq->lock);
1674}
1675
eb755805 1676static void update_h_load(long cpu)
c09595f6 1677{
e7097159
PZ
1678 if (root_task_group_empty())
1679 return;
1680
eb755805 1681 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1682}
1683
c09595f6
PZ
1684#else
1685
c8cba857 1686static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1687{
1688}
1689
3e5459b4
PZ
1690static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1691{
1692}
1693
18d95a28
PZ
1694#endif
1695
8f45e2b5
GH
1696#ifdef CONFIG_PREEMPT
1697
70574a99 1698/*
8f45e2b5
GH
1699 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1700 * way at the expense of forcing extra atomic operations in all
1701 * invocations. This assures that the double_lock is acquired using the
1702 * same underlying policy as the spinlock_t on this architecture, which
1703 * reduces latency compared to the unfair variant below. However, it
1704 * also adds more overhead and therefore may reduce throughput.
70574a99 1705 */
8f45e2b5
GH
1706static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1710{
1711 spin_unlock(&this_rq->lock);
1712 double_rq_lock(this_rq, busiest);
1713
1714 return 1;
1715}
1716
1717#else
1718/*
1719 * Unfair double_lock_balance: Optimizes throughput at the expense of
1720 * latency by eliminating extra atomic operations when the locks are
1721 * already in proper order on entry. This favors lower cpu-ids and will
1722 * grant the double lock to lower cpus over higher ids under contention,
1723 * regardless of entry order into the function.
1724 */
1725static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1726 __releases(this_rq->lock)
1727 __acquires(busiest->lock)
1728 __acquires(this_rq->lock)
1729{
1730 int ret = 0;
1731
70574a99
AD
1732 if (unlikely(!spin_trylock(&busiest->lock))) {
1733 if (busiest < this_rq) {
1734 spin_unlock(&this_rq->lock);
1735 spin_lock(&busiest->lock);
1736 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1737 ret = 1;
1738 } else
1739 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1740 }
1741 return ret;
1742}
1743
8f45e2b5
GH
1744#endif /* CONFIG_PREEMPT */
1745
1746/*
1747 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1748 */
1749static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1750{
1751 if (unlikely(!irqs_disabled())) {
1752 /* printk() doesn't work good under rq->lock */
1753 spin_unlock(&this_rq->lock);
1754 BUG_ON(1);
1755 }
1756
1757 return _double_lock_balance(this_rq, busiest);
1758}
1759
70574a99
AD
1760static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1761 __releases(busiest->lock)
1762{
1763 spin_unlock(&busiest->lock);
1764 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1765}
18d95a28
PZ
1766#endif
1767
30432094 1768#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1769static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1770{
30432094 1771#ifdef CONFIG_SMP
34e83e85
IM
1772 cfs_rq->shares = shares;
1773#endif
1774}
30432094 1775#endif
e7693a36 1776
dce48a84
TG
1777static void calc_load_account_active(struct rq *this_rq);
1778
dd41f596 1779#include "sched_stats.h"
dd41f596 1780#include "sched_idletask.c"
5522d5d5
IM
1781#include "sched_fair.c"
1782#include "sched_rt.c"
dd41f596
IM
1783#ifdef CONFIG_SCHED_DEBUG
1784# include "sched_debug.c"
1785#endif
1786
1787#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1788#define for_each_class(class) \
1789 for (class = sched_class_highest; class; class = class->next)
dd41f596 1790
c09595f6 1791static void inc_nr_running(struct rq *rq)
9c217245
IM
1792{
1793 rq->nr_running++;
9c217245
IM
1794}
1795
c09595f6 1796static void dec_nr_running(struct rq *rq)
9c217245
IM
1797{
1798 rq->nr_running--;
9c217245
IM
1799}
1800
45bf76df
IM
1801static void set_load_weight(struct task_struct *p)
1802{
1803 if (task_has_rt_policy(p)) {
dd41f596
IM
1804 p->se.load.weight = prio_to_weight[0] * 2;
1805 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1806 return;
1807 }
45bf76df 1808
dd41f596
IM
1809 /*
1810 * SCHED_IDLE tasks get minimal weight:
1811 */
1812 if (p->policy == SCHED_IDLE) {
1813 p->se.load.weight = WEIGHT_IDLEPRIO;
1814 p->se.load.inv_weight = WMULT_IDLEPRIO;
1815 return;
1816 }
71f8bd46 1817
dd41f596
IM
1818 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1819 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1820}
1821
2087a1ad
GH
1822static void update_avg(u64 *avg, u64 sample)
1823{
1824 s64 diff = sample - *avg;
1825 *avg += diff >> 3;
1826}
1827
8159f87e 1828static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1829{
831451ac
PZ
1830 if (wakeup)
1831 p->se.start_runtime = p->se.sum_exec_runtime;
1832
dd41f596 1833 sched_info_queued(p);
fd390f6a 1834 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1835 p->se.on_rq = 1;
71f8bd46
IM
1836}
1837
69be72c1 1838static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1839{
831451ac
PZ
1840 if (sleep) {
1841 if (p->se.last_wakeup) {
1842 update_avg(&p->se.avg_overlap,
1843 p->se.sum_exec_runtime - p->se.last_wakeup);
1844 p->se.last_wakeup = 0;
1845 } else {
1846 update_avg(&p->se.avg_wakeup,
1847 sysctl_sched_wakeup_granularity);
1848 }
2087a1ad
GH
1849 }
1850
46ac22ba 1851 sched_info_dequeued(p);
f02231e5 1852 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1853 p->se.on_rq = 0;
71f8bd46
IM
1854}
1855
14531189 1856/*
dd41f596 1857 * __normal_prio - return the priority that is based on the static prio
14531189 1858 */
14531189
IM
1859static inline int __normal_prio(struct task_struct *p)
1860{
dd41f596 1861 return p->static_prio;
14531189
IM
1862}
1863
b29739f9
IM
1864/*
1865 * Calculate the expected normal priority: i.e. priority
1866 * without taking RT-inheritance into account. Might be
1867 * boosted by interactivity modifiers. Changes upon fork,
1868 * setprio syscalls, and whenever the interactivity
1869 * estimator recalculates.
1870 */
36c8b586 1871static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1872{
1873 int prio;
1874
e05606d3 1875 if (task_has_rt_policy(p))
b29739f9
IM
1876 prio = MAX_RT_PRIO-1 - p->rt_priority;
1877 else
1878 prio = __normal_prio(p);
1879 return prio;
1880}
1881
1882/*
1883 * Calculate the current priority, i.e. the priority
1884 * taken into account by the scheduler. This value might
1885 * be boosted by RT tasks, or might be boosted by
1886 * interactivity modifiers. Will be RT if the task got
1887 * RT-boosted. If not then it returns p->normal_prio.
1888 */
36c8b586 1889static int effective_prio(struct task_struct *p)
b29739f9
IM
1890{
1891 p->normal_prio = normal_prio(p);
1892 /*
1893 * If we are RT tasks or we were boosted to RT priority,
1894 * keep the priority unchanged. Otherwise, update priority
1895 * to the normal priority:
1896 */
1897 if (!rt_prio(p->prio))
1898 return p->normal_prio;
1899 return p->prio;
1900}
1901
1da177e4 1902/*
dd41f596 1903 * activate_task - move a task to the runqueue.
1da177e4 1904 */
dd41f596 1905static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1906{
d9514f6c 1907 if (task_contributes_to_load(p))
dd41f596 1908 rq->nr_uninterruptible--;
1da177e4 1909
8159f87e 1910 enqueue_task(rq, p, wakeup);
c09595f6 1911 inc_nr_running(rq);
1da177e4
LT
1912}
1913
1da177e4
LT
1914/*
1915 * deactivate_task - remove a task from the runqueue.
1916 */
2e1cb74a 1917static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1918{
d9514f6c 1919 if (task_contributes_to_load(p))
dd41f596
IM
1920 rq->nr_uninterruptible++;
1921
69be72c1 1922 dequeue_task(rq, p, sleep);
c09595f6 1923 dec_nr_running(rq);
1da177e4
LT
1924}
1925
1da177e4
LT
1926/**
1927 * task_curr - is this task currently executing on a CPU?
1928 * @p: the task in question.
1929 */
36c8b586 1930inline int task_curr(const struct task_struct *p)
1da177e4
LT
1931{
1932 return cpu_curr(task_cpu(p)) == p;
1933}
1934
dd41f596
IM
1935static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1936{
6f505b16 1937 set_task_rq(p, cpu);
dd41f596 1938#ifdef CONFIG_SMP
ce96b5ac
DA
1939 /*
1940 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1941 * successfuly executed on another CPU. We must ensure that updates of
1942 * per-task data have been completed by this moment.
1943 */
1944 smp_wmb();
dd41f596 1945 task_thread_info(p)->cpu = cpu;
dd41f596 1946#endif
2dd73a4f
PW
1947}
1948
cb469845
SR
1949static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1950 const struct sched_class *prev_class,
1951 int oldprio, int running)
1952{
1953 if (prev_class != p->sched_class) {
1954 if (prev_class->switched_from)
1955 prev_class->switched_from(rq, p, running);
1956 p->sched_class->switched_to(rq, p, running);
1957 } else
1958 p->sched_class->prio_changed(rq, p, oldprio, running);
1959}
1960
1da177e4 1961#ifdef CONFIG_SMP
c65cc870 1962
e958b360
TG
1963/* Used instead of source_load when we know the type == 0 */
1964static unsigned long weighted_cpuload(const int cpu)
1965{
1966 return cpu_rq(cpu)->load.weight;
1967}
1968
cc367732
IM
1969/*
1970 * Is this task likely cache-hot:
1971 */
e7693a36 1972static int
cc367732
IM
1973task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1974{
1975 s64 delta;
1976
f540a608
IM
1977 /*
1978 * Buddy candidates are cache hot:
1979 */
4793241b
PZ
1980 if (sched_feat(CACHE_HOT_BUDDY) &&
1981 (&p->se == cfs_rq_of(&p->se)->next ||
1982 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1983 return 1;
1984
cc367732
IM
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1987
6bc1665b
IM
1988 if (sysctl_sched_migration_cost == -1)
1989 return 1;
1990 if (sysctl_sched_migration_cost == 0)
1991 return 0;
1992
cc367732
IM
1993 delta = now - p->se.exec_start;
1994
1995 return delta < (s64)sysctl_sched_migration_cost;
1996}
1997
1998
dd41f596 1999void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2000{
dd41f596
IM
2001 int old_cpu = task_cpu(p);
2002 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2003 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2004 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2005 u64 clock_offset;
dd41f596
IM
2006
2007 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2008
de1d7286 2009 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2010
6cfb0d5d
IM
2011#ifdef CONFIG_SCHEDSTATS
2012 if (p->se.wait_start)
2013 p->se.wait_start -= clock_offset;
dd41f596
IM
2014 if (p->se.sleep_start)
2015 p->se.sleep_start -= clock_offset;
2016 if (p->se.block_start)
2017 p->se.block_start -= clock_offset;
6c594c21 2018#endif
cc367732 2019 if (old_cpu != new_cpu) {
6c594c21 2020 p->se.nr_migrations++;
23a185ca 2021 new_rq->nr_migrations_in++;
6c594c21 2022#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2023 if (task_hot(p, old_rq->clock, NULL))
2024 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2025#endif
e5289d4a
PZ
2026 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2027 1, 1, NULL, 0);
6c594c21 2028 }
2830cf8c
SV
2029 p->se.vruntime -= old_cfsrq->min_vruntime -
2030 new_cfsrq->min_vruntime;
dd41f596
IM
2031
2032 __set_task_cpu(p, new_cpu);
c65cc870
IM
2033}
2034
70b97a7f 2035struct migration_req {
1da177e4 2036 struct list_head list;
1da177e4 2037
36c8b586 2038 struct task_struct *task;
1da177e4
LT
2039 int dest_cpu;
2040
1da177e4 2041 struct completion done;
70b97a7f 2042};
1da177e4
LT
2043
2044/*
2045 * The task's runqueue lock must be held.
2046 * Returns true if you have to wait for migration thread.
2047 */
36c8b586 2048static int
70b97a7f 2049migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2050{
70b97a7f 2051 struct rq *rq = task_rq(p);
1da177e4
LT
2052
2053 /*
2054 * If the task is not on a runqueue (and not running), then
2055 * it is sufficient to simply update the task's cpu field.
2056 */
dd41f596 2057 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2058 set_task_cpu(p, dest_cpu);
2059 return 0;
2060 }
2061
2062 init_completion(&req->done);
1da177e4
LT
2063 req->task = p;
2064 req->dest_cpu = dest_cpu;
2065 list_add(&req->list, &rq->migration_queue);
48f24c4d 2066
1da177e4
LT
2067 return 1;
2068}
2069
a26b89f0
MM
2070/*
2071 * wait_task_context_switch - wait for a thread to complete at least one
2072 * context switch.
2073 *
2074 * @p must not be current.
2075 */
2076void wait_task_context_switch(struct task_struct *p)
2077{
2078 unsigned long nvcsw, nivcsw, flags;
2079 int running;
2080 struct rq *rq;
2081
2082 nvcsw = p->nvcsw;
2083 nivcsw = p->nivcsw;
2084 for (;;) {
2085 /*
2086 * The runqueue is assigned before the actual context
2087 * switch. We need to take the runqueue lock.
2088 *
2089 * We could check initially without the lock but it is
2090 * very likely that we need to take the lock in every
2091 * iteration.
2092 */
2093 rq = task_rq_lock(p, &flags);
2094 running = task_running(rq, p);
2095 task_rq_unlock(rq, &flags);
2096
2097 if (likely(!running))
2098 break;
2099 /*
2100 * The switch count is incremented before the actual
2101 * context switch. We thus wait for two switches to be
2102 * sure at least one completed.
2103 */
2104 if ((p->nvcsw - nvcsw) > 1)
2105 break;
2106 if ((p->nivcsw - nivcsw) > 1)
2107 break;
2108
2109 cpu_relax();
2110 }
2111}
2112
1da177e4
LT
2113/*
2114 * wait_task_inactive - wait for a thread to unschedule.
2115 *
85ba2d86
RM
2116 * If @match_state is nonzero, it's the @p->state value just checked and
2117 * not expected to change. If it changes, i.e. @p might have woken up,
2118 * then return zero. When we succeed in waiting for @p to be off its CPU,
2119 * we return a positive number (its total switch count). If a second call
2120 * a short while later returns the same number, the caller can be sure that
2121 * @p has remained unscheduled the whole time.
2122 *
1da177e4
LT
2123 * The caller must ensure that the task *will* unschedule sometime soon,
2124 * else this function might spin for a *long* time. This function can't
2125 * be called with interrupts off, or it may introduce deadlock with
2126 * smp_call_function() if an IPI is sent by the same process we are
2127 * waiting to become inactive.
2128 */
85ba2d86 2129unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2130{
2131 unsigned long flags;
dd41f596 2132 int running, on_rq;
85ba2d86 2133 unsigned long ncsw;
70b97a7f 2134 struct rq *rq;
1da177e4 2135
3a5c359a
AK
2136 for (;;) {
2137 /*
2138 * We do the initial early heuristics without holding
2139 * any task-queue locks at all. We'll only try to get
2140 * the runqueue lock when things look like they will
2141 * work out!
2142 */
2143 rq = task_rq(p);
fa490cfd 2144
3a5c359a
AK
2145 /*
2146 * If the task is actively running on another CPU
2147 * still, just relax and busy-wait without holding
2148 * any locks.
2149 *
2150 * NOTE! Since we don't hold any locks, it's not
2151 * even sure that "rq" stays as the right runqueue!
2152 * But we don't care, since "task_running()" will
2153 * return false if the runqueue has changed and p
2154 * is actually now running somewhere else!
2155 */
85ba2d86
RM
2156 while (task_running(rq, p)) {
2157 if (match_state && unlikely(p->state != match_state))
2158 return 0;
3a5c359a 2159 cpu_relax();
85ba2d86 2160 }
fa490cfd 2161
3a5c359a
AK
2162 /*
2163 * Ok, time to look more closely! We need the rq
2164 * lock now, to be *sure*. If we're wrong, we'll
2165 * just go back and repeat.
2166 */
2167 rq = task_rq_lock(p, &flags);
0a16b607 2168 trace_sched_wait_task(rq, p);
3a5c359a
AK
2169 running = task_running(rq, p);
2170 on_rq = p->se.on_rq;
85ba2d86 2171 ncsw = 0;
f31e11d8 2172 if (!match_state || p->state == match_state)
93dcf55f 2173 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2174 task_rq_unlock(rq, &flags);
fa490cfd 2175
85ba2d86
RM
2176 /*
2177 * If it changed from the expected state, bail out now.
2178 */
2179 if (unlikely(!ncsw))
2180 break;
2181
3a5c359a
AK
2182 /*
2183 * Was it really running after all now that we
2184 * checked with the proper locks actually held?
2185 *
2186 * Oops. Go back and try again..
2187 */
2188 if (unlikely(running)) {
2189 cpu_relax();
2190 continue;
2191 }
fa490cfd 2192
3a5c359a
AK
2193 /*
2194 * It's not enough that it's not actively running,
2195 * it must be off the runqueue _entirely_, and not
2196 * preempted!
2197 *
80dd99b3 2198 * So if it was still runnable (but just not actively
3a5c359a
AK
2199 * running right now), it's preempted, and we should
2200 * yield - it could be a while.
2201 */
2202 if (unlikely(on_rq)) {
2203 schedule_timeout_uninterruptible(1);
2204 continue;
2205 }
fa490cfd 2206
3a5c359a
AK
2207 /*
2208 * Ahh, all good. It wasn't running, and it wasn't
2209 * runnable, which means that it will never become
2210 * running in the future either. We're all done!
2211 */
2212 break;
2213 }
85ba2d86
RM
2214
2215 return ncsw;
1da177e4
LT
2216}
2217
2218/***
2219 * kick_process - kick a running thread to enter/exit the kernel
2220 * @p: the to-be-kicked thread
2221 *
2222 * Cause a process which is running on another CPU to enter
2223 * kernel-mode, without any delay. (to get signals handled.)
2224 *
2225 * NOTE: this function doesnt have to take the runqueue lock,
2226 * because all it wants to ensure is that the remote task enters
2227 * the kernel. If the IPI races and the task has been migrated
2228 * to another CPU then no harm is done and the purpose has been
2229 * achieved as well.
2230 */
36c8b586 2231void kick_process(struct task_struct *p)
1da177e4
LT
2232{
2233 int cpu;
2234
2235 preempt_disable();
2236 cpu = task_cpu(p);
2237 if ((cpu != smp_processor_id()) && task_curr(p))
2238 smp_send_reschedule(cpu);
2239 preempt_enable();
2240}
b43e3521 2241EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2242
2243/*
2dd73a4f
PW
2244 * Return a low guess at the load of a migration-source cpu weighted
2245 * according to the scheduling class and "nice" value.
1da177e4
LT
2246 *
2247 * We want to under-estimate the load of migration sources, to
2248 * balance conservatively.
2249 */
a9957449 2250static unsigned long source_load(int cpu, int type)
1da177e4 2251{
70b97a7f 2252 struct rq *rq = cpu_rq(cpu);
dd41f596 2253 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2254
93b75217 2255 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2256 return total;
b910472d 2257
dd41f596 2258 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2259}
2260
2261/*
2dd73a4f
PW
2262 * Return a high guess at the load of a migration-target cpu weighted
2263 * according to the scheduling class and "nice" value.
1da177e4 2264 */
a9957449 2265static unsigned long target_load(int cpu, int type)
1da177e4 2266{
70b97a7f 2267 struct rq *rq = cpu_rq(cpu);
dd41f596 2268 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2269
93b75217 2270 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2271 return total;
3b0bd9bc 2272
dd41f596 2273 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2274}
2275
147cbb4b
NP
2276/*
2277 * find_idlest_group finds and returns the least busy CPU group within the
2278 * domain.
2279 */
2280static struct sched_group *
2281find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2282{
2283 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2284 unsigned long min_load = ULONG_MAX, this_load = 0;
2285 int load_idx = sd->forkexec_idx;
2286 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2287
2288 do {
2289 unsigned long load, avg_load;
2290 int local_group;
2291 int i;
2292
da5a5522 2293 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2294 if (!cpumask_intersects(sched_group_cpus(group),
2295 &p->cpus_allowed))
3a5c359a 2296 continue;
da5a5522 2297
758b2cdc
RR
2298 local_group = cpumask_test_cpu(this_cpu,
2299 sched_group_cpus(group));
147cbb4b
NP
2300
2301 /* Tally up the load of all CPUs in the group */
2302 avg_load = 0;
2303
758b2cdc 2304 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2305 /* Bias balancing toward cpus of our domain */
2306 if (local_group)
2307 load = source_load(i, load_idx);
2308 else
2309 load = target_load(i, load_idx);
2310
2311 avg_load += load;
2312 }
2313
2314 /* Adjust by relative CPU power of the group */
18a3885f 2315 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
147cbb4b
NP
2316
2317 if (local_group) {
2318 this_load = avg_load;
2319 this = group;
2320 } else if (avg_load < min_load) {
2321 min_load = avg_load;
2322 idlest = group;
2323 }
3a5c359a 2324 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2325
2326 if (!idlest || 100*this_load < imbalance*min_load)
2327 return NULL;
2328 return idlest;
2329}
2330
2331/*
0feaece9 2332 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2333 */
95cdf3b7 2334static int
758b2cdc 2335find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2336{
2337 unsigned long load, min_load = ULONG_MAX;
2338 int idlest = -1;
2339 int i;
2340
da5a5522 2341 /* Traverse only the allowed CPUs */
758b2cdc 2342 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2343 load = weighted_cpuload(i);
147cbb4b
NP
2344
2345 if (load < min_load || (load == min_load && i == this_cpu)) {
2346 min_load = load;
2347 idlest = i;
2348 }
2349 }
2350
2351 return idlest;
2352}
2353
476d139c
NP
2354/*
2355 * sched_balance_self: balance the current task (running on cpu) in domains
2356 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2357 * SD_BALANCE_EXEC.
2358 *
2359 * Balance, ie. select the least loaded group.
2360 *
2361 * Returns the target CPU number, or the same CPU if no balancing is needed.
2362 *
2363 * preempt must be disabled.
2364 */
2365static int sched_balance_self(int cpu, int flag)
2366{
2367 struct task_struct *t = current;
2368 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2369
c96d145e 2370 for_each_domain(cpu, tmp) {
9761eea8
IM
2371 /*
2372 * If power savings logic is enabled for a domain, stop there.
2373 */
5c45bf27
SS
2374 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2375 break;
476d139c
NP
2376 if (tmp->flags & flag)
2377 sd = tmp;
c96d145e 2378 }
476d139c 2379
039a1c41
PZ
2380 if (sd)
2381 update_shares(sd);
2382
476d139c 2383 while (sd) {
476d139c 2384 struct sched_group *group;
1a848870
SS
2385 int new_cpu, weight;
2386
2387 if (!(sd->flags & flag)) {
2388 sd = sd->child;
2389 continue;
2390 }
476d139c 2391
476d139c 2392 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2393 if (!group) {
2394 sd = sd->child;
2395 continue;
2396 }
476d139c 2397
758b2cdc 2398 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2399 if (new_cpu == -1 || new_cpu == cpu) {
2400 /* Now try balancing at a lower domain level of cpu */
2401 sd = sd->child;
2402 continue;
2403 }
476d139c 2404
1a848870 2405 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2406 cpu = new_cpu;
758b2cdc 2407 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2408 sd = NULL;
476d139c 2409 for_each_domain(cpu, tmp) {
758b2cdc 2410 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2411 break;
2412 if (tmp->flags & flag)
2413 sd = tmp;
2414 }
2415 /* while loop will break here if sd == NULL */
2416 }
2417
2418 return cpu;
2419}
2420
2421#endif /* CONFIG_SMP */
1da177e4 2422
0793a61d
TG
2423/**
2424 * task_oncpu_function_call - call a function on the cpu on which a task runs
2425 * @p: the task to evaluate
2426 * @func: the function to be called
2427 * @info: the function call argument
2428 *
2429 * Calls the function @func when the task is currently running. This might
2430 * be on the current CPU, which just calls the function directly
2431 */
2432void task_oncpu_function_call(struct task_struct *p,
2433 void (*func) (void *info), void *info)
2434{
2435 int cpu;
2436
2437 preempt_disable();
2438 cpu = task_cpu(p);
2439 if (task_curr(p))
2440 smp_call_function_single(cpu, func, info, 1);
2441 preempt_enable();
2442}
2443
1da177e4
LT
2444/***
2445 * try_to_wake_up - wake up a thread
2446 * @p: the to-be-woken-up thread
2447 * @state: the mask of task states that can be woken
2448 * @sync: do a synchronous wakeup?
2449 *
2450 * Put it on the run-queue if it's not already there. The "current"
2451 * thread is always on the run-queue (except when the actual
2452 * re-schedule is in progress), and as such you're allowed to do
2453 * the simpler "current->state = TASK_RUNNING" to mark yourself
2454 * runnable without the overhead of this.
2455 *
2456 * returns failure only if the task is already active.
2457 */
36c8b586 2458static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2459{
cc367732 2460 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2461 unsigned long flags;
2462 long old_state;
70b97a7f 2463 struct rq *rq;
1da177e4 2464
b85d0667
IM
2465 if (!sched_feat(SYNC_WAKEUPS))
2466 sync = 0;
2467
2398f2c6 2468#ifdef CONFIG_SMP
57310a98 2469 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2470 struct sched_domain *sd;
2471
2472 this_cpu = raw_smp_processor_id();
2473 cpu = task_cpu(p);
2474
2475 for_each_domain(this_cpu, sd) {
758b2cdc 2476 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2477 update_shares(sd);
2478 break;
2479 }
2480 }
2481 }
2482#endif
2483
04e2f174 2484 smp_wmb();
1da177e4 2485 rq = task_rq_lock(p, &flags);
03e89e45 2486 update_rq_clock(rq);
1da177e4
LT
2487 old_state = p->state;
2488 if (!(old_state & state))
2489 goto out;
2490
dd41f596 2491 if (p->se.on_rq)
1da177e4
LT
2492 goto out_running;
2493
2494 cpu = task_cpu(p);
cc367732 2495 orig_cpu = cpu;
1da177e4
LT
2496 this_cpu = smp_processor_id();
2497
2498#ifdef CONFIG_SMP
2499 if (unlikely(task_running(rq, p)))
2500 goto out_activate;
2501
5d2f5a61
DA
2502 cpu = p->sched_class->select_task_rq(p, sync);
2503 if (cpu != orig_cpu) {
2504 set_task_cpu(p, cpu);
1da177e4
LT
2505 task_rq_unlock(rq, &flags);
2506 /* might preempt at this point */
2507 rq = task_rq_lock(p, &flags);
2508 old_state = p->state;
2509 if (!(old_state & state))
2510 goto out;
dd41f596 2511 if (p->se.on_rq)
1da177e4
LT
2512 goto out_running;
2513
2514 this_cpu = smp_processor_id();
2515 cpu = task_cpu(p);
2516 }
2517
e7693a36
GH
2518#ifdef CONFIG_SCHEDSTATS
2519 schedstat_inc(rq, ttwu_count);
2520 if (cpu == this_cpu)
2521 schedstat_inc(rq, ttwu_local);
2522 else {
2523 struct sched_domain *sd;
2524 for_each_domain(this_cpu, sd) {
758b2cdc 2525 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2526 schedstat_inc(sd, ttwu_wake_remote);
2527 break;
2528 }
2529 }
2530 }
6d6bc0ad 2531#endif /* CONFIG_SCHEDSTATS */
e7693a36 2532
1da177e4
LT
2533out_activate:
2534#endif /* CONFIG_SMP */
cc367732
IM
2535 schedstat_inc(p, se.nr_wakeups);
2536 if (sync)
2537 schedstat_inc(p, se.nr_wakeups_sync);
2538 if (orig_cpu != cpu)
2539 schedstat_inc(p, se.nr_wakeups_migrate);
2540 if (cpu == this_cpu)
2541 schedstat_inc(p, se.nr_wakeups_local);
2542 else
2543 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2544 activate_task(rq, p, 1);
1da177e4
LT
2545 success = 1;
2546
831451ac
PZ
2547 /*
2548 * Only attribute actual wakeups done by this task.
2549 */
2550 if (!in_interrupt()) {
2551 struct sched_entity *se = &current->se;
2552 u64 sample = se->sum_exec_runtime;
2553
2554 if (se->last_wakeup)
2555 sample -= se->last_wakeup;
2556 else
2557 sample -= se->start_runtime;
2558 update_avg(&se->avg_wakeup, sample);
2559
2560 se->last_wakeup = se->sum_exec_runtime;
2561 }
2562
1da177e4 2563out_running:
468a15bb 2564 trace_sched_wakeup(rq, p, success);
15afe09b 2565 check_preempt_curr(rq, p, sync);
4ae7d5ce 2566
1da177e4 2567 p->state = TASK_RUNNING;
9a897c5a
SR
2568#ifdef CONFIG_SMP
2569 if (p->sched_class->task_wake_up)
2570 p->sched_class->task_wake_up(rq, p);
2571#endif
1da177e4
LT
2572out:
2573 task_rq_unlock(rq, &flags);
2574
2575 return success;
2576}
2577
50fa610a
DH
2578/**
2579 * wake_up_process - Wake up a specific process
2580 * @p: The process to be woken up.
2581 *
2582 * Attempt to wake up the nominated process and move it to the set of runnable
2583 * processes. Returns 1 if the process was woken up, 0 if it was already
2584 * running.
2585 *
2586 * It may be assumed that this function implies a write memory barrier before
2587 * changing the task state if and only if any tasks are woken up.
2588 */
7ad5b3a5 2589int wake_up_process(struct task_struct *p)
1da177e4 2590{
d9514f6c 2591 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2592}
1da177e4
LT
2593EXPORT_SYMBOL(wake_up_process);
2594
7ad5b3a5 2595int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2596{
2597 return try_to_wake_up(p, state, 0);
2598}
2599
1da177e4
LT
2600/*
2601 * Perform scheduler related setup for a newly forked process p.
2602 * p is forked by current.
dd41f596
IM
2603 *
2604 * __sched_fork() is basic setup used by init_idle() too:
2605 */
2606static void __sched_fork(struct task_struct *p)
2607{
dd41f596
IM
2608 p->se.exec_start = 0;
2609 p->se.sum_exec_runtime = 0;
f6cf891c 2610 p->se.prev_sum_exec_runtime = 0;
6c594c21 2611 p->se.nr_migrations = 0;
4ae7d5ce
IM
2612 p->se.last_wakeup = 0;
2613 p->se.avg_overlap = 0;
831451ac
PZ
2614 p->se.start_runtime = 0;
2615 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2616
2617#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2618 p->se.wait_start = 0;
2619 p->se.wait_max = 0;
2620 p->se.wait_count = 0;
2621 p->se.wait_sum = 0;
2622
2623 p->se.sleep_start = 0;
2624 p->se.sleep_max = 0;
2625 p->se.sum_sleep_runtime = 0;
2626
2627 p->se.block_start = 0;
2628 p->se.block_max = 0;
2629 p->se.exec_max = 0;
2630 p->se.slice_max = 0;
2631
2632 p->se.nr_migrations_cold = 0;
2633 p->se.nr_failed_migrations_affine = 0;
2634 p->se.nr_failed_migrations_running = 0;
2635 p->se.nr_failed_migrations_hot = 0;
2636 p->se.nr_forced_migrations = 0;
2637 p->se.nr_forced2_migrations = 0;
2638
2639 p->se.nr_wakeups = 0;
2640 p->se.nr_wakeups_sync = 0;
2641 p->se.nr_wakeups_migrate = 0;
2642 p->se.nr_wakeups_local = 0;
2643 p->se.nr_wakeups_remote = 0;
2644 p->se.nr_wakeups_affine = 0;
2645 p->se.nr_wakeups_affine_attempts = 0;
2646 p->se.nr_wakeups_passive = 0;
2647 p->se.nr_wakeups_idle = 0;
2648
6cfb0d5d 2649#endif
476d139c 2650
fa717060 2651 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2652 p->se.on_rq = 0;
4a55bd5e 2653 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2654
e107be36
AK
2655#ifdef CONFIG_PREEMPT_NOTIFIERS
2656 INIT_HLIST_HEAD(&p->preempt_notifiers);
2657#endif
2658
1da177e4
LT
2659 /*
2660 * We mark the process as running here, but have not actually
2661 * inserted it onto the runqueue yet. This guarantees that
2662 * nobody will actually run it, and a signal or other external
2663 * event cannot wake it up and insert it on the runqueue either.
2664 */
2665 p->state = TASK_RUNNING;
dd41f596
IM
2666}
2667
2668/*
2669 * fork()/clone()-time setup:
2670 */
2671void sched_fork(struct task_struct *p, int clone_flags)
2672{
2673 int cpu = get_cpu();
2674
2675 __sched_fork(p);
2676
2677#ifdef CONFIG_SMP
2678 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2679#endif
02e4bac2 2680 set_task_cpu(p, cpu);
b29739f9
IM
2681
2682 /*
b9dc29e7 2683 * Make sure we do not leak PI boosting priority to the child.
b29739f9
IM
2684 */
2685 p->prio = current->normal_prio;
ca94c442 2686
b9dc29e7
MG
2687 /*
2688 * Revert to default priority/policy on fork if requested.
2689 */
2690 if (unlikely(p->sched_reset_on_fork)) {
2691 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2692 p->policy = SCHED_NORMAL;
2693
2694 if (p->normal_prio < DEFAULT_PRIO)
2695 p->prio = DEFAULT_PRIO;
2696
6c697bdf
MG
2697 if (PRIO_TO_NICE(p->static_prio) < 0) {
2698 p->static_prio = NICE_TO_PRIO(0);
2699 set_load_weight(p);
2700 }
2701
b9dc29e7
MG
2702 /*
2703 * We don't need the reset flag anymore after the fork. It has
2704 * fulfilled its duty:
2705 */
2706 p->sched_reset_on_fork = 0;
2707 }
ca94c442 2708
2ddbf952
HS
2709 if (!rt_prio(p->prio))
2710 p->sched_class = &fair_sched_class;
b29739f9 2711
52f17b6c 2712#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2713 if (likely(sched_info_on()))
52f17b6c 2714 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2715#endif
d6077cb8 2716#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2717 p->oncpu = 0;
2718#endif
1da177e4 2719#ifdef CONFIG_PREEMPT
4866cde0 2720 /* Want to start with kernel preemption disabled. */
a1261f54 2721 task_thread_info(p)->preempt_count = 1;
1da177e4 2722#endif
917b627d
GH
2723 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2724
476d139c 2725 put_cpu();
1da177e4
LT
2726}
2727
2728/*
2729 * wake_up_new_task - wake up a newly created task for the first time.
2730 *
2731 * This function will do some initial scheduler statistics housekeeping
2732 * that must be done for every newly created context, then puts the task
2733 * on the runqueue and wakes it.
2734 */
7ad5b3a5 2735void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2736{
2737 unsigned long flags;
dd41f596 2738 struct rq *rq;
1da177e4
LT
2739
2740 rq = task_rq_lock(p, &flags);
147cbb4b 2741 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2742 update_rq_clock(rq);
1da177e4
LT
2743
2744 p->prio = effective_prio(p);
2745
b9dca1e0 2746 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2747 activate_task(rq, p, 0);
1da177e4 2748 } else {
1da177e4 2749 /*
dd41f596
IM
2750 * Let the scheduling class do new task startup
2751 * management (if any):
1da177e4 2752 */
ee0827d8 2753 p->sched_class->task_new(rq, p);
c09595f6 2754 inc_nr_running(rq);
1da177e4 2755 }
c71dd42d 2756 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2757 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2758#ifdef CONFIG_SMP
2759 if (p->sched_class->task_wake_up)
2760 p->sched_class->task_wake_up(rq, p);
2761#endif
dd41f596 2762 task_rq_unlock(rq, &flags);
1da177e4
LT
2763}
2764
e107be36
AK
2765#ifdef CONFIG_PREEMPT_NOTIFIERS
2766
2767/**
80dd99b3 2768 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2769 * @notifier: notifier struct to register
e107be36
AK
2770 */
2771void preempt_notifier_register(struct preempt_notifier *notifier)
2772{
2773 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2774}
2775EXPORT_SYMBOL_GPL(preempt_notifier_register);
2776
2777/**
2778 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2779 * @notifier: notifier struct to unregister
e107be36
AK
2780 *
2781 * This is safe to call from within a preemption notifier.
2782 */
2783void preempt_notifier_unregister(struct preempt_notifier *notifier)
2784{
2785 hlist_del(&notifier->link);
2786}
2787EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2788
2789static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2790{
2791 struct preempt_notifier *notifier;
2792 struct hlist_node *node;
2793
2794 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2795 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2796}
2797
2798static void
2799fire_sched_out_preempt_notifiers(struct task_struct *curr,
2800 struct task_struct *next)
2801{
2802 struct preempt_notifier *notifier;
2803 struct hlist_node *node;
2804
2805 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2806 notifier->ops->sched_out(notifier, next);
2807}
2808
6d6bc0ad 2809#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2810
2811static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2812{
2813}
2814
2815static void
2816fire_sched_out_preempt_notifiers(struct task_struct *curr,
2817 struct task_struct *next)
2818{
2819}
2820
6d6bc0ad 2821#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2822
4866cde0
NP
2823/**
2824 * prepare_task_switch - prepare to switch tasks
2825 * @rq: the runqueue preparing to switch
421cee29 2826 * @prev: the current task that is being switched out
4866cde0
NP
2827 * @next: the task we are going to switch to.
2828 *
2829 * This is called with the rq lock held and interrupts off. It must
2830 * be paired with a subsequent finish_task_switch after the context
2831 * switch.
2832 *
2833 * prepare_task_switch sets up locking and calls architecture specific
2834 * hooks.
2835 */
e107be36
AK
2836static inline void
2837prepare_task_switch(struct rq *rq, struct task_struct *prev,
2838 struct task_struct *next)
4866cde0 2839{
e107be36 2840 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2841 prepare_lock_switch(rq, next);
2842 prepare_arch_switch(next);
2843}
2844
1da177e4
LT
2845/**
2846 * finish_task_switch - clean up after a task-switch
344babaa 2847 * @rq: runqueue associated with task-switch
1da177e4
LT
2848 * @prev: the thread we just switched away from.
2849 *
4866cde0
NP
2850 * finish_task_switch must be called after the context switch, paired
2851 * with a prepare_task_switch call before the context switch.
2852 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2853 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2854 *
2855 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2856 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2857 * with the lock held can cause deadlocks; see schedule() for
2858 * details.)
2859 */
a9957449 2860static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2861 __releases(rq->lock)
2862{
1da177e4 2863 struct mm_struct *mm = rq->prev_mm;
55a101f8 2864 long prev_state;
1da177e4
LT
2865
2866 rq->prev_mm = NULL;
2867
2868 /*
2869 * A task struct has one reference for the use as "current".
c394cc9f 2870 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2871 * schedule one last time. The schedule call will never return, and
2872 * the scheduled task must drop that reference.
c394cc9f 2873 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2874 * still held, otherwise prev could be scheduled on another cpu, die
2875 * there before we look at prev->state, and then the reference would
2876 * be dropped twice.
2877 * Manfred Spraul <manfred@colorfullife.com>
2878 */
55a101f8 2879 prev_state = prev->state;
4866cde0 2880 finish_arch_switch(prev);
0793a61d 2881 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2882 finish_lock_switch(rq, prev);
e8fa1362 2883
e107be36 2884 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2885 if (mm)
2886 mmdrop(mm);
c394cc9f 2887 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2888 /*
2889 * Remove function-return probe instances associated with this
2890 * task and put them back on the free list.
9761eea8 2891 */
c6fd91f0 2892 kprobe_flush_task(prev);
1da177e4 2893 put_task_struct(prev);
c6fd91f0 2894 }
1da177e4
LT
2895}
2896
3f029d3c
GH
2897#ifdef CONFIG_SMP
2898
2899/* assumes rq->lock is held */
2900static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2901{
2902 if (prev->sched_class->pre_schedule)
2903 prev->sched_class->pre_schedule(rq, prev);
2904}
2905
2906/* rq->lock is NOT held, but preemption is disabled */
2907static inline void post_schedule(struct rq *rq)
2908{
2909 if (rq->post_schedule) {
2910 unsigned long flags;
2911
2912 spin_lock_irqsave(&rq->lock, flags);
2913 if (rq->curr->sched_class->post_schedule)
2914 rq->curr->sched_class->post_schedule(rq);
2915 spin_unlock_irqrestore(&rq->lock, flags);
2916
2917 rq->post_schedule = 0;
2918 }
2919}
2920
2921#else
da19ab51 2922
3f029d3c
GH
2923static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2924{
2925}
2926
2927static inline void post_schedule(struct rq *rq)
2928{
1da177e4
LT
2929}
2930
3f029d3c
GH
2931#endif
2932
1da177e4
LT
2933/**
2934 * schedule_tail - first thing a freshly forked thread must call.
2935 * @prev: the thread we just switched away from.
2936 */
36c8b586 2937asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2938 __releases(rq->lock)
2939{
70b97a7f
IM
2940 struct rq *rq = this_rq();
2941
4866cde0 2942 finish_task_switch(rq, prev);
da19ab51 2943
3f029d3c
GH
2944 /*
2945 * FIXME: do we need to worry about rq being invalidated by the
2946 * task_switch?
2947 */
2948 post_schedule(rq);
70b97a7f 2949
4866cde0
NP
2950#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2951 /* In this case, finish_task_switch does not reenable preemption */
2952 preempt_enable();
2953#endif
1da177e4 2954 if (current->set_child_tid)
b488893a 2955 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2956}
2957
2958/*
2959 * context_switch - switch to the new MM and the new
2960 * thread's register state.
2961 */
dd41f596 2962static inline void
70b97a7f 2963context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2964 struct task_struct *next)
1da177e4 2965{
dd41f596 2966 struct mm_struct *mm, *oldmm;
1da177e4 2967
e107be36 2968 prepare_task_switch(rq, prev, next);
0a16b607 2969 trace_sched_switch(rq, prev, next);
dd41f596
IM
2970 mm = next->mm;
2971 oldmm = prev->active_mm;
9226d125
ZA
2972 /*
2973 * For paravirt, this is coupled with an exit in switch_to to
2974 * combine the page table reload and the switch backend into
2975 * one hypercall.
2976 */
224101ed 2977 arch_start_context_switch(prev);
9226d125 2978
dd41f596 2979 if (unlikely(!mm)) {
1da177e4
LT
2980 next->active_mm = oldmm;
2981 atomic_inc(&oldmm->mm_count);
2982 enter_lazy_tlb(oldmm, next);
2983 } else
2984 switch_mm(oldmm, mm, next);
2985
dd41f596 2986 if (unlikely(!prev->mm)) {
1da177e4 2987 prev->active_mm = NULL;
1da177e4
LT
2988 rq->prev_mm = oldmm;
2989 }
3a5f5e48
IM
2990 /*
2991 * Since the runqueue lock will be released by the next
2992 * task (which is an invalid locking op but in the case
2993 * of the scheduler it's an obvious special-case), so we
2994 * do an early lockdep release here:
2995 */
2996#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2997 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2998#endif
1da177e4
LT
2999
3000 /* Here we just switch the register state and the stack. */
3001 switch_to(prev, next, prev);
3002
dd41f596
IM
3003 barrier();
3004 /*
3005 * this_rq must be evaluated again because prev may have moved
3006 * CPUs since it called schedule(), thus the 'rq' on its stack
3007 * frame will be invalid.
3008 */
3009 finish_task_switch(this_rq(), prev);
1da177e4
LT
3010}
3011
3012/*
3013 * nr_running, nr_uninterruptible and nr_context_switches:
3014 *
3015 * externally visible scheduler statistics: current number of runnable
3016 * threads, current number of uninterruptible-sleeping threads, total
3017 * number of context switches performed since bootup.
3018 */
3019unsigned long nr_running(void)
3020{
3021 unsigned long i, sum = 0;
3022
3023 for_each_online_cpu(i)
3024 sum += cpu_rq(i)->nr_running;
3025
3026 return sum;
3027}
3028
3029unsigned long nr_uninterruptible(void)
3030{
3031 unsigned long i, sum = 0;
3032
0a945022 3033 for_each_possible_cpu(i)
1da177e4
LT
3034 sum += cpu_rq(i)->nr_uninterruptible;
3035
3036 /*
3037 * Since we read the counters lockless, it might be slightly
3038 * inaccurate. Do not allow it to go below zero though:
3039 */
3040 if (unlikely((long)sum < 0))
3041 sum = 0;
3042
3043 return sum;
3044}
3045
3046unsigned long long nr_context_switches(void)
3047{
cc94abfc
SR
3048 int i;
3049 unsigned long long sum = 0;
1da177e4 3050
0a945022 3051 for_each_possible_cpu(i)
1da177e4
LT
3052 sum += cpu_rq(i)->nr_switches;
3053
3054 return sum;
3055}
3056
3057unsigned long nr_iowait(void)
3058{
3059 unsigned long i, sum = 0;
3060
0a945022 3061 for_each_possible_cpu(i)
1da177e4
LT
3062 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3063
3064 return sum;
3065}
3066
dce48a84
TG
3067/* Variables and functions for calc_load */
3068static atomic_long_t calc_load_tasks;
3069static unsigned long calc_load_update;
3070unsigned long avenrun[3];
3071EXPORT_SYMBOL(avenrun);
3072
2d02494f
TG
3073/**
3074 * get_avenrun - get the load average array
3075 * @loads: pointer to dest load array
3076 * @offset: offset to add
3077 * @shift: shift count to shift the result left
3078 *
3079 * These values are estimates at best, so no need for locking.
3080 */
3081void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3082{
3083 loads[0] = (avenrun[0] + offset) << shift;
3084 loads[1] = (avenrun[1] + offset) << shift;
3085 loads[2] = (avenrun[2] + offset) << shift;
3086}
3087
dce48a84
TG
3088static unsigned long
3089calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3090{
dce48a84
TG
3091 load *= exp;
3092 load += active * (FIXED_1 - exp);
3093 return load >> FSHIFT;
3094}
db1b1fef 3095
dce48a84
TG
3096/*
3097 * calc_load - update the avenrun load estimates 10 ticks after the
3098 * CPUs have updated calc_load_tasks.
3099 */
3100void calc_global_load(void)
3101{
3102 unsigned long upd = calc_load_update + 10;
3103 long active;
3104
3105 if (time_before(jiffies, upd))
3106 return;
db1b1fef 3107
dce48a84
TG
3108 active = atomic_long_read(&calc_load_tasks);
3109 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3110
dce48a84
TG
3111 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3112 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3113 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3114
3115 calc_load_update += LOAD_FREQ;
3116}
3117
3118/*
3119 * Either called from update_cpu_load() or from a cpu going idle
3120 */
3121static void calc_load_account_active(struct rq *this_rq)
3122{
3123 long nr_active, delta;
3124
3125 nr_active = this_rq->nr_running;
3126 nr_active += (long) this_rq->nr_uninterruptible;
3127
3128 if (nr_active != this_rq->calc_load_active) {
3129 delta = nr_active - this_rq->calc_load_active;
3130 this_rq->calc_load_active = nr_active;
3131 atomic_long_add(delta, &calc_load_tasks);
3132 }
db1b1fef
JS
3133}
3134
23a185ca
PM
3135/*
3136 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3137 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3138 */
23a185ca
PM
3139u64 cpu_nr_migrations(int cpu)
3140{
3141 return cpu_rq(cpu)->nr_migrations_in;
3142}
3143
48f24c4d 3144/*
dd41f596
IM
3145 * Update rq->cpu_load[] statistics. This function is usually called every
3146 * scheduler tick (TICK_NSEC).
48f24c4d 3147 */
dd41f596 3148static void update_cpu_load(struct rq *this_rq)
48f24c4d 3149{
495eca49 3150 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3151 int i, scale;
3152
3153 this_rq->nr_load_updates++;
dd41f596
IM
3154
3155 /* Update our load: */
3156 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3157 unsigned long old_load, new_load;
3158
3159 /* scale is effectively 1 << i now, and >> i divides by scale */
3160
3161 old_load = this_rq->cpu_load[i];
3162 new_load = this_load;
a25707f3
IM
3163 /*
3164 * Round up the averaging division if load is increasing. This
3165 * prevents us from getting stuck on 9 if the load is 10, for
3166 * example.
3167 */
3168 if (new_load > old_load)
3169 new_load += scale-1;
dd41f596
IM
3170 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3171 }
dce48a84
TG
3172
3173 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3174 this_rq->calc_load_update += LOAD_FREQ;
3175 calc_load_account_active(this_rq);
3176 }
48f24c4d
IM
3177}
3178
dd41f596
IM
3179#ifdef CONFIG_SMP
3180
1da177e4
LT
3181/*
3182 * double_rq_lock - safely lock two runqueues
3183 *
3184 * Note this does not disable interrupts like task_rq_lock,
3185 * you need to do so manually before calling.
3186 */
70b97a7f 3187static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3188 __acquires(rq1->lock)
3189 __acquires(rq2->lock)
3190{
054b9108 3191 BUG_ON(!irqs_disabled());
1da177e4
LT
3192 if (rq1 == rq2) {
3193 spin_lock(&rq1->lock);
3194 __acquire(rq2->lock); /* Fake it out ;) */
3195 } else {
c96d145e 3196 if (rq1 < rq2) {
1da177e4 3197 spin_lock(&rq1->lock);
5e710e37 3198 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3199 } else {
3200 spin_lock(&rq2->lock);
5e710e37 3201 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3202 }
3203 }
6e82a3be
IM
3204 update_rq_clock(rq1);
3205 update_rq_clock(rq2);
1da177e4
LT
3206}
3207
3208/*
3209 * double_rq_unlock - safely unlock two runqueues
3210 *
3211 * Note this does not restore interrupts like task_rq_unlock,
3212 * you need to do so manually after calling.
3213 */
70b97a7f 3214static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3215 __releases(rq1->lock)
3216 __releases(rq2->lock)
3217{
3218 spin_unlock(&rq1->lock);
3219 if (rq1 != rq2)
3220 spin_unlock(&rq2->lock);
3221 else
3222 __release(rq2->lock);
3223}
3224
1da177e4
LT
3225/*
3226 * If dest_cpu is allowed for this process, migrate the task to it.
3227 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3228 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3229 * the cpu_allowed mask is restored.
3230 */
36c8b586 3231static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3232{
70b97a7f 3233 struct migration_req req;
1da177e4 3234 unsigned long flags;
70b97a7f 3235 struct rq *rq;
1da177e4
LT
3236
3237 rq = task_rq_lock(p, &flags);
96f874e2 3238 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3239 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3240 goto out;
3241
3242 /* force the process onto the specified CPU */
3243 if (migrate_task(p, dest_cpu, &req)) {
3244 /* Need to wait for migration thread (might exit: take ref). */
3245 struct task_struct *mt = rq->migration_thread;
36c8b586 3246
1da177e4
LT
3247 get_task_struct(mt);
3248 task_rq_unlock(rq, &flags);
3249 wake_up_process(mt);
3250 put_task_struct(mt);
3251 wait_for_completion(&req.done);
36c8b586 3252
1da177e4
LT
3253 return;
3254 }
3255out:
3256 task_rq_unlock(rq, &flags);
3257}
3258
3259/*
476d139c
NP
3260 * sched_exec - execve() is a valuable balancing opportunity, because at
3261 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3262 */
3263void sched_exec(void)
3264{
1da177e4 3265 int new_cpu, this_cpu = get_cpu();
476d139c 3266 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3267 put_cpu();
476d139c
NP
3268 if (new_cpu != this_cpu)
3269 sched_migrate_task(current, new_cpu);
1da177e4
LT
3270}
3271
3272/*
3273 * pull_task - move a task from a remote runqueue to the local runqueue.
3274 * Both runqueues must be locked.
3275 */
dd41f596
IM
3276static void pull_task(struct rq *src_rq, struct task_struct *p,
3277 struct rq *this_rq, int this_cpu)
1da177e4 3278{
2e1cb74a 3279 deactivate_task(src_rq, p, 0);
1da177e4 3280 set_task_cpu(p, this_cpu);
dd41f596 3281 activate_task(this_rq, p, 0);
1da177e4
LT
3282 /*
3283 * Note that idle threads have a prio of MAX_PRIO, for this test
3284 * to be always true for them.
3285 */
15afe09b 3286 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3287}
3288
3289/*
3290 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3291 */
858119e1 3292static
70b97a7f 3293int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3294 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3295 int *all_pinned)
1da177e4 3296{
708dc512 3297 int tsk_cache_hot = 0;
1da177e4
LT
3298 /*
3299 * We do not migrate tasks that are:
3300 * 1) running (obviously), or
3301 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3302 * 3) are cache-hot on their current CPU.
3303 */
96f874e2 3304 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3305 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3306 return 0;
cc367732 3307 }
81026794
NP
3308 *all_pinned = 0;
3309
cc367732
IM
3310 if (task_running(rq, p)) {
3311 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3312 return 0;
cc367732 3313 }
1da177e4 3314
da84d961
IM
3315 /*
3316 * Aggressive migration if:
3317 * 1) task is cache cold, or
3318 * 2) too many balance attempts have failed.
3319 */
3320
708dc512
LH
3321 tsk_cache_hot = task_hot(p, rq->clock, sd);
3322 if (!tsk_cache_hot ||
3323 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3324#ifdef CONFIG_SCHEDSTATS
708dc512 3325 if (tsk_cache_hot) {
da84d961 3326 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3327 schedstat_inc(p, se.nr_forced_migrations);
3328 }
da84d961
IM
3329#endif
3330 return 1;
3331 }
3332
708dc512 3333 if (tsk_cache_hot) {
cc367732 3334 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3335 return 0;
cc367732 3336 }
1da177e4
LT
3337 return 1;
3338}
3339
e1d1484f
PW
3340static unsigned long
3341balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3342 unsigned long max_load_move, struct sched_domain *sd,
3343 enum cpu_idle_type idle, int *all_pinned,
3344 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3345{
051c6764 3346 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3347 struct task_struct *p;
3348 long rem_load_move = max_load_move;
1da177e4 3349
e1d1484f 3350 if (max_load_move == 0)
1da177e4
LT
3351 goto out;
3352
81026794
NP
3353 pinned = 1;
3354
1da177e4 3355 /*
dd41f596 3356 * Start the load-balancing iterator:
1da177e4 3357 */
dd41f596
IM
3358 p = iterator->start(iterator->arg);
3359next:
b82d9fdd 3360 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3361 goto out;
051c6764
PZ
3362
3363 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3364 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3365 p = iterator->next(iterator->arg);
3366 goto next;
1da177e4
LT
3367 }
3368
dd41f596 3369 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3370 pulled++;
dd41f596 3371 rem_load_move -= p->se.load.weight;
1da177e4 3372
7e96fa58
GH
3373#ifdef CONFIG_PREEMPT
3374 /*
3375 * NEWIDLE balancing is a source of latency, so preemptible kernels
3376 * will stop after the first task is pulled to minimize the critical
3377 * section.
3378 */
3379 if (idle == CPU_NEWLY_IDLE)
3380 goto out;
3381#endif
3382
2dd73a4f 3383 /*
b82d9fdd 3384 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3385 */
e1d1484f 3386 if (rem_load_move > 0) {
a4ac01c3
PW
3387 if (p->prio < *this_best_prio)
3388 *this_best_prio = p->prio;
dd41f596
IM
3389 p = iterator->next(iterator->arg);
3390 goto next;
1da177e4
LT
3391 }
3392out:
3393 /*
e1d1484f 3394 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3395 * so we can safely collect pull_task() stats here rather than
3396 * inside pull_task().
3397 */
3398 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3399
3400 if (all_pinned)
3401 *all_pinned = pinned;
e1d1484f
PW
3402
3403 return max_load_move - rem_load_move;
1da177e4
LT
3404}
3405
dd41f596 3406/*
43010659
PW
3407 * move_tasks tries to move up to max_load_move weighted load from busiest to
3408 * this_rq, as part of a balancing operation within domain "sd".
3409 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3410 *
3411 * Called with both runqueues locked.
3412 */
3413static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3414 unsigned long max_load_move,
dd41f596
IM
3415 struct sched_domain *sd, enum cpu_idle_type idle,
3416 int *all_pinned)
3417{
5522d5d5 3418 const struct sched_class *class = sched_class_highest;
43010659 3419 unsigned long total_load_moved = 0;
a4ac01c3 3420 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3421
3422 do {
43010659
PW
3423 total_load_moved +=
3424 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3425 max_load_move - total_load_moved,
a4ac01c3 3426 sd, idle, all_pinned, &this_best_prio);
dd41f596 3427 class = class->next;
c4acb2c0 3428
7e96fa58
GH
3429#ifdef CONFIG_PREEMPT
3430 /*
3431 * NEWIDLE balancing is a source of latency, so preemptible
3432 * kernels will stop after the first task is pulled to minimize
3433 * the critical section.
3434 */
c4acb2c0
GH
3435 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3436 break;
7e96fa58 3437#endif
43010659 3438 } while (class && max_load_move > total_load_moved);
dd41f596 3439
43010659
PW
3440 return total_load_moved > 0;
3441}
3442
e1d1484f
PW
3443static int
3444iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3445 struct sched_domain *sd, enum cpu_idle_type idle,
3446 struct rq_iterator *iterator)
3447{
3448 struct task_struct *p = iterator->start(iterator->arg);
3449 int pinned = 0;
3450
3451 while (p) {
3452 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3453 pull_task(busiest, p, this_rq, this_cpu);
3454 /*
3455 * Right now, this is only the second place pull_task()
3456 * is called, so we can safely collect pull_task()
3457 * stats here rather than inside pull_task().
3458 */
3459 schedstat_inc(sd, lb_gained[idle]);
3460
3461 return 1;
3462 }
3463 p = iterator->next(iterator->arg);
3464 }
3465
3466 return 0;
3467}
3468
43010659
PW
3469/*
3470 * move_one_task tries to move exactly one task from busiest to this_rq, as
3471 * part of active balancing operations within "domain".
3472 * Returns 1 if successful and 0 otherwise.
3473 *
3474 * Called with both runqueues locked.
3475 */
3476static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3477 struct sched_domain *sd, enum cpu_idle_type idle)
3478{
5522d5d5 3479 const struct sched_class *class;
43010659 3480
cde7e5ca 3481 for_each_class(class) {
e1d1484f 3482 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3483 return 1;
cde7e5ca 3484 }
43010659
PW
3485
3486 return 0;
dd41f596 3487}
67bb6c03 3488/********** Helpers for find_busiest_group ************************/
1da177e4 3489/*
222d656d
GS
3490 * sd_lb_stats - Structure to store the statistics of a sched_domain
3491 * during load balancing.
1da177e4 3492 */
222d656d
GS
3493struct sd_lb_stats {
3494 struct sched_group *busiest; /* Busiest group in this sd */
3495 struct sched_group *this; /* Local group in this sd */
3496 unsigned long total_load; /* Total load of all groups in sd */
3497 unsigned long total_pwr; /* Total power of all groups in sd */
3498 unsigned long avg_load; /* Average load across all groups in sd */
3499
3500 /** Statistics of this group */
3501 unsigned long this_load;
3502 unsigned long this_load_per_task;
3503 unsigned long this_nr_running;
3504
3505 /* Statistics of the busiest group */
3506 unsigned long max_load;
3507 unsigned long busiest_load_per_task;
3508 unsigned long busiest_nr_running;
3509
3510 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3511#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3512 int power_savings_balance; /* Is powersave balance needed for this sd */
3513 struct sched_group *group_min; /* Least loaded group in sd */
3514 struct sched_group *group_leader; /* Group which relieves group_min */
3515 unsigned long min_load_per_task; /* load_per_task in group_min */
3516 unsigned long leader_nr_running; /* Nr running of group_leader */
3517 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3518#endif
222d656d 3519};
1da177e4 3520
d5ac537e 3521/*
381be78f
GS
3522 * sg_lb_stats - stats of a sched_group required for load_balancing
3523 */
3524struct sg_lb_stats {
3525 unsigned long avg_load; /*Avg load across the CPUs of the group */
3526 unsigned long group_load; /* Total load over the CPUs of the group */
3527 unsigned long sum_nr_running; /* Nr tasks running in the group */
3528 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3529 unsigned long group_capacity;
3530 int group_imb; /* Is there an imbalance in the group ? */
3531};
408ed066 3532
67bb6c03
GS
3533/**
3534 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3535 * @group: The group whose first cpu is to be returned.
3536 */
3537static inline unsigned int group_first_cpu(struct sched_group *group)
3538{
3539 return cpumask_first(sched_group_cpus(group));
3540}
3541
3542/**
3543 * get_sd_load_idx - Obtain the load index for a given sched domain.
3544 * @sd: The sched_domain whose load_idx is to be obtained.
3545 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3546 */
3547static inline int get_sd_load_idx(struct sched_domain *sd,
3548 enum cpu_idle_type idle)
3549{
3550 int load_idx;
3551
3552 switch (idle) {
3553 case CPU_NOT_IDLE:
7897986b 3554 load_idx = sd->busy_idx;
67bb6c03
GS
3555 break;
3556
3557 case CPU_NEWLY_IDLE:
7897986b 3558 load_idx = sd->newidle_idx;
67bb6c03
GS
3559 break;
3560 default:
7897986b 3561 load_idx = sd->idle_idx;
67bb6c03
GS
3562 break;
3563 }
1da177e4 3564
67bb6c03
GS
3565 return load_idx;
3566}
1da177e4 3567
1da177e4 3568
c071df18
GS
3569#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3570/**
3571 * init_sd_power_savings_stats - Initialize power savings statistics for
3572 * the given sched_domain, during load balancing.
3573 *
3574 * @sd: Sched domain whose power-savings statistics are to be initialized.
3575 * @sds: Variable containing the statistics for sd.
3576 * @idle: Idle status of the CPU at which we're performing load-balancing.
3577 */
3578static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3579 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3580{
3581 /*
3582 * Busy processors will not participate in power savings
3583 * balance.
3584 */
3585 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3586 sds->power_savings_balance = 0;
3587 else {
3588 sds->power_savings_balance = 1;
3589 sds->min_nr_running = ULONG_MAX;
3590 sds->leader_nr_running = 0;
3591 }
3592}
783609c6 3593
c071df18
GS
3594/**
3595 * update_sd_power_savings_stats - Update the power saving stats for a
3596 * sched_domain while performing load balancing.
3597 *
3598 * @group: sched_group belonging to the sched_domain under consideration.
3599 * @sds: Variable containing the statistics of the sched_domain
3600 * @local_group: Does group contain the CPU for which we're performing
3601 * load balancing ?
3602 * @sgs: Variable containing the statistics of the group.
3603 */
3604static inline void update_sd_power_savings_stats(struct sched_group *group,
3605 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3606{
408ed066 3607
c071df18
GS
3608 if (!sds->power_savings_balance)
3609 return;
1da177e4 3610
c071df18
GS
3611 /*
3612 * If the local group is idle or completely loaded
3613 * no need to do power savings balance at this domain
3614 */
3615 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3616 !sds->this_nr_running))
3617 sds->power_savings_balance = 0;
2dd73a4f 3618
c071df18
GS
3619 /*
3620 * If a group is already running at full capacity or idle,
3621 * don't include that group in power savings calculations
3622 */
3623 if (!sds->power_savings_balance ||
3624 sgs->sum_nr_running >= sgs->group_capacity ||
3625 !sgs->sum_nr_running)
3626 return;
5969fe06 3627
c071df18
GS
3628 /*
3629 * Calculate the group which has the least non-idle load.
3630 * This is the group from where we need to pick up the load
3631 * for saving power
3632 */
3633 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3634 (sgs->sum_nr_running == sds->min_nr_running &&
3635 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3636 sds->group_min = group;
3637 sds->min_nr_running = sgs->sum_nr_running;
3638 sds->min_load_per_task = sgs->sum_weighted_load /
3639 sgs->sum_nr_running;
3640 }
783609c6 3641
c071df18
GS
3642 /*
3643 * Calculate the group which is almost near its
3644 * capacity but still has some space to pick up some load
3645 * from other group and save more power
3646 */
d899a789 3647 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3648 return;
1da177e4 3649
c071df18
GS
3650 if (sgs->sum_nr_running > sds->leader_nr_running ||
3651 (sgs->sum_nr_running == sds->leader_nr_running &&
3652 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3653 sds->group_leader = group;
3654 sds->leader_nr_running = sgs->sum_nr_running;
3655 }
3656}
408ed066 3657
c071df18 3658/**
d5ac537e 3659 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3660 * @sds: Variable containing the statistics of the sched_domain
3661 * under consideration.
3662 * @this_cpu: Cpu at which we're currently performing load-balancing.
3663 * @imbalance: Variable to store the imbalance.
3664 *
d5ac537e
RD
3665 * Description:
3666 * Check if we have potential to perform some power-savings balance.
3667 * If yes, set the busiest group to be the least loaded group in the
3668 * sched_domain, so that it's CPUs can be put to idle.
3669 *
c071df18
GS
3670 * Returns 1 if there is potential to perform power-savings balance.
3671 * Else returns 0.
3672 */
3673static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3674 int this_cpu, unsigned long *imbalance)
3675{
3676 if (!sds->power_savings_balance)
3677 return 0;
1da177e4 3678
c071df18
GS
3679 if (sds->this != sds->group_leader ||
3680 sds->group_leader == sds->group_min)
3681 return 0;
783609c6 3682
c071df18
GS
3683 *imbalance = sds->min_load_per_task;
3684 sds->busiest = sds->group_min;
1da177e4 3685
c071df18
GS
3686 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3687 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3688 group_first_cpu(sds->group_leader);
3689 }
3690
3691 return 1;
1da177e4 3692
c071df18
GS
3693}
3694#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3695static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3696 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3697{
3698 return;
3699}
408ed066 3700
c071df18
GS
3701static inline void update_sd_power_savings_stats(struct sched_group *group,
3702 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3703{
3704 return;
3705}
3706
3707static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3708 int this_cpu, unsigned long *imbalance)
3709{
3710 return 0;
3711}
3712#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3713
e9e9250b 3714unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3715{
3716 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3717 unsigned long smt_gain = sd->smt_gain;
3718
3719 smt_gain /= weight;
3720
3721 return smt_gain;
3722}
3723
e9e9250b
PZ
3724unsigned long scale_rt_power(int cpu)
3725{
3726 struct rq *rq = cpu_rq(cpu);
3727 u64 total, available;
3728
3729 sched_avg_update(rq);
3730
3731 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3732 available = total - rq->rt_avg;
3733
3734 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3735 total = SCHED_LOAD_SCALE;
3736
3737 total >>= SCHED_LOAD_SHIFT;
3738
3739 return div_u64(available, total);
3740}
3741
ab29230e
PZ
3742static void update_cpu_power(struct sched_domain *sd, int cpu)
3743{
3744 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3745 unsigned long power = SCHED_LOAD_SCALE;
3746 struct sched_group *sdg = sd->groups;
ab29230e
PZ
3747
3748 /* here we could scale based on cpufreq */
3749
3750 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
e9e9250b 3751 power *= arch_scale_smt_power(sd, cpu);
ab29230e
PZ
3752 power >>= SCHED_LOAD_SHIFT;
3753 }
3754
e9e9250b
PZ
3755 power *= scale_rt_power(cpu);
3756 power >>= SCHED_LOAD_SHIFT;
3757
3758 if (!power)
3759 power = 1;
ab29230e 3760
18a3885f 3761 sdg->cpu_power = power;
ab29230e
PZ
3762}
3763
3764static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3765{
3766 struct sched_domain *child = sd->child;
3767 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3768 unsigned long power;
cc9fba7d
PZ
3769
3770 if (!child) {
ab29230e 3771 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3772 return;
3773 }
3774
d7ea17a7 3775 power = 0;
cc9fba7d
PZ
3776
3777 group = child->groups;
3778 do {
d7ea17a7 3779 power += group->cpu_power;
cc9fba7d
PZ
3780 group = group->next;
3781 } while (group != child->groups);
d7ea17a7
IM
3782
3783 sdg->cpu_power = power;
cc9fba7d 3784}
c071df18 3785
1f8c553d
GS
3786/**
3787 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3788 * @group: sched_group whose statistics are to be updated.
3789 * @this_cpu: Cpu for which load balance is currently performed.
3790 * @idle: Idle status of this_cpu
3791 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3792 * @sd_idle: Idle status of the sched_domain containing group.
3793 * @local_group: Does group contain this_cpu.
3794 * @cpus: Set of cpus considered for load balancing.
3795 * @balance: Should we balance.
3796 * @sgs: variable to hold the statistics for this group.
3797 */
cc9fba7d
PZ
3798static inline void update_sg_lb_stats(struct sched_domain *sd,
3799 struct sched_group *group, int this_cpu,
1f8c553d
GS
3800 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3801 int local_group, const struct cpumask *cpus,
3802 int *balance, struct sg_lb_stats *sgs)
3803{
3804 unsigned long load, max_cpu_load, min_cpu_load;
3805 int i;
3806 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3807 unsigned long sum_avg_load_per_task;
3808 unsigned long avg_load_per_task;
3809
cc9fba7d 3810 if (local_group) {
1f8c553d 3811 balance_cpu = group_first_cpu(group);
cc9fba7d 3812 if (balance_cpu == this_cpu)
ab29230e 3813 update_group_power(sd, this_cpu);
cc9fba7d 3814 }
1f8c553d
GS
3815
3816 /* Tally up the load of all CPUs in the group */
3817 sum_avg_load_per_task = avg_load_per_task = 0;
3818 max_cpu_load = 0;
3819 min_cpu_load = ~0UL;
408ed066 3820
1f8c553d
GS
3821 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3822 struct rq *rq = cpu_rq(i);
908a7c1b 3823
1f8c553d
GS
3824 if (*sd_idle && rq->nr_running)
3825 *sd_idle = 0;
5c45bf27 3826
1f8c553d 3827 /* Bias balancing toward cpus of our domain */
1da177e4 3828 if (local_group) {
1f8c553d
GS
3829 if (idle_cpu(i) && !first_idle_cpu) {
3830 first_idle_cpu = 1;
3831 balance_cpu = i;
3832 }
3833
3834 load = target_load(i, load_idx);
3835 } else {
3836 load = source_load(i, load_idx);
3837 if (load > max_cpu_load)
3838 max_cpu_load = load;
3839 if (min_cpu_load > load)
3840 min_cpu_load = load;
1da177e4 3841 }
5c45bf27 3842
1f8c553d
GS
3843 sgs->group_load += load;
3844 sgs->sum_nr_running += rq->nr_running;
3845 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3846
1f8c553d
GS
3847 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3848 }
5c45bf27 3849
1f8c553d
GS
3850 /*
3851 * First idle cpu or the first cpu(busiest) in this sched group
3852 * is eligible for doing load balancing at this and above
3853 * domains. In the newly idle case, we will allow all the cpu's
3854 * to do the newly idle load balance.
3855 */
3856 if (idle != CPU_NEWLY_IDLE && local_group &&
3857 balance_cpu != this_cpu && balance) {
3858 *balance = 0;
3859 return;
3860 }
5c45bf27 3861
1f8c553d 3862 /* Adjust by relative CPU power of the group */
18a3885f 3863 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3864
1f8c553d
GS
3865
3866 /*
3867 * Consider the group unbalanced when the imbalance is larger
3868 * than the average weight of two tasks.
3869 *
3870 * APZ: with cgroup the avg task weight can vary wildly and
3871 * might not be a suitable number - should we keep a
3872 * normalized nr_running number somewhere that negates
3873 * the hierarchy?
3874 */
18a3885f
PZ
3875 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3876 group->cpu_power;
1f8c553d
GS
3877
3878 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3879 sgs->group_imb = 1;
3880
bdb94aa5 3881 sgs->group_capacity =
18a3885f 3882 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3883}
dd41f596 3884
37abe198
GS
3885/**
3886 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3887 * @sd: sched_domain whose statistics are to be updated.
3888 * @this_cpu: Cpu for which load balance is currently performed.
3889 * @idle: Idle status of this_cpu
3890 * @sd_idle: Idle status of the sched_domain containing group.
3891 * @cpus: Set of cpus considered for load balancing.
3892 * @balance: Should we balance.
3893 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3894 */
37abe198
GS
3895static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3896 enum cpu_idle_type idle, int *sd_idle,
3897 const struct cpumask *cpus, int *balance,
3898 struct sd_lb_stats *sds)
1da177e4 3899{
b5d978e0 3900 struct sched_domain *child = sd->child;
222d656d 3901 struct sched_group *group = sd->groups;
37abe198 3902 struct sg_lb_stats sgs;
b5d978e0
PZ
3903 int load_idx, prefer_sibling = 0;
3904
3905 if (child && child->flags & SD_PREFER_SIBLING)
3906 prefer_sibling = 1;
222d656d 3907
c071df18 3908 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3909 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3910
3911 do {
1da177e4 3912 int local_group;
1da177e4 3913
758b2cdc
RR
3914 local_group = cpumask_test_cpu(this_cpu,
3915 sched_group_cpus(group));
381be78f 3916 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3917 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3918 local_group, cpus, balance, &sgs);
1da177e4 3919
37abe198
GS
3920 if (local_group && balance && !(*balance))
3921 return;
783609c6 3922
37abe198 3923 sds->total_load += sgs.group_load;
18a3885f 3924 sds->total_pwr += group->cpu_power;
1da177e4 3925
b5d978e0
PZ
3926 /*
3927 * In case the child domain prefers tasks go to siblings
3928 * first, lower the group capacity to one so that we'll try
3929 * and move all the excess tasks away.
3930 */
3931 if (prefer_sibling)
bdb94aa5 3932 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3933
1da177e4 3934 if (local_group) {
37abe198
GS
3935 sds->this_load = sgs.avg_load;
3936 sds->this = group;
3937 sds->this_nr_running = sgs.sum_nr_running;
3938 sds->this_load_per_task = sgs.sum_weighted_load;
3939 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3940 (sgs.sum_nr_running > sgs.group_capacity ||
3941 sgs.group_imb)) {
37abe198
GS
3942 sds->max_load = sgs.avg_load;
3943 sds->busiest = group;
3944 sds->busiest_nr_running = sgs.sum_nr_running;
3945 sds->busiest_load_per_task = sgs.sum_weighted_load;
3946 sds->group_imb = sgs.group_imb;
48f24c4d 3947 }
5c45bf27 3948
c071df18 3949 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3950 group = group->next;
3951 } while (group != sd->groups);
37abe198 3952}
1da177e4 3953
2e6f44ae
GS
3954/**
3955 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3956 * amongst the groups of a sched_domain, during
3957 * load balancing.
2e6f44ae
GS
3958 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3959 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3960 * @imbalance: Variable to store the imbalance.
3961 */
3962static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3963 int this_cpu, unsigned long *imbalance)
3964{
3965 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3966 unsigned int imbn = 2;
3967
3968 if (sds->this_nr_running) {
3969 sds->this_load_per_task /= sds->this_nr_running;
3970 if (sds->busiest_load_per_task >
3971 sds->this_load_per_task)
3972 imbn = 1;
3973 } else
3974 sds->this_load_per_task =
3975 cpu_avg_load_per_task(this_cpu);
1da177e4 3976
2e6f44ae
GS
3977 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3978 sds->busiest_load_per_task * imbn) {
3979 *imbalance = sds->busiest_load_per_task;
3980 return;
3981 }
908a7c1b 3982
1da177e4 3983 /*
2e6f44ae
GS
3984 * OK, we don't have enough imbalance to justify moving tasks,
3985 * however we may be able to increase total CPU power used by
3986 * moving them.
1da177e4 3987 */
2dd73a4f 3988
18a3885f 3989 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3990 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3991 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3992 min(sds->this_load_per_task, sds->this_load);
3993 pwr_now /= SCHED_LOAD_SCALE;
3994
3995 /* Amount of load we'd subtract */
18a3885f
PZ
3996 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3997 sds->busiest->cpu_power;
2e6f44ae 3998 if (sds->max_load > tmp)
18a3885f 3999 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
4000 min(sds->busiest_load_per_task, sds->max_load - tmp);
4001
4002 /* Amount of load we'd add */
18a3885f 4003 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 4004 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
4005 tmp = (sds->max_load * sds->busiest->cpu_power) /
4006 sds->this->cpu_power;
2e6f44ae 4007 else
18a3885f
PZ
4008 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
4009 sds->this->cpu_power;
4010 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
4011 min(sds->this_load_per_task, sds->this_load + tmp);
4012 pwr_move /= SCHED_LOAD_SCALE;
4013
4014 /* Move if we gain throughput */
4015 if (pwr_move > pwr_now)
4016 *imbalance = sds->busiest_load_per_task;
4017}
dbc523a3
GS
4018
4019/**
4020 * calculate_imbalance - Calculate the amount of imbalance present within the
4021 * groups of a given sched_domain during load balance.
4022 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4023 * @this_cpu: Cpu for which currently load balance is being performed.
4024 * @imbalance: The variable to store the imbalance.
4025 */
4026static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4027 unsigned long *imbalance)
4028{
4029 unsigned long max_pull;
2dd73a4f
PW
4030 /*
4031 * In the presence of smp nice balancing, certain scenarios can have
4032 * max load less than avg load(as we skip the groups at or below
4033 * its cpu_power, while calculating max_load..)
4034 */
dbc523a3 4035 if (sds->max_load < sds->avg_load) {
2dd73a4f 4036 *imbalance = 0;
dbc523a3 4037 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 4038 }
0c117f1b
SS
4039
4040 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
4041 max_pull = min(sds->max_load - sds->avg_load,
4042 sds->max_load - sds->busiest_load_per_task);
0c117f1b 4043
1da177e4 4044 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
4045 *imbalance = min(max_pull * sds->busiest->cpu_power,
4046 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
4047 / SCHED_LOAD_SCALE;
4048
2dd73a4f
PW
4049 /*
4050 * if *imbalance is less than the average load per runnable task
4051 * there is no gaurantee that any tasks will be moved so we'll have
4052 * a think about bumping its value to force at least one task to be
4053 * moved
4054 */
dbc523a3
GS
4055 if (*imbalance < sds->busiest_load_per_task)
4056 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 4057
dbc523a3 4058}
37abe198 4059/******* find_busiest_group() helpers end here *********************/
1da177e4 4060
b7bb4c9b
GS
4061/**
4062 * find_busiest_group - Returns the busiest group within the sched_domain
4063 * if there is an imbalance. If there isn't an imbalance, and
4064 * the user has opted for power-savings, it returns a group whose
4065 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4066 * such a group exists.
4067 *
4068 * Also calculates the amount of weighted load which should be moved
4069 * to restore balance.
4070 *
4071 * @sd: The sched_domain whose busiest group is to be returned.
4072 * @this_cpu: The cpu for which load balancing is currently being performed.
4073 * @imbalance: Variable which stores amount of weighted load which should
4074 * be moved to restore balance/put a group to idle.
4075 * @idle: The idle status of this_cpu.
4076 * @sd_idle: The idleness of sd
4077 * @cpus: The set of CPUs under consideration for load-balancing.
4078 * @balance: Pointer to a variable indicating if this_cpu
4079 * is the appropriate cpu to perform load balancing at this_level.
4080 *
4081 * Returns: - the busiest group if imbalance exists.
4082 * - If no imbalance and user has opted for power-savings balance,
4083 * return the least loaded group whose CPUs can be
4084 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4085 */
4086static struct sched_group *
4087find_busiest_group(struct sched_domain *sd, int this_cpu,
4088 unsigned long *imbalance, enum cpu_idle_type idle,
4089 int *sd_idle, const struct cpumask *cpus, int *balance)
4090{
4091 struct sd_lb_stats sds;
1da177e4 4092
37abe198 4093 memset(&sds, 0, sizeof(sds));
1da177e4 4094
37abe198
GS
4095 /*
4096 * Compute the various statistics relavent for load balancing at
4097 * this level.
4098 */
4099 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4100 balance, &sds);
4101
b7bb4c9b
GS
4102 /* Cases where imbalance does not exist from POV of this_cpu */
4103 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4104 * at this level.
4105 * 2) There is no busy sibling group to pull from.
4106 * 3) This group is the busiest group.
4107 * 4) This group is more busy than the avg busieness at this
4108 * sched_domain.
4109 * 5) The imbalance is within the specified limit.
4110 * 6) Any rebalance would lead to ping-pong
4111 */
37abe198
GS
4112 if (balance && !(*balance))
4113 goto ret;
1da177e4 4114
b7bb4c9b
GS
4115 if (!sds.busiest || sds.busiest_nr_running == 0)
4116 goto out_balanced;
1da177e4 4117
b7bb4c9b 4118 if (sds.this_load >= sds.max_load)
1da177e4 4119 goto out_balanced;
1da177e4 4120
222d656d 4121 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4122
b7bb4c9b
GS
4123 if (sds.this_load >= sds.avg_load)
4124 goto out_balanced;
4125
4126 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4127 goto out_balanced;
4128
222d656d
GS
4129 sds.busiest_load_per_task /= sds.busiest_nr_running;
4130 if (sds.group_imb)
4131 sds.busiest_load_per_task =
4132 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4133
1da177e4
LT
4134 /*
4135 * We're trying to get all the cpus to the average_load, so we don't
4136 * want to push ourselves above the average load, nor do we wish to
4137 * reduce the max loaded cpu below the average load, as either of these
4138 * actions would just result in more rebalancing later, and ping-pong
4139 * tasks around. Thus we look for the minimum possible imbalance.
4140 * Negative imbalances (*we* are more loaded than anyone else) will
4141 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4142 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4143 * appear as very large values with unsigned longs.
4144 */
222d656d 4145 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4146 goto out_balanced;
4147
dbc523a3
GS
4148 /* Looks like there is an imbalance. Compute it */
4149 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4150 return sds.busiest;
1da177e4
LT
4151
4152out_balanced:
c071df18
GS
4153 /*
4154 * There is no obvious imbalance. But check if we can do some balancing
4155 * to save power.
4156 */
4157 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4158 return sds.busiest;
783609c6 4159ret:
1da177e4
LT
4160 *imbalance = 0;
4161 return NULL;
4162}
4163
bdb94aa5
PZ
4164static struct sched_group *group_of(int cpu)
4165{
4166 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
4167
4168 if (!sd)
4169 return NULL;
4170
4171 return sd->groups;
4172}
4173
4174static unsigned long power_of(int cpu)
4175{
4176 struct sched_group *group = group_of(cpu);
4177
4178 if (!group)
4179 return SCHED_LOAD_SCALE;
4180
18a3885f 4181 return group->cpu_power;
bdb94aa5
PZ
4182}
4183
1da177e4
LT
4184/*
4185 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4186 */
70b97a7f 4187static struct rq *
d15bcfdb 4188find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4189 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4190{
70b97a7f 4191 struct rq *busiest = NULL, *rq;
2dd73a4f 4192 unsigned long max_load = 0;
1da177e4
LT
4193 int i;
4194
758b2cdc 4195 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4196 unsigned long power = power_of(i);
4197 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4198 unsigned long wl;
0a2966b4 4199
96f874e2 4200 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4201 continue;
4202
48f24c4d 4203 rq = cpu_rq(i);
bdb94aa5
PZ
4204 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4205 wl /= power;
2dd73a4f 4206
bdb94aa5 4207 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4208 continue;
1da177e4 4209
dd41f596
IM
4210 if (wl > max_load) {
4211 max_load = wl;
48f24c4d 4212 busiest = rq;
1da177e4
LT
4213 }
4214 }
4215
4216 return busiest;
4217}
4218
77391d71
NP
4219/*
4220 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4221 * so long as it is large enough.
4222 */
4223#define MAX_PINNED_INTERVAL 512
4224
df7c8e84
RR
4225/* Working cpumask for load_balance and load_balance_newidle. */
4226static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4227
1da177e4
LT
4228/*
4229 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4230 * tasks if there is an imbalance.
1da177e4 4231 */
70b97a7f 4232static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4233 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4234 int *balance)
1da177e4 4235{
43010659 4236 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4237 struct sched_group *group;
1da177e4 4238 unsigned long imbalance;
70b97a7f 4239 struct rq *busiest;
fe2eea3f 4240 unsigned long flags;
df7c8e84 4241 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4242
96f874e2 4243 cpumask_setall(cpus);
7c16ec58 4244
89c4710e
SS
4245 /*
4246 * When power savings policy is enabled for the parent domain, idle
4247 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4248 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4249 * portraying it as CPU_NOT_IDLE.
89c4710e 4250 */
d15bcfdb 4251 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4252 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4253 sd_idle = 1;
1da177e4 4254
2d72376b 4255 schedstat_inc(sd, lb_count[idle]);
1da177e4 4256
0a2966b4 4257redo:
c8cba857 4258 update_shares(sd);
0a2966b4 4259 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4260 cpus, balance);
783609c6 4261
06066714 4262 if (*balance == 0)
783609c6 4263 goto out_balanced;
783609c6 4264
1da177e4
LT
4265 if (!group) {
4266 schedstat_inc(sd, lb_nobusyg[idle]);
4267 goto out_balanced;
4268 }
4269
7c16ec58 4270 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4271 if (!busiest) {
4272 schedstat_inc(sd, lb_nobusyq[idle]);
4273 goto out_balanced;
4274 }
4275
db935dbd 4276 BUG_ON(busiest == this_rq);
1da177e4
LT
4277
4278 schedstat_add(sd, lb_imbalance[idle], imbalance);
4279
43010659 4280 ld_moved = 0;
1da177e4
LT
4281 if (busiest->nr_running > 1) {
4282 /*
4283 * Attempt to move tasks. If find_busiest_group has found
4284 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4285 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4286 * correctly treated as an imbalance.
4287 */
fe2eea3f 4288 local_irq_save(flags);
e17224bf 4289 double_rq_lock(this_rq, busiest);
43010659 4290 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4291 imbalance, sd, idle, &all_pinned);
e17224bf 4292 double_rq_unlock(this_rq, busiest);
fe2eea3f 4293 local_irq_restore(flags);
81026794 4294
46cb4b7c
SS
4295 /*
4296 * some other cpu did the load balance for us.
4297 */
43010659 4298 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4299 resched_cpu(this_cpu);
4300
81026794 4301 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4302 if (unlikely(all_pinned)) {
96f874e2
RR
4303 cpumask_clear_cpu(cpu_of(busiest), cpus);
4304 if (!cpumask_empty(cpus))
0a2966b4 4305 goto redo;
81026794 4306 goto out_balanced;
0a2966b4 4307 }
1da177e4 4308 }
81026794 4309
43010659 4310 if (!ld_moved) {
1da177e4
LT
4311 schedstat_inc(sd, lb_failed[idle]);
4312 sd->nr_balance_failed++;
4313
4314 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4315
fe2eea3f 4316 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4317
4318 /* don't kick the migration_thread, if the curr
4319 * task on busiest cpu can't be moved to this_cpu
4320 */
96f874e2
RR
4321 if (!cpumask_test_cpu(this_cpu,
4322 &busiest->curr->cpus_allowed)) {
fe2eea3f 4323 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4324 all_pinned = 1;
4325 goto out_one_pinned;
4326 }
4327
1da177e4
LT
4328 if (!busiest->active_balance) {
4329 busiest->active_balance = 1;
4330 busiest->push_cpu = this_cpu;
81026794 4331 active_balance = 1;
1da177e4 4332 }
fe2eea3f 4333 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4334 if (active_balance)
1da177e4
LT
4335 wake_up_process(busiest->migration_thread);
4336
4337 /*
4338 * We've kicked active balancing, reset the failure
4339 * counter.
4340 */
39507451 4341 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4342 }
81026794 4343 } else
1da177e4
LT
4344 sd->nr_balance_failed = 0;
4345
81026794 4346 if (likely(!active_balance)) {
1da177e4
LT
4347 /* We were unbalanced, so reset the balancing interval */
4348 sd->balance_interval = sd->min_interval;
81026794
NP
4349 } else {
4350 /*
4351 * If we've begun active balancing, start to back off. This
4352 * case may not be covered by the all_pinned logic if there
4353 * is only 1 task on the busy runqueue (because we don't call
4354 * move_tasks).
4355 */
4356 if (sd->balance_interval < sd->max_interval)
4357 sd->balance_interval *= 2;
1da177e4
LT
4358 }
4359
43010659 4360 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4361 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4362 ld_moved = -1;
4363
4364 goto out;
1da177e4
LT
4365
4366out_balanced:
1da177e4
LT
4367 schedstat_inc(sd, lb_balanced[idle]);
4368
16cfb1c0 4369 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4370
4371out_one_pinned:
1da177e4 4372 /* tune up the balancing interval */
77391d71
NP
4373 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4374 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4375 sd->balance_interval *= 2;
4376
48f24c4d 4377 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4378 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4379 ld_moved = -1;
4380 else
4381 ld_moved = 0;
4382out:
c8cba857
PZ
4383 if (ld_moved)
4384 update_shares(sd);
c09595f6 4385 return ld_moved;
1da177e4
LT
4386}
4387
4388/*
4389 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4390 * tasks if there is an imbalance.
4391 *
d15bcfdb 4392 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4393 * this_rq is locked.
4394 */
48f24c4d 4395static int
df7c8e84 4396load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4397{
4398 struct sched_group *group;
70b97a7f 4399 struct rq *busiest = NULL;
1da177e4 4400 unsigned long imbalance;
43010659 4401 int ld_moved = 0;
5969fe06 4402 int sd_idle = 0;
969bb4e4 4403 int all_pinned = 0;
df7c8e84 4404 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4405
96f874e2 4406 cpumask_setall(cpus);
5969fe06 4407
89c4710e
SS
4408 /*
4409 * When power savings policy is enabled for the parent domain, idle
4410 * sibling can pick up load irrespective of busy siblings. In this case,
4411 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4412 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4413 */
4414 if (sd->flags & SD_SHARE_CPUPOWER &&
4415 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4416 sd_idle = 1;
1da177e4 4417
2d72376b 4418 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4419redo:
3e5459b4 4420 update_shares_locked(this_rq, sd);
d15bcfdb 4421 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4422 &sd_idle, cpus, NULL);
1da177e4 4423 if (!group) {
d15bcfdb 4424 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4425 goto out_balanced;
1da177e4
LT
4426 }
4427
7c16ec58 4428 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4429 if (!busiest) {
d15bcfdb 4430 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4431 goto out_balanced;
1da177e4
LT
4432 }
4433
db935dbd
NP
4434 BUG_ON(busiest == this_rq);
4435
d15bcfdb 4436 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4437
43010659 4438 ld_moved = 0;
d6d5cfaf
NP
4439 if (busiest->nr_running > 1) {
4440 /* Attempt to move tasks */
4441 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4442 /* this_rq->clock is already updated */
4443 update_rq_clock(busiest);
43010659 4444 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4445 imbalance, sd, CPU_NEWLY_IDLE,
4446 &all_pinned);
1b12bbc7 4447 double_unlock_balance(this_rq, busiest);
0a2966b4 4448
969bb4e4 4449 if (unlikely(all_pinned)) {
96f874e2
RR
4450 cpumask_clear_cpu(cpu_of(busiest), cpus);
4451 if (!cpumask_empty(cpus))
0a2966b4
CL
4452 goto redo;
4453 }
d6d5cfaf
NP
4454 }
4455
43010659 4456 if (!ld_moved) {
36dffab6 4457 int active_balance = 0;
ad273b32 4458
d15bcfdb 4459 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4460 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4461 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4462 return -1;
ad273b32
VS
4463
4464 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4465 return -1;
4466
4467 if (sd->nr_balance_failed++ < 2)
4468 return -1;
4469
4470 /*
4471 * The only task running in a non-idle cpu can be moved to this
4472 * cpu in an attempt to completely freeup the other CPU
4473 * package. The same method used to move task in load_balance()
4474 * have been extended for load_balance_newidle() to speedup
4475 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4476 *
4477 * The package power saving logic comes from
4478 * find_busiest_group(). If there are no imbalance, then
4479 * f_b_g() will return NULL. However when sched_mc={1,2} then
4480 * f_b_g() will select a group from which a running task may be
4481 * pulled to this cpu in order to make the other package idle.
4482 * If there is no opportunity to make a package idle and if
4483 * there are no imbalance, then f_b_g() will return NULL and no
4484 * action will be taken in load_balance_newidle().
4485 *
4486 * Under normal task pull operation due to imbalance, there
4487 * will be more than one task in the source run queue and
4488 * move_tasks() will succeed. ld_moved will be true and this
4489 * active balance code will not be triggered.
4490 */
4491
4492 /* Lock busiest in correct order while this_rq is held */
4493 double_lock_balance(this_rq, busiest);
4494
4495 /*
4496 * don't kick the migration_thread, if the curr
4497 * task on busiest cpu can't be moved to this_cpu
4498 */
6ca09dfc 4499 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4500 double_unlock_balance(this_rq, busiest);
4501 all_pinned = 1;
4502 return ld_moved;
4503 }
4504
4505 if (!busiest->active_balance) {
4506 busiest->active_balance = 1;
4507 busiest->push_cpu = this_cpu;
4508 active_balance = 1;
4509 }
4510
4511 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4512 /*
4513 * Should not call ttwu while holding a rq->lock
4514 */
4515 spin_unlock(&this_rq->lock);
ad273b32
VS
4516 if (active_balance)
4517 wake_up_process(busiest->migration_thread);
da8d5089 4518 spin_lock(&this_rq->lock);
ad273b32 4519
5969fe06 4520 } else
16cfb1c0 4521 sd->nr_balance_failed = 0;
1da177e4 4522
3e5459b4 4523 update_shares_locked(this_rq, sd);
43010659 4524 return ld_moved;
16cfb1c0
NP
4525
4526out_balanced:
d15bcfdb 4527 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4528 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4529 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4530 return -1;
16cfb1c0 4531 sd->nr_balance_failed = 0;
48f24c4d 4532
16cfb1c0 4533 return 0;
1da177e4
LT
4534}
4535
4536/*
4537 * idle_balance is called by schedule() if this_cpu is about to become
4538 * idle. Attempts to pull tasks from other CPUs.
4539 */
70b97a7f 4540static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4541{
4542 struct sched_domain *sd;
efbe027e 4543 int pulled_task = 0;
dd41f596 4544 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4545
4546 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4547 unsigned long interval;
4548
4549 if (!(sd->flags & SD_LOAD_BALANCE))
4550 continue;
4551
4552 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4553 /* If we've pulled tasks over stop searching: */
7c16ec58 4554 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4555 sd);
92c4ca5c
CL
4556
4557 interval = msecs_to_jiffies(sd->balance_interval);
4558 if (time_after(next_balance, sd->last_balance + interval))
4559 next_balance = sd->last_balance + interval;
4560 if (pulled_task)
4561 break;
1da177e4 4562 }
dd41f596 4563 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4564 /*
4565 * We are going idle. next_balance may be set based on
4566 * a busy processor. So reset next_balance.
4567 */
4568 this_rq->next_balance = next_balance;
dd41f596 4569 }
1da177e4
LT
4570}
4571
4572/*
4573 * active_load_balance is run by migration threads. It pushes running tasks
4574 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4575 * running on each physical CPU where possible, and avoids physical /
4576 * logical imbalances.
4577 *
4578 * Called with busiest_rq locked.
4579 */
70b97a7f 4580static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4581{
39507451 4582 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4583 struct sched_domain *sd;
4584 struct rq *target_rq;
39507451 4585
48f24c4d 4586 /* Is there any task to move? */
39507451 4587 if (busiest_rq->nr_running <= 1)
39507451
NP
4588 return;
4589
4590 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4591
4592 /*
39507451 4593 * This condition is "impossible", if it occurs
41a2d6cf 4594 * we need to fix it. Originally reported by
39507451 4595 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4596 */
39507451 4597 BUG_ON(busiest_rq == target_rq);
1da177e4 4598
39507451
NP
4599 /* move a task from busiest_rq to target_rq */
4600 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4601 update_rq_clock(busiest_rq);
4602 update_rq_clock(target_rq);
39507451
NP
4603
4604 /* Search for an sd spanning us and the target CPU. */
c96d145e 4605 for_each_domain(target_cpu, sd) {
39507451 4606 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4607 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4608 break;
c96d145e 4609 }
39507451 4610
48f24c4d 4611 if (likely(sd)) {
2d72376b 4612 schedstat_inc(sd, alb_count);
39507451 4613
43010659
PW
4614 if (move_one_task(target_rq, target_cpu, busiest_rq,
4615 sd, CPU_IDLE))
48f24c4d
IM
4616 schedstat_inc(sd, alb_pushed);
4617 else
4618 schedstat_inc(sd, alb_failed);
4619 }
1b12bbc7 4620 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4621}
4622
46cb4b7c
SS
4623#ifdef CONFIG_NO_HZ
4624static struct {
4625 atomic_t load_balancer;
7d1e6a9b 4626 cpumask_var_t cpu_mask;
f711f609 4627 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4628} nohz ____cacheline_aligned = {
4629 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4630};
4631
eea08f32
AB
4632int get_nohz_load_balancer(void)
4633{
4634 return atomic_read(&nohz.load_balancer);
4635}
4636
f711f609
GS
4637#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4638/**
4639 * lowest_flag_domain - Return lowest sched_domain containing flag.
4640 * @cpu: The cpu whose lowest level of sched domain is to
4641 * be returned.
4642 * @flag: The flag to check for the lowest sched_domain
4643 * for the given cpu.
4644 *
4645 * Returns the lowest sched_domain of a cpu which contains the given flag.
4646 */
4647static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4648{
4649 struct sched_domain *sd;
4650
4651 for_each_domain(cpu, sd)
4652 if (sd && (sd->flags & flag))
4653 break;
4654
4655 return sd;
4656}
4657
4658/**
4659 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4660 * @cpu: The cpu whose domains we're iterating over.
4661 * @sd: variable holding the value of the power_savings_sd
4662 * for cpu.
4663 * @flag: The flag to filter the sched_domains to be iterated.
4664 *
4665 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4666 * set, starting from the lowest sched_domain to the highest.
4667 */
4668#define for_each_flag_domain(cpu, sd, flag) \
4669 for (sd = lowest_flag_domain(cpu, flag); \
4670 (sd && (sd->flags & flag)); sd = sd->parent)
4671
4672/**
4673 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4674 * @ilb_group: group to be checked for semi-idleness
4675 *
4676 * Returns: 1 if the group is semi-idle. 0 otherwise.
4677 *
4678 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4679 * and atleast one non-idle CPU. This helper function checks if the given
4680 * sched_group is semi-idle or not.
4681 */
4682static inline int is_semi_idle_group(struct sched_group *ilb_group)
4683{
4684 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4685 sched_group_cpus(ilb_group));
4686
4687 /*
4688 * A sched_group is semi-idle when it has atleast one busy cpu
4689 * and atleast one idle cpu.
4690 */
4691 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4692 return 0;
4693
4694 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4695 return 0;
4696
4697 return 1;
4698}
4699/**
4700 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4701 * @cpu: The cpu which is nominating a new idle_load_balancer.
4702 *
4703 * Returns: Returns the id of the idle load balancer if it exists,
4704 * Else, returns >= nr_cpu_ids.
4705 *
4706 * This algorithm picks the idle load balancer such that it belongs to a
4707 * semi-idle powersavings sched_domain. The idea is to try and avoid
4708 * completely idle packages/cores just for the purpose of idle load balancing
4709 * when there are other idle cpu's which are better suited for that job.
4710 */
4711static int find_new_ilb(int cpu)
4712{
4713 struct sched_domain *sd;
4714 struct sched_group *ilb_group;
4715
4716 /*
4717 * Have idle load balancer selection from semi-idle packages only
4718 * when power-aware load balancing is enabled
4719 */
4720 if (!(sched_smt_power_savings || sched_mc_power_savings))
4721 goto out_done;
4722
4723 /*
4724 * Optimize for the case when we have no idle CPUs or only one
4725 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4726 */
4727 if (cpumask_weight(nohz.cpu_mask) < 2)
4728 goto out_done;
4729
4730 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4731 ilb_group = sd->groups;
4732
4733 do {
4734 if (is_semi_idle_group(ilb_group))
4735 return cpumask_first(nohz.ilb_grp_nohz_mask);
4736
4737 ilb_group = ilb_group->next;
4738
4739 } while (ilb_group != sd->groups);
4740 }
4741
4742out_done:
4743 return cpumask_first(nohz.cpu_mask);
4744}
4745#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4746static inline int find_new_ilb(int call_cpu)
4747{
6e29ec57 4748 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4749}
4750#endif
4751
7835b98b 4752/*
46cb4b7c
SS
4753 * This routine will try to nominate the ilb (idle load balancing)
4754 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4755 * load balancing on behalf of all those cpus. If all the cpus in the system
4756 * go into this tickless mode, then there will be no ilb owner (as there is
4757 * no need for one) and all the cpus will sleep till the next wakeup event
4758 * arrives...
4759 *
4760 * For the ilb owner, tick is not stopped. And this tick will be used
4761 * for idle load balancing. ilb owner will still be part of
4762 * nohz.cpu_mask..
7835b98b 4763 *
46cb4b7c
SS
4764 * While stopping the tick, this cpu will become the ilb owner if there
4765 * is no other owner. And will be the owner till that cpu becomes busy
4766 * or if all cpus in the system stop their ticks at which point
4767 * there is no need for ilb owner.
4768 *
4769 * When the ilb owner becomes busy, it nominates another owner, during the
4770 * next busy scheduler_tick()
4771 */
4772int select_nohz_load_balancer(int stop_tick)
4773{
4774 int cpu = smp_processor_id();
4775
4776 if (stop_tick) {
46cb4b7c
SS
4777 cpu_rq(cpu)->in_nohz_recently = 1;
4778
483b4ee6
SS
4779 if (!cpu_active(cpu)) {
4780 if (atomic_read(&nohz.load_balancer) != cpu)
4781 return 0;
4782
4783 /*
4784 * If we are going offline and still the leader,
4785 * give up!
4786 */
46cb4b7c
SS
4787 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4788 BUG();
483b4ee6 4789
46cb4b7c
SS
4790 return 0;
4791 }
4792
483b4ee6
SS
4793 cpumask_set_cpu(cpu, nohz.cpu_mask);
4794
46cb4b7c 4795 /* time for ilb owner also to sleep */
7d1e6a9b 4796 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4797 if (atomic_read(&nohz.load_balancer) == cpu)
4798 atomic_set(&nohz.load_balancer, -1);
4799 return 0;
4800 }
4801
4802 if (atomic_read(&nohz.load_balancer) == -1) {
4803 /* make me the ilb owner */
4804 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4805 return 1;
e790fb0b
GS
4806 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4807 int new_ilb;
4808
4809 if (!(sched_smt_power_savings ||
4810 sched_mc_power_savings))
4811 return 1;
4812 /*
4813 * Check to see if there is a more power-efficient
4814 * ilb.
4815 */
4816 new_ilb = find_new_ilb(cpu);
4817 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4818 atomic_set(&nohz.load_balancer, -1);
4819 resched_cpu(new_ilb);
4820 return 0;
4821 }
46cb4b7c 4822 return 1;
e790fb0b 4823 }
46cb4b7c 4824 } else {
7d1e6a9b 4825 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4826 return 0;
4827
7d1e6a9b 4828 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4829
4830 if (atomic_read(&nohz.load_balancer) == cpu)
4831 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4832 BUG();
4833 }
4834 return 0;
4835}
4836#endif
4837
4838static DEFINE_SPINLOCK(balancing);
4839
4840/*
7835b98b
CL
4841 * It checks each scheduling domain to see if it is due to be balanced,
4842 * and initiates a balancing operation if so.
4843 *
4844 * Balancing parameters are set up in arch_init_sched_domains.
4845 */
a9957449 4846static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4847{
46cb4b7c
SS
4848 int balance = 1;
4849 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4850 unsigned long interval;
4851 struct sched_domain *sd;
46cb4b7c 4852 /* Earliest time when we have to do rebalance again */
c9819f45 4853 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4854 int update_next_balance = 0;
d07355f5 4855 int need_serialize;
1da177e4 4856
46cb4b7c 4857 for_each_domain(cpu, sd) {
1da177e4
LT
4858 if (!(sd->flags & SD_LOAD_BALANCE))
4859 continue;
4860
4861 interval = sd->balance_interval;
d15bcfdb 4862 if (idle != CPU_IDLE)
1da177e4
LT
4863 interval *= sd->busy_factor;
4864
4865 /* scale ms to jiffies */
4866 interval = msecs_to_jiffies(interval);
4867 if (unlikely(!interval))
4868 interval = 1;
dd41f596
IM
4869 if (interval > HZ*NR_CPUS/10)
4870 interval = HZ*NR_CPUS/10;
4871
d07355f5 4872 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4873
d07355f5 4874 if (need_serialize) {
08c183f3
CL
4875 if (!spin_trylock(&balancing))
4876 goto out;
4877 }
4878
c9819f45 4879 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4880 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4881 /*
4882 * We've pulled tasks over so either we're no
5969fe06
NP
4883 * longer idle, or one of our SMT siblings is
4884 * not idle.
4885 */
d15bcfdb 4886 idle = CPU_NOT_IDLE;
1da177e4 4887 }
1bd77f2d 4888 sd->last_balance = jiffies;
1da177e4 4889 }
d07355f5 4890 if (need_serialize)
08c183f3
CL
4891 spin_unlock(&balancing);
4892out:
f549da84 4893 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4894 next_balance = sd->last_balance + interval;
f549da84
SS
4895 update_next_balance = 1;
4896 }
783609c6
SS
4897
4898 /*
4899 * Stop the load balance at this level. There is another
4900 * CPU in our sched group which is doing load balancing more
4901 * actively.
4902 */
4903 if (!balance)
4904 break;
1da177e4 4905 }
f549da84
SS
4906
4907 /*
4908 * next_balance will be updated only when there is a need.
4909 * When the cpu is attached to null domain for ex, it will not be
4910 * updated.
4911 */
4912 if (likely(update_next_balance))
4913 rq->next_balance = next_balance;
46cb4b7c
SS
4914}
4915
4916/*
4917 * run_rebalance_domains is triggered when needed from the scheduler tick.
4918 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4919 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4920 */
4921static void run_rebalance_domains(struct softirq_action *h)
4922{
dd41f596
IM
4923 int this_cpu = smp_processor_id();
4924 struct rq *this_rq = cpu_rq(this_cpu);
4925 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4926 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4927
dd41f596 4928 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4929
4930#ifdef CONFIG_NO_HZ
4931 /*
4932 * If this cpu is the owner for idle load balancing, then do the
4933 * balancing on behalf of the other idle cpus whose ticks are
4934 * stopped.
4935 */
dd41f596
IM
4936 if (this_rq->idle_at_tick &&
4937 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4938 struct rq *rq;
4939 int balance_cpu;
4940
7d1e6a9b
RR
4941 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4942 if (balance_cpu == this_cpu)
4943 continue;
4944
46cb4b7c
SS
4945 /*
4946 * If this cpu gets work to do, stop the load balancing
4947 * work being done for other cpus. Next load
4948 * balancing owner will pick it up.
4949 */
4950 if (need_resched())
4951 break;
4952
de0cf899 4953 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4954
4955 rq = cpu_rq(balance_cpu);
dd41f596
IM
4956 if (time_after(this_rq->next_balance, rq->next_balance))
4957 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4958 }
4959 }
4960#endif
4961}
4962
8a0be9ef
FW
4963static inline int on_null_domain(int cpu)
4964{
4965 return !rcu_dereference(cpu_rq(cpu)->sd);
4966}
4967
46cb4b7c
SS
4968/*
4969 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4970 *
4971 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4972 * idle load balancing owner or decide to stop the periodic load balancing,
4973 * if the whole system is idle.
4974 */
dd41f596 4975static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4976{
46cb4b7c
SS
4977#ifdef CONFIG_NO_HZ
4978 /*
4979 * If we were in the nohz mode recently and busy at the current
4980 * scheduler tick, then check if we need to nominate new idle
4981 * load balancer.
4982 */
4983 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4984 rq->in_nohz_recently = 0;
4985
4986 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4987 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4988 atomic_set(&nohz.load_balancer, -1);
4989 }
4990
4991 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4992 int ilb = find_new_ilb(cpu);
46cb4b7c 4993
434d53b0 4994 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4995 resched_cpu(ilb);
4996 }
4997 }
4998
4999 /*
5000 * If this cpu is idle and doing idle load balancing for all the
5001 * cpus with ticks stopped, is it time for that to stop?
5002 */
5003 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 5004 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
5005 resched_cpu(cpu);
5006 return;
5007 }
5008
5009 /*
5010 * If this cpu is idle and the idle load balancing is done by
5011 * someone else, then no need raise the SCHED_SOFTIRQ
5012 */
5013 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 5014 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
5015 return;
5016#endif
8a0be9ef
FW
5017 /* Don't need to rebalance while attached to NULL domain */
5018 if (time_after_eq(jiffies, rq->next_balance) &&
5019 likely(!on_null_domain(cpu)))
46cb4b7c 5020 raise_softirq(SCHED_SOFTIRQ);
1da177e4 5021}
dd41f596
IM
5022
5023#else /* CONFIG_SMP */
5024
1da177e4
LT
5025/*
5026 * on UP we do not need to balance between CPUs:
5027 */
70b97a7f 5028static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
5029{
5030}
dd41f596 5031
1da177e4
LT
5032#endif
5033
1da177e4
LT
5034DEFINE_PER_CPU(struct kernel_stat, kstat);
5035
5036EXPORT_PER_CPU_SYMBOL(kstat);
5037
5038/*
c5f8d995 5039 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 5040 * @p in case that task is currently running.
c5f8d995
HS
5041 *
5042 * Called with task_rq_lock() held on @rq.
1da177e4 5043 */
c5f8d995
HS
5044static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
5045{
5046 u64 ns = 0;
5047
5048 if (task_current(rq, p)) {
5049 update_rq_clock(rq);
5050 ns = rq->clock - p->se.exec_start;
5051 if ((s64)ns < 0)
5052 ns = 0;
5053 }
5054
5055 return ns;
5056}
5057
bb34d92f 5058unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 5059{
1da177e4 5060 unsigned long flags;
41b86e9c 5061 struct rq *rq;
bb34d92f 5062 u64 ns = 0;
48f24c4d 5063
41b86e9c 5064 rq = task_rq_lock(p, &flags);
c5f8d995
HS
5065 ns = do_task_delta_exec(p, rq);
5066 task_rq_unlock(rq, &flags);
1508487e 5067
c5f8d995
HS
5068 return ns;
5069}
f06febc9 5070
c5f8d995
HS
5071/*
5072 * Return accounted runtime for the task.
5073 * In case the task is currently running, return the runtime plus current's
5074 * pending runtime that have not been accounted yet.
5075 */
5076unsigned long long task_sched_runtime(struct task_struct *p)
5077{
5078 unsigned long flags;
5079 struct rq *rq;
5080 u64 ns = 0;
5081
5082 rq = task_rq_lock(p, &flags);
5083 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5084 task_rq_unlock(rq, &flags);
5085
5086 return ns;
5087}
48f24c4d 5088
c5f8d995
HS
5089/*
5090 * Return sum_exec_runtime for the thread group.
5091 * In case the task is currently running, return the sum plus current's
5092 * pending runtime that have not been accounted yet.
5093 *
5094 * Note that the thread group might have other running tasks as well,
5095 * so the return value not includes other pending runtime that other
5096 * running tasks might have.
5097 */
5098unsigned long long thread_group_sched_runtime(struct task_struct *p)
5099{
5100 struct task_cputime totals;
5101 unsigned long flags;
5102 struct rq *rq;
5103 u64 ns;
5104
5105 rq = task_rq_lock(p, &flags);
5106 thread_group_cputime(p, &totals);
5107 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5108 task_rq_unlock(rq, &flags);
48f24c4d 5109
1da177e4
LT
5110 return ns;
5111}
5112
1da177e4
LT
5113/*
5114 * Account user cpu time to a process.
5115 * @p: the process that the cpu time gets accounted to
1da177e4 5116 * @cputime: the cpu time spent in user space since the last update
457533a7 5117 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5118 */
457533a7
MS
5119void account_user_time(struct task_struct *p, cputime_t cputime,
5120 cputime_t cputime_scaled)
1da177e4
LT
5121{
5122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5123 cputime64_t tmp;
5124
457533a7 5125 /* Add user time to process. */
1da177e4 5126 p->utime = cputime_add(p->utime, cputime);
457533a7 5127 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5128 account_group_user_time(p, cputime);
1da177e4
LT
5129
5130 /* Add user time to cpustat. */
5131 tmp = cputime_to_cputime64(cputime);
5132 if (TASK_NICE(p) > 0)
5133 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5134 else
5135 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5136
5137 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5138 /* Account for user time used */
5139 acct_update_integrals(p);
1da177e4
LT
5140}
5141
94886b84
LV
5142/*
5143 * Account guest cpu time to a process.
5144 * @p: the process that the cpu time gets accounted to
5145 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5146 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5147 */
457533a7
MS
5148static void account_guest_time(struct task_struct *p, cputime_t cputime,
5149 cputime_t cputime_scaled)
94886b84
LV
5150{
5151 cputime64_t tmp;
5152 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5153
5154 tmp = cputime_to_cputime64(cputime);
5155
457533a7 5156 /* Add guest time to process. */
94886b84 5157 p->utime = cputime_add(p->utime, cputime);
457533a7 5158 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5159 account_group_user_time(p, cputime);
94886b84
LV
5160 p->gtime = cputime_add(p->gtime, cputime);
5161
457533a7 5162 /* Add guest time to cpustat. */
94886b84
LV
5163 cpustat->user = cputime64_add(cpustat->user, tmp);
5164 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5165}
5166
1da177e4
LT
5167/*
5168 * Account system cpu time to a process.
5169 * @p: the process that the cpu time gets accounted to
5170 * @hardirq_offset: the offset to subtract from hardirq_count()
5171 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5172 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5173 */
5174void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5175 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5176{
5177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5178 cputime64_t tmp;
5179
983ed7a6 5180 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5181 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5182 return;
5183 }
94886b84 5184
457533a7 5185 /* Add system time to process. */
1da177e4 5186 p->stime = cputime_add(p->stime, cputime);
457533a7 5187 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5188 account_group_system_time(p, cputime);
1da177e4
LT
5189
5190 /* Add system time to cpustat. */
5191 tmp = cputime_to_cputime64(cputime);
5192 if (hardirq_count() - hardirq_offset)
5193 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5194 else if (softirq_count())
5195 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5196 else
79741dd3
MS
5197 cpustat->system = cputime64_add(cpustat->system, tmp);
5198
ef12fefa
BR
5199 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5200
1da177e4
LT
5201 /* Account for system time used */
5202 acct_update_integrals(p);
1da177e4
LT
5203}
5204
c66f08be 5205/*
1da177e4 5206 * Account for involuntary wait time.
1da177e4 5207 * @steal: the cpu time spent in involuntary wait
c66f08be 5208 */
79741dd3 5209void account_steal_time(cputime_t cputime)
c66f08be 5210{
79741dd3
MS
5211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5212 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5213
5214 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5215}
5216
1da177e4 5217/*
79741dd3
MS
5218 * Account for idle time.
5219 * @cputime: the cpu time spent in idle wait
1da177e4 5220 */
79741dd3 5221void account_idle_time(cputime_t cputime)
1da177e4
LT
5222{
5223 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5224 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5225 struct rq *rq = this_rq();
1da177e4 5226
79741dd3
MS
5227 if (atomic_read(&rq->nr_iowait) > 0)
5228 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5229 else
5230 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5231}
5232
79741dd3
MS
5233#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5234
5235/*
5236 * Account a single tick of cpu time.
5237 * @p: the process that the cpu time gets accounted to
5238 * @user_tick: indicates if the tick is a user or a system tick
5239 */
5240void account_process_tick(struct task_struct *p, int user_tick)
5241{
5242 cputime_t one_jiffy = jiffies_to_cputime(1);
5243 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5244 struct rq *rq = this_rq();
5245
5246 if (user_tick)
5247 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5248 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5249 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5250 one_jiffy_scaled);
5251 else
5252 account_idle_time(one_jiffy);
5253}
5254
5255/*
5256 * Account multiple ticks of steal time.
5257 * @p: the process from which the cpu time has been stolen
5258 * @ticks: number of stolen ticks
5259 */
5260void account_steal_ticks(unsigned long ticks)
5261{
5262 account_steal_time(jiffies_to_cputime(ticks));
5263}
5264
5265/*
5266 * Account multiple ticks of idle time.
5267 * @ticks: number of stolen ticks
5268 */
5269void account_idle_ticks(unsigned long ticks)
5270{
5271 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5272}
5273
79741dd3
MS
5274#endif
5275
49048622
BS
5276/*
5277 * Use precise platform statistics if available:
5278 */
5279#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5280cputime_t task_utime(struct task_struct *p)
5281{
5282 return p->utime;
5283}
5284
5285cputime_t task_stime(struct task_struct *p)
5286{
5287 return p->stime;
5288}
5289#else
5290cputime_t task_utime(struct task_struct *p)
5291{
5292 clock_t utime = cputime_to_clock_t(p->utime),
5293 total = utime + cputime_to_clock_t(p->stime);
5294 u64 temp;
5295
5296 /*
5297 * Use CFS's precise accounting:
5298 */
5299 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5300
5301 if (total) {
5302 temp *= utime;
5303 do_div(temp, total);
5304 }
5305 utime = (clock_t)temp;
5306
5307 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5308 return p->prev_utime;
5309}
5310
5311cputime_t task_stime(struct task_struct *p)
5312{
5313 clock_t stime;
5314
5315 /*
5316 * Use CFS's precise accounting. (we subtract utime from
5317 * the total, to make sure the total observed by userspace
5318 * grows monotonically - apps rely on that):
5319 */
5320 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5321 cputime_to_clock_t(task_utime(p));
5322
5323 if (stime >= 0)
5324 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5325
5326 return p->prev_stime;
5327}
5328#endif
5329
5330inline cputime_t task_gtime(struct task_struct *p)
5331{
5332 return p->gtime;
5333}
5334
7835b98b
CL
5335/*
5336 * This function gets called by the timer code, with HZ frequency.
5337 * We call it with interrupts disabled.
5338 *
5339 * It also gets called by the fork code, when changing the parent's
5340 * timeslices.
5341 */
5342void scheduler_tick(void)
5343{
7835b98b
CL
5344 int cpu = smp_processor_id();
5345 struct rq *rq = cpu_rq(cpu);
dd41f596 5346 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5347
5348 sched_clock_tick();
dd41f596
IM
5349
5350 spin_lock(&rq->lock);
3e51f33f 5351 update_rq_clock(rq);
f1a438d8 5352 update_cpu_load(rq);
fa85ae24 5353 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5354 spin_unlock(&rq->lock);
7835b98b 5355
e220d2dc
PZ
5356 perf_counter_task_tick(curr, cpu);
5357
e418e1c2 5358#ifdef CONFIG_SMP
dd41f596
IM
5359 rq->idle_at_tick = idle_cpu(cpu);
5360 trigger_load_balance(rq, cpu);
e418e1c2 5361#endif
1da177e4
LT
5362}
5363
132380a0 5364notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5365{
5366 if (in_lock_functions(addr)) {
5367 addr = CALLER_ADDR2;
5368 if (in_lock_functions(addr))
5369 addr = CALLER_ADDR3;
5370 }
5371 return addr;
5372}
1da177e4 5373
7e49fcce
SR
5374#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5375 defined(CONFIG_PREEMPT_TRACER))
5376
43627582 5377void __kprobes add_preempt_count(int val)
1da177e4 5378{
6cd8a4bb 5379#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5380 /*
5381 * Underflow?
5382 */
9a11b49a
IM
5383 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5384 return;
6cd8a4bb 5385#endif
1da177e4 5386 preempt_count() += val;
6cd8a4bb 5387#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5388 /*
5389 * Spinlock count overflowing soon?
5390 */
33859f7f
MOS
5391 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5392 PREEMPT_MASK - 10);
6cd8a4bb
SR
5393#endif
5394 if (preempt_count() == val)
5395 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5396}
5397EXPORT_SYMBOL(add_preempt_count);
5398
43627582 5399void __kprobes sub_preempt_count(int val)
1da177e4 5400{
6cd8a4bb 5401#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5402 /*
5403 * Underflow?
5404 */
01e3eb82 5405 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5406 return;
1da177e4
LT
5407 /*
5408 * Is the spinlock portion underflowing?
5409 */
9a11b49a
IM
5410 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5411 !(preempt_count() & PREEMPT_MASK)))
5412 return;
6cd8a4bb 5413#endif
9a11b49a 5414
6cd8a4bb
SR
5415 if (preempt_count() == val)
5416 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5417 preempt_count() -= val;
5418}
5419EXPORT_SYMBOL(sub_preempt_count);
5420
5421#endif
5422
5423/*
dd41f596 5424 * Print scheduling while atomic bug:
1da177e4 5425 */
dd41f596 5426static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5427{
838225b4
SS
5428 struct pt_regs *regs = get_irq_regs();
5429
5430 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5431 prev->comm, prev->pid, preempt_count());
5432
dd41f596 5433 debug_show_held_locks(prev);
e21f5b15 5434 print_modules();
dd41f596
IM
5435 if (irqs_disabled())
5436 print_irqtrace_events(prev);
838225b4
SS
5437
5438 if (regs)
5439 show_regs(regs);
5440 else
5441 dump_stack();
dd41f596 5442}
1da177e4 5443
dd41f596
IM
5444/*
5445 * Various schedule()-time debugging checks and statistics:
5446 */
5447static inline void schedule_debug(struct task_struct *prev)
5448{
1da177e4 5449 /*
41a2d6cf 5450 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5451 * schedule() atomically, we ignore that path for now.
5452 * Otherwise, whine if we are scheduling when we should not be.
5453 */
3f33a7ce 5454 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5455 __schedule_bug(prev);
5456
1da177e4
LT
5457 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5458
2d72376b 5459 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5460#ifdef CONFIG_SCHEDSTATS
5461 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5462 schedstat_inc(this_rq(), bkl_count);
5463 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5464 }
5465#endif
dd41f596
IM
5466}
5467
df1c99d4
MG
5468static void put_prev_task(struct rq *rq, struct task_struct *prev)
5469{
5470 if (prev->state == TASK_RUNNING) {
5471 u64 runtime = prev->se.sum_exec_runtime;
5472
5473 runtime -= prev->se.prev_sum_exec_runtime;
5474 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5475
5476 /*
5477 * In order to avoid avg_overlap growing stale when we are
5478 * indeed overlapping and hence not getting put to sleep, grow
5479 * the avg_overlap on preemption.
5480 *
5481 * We use the average preemption runtime because that
5482 * correlates to the amount of cache footprint a task can
5483 * build up.
5484 */
5485 update_avg(&prev->se.avg_overlap, runtime);
5486 }
5487 prev->sched_class->put_prev_task(rq, prev);
5488}
5489
dd41f596
IM
5490/*
5491 * Pick up the highest-prio task:
5492 */
5493static inline struct task_struct *
b67802ea 5494pick_next_task(struct rq *rq)
dd41f596 5495{
5522d5d5 5496 const struct sched_class *class;
dd41f596 5497 struct task_struct *p;
1da177e4
LT
5498
5499 /*
dd41f596
IM
5500 * Optimization: we know that if all tasks are in
5501 * the fair class we can call that function directly:
1da177e4 5502 */
dd41f596 5503 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5504 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5505 if (likely(p))
5506 return p;
1da177e4
LT
5507 }
5508
dd41f596
IM
5509 class = sched_class_highest;
5510 for ( ; ; ) {
fb8d4724 5511 p = class->pick_next_task(rq);
dd41f596
IM
5512 if (p)
5513 return p;
5514 /*
5515 * Will never be NULL as the idle class always
5516 * returns a non-NULL p:
5517 */
5518 class = class->next;
5519 }
5520}
1da177e4 5521
dd41f596
IM
5522/*
5523 * schedule() is the main scheduler function.
5524 */
ff743345 5525asmlinkage void __sched schedule(void)
dd41f596
IM
5526{
5527 struct task_struct *prev, *next;
67ca7bde 5528 unsigned long *switch_count;
dd41f596 5529 struct rq *rq;
31656519 5530 int cpu;
dd41f596 5531
ff743345
PZ
5532need_resched:
5533 preempt_disable();
dd41f596
IM
5534 cpu = smp_processor_id();
5535 rq = cpu_rq(cpu);
d6714c22 5536 rcu_sched_qs(cpu);
dd41f596
IM
5537 prev = rq->curr;
5538 switch_count = &prev->nivcsw;
5539
5540 release_kernel_lock(prev);
5541need_resched_nonpreemptible:
5542
5543 schedule_debug(prev);
1da177e4 5544
31656519 5545 if (sched_feat(HRTICK))
f333fdc9 5546 hrtick_clear(rq);
8f4d37ec 5547
8cd162ce 5548 spin_lock_irq(&rq->lock);
3e51f33f 5549 update_rq_clock(rq);
1e819950 5550 clear_tsk_need_resched(prev);
1da177e4 5551
1da177e4 5552 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5553 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5554 prev->state = TASK_RUNNING;
16882c1e 5555 else
2e1cb74a 5556 deactivate_task(rq, prev, 1);
dd41f596 5557 switch_count = &prev->nvcsw;
1da177e4
LT
5558 }
5559
3f029d3c 5560 pre_schedule(rq, prev);
f65eda4f 5561
dd41f596 5562 if (unlikely(!rq->nr_running))
1da177e4 5563 idle_balance(cpu, rq);
1da177e4 5564
df1c99d4 5565 put_prev_task(rq, prev);
b67802ea 5566 next = pick_next_task(rq);
1da177e4 5567
1da177e4 5568 if (likely(prev != next)) {
673a90a1 5569 sched_info_switch(prev, next);
564c2b21 5570 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5571
1da177e4
LT
5572 rq->nr_switches++;
5573 rq->curr = next;
5574 ++*switch_count;
5575
dd41f596 5576 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5577 /*
5578 * the context switch might have flipped the stack from under
5579 * us, hence refresh the local variables.
5580 */
5581 cpu = smp_processor_id();
5582 rq = cpu_rq(cpu);
1da177e4
LT
5583 } else
5584 spin_unlock_irq(&rq->lock);
5585
3f029d3c 5586 post_schedule(rq);
1da177e4 5587
8f4d37ec 5588 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5589 goto need_resched_nonpreemptible;
8f4d37ec 5590
1da177e4 5591 preempt_enable_no_resched();
ff743345 5592 if (need_resched())
1da177e4
LT
5593 goto need_resched;
5594}
1da177e4
LT
5595EXPORT_SYMBOL(schedule);
5596
0d66bf6d
PZ
5597#ifdef CONFIG_SMP
5598/*
5599 * Look out! "owner" is an entirely speculative pointer
5600 * access and not reliable.
5601 */
5602int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5603{
5604 unsigned int cpu;
5605 struct rq *rq;
5606
5607 if (!sched_feat(OWNER_SPIN))
5608 return 0;
5609
5610#ifdef CONFIG_DEBUG_PAGEALLOC
5611 /*
5612 * Need to access the cpu field knowing that
5613 * DEBUG_PAGEALLOC could have unmapped it if
5614 * the mutex owner just released it and exited.
5615 */
5616 if (probe_kernel_address(&owner->cpu, cpu))
5617 goto out;
5618#else
5619 cpu = owner->cpu;
5620#endif
5621
5622 /*
5623 * Even if the access succeeded (likely case),
5624 * the cpu field may no longer be valid.
5625 */
5626 if (cpu >= nr_cpumask_bits)
5627 goto out;
5628
5629 /*
5630 * We need to validate that we can do a
5631 * get_cpu() and that we have the percpu area.
5632 */
5633 if (!cpu_online(cpu))
5634 goto out;
5635
5636 rq = cpu_rq(cpu);
5637
5638 for (;;) {
5639 /*
5640 * Owner changed, break to re-assess state.
5641 */
5642 if (lock->owner != owner)
5643 break;
5644
5645 /*
5646 * Is that owner really running on that cpu?
5647 */
5648 if (task_thread_info(rq->curr) != owner || need_resched())
5649 return 0;
5650
5651 cpu_relax();
5652 }
5653out:
5654 return 1;
5655}
5656#endif
5657
1da177e4
LT
5658#ifdef CONFIG_PREEMPT
5659/*
2ed6e34f 5660 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5661 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5662 * occur there and call schedule directly.
5663 */
5664asmlinkage void __sched preempt_schedule(void)
5665{
5666 struct thread_info *ti = current_thread_info();
6478d880 5667
1da177e4
LT
5668 /*
5669 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5670 * we do not want to preempt the current task. Just return..
1da177e4 5671 */
beed33a8 5672 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5673 return;
5674
3a5c359a
AK
5675 do {
5676 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5677 schedule();
3a5c359a 5678 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5679
3a5c359a
AK
5680 /*
5681 * Check again in case we missed a preemption opportunity
5682 * between schedule and now.
5683 */
5684 barrier();
5ed0cec0 5685 } while (need_resched());
1da177e4 5686}
1da177e4
LT
5687EXPORT_SYMBOL(preempt_schedule);
5688
5689/*
2ed6e34f 5690 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5691 * off of irq context.
5692 * Note, that this is called and return with irqs disabled. This will
5693 * protect us against recursive calling from irq.
5694 */
5695asmlinkage void __sched preempt_schedule_irq(void)
5696{
5697 struct thread_info *ti = current_thread_info();
6478d880 5698
2ed6e34f 5699 /* Catch callers which need to be fixed */
1da177e4
LT
5700 BUG_ON(ti->preempt_count || !irqs_disabled());
5701
3a5c359a
AK
5702 do {
5703 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5704 local_irq_enable();
5705 schedule();
5706 local_irq_disable();
3a5c359a 5707 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5708
3a5c359a
AK
5709 /*
5710 * Check again in case we missed a preemption opportunity
5711 * between schedule and now.
5712 */
5713 barrier();
5ed0cec0 5714 } while (need_resched());
1da177e4
LT
5715}
5716
5717#endif /* CONFIG_PREEMPT */
5718
95cdf3b7
IM
5719int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5720 void *key)
1da177e4 5721{
48f24c4d 5722 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5723}
1da177e4
LT
5724EXPORT_SYMBOL(default_wake_function);
5725
5726/*
41a2d6cf
IM
5727 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5728 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5729 * number) then we wake all the non-exclusive tasks and one exclusive task.
5730 *
5731 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5732 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5733 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5734 */
78ddb08f 5735static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5736 int nr_exclusive, int sync, void *key)
1da177e4 5737{
2e45874c 5738 wait_queue_t *curr, *next;
1da177e4 5739
2e45874c 5740 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5741 unsigned flags = curr->flags;
5742
1da177e4 5743 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5744 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5745 break;
5746 }
5747}
5748
5749/**
5750 * __wake_up - wake up threads blocked on a waitqueue.
5751 * @q: the waitqueue
5752 * @mode: which threads
5753 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5754 * @key: is directly passed to the wakeup function
50fa610a
DH
5755 *
5756 * It may be assumed that this function implies a write memory barrier before
5757 * changing the task state if and only if any tasks are woken up.
1da177e4 5758 */
7ad5b3a5 5759void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5760 int nr_exclusive, void *key)
1da177e4
LT
5761{
5762 unsigned long flags;
5763
5764 spin_lock_irqsave(&q->lock, flags);
5765 __wake_up_common(q, mode, nr_exclusive, 0, key);
5766 spin_unlock_irqrestore(&q->lock, flags);
5767}
1da177e4
LT
5768EXPORT_SYMBOL(__wake_up);
5769
5770/*
5771 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5772 */
7ad5b3a5 5773void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5774{
5775 __wake_up_common(q, mode, 1, 0, NULL);
5776}
5777
4ede816a
DL
5778void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5779{
5780 __wake_up_common(q, mode, 1, 0, key);
5781}
5782
1da177e4 5783/**
4ede816a 5784 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5785 * @q: the waitqueue
5786 * @mode: which threads
5787 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5788 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5789 *
5790 * The sync wakeup differs that the waker knows that it will schedule
5791 * away soon, so while the target thread will be woken up, it will not
5792 * be migrated to another CPU - ie. the two threads are 'synchronized'
5793 * with each other. This can prevent needless bouncing between CPUs.
5794 *
5795 * On UP it can prevent extra preemption.
50fa610a
DH
5796 *
5797 * It may be assumed that this function implies a write memory barrier before
5798 * changing the task state if and only if any tasks are woken up.
1da177e4 5799 */
4ede816a
DL
5800void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5801 int nr_exclusive, void *key)
1da177e4
LT
5802{
5803 unsigned long flags;
5804 int sync = 1;
5805
5806 if (unlikely(!q))
5807 return;
5808
5809 if (unlikely(!nr_exclusive))
5810 sync = 0;
5811
5812 spin_lock_irqsave(&q->lock, flags);
4ede816a 5813 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5814 spin_unlock_irqrestore(&q->lock, flags);
5815}
4ede816a
DL
5816EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5817
5818/*
5819 * __wake_up_sync - see __wake_up_sync_key()
5820 */
5821void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5822{
5823 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5824}
1da177e4
LT
5825EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5826
65eb3dc6
KD
5827/**
5828 * complete: - signals a single thread waiting on this completion
5829 * @x: holds the state of this particular completion
5830 *
5831 * This will wake up a single thread waiting on this completion. Threads will be
5832 * awakened in the same order in which they were queued.
5833 *
5834 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5835 *
5836 * It may be assumed that this function implies a write memory barrier before
5837 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5838 */
b15136e9 5839void complete(struct completion *x)
1da177e4
LT
5840{
5841 unsigned long flags;
5842
5843 spin_lock_irqsave(&x->wait.lock, flags);
5844 x->done++;
d9514f6c 5845 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5846 spin_unlock_irqrestore(&x->wait.lock, flags);
5847}
5848EXPORT_SYMBOL(complete);
5849
65eb3dc6
KD
5850/**
5851 * complete_all: - signals all threads waiting on this completion
5852 * @x: holds the state of this particular completion
5853 *
5854 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5855 *
5856 * It may be assumed that this function implies a write memory barrier before
5857 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5858 */
b15136e9 5859void complete_all(struct completion *x)
1da177e4
LT
5860{
5861 unsigned long flags;
5862
5863 spin_lock_irqsave(&x->wait.lock, flags);
5864 x->done += UINT_MAX/2;
d9514f6c 5865 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5866 spin_unlock_irqrestore(&x->wait.lock, flags);
5867}
5868EXPORT_SYMBOL(complete_all);
5869
8cbbe86d
AK
5870static inline long __sched
5871do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5872{
1da177e4
LT
5873 if (!x->done) {
5874 DECLARE_WAITQUEUE(wait, current);
5875
5876 wait.flags |= WQ_FLAG_EXCLUSIVE;
5877 __add_wait_queue_tail(&x->wait, &wait);
5878 do {
94d3d824 5879 if (signal_pending_state(state, current)) {
ea71a546
ON
5880 timeout = -ERESTARTSYS;
5881 break;
8cbbe86d
AK
5882 }
5883 __set_current_state(state);
1da177e4
LT
5884 spin_unlock_irq(&x->wait.lock);
5885 timeout = schedule_timeout(timeout);
5886 spin_lock_irq(&x->wait.lock);
ea71a546 5887 } while (!x->done && timeout);
1da177e4 5888 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5889 if (!x->done)
5890 return timeout;
1da177e4
LT
5891 }
5892 x->done--;
ea71a546 5893 return timeout ?: 1;
1da177e4 5894}
1da177e4 5895
8cbbe86d
AK
5896static long __sched
5897wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5898{
1da177e4
LT
5899 might_sleep();
5900
5901 spin_lock_irq(&x->wait.lock);
8cbbe86d 5902 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5903 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5904 return timeout;
5905}
1da177e4 5906
65eb3dc6
KD
5907/**
5908 * wait_for_completion: - waits for completion of a task
5909 * @x: holds the state of this particular completion
5910 *
5911 * This waits to be signaled for completion of a specific task. It is NOT
5912 * interruptible and there is no timeout.
5913 *
5914 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5915 * and interrupt capability. Also see complete().
5916 */
b15136e9 5917void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5918{
5919 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5920}
8cbbe86d 5921EXPORT_SYMBOL(wait_for_completion);
1da177e4 5922
65eb3dc6
KD
5923/**
5924 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5925 * @x: holds the state of this particular completion
5926 * @timeout: timeout value in jiffies
5927 *
5928 * This waits for either a completion of a specific task to be signaled or for a
5929 * specified timeout to expire. The timeout is in jiffies. It is not
5930 * interruptible.
5931 */
b15136e9 5932unsigned long __sched
8cbbe86d 5933wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5934{
8cbbe86d 5935 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5936}
8cbbe86d 5937EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5938
65eb3dc6
KD
5939/**
5940 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5941 * @x: holds the state of this particular completion
5942 *
5943 * This waits for completion of a specific task to be signaled. It is
5944 * interruptible.
5945 */
8cbbe86d 5946int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5947{
51e97990
AK
5948 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5949 if (t == -ERESTARTSYS)
5950 return t;
5951 return 0;
0fec171c 5952}
8cbbe86d 5953EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5954
65eb3dc6
KD
5955/**
5956 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5957 * @x: holds the state of this particular completion
5958 * @timeout: timeout value in jiffies
5959 *
5960 * This waits for either a completion of a specific task to be signaled or for a
5961 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5962 */
b15136e9 5963unsigned long __sched
8cbbe86d
AK
5964wait_for_completion_interruptible_timeout(struct completion *x,
5965 unsigned long timeout)
0fec171c 5966{
8cbbe86d 5967 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5968}
8cbbe86d 5969EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5970
65eb3dc6
KD
5971/**
5972 * wait_for_completion_killable: - waits for completion of a task (killable)
5973 * @x: holds the state of this particular completion
5974 *
5975 * This waits to be signaled for completion of a specific task. It can be
5976 * interrupted by a kill signal.
5977 */
009e577e
MW
5978int __sched wait_for_completion_killable(struct completion *x)
5979{
5980 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5981 if (t == -ERESTARTSYS)
5982 return t;
5983 return 0;
5984}
5985EXPORT_SYMBOL(wait_for_completion_killable);
5986
be4de352
DC
5987/**
5988 * try_wait_for_completion - try to decrement a completion without blocking
5989 * @x: completion structure
5990 *
5991 * Returns: 0 if a decrement cannot be done without blocking
5992 * 1 if a decrement succeeded.
5993 *
5994 * If a completion is being used as a counting completion,
5995 * attempt to decrement the counter without blocking. This
5996 * enables us to avoid waiting if the resource the completion
5997 * is protecting is not available.
5998 */
5999bool try_wait_for_completion(struct completion *x)
6000{
6001 int ret = 1;
6002
6003 spin_lock_irq(&x->wait.lock);
6004 if (!x->done)
6005 ret = 0;
6006 else
6007 x->done--;
6008 spin_unlock_irq(&x->wait.lock);
6009 return ret;
6010}
6011EXPORT_SYMBOL(try_wait_for_completion);
6012
6013/**
6014 * completion_done - Test to see if a completion has any waiters
6015 * @x: completion structure
6016 *
6017 * Returns: 0 if there are waiters (wait_for_completion() in progress)
6018 * 1 if there are no waiters.
6019 *
6020 */
6021bool completion_done(struct completion *x)
6022{
6023 int ret = 1;
6024
6025 spin_lock_irq(&x->wait.lock);
6026 if (!x->done)
6027 ret = 0;
6028 spin_unlock_irq(&x->wait.lock);
6029 return ret;
6030}
6031EXPORT_SYMBOL(completion_done);
6032
8cbbe86d
AK
6033static long __sched
6034sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 6035{
0fec171c
IM
6036 unsigned long flags;
6037 wait_queue_t wait;
6038
6039 init_waitqueue_entry(&wait, current);
1da177e4 6040
8cbbe86d 6041 __set_current_state(state);
1da177e4 6042
8cbbe86d
AK
6043 spin_lock_irqsave(&q->lock, flags);
6044 __add_wait_queue(q, &wait);
6045 spin_unlock(&q->lock);
6046 timeout = schedule_timeout(timeout);
6047 spin_lock_irq(&q->lock);
6048 __remove_wait_queue(q, &wait);
6049 spin_unlock_irqrestore(&q->lock, flags);
6050
6051 return timeout;
6052}
6053
6054void __sched interruptible_sleep_on(wait_queue_head_t *q)
6055{
6056 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6057}
1da177e4
LT
6058EXPORT_SYMBOL(interruptible_sleep_on);
6059
0fec171c 6060long __sched
95cdf3b7 6061interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6062{
8cbbe86d 6063 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6064}
1da177e4
LT
6065EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6066
0fec171c 6067void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6068{
8cbbe86d 6069 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6070}
1da177e4
LT
6071EXPORT_SYMBOL(sleep_on);
6072
0fec171c 6073long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6074{
8cbbe86d 6075 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6076}
1da177e4
LT
6077EXPORT_SYMBOL(sleep_on_timeout);
6078
b29739f9
IM
6079#ifdef CONFIG_RT_MUTEXES
6080
6081/*
6082 * rt_mutex_setprio - set the current priority of a task
6083 * @p: task
6084 * @prio: prio value (kernel-internal form)
6085 *
6086 * This function changes the 'effective' priority of a task. It does
6087 * not touch ->normal_prio like __setscheduler().
6088 *
6089 * Used by the rt_mutex code to implement priority inheritance logic.
6090 */
36c8b586 6091void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6092{
6093 unsigned long flags;
83b699ed 6094 int oldprio, on_rq, running;
70b97a7f 6095 struct rq *rq;
cb469845 6096 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6097
6098 BUG_ON(prio < 0 || prio > MAX_PRIO);
6099
6100 rq = task_rq_lock(p, &flags);
a8e504d2 6101 update_rq_clock(rq);
b29739f9 6102
d5f9f942 6103 oldprio = p->prio;
dd41f596 6104 on_rq = p->se.on_rq;
051a1d1a 6105 running = task_current(rq, p);
0e1f3483 6106 if (on_rq)
69be72c1 6107 dequeue_task(rq, p, 0);
0e1f3483
HS
6108 if (running)
6109 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6110
6111 if (rt_prio(prio))
6112 p->sched_class = &rt_sched_class;
6113 else
6114 p->sched_class = &fair_sched_class;
6115
b29739f9
IM
6116 p->prio = prio;
6117
0e1f3483
HS
6118 if (running)
6119 p->sched_class->set_curr_task(rq);
dd41f596 6120 if (on_rq) {
8159f87e 6121 enqueue_task(rq, p, 0);
cb469845
SR
6122
6123 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6124 }
6125 task_rq_unlock(rq, &flags);
6126}
6127
6128#endif
6129
36c8b586 6130void set_user_nice(struct task_struct *p, long nice)
1da177e4 6131{
dd41f596 6132 int old_prio, delta, on_rq;
1da177e4 6133 unsigned long flags;
70b97a7f 6134 struct rq *rq;
1da177e4
LT
6135
6136 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6137 return;
6138 /*
6139 * We have to be careful, if called from sys_setpriority(),
6140 * the task might be in the middle of scheduling on another CPU.
6141 */
6142 rq = task_rq_lock(p, &flags);
a8e504d2 6143 update_rq_clock(rq);
1da177e4
LT
6144 /*
6145 * The RT priorities are set via sched_setscheduler(), but we still
6146 * allow the 'normal' nice value to be set - but as expected
6147 * it wont have any effect on scheduling until the task is
dd41f596 6148 * SCHED_FIFO/SCHED_RR:
1da177e4 6149 */
e05606d3 6150 if (task_has_rt_policy(p)) {
1da177e4
LT
6151 p->static_prio = NICE_TO_PRIO(nice);
6152 goto out_unlock;
6153 }
dd41f596 6154 on_rq = p->se.on_rq;
c09595f6 6155 if (on_rq)
69be72c1 6156 dequeue_task(rq, p, 0);
1da177e4 6157
1da177e4 6158 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6159 set_load_weight(p);
b29739f9
IM
6160 old_prio = p->prio;
6161 p->prio = effective_prio(p);
6162 delta = p->prio - old_prio;
1da177e4 6163
dd41f596 6164 if (on_rq) {
8159f87e 6165 enqueue_task(rq, p, 0);
1da177e4 6166 /*
d5f9f942
AM
6167 * If the task increased its priority or is running and
6168 * lowered its priority, then reschedule its CPU:
1da177e4 6169 */
d5f9f942 6170 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6171 resched_task(rq->curr);
6172 }
6173out_unlock:
6174 task_rq_unlock(rq, &flags);
6175}
1da177e4
LT
6176EXPORT_SYMBOL(set_user_nice);
6177
e43379f1
MM
6178/*
6179 * can_nice - check if a task can reduce its nice value
6180 * @p: task
6181 * @nice: nice value
6182 */
36c8b586 6183int can_nice(const struct task_struct *p, const int nice)
e43379f1 6184{
024f4747
MM
6185 /* convert nice value [19,-20] to rlimit style value [1,40] */
6186 int nice_rlim = 20 - nice;
48f24c4d 6187
e43379f1
MM
6188 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6189 capable(CAP_SYS_NICE));
6190}
6191
1da177e4
LT
6192#ifdef __ARCH_WANT_SYS_NICE
6193
6194/*
6195 * sys_nice - change the priority of the current process.
6196 * @increment: priority increment
6197 *
6198 * sys_setpriority is a more generic, but much slower function that
6199 * does similar things.
6200 */
5add95d4 6201SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6202{
48f24c4d 6203 long nice, retval;
1da177e4
LT
6204
6205 /*
6206 * Setpriority might change our priority at the same moment.
6207 * We don't have to worry. Conceptually one call occurs first
6208 * and we have a single winner.
6209 */
e43379f1
MM
6210 if (increment < -40)
6211 increment = -40;
1da177e4
LT
6212 if (increment > 40)
6213 increment = 40;
6214
2b8f836f 6215 nice = TASK_NICE(current) + increment;
1da177e4
LT
6216 if (nice < -20)
6217 nice = -20;
6218 if (nice > 19)
6219 nice = 19;
6220
e43379f1
MM
6221 if (increment < 0 && !can_nice(current, nice))
6222 return -EPERM;
6223
1da177e4
LT
6224 retval = security_task_setnice(current, nice);
6225 if (retval)
6226 return retval;
6227
6228 set_user_nice(current, nice);
6229 return 0;
6230}
6231
6232#endif
6233
6234/**
6235 * task_prio - return the priority value of a given task.
6236 * @p: the task in question.
6237 *
6238 * This is the priority value as seen by users in /proc.
6239 * RT tasks are offset by -200. Normal tasks are centered
6240 * around 0, value goes from -16 to +15.
6241 */
36c8b586 6242int task_prio(const struct task_struct *p)
1da177e4
LT
6243{
6244 return p->prio - MAX_RT_PRIO;
6245}
6246
6247/**
6248 * task_nice - return the nice value of a given task.
6249 * @p: the task in question.
6250 */
36c8b586 6251int task_nice(const struct task_struct *p)
1da177e4
LT
6252{
6253 return TASK_NICE(p);
6254}
150d8bed 6255EXPORT_SYMBOL(task_nice);
1da177e4
LT
6256
6257/**
6258 * idle_cpu - is a given cpu idle currently?
6259 * @cpu: the processor in question.
6260 */
6261int idle_cpu(int cpu)
6262{
6263 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6264}
6265
1da177e4
LT
6266/**
6267 * idle_task - return the idle task for a given cpu.
6268 * @cpu: the processor in question.
6269 */
36c8b586 6270struct task_struct *idle_task(int cpu)
1da177e4
LT
6271{
6272 return cpu_rq(cpu)->idle;
6273}
6274
6275/**
6276 * find_process_by_pid - find a process with a matching PID value.
6277 * @pid: the pid in question.
6278 */
a9957449 6279static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6280{
228ebcbe 6281 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6282}
6283
6284/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6285static void
6286__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6287{
dd41f596 6288 BUG_ON(p->se.on_rq);
48f24c4d 6289
1da177e4 6290 p->policy = policy;
dd41f596
IM
6291 switch (p->policy) {
6292 case SCHED_NORMAL:
6293 case SCHED_BATCH:
6294 case SCHED_IDLE:
6295 p->sched_class = &fair_sched_class;
6296 break;
6297 case SCHED_FIFO:
6298 case SCHED_RR:
6299 p->sched_class = &rt_sched_class;
6300 break;
6301 }
6302
1da177e4 6303 p->rt_priority = prio;
b29739f9
IM
6304 p->normal_prio = normal_prio(p);
6305 /* we are holding p->pi_lock already */
6306 p->prio = rt_mutex_getprio(p);
2dd73a4f 6307 set_load_weight(p);
1da177e4
LT
6308}
6309
c69e8d9c
DH
6310/*
6311 * check the target process has a UID that matches the current process's
6312 */
6313static bool check_same_owner(struct task_struct *p)
6314{
6315 const struct cred *cred = current_cred(), *pcred;
6316 bool match;
6317
6318 rcu_read_lock();
6319 pcred = __task_cred(p);
6320 match = (cred->euid == pcred->euid ||
6321 cred->euid == pcred->uid);
6322 rcu_read_unlock();
6323 return match;
6324}
6325
961ccddd
RR
6326static int __sched_setscheduler(struct task_struct *p, int policy,
6327 struct sched_param *param, bool user)
1da177e4 6328{
83b699ed 6329 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6330 unsigned long flags;
cb469845 6331 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6332 struct rq *rq;
ca94c442 6333 int reset_on_fork;
1da177e4 6334
66e5393a
SR
6335 /* may grab non-irq protected spin_locks */
6336 BUG_ON(in_interrupt());
1da177e4
LT
6337recheck:
6338 /* double check policy once rq lock held */
ca94c442
LP
6339 if (policy < 0) {
6340 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6341 policy = oldpolicy = p->policy;
ca94c442
LP
6342 } else {
6343 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6344 policy &= ~SCHED_RESET_ON_FORK;
6345
6346 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6347 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6348 policy != SCHED_IDLE)
6349 return -EINVAL;
6350 }
6351
1da177e4
LT
6352 /*
6353 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6354 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6355 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6356 */
6357 if (param->sched_priority < 0 ||
95cdf3b7 6358 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6359 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6360 return -EINVAL;
e05606d3 6361 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6362 return -EINVAL;
6363
37e4ab3f
OC
6364 /*
6365 * Allow unprivileged RT tasks to decrease priority:
6366 */
961ccddd 6367 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6368 if (rt_policy(policy)) {
8dc3e909 6369 unsigned long rlim_rtprio;
8dc3e909
ON
6370
6371 if (!lock_task_sighand(p, &flags))
6372 return -ESRCH;
6373 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6374 unlock_task_sighand(p, &flags);
6375
6376 /* can't set/change the rt policy */
6377 if (policy != p->policy && !rlim_rtprio)
6378 return -EPERM;
6379
6380 /* can't increase priority */
6381 if (param->sched_priority > p->rt_priority &&
6382 param->sched_priority > rlim_rtprio)
6383 return -EPERM;
6384 }
dd41f596
IM
6385 /*
6386 * Like positive nice levels, dont allow tasks to
6387 * move out of SCHED_IDLE either:
6388 */
6389 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6390 return -EPERM;
5fe1d75f 6391
37e4ab3f 6392 /* can't change other user's priorities */
c69e8d9c 6393 if (!check_same_owner(p))
37e4ab3f 6394 return -EPERM;
ca94c442
LP
6395
6396 /* Normal users shall not reset the sched_reset_on_fork flag */
6397 if (p->sched_reset_on_fork && !reset_on_fork)
6398 return -EPERM;
37e4ab3f 6399 }
1da177e4 6400
725aad24 6401 if (user) {
b68aa230 6402#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6403 /*
6404 * Do not allow realtime tasks into groups that have no runtime
6405 * assigned.
6406 */
9a7e0b18
PZ
6407 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6408 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6409 return -EPERM;
b68aa230
PZ
6410#endif
6411
725aad24
JF
6412 retval = security_task_setscheduler(p, policy, param);
6413 if (retval)
6414 return retval;
6415 }
6416
b29739f9
IM
6417 /*
6418 * make sure no PI-waiters arrive (or leave) while we are
6419 * changing the priority of the task:
6420 */
6421 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6422 /*
6423 * To be able to change p->policy safely, the apropriate
6424 * runqueue lock must be held.
6425 */
b29739f9 6426 rq = __task_rq_lock(p);
1da177e4
LT
6427 /* recheck policy now with rq lock held */
6428 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6429 policy = oldpolicy = -1;
b29739f9
IM
6430 __task_rq_unlock(rq);
6431 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6432 goto recheck;
6433 }
2daa3577 6434 update_rq_clock(rq);
dd41f596 6435 on_rq = p->se.on_rq;
051a1d1a 6436 running = task_current(rq, p);
0e1f3483 6437 if (on_rq)
2e1cb74a 6438 deactivate_task(rq, p, 0);
0e1f3483
HS
6439 if (running)
6440 p->sched_class->put_prev_task(rq, p);
f6b53205 6441
ca94c442
LP
6442 p->sched_reset_on_fork = reset_on_fork;
6443
1da177e4 6444 oldprio = p->prio;
dd41f596 6445 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6446
0e1f3483
HS
6447 if (running)
6448 p->sched_class->set_curr_task(rq);
dd41f596
IM
6449 if (on_rq) {
6450 activate_task(rq, p, 0);
cb469845
SR
6451
6452 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6453 }
b29739f9
IM
6454 __task_rq_unlock(rq);
6455 spin_unlock_irqrestore(&p->pi_lock, flags);
6456
95e02ca9
TG
6457 rt_mutex_adjust_pi(p);
6458
1da177e4
LT
6459 return 0;
6460}
961ccddd
RR
6461
6462/**
6463 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6464 * @p: the task in question.
6465 * @policy: new policy.
6466 * @param: structure containing the new RT priority.
6467 *
6468 * NOTE that the task may be already dead.
6469 */
6470int sched_setscheduler(struct task_struct *p, int policy,
6471 struct sched_param *param)
6472{
6473 return __sched_setscheduler(p, policy, param, true);
6474}
1da177e4
LT
6475EXPORT_SYMBOL_GPL(sched_setscheduler);
6476
961ccddd
RR
6477/**
6478 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6479 * @p: the task in question.
6480 * @policy: new policy.
6481 * @param: structure containing the new RT priority.
6482 *
6483 * Just like sched_setscheduler, only don't bother checking if the
6484 * current context has permission. For example, this is needed in
6485 * stop_machine(): we create temporary high priority worker threads,
6486 * but our caller might not have that capability.
6487 */
6488int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6489 struct sched_param *param)
6490{
6491 return __sched_setscheduler(p, policy, param, false);
6492}
6493
95cdf3b7
IM
6494static int
6495do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6496{
1da177e4
LT
6497 struct sched_param lparam;
6498 struct task_struct *p;
36c8b586 6499 int retval;
1da177e4
LT
6500
6501 if (!param || pid < 0)
6502 return -EINVAL;
6503 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6504 return -EFAULT;
5fe1d75f
ON
6505
6506 rcu_read_lock();
6507 retval = -ESRCH;
1da177e4 6508 p = find_process_by_pid(pid);
5fe1d75f
ON
6509 if (p != NULL)
6510 retval = sched_setscheduler(p, policy, &lparam);
6511 rcu_read_unlock();
36c8b586 6512
1da177e4
LT
6513 return retval;
6514}
6515
6516/**
6517 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6518 * @pid: the pid in question.
6519 * @policy: new policy.
6520 * @param: structure containing the new RT priority.
6521 */
5add95d4
HC
6522SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6523 struct sched_param __user *, param)
1da177e4 6524{
c21761f1
JB
6525 /* negative values for policy are not valid */
6526 if (policy < 0)
6527 return -EINVAL;
6528
1da177e4
LT
6529 return do_sched_setscheduler(pid, policy, param);
6530}
6531
6532/**
6533 * sys_sched_setparam - set/change the RT priority of a thread
6534 * @pid: the pid in question.
6535 * @param: structure containing the new RT priority.
6536 */
5add95d4 6537SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6538{
6539 return do_sched_setscheduler(pid, -1, param);
6540}
6541
6542/**
6543 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6544 * @pid: the pid in question.
6545 */
5add95d4 6546SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6547{
36c8b586 6548 struct task_struct *p;
3a5c359a 6549 int retval;
1da177e4
LT
6550
6551 if (pid < 0)
3a5c359a 6552 return -EINVAL;
1da177e4
LT
6553
6554 retval = -ESRCH;
6555 read_lock(&tasklist_lock);
6556 p = find_process_by_pid(pid);
6557 if (p) {
6558 retval = security_task_getscheduler(p);
6559 if (!retval)
ca94c442
LP
6560 retval = p->policy
6561 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6562 }
6563 read_unlock(&tasklist_lock);
1da177e4
LT
6564 return retval;
6565}
6566
6567/**
ca94c442 6568 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6569 * @pid: the pid in question.
6570 * @param: structure containing the RT priority.
6571 */
5add95d4 6572SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6573{
6574 struct sched_param lp;
36c8b586 6575 struct task_struct *p;
3a5c359a 6576 int retval;
1da177e4
LT
6577
6578 if (!param || pid < 0)
3a5c359a 6579 return -EINVAL;
1da177e4
LT
6580
6581 read_lock(&tasklist_lock);
6582 p = find_process_by_pid(pid);
6583 retval = -ESRCH;
6584 if (!p)
6585 goto out_unlock;
6586
6587 retval = security_task_getscheduler(p);
6588 if (retval)
6589 goto out_unlock;
6590
6591 lp.sched_priority = p->rt_priority;
6592 read_unlock(&tasklist_lock);
6593
6594 /*
6595 * This one might sleep, we cannot do it with a spinlock held ...
6596 */
6597 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6598
1da177e4
LT
6599 return retval;
6600
6601out_unlock:
6602 read_unlock(&tasklist_lock);
6603 return retval;
6604}
6605
96f874e2 6606long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6607{
5a16f3d3 6608 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6609 struct task_struct *p;
6610 int retval;
1da177e4 6611
95402b38 6612 get_online_cpus();
1da177e4
LT
6613 read_lock(&tasklist_lock);
6614
6615 p = find_process_by_pid(pid);
6616 if (!p) {
6617 read_unlock(&tasklist_lock);
95402b38 6618 put_online_cpus();
1da177e4
LT
6619 return -ESRCH;
6620 }
6621
6622 /*
6623 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6624 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6625 * usage count and then drop tasklist_lock.
6626 */
6627 get_task_struct(p);
6628 read_unlock(&tasklist_lock);
6629
5a16f3d3
RR
6630 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6631 retval = -ENOMEM;
6632 goto out_put_task;
6633 }
6634 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6635 retval = -ENOMEM;
6636 goto out_free_cpus_allowed;
6637 }
1da177e4 6638 retval = -EPERM;
c69e8d9c 6639 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6640 goto out_unlock;
6641
e7834f8f
DQ
6642 retval = security_task_setscheduler(p, 0, NULL);
6643 if (retval)
6644 goto out_unlock;
6645
5a16f3d3
RR
6646 cpuset_cpus_allowed(p, cpus_allowed);
6647 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6648 again:
5a16f3d3 6649 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6650
8707d8b8 6651 if (!retval) {
5a16f3d3
RR
6652 cpuset_cpus_allowed(p, cpus_allowed);
6653 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6654 /*
6655 * We must have raced with a concurrent cpuset
6656 * update. Just reset the cpus_allowed to the
6657 * cpuset's cpus_allowed
6658 */
5a16f3d3 6659 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6660 goto again;
6661 }
6662 }
1da177e4 6663out_unlock:
5a16f3d3
RR
6664 free_cpumask_var(new_mask);
6665out_free_cpus_allowed:
6666 free_cpumask_var(cpus_allowed);
6667out_put_task:
1da177e4 6668 put_task_struct(p);
95402b38 6669 put_online_cpus();
1da177e4
LT
6670 return retval;
6671}
6672
6673static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6674 struct cpumask *new_mask)
1da177e4 6675{
96f874e2
RR
6676 if (len < cpumask_size())
6677 cpumask_clear(new_mask);
6678 else if (len > cpumask_size())
6679 len = cpumask_size();
6680
1da177e4
LT
6681 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6682}
6683
6684/**
6685 * sys_sched_setaffinity - set the cpu affinity of a process
6686 * @pid: pid of the process
6687 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6688 * @user_mask_ptr: user-space pointer to the new cpu mask
6689 */
5add95d4
HC
6690SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6691 unsigned long __user *, user_mask_ptr)
1da177e4 6692{
5a16f3d3 6693 cpumask_var_t new_mask;
1da177e4
LT
6694 int retval;
6695
5a16f3d3
RR
6696 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6697 return -ENOMEM;
1da177e4 6698
5a16f3d3
RR
6699 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6700 if (retval == 0)
6701 retval = sched_setaffinity(pid, new_mask);
6702 free_cpumask_var(new_mask);
6703 return retval;
1da177e4
LT
6704}
6705
96f874e2 6706long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6707{
36c8b586 6708 struct task_struct *p;
1da177e4 6709 int retval;
1da177e4 6710
95402b38 6711 get_online_cpus();
1da177e4
LT
6712 read_lock(&tasklist_lock);
6713
6714 retval = -ESRCH;
6715 p = find_process_by_pid(pid);
6716 if (!p)
6717 goto out_unlock;
6718
e7834f8f
DQ
6719 retval = security_task_getscheduler(p);
6720 if (retval)
6721 goto out_unlock;
6722
96f874e2 6723 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6724
6725out_unlock:
6726 read_unlock(&tasklist_lock);
95402b38 6727 put_online_cpus();
1da177e4 6728
9531b62f 6729 return retval;
1da177e4
LT
6730}
6731
6732/**
6733 * sys_sched_getaffinity - get the cpu affinity of a process
6734 * @pid: pid of the process
6735 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6736 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6737 */
5add95d4
HC
6738SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6739 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6740{
6741 int ret;
f17c8607 6742 cpumask_var_t mask;
1da177e4 6743
f17c8607 6744 if (len < cpumask_size())
1da177e4
LT
6745 return -EINVAL;
6746
f17c8607
RR
6747 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6748 return -ENOMEM;
1da177e4 6749
f17c8607
RR
6750 ret = sched_getaffinity(pid, mask);
6751 if (ret == 0) {
6752 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6753 ret = -EFAULT;
6754 else
6755 ret = cpumask_size();
6756 }
6757 free_cpumask_var(mask);
1da177e4 6758
f17c8607 6759 return ret;
1da177e4
LT
6760}
6761
6762/**
6763 * sys_sched_yield - yield the current processor to other threads.
6764 *
dd41f596
IM
6765 * This function yields the current CPU to other tasks. If there are no
6766 * other threads running on this CPU then this function will return.
1da177e4 6767 */
5add95d4 6768SYSCALL_DEFINE0(sched_yield)
1da177e4 6769{
70b97a7f 6770 struct rq *rq = this_rq_lock();
1da177e4 6771
2d72376b 6772 schedstat_inc(rq, yld_count);
4530d7ab 6773 current->sched_class->yield_task(rq);
1da177e4
LT
6774
6775 /*
6776 * Since we are going to call schedule() anyway, there's
6777 * no need to preempt or enable interrupts:
6778 */
6779 __release(rq->lock);
8a25d5de 6780 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6781 _raw_spin_unlock(&rq->lock);
6782 preempt_enable_no_resched();
6783
6784 schedule();
6785
6786 return 0;
6787}
6788
d86ee480
PZ
6789static inline int should_resched(void)
6790{
6791 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6792}
6793
e7b38404 6794static void __cond_resched(void)
1da177e4 6795{
e7aaaa69
FW
6796 add_preempt_count(PREEMPT_ACTIVE);
6797 schedule();
6798 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6799}
6800
02b67cc3 6801int __sched _cond_resched(void)
1da177e4 6802{
d86ee480 6803 if (should_resched()) {
1da177e4
LT
6804 __cond_resched();
6805 return 1;
6806 }
6807 return 0;
6808}
02b67cc3 6809EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6810
6811/*
613afbf8 6812 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6813 * call schedule, and on return reacquire the lock.
6814 *
41a2d6cf 6815 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6816 * operations here to prevent schedule() from being called twice (once via
6817 * spin_unlock(), once by hand).
6818 */
613afbf8 6819int __cond_resched_lock(spinlock_t *lock)
1da177e4 6820{
d86ee480 6821 int resched = should_resched();
6df3cecb
JK
6822 int ret = 0;
6823
f607c668
PZ
6824 lockdep_assert_held(lock);
6825
95c354fe 6826 if (spin_needbreak(lock) || resched) {
1da177e4 6827 spin_unlock(lock);
d86ee480 6828 if (resched)
95c354fe
NP
6829 __cond_resched();
6830 else
6831 cpu_relax();
6df3cecb 6832 ret = 1;
1da177e4 6833 spin_lock(lock);
1da177e4 6834 }
6df3cecb 6835 return ret;
1da177e4 6836}
613afbf8 6837EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6838
613afbf8 6839int __sched __cond_resched_softirq(void)
1da177e4
LT
6840{
6841 BUG_ON(!in_softirq());
6842
d86ee480 6843 if (should_resched()) {
98d82567 6844 local_bh_enable();
1da177e4
LT
6845 __cond_resched();
6846 local_bh_disable();
6847 return 1;
6848 }
6849 return 0;
6850}
613afbf8 6851EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6852
1da177e4
LT
6853/**
6854 * yield - yield the current processor to other threads.
6855 *
72fd4a35 6856 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6857 * thread runnable and calls sys_sched_yield().
6858 */
6859void __sched yield(void)
6860{
6861 set_current_state(TASK_RUNNING);
6862 sys_sched_yield();
6863}
1da177e4
LT
6864EXPORT_SYMBOL(yield);
6865
6866/*
41a2d6cf 6867 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6868 * that process accounting knows that this is a task in IO wait state.
6869 *
6870 * But don't do that if it is a deliberate, throttling IO wait (this task
6871 * has set its backing_dev_info: the queue against which it should throttle)
6872 */
6873void __sched io_schedule(void)
6874{
54d35f29 6875 struct rq *rq = raw_rq();
1da177e4 6876
0ff92245 6877 delayacct_blkio_start();
1da177e4 6878 atomic_inc(&rq->nr_iowait);
8f0dfc34 6879 current->in_iowait = 1;
1da177e4 6880 schedule();
8f0dfc34 6881 current->in_iowait = 0;
1da177e4 6882 atomic_dec(&rq->nr_iowait);
0ff92245 6883 delayacct_blkio_end();
1da177e4 6884}
1da177e4
LT
6885EXPORT_SYMBOL(io_schedule);
6886
6887long __sched io_schedule_timeout(long timeout)
6888{
54d35f29 6889 struct rq *rq = raw_rq();
1da177e4
LT
6890 long ret;
6891
0ff92245 6892 delayacct_blkio_start();
1da177e4 6893 atomic_inc(&rq->nr_iowait);
8f0dfc34 6894 current->in_iowait = 1;
1da177e4 6895 ret = schedule_timeout(timeout);
8f0dfc34 6896 current->in_iowait = 0;
1da177e4 6897 atomic_dec(&rq->nr_iowait);
0ff92245 6898 delayacct_blkio_end();
1da177e4
LT
6899 return ret;
6900}
6901
6902/**
6903 * sys_sched_get_priority_max - return maximum RT priority.
6904 * @policy: scheduling class.
6905 *
6906 * this syscall returns the maximum rt_priority that can be used
6907 * by a given scheduling class.
6908 */
5add95d4 6909SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6910{
6911 int ret = -EINVAL;
6912
6913 switch (policy) {
6914 case SCHED_FIFO:
6915 case SCHED_RR:
6916 ret = MAX_USER_RT_PRIO-1;
6917 break;
6918 case SCHED_NORMAL:
b0a9499c 6919 case SCHED_BATCH:
dd41f596 6920 case SCHED_IDLE:
1da177e4
LT
6921 ret = 0;
6922 break;
6923 }
6924 return ret;
6925}
6926
6927/**
6928 * sys_sched_get_priority_min - return minimum RT priority.
6929 * @policy: scheduling class.
6930 *
6931 * this syscall returns the minimum rt_priority that can be used
6932 * by a given scheduling class.
6933 */
5add95d4 6934SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6935{
6936 int ret = -EINVAL;
6937
6938 switch (policy) {
6939 case SCHED_FIFO:
6940 case SCHED_RR:
6941 ret = 1;
6942 break;
6943 case SCHED_NORMAL:
b0a9499c 6944 case SCHED_BATCH:
dd41f596 6945 case SCHED_IDLE:
1da177e4
LT
6946 ret = 0;
6947 }
6948 return ret;
6949}
6950
6951/**
6952 * sys_sched_rr_get_interval - return the default timeslice of a process.
6953 * @pid: pid of the process.
6954 * @interval: userspace pointer to the timeslice value.
6955 *
6956 * this syscall writes the default timeslice value of a given process
6957 * into the user-space timespec buffer. A value of '0' means infinity.
6958 */
17da2bd9 6959SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6960 struct timespec __user *, interval)
1da177e4 6961{
36c8b586 6962 struct task_struct *p;
a4ec24b4 6963 unsigned int time_slice;
3a5c359a 6964 int retval;
1da177e4 6965 struct timespec t;
1da177e4
LT
6966
6967 if (pid < 0)
3a5c359a 6968 return -EINVAL;
1da177e4
LT
6969
6970 retval = -ESRCH;
6971 read_lock(&tasklist_lock);
6972 p = find_process_by_pid(pid);
6973 if (!p)
6974 goto out_unlock;
6975
6976 retval = security_task_getscheduler(p);
6977 if (retval)
6978 goto out_unlock;
6979
77034937
IM
6980 /*
6981 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6982 * tasks that are on an otherwise idle runqueue:
6983 */
6984 time_slice = 0;
6985 if (p->policy == SCHED_RR) {
a4ec24b4 6986 time_slice = DEF_TIMESLICE;
1868f958 6987 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6988 struct sched_entity *se = &p->se;
6989 unsigned long flags;
6990 struct rq *rq;
6991
6992 rq = task_rq_lock(p, &flags);
77034937
IM
6993 if (rq->cfs.load.weight)
6994 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6995 task_rq_unlock(rq, &flags);
6996 }
1da177e4 6997 read_unlock(&tasklist_lock);
a4ec24b4 6998 jiffies_to_timespec(time_slice, &t);
1da177e4 6999 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 7000 return retval;
3a5c359a 7001
1da177e4
LT
7002out_unlock:
7003 read_unlock(&tasklist_lock);
7004 return retval;
7005}
7006
7c731e0a 7007static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 7008
82a1fcb9 7009void sched_show_task(struct task_struct *p)
1da177e4 7010{
1da177e4 7011 unsigned long free = 0;
36c8b586 7012 unsigned state;
1da177e4 7013
1da177e4 7014 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 7015 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 7016 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 7017#if BITS_PER_LONG == 32
1da177e4 7018 if (state == TASK_RUNNING)
cc4ea795 7019 printk(KERN_CONT " running ");
1da177e4 7020 else
cc4ea795 7021 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
7022#else
7023 if (state == TASK_RUNNING)
cc4ea795 7024 printk(KERN_CONT " running task ");
1da177e4 7025 else
cc4ea795 7026 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
7027#endif
7028#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 7029 free = stack_not_used(p);
1da177e4 7030#endif
aa47b7e0
DR
7031 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
7032 task_pid_nr(p), task_pid_nr(p->real_parent),
7033 (unsigned long)task_thread_info(p)->flags);
1da177e4 7034
5fb5e6de 7035 show_stack(p, NULL);
1da177e4
LT
7036}
7037
e59e2ae2 7038void show_state_filter(unsigned long state_filter)
1da177e4 7039{
36c8b586 7040 struct task_struct *g, *p;
1da177e4 7041
4bd77321
IM
7042#if BITS_PER_LONG == 32
7043 printk(KERN_INFO
7044 " task PC stack pid father\n");
1da177e4 7045#else
4bd77321
IM
7046 printk(KERN_INFO
7047 " task PC stack pid father\n");
1da177e4
LT
7048#endif
7049 read_lock(&tasklist_lock);
7050 do_each_thread(g, p) {
7051 /*
7052 * reset the NMI-timeout, listing all files on a slow
7053 * console might take alot of time:
7054 */
7055 touch_nmi_watchdog();
39bc89fd 7056 if (!state_filter || (p->state & state_filter))
82a1fcb9 7057 sched_show_task(p);
1da177e4
LT
7058 } while_each_thread(g, p);
7059
04c9167f
JF
7060 touch_all_softlockup_watchdogs();
7061
dd41f596
IM
7062#ifdef CONFIG_SCHED_DEBUG
7063 sysrq_sched_debug_show();
7064#endif
1da177e4 7065 read_unlock(&tasklist_lock);
e59e2ae2
IM
7066 /*
7067 * Only show locks if all tasks are dumped:
7068 */
7069 if (state_filter == -1)
7070 debug_show_all_locks();
1da177e4
LT
7071}
7072
1df21055
IM
7073void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7074{
dd41f596 7075 idle->sched_class = &idle_sched_class;
1df21055
IM
7076}
7077
f340c0d1
IM
7078/**
7079 * init_idle - set up an idle thread for a given CPU
7080 * @idle: task in question
7081 * @cpu: cpu the idle task belongs to
7082 *
7083 * NOTE: this function does not set the idle thread's NEED_RESCHED
7084 * flag, to make booting more robust.
7085 */
5c1e1767 7086void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7087{
70b97a7f 7088 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7089 unsigned long flags;
7090
5cbd54ef
IM
7091 spin_lock_irqsave(&rq->lock, flags);
7092
dd41f596
IM
7093 __sched_fork(idle);
7094 idle->se.exec_start = sched_clock();
7095
b29739f9 7096 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 7097 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7098 __set_task_cpu(idle, cpu);
1da177e4 7099
1da177e4 7100 rq->curr = rq->idle = idle;
4866cde0
NP
7101#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7102 idle->oncpu = 1;
7103#endif
1da177e4
LT
7104 spin_unlock_irqrestore(&rq->lock, flags);
7105
7106 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7107#if defined(CONFIG_PREEMPT)
7108 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7109#else
a1261f54 7110 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7111#endif
dd41f596
IM
7112 /*
7113 * The idle tasks have their own, simple scheduling class:
7114 */
7115 idle->sched_class = &idle_sched_class;
fb52607a 7116 ftrace_graph_init_task(idle);
1da177e4
LT
7117}
7118
7119/*
7120 * In a system that switches off the HZ timer nohz_cpu_mask
7121 * indicates which cpus entered this state. This is used
7122 * in the rcu update to wait only for active cpus. For system
7123 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7124 * always be CPU_BITS_NONE.
1da177e4 7125 */
6a7b3dc3 7126cpumask_var_t nohz_cpu_mask;
1da177e4 7127
19978ca6
IM
7128/*
7129 * Increase the granularity value when there are more CPUs,
7130 * because with more CPUs the 'effective latency' as visible
7131 * to users decreases. But the relationship is not linear,
7132 * so pick a second-best guess by going with the log2 of the
7133 * number of CPUs.
7134 *
7135 * This idea comes from the SD scheduler of Con Kolivas:
7136 */
7137static inline void sched_init_granularity(void)
7138{
7139 unsigned int factor = 1 + ilog2(num_online_cpus());
7140 const unsigned long limit = 200000000;
7141
7142 sysctl_sched_min_granularity *= factor;
7143 if (sysctl_sched_min_granularity > limit)
7144 sysctl_sched_min_granularity = limit;
7145
7146 sysctl_sched_latency *= factor;
7147 if (sysctl_sched_latency > limit)
7148 sysctl_sched_latency = limit;
7149
7150 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7151
7152 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7153}
7154
1da177e4
LT
7155#ifdef CONFIG_SMP
7156/*
7157 * This is how migration works:
7158 *
70b97a7f 7159 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7160 * runqueue and wake up that CPU's migration thread.
7161 * 2) we down() the locked semaphore => thread blocks.
7162 * 3) migration thread wakes up (implicitly it forces the migrated
7163 * thread off the CPU)
7164 * 4) it gets the migration request and checks whether the migrated
7165 * task is still in the wrong runqueue.
7166 * 5) if it's in the wrong runqueue then the migration thread removes
7167 * it and puts it into the right queue.
7168 * 6) migration thread up()s the semaphore.
7169 * 7) we wake up and the migration is done.
7170 */
7171
7172/*
7173 * Change a given task's CPU affinity. Migrate the thread to a
7174 * proper CPU and schedule it away if the CPU it's executing on
7175 * is removed from the allowed bitmask.
7176 *
7177 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7178 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7179 * call is not atomic; no spinlocks may be held.
7180 */
96f874e2 7181int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7182{
70b97a7f 7183 struct migration_req req;
1da177e4 7184 unsigned long flags;
70b97a7f 7185 struct rq *rq;
48f24c4d 7186 int ret = 0;
1da177e4
LT
7187
7188 rq = task_rq_lock(p, &flags);
96f874e2 7189 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7190 ret = -EINVAL;
7191 goto out;
7192 }
7193
9985b0ba 7194 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7195 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7196 ret = -EINVAL;
7197 goto out;
7198 }
7199
73fe6aae 7200 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7201 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7202 else {
96f874e2
RR
7203 cpumask_copy(&p->cpus_allowed, new_mask);
7204 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7205 }
7206
1da177e4 7207 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7208 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7209 goto out;
7210
1e5ce4f4 7211 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7212 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7213 struct task_struct *mt = rq->migration_thread;
7214
7215 get_task_struct(mt);
1da177e4
LT
7216 task_rq_unlock(rq, &flags);
7217 wake_up_process(rq->migration_thread);
693525e3 7218 put_task_struct(mt);
1da177e4
LT
7219 wait_for_completion(&req.done);
7220 tlb_migrate_finish(p->mm);
7221 return 0;
7222 }
7223out:
7224 task_rq_unlock(rq, &flags);
48f24c4d 7225
1da177e4
LT
7226 return ret;
7227}
cd8ba7cd 7228EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7229
7230/*
41a2d6cf 7231 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7232 * this because either it can't run here any more (set_cpus_allowed()
7233 * away from this CPU, or CPU going down), or because we're
7234 * attempting to rebalance this task on exec (sched_exec).
7235 *
7236 * So we race with normal scheduler movements, but that's OK, as long
7237 * as the task is no longer on this CPU.
efc30814
KK
7238 *
7239 * Returns non-zero if task was successfully migrated.
1da177e4 7240 */
efc30814 7241static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7242{
70b97a7f 7243 struct rq *rq_dest, *rq_src;
dd41f596 7244 int ret = 0, on_rq;
1da177e4 7245
e761b772 7246 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7247 return ret;
1da177e4
LT
7248
7249 rq_src = cpu_rq(src_cpu);
7250 rq_dest = cpu_rq(dest_cpu);
7251
7252 double_rq_lock(rq_src, rq_dest);
7253 /* Already moved. */
7254 if (task_cpu(p) != src_cpu)
b1e38734 7255 goto done;
1da177e4 7256 /* Affinity changed (again). */
96f874e2 7257 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7258 goto fail;
1da177e4 7259
dd41f596 7260 on_rq = p->se.on_rq;
6e82a3be 7261 if (on_rq)
2e1cb74a 7262 deactivate_task(rq_src, p, 0);
6e82a3be 7263
1da177e4 7264 set_task_cpu(p, dest_cpu);
dd41f596
IM
7265 if (on_rq) {
7266 activate_task(rq_dest, p, 0);
15afe09b 7267 check_preempt_curr(rq_dest, p, 0);
1da177e4 7268 }
b1e38734 7269done:
efc30814 7270 ret = 1;
b1e38734 7271fail:
1da177e4 7272 double_rq_unlock(rq_src, rq_dest);
efc30814 7273 return ret;
1da177e4
LT
7274}
7275
03b042bf
PM
7276#define RCU_MIGRATION_IDLE 0
7277#define RCU_MIGRATION_NEED_QS 1
7278#define RCU_MIGRATION_GOT_QS 2
7279#define RCU_MIGRATION_MUST_SYNC 3
7280
1da177e4
LT
7281/*
7282 * migration_thread - this is a highprio system thread that performs
7283 * thread migration by bumping thread off CPU then 'pushing' onto
7284 * another runqueue.
7285 */
95cdf3b7 7286static int migration_thread(void *data)
1da177e4 7287{
03b042bf 7288 int badcpu;
1da177e4 7289 int cpu = (long)data;
70b97a7f 7290 struct rq *rq;
1da177e4
LT
7291
7292 rq = cpu_rq(cpu);
7293 BUG_ON(rq->migration_thread != current);
7294
7295 set_current_state(TASK_INTERRUPTIBLE);
7296 while (!kthread_should_stop()) {
70b97a7f 7297 struct migration_req *req;
1da177e4 7298 struct list_head *head;
1da177e4 7299
1da177e4
LT
7300 spin_lock_irq(&rq->lock);
7301
7302 if (cpu_is_offline(cpu)) {
7303 spin_unlock_irq(&rq->lock);
371cbb38 7304 break;
1da177e4
LT
7305 }
7306
7307 if (rq->active_balance) {
7308 active_load_balance(rq, cpu);
7309 rq->active_balance = 0;
7310 }
7311
7312 head = &rq->migration_queue;
7313
7314 if (list_empty(head)) {
7315 spin_unlock_irq(&rq->lock);
7316 schedule();
7317 set_current_state(TASK_INTERRUPTIBLE);
7318 continue;
7319 }
70b97a7f 7320 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7321 list_del_init(head->next);
7322
03b042bf
PM
7323 if (req->task != NULL) {
7324 spin_unlock(&rq->lock);
7325 __migrate_task(req->task, cpu, req->dest_cpu);
7326 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7327 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7328 spin_unlock(&rq->lock);
7329 } else {
7330 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7331 spin_unlock(&rq->lock);
7332 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7333 }
674311d5 7334 local_irq_enable();
1da177e4
LT
7335
7336 complete(&req->done);
7337 }
7338 __set_current_state(TASK_RUNNING);
1da177e4 7339
1da177e4
LT
7340 return 0;
7341}
7342
7343#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7344
7345static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7346{
7347 int ret;
7348
7349 local_irq_disable();
7350 ret = __migrate_task(p, src_cpu, dest_cpu);
7351 local_irq_enable();
7352 return ret;
7353}
7354
054b9108 7355/*
3a4fa0a2 7356 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7357 */
48f24c4d 7358static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7359{
70b97a7f 7360 int dest_cpu;
6ca09dfc 7361 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7362
7363again:
7364 /* Look for allowed, online CPU in same node. */
7365 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7366 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7367 goto move;
7368
7369 /* Any allowed, online CPU? */
7370 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7371 if (dest_cpu < nr_cpu_ids)
7372 goto move;
7373
7374 /* No more Mr. Nice Guy. */
7375 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7376 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7377 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7378
e76bd8d9
RR
7379 /*
7380 * Don't tell them about moving exiting tasks or
7381 * kernel threads (both mm NULL), since they never
7382 * leave kernel.
7383 */
7384 if (p->mm && printk_ratelimit()) {
7385 printk(KERN_INFO "process %d (%s) no "
7386 "longer affine to cpu%d\n",
7387 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7388 }
e76bd8d9
RR
7389 }
7390
7391move:
7392 /* It can have affinity changed while we were choosing. */
7393 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7394 goto again;
1da177e4
LT
7395}
7396
7397/*
7398 * While a dead CPU has no uninterruptible tasks queued at this point,
7399 * it might still have a nonzero ->nr_uninterruptible counter, because
7400 * for performance reasons the counter is not stricly tracking tasks to
7401 * their home CPUs. So we just add the counter to another CPU's counter,
7402 * to keep the global sum constant after CPU-down:
7403 */
70b97a7f 7404static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7405{
1e5ce4f4 7406 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7407 unsigned long flags;
7408
7409 local_irq_save(flags);
7410 double_rq_lock(rq_src, rq_dest);
7411 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7412 rq_src->nr_uninterruptible = 0;
7413 double_rq_unlock(rq_src, rq_dest);
7414 local_irq_restore(flags);
7415}
7416
7417/* Run through task list and migrate tasks from the dead cpu. */
7418static void migrate_live_tasks(int src_cpu)
7419{
48f24c4d 7420 struct task_struct *p, *t;
1da177e4 7421
f7b4cddc 7422 read_lock(&tasklist_lock);
1da177e4 7423
48f24c4d
IM
7424 do_each_thread(t, p) {
7425 if (p == current)
1da177e4
LT
7426 continue;
7427
48f24c4d
IM
7428 if (task_cpu(p) == src_cpu)
7429 move_task_off_dead_cpu(src_cpu, p);
7430 } while_each_thread(t, p);
1da177e4 7431
f7b4cddc 7432 read_unlock(&tasklist_lock);
1da177e4
LT
7433}
7434
dd41f596
IM
7435/*
7436 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7437 * It does so by boosting its priority to highest possible.
7438 * Used by CPU offline code.
1da177e4
LT
7439 */
7440void sched_idle_next(void)
7441{
48f24c4d 7442 int this_cpu = smp_processor_id();
70b97a7f 7443 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7444 struct task_struct *p = rq->idle;
7445 unsigned long flags;
7446
7447 /* cpu has to be offline */
48f24c4d 7448 BUG_ON(cpu_online(this_cpu));
1da177e4 7449
48f24c4d
IM
7450 /*
7451 * Strictly not necessary since rest of the CPUs are stopped by now
7452 * and interrupts disabled on the current cpu.
1da177e4
LT
7453 */
7454 spin_lock_irqsave(&rq->lock, flags);
7455
dd41f596 7456 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7457
94bc9a7b
DA
7458 update_rq_clock(rq);
7459 activate_task(rq, p, 0);
1da177e4
LT
7460
7461 spin_unlock_irqrestore(&rq->lock, flags);
7462}
7463
48f24c4d
IM
7464/*
7465 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7466 * offline.
7467 */
7468void idle_task_exit(void)
7469{
7470 struct mm_struct *mm = current->active_mm;
7471
7472 BUG_ON(cpu_online(smp_processor_id()));
7473
7474 if (mm != &init_mm)
7475 switch_mm(mm, &init_mm, current);
7476 mmdrop(mm);
7477}
7478
054b9108 7479/* called under rq->lock with disabled interrupts */
36c8b586 7480static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7481{
70b97a7f 7482 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7483
7484 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7485 BUG_ON(!p->exit_state);
1da177e4
LT
7486
7487 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7488 BUG_ON(p->state == TASK_DEAD);
1da177e4 7489
48f24c4d 7490 get_task_struct(p);
1da177e4
LT
7491
7492 /*
7493 * Drop lock around migration; if someone else moves it,
41a2d6cf 7494 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7495 * fine.
7496 */
f7b4cddc 7497 spin_unlock_irq(&rq->lock);
48f24c4d 7498 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7499 spin_lock_irq(&rq->lock);
1da177e4 7500
48f24c4d 7501 put_task_struct(p);
1da177e4
LT
7502}
7503
7504/* release_task() removes task from tasklist, so we won't find dead tasks. */
7505static void migrate_dead_tasks(unsigned int dead_cpu)
7506{
70b97a7f 7507 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7508 struct task_struct *next;
48f24c4d 7509
dd41f596
IM
7510 for ( ; ; ) {
7511 if (!rq->nr_running)
7512 break;
a8e504d2 7513 update_rq_clock(rq);
b67802ea 7514 next = pick_next_task(rq);
dd41f596
IM
7515 if (!next)
7516 break;
79c53799 7517 next->sched_class->put_prev_task(rq, next);
dd41f596 7518 migrate_dead(dead_cpu, next);
e692ab53 7519
1da177e4
LT
7520 }
7521}
dce48a84
TG
7522
7523/*
7524 * remove the tasks which were accounted by rq from calc_load_tasks.
7525 */
7526static void calc_global_load_remove(struct rq *rq)
7527{
7528 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7529 rq->calc_load_active = 0;
dce48a84 7530}
1da177e4
LT
7531#endif /* CONFIG_HOTPLUG_CPU */
7532
e692ab53
NP
7533#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7534
7535static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7536 {
7537 .procname = "sched_domain",
c57baf1e 7538 .mode = 0555,
e0361851 7539 },
38605cae 7540 {0, },
e692ab53
NP
7541};
7542
7543static struct ctl_table sd_ctl_root[] = {
e0361851 7544 {
c57baf1e 7545 .ctl_name = CTL_KERN,
e0361851 7546 .procname = "kernel",
c57baf1e 7547 .mode = 0555,
e0361851
AD
7548 .child = sd_ctl_dir,
7549 },
38605cae 7550 {0, },
e692ab53
NP
7551};
7552
7553static struct ctl_table *sd_alloc_ctl_entry(int n)
7554{
7555 struct ctl_table *entry =
5cf9f062 7556 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7557
e692ab53
NP
7558 return entry;
7559}
7560
6382bc90
MM
7561static void sd_free_ctl_entry(struct ctl_table **tablep)
7562{
cd790076 7563 struct ctl_table *entry;
6382bc90 7564
cd790076
MM
7565 /*
7566 * In the intermediate directories, both the child directory and
7567 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7568 * will always be set. In the lowest directory the names are
cd790076
MM
7569 * static strings and all have proc handlers.
7570 */
7571 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7572 if (entry->child)
7573 sd_free_ctl_entry(&entry->child);
cd790076
MM
7574 if (entry->proc_handler == NULL)
7575 kfree(entry->procname);
7576 }
6382bc90
MM
7577
7578 kfree(*tablep);
7579 *tablep = NULL;
7580}
7581
e692ab53 7582static void
e0361851 7583set_table_entry(struct ctl_table *entry,
e692ab53
NP
7584 const char *procname, void *data, int maxlen,
7585 mode_t mode, proc_handler *proc_handler)
7586{
e692ab53
NP
7587 entry->procname = procname;
7588 entry->data = data;
7589 entry->maxlen = maxlen;
7590 entry->mode = mode;
7591 entry->proc_handler = proc_handler;
7592}
7593
7594static struct ctl_table *
7595sd_alloc_ctl_domain_table(struct sched_domain *sd)
7596{
a5d8c348 7597 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7598
ad1cdc1d
MM
7599 if (table == NULL)
7600 return NULL;
7601
e0361851 7602 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7603 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7604 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7605 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7606 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7607 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7608 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7609 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7610 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7611 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7612 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7613 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7614 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7615 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7616 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7617 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7618 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7619 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7620 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7621 &sd->cache_nice_tries,
7622 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7623 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7624 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7625 set_table_entry(&table[11], "name", sd->name,
7626 CORENAME_MAX_SIZE, 0444, proc_dostring);
7627 /* &table[12] is terminator */
e692ab53
NP
7628
7629 return table;
7630}
7631
9a4e7159 7632static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7633{
7634 struct ctl_table *entry, *table;
7635 struct sched_domain *sd;
7636 int domain_num = 0, i;
7637 char buf[32];
7638
7639 for_each_domain(cpu, sd)
7640 domain_num++;
7641 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7642 if (table == NULL)
7643 return NULL;
e692ab53
NP
7644
7645 i = 0;
7646 for_each_domain(cpu, sd) {
7647 snprintf(buf, 32, "domain%d", i);
e692ab53 7648 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7649 entry->mode = 0555;
e692ab53
NP
7650 entry->child = sd_alloc_ctl_domain_table(sd);
7651 entry++;
7652 i++;
7653 }
7654 return table;
7655}
7656
7657static struct ctl_table_header *sd_sysctl_header;
6382bc90 7658static void register_sched_domain_sysctl(void)
e692ab53
NP
7659{
7660 int i, cpu_num = num_online_cpus();
7661 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7662 char buf[32];
7663
7378547f
MM
7664 WARN_ON(sd_ctl_dir[0].child);
7665 sd_ctl_dir[0].child = entry;
7666
ad1cdc1d
MM
7667 if (entry == NULL)
7668 return;
7669
97b6ea7b 7670 for_each_online_cpu(i) {
e692ab53 7671 snprintf(buf, 32, "cpu%d", i);
e692ab53 7672 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7673 entry->mode = 0555;
e692ab53 7674 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7675 entry++;
e692ab53 7676 }
7378547f
MM
7677
7678 WARN_ON(sd_sysctl_header);
e692ab53
NP
7679 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7680}
6382bc90 7681
7378547f 7682/* may be called multiple times per register */
6382bc90
MM
7683static void unregister_sched_domain_sysctl(void)
7684{
7378547f
MM
7685 if (sd_sysctl_header)
7686 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7687 sd_sysctl_header = NULL;
7378547f
MM
7688 if (sd_ctl_dir[0].child)
7689 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7690}
e692ab53 7691#else
6382bc90
MM
7692static void register_sched_domain_sysctl(void)
7693{
7694}
7695static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7696{
7697}
7698#endif
7699
1f11eb6a
GH
7700static void set_rq_online(struct rq *rq)
7701{
7702 if (!rq->online) {
7703 const struct sched_class *class;
7704
c6c4927b 7705 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7706 rq->online = 1;
7707
7708 for_each_class(class) {
7709 if (class->rq_online)
7710 class->rq_online(rq);
7711 }
7712 }
7713}
7714
7715static void set_rq_offline(struct rq *rq)
7716{
7717 if (rq->online) {
7718 const struct sched_class *class;
7719
7720 for_each_class(class) {
7721 if (class->rq_offline)
7722 class->rq_offline(rq);
7723 }
7724
c6c4927b 7725 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7726 rq->online = 0;
7727 }
7728}
7729
1da177e4
LT
7730/*
7731 * migration_call - callback that gets triggered when a CPU is added.
7732 * Here we can start up the necessary migration thread for the new CPU.
7733 */
48f24c4d
IM
7734static int __cpuinit
7735migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7736{
1da177e4 7737 struct task_struct *p;
48f24c4d 7738 int cpu = (long)hcpu;
1da177e4 7739 unsigned long flags;
70b97a7f 7740 struct rq *rq;
1da177e4
LT
7741
7742 switch (action) {
5be9361c 7743
1da177e4 7744 case CPU_UP_PREPARE:
8bb78442 7745 case CPU_UP_PREPARE_FROZEN:
dd41f596 7746 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7747 if (IS_ERR(p))
7748 return NOTIFY_BAD;
1da177e4
LT
7749 kthread_bind(p, cpu);
7750 /* Must be high prio: stop_machine expects to yield to it. */
7751 rq = task_rq_lock(p, &flags);
dd41f596 7752 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7753 task_rq_unlock(rq, &flags);
371cbb38 7754 get_task_struct(p);
1da177e4 7755 cpu_rq(cpu)->migration_thread = p;
a468d389 7756 rq->calc_load_update = calc_load_update;
1da177e4 7757 break;
48f24c4d 7758
1da177e4 7759 case CPU_ONLINE:
8bb78442 7760 case CPU_ONLINE_FROZEN:
3a4fa0a2 7761 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7762 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7763
7764 /* Update our root-domain */
7765 rq = cpu_rq(cpu);
7766 spin_lock_irqsave(&rq->lock, flags);
7767 if (rq->rd) {
c6c4927b 7768 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7769
7770 set_rq_online(rq);
1f94ef59
GH
7771 }
7772 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7773 break;
48f24c4d 7774
1da177e4
LT
7775#ifdef CONFIG_HOTPLUG_CPU
7776 case CPU_UP_CANCELED:
8bb78442 7777 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7778 if (!cpu_rq(cpu)->migration_thread)
7779 break;
41a2d6cf 7780 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7781 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7782 cpumask_any(cpu_online_mask));
1da177e4 7783 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7784 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7785 cpu_rq(cpu)->migration_thread = NULL;
7786 break;
48f24c4d 7787
1da177e4 7788 case CPU_DEAD:
8bb78442 7789 case CPU_DEAD_FROZEN:
470fd646 7790 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7791 migrate_live_tasks(cpu);
7792 rq = cpu_rq(cpu);
7793 kthread_stop(rq->migration_thread);
371cbb38 7794 put_task_struct(rq->migration_thread);
1da177e4
LT
7795 rq->migration_thread = NULL;
7796 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7797 spin_lock_irq(&rq->lock);
a8e504d2 7798 update_rq_clock(rq);
2e1cb74a 7799 deactivate_task(rq, rq->idle, 0);
1da177e4 7800 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7801 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7802 rq->idle->sched_class = &idle_sched_class;
1da177e4 7803 migrate_dead_tasks(cpu);
d2da272a 7804 spin_unlock_irq(&rq->lock);
470fd646 7805 cpuset_unlock();
1da177e4
LT
7806 migrate_nr_uninterruptible(rq);
7807 BUG_ON(rq->nr_running != 0);
dce48a84 7808 calc_global_load_remove(rq);
41a2d6cf
IM
7809 /*
7810 * No need to migrate the tasks: it was best-effort if
7811 * they didn't take sched_hotcpu_mutex. Just wake up
7812 * the requestors.
7813 */
1da177e4
LT
7814 spin_lock_irq(&rq->lock);
7815 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7816 struct migration_req *req;
7817
1da177e4 7818 req = list_entry(rq->migration_queue.next,
70b97a7f 7819 struct migration_req, list);
1da177e4 7820 list_del_init(&req->list);
9a2bd244 7821 spin_unlock_irq(&rq->lock);
1da177e4 7822 complete(&req->done);
9a2bd244 7823 spin_lock_irq(&rq->lock);
1da177e4
LT
7824 }
7825 spin_unlock_irq(&rq->lock);
7826 break;
57d885fe 7827
08f503b0
GH
7828 case CPU_DYING:
7829 case CPU_DYING_FROZEN:
57d885fe
GH
7830 /* Update our root-domain */
7831 rq = cpu_rq(cpu);
7832 spin_lock_irqsave(&rq->lock, flags);
7833 if (rq->rd) {
c6c4927b 7834 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7835 set_rq_offline(rq);
57d885fe
GH
7836 }
7837 spin_unlock_irqrestore(&rq->lock, flags);
7838 break;
1da177e4
LT
7839#endif
7840 }
7841 return NOTIFY_OK;
7842}
7843
f38b0820
PM
7844/*
7845 * Register at high priority so that task migration (migrate_all_tasks)
7846 * happens before everything else. This has to be lower priority than
7847 * the notifier in the perf_counter subsystem, though.
1da177e4 7848 */
26c2143b 7849static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7850 .notifier_call = migration_call,
7851 .priority = 10
7852};
7853
7babe8db 7854static int __init migration_init(void)
1da177e4
LT
7855{
7856 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7857 int err;
48f24c4d
IM
7858
7859 /* Start one for the boot CPU: */
07dccf33
AM
7860 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7861 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7862 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7863 register_cpu_notifier(&migration_notifier);
7babe8db 7864
a004cd42 7865 return 0;
1da177e4 7866}
7babe8db 7867early_initcall(migration_init);
1da177e4
LT
7868#endif
7869
7870#ifdef CONFIG_SMP
476f3534 7871
3e9830dc 7872#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7873
7c16ec58 7874static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7875 struct cpumask *groupmask)
1da177e4 7876{
4dcf6aff 7877 struct sched_group *group = sd->groups;
434d53b0 7878 char str[256];
1da177e4 7879
968ea6d8 7880 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7881 cpumask_clear(groupmask);
4dcf6aff
IM
7882
7883 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7884
7885 if (!(sd->flags & SD_LOAD_BALANCE)) {
7886 printk("does not load-balance\n");
7887 if (sd->parent)
7888 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7889 " has parent");
7890 return -1;
41c7ce9a
NP
7891 }
7892
eefd796a 7893 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7894
758b2cdc 7895 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7896 printk(KERN_ERR "ERROR: domain->span does not contain "
7897 "CPU%d\n", cpu);
7898 }
758b2cdc 7899 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7900 printk(KERN_ERR "ERROR: domain->groups does not contain"
7901 " CPU%d\n", cpu);
7902 }
1da177e4 7903
4dcf6aff 7904 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7905 do {
4dcf6aff
IM
7906 if (!group) {
7907 printk("\n");
7908 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7909 break;
7910 }
7911
18a3885f 7912 if (!group->cpu_power) {
4dcf6aff
IM
7913 printk(KERN_CONT "\n");
7914 printk(KERN_ERR "ERROR: domain->cpu_power not "
7915 "set\n");
7916 break;
7917 }
1da177e4 7918
758b2cdc 7919 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7920 printk(KERN_CONT "\n");
7921 printk(KERN_ERR "ERROR: empty group\n");
7922 break;
7923 }
1da177e4 7924
758b2cdc 7925 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7926 printk(KERN_CONT "\n");
7927 printk(KERN_ERR "ERROR: repeated CPUs\n");
7928 break;
7929 }
1da177e4 7930
758b2cdc 7931 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7932
968ea6d8 7933 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7934
7935 printk(KERN_CONT " %s", str);
18a3885f
PZ
7936 if (group->cpu_power != SCHED_LOAD_SCALE) {
7937 printk(KERN_CONT " (cpu_power = %d)",
7938 group->cpu_power);
381512cf 7939 }
1da177e4 7940
4dcf6aff
IM
7941 group = group->next;
7942 } while (group != sd->groups);
7943 printk(KERN_CONT "\n");
1da177e4 7944
758b2cdc 7945 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7946 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7947
758b2cdc
RR
7948 if (sd->parent &&
7949 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7950 printk(KERN_ERR "ERROR: parent span is not a superset "
7951 "of domain->span\n");
7952 return 0;
7953}
1da177e4 7954
4dcf6aff
IM
7955static void sched_domain_debug(struct sched_domain *sd, int cpu)
7956{
d5dd3db1 7957 cpumask_var_t groupmask;
4dcf6aff 7958 int level = 0;
1da177e4 7959
4dcf6aff
IM
7960 if (!sd) {
7961 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7962 return;
7963 }
1da177e4 7964
4dcf6aff
IM
7965 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7966
d5dd3db1 7967 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7968 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7969 return;
7970 }
7971
4dcf6aff 7972 for (;;) {
7c16ec58 7973 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7974 break;
1da177e4
LT
7975 level++;
7976 sd = sd->parent;
33859f7f 7977 if (!sd)
4dcf6aff
IM
7978 break;
7979 }
d5dd3db1 7980 free_cpumask_var(groupmask);
1da177e4 7981}
6d6bc0ad 7982#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7983# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7984#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7985
1a20ff27 7986static int sd_degenerate(struct sched_domain *sd)
245af2c7 7987{
758b2cdc 7988 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7989 return 1;
7990
7991 /* Following flags need at least 2 groups */
7992 if (sd->flags & (SD_LOAD_BALANCE |
7993 SD_BALANCE_NEWIDLE |
7994 SD_BALANCE_FORK |
89c4710e
SS
7995 SD_BALANCE_EXEC |
7996 SD_SHARE_CPUPOWER |
7997 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7998 if (sd->groups != sd->groups->next)
7999 return 0;
8000 }
8001
8002 /* Following flags don't use groups */
8003 if (sd->flags & (SD_WAKE_IDLE |
8004 SD_WAKE_AFFINE |
8005 SD_WAKE_BALANCE))
8006 return 0;
8007
8008 return 1;
8009}
8010
48f24c4d
IM
8011static int
8012sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
8013{
8014 unsigned long cflags = sd->flags, pflags = parent->flags;
8015
8016 if (sd_degenerate(parent))
8017 return 1;
8018
758b2cdc 8019 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
8020 return 0;
8021
8022 /* Does parent contain flags not in child? */
8023 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
8024 if (cflags & SD_WAKE_AFFINE)
8025 pflags &= ~SD_WAKE_BALANCE;
8026 /* Flags needing groups don't count if only 1 group in parent */
8027 if (parent->groups == parent->groups->next) {
8028 pflags &= ~(SD_LOAD_BALANCE |
8029 SD_BALANCE_NEWIDLE |
8030 SD_BALANCE_FORK |
89c4710e
SS
8031 SD_BALANCE_EXEC |
8032 SD_SHARE_CPUPOWER |
8033 SD_SHARE_PKG_RESOURCES);
5436499e
KC
8034 if (nr_node_ids == 1)
8035 pflags &= ~SD_SERIALIZE;
245af2c7
SS
8036 }
8037 if (~cflags & pflags)
8038 return 0;
8039
8040 return 1;
8041}
8042
c6c4927b
RR
8043static void free_rootdomain(struct root_domain *rd)
8044{
68e74568
RR
8045 cpupri_cleanup(&rd->cpupri);
8046
c6c4927b
RR
8047 free_cpumask_var(rd->rto_mask);
8048 free_cpumask_var(rd->online);
8049 free_cpumask_var(rd->span);
8050 kfree(rd);
8051}
8052
57d885fe
GH
8053static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8054{
a0490fa3 8055 struct root_domain *old_rd = NULL;
57d885fe 8056 unsigned long flags;
57d885fe
GH
8057
8058 spin_lock_irqsave(&rq->lock, flags);
8059
8060 if (rq->rd) {
a0490fa3 8061 old_rd = rq->rd;
57d885fe 8062
c6c4927b 8063 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8064 set_rq_offline(rq);
57d885fe 8065
c6c4927b 8066 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8067
a0490fa3
IM
8068 /*
8069 * If we dont want to free the old_rt yet then
8070 * set old_rd to NULL to skip the freeing later
8071 * in this function:
8072 */
8073 if (!atomic_dec_and_test(&old_rd->refcount))
8074 old_rd = NULL;
57d885fe
GH
8075 }
8076
8077 atomic_inc(&rd->refcount);
8078 rq->rd = rd;
8079
c6c4927b 8080 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8081 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8082 set_rq_online(rq);
57d885fe
GH
8083
8084 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8085
8086 if (old_rd)
8087 free_rootdomain(old_rd);
57d885fe
GH
8088}
8089
fd5e1b5d 8090static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8091{
36b7b6d4
PE
8092 gfp_t gfp = GFP_KERNEL;
8093
57d885fe
GH
8094 memset(rd, 0, sizeof(*rd));
8095
36b7b6d4
PE
8096 if (bootmem)
8097 gfp = GFP_NOWAIT;
c6c4927b 8098
36b7b6d4 8099 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8100 goto out;
36b7b6d4 8101 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8102 goto free_span;
36b7b6d4 8103 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8104 goto free_online;
6e0534f2 8105
0fb53029 8106 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8107 goto free_rto_mask;
c6c4927b 8108 return 0;
6e0534f2 8109
68e74568
RR
8110free_rto_mask:
8111 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8112free_online:
8113 free_cpumask_var(rd->online);
8114free_span:
8115 free_cpumask_var(rd->span);
0c910d28 8116out:
c6c4927b 8117 return -ENOMEM;
57d885fe
GH
8118}
8119
8120static void init_defrootdomain(void)
8121{
c6c4927b
RR
8122 init_rootdomain(&def_root_domain, true);
8123
57d885fe
GH
8124 atomic_set(&def_root_domain.refcount, 1);
8125}
8126
dc938520 8127static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8128{
8129 struct root_domain *rd;
8130
8131 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8132 if (!rd)
8133 return NULL;
8134
c6c4927b
RR
8135 if (init_rootdomain(rd, false) != 0) {
8136 kfree(rd);
8137 return NULL;
8138 }
57d885fe
GH
8139
8140 return rd;
8141}
8142
1da177e4 8143/*
0eab9146 8144 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8145 * hold the hotplug lock.
8146 */
0eab9146
IM
8147static void
8148cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8149{
70b97a7f 8150 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8151 struct sched_domain *tmp;
8152
8153 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8154 for (tmp = sd; tmp; ) {
245af2c7
SS
8155 struct sched_domain *parent = tmp->parent;
8156 if (!parent)
8157 break;
f29c9b1c 8158
1a848870 8159 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8160 tmp->parent = parent->parent;
1a848870
SS
8161 if (parent->parent)
8162 parent->parent->child = tmp;
f29c9b1c
LZ
8163 } else
8164 tmp = tmp->parent;
245af2c7
SS
8165 }
8166
1a848870 8167 if (sd && sd_degenerate(sd)) {
245af2c7 8168 sd = sd->parent;
1a848870
SS
8169 if (sd)
8170 sd->child = NULL;
8171 }
1da177e4
LT
8172
8173 sched_domain_debug(sd, cpu);
8174
57d885fe 8175 rq_attach_root(rq, rd);
674311d5 8176 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8177}
8178
8179/* cpus with isolated domains */
dcc30a35 8180static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8181
8182/* Setup the mask of cpus configured for isolated domains */
8183static int __init isolated_cpu_setup(char *str)
8184{
968ea6d8 8185 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8186 return 1;
8187}
8188
8927f494 8189__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8190
8191/*
6711cab4
SS
8192 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8193 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8194 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8195 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8196 *
8197 * init_sched_build_groups will build a circular linked list of the groups
8198 * covered by the given span, and will set each group's ->cpumask correctly,
8199 * and ->cpu_power to 0.
8200 */
a616058b 8201static void
96f874e2
RR
8202init_sched_build_groups(const struct cpumask *span,
8203 const struct cpumask *cpu_map,
8204 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8205 struct sched_group **sg,
96f874e2
RR
8206 struct cpumask *tmpmask),
8207 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8208{
8209 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8210 int i;
8211
96f874e2 8212 cpumask_clear(covered);
7c16ec58 8213
abcd083a 8214 for_each_cpu(i, span) {
6711cab4 8215 struct sched_group *sg;
7c16ec58 8216 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8217 int j;
8218
758b2cdc 8219 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8220 continue;
8221
758b2cdc 8222 cpumask_clear(sched_group_cpus(sg));
18a3885f 8223 sg->cpu_power = 0;
1da177e4 8224
abcd083a 8225 for_each_cpu(j, span) {
7c16ec58 8226 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8227 continue;
8228
96f874e2 8229 cpumask_set_cpu(j, covered);
758b2cdc 8230 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8231 }
8232 if (!first)
8233 first = sg;
8234 if (last)
8235 last->next = sg;
8236 last = sg;
8237 }
8238 last->next = first;
8239}
8240
9c1cfda2 8241#define SD_NODES_PER_DOMAIN 16
1da177e4 8242
9c1cfda2 8243#ifdef CONFIG_NUMA
198e2f18 8244
9c1cfda2
JH
8245/**
8246 * find_next_best_node - find the next node to include in a sched_domain
8247 * @node: node whose sched_domain we're building
8248 * @used_nodes: nodes already in the sched_domain
8249 *
41a2d6cf 8250 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8251 * finds the closest node not already in the @used_nodes map.
8252 *
8253 * Should use nodemask_t.
8254 */
c5f59f08 8255static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8256{
8257 int i, n, val, min_val, best_node = 0;
8258
8259 min_val = INT_MAX;
8260
076ac2af 8261 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8262 /* Start at @node */
076ac2af 8263 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8264
8265 if (!nr_cpus_node(n))
8266 continue;
8267
8268 /* Skip already used nodes */
c5f59f08 8269 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8270 continue;
8271
8272 /* Simple min distance search */
8273 val = node_distance(node, n);
8274
8275 if (val < min_val) {
8276 min_val = val;
8277 best_node = n;
8278 }
8279 }
8280
c5f59f08 8281 node_set(best_node, *used_nodes);
9c1cfda2
JH
8282 return best_node;
8283}
8284
8285/**
8286 * sched_domain_node_span - get a cpumask for a node's sched_domain
8287 * @node: node whose cpumask we're constructing
73486722 8288 * @span: resulting cpumask
9c1cfda2 8289 *
41a2d6cf 8290 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8291 * should be one that prevents unnecessary balancing, but also spreads tasks
8292 * out optimally.
8293 */
96f874e2 8294static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8295{
c5f59f08 8296 nodemask_t used_nodes;
48f24c4d 8297 int i;
9c1cfda2 8298
6ca09dfc 8299 cpumask_clear(span);
c5f59f08 8300 nodes_clear(used_nodes);
9c1cfda2 8301
6ca09dfc 8302 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8303 node_set(node, used_nodes);
9c1cfda2
JH
8304
8305 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8306 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8307
6ca09dfc 8308 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8309 }
9c1cfda2 8310}
6d6bc0ad 8311#endif /* CONFIG_NUMA */
9c1cfda2 8312
5c45bf27 8313int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8314
6c99e9ad
RR
8315/*
8316 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8317 *
8318 * ( See the the comments in include/linux/sched.h:struct sched_group
8319 * and struct sched_domain. )
6c99e9ad
RR
8320 */
8321struct static_sched_group {
8322 struct sched_group sg;
8323 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8324};
8325
8326struct static_sched_domain {
8327 struct sched_domain sd;
8328 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8329};
8330
49a02c51
AH
8331struct s_data {
8332#ifdef CONFIG_NUMA
8333 int sd_allnodes;
8334 cpumask_var_t domainspan;
8335 cpumask_var_t covered;
8336 cpumask_var_t notcovered;
8337#endif
8338 cpumask_var_t nodemask;
8339 cpumask_var_t this_sibling_map;
8340 cpumask_var_t this_core_map;
8341 cpumask_var_t send_covered;
8342 cpumask_var_t tmpmask;
8343 struct sched_group **sched_group_nodes;
8344 struct root_domain *rd;
8345};
8346
2109b99e
AH
8347enum s_alloc {
8348 sa_sched_groups = 0,
8349 sa_rootdomain,
8350 sa_tmpmask,
8351 sa_send_covered,
8352 sa_this_core_map,
8353 sa_this_sibling_map,
8354 sa_nodemask,
8355 sa_sched_group_nodes,
8356#ifdef CONFIG_NUMA
8357 sa_notcovered,
8358 sa_covered,
8359 sa_domainspan,
8360#endif
8361 sa_none,
8362};
8363
9c1cfda2 8364/*
48f24c4d 8365 * SMT sched-domains:
9c1cfda2 8366 */
1da177e4 8367#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8368static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8369static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8370
41a2d6cf 8371static int
96f874e2
RR
8372cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8373 struct sched_group **sg, struct cpumask *unused)
1da177e4 8374{
6711cab4 8375 if (sg)
6c99e9ad 8376 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8377 return cpu;
8378}
6d6bc0ad 8379#endif /* CONFIG_SCHED_SMT */
1da177e4 8380
48f24c4d
IM
8381/*
8382 * multi-core sched-domains:
8383 */
1e9f28fa 8384#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8385static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8386static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8387#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8388
8389#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8390static int
96f874e2
RR
8391cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8392 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8393{
6711cab4 8394 int group;
7c16ec58 8395
c69fc56d 8396 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8397 group = cpumask_first(mask);
6711cab4 8398 if (sg)
6c99e9ad 8399 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8400 return group;
1e9f28fa
SS
8401}
8402#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8403static int
96f874e2
RR
8404cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8405 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8406{
6711cab4 8407 if (sg)
6c99e9ad 8408 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8409 return cpu;
8410}
8411#endif
8412
6c99e9ad
RR
8413static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8414static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8415
41a2d6cf 8416static int
96f874e2
RR
8417cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8418 struct sched_group **sg, struct cpumask *mask)
1da177e4 8419{
6711cab4 8420 int group;
48f24c4d 8421#ifdef CONFIG_SCHED_MC
6ca09dfc 8422 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8423 group = cpumask_first(mask);
1e9f28fa 8424#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8425 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8426 group = cpumask_first(mask);
1da177e4 8427#else
6711cab4 8428 group = cpu;
1da177e4 8429#endif
6711cab4 8430 if (sg)
6c99e9ad 8431 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8432 return group;
1da177e4
LT
8433}
8434
8435#ifdef CONFIG_NUMA
1da177e4 8436/*
9c1cfda2
JH
8437 * The init_sched_build_groups can't handle what we want to do with node
8438 * groups, so roll our own. Now each node has its own list of groups which
8439 * gets dynamically allocated.
1da177e4 8440 */
62ea9ceb 8441static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8442static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8443
62ea9ceb 8444static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8445static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8446
96f874e2
RR
8447static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8448 struct sched_group **sg,
8449 struct cpumask *nodemask)
9c1cfda2 8450{
6711cab4
SS
8451 int group;
8452
6ca09dfc 8453 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8454 group = cpumask_first(nodemask);
6711cab4
SS
8455
8456 if (sg)
6c99e9ad 8457 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8458 return group;
1da177e4 8459}
6711cab4 8460
08069033
SS
8461static void init_numa_sched_groups_power(struct sched_group *group_head)
8462{
8463 struct sched_group *sg = group_head;
8464 int j;
8465
8466 if (!sg)
8467 return;
3a5c359a 8468 do {
758b2cdc 8469 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8470 struct sched_domain *sd;
08069033 8471
6c99e9ad 8472 sd = &per_cpu(phys_domains, j).sd;
13318a71 8473 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8474 /*
8475 * Only add "power" once for each
8476 * physical package.
8477 */
8478 continue;
8479 }
08069033 8480
18a3885f 8481 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8482 }
8483 sg = sg->next;
8484 } while (sg != group_head);
08069033 8485}
0601a88d
AH
8486
8487static int build_numa_sched_groups(struct s_data *d,
8488 const struct cpumask *cpu_map, int num)
8489{
8490 struct sched_domain *sd;
8491 struct sched_group *sg, *prev;
8492 int n, j;
8493
8494 cpumask_clear(d->covered);
8495 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8496 if (cpumask_empty(d->nodemask)) {
8497 d->sched_group_nodes[num] = NULL;
8498 goto out;
8499 }
8500
8501 sched_domain_node_span(num, d->domainspan);
8502 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8503
8504 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8505 GFP_KERNEL, num);
8506 if (!sg) {
8507 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8508 num);
8509 return -ENOMEM;
8510 }
8511 d->sched_group_nodes[num] = sg;
8512
8513 for_each_cpu(j, d->nodemask) {
8514 sd = &per_cpu(node_domains, j).sd;
8515 sd->groups = sg;
8516 }
8517
18a3885f 8518 sg->cpu_power = 0;
0601a88d
AH
8519 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8520 sg->next = sg;
8521 cpumask_or(d->covered, d->covered, d->nodemask);
8522
8523 prev = sg;
8524 for (j = 0; j < nr_node_ids; j++) {
8525 n = (num + j) % nr_node_ids;
8526 cpumask_complement(d->notcovered, d->covered);
8527 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8528 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8529 if (cpumask_empty(d->tmpmask))
8530 break;
8531 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8532 if (cpumask_empty(d->tmpmask))
8533 continue;
8534 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8535 GFP_KERNEL, num);
8536 if (!sg) {
8537 printk(KERN_WARNING
8538 "Can not alloc domain group for node %d\n", j);
8539 return -ENOMEM;
8540 }
18a3885f 8541 sg->cpu_power = 0;
0601a88d
AH
8542 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8543 sg->next = prev->next;
8544 cpumask_or(d->covered, d->covered, d->tmpmask);
8545 prev->next = sg;
8546 prev = sg;
8547 }
8548out:
8549 return 0;
8550}
6d6bc0ad 8551#endif /* CONFIG_NUMA */
1da177e4 8552
a616058b 8553#ifdef CONFIG_NUMA
51888ca2 8554/* Free memory allocated for various sched_group structures */
96f874e2
RR
8555static void free_sched_groups(const struct cpumask *cpu_map,
8556 struct cpumask *nodemask)
51888ca2 8557{
a616058b 8558 int cpu, i;
51888ca2 8559
abcd083a 8560 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8561 struct sched_group **sched_group_nodes
8562 = sched_group_nodes_bycpu[cpu];
8563
51888ca2
SV
8564 if (!sched_group_nodes)
8565 continue;
8566
076ac2af 8567 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8568 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8569
6ca09dfc 8570 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8571 if (cpumask_empty(nodemask))
51888ca2
SV
8572 continue;
8573
8574 if (sg == NULL)
8575 continue;
8576 sg = sg->next;
8577next_sg:
8578 oldsg = sg;
8579 sg = sg->next;
8580 kfree(oldsg);
8581 if (oldsg != sched_group_nodes[i])
8582 goto next_sg;
8583 }
8584 kfree(sched_group_nodes);
8585 sched_group_nodes_bycpu[cpu] = NULL;
8586 }
51888ca2 8587}
6d6bc0ad 8588#else /* !CONFIG_NUMA */
96f874e2
RR
8589static void free_sched_groups(const struct cpumask *cpu_map,
8590 struct cpumask *nodemask)
a616058b
SS
8591{
8592}
6d6bc0ad 8593#endif /* CONFIG_NUMA */
51888ca2 8594
89c4710e
SS
8595/*
8596 * Initialize sched groups cpu_power.
8597 *
8598 * cpu_power indicates the capacity of sched group, which is used while
8599 * distributing the load between different sched groups in a sched domain.
8600 * Typically cpu_power for all the groups in a sched domain will be same unless
8601 * there are asymmetries in the topology. If there are asymmetries, group
8602 * having more cpu_power will pickup more load compared to the group having
8603 * less cpu_power.
89c4710e
SS
8604 */
8605static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8606{
8607 struct sched_domain *child;
8608 struct sched_group *group;
f93e65c1
PZ
8609 long power;
8610 int weight;
89c4710e
SS
8611
8612 WARN_ON(!sd || !sd->groups);
8613
13318a71 8614 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8615 return;
8616
8617 child = sd->child;
8618
18a3885f 8619 sd->groups->cpu_power = 0;
5517d86b 8620
f93e65c1
PZ
8621 if (!child) {
8622 power = SCHED_LOAD_SCALE;
8623 weight = cpumask_weight(sched_domain_span(sd));
8624 /*
8625 * SMT siblings share the power of a single core.
a52bfd73
PZ
8626 * Usually multiple threads get a better yield out of
8627 * that one core than a single thread would have,
8628 * reflect that in sd->smt_gain.
f93e65c1 8629 */
a52bfd73
PZ
8630 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8631 power *= sd->smt_gain;
f93e65c1 8632 power /= weight;
a52bfd73
PZ
8633 power >>= SCHED_LOAD_SHIFT;
8634 }
18a3885f 8635 sd->groups->cpu_power += power;
89c4710e
SS
8636 return;
8637 }
8638
89c4710e 8639 /*
f93e65c1 8640 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8641 */
8642 group = child->groups;
8643 do {
18a3885f 8644 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8645 group = group->next;
8646 } while (group != child->groups);
8647}
8648
7c16ec58
MT
8649/*
8650 * Initializers for schedule domains
8651 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8652 */
8653
a5d8c348
IM
8654#ifdef CONFIG_SCHED_DEBUG
8655# define SD_INIT_NAME(sd, type) sd->name = #type
8656#else
8657# define SD_INIT_NAME(sd, type) do { } while (0)
8658#endif
8659
7c16ec58 8660#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8661
7c16ec58
MT
8662#define SD_INIT_FUNC(type) \
8663static noinline void sd_init_##type(struct sched_domain *sd) \
8664{ \
8665 memset(sd, 0, sizeof(*sd)); \
8666 *sd = SD_##type##_INIT; \
1d3504fc 8667 sd->level = SD_LV_##type; \
a5d8c348 8668 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8669}
8670
8671SD_INIT_FUNC(CPU)
8672#ifdef CONFIG_NUMA
8673 SD_INIT_FUNC(ALLNODES)
8674 SD_INIT_FUNC(NODE)
8675#endif
8676#ifdef CONFIG_SCHED_SMT
8677 SD_INIT_FUNC(SIBLING)
8678#endif
8679#ifdef CONFIG_SCHED_MC
8680 SD_INIT_FUNC(MC)
8681#endif
8682
1d3504fc
HS
8683static int default_relax_domain_level = -1;
8684
8685static int __init setup_relax_domain_level(char *str)
8686{
30e0e178
LZ
8687 unsigned long val;
8688
8689 val = simple_strtoul(str, NULL, 0);
8690 if (val < SD_LV_MAX)
8691 default_relax_domain_level = val;
8692
1d3504fc
HS
8693 return 1;
8694}
8695__setup("relax_domain_level=", setup_relax_domain_level);
8696
8697static void set_domain_attribute(struct sched_domain *sd,
8698 struct sched_domain_attr *attr)
8699{
8700 int request;
8701
8702 if (!attr || attr->relax_domain_level < 0) {
8703 if (default_relax_domain_level < 0)
8704 return;
8705 else
8706 request = default_relax_domain_level;
8707 } else
8708 request = attr->relax_domain_level;
8709 if (request < sd->level) {
8710 /* turn off idle balance on this domain */
8711 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8712 } else {
8713 /* turn on idle balance on this domain */
8714 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8715 }
8716}
8717
2109b99e
AH
8718static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8719 const struct cpumask *cpu_map)
8720{
8721 switch (what) {
8722 case sa_sched_groups:
8723 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8724 d->sched_group_nodes = NULL;
8725 case sa_rootdomain:
8726 free_rootdomain(d->rd); /* fall through */
8727 case sa_tmpmask:
8728 free_cpumask_var(d->tmpmask); /* fall through */
8729 case sa_send_covered:
8730 free_cpumask_var(d->send_covered); /* fall through */
8731 case sa_this_core_map:
8732 free_cpumask_var(d->this_core_map); /* fall through */
8733 case sa_this_sibling_map:
8734 free_cpumask_var(d->this_sibling_map); /* fall through */
8735 case sa_nodemask:
8736 free_cpumask_var(d->nodemask); /* fall through */
8737 case sa_sched_group_nodes:
d1b55138 8738#ifdef CONFIG_NUMA
2109b99e
AH
8739 kfree(d->sched_group_nodes); /* fall through */
8740 case sa_notcovered:
8741 free_cpumask_var(d->notcovered); /* fall through */
8742 case sa_covered:
8743 free_cpumask_var(d->covered); /* fall through */
8744 case sa_domainspan:
8745 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8746#endif
2109b99e
AH
8747 case sa_none:
8748 break;
8749 }
8750}
3404c8d9 8751
2109b99e
AH
8752static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8753 const struct cpumask *cpu_map)
8754{
3404c8d9 8755#ifdef CONFIG_NUMA
2109b99e
AH
8756 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8757 return sa_none;
8758 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8759 return sa_domainspan;
8760 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8761 return sa_covered;
8762 /* Allocate the per-node list of sched groups */
8763 d->sched_group_nodes = kcalloc(nr_node_ids,
8764 sizeof(struct sched_group *), GFP_KERNEL);
8765 if (!d->sched_group_nodes) {
d1b55138 8766 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8767 return sa_notcovered;
d1b55138 8768 }
2109b99e 8769 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8770#endif
2109b99e
AH
8771 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8772 return sa_sched_group_nodes;
8773 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8774 return sa_nodemask;
8775 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8776 return sa_this_sibling_map;
8777 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8778 return sa_this_core_map;
8779 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8780 return sa_send_covered;
8781 d->rd = alloc_rootdomain();
8782 if (!d->rd) {
57d885fe 8783 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8784 return sa_tmpmask;
57d885fe 8785 }
2109b99e
AH
8786 return sa_rootdomain;
8787}
57d885fe 8788
7f4588f3
AH
8789static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8790 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8791{
8792 struct sched_domain *sd = NULL;
7c16ec58 8793#ifdef CONFIG_NUMA
7f4588f3 8794 struct sched_domain *parent;
1da177e4 8795
7f4588f3
AH
8796 d->sd_allnodes = 0;
8797 if (cpumask_weight(cpu_map) >
8798 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8799 sd = &per_cpu(allnodes_domains, i).sd;
8800 SD_INIT(sd, ALLNODES);
1d3504fc 8801 set_domain_attribute(sd, attr);
7f4588f3
AH
8802 cpumask_copy(sched_domain_span(sd), cpu_map);
8803 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8804 d->sd_allnodes = 1;
8805 }
8806 parent = sd;
8807
8808 sd = &per_cpu(node_domains, i).sd;
8809 SD_INIT(sd, NODE);
8810 set_domain_attribute(sd, attr);
8811 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8812 sd->parent = parent;
8813 if (parent)
8814 parent->child = sd;
8815 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8816#endif
7f4588f3
AH
8817 return sd;
8818}
1da177e4 8819
87cce662
AH
8820static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8821 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8822 struct sched_domain *parent, int i)
8823{
8824 struct sched_domain *sd;
8825 sd = &per_cpu(phys_domains, i).sd;
8826 SD_INIT(sd, CPU);
8827 set_domain_attribute(sd, attr);
8828 cpumask_copy(sched_domain_span(sd), d->nodemask);
8829 sd->parent = parent;
8830 if (parent)
8831 parent->child = sd;
8832 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8833 return sd;
8834}
1da177e4 8835
410c4081
AH
8836static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8837 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8838 struct sched_domain *parent, int i)
8839{
8840 struct sched_domain *sd = parent;
1e9f28fa 8841#ifdef CONFIG_SCHED_MC
410c4081
AH
8842 sd = &per_cpu(core_domains, i).sd;
8843 SD_INIT(sd, MC);
8844 set_domain_attribute(sd, attr);
8845 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8846 sd->parent = parent;
8847 parent->child = sd;
8848 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8849#endif
410c4081
AH
8850 return sd;
8851}
1e9f28fa 8852
d8173535
AH
8853static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8854 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8855 struct sched_domain *parent, int i)
8856{
8857 struct sched_domain *sd = parent;
1da177e4 8858#ifdef CONFIG_SCHED_SMT
d8173535
AH
8859 sd = &per_cpu(cpu_domains, i).sd;
8860 SD_INIT(sd, SIBLING);
8861 set_domain_attribute(sd, attr);
8862 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8863 sd->parent = parent;
8864 parent->child = sd;
8865 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8866#endif
d8173535
AH
8867 return sd;
8868}
1da177e4 8869
0e8e85c9
AH
8870static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8871 const struct cpumask *cpu_map, int cpu)
8872{
8873 switch (l) {
1da177e4 8874#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8875 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8876 cpumask_and(d->this_sibling_map, cpu_map,
8877 topology_thread_cpumask(cpu));
8878 if (cpu == cpumask_first(d->this_sibling_map))
8879 init_sched_build_groups(d->this_sibling_map, cpu_map,
8880 &cpu_to_cpu_group,
8881 d->send_covered, d->tmpmask);
8882 break;
1da177e4 8883#endif
1e9f28fa 8884#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8885 case SD_LV_MC: /* set up multi-core groups */
8886 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8887 if (cpu == cpumask_first(d->this_core_map))
8888 init_sched_build_groups(d->this_core_map, cpu_map,
8889 &cpu_to_core_group,
8890 d->send_covered, d->tmpmask);
8891 break;
1e9f28fa 8892#endif
86548096
AH
8893 case SD_LV_CPU: /* set up physical groups */
8894 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8895 if (!cpumask_empty(d->nodemask))
8896 init_sched_build_groups(d->nodemask, cpu_map,
8897 &cpu_to_phys_group,
8898 d->send_covered, d->tmpmask);
8899 break;
1da177e4 8900#ifdef CONFIG_NUMA
de616e36
AH
8901 case SD_LV_ALLNODES:
8902 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8903 d->send_covered, d->tmpmask);
8904 break;
8905#endif
0e8e85c9
AH
8906 default:
8907 break;
7c16ec58 8908 }
0e8e85c9 8909}
9c1cfda2 8910
2109b99e
AH
8911/*
8912 * Build sched domains for a given set of cpus and attach the sched domains
8913 * to the individual cpus
8914 */
8915static int __build_sched_domains(const struct cpumask *cpu_map,
8916 struct sched_domain_attr *attr)
8917{
8918 enum s_alloc alloc_state = sa_none;
8919 struct s_data d;
294b0c96 8920 struct sched_domain *sd;
2109b99e 8921 int i;
7c16ec58 8922#ifdef CONFIG_NUMA
2109b99e 8923 d.sd_allnodes = 0;
7c16ec58 8924#endif
9c1cfda2 8925
2109b99e
AH
8926 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8927 if (alloc_state != sa_rootdomain)
8928 goto error;
8929 alloc_state = sa_sched_groups;
9c1cfda2 8930
1da177e4 8931 /*
1a20ff27 8932 * Set up domains for cpus specified by the cpu_map.
1da177e4 8933 */
abcd083a 8934 for_each_cpu(i, cpu_map) {
49a02c51
AH
8935 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8936 cpu_map);
9761eea8 8937
7f4588f3 8938 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8939 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8940 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8941 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8942 }
9c1cfda2 8943
abcd083a 8944 for_each_cpu(i, cpu_map) {
0e8e85c9 8945 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8946 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8947 }
9c1cfda2 8948
1da177e4 8949 /* Set up physical groups */
86548096
AH
8950 for (i = 0; i < nr_node_ids; i++)
8951 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8952
1da177e4
LT
8953#ifdef CONFIG_NUMA
8954 /* Set up node groups */
de616e36
AH
8955 if (d.sd_allnodes)
8956 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8957
0601a88d
AH
8958 for (i = 0; i < nr_node_ids; i++)
8959 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8960 goto error;
1da177e4
LT
8961#endif
8962
8963 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8964#ifdef CONFIG_SCHED_SMT
abcd083a 8965 for_each_cpu(i, cpu_map) {
294b0c96 8966 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8967 init_sched_groups_power(i, sd);
5c45bf27 8968 }
1da177e4 8969#endif
1e9f28fa 8970#ifdef CONFIG_SCHED_MC
abcd083a 8971 for_each_cpu(i, cpu_map) {
294b0c96 8972 sd = &per_cpu(core_domains, i).sd;
89c4710e 8973 init_sched_groups_power(i, sd);
5c45bf27
SS
8974 }
8975#endif
1e9f28fa 8976
abcd083a 8977 for_each_cpu(i, cpu_map) {
294b0c96 8978 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8979 init_sched_groups_power(i, sd);
1da177e4
LT
8980 }
8981
9c1cfda2 8982#ifdef CONFIG_NUMA
076ac2af 8983 for (i = 0; i < nr_node_ids; i++)
49a02c51 8984 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8985
49a02c51 8986 if (d.sd_allnodes) {
6711cab4 8987 struct sched_group *sg;
f712c0c7 8988
96f874e2 8989 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8990 d.tmpmask);
f712c0c7
SS
8991 init_numa_sched_groups_power(sg);
8992 }
9c1cfda2
JH
8993#endif
8994
1da177e4 8995 /* Attach the domains */
abcd083a 8996 for_each_cpu(i, cpu_map) {
1da177e4 8997#ifdef CONFIG_SCHED_SMT
6c99e9ad 8998 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8999#elif defined(CONFIG_SCHED_MC)
6c99e9ad 9000 sd = &per_cpu(core_domains, i).sd;
1da177e4 9001#else
6c99e9ad 9002 sd = &per_cpu(phys_domains, i).sd;
1da177e4 9003#endif
49a02c51 9004 cpu_attach_domain(sd, d.rd, i);
1da177e4 9005 }
51888ca2 9006
2109b99e
AH
9007 d.sched_group_nodes = NULL; /* don't free this we still need it */
9008 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
9009 return 0;
51888ca2 9010
51888ca2 9011error:
2109b99e
AH
9012 __free_domain_allocs(&d, alloc_state, cpu_map);
9013 return -ENOMEM;
1da177e4 9014}
029190c5 9015
96f874e2 9016static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
9017{
9018 return __build_sched_domains(cpu_map, NULL);
9019}
9020
96f874e2 9021static struct cpumask *doms_cur; /* current sched domains */
029190c5 9022static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
9023static struct sched_domain_attr *dattr_cur;
9024 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
9025
9026/*
9027 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
9028 * cpumask) fails, then fallback to a single sched domain,
9029 * as determined by the single cpumask fallback_doms.
029190c5 9030 */
4212823f 9031static cpumask_var_t fallback_doms;
029190c5 9032
ee79d1bd
HC
9033/*
9034 * arch_update_cpu_topology lets virtualized architectures update the
9035 * cpu core maps. It is supposed to return 1 if the topology changed
9036 * or 0 if it stayed the same.
9037 */
9038int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 9039{
ee79d1bd 9040 return 0;
22e52b07
HC
9041}
9042
1a20ff27 9043/*
41a2d6cf 9044 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9045 * For now this just excludes isolated cpus, but could be used to
9046 * exclude other special cases in the future.
1a20ff27 9047 */
96f874e2 9048static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9049{
7378547f
MM
9050 int err;
9051
22e52b07 9052 arch_update_cpu_topology();
029190c5 9053 ndoms_cur = 1;
96f874e2 9054 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 9055 if (!doms_cur)
4212823f 9056 doms_cur = fallback_doms;
dcc30a35 9057 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 9058 dattr_cur = NULL;
7378547f 9059 err = build_sched_domains(doms_cur);
6382bc90 9060 register_sched_domain_sysctl();
7378547f
MM
9061
9062 return err;
1a20ff27
DG
9063}
9064
96f874e2
RR
9065static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9066 struct cpumask *tmpmask)
1da177e4 9067{
7c16ec58 9068 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9069}
1da177e4 9070
1a20ff27
DG
9071/*
9072 * Detach sched domains from a group of cpus specified in cpu_map
9073 * These cpus will now be attached to the NULL domain
9074 */
96f874e2 9075static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9076{
96f874e2
RR
9077 /* Save because hotplug lock held. */
9078 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9079 int i;
9080
abcd083a 9081 for_each_cpu(i, cpu_map)
57d885fe 9082 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9083 synchronize_sched();
96f874e2 9084 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9085}
9086
1d3504fc
HS
9087/* handle null as "default" */
9088static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9089 struct sched_domain_attr *new, int idx_new)
9090{
9091 struct sched_domain_attr tmp;
9092
9093 /* fast path */
9094 if (!new && !cur)
9095 return 1;
9096
9097 tmp = SD_ATTR_INIT;
9098 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9099 new ? (new + idx_new) : &tmp,
9100 sizeof(struct sched_domain_attr));
9101}
9102
029190c5
PJ
9103/*
9104 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9105 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9106 * doms_new[] to the current sched domain partitioning, doms_cur[].
9107 * It destroys each deleted domain and builds each new domain.
9108 *
96f874e2 9109 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
9110 * The masks don't intersect (don't overlap.) We should setup one
9111 * sched domain for each mask. CPUs not in any of the cpumasks will
9112 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9113 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9114 * it as it is.
9115 *
41a2d6cf
IM
9116 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9117 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
9118 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9119 * ndoms_new == 1, and partition_sched_domains() will fallback to
9120 * the single partition 'fallback_doms', it also forces the domains
9121 * to be rebuilt.
029190c5 9122 *
96f874e2 9123 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9124 * ndoms_new == 0 is a special case for destroying existing domains,
9125 * and it will not create the default domain.
dfb512ec 9126 *
029190c5
PJ
9127 * Call with hotplug lock held
9128 */
96f874e2
RR
9129/* FIXME: Change to struct cpumask *doms_new[] */
9130void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 9131 struct sched_domain_attr *dattr_new)
029190c5 9132{
dfb512ec 9133 int i, j, n;
d65bd5ec 9134 int new_topology;
029190c5 9135
712555ee 9136 mutex_lock(&sched_domains_mutex);
a1835615 9137
7378547f
MM
9138 /* always unregister in case we don't destroy any domains */
9139 unregister_sched_domain_sysctl();
9140
d65bd5ec
HC
9141 /* Let architecture update cpu core mappings. */
9142 new_topology = arch_update_cpu_topology();
9143
dfb512ec 9144 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9145
9146 /* Destroy deleted domains */
9147 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9148 for (j = 0; j < n && !new_topology; j++) {
96f874e2 9149 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 9150 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9151 goto match1;
9152 }
9153 /* no match - a current sched domain not in new doms_new[] */
9154 detach_destroy_domains(doms_cur + i);
9155match1:
9156 ;
9157 }
9158
e761b772
MK
9159 if (doms_new == NULL) {
9160 ndoms_cur = 0;
4212823f 9161 doms_new = fallback_doms;
dcc30a35 9162 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9163 WARN_ON_ONCE(dattr_new);
e761b772
MK
9164 }
9165
029190c5
PJ
9166 /* Build new domains */
9167 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9168 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 9169 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9170 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9171 goto match2;
9172 }
9173 /* no match - add a new doms_new */
1d3504fc
HS
9174 __build_sched_domains(doms_new + i,
9175 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9176match2:
9177 ;
9178 }
9179
9180 /* Remember the new sched domains */
4212823f 9181 if (doms_cur != fallback_doms)
029190c5 9182 kfree(doms_cur);
1d3504fc 9183 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9184 doms_cur = doms_new;
1d3504fc 9185 dattr_cur = dattr_new;
029190c5 9186 ndoms_cur = ndoms_new;
7378547f
MM
9187
9188 register_sched_domain_sysctl();
a1835615 9189
712555ee 9190 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9191}
9192
5c45bf27 9193#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9194static void arch_reinit_sched_domains(void)
5c45bf27 9195{
95402b38 9196 get_online_cpus();
dfb512ec
MK
9197
9198 /* Destroy domains first to force the rebuild */
9199 partition_sched_domains(0, NULL, NULL);
9200
e761b772 9201 rebuild_sched_domains();
95402b38 9202 put_online_cpus();
5c45bf27
SS
9203}
9204
9205static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9206{
afb8a9b7 9207 unsigned int level = 0;
5c45bf27 9208
afb8a9b7
GS
9209 if (sscanf(buf, "%u", &level) != 1)
9210 return -EINVAL;
9211
9212 /*
9213 * level is always be positive so don't check for
9214 * level < POWERSAVINGS_BALANCE_NONE which is 0
9215 * What happens on 0 or 1 byte write,
9216 * need to check for count as well?
9217 */
9218
9219 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9220 return -EINVAL;
9221
9222 if (smt)
afb8a9b7 9223 sched_smt_power_savings = level;
5c45bf27 9224 else
afb8a9b7 9225 sched_mc_power_savings = level;
5c45bf27 9226
c70f22d2 9227 arch_reinit_sched_domains();
5c45bf27 9228
c70f22d2 9229 return count;
5c45bf27
SS
9230}
9231
5c45bf27 9232#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9233static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9234 char *page)
5c45bf27
SS
9235{
9236 return sprintf(page, "%u\n", sched_mc_power_savings);
9237}
f718cd4a 9238static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9239 const char *buf, size_t count)
5c45bf27
SS
9240{
9241 return sched_power_savings_store(buf, count, 0);
9242}
f718cd4a
AK
9243static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9244 sched_mc_power_savings_show,
9245 sched_mc_power_savings_store);
5c45bf27
SS
9246#endif
9247
9248#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9249static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9250 char *page)
5c45bf27
SS
9251{
9252 return sprintf(page, "%u\n", sched_smt_power_savings);
9253}
f718cd4a 9254static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9255 const char *buf, size_t count)
5c45bf27
SS
9256{
9257 return sched_power_savings_store(buf, count, 1);
9258}
f718cd4a
AK
9259static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9260 sched_smt_power_savings_show,
6707de00
AB
9261 sched_smt_power_savings_store);
9262#endif
9263
39aac648 9264int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9265{
9266 int err = 0;
9267
9268#ifdef CONFIG_SCHED_SMT
9269 if (smt_capable())
9270 err = sysfs_create_file(&cls->kset.kobj,
9271 &attr_sched_smt_power_savings.attr);
9272#endif
9273#ifdef CONFIG_SCHED_MC
9274 if (!err && mc_capable())
9275 err = sysfs_create_file(&cls->kset.kobj,
9276 &attr_sched_mc_power_savings.attr);
9277#endif
9278 return err;
9279}
6d6bc0ad 9280#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9281
e761b772 9282#ifndef CONFIG_CPUSETS
1da177e4 9283/*
e761b772
MK
9284 * Add online and remove offline CPUs from the scheduler domains.
9285 * When cpusets are enabled they take over this function.
1da177e4
LT
9286 */
9287static int update_sched_domains(struct notifier_block *nfb,
9288 unsigned long action, void *hcpu)
e761b772
MK
9289{
9290 switch (action) {
9291 case CPU_ONLINE:
9292 case CPU_ONLINE_FROZEN:
9293 case CPU_DEAD:
9294 case CPU_DEAD_FROZEN:
dfb512ec 9295 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9296 return NOTIFY_OK;
9297
9298 default:
9299 return NOTIFY_DONE;
9300 }
9301}
9302#endif
9303
9304static int update_runtime(struct notifier_block *nfb,
9305 unsigned long action, void *hcpu)
1da177e4 9306{
7def2be1
PZ
9307 int cpu = (int)(long)hcpu;
9308
1da177e4 9309 switch (action) {
1da177e4 9310 case CPU_DOWN_PREPARE:
8bb78442 9311 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9312 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9313 return NOTIFY_OK;
9314
1da177e4 9315 case CPU_DOWN_FAILED:
8bb78442 9316 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9317 case CPU_ONLINE:
8bb78442 9318 case CPU_ONLINE_FROZEN:
7def2be1 9319 enable_runtime(cpu_rq(cpu));
e761b772
MK
9320 return NOTIFY_OK;
9321
1da177e4
LT
9322 default:
9323 return NOTIFY_DONE;
9324 }
1da177e4 9325}
1da177e4
LT
9326
9327void __init sched_init_smp(void)
9328{
dcc30a35
RR
9329 cpumask_var_t non_isolated_cpus;
9330
9331 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9332
434d53b0
MT
9333#if defined(CONFIG_NUMA)
9334 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9335 GFP_KERNEL);
9336 BUG_ON(sched_group_nodes_bycpu == NULL);
9337#endif
95402b38 9338 get_online_cpus();
712555ee 9339 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9340 arch_init_sched_domains(cpu_online_mask);
9341 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9342 if (cpumask_empty(non_isolated_cpus))
9343 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9344 mutex_unlock(&sched_domains_mutex);
95402b38 9345 put_online_cpus();
e761b772
MK
9346
9347#ifndef CONFIG_CPUSETS
1da177e4
LT
9348 /* XXX: Theoretical race here - CPU may be hotplugged now */
9349 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9350#endif
9351
9352 /* RT runtime code needs to handle some hotplug events */
9353 hotcpu_notifier(update_runtime, 0);
9354
b328ca18 9355 init_hrtick();
5c1e1767
NP
9356
9357 /* Move init over to a non-isolated CPU */
dcc30a35 9358 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9359 BUG();
19978ca6 9360 sched_init_granularity();
dcc30a35 9361 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9362
9363 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9364 init_sched_rt_class();
1da177e4
LT
9365}
9366#else
9367void __init sched_init_smp(void)
9368{
19978ca6 9369 sched_init_granularity();
1da177e4
LT
9370}
9371#endif /* CONFIG_SMP */
9372
cd1bb94b
AB
9373const_debug unsigned int sysctl_timer_migration = 1;
9374
1da177e4
LT
9375int in_sched_functions(unsigned long addr)
9376{
1da177e4
LT
9377 return in_lock_functions(addr) ||
9378 (addr >= (unsigned long)__sched_text_start
9379 && addr < (unsigned long)__sched_text_end);
9380}
9381
a9957449 9382static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9383{
9384 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9385 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9386#ifdef CONFIG_FAIR_GROUP_SCHED
9387 cfs_rq->rq = rq;
9388#endif
67e9fb2a 9389 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9390}
9391
fa85ae24
PZ
9392static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9393{
9394 struct rt_prio_array *array;
9395 int i;
9396
9397 array = &rt_rq->active;
9398 for (i = 0; i < MAX_RT_PRIO; i++) {
9399 INIT_LIST_HEAD(array->queue + i);
9400 __clear_bit(i, array->bitmap);
9401 }
9402 /* delimiter for bitsearch: */
9403 __set_bit(MAX_RT_PRIO, array->bitmap);
9404
052f1dc7 9405#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9406 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9407#ifdef CONFIG_SMP
e864c499 9408 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9409#endif
48d5e258 9410#endif
fa85ae24
PZ
9411#ifdef CONFIG_SMP
9412 rt_rq->rt_nr_migratory = 0;
fa85ae24 9413 rt_rq->overloaded = 0;
c20b08e3 9414 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9415#endif
9416
9417 rt_rq->rt_time = 0;
9418 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9419 rt_rq->rt_runtime = 0;
9420 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9421
052f1dc7 9422#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9423 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9424 rt_rq->rq = rq;
9425#endif
fa85ae24
PZ
9426}
9427
6f505b16 9428#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9429static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9430 struct sched_entity *se, int cpu, int add,
9431 struct sched_entity *parent)
6f505b16 9432{
ec7dc8ac 9433 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9434 tg->cfs_rq[cpu] = cfs_rq;
9435 init_cfs_rq(cfs_rq, rq);
9436 cfs_rq->tg = tg;
9437 if (add)
9438 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9439
9440 tg->se[cpu] = se;
354d60c2
DG
9441 /* se could be NULL for init_task_group */
9442 if (!se)
9443 return;
9444
ec7dc8ac
DG
9445 if (!parent)
9446 se->cfs_rq = &rq->cfs;
9447 else
9448 se->cfs_rq = parent->my_q;
9449
6f505b16
PZ
9450 se->my_q = cfs_rq;
9451 se->load.weight = tg->shares;
e05510d0 9452 se->load.inv_weight = 0;
ec7dc8ac 9453 se->parent = parent;
6f505b16 9454}
052f1dc7 9455#endif
6f505b16 9456
052f1dc7 9457#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9458static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9459 struct sched_rt_entity *rt_se, int cpu, int add,
9460 struct sched_rt_entity *parent)
6f505b16 9461{
ec7dc8ac
DG
9462 struct rq *rq = cpu_rq(cpu);
9463
6f505b16
PZ
9464 tg->rt_rq[cpu] = rt_rq;
9465 init_rt_rq(rt_rq, rq);
9466 rt_rq->tg = tg;
9467 rt_rq->rt_se = rt_se;
ac086bc2 9468 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9469 if (add)
9470 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9471
9472 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9473 if (!rt_se)
9474 return;
9475
ec7dc8ac
DG
9476 if (!parent)
9477 rt_se->rt_rq = &rq->rt;
9478 else
9479 rt_se->rt_rq = parent->my_q;
9480
6f505b16 9481 rt_se->my_q = rt_rq;
ec7dc8ac 9482 rt_se->parent = parent;
6f505b16
PZ
9483 INIT_LIST_HEAD(&rt_se->run_list);
9484}
9485#endif
9486
1da177e4
LT
9487void __init sched_init(void)
9488{
dd41f596 9489 int i, j;
434d53b0
MT
9490 unsigned long alloc_size = 0, ptr;
9491
9492#ifdef CONFIG_FAIR_GROUP_SCHED
9493 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9494#endif
9495#ifdef CONFIG_RT_GROUP_SCHED
9496 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9497#endif
9498#ifdef CONFIG_USER_SCHED
9499 alloc_size *= 2;
df7c8e84
RR
9500#endif
9501#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9502 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9503#endif
9504 /*
9505 * As sched_init() is called before page_alloc is setup,
9506 * we use alloc_bootmem().
9507 */
9508 if (alloc_size) {
36b7b6d4 9509 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9510
9511#ifdef CONFIG_FAIR_GROUP_SCHED
9512 init_task_group.se = (struct sched_entity **)ptr;
9513 ptr += nr_cpu_ids * sizeof(void **);
9514
9515 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9516 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9517
9518#ifdef CONFIG_USER_SCHED
9519 root_task_group.se = (struct sched_entity **)ptr;
9520 ptr += nr_cpu_ids * sizeof(void **);
9521
9522 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9523 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9524#endif /* CONFIG_USER_SCHED */
9525#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9526#ifdef CONFIG_RT_GROUP_SCHED
9527 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9528 ptr += nr_cpu_ids * sizeof(void **);
9529
9530 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9531 ptr += nr_cpu_ids * sizeof(void **);
9532
9533#ifdef CONFIG_USER_SCHED
9534 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9535 ptr += nr_cpu_ids * sizeof(void **);
9536
9537 root_task_group.rt_rq = (struct rt_rq **)ptr;
9538 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9539#endif /* CONFIG_USER_SCHED */
9540#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9541#ifdef CONFIG_CPUMASK_OFFSTACK
9542 for_each_possible_cpu(i) {
9543 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9544 ptr += cpumask_size();
9545 }
9546#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9547 }
dd41f596 9548
57d885fe
GH
9549#ifdef CONFIG_SMP
9550 init_defrootdomain();
9551#endif
9552
d0b27fa7
PZ
9553 init_rt_bandwidth(&def_rt_bandwidth,
9554 global_rt_period(), global_rt_runtime());
9555
9556#ifdef CONFIG_RT_GROUP_SCHED
9557 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9558 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9559#ifdef CONFIG_USER_SCHED
9560 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9561 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9562#endif /* CONFIG_USER_SCHED */
9563#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9564
052f1dc7 9565#ifdef CONFIG_GROUP_SCHED
6f505b16 9566 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9567 INIT_LIST_HEAD(&init_task_group.children);
9568
9569#ifdef CONFIG_USER_SCHED
9570 INIT_LIST_HEAD(&root_task_group.children);
9571 init_task_group.parent = &root_task_group;
9572 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9573#endif /* CONFIG_USER_SCHED */
9574#endif /* CONFIG_GROUP_SCHED */
6f505b16 9575
0a945022 9576 for_each_possible_cpu(i) {
70b97a7f 9577 struct rq *rq;
1da177e4
LT
9578
9579 rq = cpu_rq(i);
9580 spin_lock_init(&rq->lock);
7897986b 9581 rq->nr_running = 0;
dce48a84
TG
9582 rq->calc_load_active = 0;
9583 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9584 init_cfs_rq(&rq->cfs, rq);
6f505b16 9585 init_rt_rq(&rq->rt, rq);
dd41f596 9586#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9587 init_task_group.shares = init_task_group_load;
6f505b16 9588 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9589#ifdef CONFIG_CGROUP_SCHED
9590 /*
9591 * How much cpu bandwidth does init_task_group get?
9592 *
9593 * In case of task-groups formed thr' the cgroup filesystem, it
9594 * gets 100% of the cpu resources in the system. This overall
9595 * system cpu resource is divided among the tasks of
9596 * init_task_group and its child task-groups in a fair manner,
9597 * based on each entity's (task or task-group's) weight
9598 * (se->load.weight).
9599 *
9600 * In other words, if init_task_group has 10 tasks of weight
9601 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9602 * then A0's share of the cpu resource is:
9603 *
0d905bca 9604 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9605 *
9606 * We achieve this by letting init_task_group's tasks sit
9607 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9608 */
ec7dc8ac 9609 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9610#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9611 root_task_group.shares = NICE_0_LOAD;
9612 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9613 /*
9614 * In case of task-groups formed thr' the user id of tasks,
9615 * init_task_group represents tasks belonging to root user.
9616 * Hence it forms a sibling of all subsequent groups formed.
9617 * In this case, init_task_group gets only a fraction of overall
9618 * system cpu resource, based on the weight assigned to root
9619 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9620 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9621 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9622 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9623 */
ec7dc8ac 9624 init_tg_cfs_entry(&init_task_group,
84e9dabf 9625 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9626 &per_cpu(init_sched_entity, i), i, 1,
9627 root_task_group.se[i]);
6f505b16 9628
052f1dc7 9629#endif
354d60c2
DG
9630#endif /* CONFIG_FAIR_GROUP_SCHED */
9631
9632 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9633#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9634 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9635#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9636 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9637#elif defined CONFIG_USER_SCHED
eff766a6 9638 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9639 init_tg_rt_entry(&init_task_group,
6f505b16 9640 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9641 &per_cpu(init_sched_rt_entity, i), i, 1,
9642 root_task_group.rt_se[i]);
354d60c2 9643#endif
dd41f596 9644#endif
1da177e4 9645
dd41f596
IM
9646 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9647 rq->cpu_load[j] = 0;
1da177e4 9648#ifdef CONFIG_SMP
41c7ce9a 9649 rq->sd = NULL;
57d885fe 9650 rq->rd = NULL;
3f029d3c 9651 rq->post_schedule = 0;
1da177e4 9652 rq->active_balance = 0;
dd41f596 9653 rq->next_balance = jiffies;
1da177e4 9654 rq->push_cpu = 0;
0a2966b4 9655 rq->cpu = i;
1f11eb6a 9656 rq->online = 0;
1da177e4
LT
9657 rq->migration_thread = NULL;
9658 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9659 rq_attach_root(rq, &def_root_domain);
1da177e4 9660#endif
8f4d37ec 9661 init_rq_hrtick(rq);
1da177e4 9662 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9663 }
9664
2dd73a4f 9665 set_load_weight(&init_task);
b50f60ce 9666
e107be36
AK
9667#ifdef CONFIG_PREEMPT_NOTIFIERS
9668 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9669#endif
9670
c9819f45 9671#ifdef CONFIG_SMP
962cf36c 9672 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9673#endif
9674
b50f60ce
HC
9675#ifdef CONFIG_RT_MUTEXES
9676 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9677#endif
9678
1da177e4
LT
9679 /*
9680 * The boot idle thread does lazy MMU switching as well:
9681 */
9682 atomic_inc(&init_mm.mm_count);
9683 enter_lazy_tlb(&init_mm, current);
9684
9685 /*
9686 * Make us the idle thread. Technically, schedule() should not be
9687 * called from this thread, however somewhere below it might be,
9688 * but because we are the idle thread, we just pick up running again
9689 * when this runqueue becomes "idle".
9690 */
9691 init_idle(current, smp_processor_id());
dce48a84
TG
9692
9693 calc_load_update = jiffies + LOAD_FREQ;
9694
dd41f596
IM
9695 /*
9696 * During early bootup we pretend to be a normal task:
9697 */
9698 current->sched_class = &fair_sched_class;
6892b75e 9699
6a7b3dc3 9700 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9701 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9702#ifdef CONFIG_SMP
7d1e6a9b 9703#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9704 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9705 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9706#endif
4bdddf8f 9707 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9708#endif /* SMP */
6a7b3dc3 9709
0d905bca
IM
9710 perf_counter_init();
9711
6892b75e 9712 scheduler_running = 1;
1da177e4
LT
9713}
9714
9715#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9716static inline int preempt_count_equals(int preempt_offset)
9717{
9718 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9719
9720 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9721}
9722
9723void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9724{
48f24c4d 9725#ifdef in_atomic
1da177e4
LT
9726 static unsigned long prev_jiffy; /* ratelimiting */
9727
e4aafea2
FW
9728 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9729 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9730 return;
9731 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9732 return;
9733 prev_jiffy = jiffies;
9734
9735 printk(KERN_ERR
9736 "BUG: sleeping function called from invalid context at %s:%d\n",
9737 file, line);
9738 printk(KERN_ERR
9739 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9740 in_atomic(), irqs_disabled(),
9741 current->pid, current->comm);
9742
9743 debug_show_held_locks(current);
9744 if (irqs_disabled())
9745 print_irqtrace_events(current);
9746 dump_stack();
1da177e4
LT
9747#endif
9748}
9749EXPORT_SYMBOL(__might_sleep);
9750#endif
9751
9752#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9753static void normalize_task(struct rq *rq, struct task_struct *p)
9754{
9755 int on_rq;
3e51f33f 9756
3a5e4dc1
AK
9757 update_rq_clock(rq);
9758 on_rq = p->se.on_rq;
9759 if (on_rq)
9760 deactivate_task(rq, p, 0);
9761 __setscheduler(rq, p, SCHED_NORMAL, 0);
9762 if (on_rq) {
9763 activate_task(rq, p, 0);
9764 resched_task(rq->curr);
9765 }
9766}
9767
1da177e4
LT
9768void normalize_rt_tasks(void)
9769{
a0f98a1c 9770 struct task_struct *g, *p;
1da177e4 9771 unsigned long flags;
70b97a7f 9772 struct rq *rq;
1da177e4 9773
4cf5d77a 9774 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9775 do_each_thread(g, p) {
178be793
IM
9776 /*
9777 * Only normalize user tasks:
9778 */
9779 if (!p->mm)
9780 continue;
9781
6cfb0d5d 9782 p->se.exec_start = 0;
6cfb0d5d 9783#ifdef CONFIG_SCHEDSTATS
dd41f596 9784 p->se.wait_start = 0;
dd41f596 9785 p->se.sleep_start = 0;
dd41f596 9786 p->se.block_start = 0;
6cfb0d5d 9787#endif
dd41f596
IM
9788
9789 if (!rt_task(p)) {
9790 /*
9791 * Renice negative nice level userspace
9792 * tasks back to 0:
9793 */
9794 if (TASK_NICE(p) < 0 && p->mm)
9795 set_user_nice(p, 0);
1da177e4 9796 continue;
dd41f596 9797 }
1da177e4 9798
4cf5d77a 9799 spin_lock(&p->pi_lock);
b29739f9 9800 rq = __task_rq_lock(p);
1da177e4 9801
178be793 9802 normalize_task(rq, p);
3a5e4dc1 9803
b29739f9 9804 __task_rq_unlock(rq);
4cf5d77a 9805 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9806 } while_each_thread(g, p);
9807
4cf5d77a 9808 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9809}
9810
9811#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9812
9813#ifdef CONFIG_IA64
9814/*
9815 * These functions are only useful for the IA64 MCA handling.
9816 *
9817 * They can only be called when the whole system has been
9818 * stopped - every CPU needs to be quiescent, and no scheduling
9819 * activity can take place. Using them for anything else would
9820 * be a serious bug, and as a result, they aren't even visible
9821 * under any other configuration.
9822 */
9823
9824/**
9825 * curr_task - return the current task for a given cpu.
9826 * @cpu: the processor in question.
9827 *
9828 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9829 */
36c8b586 9830struct task_struct *curr_task(int cpu)
1df5c10a
LT
9831{
9832 return cpu_curr(cpu);
9833}
9834
9835/**
9836 * set_curr_task - set the current task for a given cpu.
9837 * @cpu: the processor in question.
9838 * @p: the task pointer to set.
9839 *
9840 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9841 * are serviced on a separate stack. It allows the architecture to switch the
9842 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9843 * must be called with all CPU's synchronized, and interrupts disabled, the
9844 * and caller must save the original value of the current task (see
9845 * curr_task() above) and restore that value before reenabling interrupts and
9846 * re-starting the system.
9847 *
9848 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9849 */
36c8b586 9850void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9851{
9852 cpu_curr(cpu) = p;
9853}
9854
9855#endif
29f59db3 9856
bccbe08a
PZ
9857#ifdef CONFIG_FAIR_GROUP_SCHED
9858static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9859{
9860 int i;
9861
9862 for_each_possible_cpu(i) {
9863 if (tg->cfs_rq)
9864 kfree(tg->cfs_rq[i]);
9865 if (tg->se)
9866 kfree(tg->se[i]);
6f505b16
PZ
9867 }
9868
9869 kfree(tg->cfs_rq);
9870 kfree(tg->se);
6f505b16
PZ
9871}
9872
ec7dc8ac
DG
9873static
9874int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9875{
29f59db3 9876 struct cfs_rq *cfs_rq;
eab17229 9877 struct sched_entity *se;
9b5b7751 9878 struct rq *rq;
29f59db3
SV
9879 int i;
9880
434d53b0 9881 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9882 if (!tg->cfs_rq)
9883 goto err;
434d53b0 9884 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9885 if (!tg->se)
9886 goto err;
052f1dc7
PZ
9887
9888 tg->shares = NICE_0_LOAD;
29f59db3
SV
9889
9890 for_each_possible_cpu(i) {
9b5b7751 9891 rq = cpu_rq(i);
29f59db3 9892
eab17229
LZ
9893 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9894 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9895 if (!cfs_rq)
9896 goto err;
9897
eab17229
LZ
9898 se = kzalloc_node(sizeof(struct sched_entity),
9899 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9900 if (!se)
9901 goto err;
9902
eab17229 9903 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9904 }
9905
9906 return 1;
9907
9908 err:
9909 return 0;
9910}
9911
9912static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9913{
9914 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9915 &cpu_rq(cpu)->leaf_cfs_rq_list);
9916}
9917
9918static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9919{
9920 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9921}
6d6bc0ad 9922#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9923static inline void free_fair_sched_group(struct task_group *tg)
9924{
9925}
9926
ec7dc8ac
DG
9927static inline
9928int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9929{
9930 return 1;
9931}
9932
9933static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9934{
9935}
9936
9937static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9938{
9939}
6d6bc0ad 9940#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9941
9942#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9943static void free_rt_sched_group(struct task_group *tg)
9944{
9945 int i;
9946
d0b27fa7
PZ
9947 destroy_rt_bandwidth(&tg->rt_bandwidth);
9948
bccbe08a
PZ
9949 for_each_possible_cpu(i) {
9950 if (tg->rt_rq)
9951 kfree(tg->rt_rq[i]);
9952 if (tg->rt_se)
9953 kfree(tg->rt_se[i]);
9954 }
9955
9956 kfree(tg->rt_rq);
9957 kfree(tg->rt_se);
9958}
9959
ec7dc8ac
DG
9960static
9961int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9962{
9963 struct rt_rq *rt_rq;
eab17229 9964 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9965 struct rq *rq;
9966 int i;
9967
434d53b0 9968 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9969 if (!tg->rt_rq)
9970 goto err;
434d53b0 9971 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9972 if (!tg->rt_se)
9973 goto err;
9974
d0b27fa7
PZ
9975 init_rt_bandwidth(&tg->rt_bandwidth,
9976 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9977
9978 for_each_possible_cpu(i) {
9979 rq = cpu_rq(i);
9980
eab17229
LZ
9981 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9982 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9983 if (!rt_rq)
9984 goto err;
29f59db3 9985
eab17229
LZ
9986 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9987 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9988 if (!rt_se)
9989 goto err;
29f59db3 9990
eab17229 9991 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9992 }
9993
bccbe08a
PZ
9994 return 1;
9995
9996 err:
9997 return 0;
9998}
9999
10000static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10001{
10002 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
10003 &cpu_rq(cpu)->leaf_rt_rq_list);
10004}
10005
10006static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10007{
10008 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10009}
6d6bc0ad 10010#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
10011static inline void free_rt_sched_group(struct task_group *tg)
10012{
10013}
10014
ec7dc8ac
DG
10015static inline
10016int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
10017{
10018 return 1;
10019}
10020
10021static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10022{
10023}
10024
10025static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10026{
10027}
6d6bc0ad 10028#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 10029
d0b27fa7 10030#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10031static void free_sched_group(struct task_group *tg)
10032{
10033 free_fair_sched_group(tg);
10034 free_rt_sched_group(tg);
10035 kfree(tg);
10036}
10037
10038/* allocate runqueue etc for a new task group */
ec7dc8ac 10039struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10040{
10041 struct task_group *tg;
10042 unsigned long flags;
10043 int i;
10044
10045 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10046 if (!tg)
10047 return ERR_PTR(-ENOMEM);
10048
ec7dc8ac 10049 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10050 goto err;
10051
ec7dc8ac 10052 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10053 goto err;
10054
8ed36996 10055 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10056 for_each_possible_cpu(i) {
bccbe08a
PZ
10057 register_fair_sched_group(tg, i);
10058 register_rt_sched_group(tg, i);
9b5b7751 10059 }
6f505b16 10060 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10061
10062 WARN_ON(!parent); /* root should already exist */
10063
10064 tg->parent = parent;
f473aa5e 10065 INIT_LIST_HEAD(&tg->children);
09f2724a 10066 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10067 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10068
9b5b7751 10069 return tg;
29f59db3
SV
10070
10071err:
6f505b16 10072 free_sched_group(tg);
29f59db3
SV
10073 return ERR_PTR(-ENOMEM);
10074}
10075
9b5b7751 10076/* rcu callback to free various structures associated with a task group */
6f505b16 10077static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10078{
29f59db3 10079 /* now it should be safe to free those cfs_rqs */
6f505b16 10080 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10081}
10082
9b5b7751 10083/* Destroy runqueue etc associated with a task group */
4cf86d77 10084void sched_destroy_group(struct task_group *tg)
29f59db3 10085{
8ed36996 10086 unsigned long flags;
9b5b7751 10087 int i;
29f59db3 10088
8ed36996 10089 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10090 for_each_possible_cpu(i) {
bccbe08a
PZ
10091 unregister_fair_sched_group(tg, i);
10092 unregister_rt_sched_group(tg, i);
9b5b7751 10093 }
6f505b16 10094 list_del_rcu(&tg->list);
f473aa5e 10095 list_del_rcu(&tg->siblings);
8ed36996 10096 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10097
9b5b7751 10098 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10099 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10100}
10101
9b5b7751 10102/* change task's runqueue when it moves between groups.
3a252015
IM
10103 * The caller of this function should have put the task in its new group
10104 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10105 * reflect its new group.
9b5b7751
SV
10106 */
10107void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10108{
10109 int on_rq, running;
10110 unsigned long flags;
10111 struct rq *rq;
10112
10113 rq = task_rq_lock(tsk, &flags);
10114
29f59db3
SV
10115 update_rq_clock(rq);
10116
051a1d1a 10117 running = task_current(rq, tsk);
29f59db3
SV
10118 on_rq = tsk->se.on_rq;
10119
0e1f3483 10120 if (on_rq)
29f59db3 10121 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10122 if (unlikely(running))
10123 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10124
6f505b16 10125 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10126
810b3817
PZ
10127#ifdef CONFIG_FAIR_GROUP_SCHED
10128 if (tsk->sched_class->moved_group)
10129 tsk->sched_class->moved_group(tsk);
10130#endif
10131
0e1f3483
HS
10132 if (unlikely(running))
10133 tsk->sched_class->set_curr_task(rq);
10134 if (on_rq)
7074badb 10135 enqueue_task(rq, tsk, 0);
29f59db3 10136
29f59db3
SV
10137 task_rq_unlock(rq, &flags);
10138}
6d6bc0ad 10139#endif /* CONFIG_GROUP_SCHED */
29f59db3 10140
052f1dc7 10141#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10142static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10143{
10144 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10145 int on_rq;
10146
29f59db3 10147 on_rq = se->on_rq;
62fb1851 10148 if (on_rq)
29f59db3
SV
10149 dequeue_entity(cfs_rq, se, 0);
10150
10151 se->load.weight = shares;
e05510d0 10152 se->load.inv_weight = 0;
29f59db3 10153
62fb1851 10154 if (on_rq)
29f59db3 10155 enqueue_entity(cfs_rq, se, 0);
c09595f6 10156}
62fb1851 10157
c09595f6
PZ
10158static void set_se_shares(struct sched_entity *se, unsigned long shares)
10159{
10160 struct cfs_rq *cfs_rq = se->cfs_rq;
10161 struct rq *rq = cfs_rq->rq;
10162 unsigned long flags;
10163
10164 spin_lock_irqsave(&rq->lock, flags);
10165 __set_se_shares(se, shares);
10166 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10167}
10168
8ed36996
PZ
10169static DEFINE_MUTEX(shares_mutex);
10170
4cf86d77 10171int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10172{
10173 int i;
8ed36996 10174 unsigned long flags;
c61935fd 10175
ec7dc8ac
DG
10176 /*
10177 * We can't change the weight of the root cgroup.
10178 */
10179 if (!tg->se[0])
10180 return -EINVAL;
10181
18d95a28
PZ
10182 if (shares < MIN_SHARES)
10183 shares = MIN_SHARES;
cb4ad1ff
MX
10184 else if (shares > MAX_SHARES)
10185 shares = MAX_SHARES;
62fb1851 10186
8ed36996 10187 mutex_lock(&shares_mutex);
9b5b7751 10188 if (tg->shares == shares)
5cb350ba 10189 goto done;
29f59db3 10190
8ed36996 10191 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10192 for_each_possible_cpu(i)
10193 unregister_fair_sched_group(tg, i);
f473aa5e 10194 list_del_rcu(&tg->siblings);
8ed36996 10195 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10196
10197 /* wait for any ongoing reference to this group to finish */
10198 synchronize_sched();
10199
10200 /*
10201 * Now we are free to modify the group's share on each cpu
10202 * w/o tripping rebalance_share or load_balance_fair.
10203 */
9b5b7751 10204 tg->shares = shares;
c09595f6
PZ
10205 for_each_possible_cpu(i) {
10206 /*
10207 * force a rebalance
10208 */
10209 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10210 set_se_shares(tg->se[i], shares);
c09595f6 10211 }
29f59db3 10212
6b2d7700
SV
10213 /*
10214 * Enable load balance activity on this group, by inserting it back on
10215 * each cpu's rq->leaf_cfs_rq_list.
10216 */
8ed36996 10217 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10218 for_each_possible_cpu(i)
10219 register_fair_sched_group(tg, i);
f473aa5e 10220 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10221 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10222done:
8ed36996 10223 mutex_unlock(&shares_mutex);
9b5b7751 10224 return 0;
29f59db3
SV
10225}
10226
5cb350ba
DG
10227unsigned long sched_group_shares(struct task_group *tg)
10228{
10229 return tg->shares;
10230}
052f1dc7 10231#endif
5cb350ba 10232
052f1dc7 10233#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10234/*
9f0c1e56 10235 * Ensure that the real time constraints are schedulable.
6f505b16 10236 */
9f0c1e56
PZ
10237static DEFINE_MUTEX(rt_constraints_mutex);
10238
10239static unsigned long to_ratio(u64 period, u64 runtime)
10240{
10241 if (runtime == RUNTIME_INF)
9a7e0b18 10242 return 1ULL << 20;
9f0c1e56 10243
9a7e0b18 10244 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10245}
10246
9a7e0b18
PZ
10247/* Must be called with tasklist_lock held */
10248static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10249{
9a7e0b18 10250 struct task_struct *g, *p;
b40b2e8e 10251
9a7e0b18
PZ
10252 do_each_thread(g, p) {
10253 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10254 return 1;
10255 } while_each_thread(g, p);
b40b2e8e 10256
9a7e0b18
PZ
10257 return 0;
10258}
b40b2e8e 10259
9a7e0b18
PZ
10260struct rt_schedulable_data {
10261 struct task_group *tg;
10262 u64 rt_period;
10263 u64 rt_runtime;
10264};
b40b2e8e 10265
9a7e0b18
PZ
10266static int tg_schedulable(struct task_group *tg, void *data)
10267{
10268 struct rt_schedulable_data *d = data;
10269 struct task_group *child;
10270 unsigned long total, sum = 0;
10271 u64 period, runtime;
b40b2e8e 10272
9a7e0b18
PZ
10273 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10274 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10275
9a7e0b18
PZ
10276 if (tg == d->tg) {
10277 period = d->rt_period;
10278 runtime = d->rt_runtime;
b40b2e8e 10279 }
b40b2e8e 10280
98a4826b
PZ
10281#ifdef CONFIG_USER_SCHED
10282 if (tg == &root_task_group) {
10283 period = global_rt_period();
10284 runtime = global_rt_runtime();
10285 }
10286#endif
10287
4653f803
PZ
10288 /*
10289 * Cannot have more runtime than the period.
10290 */
10291 if (runtime > period && runtime != RUNTIME_INF)
10292 return -EINVAL;
6f505b16 10293
4653f803
PZ
10294 /*
10295 * Ensure we don't starve existing RT tasks.
10296 */
9a7e0b18
PZ
10297 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10298 return -EBUSY;
6f505b16 10299
9a7e0b18 10300 total = to_ratio(period, runtime);
6f505b16 10301
4653f803
PZ
10302 /*
10303 * Nobody can have more than the global setting allows.
10304 */
10305 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10306 return -EINVAL;
6f505b16 10307
4653f803
PZ
10308 /*
10309 * The sum of our children's runtime should not exceed our own.
10310 */
9a7e0b18
PZ
10311 list_for_each_entry_rcu(child, &tg->children, siblings) {
10312 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10313 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10314
9a7e0b18
PZ
10315 if (child == d->tg) {
10316 period = d->rt_period;
10317 runtime = d->rt_runtime;
10318 }
6f505b16 10319
9a7e0b18 10320 sum += to_ratio(period, runtime);
9f0c1e56 10321 }
6f505b16 10322
9a7e0b18
PZ
10323 if (sum > total)
10324 return -EINVAL;
10325
10326 return 0;
6f505b16
PZ
10327}
10328
9a7e0b18 10329static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10330{
9a7e0b18
PZ
10331 struct rt_schedulable_data data = {
10332 .tg = tg,
10333 .rt_period = period,
10334 .rt_runtime = runtime,
10335 };
10336
10337 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10338}
10339
d0b27fa7
PZ
10340static int tg_set_bandwidth(struct task_group *tg,
10341 u64 rt_period, u64 rt_runtime)
6f505b16 10342{
ac086bc2 10343 int i, err = 0;
9f0c1e56 10344
9f0c1e56 10345 mutex_lock(&rt_constraints_mutex);
521f1a24 10346 read_lock(&tasklist_lock);
9a7e0b18
PZ
10347 err = __rt_schedulable(tg, rt_period, rt_runtime);
10348 if (err)
9f0c1e56 10349 goto unlock;
ac086bc2
PZ
10350
10351 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10352 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10353 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10354
10355 for_each_possible_cpu(i) {
10356 struct rt_rq *rt_rq = tg->rt_rq[i];
10357
10358 spin_lock(&rt_rq->rt_runtime_lock);
10359 rt_rq->rt_runtime = rt_runtime;
10360 spin_unlock(&rt_rq->rt_runtime_lock);
10361 }
10362 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10363 unlock:
521f1a24 10364 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10365 mutex_unlock(&rt_constraints_mutex);
10366
10367 return err;
6f505b16
PZ
10368}
10369
d0b27fa7
PZ
10370int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10371{
10372 u64 rt_runtime, rt_period;
10373
10374 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10375 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10376 if (rt_runtime_us < 0)
10377 rt_runtime = RUNTIME_INF;
10378
10379 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10380}
10381
9f0c1e56
PZ
10382long sched_group_rt_runtime(struct task_group *tg)
10383{
10384 u64 rt_runtime_us;
10385
d0b27fa7 10386 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10387 return -1;
10388
d0b27fa7 10389 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10390 do_div(rt_runtime_us, NSEC_PER_USEC);
10391 return rt_runtime_us;
10392}
d0b27fa7
PZ
10393
10394int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10395{
10396 u64 rt_runtime, rt_period;
10397
10398 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10399 rt_runtime = tg->rt_bandwidth.rt_runtime;
10400
619b0488
R
10401 if (rt_period == 0)
10402 return -EINVAL;
10403
d0b27fa7
PZ
10404 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10405}
10406
10407long sched_group_rt_period(struct task_group *tg)
10408{
10409 u64 rt_period_us;
10410
10411 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10412 do_div(rt_period_us, NSEC_PER_USEC);
10413 return rt_period_us;
10414}
10415
10416static int sched_rt_global_constraints(void)
10417{
4653f803 10418 u64 runtime, period;
d0b27fa7
PZ
10419 int ret = 0;
10420
ec5d4989
HS
10421 if (sysctl_sched_rt_period <= 0)
10422 return -EINVAL;
10423
4653f803
PZ
10424 runtime = global_rt_runtime();
10425 period = global_rt_period();
10426
10427 /*
10428 * Sanity check on the sysctl variables.
10429 */
10430 if (runtime > period && runtime != RUNTIME_INF)
10431 return -EINVAL;
10b612f4 10432
d0b27fa7 10433 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10434 read_lock(&tasklist_lock);
4653f803 10435 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10436 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10437 mutex_unlock(&rt_constraints_mutex);
10438
10439 return ret;
10440}
54e99124
DG
10441
10442int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10443{
10444 /* Don't accept realtime tasks when there is no way for them to run */
10445 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10446 return 0;
10447
10448 return 1;
10449}
10450
6d6bc0ad 10451#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10452static int sched_rt_global_constraints(void)
10453{
ac086bc2
PZ
10454 unsigned long flags;
10455 int i;
10456
ec5d4989
HS
10457 if (sysctl_sched_rt_period <= 0)
10458 return -EINVAL;
10459
60aa605d
PZ
10460 /*
10461 * There's always some RT tasks in the root group
10462 * -- migration, kstopmachine etc..
10463 */
10464 if (sysctl_sched_rt_runtime == 0)
10465 return -EBUSY;
10466
ac086bc2
PZ
10467 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10468 for_each_possible_cpu(i) {
10469 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10470
10471 spin_lock(&rt_rq->rt_runtime_lock);
10472 rt_rq->rt_runtime = global_rt_runtime();
10473 spin_unlock(&rt_rq->rt_runtime_lock);
10474 }
10475 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10476
d0b27fa7
PZ
10477 return 0;
10478}
6d6bc0ad 10479#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10480
10481int sched_rt_handler(struct ctl_table *table, int write,
10482 struct file *filp, void __user *buffer, size_t *lenp,
10483 loff_t *ppos)
10484{
10485 int ret;
10486 int old_period, old_runtime;
10487 static DEFINE_MUTEX(mutex);
10488
10489 mutex_lock(&mutex);
10490 old_period = sysctl_sched_rt_period;
10491 old_runtime = sysctl_sched_rt_runtime;
10492
10493 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10494
10495 if (!ret && write) {
10496 ret = sched_rt_global_constraints();
10497 if (ret) {
10498 sysctl_sched_rt_period = old_period;
10499 sysctl_sched_rt_runtime = old_runtime;
10500 } else {
10501 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10502 def_rt_bandwidth.rt_period =
10503 ns_to_ktime(global_rt_period());
10504 }
10505 }
10506 mutex_unlock(&mutex);
10507
10508 return ret;
10509}
68318b8e 10510
052f1dc7 10511#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10512
10513/* return corresponding task_group object of a cgroup */
2b01dfe3 10514static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10515{
2b01dfe3
PM
10516 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10517 struct task_group, css);
68318b8e
SV
10518}
10519
10520static struct cgroup_subsys_state *
2b01dfe3 10521cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10522{
ec7dc8ac 10523 struct task_group *tg, *parent;
68318b8e 10524
2b01dfe3 10525 if (!cgrp->parent) {
68318b8e 10526 /* This is early initialization for the top cgroup */
68318b8e
SV
10527 return &init_task_group.css;
10528 }
10529
ec7dc8ac
DG
10530 parent = cgroup_tg(cgrp->parent);
10531 tg = sched_create_group(parent);
68318b8e
SV
10532 if (IS_ERR(tg))
10533 return ERR_PTR(-ENOMEM);
10534
68318b8e
SV
10535 return &tg->css;
10536}
10537
41a2d6cf
IM
10538static void
10539cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10540{
2b01dfe3 10541 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10542
10543 sched_destroy_group(tg);
10544}
10545
41a2d6cf
IM
10546static int
10547cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10548 struct task_struct *tsk)
68318b8e 10549{
b68aa230 10550#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10551 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10552 return -EINVAL;
10553#else
68318b8e
SV
10554 /* We don't support RT-tasks being in separate groups */
10555 if (tsk->sched_class != &fair_sched_class)
10556 return -EINVAL;
b68aa230 10557#endif
68318b8e
SV
10558
10559 return 0;
10560}
10561
10562static void
2b01dfe3 10563cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10564 struct cgroup *old_cont, struct task_struct *tsk)
10565{
10566 sched_move_task(tsk);
10567}
10568
052f1dc7 10569#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10570static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10571 u64 shareval)
68318b8e 10572{
2b01dfe3 10573 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10574}
10575
f4c753b7 10576static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10577{
2b01dfe3 10578 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10579
10580 return (u64) tg->shares;
10581}
6d6bc0ad 10582#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10583
052f1dc7 10584#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10585static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10586 s64 val)
6f505b16 10587{
06ecb27c 10588 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10589}
10590
06ecb27c 10591static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10592{
06ecb27c 10593 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10594}
d0b27fa7
PZ
10595
10596static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10597 u64 rt_period_us)
10598{
10599 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10600}
10601
10602static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10603{
10604 return sched_group_rt_period(cgroup_tg(cgrp));
10605}
6d6bc0ad 10606#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10607
fe5c7cc2 10608static struct cftype cpu_files[] = {
052f1dc7 10609#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10610 {
10611 .name = "shares",
f4c753b7
PM
10612 .read_u64 = cpu_shares_read_u64,
10613 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10614 },
052f1dc7
PZ
10615#endif
10616#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10617 {
9f0c1e56 10618 .name = "rt_runtime_us",
06ecb27c
PM
10619 .read_s64 = cpu_rt_runtime_read,
10620 .write_s64 = cpu_rt_runtime_write,
6f505b16 10621 },
d0b27fa7
PZ
10622 {
10623 .name = "rt_period_us",
f4c753b7
PM
10624 .read_u64 = cpu_rt_period_read_uint,
10625 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10626 },
052f1dc7 10627#endif
68318b8e
SV
10628};
10629
10630static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10631{
fe5c7cc2 10632 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10633}
10634
10635struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10636 .name = "cpu",
10637 .create = cpu_cgroup_create,
10638 .destroy = cpu_cgroup_destroy,
10639 .can_attach = cpu_cgroup_can_attach,
10640 .attach = cpu_cgroup_attach,
10641 .populate = cpu_cgroup_populate,
10642 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10643 .early_init = 1,
10644};
10645
052f1dc7 10646#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10647
10648#ifdef CONFIG_CGROUP_CPUACCT
10649
10650/*
10651 * CPU accounting code for task groups.
10652 *
10653 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10654 * (balbir@in.ibm.com).
10655 */
10656
934352f2 10657/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10658struct cpuacct {
10659 struct cgroup_subsys_state css;
10660 /* cpuusage holds pointer to a u64-type object on every cpu */
10661 u64 *cpuusage;
ef12fefa 10662 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10663 struct cpuacct *parent;
d842de87
SV
10664};
10665
10666struct cgroup_subsys cpuacct_subsys;
10667
10668/* return cpu accounting group corresponding to this container */
32cd756a 10669static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10670{
32cd756a 10671 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10672 struct cpuacct, css);
10673}
10674
10675/* return cpu accounting group to which this task belongs */
10676static inline struct cpuacct *task_ca(struct task_struct *tsk)
10677{
10678 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10679 struct cpuacct, css);
10680}
10681
10682/* create a new cpu accounting group */
10683static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10684 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10685{
10686 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10687 int i;
d842de87
SV
10688
10689 if (!ca)
ef12fefa 10690 goto out;
d842de87
SV
10691
10692 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10693 if (!ca->cpuusage)
10694 goto out_free_ca;
10695
10696 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10697 if (percpu_counter_init(&ca->cpustat[i], 0))
10698 goto out_free_counters;
d842de87 10699
934352f2
BR
10700 if (cgrp->parent)
10701 ca->parent = cgroup_ca(cgrp->parent);
10702
d842de87 10703 return &ca->css;
ef12fefa
BR
10704
10705out_free_counters:
10706 while (--i >= 0)
10707 percpu_counter_destroy(&ca->cpustat[i]);
10708 free_percpu(ca->cpuusage);
10709out_free_ca:
10710 kfree(ca);
10711out:
10712 return ERR_PTR(-ENOMEM);
d842de87
SV
10713}
10714
10715/* destroy an existing cpu accounting group */
41a2d6cf 10716static void
32cd756a 10717cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10718{
32cd756a 10719 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10720 int i;
d842de87 10721
ef12fefa
BR
10722 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10723 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10724 free_percpu(ca->cpuusage);
10725 kfree(ca);
10726}
10727
720f5498
KC
10728static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10729{
b36128c8 10730 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10731 u64 data;
10732
10733#ifndef CONFIG_64BIT
10734 /*
10735 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10736 */
10737 spin_lock_irq(&cpu_rq(cpu)->lock);
10738 data = *cpuusage;
10739 spin_unlock_irq(&cpu_rq(cpu)->lock);
10740#else
10741 data = *cpuusage;
10742#endif
10743
10744 return data;
10745}
10746
10747static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10748{
b36128c8 10749 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10750
10751#ifndef CONFIG_64BIT
10752 /*
10753 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10754 */
10755 spin_lock_irq(&cpu_rq(cpu)->lock);
10756 *cpuusage = val;
10757 spin_unlock_irq(&cpu_rq(cpu)->lock);
10758#else
10759 *cpuusage = val;
10760#endif
10761}
10762
d842de87 10763/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10764static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10765{
32cd756a 10766 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10767 u64 totalcpuusage = 0;
10768 int i;
10769
720f5498
KC
10770 for_each_present_cpu(i)
10771 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10772
10773 return totalcpuusage;
10774}
10775
0297b803
DG
10776static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10777 u64 reset)
10778{
10779 struct cpuacct *ca = cgroup_ca(cgrp);
10780 int err = 0;
10781 int i;
10782
10783 if (reset) {
10784 err = -EINVAL;
10785 goto out;
10786 }
10787
720f5498
KC
10788 for_each_present_cpu(i)
10789 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10790
0297b803
DG
10791out:
10792 return err;
10793}
10794
e9515c3c
KC
10795static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10796 struct seq_file *m)
10797{
10798 struct cpuacct *ca = cgroup_ca(cgroup);
10799 u64 percpu;
10800 int i;
10801
10802 for_each_present_cpu(i) {
10803 percpu = cpuacct_cpuusage_read(ca, i);
10804 seq_printf(m, "%llu ", (unsigned long long) percpu);
10805 }
10806 seq_printf(m, "\n");
10807 return 0;
10808}
10809
ef12fefa
BR
10810static const char *cpuacct_stat_desc[] = {
10811 [CPUACCT_STAT_USER] = "user",
10812 [CPUACCT_STAT_SYSTEM] = "system",
10813};
10814
10815static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10816 struct cgroup_map_cb *cb)
10817{
10818 struct cpuacct *ca = cgroup_ca(cgrp);
10819 int i;
10820
10821 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10822 s64 val = percpu_counter_read(&ca->cpustat[i]);
10823 val = cputime64_to_clock_t(val);
10824 cb->fill(cb, cpuacct_stat_desc[i], val);
10825 }
10826 return 0;
10827}
10828
d842de87
SV
10829static struct cftype files[] = {
10830 {
10831 .name = "usage",
f4c753b7
PM
10832 .read_u64 = cpuusage_read,
10833 .write_u64 = cpuusage_write,
d842de87 10834 },
e9515c3c
KC
10835 {
10836 .name = "usage_percpu",
10837 .read_seq_string = cpuacct_percpu_seq_read,
10838 },
ef12fefa
BR
10839 {
10840 .name = "stat",
10841 .read_map = cpuacct_stats_show,
10842 },
d842de87
SV
10843};
10844
32cd756a 10845static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10846{
32cd756a 10847 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10848}
10849
10850/*
10851 * charge this task's execution time to its accounting group.
10852 *
10853 * called with rq->lock held.
10854 */
10855static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10856{
10857 struct cpuacct *ca;
934352f2 10858 int cpu;
d842de87 10859
c40c6f85 10860 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10861 return;
10862
934352f2 10863 cpu = task_cpu(tsk);
a18b83b7
BR
10864
10865 rcu_read_lock();
10866
d842de87 10867 ca = task_ca(tsk);
d842de87 10868
934352f2 10869 for (; ca; ca = ca->parent) {
b36128c8 10870 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10871 *cpuusage += cputime;
10872 }
a18b83b7
BR
10873
10874 rcu_read_unlock();
d842de87
SV
10875}
10876
ef12fefa
BR
10877/*
10878 * Charge the system/user time to the task's accounting group.
10879 */
10880static void cpuacct_update_stats(struct task_struct *tsk,
10881 enum cpuacct_stat_index idx, cputime_t val)
10882{
10883 struct cpuacct *ca;
10884
10885 if (unlikely(!cpuacct_subsys.active))
10886 return;
10887
10888 rcu_read_lock();
10889 ca = task_ca(tsk);
10890
10891 do {
10892 percpu_counter_add(&ca->cpustat[idx], val);
10893 ca = ca->parent;
10894 } while (ca);
10895 rcu_read_unlock();
10896}
10897
d842de87
SV
10898struct cgroup_subsys cpuacct_subsys = {
10899 .name = "cpuacct",
10900 .create = cpuacct_create,
10901 .destroy = cpuacct_destroy,
10902 .populate = cpuacct_populate,
10903 .subsys_id = cpuacct_subsys_id,
10904};
10905#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10906
10907#ifndef CONFIG_SMP
10908
10909int rcu_expedited_torture_stats(char *page)
10910{
10911 return 0;
10912}
10913EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10914
10915void synchronize_sched_expedited(void)
10916{
10917}
10918EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10919
10920#else /* #ifndef CONFIG_SMP */
10921
10922static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10923static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10924
10925#define RCU_EXPEDITED_STATE_POST -2
10926#define RCU_EXPEDITED_STATE_IDLE -1
10927
10928static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10929
10930int rcu_expedited_torture_stats(char *page)
10931{
10932 int cnt = 0;
10933 int cpu;
10934
10935 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10936 for_each_online_cpu(cpu) {
10937 cnt += sprintf(&page[cnt], " %d:%d",
10938 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10939 }
10940 cnt += sprintf(&page[cnt], "\n");
10941 return cnt;
10942}
10943EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10944
10945static long synchronize_sched_expedited_count;
10946
10947/*
10948 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10949 * approach to force grace period to end quickly. This consumes
10950 * significant time on all CPUs, and is thus not recommended for
10951 * any sort of common-case code.
10952 *
10953 * Note that it is illegal to call this function while holding any
10954 * lock that is acquired by a CPU-hotplug notifier. Failing to
10955 * observe this restriction will result in deadlock.
10956 */
10957void synchronize_sched_expedited(void)
10958{
10959 int cpu;
10960 unsigned long flags;
10961 bool need_full_sync = 0;
10962 struct rq *rq;
10963 struct migration_req *req;
10964 long snap;
10965 int trycount = 0;
10966
10967 smp_mb(); /* ensure prior mod happens before capturing snap. */
10968 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10969 get_online_cpus();
10970 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10971 put_online_cpus();
10972 if (trycount++ < 10)
10973 udelay(trycount * num_online_cpus());
10974 else {
10975 synchronize_sched();
10976 return;
10977 }
10978 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10979 smp_mb(); /* ensure test happens before caller kfree */
10980 return;
10981 }
10982 get_online_cpus();
10983 }
10984 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10985 for_each_online_cpu(cpu) {
10986 rq = cpu_rq(cpu);
10987 req = &per_cpu(rcu_migration_req, cpu);
10988 init_completion(&req->done);
10989 req->task = NULL;
10990 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10991 spin_lock_irqsave(&rq->lock, flags);
10992 list_add(&req->list, &rq->migration_queue);
10993 spin_unlock_irqrestore(&rq->lock, flags);
10994 wake_up_process(rq->migration_thread);
10995 }
10996 for_each_online_cpu(cpu) {
10997 rcu_expedited_state = cpu;
10998 req = &per_cpu(rcu_migration_req, cpu);
10999 rq = cpu_rq(cpu);
11000 wait_for_completion(&req->done);
11001 spin_lock_irqsave(&rq->lock, flags);
11002 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11003 need_full_sync = 1;
11004 req->dest_cpu = RCU_MIGRATION_IDLE;
11005 spin_unlock_irqrestore(&rq->lock, flags);
11006 }
11007 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11008 mutex_unlock(&rcu_sched_expedited_mutex);
11009 put_online_cpus();
11010 if (need_full_sync)
11011 synchronize_sched();
11012}
11013EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11014
11015#endif /* #else #ifndef CONFIG_SMP */