]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
Merge branches 'x86/signal' and 'x86/irq' into perfcounters/core
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
5517d86b
ED
121#ifdef CONFIG_SMP
122/*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 */
126static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127{
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129}
130
131/*
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
134 */
135static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136{
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139}
140#endif
141
e05606d3
IM
142static inline int rt_policy(int policy)
143{
3f33a7ce 144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
145 return 1;
146 return 0;
147}
148
149static inline int task_has_rt_policy(struct task_struct *p)
150{
151 return rt_policy(p->policy);
152}
153
1da177e4 154/*
6aa645ea 155 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 156 */
6aa645ea
IM
157struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
160};
161
d0b27fa7 162struct rt_bandwidth {
ea736ed5
IM
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
d0b27fa7
PZ
168};
169
170static struct rt_bandwidth def_rt_bandwidth;
171
172static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175{
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
181
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186 if (!overrun)
187 break;
188
189 idle = do_sched_rt_period_timer(rt_b, overrun);
190 }
191
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193}
194
195static
196void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197{
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
200
ac086bc2
PZ
201 spin_lock_init(&rt_b->rt_runtime_lock);
202
d0b27fa7
PZ
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
207}
208
c8bfff6d
KH
209static inline int rt_bandwidth_enabled(void)
210{
211 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
212}
213
214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215{
216 ktime_t now;
217
0b148fa0 218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
d0b27fa7
PZ
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235}
236
237#ifdef CONFIG_RT_GROUP_SCHED
238static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239{
240 hrtimer_cancel(&rt_b->rt_period_timer);
241}
242#endif
243
712555ee
HC
244/*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248static DEFINE_MUTEX(sched_domains_mutex);
249
052f1dc7 250#ifdef CONFIG_GROUP_SCHED
29f59db3 251
68318b8e
SV
252#include <linux/cgroup.h>
253
29f59db3
SV
254struct cfs_rq;
255
6f505b16
PZ
256static LIST_HEAD(task_groups);
257
29f59db3 258/* task group related information */
4cf86d77 259struct task_group {
052f1dc7 260#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
261 struct cgroup_subsys_state css;
262#endif
052f1dc7
PZ
263
264#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
052f1dc7
PZ
270#endif
271
272#ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
275
d0b27fa7 276 struct rt_bandwidth rt_bandwidth;
052f1dc7 277#endif
6b2d7700 278
ae8393e5 279 struct rcu_head rcu;
6f505b16 280 struct list_head list;
f473aa5e
PZ
281
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
29f59db3
SV
285};
286
354d60c2 287#ifdef CONFIG_USER_SCHED
eff766a6
PZ
288
289/*
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
293 */
294struct task_group root_task_group;
295
052f1dc7 296#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
297/* Default task group's sched entity on each cpu */
298static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299/* Default task group's cfs_rq on each cpu */
300static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 301#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
302
303#ifdef CONFIG_RT_GROUP_SCHED
304static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 306#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 307#else /* !CONFIG_USER_SCHED */
eff766a6 308#define root_task_group init_task_group
9a7e0b18 309#endif /* CONFIG_USER_SCHED */
6f505b16 310
8ed36996 311/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
312 * a task group's cpu shares.
313 */
8ed36996 314static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 315
052f1dc7 316#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
317#ifdef CONFIG_USER_SCHED
318# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 319#else /* !CONFIG_USER_SCHED */
052f1dc7 320# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 321#endif /* CONFIG_USER_SCHED */
052f1dc7 322
cb4ad1ff 323/*
2e084786
LJ
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
cb4ad1ff
MX
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
330 */
18d95a28 331#define MIN_SHARES 2
2e084786 332#define MAX_SHARES (1UL << 18)
18d95a28 333
052f1dc7
PZ
334static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335#endif
336
29f59db3 337/* Default task group.
3a252015 338 * Every task in system belong to this group at bootup.
29f59db3 339 */
434d53b0 340struct task_group init_task_group;
29f59db3
SV
341
342/* return group to which a task belongs */
4cf86d77 343static inline struct task_group *task_group(struct task_struct *p)
29f59db3 344{
4cf86d77 345 struct task_group *tg;
9b5b7751 346
052f1dc7 347#ifdef CONFIG_USER_SCHED
24e377a8 348 tg = p->user->tg;
052f1dc7 349#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
24e377a8 352#else
41a2d6cf 353 tg = &init_task_group;
24e377a8 354#endif
9b5b7751 355 return tg;
29f59db3
SV
356}
357
358/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 359static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 360{
052f1dc7 361#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
052f1dc7 364#endif
6f505b16 365
052f1dc7 366#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 369#endif
29f59db3
SV
370}
371
372#else
373
6f505b16 374static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
375static inline struct task_group *task_group(struct task_struct *p)
376{
377 return NULL;
378}
29f59db3 379
052f1dc7 380#endif /* CONFIG_GROUP_SCHED */
29f59db3 381
6aa645ea
IM
382/* CFS-related fields in a runqueue */
383struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
386
6aa645ea 387 u64 exec_clock;
e9acbff6 388 u64 min_vruntime;
6aa645ea
IM
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
4a55bd5e
PZ
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
4793241b 400 struct sched_entity *curr, *next, *last;
ddc97297 401
5ac5c4d6 402 unsigned int nr_spread_over;
ddc97297 403
62160e3f 404#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
41a2d6cf
IM
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
41a2d6cf
IM
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
417
418#ifdef CONFIG_SMP
c09595f6 419 /*
c8cba857 420 * the part of load.weight contributed by tasks
c09595f6 421 */
c8cba857 422 unsigned long task_weight;
c09595f6 423
c8cba857
PZ
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
c09595f6 431
c8cba857
PZ
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
f1d239f7
PZ
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
c09595f6 441#endif
6aa645ea
IM
442#endif
443};
1da177e4 444
6aa645ea
IM
445/* Real-Time classes' related field in a runqueue: */
446struct rt_rq {
447 struct rt_prio_array active;
63489e45 448 unsigned long rt_nr_running;
052f1dc7 449#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
450 int highest_prio; /* highest queued rt task prio */
451#endif
fa85ae24 452#ifdef CONFIG_SMP
73fe6aae 453 unsigned long rt_nr_migratory;
a22d7fc1 454 int overloaded;
fa85ae24 455#endif
6f505b16 456 int rt_throttled;
fa85ae24 457 u64 rt_time;
ac086bc2 458 u64 rt_runtime;
ea736ed5 459 /* Nests inside the rq lock: */
ac086bc2 460 spinlock_t rt_runtime_lock;
6f505b16 461
052f1dc7 462#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
463 unsigned long rt_nr_boosted;
464
6f505b16
PZ
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469#endif
6aa645ea
IM
470};
471
57d885fe
GH
472#ifdef CONFIG_SMP
473
474/*
475 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
57d885fe
GH
481 */
482struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
637f5085 486
0eab9146 487 /*
637f5085
GH
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
0eab9146 492 atomic_t rto_count;
6e0534f2
GH
493#ifdef CONFIG_SMP
494 struct cpupri cpupri;
495#endif
57d885fe
GH
496};
497
dc938520
GH
498/*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
57d885fe
GH
502static struct root_domain def_root_domain;
503
504#endif
505
1da177e4
LT
506/*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
70b97a7f 513struct rq {
d8016491
IM
514 /* runqueue lock: */
515 spinlock_t lock;
1da177e4
LT
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
6aa645ea
IM
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 524 unsigned char idle_at_tick;
46cb4b7c 525#ifdef CONFIG_NO_HZ
15934a37 526 unsigned long last_tick_seen;
46cb4b7c
SS
527 unsigned char in_nohz_recently;
528#endif
d8016491
IM
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
6aa645ea
IM
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
6f505b16 535 struct rt_rq rt;
6f505b16 536
6aa645ea 537#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
540#endif
541#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 542 struct list_head leaf_rt_rq_list;
1da177e4 543#endif
1da177e4
LT
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
36c8b586 553 struct task_struct *curr, *idle;
c9819f45 554 unsigned long next_balance;
1da177e4 555 struct mm_struct *prev_mm;
6aa645ea 556
3e51f33f 557 u64 clock;
6aa645ea 558
1da177e4
LT
559 atomic_t nr_iowait;
560
561#ifdef CONFIG_SMP
0eab9146 562 struct root_domain *rd;
1da177e4
LT
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
d8016491
IM
568 /* cpu of this runqueue: */
569 int cpu;
1f11eb6a 570 int online;
1da177e4 571
a8a51d5e 572 unsigned long avg_load_per_task;
1da177e4 573
36c8b586 574 struct task_struct *migration_thread;
1da177e4
LT
575 struct list_head migration_queue;
576#endif
577
8f4d37ec 578#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
579#ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582#endif
8f4d37ec
PZ
583 struct hrtimer hrtick_timer;
584#endif
585
1da177e4
LT
586#ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
480b9434
KC
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
1da177e4
LT
595
596 /* schedule() stats */
480b9434
KC
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
1da177e4
LT
600
601 /* try_to_wake_up() stats */
480b9434
KC
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
b8efb561
IM
604
605 /* BKL stats */
480b9434 606 unsigned int bkl_count;
1da177e4
LT
607#endif
608};
609
f34e3b61 610static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 611
15afe09b 612static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 613{
15afe09b 614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
615}
616
0a2966b4
CL
617static inline int cpu_of(struct rq *rq)
618{
619#ifdef CONFIG_SMP
620 return rq->cpu;
621#else
622 return 0;
623#endif
624}
625
674311d5
NP
626/*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 628 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
48f24c4d
IM
633#define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
635
636#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637#define this_rq() (&__get_cpu_var(runqueues))
638#define task_rq(p) cpu_rq(task_cpu(p))
639#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
3e51f33f
PZ
641static inline void update_rq_clock(struct rq *rq)
642{
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644}
645
bf5c91ba
IM
646/*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649#ifdef CONFIG_SCHED_DEBUG
650# define const_debug __read_mostly
651#else
652# define const_debug static const
653#endif
654
017730c1
IM
655/**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662int runqueue_is_locked(void)
663{
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671}
672
bf5c91ba
IM
673/*
674 * Debugging: various feature bits
675 */
f00b45c1
PZ
676
677#define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
bf5c91ba 680enum {
f00b45c1 681#include "sched_features.h"
bf5c91ba
IM
682};
683
f00b45c1
PZ
684#undef SCHED_FEAT
685
686#define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
bf5c91ba 689const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
690#include "sched_features.h"
691 0;
692
693#undef SCHED_FEAT
694
695#ifdef CONFIG_SCHED_DEBUG
696#define SCHED_FEAT(name, enabled) \
697 #name ,
698
983ed7a6 699static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
700#include "sched_features.h"
701 NULL
702};
703
704#undef SCHED_FEAT
705
983ed7a6 706static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
707{
708 filp->private_data = inode->i_private;
709 return 0;
710}
711
712static ssize_t
713sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715{
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
724 }
725
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
c24b7c52 734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
735 }
736
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
739
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
741
742 kfree(buf);
743
744 return r;
745}
746
747static ssize_t
748sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750{
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
c24b7c52 764 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787}
788
789static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 819
ffda12a1
PZ
820/*
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
824 */
825unsigned int sysctl_sched_shares_thresh = 4;
826
fa85ae24 827/*
9f0c1e56 828 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
829 * default: 1s
830 */
9f0c1e56 831unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 832
6892b75e
IM
833static __read_mostly int scheduler_running;
834
9f0c1e56
PZ
835/*
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
838 */
839int sysctl_sched_rt_runtime = 950000;
fa85ae24 840
d0b27fa7
PZ
841static inline u64 global_rt_period(void)
842{
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
844}
845
846static inline u64 global_rt_runtime(void)
847{
e26873bb 848 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
849 return RUNTIME_INF;
850
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
852}
fa85ae24 853
1da177e4 854#ifndef prepare_arch_switch
4866cde0
NP
855# define prepare_arch_switch(next) do { } while (0)
856#endif
857#ifndef finish_arch_switch
858# define finish_arch_switch(prev) do { } while (0)
859#endif
860
051a1d1a
DA
861static inline int task_current(struct rq *rq, struct task_struct *p)
862{
863 return rq->curr == p;
864}
865
4866cde0 866#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 867static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 868{
051a1d1a 869 return task_current(rq, p);
4866cde0
NP
870}
871
70b97a7f 872static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
873{
874}
875
70b97a7f 876static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 877{
da04c035
IM
878#ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881#endif
8a25d5de
IM
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
4866cde0
NP
889 spin_unlock_irq(&rq->lock);
890}
891
892#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 893static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
894{
895#ifdef CONFIG_SMP
896 return p->oncpu;
897#else
051a1d1a 898 return task_current(rq, p);
4866cde0
NP
899#endif
900}
901
70b97a7f 902static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911#endif
912#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914#else
915 spin_unlock(&rq->lock);
916#endif
917}
918
70b97a7f 919static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
920{
921#ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929#endif
930#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
1da177e4 932#endif
4866cde0
NP
933}
934#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 935
b29739f9
IM
936/*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
70b97a7f 940static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
941 __acquires(rq->lock)
942{
3a5c359a
AK
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
b29739f9 948 spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4
LT
952/*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 954 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
955 * explicitly disabling preemption.
956 */
70b97a7f 957static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a
AK
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
1da177e4 968 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
ad474cac
ON
972void task_rq_unlock_wait(struct task_struct *p)
973{
974 struct rq *rq = task_rq(p);
975
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 spin_unlock_wait(&rq->lock);
978}
979
a9957449 980static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
981 __releases(rq->lock)
982{
983 spin_unlock(&rq->lock);
984}
985
70b97a7f 986static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
987 __releases(rq->lock)
988{
989 spin_unlock_irqrestore(&rq->lock, *flags);
990}
991
1da177e4 992/*
cc2a73b5 993 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 994 */
a9957449 995static struct rq *this_rq_lock(void)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4
LT
999
1000 local_irq_disable();
1001 rq = this_rq();
1002 spin_lock(&rq->lock);
1003
1004 return rq;
1005}
1006
8f4d37ec
PZ
1007#ifdef CONFIG_SCHED_HRTICK
1008/*
1009 * Use HR-timers to deliver accurate preemption points.
1010 *
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1014 *
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1017 */
8f4d37ec
PZ
1018
1019/*
1020 * Use hrtick when:
1021 * - enabled by features
1022 * - hrtimer is actually high res
1023 */
1024static inline int hrtick_enabled(struct rq *rq)
1025{
1026 if (!sched_feat(HRTICK))
1027 return 0;
ba42059f 1028 if (!cpu_active(cpu_of(rq)))
b328ca18 1029 return 0;
8f4d37ec
PZ
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1031}
1032
8f4d37ec
PZ
1033static void hrtick_clear(struct rq *rq)
1034{
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039/*
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1042 */
1043static enum hrtimer_restart hrtick(struct hrtimer *timer)
1044{
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1046
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1048
1049 spin_lock(&rq->lock);
3e51f33f 1050 update_rq_clock(rq);
8f4d37ec
PZ
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 spin_unlock(&rq->lock);
1053
1054 return HRTIMER_NORESTART;
1055}
1056
95e904c7 1057#ifdef CONFIG_SMP
31656519
PZ
1058/*
1059 * called from hardirq (IPI) context
1060 */
1061static void __hrtick_start(void *arg)
b328ca18 1062{
31656519 1063 struct rq *rq = arg;
b328ca18 1064
31656519
PZ
1065 spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 spin_unlock(&rq->lock);
b328ca18
PZ
1069}
1070
31656519
PZ
1071/*
1072 * Called to set the hrtick timer state.
1073 *
1074 * called with rq->lock held and irqs disabled
1075 */
1076static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1077{
31656519
PZ
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1080
cc584b21 1081 hrtimer_set_expires(timer, time);
31656519
PZ
1082
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1087 rq->hrtick_csd_pending = 1;
1088 }
b328ca18
PZ
1089}
1090
1091static int
1092hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1093{
1094 int cpu = (int)(long)hcpu;
1095
1096 switch (action) {
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1101 case CPU_DEAD:
1102 case CPU_DEAD_FROZEN:
31656519 1103 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1104 return NOTIFY_OK;
1105 }
1106
1107 return NOTIFY_DONE;
1108}
1109
fa748203 1110static __init void init_hrtick(void)
b328ca18
PZ
1111{
1112 hotcpu_notifier(hotplug_hrtick, 0);
1113}
31656519
PZ
1114#else
1115/*
1116 * Called to set the hrtick timer state.
1117 *
1118 * called with rq->lock held and irqs disabled
1119 */
1120static void hrtick_start(struct rq *rq, u64 delay)
1121{
1122 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1123}
b328ca18 1124
006c75f1 1125static inline void init_hrtick(void)
8f4d37ec 1126{
8f4d37ec 1127}
31656519 1128#endif /* CONFIG_SMP */
8f4d37ec 1129
31656519 1130static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1131{
31656519
PZ
1132#ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
8f4d37ec 1134
31656519
PZ
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138#endif
8f4d37ec 1139
31656519
PZ
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
ccc7dadf 1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1143}
006c75f1 1144#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1145static inline void hrtick_clear(struct rq *rq)
1146{
1147}
1148
8f4d37ec
PZ
1149static inline void init_rq_hrtick(struct rq *rq)
1150{
1151}
1152
b328ca18
PZ
1153static inline void init_hrtick(void)
1154{
1155}
006c75f1 1156#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1157
c24d20db
IM
1158/*
1159 * resched_task - mark a task 'to be rescheduled now'.
1160 *
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1164 */
1165#ifdef CONFIG_SMP
1166
1167#ifndef tsk_is_polling
1168#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169#endif
1170
31656519 1171static void resched_task(struct task_struct *p)
c24d20db
IM
1172{
1173 int cpu;
1174
1175 assert_spin_locked(&task_rq(p)->lock);
1176
31656519 1177 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1178 return;
1179
31656519 1180 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1181
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1185
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1190}
1191
1192static void resched_cpu(int cpu)
1193{
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1196
1197 if (!spin_trylock_irqsave(&rq->lock, flags))
1198 return;
1199 resched_task(cpu_curr(cpu));
1200 spin_unlock_irqrestore(&rq->lock, flags);
1201}
06d8308c
TG
1202
1203#ifdef CONFIG_NO_HZ
1204/*
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1213 */
1214void wake_up_idle_cpu(int cpu)
1215{
1216 struct rq *rq = cpu_rq(cpu);
1217
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /*
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1227 */
1228 if (rq->curr != rq->idle)
1229 return;
1230
1231 /*
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1235 */
1236 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1237
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1242}
6d6bc0ad 1243#endif /* CONFIG_NO_HZ */
06d8308c 1244
6d6bc0ad 1245#else /* !CONFIG_SMP */
31656519 1246static void resched_task(struct task_struct *p)
c24d20db
IM
1247{
1248 assert_spin_locked(&task_rq(p)->lock);
31656519 1249 set_tsk_need_resched(p);
c24d20db 1250}
6d6bc0ad 1251#endif /* CONFIG_SMP */
c24d20db 1252
45bf76df
IM
1253#if BITS_PER_LONG == 32
1254# define WMULT_CONST (~0UL)
1255#else
1256# define WMULT_CONST (1UL << 32)
1257#endif
1258
1259#define WMULT_SHIFT 32
1260
194081eb
IM
1261/*
1262 * Shift right and round:
1263 */
cf2ab469 1264#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1265
a7be37ac
PZ
1266/*
1267 * delta *= weight / lw
1268 */
cb1c4fc9 1269static unsigned long
45bf76df
IM
1270calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1271 struct load_weight *lw)
1272{
1273 u64 tmp;
1274
7a232e03
LJ
1275 if (!lw->inv_weight) {
1276 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1277 lw->inv_weight = 1;
1278 else
1279 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1280 / (lw->weight+1);
1281 }
45bf76df
IM
1282
1283 tmp = (u64)delta_exec * weight;
1284 /*
1285 * Check whether we'd overflow the 64-bit multiplication:
1286 */
194081eb 1287 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1288 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1289 WMULT_SHIFT/2);
1290 else
cf2ab469 1291 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1292
ecf691da 1293 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1294}
1295
1091985b 1296static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1297{
1298 lw->weight += inc;
e89996ae 1299 lw->inv_weight = 0;
45bf76df
IM
1300}
1301
1091985b 1302static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1303{
1304 lw->weight -= dec;
e89996ae 1305 lw->inv_weight = 0;
45bf76df
IM
1306}
1307
2dd73a4f
PW
1308/*
1309 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1310 * of tasks with abnormal "nice" values across CPUs the contribution that
1311 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1312 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1313 * scaled version of the new time slice allocation that they receive on time
1314 * slice expiry etc.
1315 */
1316
dd41f596
IM
1317#define WEIGHT_IDLEPRIO 2
1318#define WMULT_IDLEPRIO (1 << 31)
1319
1320/*
1321 * Nice levels are multiplicative, with a gentle 10% change for every
1322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1323 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1324 * that remained on nice 0.
1325 *
1326 * The "10% effect" is relative and cumulative: from _any_ nice level,
1327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1329 * If a task goes up by ~10% and another task goes down by ~10% then
1330 * the relative distance between them is ~25%.)
dd41f596
IM
1331 */
1332static const int prio_to_weight[40] = {
254753dc
IM
1333 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1334 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1335 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1336 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1337 /* 0 */ 1024, 820, 655, 526, 423,
1338 /* 5 */ 335, 272, 215, 172, 137,
1339 /* 10 */ 110, 87, 70, 56, 45,
1340 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1341};
1342
5714d2de
IM
1343/*
1344 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1345 *
1346 * In cases where the weight does not change often, we can use the
1347 * precalculated inverse to speed up arithmetics by turning divisions
1348 * into multiplications:
1349 */
dd41f596 1350static const u32 prio_to_wmult[40] = {
254753dc
IM
1351 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1352 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1353 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1359};
2dd73a4f 1360
dd41f596
IM
1361static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1362
1363/*
1364 * runqueue iterator, to support SMP load-balancing between different
1365 * scheduling classes, without having to expose their internal data
1366 * structures to the load-balancing proper:
1367 */
1368struct rq_iterator {
1369 void *arg;
1370 struct task_struct *(*start)(void *);
1371 struct task_struct *(*next)(void *);
1372};
1373
e1d1484f
PW
1374#ifdef CONFIG_SMP
1375static unsigned long
1376balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1377 unsigned long max_load_move, struct sched_domain *sd,
1378 enum cpu_idle_type idle, int *all_pinned,
1379 int *this_best_prio, struct rq_iterator *iterator);
1380
1381static int
1382iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 struct rq_iterator *iterator);
e1d1484f 1385#endif
dd41f596 1386
d842de87
SV
1387#ifdef CONFIG_CGROUP_CPUACCT
1388static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1389#else
1390static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1391#endif
1392
18d95a28
PZ
1393static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1394{
1395 update_load_add(&rq->load, load);
1396}
1397
1398static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1399{
1400 update_load_sub(&rq->load, load);
1401}
1402
7940ca36 1403#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1404typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1405
1406/*
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1409 */
eb755805 1410static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1411{
1412 struct task_group *parent, *child;
eb755805 1413 int ret;
c09595f6
PZ
1414
1415 rcu_read_lock();
1416 parent = &root_task_group;
1417down:
eb755805
PZ
1418 ret = (*down)(parent, data);
1419 if (ret)
1420 goto out_unlock;
c09595f6
PZ
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1422 parent = child;
1423 goto down;
1424
1425up:
1426 continue;
1427 }
eb755805
PZ
1428 ret = (*up)(parent, data);
1429 if (ret)
1430 goto out_unlock;
c09595f6
PZ
1431
1432 child = parent;
1433 parent = parent->parent;
1434 if (parent)
1435 goto up;
eb755805 1436out_unlock:
c09595f6 1437 rcu_read_unlock();
eb755805
PZ
1438
1439 return ret;
c09595f6
PZ
1440}
1441
eb755805
PZ
1442static int tg_nop(struct task_group *tg, void *data)
1443{
1444 return 0;
c09595f6 1445}
eb755805
PZ
1446#endif
1447
1448#ifdef CONFIG_SMP
1449static unsigned long source_load(int cpu, int type);
1450static unsigned long target_load(int cpu, int type);
1451static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1452
1453static unsigned long cpu_avg_load_per_task(int cpu)
1454{
1455 struct rq *rq = cpu_rq(cpu);
af6d596f 1456 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1457
4cd42620
SR
1458 if (nr_running)
1459 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1460 else
1461 rq->avg_load_per_task = 0;
eb755805
PZ
1462
1463 return rq->avg_load_per_task;
1464}
1465
1466#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1467
c09595f6
PZ
1468static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1469
1470/*
1471 * Calculate and set the cpu's group shares.
1472 */
1473static void
ffda12a1
PZ
1474update_group_shares_cpu(struct task_group *tg, int cpu,
1475 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1476{
c09595f6
PZ
1477 int boost = 0;
1478 unsigned long shares;
1479 unsigned long rq_weight;
1480
c8cba857 1481 if (!tg->se[cpu])
c09595f6
PZ
1482 return;
1483
c8cba857 1484 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1485
1486 /*
1487 * If there are currently no tasks on the cpu pretend there is one of
1488 * average load so that when a new task gets to run here it will not
1489 * get delayed by group starvation.
1490 */
1491 if (!rq_weight) {
1492 boost = 1;
1493 rq_weight = NICE_0_LOAD;
1494 }
1495
c8cba857
PZ
1496 if (unlikely(rq_weight > sd_rq_weight))
1497 rq_weight = sd_rq_weight;
1498
c09595f6
PZ
1499 /*
1500 * \Sum shares * rq_weight
1501 * shares = -----------------------
1502 * \Sum rq_weight
1503 *
1504 */
c8cba857 1505 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
ffda12a1 1506 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1507
ffda12a1
PZ
1508 if (abs(shares - tg->se[cpu]->load.weight) >
1509 sysctl_sched_shares_thresh) {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long flags;
c09595f6 1512
ffda12a1
PZ
1513 spin_lock_irqsave(&rq->lock, flags);
1514 /*
1515 * record the actual number of shares, not the boosted amount.
1516 */
1517 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1518 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6 1519
ffda12a1
PZ
1520 __set_se_shares(tg->se[cpu], shares);
1521 spin_unlock_irqrestore(&rq->lock, flags);
1522 }
18d95a28 1523}
c09595f6
PZ
1524
1525/*
c8cba857
PZ
1526 * Re-compute the task group their per cpu shares over the given domain.
1527 * This needs to be done in a bottom-up fashion because the rq weight of a
1528 * parent group depends on the shares of its child groups.
c09595f6 1529 */
eb755805 1530static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1531{
c8cba857
PZ
1532 unsigned long rq_weight = 0;
1533 unsigned long shares = 0;
eb755805 1534 struct sched_domain *sd = data;
c8cba857 1535 int i;
c09595f6 1536
c8cba857
PZ
1537 for_each_cpu_mask(i, sd->span) {
1538 rq_weight += tg->cfs_rq[i]->load.weight;
1539 shares += tg->cfs_rq[i]->shares;
c09595f6 1540 }
c09595f6 1541
c8cba857
PZ
1542 if ((!shares && rq_weight) || shares > tg->shares)
1543 shares = tg->shares;
1544
1545 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1546 shares = tg->shares;
c09595f6 1547
cd80917e
PZ
1548 if (!rq_weight)
1549 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1550
ffda12a1
PZ
1551 for_each_cpu_mask(i, sd->span)
1552 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1553
1554 return 0;
c09595f6
PZ
1555}
1556
1557/*
c8cba857
PZ
1558 * Compute the cpu's hierarchical load factor for each task group.
1559 * This needs to be done in a top-down fashion because the load of a child
1560 * group is a fraction of its parents load.
c09595f6 1561 */
eb755805 1562static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1563{
c8cba857 1564 unsigned long load;
eb755805 1565 long cpu = (long)data;
c09595f6 1566
c8cba857
PZ
1567 if (!tg->parent) {
1568 load = cpu_rq(cpu)->load.weight;
1569 } else {
1570 load = tg->parent->cfs_rq[cpu]->h_load;
1571 load *= tg->cfs_rq[cpu]->shares;
1572 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1573 }
c09595f6 1574
c8cba857 1575 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1576
eb755805 1577 return 0;
c09595f6
PZ
1578}
1579
c8cba857 1580static void update_shares(struct sched_domain *sd)
4d8d595d 1581{
2398f2c6
PZ
1582 u64 now = cpu_clock(raw_smp_processor_id());
1583 s64 elapsed = now - sd->last_update;
1584
1585 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1586 sd->last_update = now;
eb755805 1587 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1588 }
4d8d595d
PZ
1589}
1590
3e5459b4
PZ
1591static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1592{
1593 spin_unlock(&rq->lock);
1594 update_shares(sd);
1595 spin_lock(&rq->lock);
1596}
1597
eb755805 1598static void update_h_load(long cpu)
c09595f6 1599{
eb755805 1600 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1601}
1602
c09595f6
PZ
1603#else
1604
c8cba857 1605static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1606{
1607}
1608
3e5459b4
PZ
1609static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1610{
1611}
1612
18d95a28
PZ
1613#endif
1614
18d95a28
PZ
1615#endif
1616
30432094 1617#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1618static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1619{
30432094 1620#ifdef CONFIG_SMP
34e83e85
IM
1621 cfs_rq->shares = shares;
1622#endif
1623}
30432094 1624#endif
e7693a36 1625
dd41f596 1626#include "sched_stats.h"
dd41f596 1627#include "sched_idletask.c"
5522d5d5
IM
1628#include "sched_fair.c"
1629#include "sched_rt.c"
dd41f596
IM
1630#ifdef CONFIG_SCHED_DEBUG
1631# include "sched_debug.c"
1632#endif
1633
1634#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1635#define for_each_class(class) \
1636 for (class = sched_class_highest; class; class = class->next)
dd41f596 1637
c09595f6 1638static void inc_nr_running(struct rq *rq)
9c217245
IM
1639{
1640 rq->nr_running++;
9c217245
IM
1641}
1642
c09595f6 1643static void dec_nr_running(struct rq *rq)
9c217245
IM
1644{
1645 rq->nr_running--;
9c217245
IM
1646}
1647
45bf76df
IM
1648static void set_load_weight(struct task_struct *p)
1649{
1650 if (task_has_rt_policy(p)) {
dd41f596
IM
1651 p->se.load.weight = prio_to_weight[0] * 2;
1652 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1653 return;
1654 }
45bf76df 1655
dd41f596
IM
1656 /*
1657 * SCHED_IDLE tasks get minimal weight:
1658 */
1659 if (p->policy == SCHED_IDLE) {
1660 p->se.load.weight = WEIGHT_IDLEPRIO;
1661 p->se.load.inv_weight = WMULT_IDLEPRIO;
1662 return;
1663 }
71f8bd46 1664
dd41f596
IM
1665 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1666 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1667}
1668
2087a1ad
GH
1669static void update_avg(u64 *avg, u64 sample)
1670{
1671 s64 diff = sample - *avg;
1672 *avg += diff >> 3;
1673}
1674
8159f87e 1675static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1676{
dd41f596 1677 sched_info_queued(p);
fd390f6a 1678 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1679 p->se.on_rq = 1;
71f8bd46
IM
1680}
1681
69be72c1 1682static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1683{
2087a1ad
GH
1684 if (sleep && p->se.last_wakeup) {
1685 update_avg(&p->se.avg_overlap,
1686 p->se.sum_exec_runtime - p->se.last_wakeup);
1687 p->se.last_wakeup = 0;
1688 }
1689
46ac22ba 1690 sched_info_dequeued(p);
f02231e5 1691 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1692 p->se.on_rq = 0;
71f8bd46
IM
1693}
1694
14531189 1695/*
dd41f596 1696 * __normal_prio - return the priority that is based on the static prio
14531189 1697 */
14531189
IM
1698static inline int __normal_prio(struct task_struct *p)
1699{
dd41f596 1700 return p->static_prio;
14531189
IM
1701}
1702
b29739f9
IM
1703/*
1704 * Calculate the expected normal priority: i.e. priority
1705 * without taking RT-inheritance into account. Might be
1706 * boosted by interactivity modifiers. Changes upon fork,
1707 * setprio syscalls, and whenever the interactivity
1708 * estimator recalculates.
1709 */
36c8b586 1710static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1711{
1712 int prio;
1713
e05606d3 1714 if (task_has_rt_policy(p))
b29739f9
IM
1715 prio = MAX_RT_PRIO-1 - p->rt_priority;
1716 else
1717 prio = __normal_prio(p);
1718 return prio;
1719}
1720
1721/*
1722 * Calculate the current priority, i.e. the priority
1723 * taken into account by the scheduler. This value might
1724 * be boosted by RT tasks, or might be boosted by
1725 * interactivity modifiers. Will be RT if the task got
1726 * RT-boosted. If not then it returns p->normal_prio.
1727 */
36c8b586 1728static int effective_prio(struct task_struct *p)
b29739f9
IM
1729{
1730 p->normal_prio = normal_prio(p);
1731 /*
1732 * If we are RT tasks or we were boosted to RT priority,
1733 * keep the priority unchanged. Otherwise, update priority
1734 * to the normal priority:
1735 */
1736 if (!rt_prio(p->prio))
1737 return p->normal_prio;
1738 return p->prio;
1739}
1740
1da177e4 1741/*
dd41f596 1742 * activate_task - move a task to the runqueue.
1da177e4 1743 */
dd41f596 1744static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1745{
d9514f6c 1746 if (task_contributes_to_load(p))
dd41f596 1747 rq->nr_uninterruptible--;
1da177e4 1748
8159f87e 1749 enqueue_task(rq, p, wakeup);
c09595f6 1750 inc_nr_running(rq);
1da177e4
LT
1751}
1752
1da177e4
LT
1753/*
1754 * deactivate_task - remove a task from the runqueue.
1755 */
2e1cb74a 1756static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1757{
d9514f6c 1758 if (task_contributes_to_load(p))
dd41f596
IM
1759 rq->nr_uninterruptible++;
1760
69be72c1 1761 dequeue_task(rq, p, sleep);
c09595f6 1762 dec_nr_running(rq);
1da177e4
LT
1763}
1764
1da177e4
LT
1765/**
1766 * task_curr - is this task currently executing on a CPU?
1767 * @p: the task in question.
1768 */
36c8b586 1769inline int task_curr(const struct task_struct *p)
1da177e4
LT
1770{
1771 return cpu_curr(task_cpu(p)) == p;
1772}
1773
dd41f596
IM
1774static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1775{
6f505b16 1776 set_task_rq(p, cpu);
dd41f596 1777#ifdef CONFIG_SMP
ce96b5ac
DA
1778 /*
1779 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1780 * successfuly executed on another CPU. We must ensure that updates of
1781 * per-task data have been completed by this moment.
1782 */
1783 smp_wmb();
dd41f596 1784 task_thread_info(p)->cpu = cpu;
dd41f596 1785#endif
2dd73a4f
PW
1786}
1787
cb469845
SR
1788static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1789 const struct sched_class *prev_class,
1790 int oldprio, int running)
1791{
1792 if (prev_class != p->sched_class) {
1793 if (prev_class->switched_from)
1794 prev_class->switched_from(rq, p, running);
1795 p->sched_class->switched_to(rq, p, running);
1796 } else
1797 p->sched_class->prio_changed(rq, p, oldprio, running);
1798}
1799
1da177e4 1800#ifdef CONFIG_SMP
c65cc870 1801
e958b360
TG
1802/* Used instead of source_load when we know the type == 0 */
1803static unsigned long weighted_cpuload(const int cpu)
1804{
1805 return cpu_rq(cpu)->load.weight;
1806}
1807
cc367732
IM
1808/*
1809 * Is this task likely cache-hot:
1810 */
e7693a36 1811static int
cc367732
IM
1812task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1813{
1814 s64 delta;
1815
f540a608
IM
1816 /*
1817 * Buddy candidates are cache hot:
1818 */
4793241b
PZ
1819 if (sched_feat(CACHE_HOT_BUDDY) &&
1820 (&p->se == cfs_rq_of(&p->se)->next ||
1821 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1822 return 1;
1823
cc367732
IM
1824 if (p->sched_class != &fair_sched_class)
1825 return 0;
1826
6bc1665b
IM
1827 if (sysctl_sched_migration_cost == -1)
1828 return 1;
1829 if (sysctl_sched_migration_cost == 0)
1830 return 0;
1831
cc367732
IM
1832 delta = now - p->se.exec_start;
1833
1834 return delta < (s64)sysctl_sched_migration_cost;
1835}
1836
1837
dd41f596 1838void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1839{
dd41f596
IM
1840 int old_cpu = task_cpu(p);
1841 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1842 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1843 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1844 u64 clock_offset;
dd41f596
IM
1845
1846 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1847
1848#ifdef CONFIG_SCHEDSTATS
1849 if (p->se.wait_start)
1850 p->se.wait_start -= clock_offset;
dd41f596
IM
1851 if (p->se.sleep_start)
1852 p->se.sleep_start -= clock_offset;
1853 if (p->se.block_start)
1854 p->se.block_start -= clock_offset;
cc367732
IM
1855 if (old_cpu != new_cpu) {
1856 schedstat_inc(p, se.nr_migrations);
1857 if (task_hot(p, old_rq->clock, NULL))
1858 schedstat_inc(p, se.nr_forced2_migrations);
1859 }
6cfb0d5d 1860#endif
2830cf8c
SV
1861 p->se.vruntime -= old_cfsrq->min_vruntime -
1862 new_cfsrq->min_vruntime;
dd41f596
IM
1863
1864 __set_task_cpu(p, new_cpu);
c65cc870
IM
1865}
1866
70b97a7f 1867struct migration_req {
1da177e4 1868 struct list_head list;
1da177e4 1869
36c8b586 1870 struct task_struct *task;
1da177e4
LT
1871 int dest_cpu;
1872
1da177e4 1873 struct completion done;
70b97a7f 1874};
1da177e4
LT
1875
1876/*
1877 * The task's runqueue lock must be held.
1878 * Returns true if you have to wait for migration thread.
1879 */
36c8b586 1880static int
70b97a7f 1881migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1882{
70b97a7f 1883 struct rq *rq = task_rq(p);
1da177e4
LT
1884
1885 /*
1886 * If the task is not on a runqueue (and not running), then
1887 * it is sufficient to simply update the task's cpu field.
1888 */
dd41f596 1889 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1890 set_task_cpu(p, dest_cpu);
1891 return 0;
1892 }
1893
1894 init_completion(&req->done);
1da177e4
LT
1895 req->task = p;
1896 req->dest_cpu = dest_cpu;
1897 list_add(&req->list, &rq->migration_queue);
48f24c4d 1898
1da177e4
LT
1899 return 1;
1900}
1901
1902/*
1903 * wait_task_inactive - wait for a thread to unschedule.
1904 *
85ba2d86
RM
1905 * If @match_state is nonzero, it's the @p->state value just checked and
1906 * not expected to change. If it changes, i.e. @p might have woken up,
1907 * then return zero. When we succeed in waiting for @p to be off its CPU,
1908 * we return a positive number (its total switch count). If a second call
1909 * a short while later returns the same number, the caller can be sure that
1910 * @p has remained unscheduled the whole time.
1911 *
1da177e4
LT
1912 * The caller must ensure that the task *will* unschedule sometime soon,
1913 * else this function might spin for a *long* time. This function can't
1914 * be called with interrupts off, or it may introduce deadlock with
1915 * smp_call_function() if an IPI is sent by the same process we are
1916 * waiting to become inactive.
1917 */
85ba2d86 1918unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1919{
1920 unsigned long flags;
dd41f596 1921 int running, on_rq;
85ba2d86 1922 unsigned long ncsw;
70b97a7f 1923 struct rq *rq;
1da177e4 1924
3a5c359a
AK
1925 for (;;) {
1926 /*
1927 * We do the initial early heuristics without holding
1928 * any task-queue locks at all. We'll only try to get
1929 * the runqueue lock when things look like they will
1930 * work out!
1931 */
1932 rq = task_rq(p);
fa490cfd 1933
3a5c359a
AK
1934 /*
1935 * If the task is actively running on another CPU
1936 * still, just relax and busy-wait without holding
1937 * any locks.
1938 *
1939 * NOTE! Since we don't hold any locks, it's not
1940 * even sure that "rq" stays as the right runqueue!
1941 * But we don't care, since "task_running()" will
1942 * return false if the runqueue has changed and p
1943 * is actually now running somewhere else!
1944 */
85ba2d86
RM
1945 while (task_running(rq, p)) {
1946 if (match_state && unlikely(p->state != match_state))
1947 return 0;
3a5c359a 1948 cpu_relax();
85ba2d86 1949 }
fa490cfd 1950
3a5c359a
AK
1951 /*
1952 * Ok, time to look more closely! We need the rq
1953 * lock now, to be *sure*. If we're wrong, we'll
1954 * just go back and repeat.
1955 */
1956 rq = task_rq_lock(p, &flags);
0a16b607 1957 trace_sched_wait_task(rq, p);
3a5c359a
AK
1958 running = task_running(rq, p);
1959 on_rq = p->se.on_rq;
85ba2d86 1960 ncsw = 0;
f31e11d8 1961 if (!match_state || p->state == match_state)
93dcf55f 1962 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1963 task_rq_unlock(rq, &flags);
fa490cfd 1964
85ba2d86
RM
1965 /*
1966 * If it changed from the expected state, bail out now.
1967 */
1968 if (unlikely(!ncsw))
1969 break;
1970
3a5c359a
AK
1971 /*
1972 * Was it really running after all now that we
1973 * checked with the proper locks actually held?
1974 *
1975 * Oops. Go back and try again..
1976 */
1977 if (unlikely(running)) {
1978 cpu_relax();
1979 continue;
1980 }
fa490cfd 1981
3a5c359a
AK
1982 /*
1983 * It's not enough that it's not actively running,
1984 * it must be off the runqueue _entirely_, and not
1985 * preempted!
1986 *
1987 * So if it wa still runnable (but just not actively
1988 * running right now), it's preempted, and we should
1989 * yield - it could be a while.
1990 */
1991 if (unlikely(on_rq)) {
1992 schedule_timeout_uninterruptible(1);
1993 continue;
1994 }
fa490cfd 1995
3a5c359a
AK
1996 /*
1997 * Ahh, all good. It wasn't running, and it wasn't
1998 * runnable, which means that it will never become
1999 * running in the future either. We're all done!
2000 */
2001 break;
2002 }
85ba2d86
RM
2003
2004 return ncsw;
1da177e4
LT
2005}
2006
2007/***
2008 * kick_process - kick a running thread to enter/exit the kernel
2009 * @p: the to-be-kicked thread
2010 *
2011 * Cause a process which is running on another CPU to enter
2012 * kernel-mode, without any delay. (to get signals handled.)
2013 *
2014 * NOTE: this function doesnt have to take the runqueue lock,
2015 * because all it wants to ensure is that the remote task enters
2016 * the kernel. If the IPI races and the task has been migrated
2017 * to another CPU then no harm is done and the purpose has been
2018 * achieved as well.
2019 */
36c8b586 2020void kick_process(struct task_struct *p)
1da177e4
LT
2021{
2022 int cpu;
2023
2024 preempt_disable();
2025 cpu = task_cpu(p);
2026 if ((cpu != smp_processor_id()) && task_curr(p))
2027 smp_send_reschedule(cpu);
2028 preempt_enable();
2029}
2030
2031/*
2dd73a4f
PW
2032 * Return a low guess at the load of a migration-source cpu weighted
2033 * according to the scheduling class and "nice" value.
1da177e4
LT
2034 *
2035 * We want to under-estimate the load of migration sources, to
2036 * balance conservatively.
2037 */
a9957449 2038static unsigned long source_load(int cpu, int type)
1da177e4 2039{
70b97a7f 2040 struct rq *rq = cpu_rq(cpu);
dd41f596 2041 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2042
93b75217 2043 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2044 return total;
b910472d 2045
dd41f596 2046 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2047}
2048
2049/*
2dd73a4f
PW
2050 * Return a high guess at the load of a migration-target cpu weighted
2051 * according to the scheduling class and "nice" value.
1da177e4 2052 */
a9957449 2053static unsigned long target_load(int cpu, int type)
1da177e4 2054{
70b97a7f 2055 struct rq *rq = cpu_rq(cpu);
dd41f596 2056 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2057
93b75217 2058 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2059 return total;
3b0bd9bc 2060
dd41f596 2061 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2062}
2063
147cbb4b
NP
2064/*
2065 * find_idlest_group finds and returns the least busy CPU group within the
2066 * domain.
2067 */
2068static struct sched_group *
2069find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2070{
2071 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2072 unsigned long min_load = ULONG_MAX, this_load = 0;
2073 int load_idx = sd->forkexec_idx;
2074 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2075
2076 do {
2077 unsigned long load, avg_load;
2078 int local_group;
2079 int i;
2080
da5a5522
BD
2081 /* Skip over this group if it has no CPUs allowed */
2082 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2083 continue;
da5a5522 2084
147cbb4b 2085 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2086
2087 /* Tally up the load of all CPUs in the group */
2088 avg_load = 0;
2089
363ab6f1 2090 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2091 /* Bias balancing toward cpus of our domain */
2092 if (local_group)
2093 load = source_load(i, load_idx);
2094 else
2095 load = target_load(i, load_idx);
2096
2097 avg_load += load;
2098 }
2099
2100 /* Adjust by relative CPU power of the group */
5517d86b
ED
2101 avg_load = sg_div_cpu_power(group,
2102 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2103
2104 if (local_group) {
2105 this_load = avg_load;
2106 this = group;
2107 } else if (avg_load < min_load) {
2108 min_load = avg_load;
2109 idlest = group;
2110 }
3a5c359a 2111 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2112
2113 if (!idlest || 100*this_load < imbalance*min_load)
2114 return NULL;
2115 return idlest;
2116}
2117
2118/*
0feaece9 2119 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2120 */
95cdf3b7 2121static int
7c16ec58
MT
2122find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2123 cpumask_t *tmp)
147cbb4b
NP
2124{
2125 unsigned long load, min_load = ULONG_MAX;
2126 int idlest = -1;
2127 int i;
2128
da5a5522 2129 /* Traverse only the allowed CPUs */
7c16ec58 2130 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2131
363ab6f1 2132 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2133 load = weighted_cpuload(i);
147cbb4b
NP
2134
2135 if (load < min_load || (load == min_load && i == this_cpu)) {
2136 min_load = load;
2137 idlest = i;
2138 }
2139 }
2140
2141 return idlest;
2142}
2143
476d139c
NP
2144/*
2145 * sched_balance_self: balance the current task (running on cpu) in domains
2146 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2147 * SD_BALANCE_EXEC.
2148 *
2149 * Balance, ie. select the least loaded group.
2150 *
2151 * Returns the target CPU number, or the same CPU if no balancing is needed.
2152 *
2153 * preempt must be disabled.
2154 */
2155static int sched_balance_self(int cpu, int flag)
2156{
2157 struct task_struct *t = current;
2158 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2159
c96d145e 2160 for_each_domain(cpu, tmp) {
9761eea8
IM
2161 /*
2162 * If power savings logic is enabled for a domain, stop there.
2163 */
5c45bf27
SS
2164 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2165 break;
476d139c
NP
2166 if (tmp->flags & flag)
2167 sd = tmp;
c96d145e 2168 }
476d139c 2169
039a1c41
PZ
2170 if (sd)
2171 update_shares(sd);
2172
476d139c 2173 while (sd) {
7c16ec58 2174 cpumask_t span, tmpmask;
476d139c 2175 struct sched_group *group;
1a848870
SS
2176 int new_cpu, weight;
2177
2178 if (!(sd->flags & flag)) {
2179 sd = sd->child;
2180 continue;
2181 }
476d139c
NP
2182
2183 span = sd->span;
2184 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2185 if (!group) {
2186 sd = sd->child;
2187 continue;
2188 }
476d139c 2189
7c16ec58 2190 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2191 if (new_cpu == -1 || new_cpu == cpu) {
2192 /* Now try balancing at a lower domain level of cpu */
2193 sd = sd->child;
2194 continue;
2195 }
476d139c 2196
1a848870 2197 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2198 cpu = new_cpu;
476d139c
NP
2199 sd = NULL;
2200 weight = cpus_weight(span);
2201 for_each_domain(cpu, tmp) {
2202 if (weight <= cpus_weight(tmp->span))
2203 break;
2204 if (tmp->flags & flag)
2205 sd = tmp;
2206 }
2207 /* while loop will break here if sd == NULL */
2208 }
2209
2210 return cpu;
2211}
2212
2213#endif /* CONFIG_SMP */
1da177e4 2214
1da177e4
LT
2215/***
2216 * try_to_wake_up - wake up a thread
2217 * @p: the to-be-woken-up thread
2218 * @state: the mask of task states that can be woken
2219 * @sync: do a synchronous wakeup?
2220 *
2221 * Put it on the run-queue if it's not already there. The "current"
2222 * thread is always on the run-queue (except when the actual
2223 * re-schedule is in progress), and as such you're allowed to do
2224 * the simpler "current->state = TASK_RUNNING" to mark yourself
2225 * runnable without the overhead of this.
2226 *
2227 * returns failure only if the task is already active.
2228 */
36c8b586 2229static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2230{
cc367732 2231 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2232 unsigned long flags;
2233 long old_state;
70b97a7f 2234 struct rq *rq;
1da177e4 2235
b85d0667
IM
2236 if (!sched_feat(SYNC_WAKEUPS))
2237 sync = 0;
2238
2398f2c6
PZ
2239#ifdef CONFIG_SMP
2240 if (sched_feat(LB_WAKEUP_UPDATE)) {
2241 struct sched_domain *sd;
2242
2243 this_cpu = raw_smp_processor_id();
2244 cpu = task_cpu(p);
2245
2246 for_each_domain(this_cpu, sd) {
2247 if (cpu_isset(cpu, sd->span)) {
2248 update_shares(sd);
2249 break;
2250 }
2251 }
2252 }
2253#endif
2254
04e2f174 2255 smp_wmb();
1da177e4
LT
2256 rq = task_rq_lock(p, &flags);
2257 old_state = p->state;
2258 if (!(old_state & state))
2259 goto out;
2260
dd41f596 2261 if (p->se.on_rq)
1da177e4
LT
2262 goto out_running;
2263
2264 cpu = task_cpu(p);
cc367732 2265 orig_cpu = cpu;
1da177e4
LT
2266 this_cpu = smp_processor_id();
2267
2268#ifdef CONFIG_SMP
2269 if (unlikely(task_running(rq, p)))
2270 goto out_activate;
2271
5d2f5a61
DA
2272 cpu = p->sched_class->select_task_rq(p, sync);
2273 if (cpu != orig_cpu) {
2274 set_task_cpu(p, cpu);
1da177e4
LT
2275 task_rq_unlock(rq, &flags);
2276 /* might preempt at this point */
2277 rq = task_rq_lock(p, &flags);
2278 old_state = p->state;
2279 if (!(old_state & state))
2280 goto out;
dd41f596 2281 if (p->se.on_rq)
1da177e4
LT
2282 goto out_running;
2283
2284 this_cpu = smp_processor_id();
2285 cpu = task_cpu(p);
2286 }
2287
e7693a36
GH
2288#ifdef CONFIG_SCHEDSTATS
2289 schedstat_inc(rq, ttwu_count);
2290 if (cpu == this_cpu)
2291 schedstat_inc(rq, ttwu_local);
2292 else {
2293 struct sched_domain *sd;
2294 for_each_domain(this_cpu, sd) {
2295 if (cpu_isset(cpu, sd->span)) {
2296 schedstat_inc(sd, ttwu_wake_remote);
2297 break;
2298 }
2299 }
2300 }
6d6bc0ad 2301#endif /* CONFIG_SCHEDSTATS */
e7693a36 2302
1da177e4
LT
2303out_activate:
2304#endif /* CONFIG_SMP */
cc367732
IM
2305 schedstat_inc(p, se.nr_wakeups);
2306 if (sync)
2307 schedstat_inc(p, se.nr_wakeups_sync);
2308 if (orig_cpu != cpu)
2309 schedstat_inc(p, se.nr_wakeups_migrate);
2310 if (cpu == this_cpu)
2311 schedstat_inc(p, se.nr_wakeups_local);
2312 else
2313 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2314 update_rq_clock(rq);
dd41f596 2315 activate_task(rq, p, 1);
1da177e4
LT
2316 success = 1;
2317
2318out_running:
0a16b607 2319 trace_sched_wakeup(rq, p);
15afe09b 2320 check_preempt_curr(rq, p, sync);
4ae7d5ce 2321
1da177e4 2322 p->state = TASK_RUNNING;
9a897c5a
SR
2323#ifdef CONFIG_SMP
2324 if (p->sched_class->task_wake_up)
2325 p->sched_class->task_wake_up(rq, p);
2326#endif
1da177e4 2327out:
2087a1ad
GH
2328 current->se.last_wakeup = current->se.sum_exec_runtime;
2329
1da177e4
LT
2330 task_rq_unlock(rq, &flags);
2331
2332 return success;
2333}
2334
7ad5b3a5 2335int wake_up_process(struct task_struct *p)
1da177e4 2336{
d9514f6c 2337 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2338}
1da177e4
LT
2339EXPORT_SYMBOL(wake_up_process);
2340
7ad5b3a5 2341int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2342{
2343 return try_to_wake_up(p, state, 0);
2344}
2345
1da177e4
LT
2346/*
2347 * Perform scheduler related setup for a newly forked process p.
2348 * p is forked by current.
dd41f596
IM
2349 *
2350 * __sched_fork() is basic setup used by init_idle() too:
2351 */
2352static void __sched_fork(struct task_struct *p)
2353{
dd41f596
IM
2354 p->se.exec_start = 0;
2355 p->se.sum_exec_runtime = 0;
f6cf891c 2356 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2357 p->se.last_wakeup = 0;
2358 p->se.avg_overlap = 0;
6cfb0d5d
IM
2359
2360#ifdef CONFIG_SCHEDSTATS
2361 p->se.wait_start = 0;
dd41f596
IM
2362 p->se.sum_sleep_runtime = 0;
2363 p->se.sleep_start = 0;
dd41f596
IM
2364 p->se.block_start = 0;
2365 p->se.sleep_max = 0;
2366 p->se.block_max = 0;
2367 p->se.exec_max = 0;
eba1ed4b 2368 p->se.slice_max = 0;
dd41f596 2369 p->se.wait_max = 0;
6cfb0d5d 2370#endif
476d139c 2371
fa717060 2372 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2373 p->se.on_rq = 0;
4a55bd5e 2374 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2375
e107be36
AK
2376#ifdef CONFIG_PREEMPT_NOTIFIERS
2377 INIT_HLIST_HEAD(&p->preempt_notifiers);
2378#endif
2379
1da177e4
LT
2380 /*
2381 * We mark the process as running here, but have not actually
2382 * inserted it onto the runqueue yet. This guarantees that
2383 * nobody will actually run it, and a signal or other external
2384 * event cannot wake it up and insert it on the runqueue either.
2385 */
2386 p->state = TASK_RUNNING;
dd41f596
IM
2387}
2388
2389/*
2390 * fork()/clone()-time setup:
2391 */
2392void sched_fork(struct task_struct *p, int clone_flags)
2393{
2394 int cpu = get_cpu();
2395
2396 __sched_fork(p);
2397
2398#ifdef CONFIG_SMP
2399 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2400#endif
02e4bac2 2401 set_task_cpu(p, cpu);
b29739f9
IM
2402
2403 /*
2404 * Make sure we do not leak PI boosting priority to the child:
2405 */
2406 p->prio = current->normal_prio;
2ddbf952
HS
2407 if (!rt_prio(p->prio))
2408 p->sched_class = &fair_sched_class;
b29739f9 2409
52f17b6c 2410#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2411 if (likely(sched_info_on()))
52f17b6c 2412 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2413#endif
d6077cb8 2414#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2415 p->oncpu = 0;
2416#endif
1da177e4 2417#ifdef CONFIG_PREEMPT
4866cde0 2418 /* Want to start with kernel preemption disabled. */
a1261f54 2419 task_thread_info(p)->preempt_count = 1;
1da177e4 2420#endif
476d139c 2421 put_cpu();
1da177e4
LT
2422}
2423
2424/*
2425 * wake_up_new_task - wake up a newly created task for the first time.
2426 *
2427 * This function will do some initial scheduler statistics housekeeping
2428 * that must be done for every newly created context, then puts the task
2429 * on the runqueue and wakes it.
2430 */
7ad5b3a5 2431void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2432{
2433 unsigned long flags;
dd41f596 2434 struct rq *rq;
1da177e4
LT
2435
2436 rq = task_rq_lock(p, &flags);
147cbb4b 2437 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2438 update_rq_clock(rq);
1da177e4
LT
2439
2440 p->prio = effective_prio(p);
2441
b9dca1e0 2442 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2443 activate_task(rq, p, 0);
1da177e4 2444 } else {
1da177e4 2445 /*
dd41f596
IM
2446 * Let the scheduling class do new task startup
2447 * management (if any):
1da177e4 2448 */
ee0827d8 2449 p->sched_class->task_new(rq, p);
c09595f6 2450 inc_nr_running(rq);
1da177e4 2451 }
0a16b607 2452 trace_sched_wakeup_new(rq, p);
15afe09b 2453 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2454#ifdef CONFIG_SMP
2455 if (p->sched_class->task_wake_up)
2456 p->sched_class->task_wake_up(rq, p);
2457#endif
dd41f596 2458 task_rq_unlock(rq, &flags);
1da177e4
LT
2459}
2460
e107be36
AK
2461#ifdef CONFIG_PREEMPT_NOTIFIERS
2462
2463/**
421cee29
RD
2464 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2465 * @notifier: notifier struct to register
e107be36
AK
2466 */
2467void preempt_notifier_register(struct preempt_notifier *notifier)
2468{
2469 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_register);
2472
2473/**
2474 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2475 * @notifier: notifier struct to unregister
e107be36
AK
2476 *
2477 * This is safe to call from within a preemption notifier.
2478 */
2479void preempt_notifier_unregister(struct preempt_notifier *notifier)
2480{
2481 hlist_del(&notifier->link);
2482}
2483EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2484
2485static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2486{
2487 struct preempt_notifier *notifier;
2488 struct hlist_node *node;
2489
2490 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2491 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2492}
2493
2494static void
2495fire_sched_out_preempt_notifiers(struct task_struct *curr,
2496 struct task_struct *next)
2497{
2498 struct preempt_notifier *notifier;
2499 struct hlist_node *node;
2500
2501 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2502 notifier->ops->sched_out(notifier, next);
2503}
2504
6d6bc0ad 2505#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2506
2507static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2508{
2509}
2510
2511static void
2512fire_sched_out_preempt_notifiers(struct task_struct *curr,
2513 struct task_struct *next)
2514{
2515}
2516
6d6bc0ad 2517#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2518
4866cde0
NP
2519/**
2520 * prepare_task_switch - prepare to switch tasks
2521 * @rq: the runqueue preparing to switch
421cee29 2522 * @prev: the current task that is being switched out
4866cde0
NP
2523 * @next: the task we are going to switch to.
2524 *
2525 * This is called with the rq lock held and interrupts off. It must
2526 * be paired with a subsequent finish_task_switch after the context
2527 * switch.
2528 *
2529 * prepare_task_switch sets up locking and calls architecture specific
2530 * hooks.
2531 */
e107be36
AK
2532static inline void
2533prepare_task_switch(struct rq *rq, struct task_struct *prev,
2534 struct task_struct *next)
4866cde0 2535{
e107be36 2536 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2537 prepare_lock_switch(rq, next);
2538 prepare_arch_switch(next);
2539}
2540
1da177e4
LT
2541/**
2542 * finish_task_switch - clean up after a task-switch
344babaa 2543 * @rq: runqueue associated with task-switch
1da177e4
LT
2544 * @prev: the thread we just switched away from.
2545 *
4866cde0
NP
2546 * finish_task_switch must be called after the context switch, paired
2547 * with a prepare_task_switch call before the context switch.
2548 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2549 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2550 *
2551 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2552 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2553 * with the lock held can cause deadlocks; see schedule() for
2554 * details.)
2555 */
a9957449 2556static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2557 __releases(rq->lock)
2558{
1da177e4 2559 struct mm_struct *mm = rq->prev_mm;
55a101f8 2560 long prev_state;
1da177e4
LT
2561
2562 rq->prev_mm = NULL;
2563
2564 /*
2565 * A task struct has one reference for the use as "current".
c394cc9f 2566 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2567 * schedule one last time. The schedule call will never return, and
2568 * the scheduled task must drop that reference.
c394cc9f 2569 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2570 * still held, otherwise prev could be scheduled on another cpu, die
2571 * there before we look at prev->state, and then the reference would
2572 * be dropped twice.
2573 * Manfred Spraul <manfred@colorfullife.com>
2574 */
55a101f8 2575 prev_state = prev->state;
4866cde0
NP
2576 finish_arch_switch(prev);
2577 finish_lock_switch(rq, prev);
9a897c5a
SR
2578#ifdef CONFIG_SMP
2579 if (current->sched_class->post_schedule)
2580 current->sched_class->post_schedule(rq);
2581#endif
e8fa1362 2582
e107be36 2583 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2584 if (mm)
2585 mmdrop(mm);
c394cc9f 2586 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2587 /*
2588 * Remove function-return probe instances associated with this
2589 * task and put them back on the free list.
9761eea8 2590 */
c6fd91f0 2591 kprobe_flush_task(prev);
1da177e4 2592 put_task_struct(prev);
c6fd91f0 2593 }
1da177e4
LT
2594}
2595
2596/**
2597 * schedule_tail - first thing a freshly forked thread must call.
2598 * @prev: the thread we just switched away from.
2599 */
36c8b586 2600asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2601 __releases(rq->lock)
2602{
70b97a7f
IM
2603 struct rq *rq = this_rq();
2604
4866cde0
NP
2605 finish_task_switch(rq, prev);
2606#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2607 /* In this case, finish_task_switch does not reenable preemption */
2608 preempt_enable();
2609#endif
1da177e4 2610 if (current->set_child_tid)
b488893a 2611 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2612}
2613
2614/*
2615 * context_switch - switch to the new MM and the new
2616 * thread's register state.
2617 */
dd41f596 2618static inline void
70b97a7f 2619context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2620 struct task_struct *next)
1da177e4 2621{
dd41f596 2622 struct mm_struct *mm, *oldmm;
1da177e4 2623
e107be36 2624 prepare_task_switch(rq, prev, next);
0a16b607 2625 trace_sched_switch(rq, prev, next);
dd41f596
IM
2626 mm = next->mm;
2627 oldmm = prev->active_mm;
9226d125
ZA
2628 /*
2629 * For paravirt, this is coupled with an exit in switch_to to
2630 * combine the page table reload and the switch backend into
2631 * one hypercall.
2632 */
2633 arch_enter_lazy_cpu_mode();
2634
dd41f596 2635 if (unlikely(!mm)) {
1da177e4
LT
2636 next->active_mm = oldmm;
2637 atomic_inc(&oldmm->mm_count);
2638 enter_lazy_tlb(oldmm, next);
2639 } else
2640 switch_mm(oldmm, mm, next);
2641
dd41f596 2642 if (unlikely(!prev->mm)) {
1da177e4 2643 prev->active_mm = NULL;
1da177e4
LT
2644 rq->prev_mm = oldmm;
2645 }
3a5f5e48
IM
2646 /*
2647 * Since the runqueue lock will be released by the next
2648 * task (which is an invalid locking op but in the case
2649 * of the scheduler it's an obvious special-case), so we
2650 * do an early lockdep release here:
2651 */
2652#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2653 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2654#endif
1da177e4
LT
2655
2656 /* Here we just switch the register state and the stack. */
2657 switch_to(prev, next, prev);
2658
dd41f596
IM
2659 barrier();
2660 /*
2661 * this_rq must be evaluated again because prev may have moved
2662 * CPUs since it called schedule(), thus the 'rq' on its stack
2663 * frame will be invalid.
2664 */
2665 finish_task_switch(this_rq(), prev);
1da177e4
LT
2666}
2667
2668/*
2669 * nr_running, nr_uninterruptible and nr_context_switches:
2670 *
2671 * externally visible scheduler statistics: current number of runnable
2672 * threads, current number of uninterruptible-sleeping threads, total
2673 * number of context switches performed since bootup.
2674 */
2675unsigned long nr_running(void)
2676{
2677 unsigned long i, sum = 0;
2678
2679 for_each_online_cpu(i)
2680 sum += cpu_rq(i)->nr_running;
2681
2682 return sum;
2683}
2684
2685unsigned long nr_uninterruptible(void)
2686{
2687 unsigned long i, sum = 0;
2688
0a945022 2689 for_each_possible_cpu(i)
1da177e4
LT
2690 sum += cpu_rq(i)->nr_uninterruptible;
2691
2692 /*
2693 * Since we read the counters lockless, it might be slightly
2694 * inaccurate. Do not allow it to go below zero though:
2695 */
2696 if (unlikely((long)sum < 0))
2697 sum = 0;
2698
2699 return sum;
2700}
2701
2702unsigned long long nr_context_switches(void)
2703{
cc94abfc
SR
2704 int i;
2705 unsigned long long sum = 0;
1da177e4 2706
0a945022 2707 for_each_possible_cpu(i)
1da177e4
LT
2708 sum += cpu_rq(i)->nr_switches;
2709
2710 return sum;
2711}
2712
2713unsigned long nr_iowait(void)
2714{
2715 unsigned long i, sum = 0;
2716
0a945022 2717 for_each_possible_cpu(i)
1da177e4
LT
2718 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2719
2720 return sum;
2721}
2722
db1b1fef
JS
2723unsigned long nr_active(void)
2724{
2725 unsigned long i, running = 0, uninterruptible = 0;
2726
2727 for_each_online_cpu(i) {
2728 running += cpu_rq(i)->nr_running;
2729 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2730 }
2731
2732 if (unlikely((long)uninterruptible < 0))
2733 uninterruptible = 0;
2734
2735 return running + uninterruptible;
2736}
2737
48f24c4d 2738/*
dd41f596
IM
2739 * Update rq->cpu_load[] statistics. This function is usually called every
2740 * scheduler tick (TICK_NSEC).
48f24c4d 2741 */
dd41f596 2742static void update_cpu_load(struct rq *this_rq)
48f24c4d 2743{
495eca49 2744 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2745 int i, scale;
2746
2747 this_rq->nr_load_updates++;
dd41f596
IM
2748
2749 /* Update our load: */
2750 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2751 unsigned long old_load, new_load;
2752
2753 /* scale is effectively 1 << i now, and >> i divides by scale */
2754
2755 old_load = this_rq->cpu_load[i];
2756 new_load = this_load;
a25707f3
IM
2757 /*
2758 * Round up the averaging division if load is increasing. This
2759 * prevents us from getting stuck on 9 if the load is 10, for
2760 * example.
2761 */
2762 if (new_load > old_load)
2763 new_load += scale-1;
dd41f596
IM
2764 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2765 }
48f24c4d
IM
2766}
2767
dd41f596
IM
2768#ifdef CONFIG_SMP
2769
1da177e4
LT
2770/*
2771 * double_rq_lock - safely lock two runqueues
2772 *
2773 * Note this does not disable interrupts like task_rq_lock,
2774 * you need to do so manually before calling.
2775 */
70b97a7f 2776static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2777 __acquires(rq1->lock)
2778 __acquires(rq2->lock)
2779{
054b9108 2780 BUG_ON(!irqs_disabled());
1da177e4
LT
2781 if (rq1 == rq2) {
2782 spin_lock(&rq1->lock);
2783 __acquire(rq2->lock); /* Fake it out ;) */
2784 } else {
c96d145e 2785 if (rq1 < rq2) {
1da177e4 2786 spin_lock(&rq1->lock);
5e710e37 2787 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2788 } else {
2789 spin_lock(&rq2->lock);
5e710e37 2790 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2791 }
2792 }
6e82a3be
IM
2793 update_rq_clock(rq1);
2794 update_rq_clock(rq2);
1da177e4
LT
2795}
2796
2797/*
2798 * double_rq_unlock - safely unlock two runqueues
2799 *
2800 * Note this does not restore interrupts like task_rq_unlock,
2801 * you need to do so manually after calling.
2802 */
70b97a7f 2803static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2804 __releases(rq1->lock)
2805 __releases(rq2->lock)
2806{
2807 spin_unlock(&rq1->lock);
2808 if (rq1 != rq2)
2809 spin_unlock(&rq2->lock);
2810 else
2811 __release(rq2->lock);
2812}
2813
2814/*
2815 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2816 */
e8fa1362 2817static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2818 __releases(this_rq->lock)
2819 __acquires(busiest->lock)
2820 __acquires(this_rq->lock)
2821{
e8fa1362
SR
2822 int ret = 0;
2823
054b9108
KK
2824 if (unlikely(!irqs_disabled())) {
2825 /* printk() doesn't work good under rq->lock */
2826 spin_unlock(&this_rq->lock);
2827 BUG_ON(1);
2828 }
1da177e4 2829 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2830 if (busiest < this_rq) {
1da177e4
LT
2831 spin_unlock(&this_rq->lock);
2832 spin_lock(&busiest->lock);
5e710e37 2833 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2834 ret = 1;
1da177e4 2835 } else
5e710e37 2836 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2837 }
e8fa1362 2838 return ret;
1da177e4
LT
2839}
2840
1b12bbc7
PZ
2841static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2842 __releases(busiest->lock)
2843{
2844 spin_unlock(&busiest->lock);
2845 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2846}
2847
1da177e4
LT
2848/*
2849 * If dest_cpu is allowed for this process, migrate the task to it.
2850 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2851 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2852 * the cpu_allowed mask is restored.
2853 */
36c8b586 2854static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2855{
70b97a7f 2856 struct migration_req req;
1da177e4 2857 unsigned long flags;
70b97a7f 2858 struct rq *rq;
1da177e4
LT
2859
2860 rq = task_rq_lock(p, &flags);
2861 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2862 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2863 goto out;
2864
0a16b607 2865 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2866 /* force the process onto the specified CPU */
2867 if (migrate_task(p, dest_cpu, &req)) {
2868 /* Need to wait for migration thread (might exit: take ref). */
2869 struct task_struct *mt = rq->migration_thread;
36c8b586 2870
1da177e4
LT
2871 get_task_struct(mt);
2872 task_rq_unlock(rq, &flags);
2873 wake_up_process(mt);
2874 put_task_struct(mt);
2875 wait_for_completion(&req.done);
36c8b586 2876
1da177e4
LT
2877 return;
2878 }
2879out:
2880 task_rq_unlock(rq, &flags);
2881}
2882
2883/*
476d139c
NP
2884 * sched_exec - execve() is a valuable balancing opportunity, because at
2885 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2886 */
2887void sched_exec(void)
2888{
1da177e4 2889 int new_cpu, this_cpu = get_cpu();
476d139c 2890 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2891 put_cpu();
476d139c
NP
2892 if (new_cpu != this_cpu)
2893 sched_migrate_task(current, new_cpu);
1da177e4
LT
2894}
2895
2896/*
2897 * pull_task - move a task from a remote runqueue to the local runqueue.
2898 * Both runqueues must be locked.
2899 */
dd41f596
IM
2900static void pull_task(struct rq *src_rq, struct task_struct *p,
2901 struct rq *this_rq, int this_cpu)
1da177e4 2902{
2e1cb74a 2903 deactivate_task(src_rq, p, 0);
1da177e4 2904 set_task_cpu(p, this_cpu);
dd41f596 2905 activate_task(this_rq, p, 0);
1da177e4
LT
2906 /*
2907 * Note that idle threads have a prio of MAX_PRIO, for this test
2908 * to be always true for them.
2909 */
15afe09b 2910 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2911}
2912
2913/*
2914 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2915 */
858119e1 2916static
70b97a7f 2917int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2918 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2919 int *all_pinned)
1da177e4
LT
2920{
2921 /*
2922 * We do not migrate tasks that are:
2923 * 1) running (obviously), or
2924 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2925 * 3) are cache-hot on their current CPU.
2926 */
cc367732
IM
2927 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2928 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2929 return 0;
cc367732 2930 }
81026794
NP
2931 *all_pinned = 0;
2932
cc367732
IM
2933 if (task_running(rq, p)) {
2934 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2935 return 0;
cc367732 2936 }
1da177e4 2937
da84d961
IM
2938 /*
2939 * Aggressive migration if:
2940 * 1) task is cache cold, or
2941 * 2) too many balance attempts have failed.
2942 */
2943
6bc1665b
IM
2944 if (!task_hot(p, rq->clock, sd) ||
2945 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2946#ifdef CONFIG_SCHEDSTATS
cc367732 2947 if (task_hot(p, rq->clock, sd)) {
da84d961 2948 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2949 schedstat_inc(p, se.nr_forced_migrations);
2950 }
da84d961
IM
2951#endif
2952 return 1;
2953 }
2954
cc367732
IM
2955 if (task_hot(p, rq->clock, sd)) {
2956 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2957 return 0;
cc367732 2958 }
1da177e4
LT
2959 return 1;
2960}
2961
e1d1484f
PW
2962static unsigned long
2963balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2964 unsigned long max_load_move, struct sched_domain *sd,
2965 enum cpu_idle_type idle, int *all_pinned,
2966 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2967{
051c6764 2968 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2969 struct task_struct *p;
2970 long rem_load_move = max_load_move;
1da177e4 2971
e1d1484f 2972 if (max_load_move == 0)
1da177e4
LT
2973 goto out;
2974
81026794
NP
2975 pinned = 1;
2976
1da177e4 2977 /*
dd41f596 2978 * Start the load-balancing iterator:
1da177e4 2979 */
dd41f596
IM
2980 p = iterator->start(iterator->arg);
2981next:
b82d9fdd 2982 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2983 goto out;
051c6764
PZ
2984
2985 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2986 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2987 p = iterator->next(iterator->arg);
2988 goto next;
1da177e4
LT
2989 }
2990
dd41f596 2991 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2992 pulled++;
dd41f596 2993 rem_load_move -= p->se.load.weight;
1da177e4 2994
2dd73a4f 2995 /*
b82d9fdd 2996 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2997 */
e1d1484f 2998 if (rem_load_move > 0) {
a4ac01c3
PW
2999 if (p->prio < *this_best_prio)
3000 *this_best_prio = p->prio;
dd41f596
IM
3001 p = iterator->next(iterator->arg);
3002 goto next;
1da177e4
LT
3003 }
3004out:
3005 /*
e1d1484f 3006 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3007 * so we can safely collect pull_task() stats here rather than
3008 * inside pull_task().
3009 */
3010 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3011
3012 if (all_pinned)
3013 *all_pinned = pinned;
e1d1484f
PW
3014
3015 return max_load_move - rem_load_move;
1da177e4
LT
3016}
3017
dd41f596 3018/*
43010659
PW
3019 * move_tasks tries to move up to max_load_move weighted load from busiest to
3020 * this_rq, as part of a balancing operation within domain "sd".
3021 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3022 *
3023 * Called with both runqueues locked.
3024 */
3025static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3026 unsigned long max_load_move,
dd41f596
IM
3027 struct sched_domain *sd, enum cpu_idle_type idle,
3028 int *all_pinned)
3029{
5522d5d5 3030 const struct sched_class *class = sched_class_highest;
43010659 3031 unsigned long total_load_moved = 0;
a4ac01c3 3032 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3033
3034 do {
43010659
PW
3035 total_load_moved +=
3036 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3037 max_load_move - total_load_moved,
a4ac01c3 3038 sd, idle, all_pinned, &this_best_prio);
dd41f596 3039 class = class->next;
c4acb2c0
GH
3040
3041 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3042 break;
3043
43010659 3044 } while (class && max_load_move > total_load_moved);
dd41f596 3045
43010659
PW
3046 return total_load_moved > 0;
3047}
3048
e1d1484f
PW
3049static int
3050iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3051 struct sched_domain *sd, enum cpu_idle_type idle,
3052 struct rq_iterator *iterator)
3053{
3054 struct task_struct *p = iterator->start(iterator->arg);
3055 int pinned = 0;
3056
3057 while (p) {
3058 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3059 pull_task(busiest, p, this_rq, this_cpu);
3060 /*
3061 * Right now, this is only the second place pull_task()
3062 * is called, so we can safely collect pull_task()
3063 * stats here rather than inside pull_task().
3064 */
3065 schedstat_inc(sd, lb_gained[idle]);
3066
3067 return 1;
3068 }
3069 p = iterator->next(iterator->arg);
3070 }
3071
3072 return 0;
3073}
3074
43010659
PW
3075/*
3076 * move_one_task tries to move exactly one task from busiest to this_rq, as
3077 * part of active balancing operations within "domain".
3078 * Returns 1 if successful and 0 otherwise.
3079 *
3080 * Called with both runqueues locked.
3081 */
3082static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3083 struct sched_domain *sd, enum cpu_idle_type idle)
3084{
5522d5d5 3085 const struct sched_class *class;
43010659
PW
3086
3087 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3088 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3089 return 1;
3090
3091 return 0;
dd41f596
IM
3092}
3093
1da177e4
LT
3094/*
3095 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3096 * domain. It calculates and returns the amount of weighted load which
3097 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3098 */
3099static struct sched_group *
3100find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3101 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3102 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3103{
3104 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3105 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3106 unsigned long max_pull;
2dd73a4f
PW
3107 unsigned long busiest_load_per_task, busiest_nr_running;
3108 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3109 int load_idx, group_imb = 0;
5c45bf27
SS
3110#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3111 int power_savings_balance = 1;
3112 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3113 unsigned long min_nr_running = ULONG_MAX;
3114 struct sched_group *group_min = NULL, *group_leader = NULL;
3115#endif
1da177e4
LT
3116
3117 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3118 busiest_load_per_task = busiest_nr_running = 0;
3119 this_load_per_task = this_nr_running = 0;
408ed066 3120
d15bcfdb 3121 if (idle == CPU_NOT_IDLE)
7897986b 3122 load_idx = sd->busy_idx;
d15bcfdb 3123 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3124 load_idx = sd->newidle_idx;
3125 else
3126 load_idx = sd->idle_idx;
1da177e4
LT
3127
3128 do {
908a7c1b 3129 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3130 int local_group;
3131 int i;
908a7c1b 3132 int __group_imb = 0;
783609c6 3133 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3134 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3135 unsigned long sum_avg_load_per_task;
3136 unsigned long avg_load_per_task;
1da177e4
LT
3137
3138 local_group = cpu_isset(this_cpu, group->cpumask);
3139
783609c6
SS
3140 if (local_group)
3141 balance_cpu = first_cpu(group->cpumask);
3142
1da177e4 3143 /* Tally up the load of all CPUs in the group */
2dd73a4f 3144 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3145 sum_avg_load_per_task = avg_load_per_task = 0;
3146
908a7c1b
KC
3147 max_cpu_load = 0;
3148 min_cpu_load = ~0UL;
1da177e4 3149
363ab6f1 3150 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3151 struct rq *rq;
3152
3153 if (!cpu_isset(i, *cpus))
3154 continue;
3155
3156 rq = cpu_rq(i);
2dd73a4f 3157
9439aab8 3158 if (*sd_idle && rq->nr_running)
5969fe06
NP
3159 *sd_idle = 0;
3160
1da177e4 3161 /* Bias balancing toward cpus of our domain */
783609c6
SS
3162 if (local_group) {
3163 if (idle_cpu(i) && !first_idle_cpu) {
3164 first_idle_cpu = 1;
3165 balance_cpu = i;
3166 }
3167
a2000572 3168 load = target_load(i, load_idx);
908a7c1b 3169 } else {
a2000572 3170 load = source_load(i, load_idx);
908a7c1b
KC
3171 if (load > max_cpu_load)
3172 max_cpu_load = load;
3173 if (min_cpu_load > load)
3174 min_cpu_load = load;
3175 }
1da177e4
LT
3176
3177 avg_load += load;
2dd73a4f 3178 sum_nr_running += rq->nr_running;
dd41f596 3179 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3180
3181 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3182 }
3183
783609c6
SS
3184 /*
3185 * First idle cpu or the first cpu(busiest) in this sched group
3186 * is eligible for doing load balancing at this and above
9439aab8
SS
3187 * domains. In the newly idle case, we will allow all the cpu's
3188 * to do the newly idle load balance.
783609c6 3189 */
9439aab8
SS
3190 if (idle != CPU_NEWLY_IDLE && local_group &&
3191 balance_cpu != this_cpu && balance) {
783609c6
SS
3192 *balance = 0;
3193 goto ret;
3194 }
3195
1da177e4 3196 total_load += avg_load;
5517d86b 3197 total_pwr += group->__cpu_power;
1da177e4
LT
3198
3199 /* Adjust by relative CPU power of the group */
5517d86b
ED
3200 avg_load = sg_div_cpu_power(group,
3201 avg_load * SCHED_LOAD_SCALE);
1da177e4 3202
408ed066
PZ
3203
3204 /*
3205 * Consider the group unbalanced when the imbalance is larger
3206 * than the average weight of two tasks.
3207 *
3208 * APZ: with cgroup the avg task weight can vary wildly and
3209 * might not be a suitable number - should we keep a
3210 * normalized nr_running number somewhere that negates
3211 * the hierarchy?
3212 */
3213 avg_load_per_task = sg_div_cpu_power(group,
3214 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3215
3216 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3217 __group_imb = 1;
3218
5517d86b 3219 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3220
1da177e4
LT
3221 if (local_group) {
3222 this_load = avg_load;
3223 this = group;
2dd73a4f
PW
3224 this_nr_running = sum_nr_running;
3225 this_load_per_task = sum_weighted_load;
3226 } else if (avg_load > max_load &&
908a7c1b 3227 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3228 max_load = avg_load;
3229 busiest = group;
2dd73a4f
PW
3230 busiest_nr_running = sum_nr_running;
3231 busiest_load_per_task = sum_weighted_load;
908a7c1b 3232 group_imb = __group_imb;
1da177e4 3233 }
5c45bf27
SS
3234
3235#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3236 /*
3237 * Busy processors will not participate in power savings
3238 * balance.
3239 */
dd41f596
IM
3240 if (idle == CPU_NOT_IDLE ||
3241 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3242 goto group_next;
5c45bf27
SS
3243
3244 /*
3245 * If the local group is idle or completely loaded
3246 * no need to do power savings balance at this domain
3247 */
3248 if (local_group && (this_nr_running >= group_capacity ||
3249 !this_nr_running))
3250 power_savings_balance = 0;
3251
dd41f596 3252 /*
5c45bf27
SS
3253 * If a group is already running at full capacity or idle,
3254 * don't include that group in power savings calculations
dd41f596
IM
3255 */
3256 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3257 || !sum_nr_running)
dd41f596 3258 goto group_next;
5c45bf27 3259
dd41f596 3260 /*
5c45bf27 3261 * Calculate the group which has the least non-idle load.
dd41f596
IM
3262 * This is the group from where we need to pick up the load
3263 * for saving power
3264 */
3265 if ((sum_nr_running < min_nr_running) ||
3266 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3267 first_cpu(group->cpumask) <
3268 first_cpu(group_min->cpumask))) {
dd41f596
IM
3269 group_min = group;
3270 min_nr_running = sum_nr_running;
5c45bf27
SS
3271 min_load_per_task = sum_weighted_load /
3272 sum_nr_running;
dd41f596 3273 }
5c45bf27 3274
dd41f596 3275 /*
5c45bf27 3276 * Calculate the group which is almost near its
dd41f596
IM
3277 * capacity but still has some space to pick up some load
3278 * from other group and save more power
3279 */
3280 if (sum_nr_running <= group_capacity - 1) {
3281 if (sum_nr_running > leader_nr_running ||
3282 (sum_nr_running == leader_nr_running &&
3283 first_cpu(group->cpumask) >
3284 first_cpu(group_leader->cpumask))) {
3285 group_leader = group;
3286 leader_nr_running = sum_nr_running;
3287 }
48f24c4d 3288 }
5c45bf27
SS
3289group_next:
3290#endif
1da177e4
LT
3291 group = group->next;
3292 } while (group != sd->groups);
3293
2dd73a4f 3294 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3295 goto out_balanced;
3296
3297 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3298
3299 if (this_load >= avg_load ||
3300 100*max_load <= sd->imbalance_pct*this_load)
3301 goto out_balanced;
3302
2dd73a4f 3303 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3304 if (group_imb)
3305 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3306
1da177e4
LT
3307 /*
3308 * We're trying to get all the cpus to the average_load, so we don't
3309 * want to push ourselves above the average load, nor do we wish to
3310 * reduce the max loaded cpu below the average load, as either of these
3311 * actions would just result in more rebalancing later, and ping-pong
3312 * tasks around. Thus we look for the minimum possible imbalance.
3313 * Negative imbalances (*we* are more loaded than anyone else) will
3314 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3315 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3316 * appear as very large values with unsigned longs.
3317 */
2dd73a4f
PW
3318 if (max_load <= busiest_load_per_task)
3319 goto out_balanced;
3320
3321 /*
3322 * In the presence of smp nice balancing, certain scenarios can have
3323 * max load less than avg load(as we skip the groups at or below
3324 * its cpu_power, while calculating max_load..)
3325 */
3326 if (max_load < avg_load) {
3327 *imbalance = 0;
3328 goto small_imbalance;
3329 }
0c117f1b
SS
3330
3331 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3332 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3333
1da177e4 3334 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3335 *imbalance = min(max_pull * busiest->__cpu_power,
3336 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3337 / SCHED_LOAD_SCALE;
3338
2dd73a4f
PW
3339 /*
3340 * if *imbalance is less than the average load per runnable task
3341 * there is no gaurantee that any tasks will be moved so we'll have
3342 * a think about bumping its value to force at least one task to be
3343 * moved
3344 */
7fd0d2dd 3345 if (*imbalance < busiest_load_per_task) {
48f24c4d 3346 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3347 unsigned int imbn;
3348
3349small_imbalance:
3350 pwr_move = pwr_now = 0;
3351 imbn = 2;
3352 if (this_nr_running) {
3353 this_load_per_task /= this_nr_running;
3354 if (busiest_load_per_task > this_load_per_task)
3355 imbn = 1;
3356 } else
408ed066 3357 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3358
01c8c57d 3359 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3360 busiest_load_per_task * imbn) {
2dd73a4f 3361 *imbalance = busiest_load_per_task;
1da177e4
LT
3362 return busiest;
3363 }
3364
3365 /*
3366 * OK, we don't have enough imbalance to justify moving tasks,
3367 * however we may be able to increase total CPU power used by
3368 * moving them.
3369 */
3370
5517d86b
ED
3371 pwr_now += busiest->__cpu_power *
3372 min(busiest_load_per_task, max_load);
3373 pwr_now += this->__cpu_power *
3374 min(this_load_per_task, this_load);
1da177e4
LT
3375 pwr_now /= SCHED_LOAD_SCALE;
3376
3377 /* Amount of load we'd subtract */
5517d86b
ED
3378 tmp = sg_div_cpu_power(busiest,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3380 if (max_load > tmp)
5517d86b 3381 pwr_move += busiest->__cpu_power *
2dd73a4f 3382 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3383
3384 /* Amount of load we'd add */
5517d86b 3385 if (max_load * busiest->__cpu_power <
33859f7f 3386 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3387 tmp = sg_div_cpu_power(this,
3388 max_load * busiest->__cpu_power);
1da177e4 3389 else
5517d86b
ED
3390 tmp = sg_div_cpu_power(this,
3391 busiest_load_per_task * SCHED_LOAD_SCALE);
3392 pwr_move += this->__cpu_power *
3393 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3394 pwr_move /= SCHED_LOAD_SCALE;
3395
3396 /* Move if we gain throughput */
7fd0d2dd
SS
3397 if (pwr_move > pwr_now)
3398 *imbalance = busiest_load_per_task;
1da177e4
LT
3399 }
3400
1da177e4
LT
3401 return busiest;
3402
3403out_balanced:
5c45bf27 3404#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3405 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3406 goto ret;
1da177e4 3407
5c45bf27
SS
3408 if (this == group_leader && group_leader != group_min) {
3409 *imbalance = min_load_per_task;
3410 return group_min;
3411 }
5c45bf27 3412#endif
783609c6 3413ret:
1da177e4
LT
3414 *imbalance = 0;
3415 return NULL;
3416}
3417
3418/*
3419 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3420 */
70b97a7f 3421static struct rq *
d15bcfdb 3422find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3423 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3424{
70b97a7f 3425 struct rq *busiest = NULL, *rq;
2dd73a4f 3426 unsigned long max_load = 0;
1da177e4
LT
3427 int i;
3428
363ab6f1 3429 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3430 unsigned long wl;
0a2966b4
CL
3431
3432 if (!cpu_isset(i, *cpus))
3433 continue;
3434
48f24c4d 3435 rq = cpu_rq(i);
dd41f596 3436 wl = weighted_cpuload(i);
2dd73a4f 3437
dd41f596 3438 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3439 continue;
1da177e4 3440
dd41f596
IM
3441 if (wl > max_load) {
3442 max_load = wl;
48f24c4d 3443 busiest = rq;
1da177e4
LT
3444 }
3445 }
3446
3447 return busiest;
3448}
3449
77391d71
NP
3450/*
3451 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3452 * so long as it is large enough.
3453 */
3454#define MAX_PINNED_INTERVAL 512
3455
1da177e4
LT
3456/*
3457 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3458 * tasks if there is an imbalance.
1da177e4 3459 */
70b97a7f 3460static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3461 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3462 int *balance, cpumask_t *cpus)
1da177e4 3463{
43010659 3464 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3465 struct sched_group *group;
1da177e4 3466 unsigned long imbalance;
70b97a7f 3467 struct rq *busiest;
fe2eea3f 3468 unsigned long flags;
5969fe06 3469
7c16ec58
MT
3470 cpus_setall(*cpus);
3471
89c4710e
SS
3472 /*
3473 * When power savings policy is enabled for the parent domain, idle
3474 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3475 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3476 * portraying it as CPU_NOT_IDLE.
89c4710e 3477 */
d15bcfdb 3478 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3480 sd_idle = 1;
1da177e4 3481
2d72376b 3482 schedstat_inc(sd, lb_count[idle]);
1da177e4 3483
0a2966b4 3484redo:
c8cba857 3485 update_shares(sd);
0a2966b4 3486 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3487 cpus, balance);
783609c6 3488
06066714 3489 if (*balance == 0)
783609c6 3490 goto out_balanced;
783609c6 3491
1da177e4
LT
3492 if (!group) {
3493 schedstat_inc(sd, lb_nobusyg[idle]);
3494 goto out_balanced;
3495 }
3496
7c16ec58 3497 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3498 if (!busiest) {
3499 schedstat_inc(sd, lb_nobusyq[idle]);
3500 goto out_balanced;
3501 }
3502
db935dbd 3503 BUG_ON(busiest == this_rq);
1da177e4
LT
3504
3505 schedstat_add(sd, lb_imbalance[idle], imbalance);
3506
43010659 3507 ld_moved = 0;
1da177e4
LT
3508 if (busiest->nr_running > 1) {
3509 /*
3510 * Attempt to move tasks. If find_busiest_group has found
3511 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3512 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3513 * correctly treated as an imbalance.
3514 */
fe2eea3f 3515 local_irq_save(flags);
e17224bf 3516 double_rq_lock(this_rq, busiest);
43010659 3517 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3518 imbalance, sd, idle, &all_pinned);
e17224bf 3519 double_rq_unlock(this_rq, busiest);
fe2eea3f 3520 local_irq_restore(flags);
81026794 3521
46cb4b7c
SS
3522 /*
3523 * some other cpu did the load balance for us.
3524 */
43010659 3525 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3526 resched_cpu(this_cpu);
3527
81026794 3528 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3529 if (unlikely(all_pinned)) {
7c16ec58
MT
3530 cpu_clear(cpu_of(busiest), *cpus);
3531 if (!cpus_empty(*cpus))
0a2966b4 3532 goto redo;
81026794 3533 goto out_balanced;
0a2966b4 3534 }
1da177e4 3535 }
81026794 3536
43010659 3537 if (!ld_moved) {
1da177e4
LT
3538 schedstat_inc(sd, lb_failed[idle]);
3539 sd->nr_balance_failed++;
3540
3541 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3542
fe2eea3f 3543 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3544
3545 /* don't kick the migration_thread, if the curr
3546 * task on busiest cpu can't be moved to this_cpu
3547 */
3548 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3549 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3550 all_pinned = 1;
3551 goto out_one_pinned;
3552 }
3553
1da177e4
LT
3554 if (!busiest->active_balance) {
3555 busiest->active_balance = 1;
3556 busiest->push_cpu = this_cpu;
81026794 3557 active_balance = 1;
1da177e4 3558 }
fe2eea3f 3559 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3560 if (active_balance)
1da177e4
LT
3561 wake_up_process(busiest->migration_thread);
3562
3563 /*
3564 * We've kicked active balancing, reset the failure
3565 * counter.
3566 */
39507451 3567 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3568 }
81026794 3569 } else
1da177e4
LT
3570 sd->nr_balance_failed = 0;
3571
81026794 3572 if (likely(!active_balance)) {
1da177e4
LT
3573 /* We were unbalanced, so reset the balancing interval */
3574 sd->balance_interval = sd->min_interval;
81026794
NP
3575 } else {
3576 /*
3577 * If we've begun active balancing, start to back off. This
3578 * case may not be covered by the all_pinned logic if there
3579 * is only 1 task on the busy runqueue (because we don't call
3580 * move_tasks).
3581 */
3582 if (sd->balance_interval < sd->max_interval)
3583 sd->balance_interval *= 2;
1da177e4
LT
3584 }
3585
43010659 3586 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3587 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3588 ld_moved = -1;
3589
3590 goto out;
1da177e4
LT
3591
3592out_balanced:
1da177e4
LT
3593 schedstat_inc(sd, lb_balanced[idle]);
3594
16cfb1c0 3595 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3596
3597out_one_pinned:
1da177e4 3598 /* tune up the balancing interval */
77391d71
NP
3599 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3600 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3601 sd->balance_interval *= 2;
3602
48f24c4d 3603 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3604 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3605 ld_moved = -1;
3606 else
3607 ld_moved = 0;
3608out:
c8cba857
PZ
3609 if (ld_moved)
3610 update_shares(sd);
c09595f6 3611 return ld_moved;
1da177e4
LT
3612}
3613
3614/*
3615 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3616 * tasks if there is an imbalance.
3617 *
d15bcfdb 3618 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3619 * this_rq is locked.
3620 */
48f24c4d 3621static int
7c16ec58
MT
3622load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3623 cpumask_t *cpus)
1da177e4
LT
3624{
3625 struct sched_group *group;
70b97a7f 3626 struct rq *busiest = NULL;
1da177e4 3627 unsigned long imbalance;
43010659 3628 int ld_moved = 0;
5969fe06 3629 int sd_idle = 0;
969bb4e4 3630 int all_pinned = 0;
7c16ec58
MT
3631
3632 cpus_setall(*cpus);
5969fe06 3633
89c4710e
SS
3634 /*
3635 * When power savings policy is enabled for the parent domain, idle
3636 * sibling can pick up load irrespective of busy siblings. In this case,
3637 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3638 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3639 */
3640 if (sd->flags & SD_SHARE_CPUPOWER &&
3641 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3642 sd_idle = 1;
1da177e4 3643
2d72376b 3644 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3645redo:
3e5459b4 3646 update_shares_locked(this_rq, sd);
d15bcfdb 3647 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3648 &sd_idle, cpus, NULL);
1da177e4 3649 if (!group) {
d15bcfdb 3650 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3651 goto out_balanced;
1da177e4
LT
3652 }
3653
7c16ec58 3654 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3655 if (!busiest) {
d15bcfdb 3656 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3657 goto out_balanced;
1da177e4
LT
3658 }
3659
db935dbd
NP
3660 BUG_ON(busiest == this_rq);
3661
d15bcfdb 3662 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3663
43010659 3664 ld_moved = 0;
d6d5cfaf
NP
3665 if (busiest->nr_running > 1) {
3666 /* Attempt to move tasks */
3667 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3668 /* this_rq->clock is already updated */
3669 update_rq_clock(busiest);
43010659 3670 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3671 imbalance, sd, CPU_NEWLY_IDLE,
3672 &all_pinned);
1b12bbc7 3673 double_unlock_balance(this_rq, busiest);
0a2966b4 3674
969bb4e4 3675 if (unlikely(all_pinned)) {
7c16ec58
MT
3676 cpu_clear(cpu_of(busiest), *cpus);
3677 if (!cpus_empty(*cpus))
0a2966b4
CL
3678 goto redo;
3679 }
d6d5cfaf
NP
3680 }
3681
43010659 3682 if (!ld_moved) {
d15bcfdb 3683 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3684 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3685 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3686 return -1;
3687 } else
16cfb1c0 3688 sd->nr_balance_failed = 0;
1da177e4 3689
3e5459b4 3690 update_shares_locked(this_rq, sd);
43010659 3691 return ld_moved;
16cfb1c0
NP
3692
3693out_balanced:
d15bcfdb 3694 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3695 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3696 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3697 return -1;
16cfb1c0 3698 sd->nr_balance_failed = 0;
48f24c4d 3699
16cfb1c0 3700 return 0;
1da177e4
LT
3701}
3702
3703/*
3704 * idle_balance is called by schedule() if this_cpu is about to become
3705 * idle. Attempts to pull tasks from other CPUs.
3706 */
70b97a7f 3707static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3708{
3709 struct sched_domain *sd;
dd41f596
IM
3710 int pulled_task = -1;
3711 unsigned long next_balance = jiffies + HZ;
7c16ec58 3712 cpumask_t tmpmask;
1da177e4
LT
3713
3714 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3715 unsigned long interval;
3716
3717 if (!(sd->flags & SD_LOAD_BALANCE))
3718 continue;
3719
3720 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3721 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3722 pulled_task = load_balance_newidle(this_cpu, this_rq,
3723 sd, &tmpmask);
92c4ca5c
CL
3724
3725 interval = msecs_to_jiffies(sd->balance_interval);
3726 if (time_after(next_balance, sd->last_balance + interval))
3727 next_balance = sd->last_balance + interval;
3728 if (pulled_task)
3729 break;
1da177e4 3730 }
dd41f596 3731 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3732 /*
3733 * We are going idle. next_balance may be set based on
3734 * a busy processor. So reset next_balance.
3735 */
3736 this_rq->next_balance = next_balance;
dd41f596 3737 }
1da177e4
LT
3738}
3739
3740/*
3741 * active_load_balance is run by migration threads. It pushes running tasks
3742 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3743 * running on each physical CPU where possible, and avoids physical /
3744 * logical imbalances.
3745 *
3746 * Called with busiest_rq locked.
3747 */
70b97a7f 3748static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3749{
39507451 3750 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3751 struct sched_domain *sd;
3752 struct rq *target_rq;
39507451 3753
48f24c4d 3754 /* Is there any task to move? */
39507451 3755 if (busiest_rq->nr_running <= 1)
39507451
NP
3756 return;
3757
3758 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3759
3760 /*
39507451 3761 * This condition is "impossible", if it occurs
41a2d6cf 3762 * we need to fix it. Originally reported by
39507451 3763 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3764 */
39507451 3765 BUG_ON(busiest_rq == target_rq);
1da177e4 3766
39507451
NP
3767 /* move a task from busiest_rq to target_rq */
3768 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3769 update_rq_clock(busiest_rq);
3770 update_rq_clock(target_rq);
39507451
NP
3771
3772 /* Search for an sd spanning us and the target CPU. */
c96d145e 3773 for_each_domain(target_cpu, sd) {
39507451 3774 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3775 cpu_isset(busiest_cpu, sd->span))
39507451 3776 break;
c96d145e 3777 }
39507451 3778
48f24c4d 3779 if (likely(sd)) {
2d72376b 3780 schedstat_inc(sd, alb_count);
39507451 3781
43010659
PW
3782 if (move_one_task(target_rq, target_cpu, busiest_rq,
3783 sd, CPU_IDLE))
48f24c4d
IM
3784 schedstat_inc(sd, alb_pushed);
3785 else
3786 schedstat_inc(sd, alb_failed);
3787 }
1b12bbc7 3788 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3789}
3790
46cb4b7c
SS
3791#ifdef CONFIG_NO_HZ
3792static struct {
3793 atomic_t load_balancer;
41a2d6cf 3794 cpumask_t cpu_mask;
46cb4b7c
SS
3795} nohz ____cacheline_aligned = {
3796 .load_balancer = ATOMIC_INIT(-1),
3797 .cpu_mask = CPU_MASK_NONE,
3798};
3799
7835b98b 3800/*
46cb4b7c
SS
3801 * This routine will try to nominate the ilb (idle load balancing)
3802 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3803 * load balancing on behalf of all those cpus. If all the cpus in the system
3804 * go into this tickless mode, then there will be no ilb owner (as there is
3805 * no need for one) and all the cpus will sleep till the next wakeup event
3806 * arrives...
3807 *
3808 * For the ilb owner, tick is not stopped. And this tick will be used
3809 * for idle load balancing. ilb owner will still be part of
3810 * nohz.cpu_mask..
7835b98b 3811 *
46cb4b7c
SS
3812 * While stopping the tick, this cpu will become the ilb owner if there
3813 * is no other owner. And will be the owner till that cpu becomes busy
3814 * or if all cpus in the system stop their ticks at which point
3815 * there is no need for ilb owner.
3816 *
3817 * When the ilb owner becomes busy, it nominates another owner, during the
3818 * next busy scheduler_tick()
3819 */
3820int select_nohz_load_balancer(int stop_tick)
3821{
3822 int cpu = smp_processor_id();
3823
3824 if (stop_tick) {
3825 cpu_set(cpu, nohz.cpu_mask);
3826 cpu_rq(cpu)->in_nohz_recently = 1;
3827
3828 /*
3829 * If we are going offline and still the leader, give up!
3830 */
e761b772 3831 if (!cpu_active(cpu) &&
46cb4b7c
SS
3832 atomic_read(&nohz.load_balancer) == cpu) {
3833 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3834 BUG();
3835 return 0;
3836 }
3837
3838 /* time for ilb owner also to sleep */
3839 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3840 if (atomic_read(&nohz.load_balancer) == cpu)
3841 atomic_set(&nohz.load_balancer, -1);
3842 return 0;
3843 }
3844
3845 if (atomic_read(&nohz.load_balancer) == -1) {
3846 /* make me the ilb owner */
3847 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3848 return 1;
3849 } else if (atomic_read(&nohz.load_balancer) == cpu)
3850 return 1;
3851 } else {
3852 if (!cpu_isset(cpu, nohz.cpu_mask))
3853 return 0;
3854
3855 cpu_clear(cpu, nohz.cpu_mask);
3856
3857 if (atomic_read(&nohz.load_balancer) == cpu)
3858 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3859 BUG();
3860 }
3861 return 0;
3862}
3863#endif
3864
3865static DEFINE_SPINLOCK(balancing);
3866
3867/*
7835b98b
CL
3868 * It checks each scheduling domain to see if it is due to be balanced,
3869 * and initiates a balancing operation if so.
3870 *
3871 * Balancing parameters are set up in arch_init_sched_domains.
3872 */
a9957449 3873static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3874{
46cb4b7c
SS
3875 int balance = 1;
3876 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3877 unsigned long interval;
3878 struct sched_domain *sd;
46cb4b7c 3879 /* Earliest time when we have to do rebalance again */
c9819f45 3880 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3881 int update_next_balance = 0;
d07355f5 3882 int need_serialize;
7c16ec58 3883 cpumask_t tmp;
1da177e4 3884
46cb4b7c 3885 for_each_domain(cpu, sd) {
1da177e4
LT
3886 if (!(sd->flags & SD_LOAD_BALANCE))
3887 continue;
3888
3889 interval = sd->balance_interval;
d15bcfdb 3890 if (idle != CPU_IDLE)
1da177e4
LT
3891 interval *= sd->busy_factor;
3892
3893 /* scale ms to jiffies */
3894 interval = msecs_to_jiffies(interval);
3895 if (unlikely(!interval))
3896 interval = 1;
dd41f596
IM
3897 if (interval > HZ*NR_CPUS/10)
3898 interval = HZ*NR_CPUS/10;
3899
d07355f5 3900 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3901
d07355f5 3902 if (need_serialize) {
08c183f3
CL
3903 if (!spin_trylock(&balancing))
3904 goto out;
3905 }
3906
c9819f45 3907 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3908 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3909 /*
3910 * We've pulled tasks over so either we're no
5969fe06
NP
3911 * longer idle, or one of our SMT siblings is
3912 * not idle.
3913 */
d15bcfdb 3914 idle = CPU_NOT_IDLE;
1da177e4 3915 }
1bd77f2d 3916 sd->last_balance = jiffies;
1da177e4 3917 }
d07355f5 3918 if (need_serialize)
08c183f3
CL
3919 spin_unlock(&balancing);
3920out:
f549da84 3921 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3922 next_balance = sd->last_balance + interval;
f549da84
SS
3923 update_next_balance = 1;
3924 }
783609c6
SS
3925
3926 /*
3927 * Stop the load balance at this level. There is another
3928 * CPU in our sched group which is doing load balancing more
3929 * actively.
3930 */
3931 if (!balance)
3932 break;
1da177e4 3933 }
f549da84
SS
3934
3935 /*
3936 * next_balance will be updated only when there is a need.
3937 * When the cpu is attached to null domain for ex, it will not be
3938 * updated.
3939 */
3940 if (likely(update_next_balance))
3941 rq->next_balance = next_balance;
46cb4b7c
SS
3942}
3943
3944/*
3945 * run_rebalance_domains is triggered when needed from the scheduler tick.
3946 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3947 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3948 */
3949static void run_rebalance_domains(struct softirq_action *h)
3950{
dd41f596
IM
3951 int this_cpu = smp_processor_id();
3952 struct rq *this_rq = cpu_rq(this_cpu);
3953 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3954 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3955
dd41f596 3956 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3957
3958#ifdef CONFIG_NO_HZ
3959 /*
3960 * If this cpu is the owner for idle load balancing, then do the
3961 * balancing on behalf of the other idle cpus whose ticks are
3962 * stopped.
3963 */
dd41f596
IM
3964 if (this_rq->idle_at_tick &&
3965 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3966 cpumask_t cpus = nohz.cpu_mask;
3967 struct rq *rq;
3968 int balance_cpu;
3969
dd41f596 3970 cpu_clear(this_cpu, cpus);
363ab6f1 3971 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3972 /*
3973 * If this cpu gets work to do, stop the load balancing
3974 * work being done for other cpus. Next load
3975 * balancing owner will pick it up.
3976 */
3977 if (need_resched())
3978 break;
3979
de0cf899 3980 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3981
3982 rq = cpu_rq(balance_cpu);
dd41f596
IM
3983 if (time_after(this_rq->next_balance, rq->next_balance))
3984 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3985 }
3986 }
3987#endif
3988}
3989
3990/*
3991 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3992 *
3993 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3994 * idle load balancing owner or decide to stop the periodic load balancing,
3995 * if the whole system is idle.
3996 */
dd41f596 3997static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3998{
46cb4b7c
SS
3999#ifdef CONFIG_NO_HZ
4000 /*
4001 * If we were in the nohz mode recently and busy at the current
4002 * scheduler tick, then check if we need to nominate new idle
4003 * load balancer.
4004 */
4005 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4006 rq->in_nohz_recently = 0;
4007
4008 if (atomic_read(&nohz.load_balancer) == cpu) {
4009 cpu_clear(cpu, nohz.cpu_mask);
4010 atomic_set(&nohz.load_balancer, -1);
4011 }
4012
4013 if (atomic_read(&nohz.load_balancer) == -1) {
4014 /*
4015 * simple selection for now: Nominate the
4016 * first cpu in the nohz list to be the next
4017 * ilb owner.
4018 *
4019 * TBD: Traverse the sched domains and nominate
4020 * the nearest cpu in the nohz.cpu_mask.
4021 */
4022 int ilb = first_cpu(nohz.cpu_mask);
4023
434d53b0 4024 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4025 resched_cpu(ilb);
4026 }
4027 }
4028
4029 /*
4030 * If this cpu is idle and doing idle load balancing for all the
4031 * cpus with ticks stopped, is it time for that to stop?
4032 */
4033 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4034 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4035 resched_cpu(cpu);
4036 return;
4037 }
4038
4039 /*
4040 * If this cpu is idle and the idle load balancing is done by
4041 * someone else, then no need raise the SCHED_SOFTIRQ
4042 */
4043 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4044 cpu_isset(cpu, nohz.cpu_mask))
4045 return;
4046#endif
4047 if (time_after_eq(jiffies, rq->next_balance))
4048 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4049}
dd41f596
IM
4050
4051#else /* CONFIG_SMP */
4052
1da177e4
LT
4053/*
4054 * on UP we do not need to balance between CPUs:
4055 */
70b97a7f 4056static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4057{
4058}
dd41f596 4059
1da177e4
LT
4060#endif
4061
1da177e4
LT
4062DEFINE_PER_CPU(struct kernel_stat, kstat);
4063
4064EXPORT_PER_CPU_SYMBOL(kstat);
4065
4066/*
f06febc9
FM
4067 * Return any ns on the sched_clock that have not yet been banked in
4068 * @p in case that task is currently running.
1da177e4 4069 */
bb34d92f 4070unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4071{
1da177e4 4072 unsigned long flags;
41b86e9c 4073 struct rq *rq;
bb34d92f 4074 u64 ns = 0;
48f24c4d 4075
41b86e9c 4076 rq = task_rq_lock(p, &flags);
1508487e 4077
051a1d1a 4078 if (task_current(rq, p)) {
f06febc9
FM
4079 u64 delta_exec;
4080
a8e504d2
IM
4081 update_rq_clock(rq);
4082 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4083 if ((s64)delta_exec > 0)
bb34d92f 4084 ns = delta_exec;
41b86e9c 4085 }
48f24c4d 4086
41b86e9c 4087 task_rq_unlock(rq, &flags);
48f24c4d 4088
1da177e4
LT
4089 return ns;
4090}
4091
1da177e4
LT
4092/*
4093 * Account user cpu time to a process.
4094 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4095 * @cputime: the cpu time spent in user space since the last update
4096 */
4097void account_user_time(struct task_struct *p, cputime_t cputime)
4098{
4099 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4100 cputime64_t tmp;
4101
4102 p->utime = cputime_add(p->utime, cputime);
f06febc9 4103 account_group_user_time(p, cputime);
1da177e4
LT
4104
4105 /* Add user time to cpustat. */
4106 tmp = cputime_to_cputime64(cputime);
4107 if (TASK_NICE(p) > 0)
4108 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4109 else
4110 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4111 /* Account for user time used */
4112 acct_update_integrals(p);
1da177e4
LT
4113}
4114
94886b84
LV
4115/*
4116 * Account guest cpu time to a process.
4117 * @p: the process that the cpu time gets accounted to
4118 * @cputime: the cpu time spent in virtual machine since the last update
4119 */
f7402e03 4120static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4121{
4122 cputime64_t tmp;
4123 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4124
4125 tmp = cputime_to_cputime64(cputime);
4126
4127 p->utime = cputime_add(p->utime, cputime);
f06febc9 4128 account_group_user_time(p, cputime);
94886b84
LV
4129 p->gtime = cputime_add(p->gtime, cputime);
4130
4131 cpustat->user = cputime64_add(cpustat->user, tmp);
4132 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4133}
4134
c66f08be
MN
4135/*
4136 * Account scaled user cpu time to a process.
4137 * @p: the process that the cpu time gets accounted to
4138 * @cputime: the cpu time spent in user space since the last update
4139 */
4140void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4141{
4142 p->utimescaled = cputime_add(p->utimescaled, cputime);
4143}
4144
1da177e4
LT
4145/*
4146 * Account system cpu time to a process.
4147 * @p: the process that the cpu time gets accounted to
4148 * @hardirq_offset: the offset to subtract from hardirq_count()
4149 * @cputime: the cpu time spent in kernel space since the last update
4150 */
4151void account_system_time(struct task_struct *p, int hardirq_offset,
4152 cputime_t cputime)
4153{
4154 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4155 struct rq *rq = this_rq();
1da177e4
LT
4156 cputime64_t tmp;
4157
983ed7a6
HH
4158 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4159 account_guest_time(p, cputime);
4160 return;
4161 }
94886b84 4162
1da177e4 4163 p->stime = cputime_add(p->stime, cputime);
f06febc9 4164 account_group_system_time(p, cputime);
1da177e4
LT
4165
4166 /* Add system time to cpustat. */
4167 tmp = cputime_to_cputime64(cputime);
4168 if (hardirq_count() - hardirq_offset)
4169 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4170 else if (softirq_count())
4171 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4172 else if (p != rq->idle)
1da177e4 4173 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4174 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4175 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4176 else
4177 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4178 /* Account for system time used */
4179 acct_update_integrals(p);
1da177e4
LT
4180}
4181
c66f08be
MN
4182/*
4183 * Account scaled system cpu time to a process.
4184 * @p: the process that the cpu time gets accounted to
4185 * @hardirq_offset: the offset to subtract from hardirq_count()
4186 * @cputime: the cpu time spent in kernel space since the last update
4187 */
4188void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4189{
4190 p->stimescaled = cputime_add(p->stimescaled, cputime);
4191}
4192
1da177e4
LT
4193/*
4194 * Account for involuntary wait time.
4195 * @p: the process from which the cpu time has been stolen
4196 * @steal: the cpu time spent in involuntary wait
4197 */
4198void account_steal_time(struct task_struct *p, cputime_t steal)
4199{
4200 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4201 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4202 struct rq *rq = this_rq();
1da177e4
LT
4203
4204 if (p == rq->idle) {
4205 p->stime = cputime_add(p->stime, steal);
f06febc9 4206 account_group_system_time(p, steal);
1da177e4
LT
4207 if (atomic_read(&rq->nr_iowait) > 0)
4208 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4209 else
4210 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4211 } else
1da177e4
LT
4212 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4213}
4214
49048622
BS
4215/*
4216 * Use precise platform statistics if available:
4217 */
4218#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4219cputime_t task_utime(struct task_struct *p)
4220{
4221 return p->utime;
4222}
4223
4224cputime_t task_stime(struct task_struct *p)
4225{
4226 return p->stime;
4227}
4228#else
4229cputime_t task_utime(struct task_struct *p)
4230{
4231 clock_t utime = cputime_to_clock_t(p->utime),
4232 total = utime + cputime_to_clock_t(p->stime);
4233 u64 temp;
4234
4235 /*
4236 * Use CFS's precise accounting:
4237 */
4238 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4239
4240 if (total) {
4241 temp *= utime;
4242 do_div(temp, total);
4243 }
4244 utime = (clock_t)temp;
4245
4246 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4247 return p->prev_utime;
4248}
4249
4250cputime_t task_stime(struct task_struct *p)
4251{
4252 clock_t stime;
4253
4254 /*
4255 * Use CFS's precise accounting. (we subtract utime from
4256 * the total, to make sure the total observed by userspace
4257 * grows monotonically - apps rely on that):
4258 */
4259 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4260 cputime_to_clock_t(task_utime(p));
4261
4262 if (stime >= 0)
4263 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4264
4265 return p->prev_stime;
4266}
4267#endif
4268
4269inline cputime_t task_gtime(struct task_struct *p)
4270{
4271 return p->gtime;
4272}
4273
7835b98b
CL
4274/*
4275 * This function gets called by the timer code, with HZ frequency.
4276 * We call it with interrupts disabled.
4277 *
4278 * It also gets called by the fork code, when changing the parent's
4279 * timeslices.
4280 */
4281void scheduler_tick(void)
4282{
7835b98b
CL
4283 int cpu = smp_processor_id();
4284 struct rq *rq = cpu_rq(cpu);
dd41f596 4285 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4286
4287 sched_clock_tick();
dd41f596
IM
4288
4289 spin_lock(&rq->lock);
3e51f33f 4290 update_rq_clock(rq);
f1a438d8 4291 update_cpu_load(rq);
fa85ae24 4292 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4293 spin_unlock(&rq->lock);
7835b98b 4294
e418e1c2 4295#ifdef CONFIG_SMP
dd41f596
IM
4296 rq->idle_at_tick = idle_cpu(cpu);
4297 trigger_load_balance(rq, cpu);
e418e1c2 4298#endif
1da177e4
LT
4299}
4300
6cd8a4bb
SR
4301#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4302 defined(CONFIG_PREEMPT_TRACER))
4303
4304static inline unsigned long get_parent_ip(unsigned long addr)
4305{
4306 if (in_lock_functions(addr)) {
4307 addr = CALLER_ADDR2;
4308 if (in_lock_functions(addr))
4309 addr = CALLER_ADDR3;
4310 }
4311 return addr;
4312}
1da177e4 4313
43627582 4314void __kprobes add_preempt_count(int val)
1da177e4 4315{
6cd8a4bb 4316#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4317 /*
4318 * Underflow?
4319 */
9a11b49a
IM
4320 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4321 return;
6cd8a4bb 4322#endif
1da177e4 4323 preempt_count() += val;
6cd8a4bb 4324#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4325 /*
4326 * Spinlock count overflowing soon?
4327 */
33859f7f
MOS
4328 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4329 PREEMPT_MASK - 10);
6cd8a4bb
SR
4330#endif
4331 if (preempt_count() == val)
4332 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4333}
4334EXPORT_SYMBOL(add_preempt_count);
4335
43627582 4336void __kprobes sub_preempt_count(int val)
1da177e4 4337{
6cd8a4bb 4338#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4339 /*
4340 * Underflow?
4341 */
9a11b49a
IM
4342 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4343 return;
1da177e4
LT
4344 /*
4345 * Is the spinlock portion underflowing?
4346 */
9a11b49a
IM
4347 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4348 !(preempt_count() & PREEMPT_MASK)))
4349 return;
6cd8a4bb 4350#endif
9a11b49a 4351
6cd8a4bb
SR
4352 if (preempt_count() == val)
4353 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4354 preempt_count() -= val;
4355}
4356EXPORT_SYMBOL(sub_preempt_count);
4357
4358#endif
4359
4360/*
dd41f596 4361 * Print scheduling while atomic bug:
1da177e4 4362 */
dd41f596 4363static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4364{
838225b4
SS
4365 struct pt_regs *regs = get_irq_regs();
4366
4367 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4368 prev->comm, prev->pid, preempt_count());
4369
dd41f596 4370 debug_show_held_locks(prev);
e21f5b15 4371 print_modules();
dd41f596
IM
4372 if (irqs_disabled())
4373 print_irqtrace_events(prev);
838225b4
SS
4374
4375 if (regs)
4376 show_regs(regs);
4377 else
4378 dump_stack();
dd41f596 4379}
1da177e4 4380
dd41f596
IM
4381/*
4382 * Various schedule()-time debugging checks and statistics:
4383 */
4384static inline void schedule_debug(struct task_struct *prev)
4385{
1da177e4 4386 /*
41a2d6cf 4387 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4388 * schedule() atomically, we ignore that path for now.
4389 * Otherwise, whine if we are scheduling when we should not be.
4390 */
3f33a7ce 4391 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4392 __schedule_bug(prev);
4393
1da177e4
LT
4394 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4395
2d72376b 4396 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4397#ifdef CONFIG_SCHEDSTATS
4398 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4399 schedstat_inc(this_rq(), bkl_count);
4400 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4401 }
4402#endif
dd41f596
IM
4403}
4404
4405/*
4406 * Pick up the highest-prio task:
4407 */
4408static inline struct task_struct *
ff95f3df 4409pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4410{
5522d5d5 4411 const struct sched_class *class;
dd41f596 4412 struct task_struct *p;
1da177e4
LT
4413
4414 /*
dd41f596
IM
4415 * Optimization: we know that if all tasks are in
4416 * the fair class we can call that function directly:
1da177e4 4417 */
dd41f596 4418 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4419 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4420 if (likely(p))
4421 return p;
1da177e4
LT
4422 }
4423
dd41f596
IM
4424 class = sched_class_highest;
4425 for ( ; ; ) {
fb8d4724 4426 p = class->pick_next_task(rq);
dd41f596
IM
4427 if (p)
4428 return p;
4429 /*
4430 * Will never be NULL as the idle class always
4431 * returns a non-NULL p:
4432 */
4433 class = class->next;
4434 }
4435}
1da177e4 4436
dd41f596
IM
4437/*
4438 * schedule() is the main scheduler function.
4439 */
4440asmlinkage void __sched schedule(void)
4441{
4442 struct task_struct *prev, *next;
67ca7bde 4443 unsigned long *switch_count;
dd41f596 4444 struct rq *rq;
31656519 4445 int cpu;
dd41f596
IM
4446
4447need_resched:
4448 preempt_disable();
4449 cpu = smp_processor_id();
4450 rq = cpu_rq(cpu);
4451 rcu_qsctr_inc(cpu);
4452 prev = rq->curr;
4453 switch_count = &prev->nivcsw;
4454
4455 release_kernel_lock(prev);
4456need_resched_nonpreemptible:
4457
4458 schedule_debug(prev);
1da177e4 4459
31656519 4460 if (sched_feat(HRTICK))
f333fdc9 4461 hrtick_clear(rq);
8f4d37ec 4462
8cd162ce 4463 spin_lock_irq(&rq->lock);
3e51f33f 4464 update_rq_clock(rq);
1e819950 4465 clear_tsk_need_resched(prev);
1da177e4 4466
1da177e4 4467 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4468 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4469 prev->state = TASK_RUNNING;
16882c1e 4470 else
2e1cb74a 4471 deactivate_task(rq, prev, 1);
dd41f596 4472 switch_count = &prev->nvcsw;
1da177e4
LT
4473 }
4474
9a897c5a
SR
4475#ifdef CONFIG_SMP
4476 if (prev->sched_class->pre_schedule)
4477 prev->sched_class->pre_schedule(rq, prev);
4478#endif
f65eda4f 4479
dd41f596 4480 if (unlikely(!rq->nr_running))
1da177e4 4481 idle_balance(cpu, rq);
1da177e4 4482
31ee529c 4483 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4484 next = pick_next_task(rq, prev);
1da177e4 4485
1da177e4 4486 if (likely(prev != next)) {
673a90a1
DS
4487 sched_info_switch(prev, next);
4488
1da177e4
LT
4489 rq->nr_switches++;
4490 rq->curr = next;
4491 ++*switch_count;
4492
dd41f596 4493 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4494 /*
4495 * the context switch might have flipped the stack from under
4496 * us, hence refresh the local variables.
4497 */
4498 cpu = smp_processor_id();
4499 rq = cpu_rq(cpu);
1da177e4
LT
4500 } else
4501 spin_unlock_irq(&rq->lock);
4502
8f4d37ec 4503 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4504 goto need_resched_nonpreemptible;
8f4d37ec 4505
1da177e4
LT
4506 preempt_enable_no_resched();
4507 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4508 goto need_resched;
4509}
1da177e4
LT
4510EXPORT_SYMBOL(schedule);
4511
4512#ifdef CONFIG_PREEMPT
4513/*
2ed6e34f 4514 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4515 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4516 * occur there and call schedule directly.
4517 */
4518asmlinkage void __sched preempt_schedule(void)
4519{
4520 struct thread_info *ti = current_thread_info();
6478d880 4521
1da177e4
LT
4522 /*
4523 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4524 * we do not want to preempt the current task. Just return..
1da177e4 4525 */
beed33a8 4526 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4527 return;
4528
3a5c359a
AK
4529 do {
4530 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4531 schedule();
3a5c359a 4532 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4533
3a5c359a
AK
4534 /*
4535 * Check again in case we missed a preemption opportunity
4536 * between schedule and now.
4537 */
4538 barrier();
4539 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4540}
1da177e4
LT
4541EXPORT_SYMBOL(preempt_schedule);
4542
4543/*
2ed6e34f 4544 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4545 * off of irq context.
4546 * Note, that this is called and return with irqs disabled. This will
4547 * protect us against recursive calling from irq.
4548 */
4549asmlinkage void __sched preempt_schedule_irq(void)
4550{
4551 struct thread_info *ti = current_thread_info();
6478d880 4552
2ed6e34f 4553 /* Catch callers which need to be fixed */
1da177e4
LT
4554 BUG_ON(ti->preempt_count || !irqs_disabled());
4555
3a5c359a
AK
4556 do {
4557 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4558 local_irq_enable();
4559 schedule();
4560 local_irq_disable();
3a5c359a 4561 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4562
3a5c359a
AK
4563 /*
4564 * Check again in case we missed a preemption opportunity
4565 * between schedule and now.
4566 */
4567 barrier();
4568 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4569}
4570
4571#endif /* CONFIG_PREEMPT */
4572
95cdf3b7
IM
4573int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4574 void *key)
1da177e4 4575{
48f24c4d 4576 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4577}
1da177e4
LT
4578EXPORT_SYMBOL(default_wake_function);
4579
4580/*
41a2d6cf
IM
4581 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4582 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4583 * number) then we wake all the non-exclusive tasks and one exclusive task.
4584 *
4585 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4586 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4587 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4588 */
4589static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4590 int nr_exclusive, int sync, void *key)
4591{
2e45874c 4592 wait_queue_t *curr, *next;
1da177e4 4593
2e45874c 4594 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4595 unsigned flags = curr->flags;
4596
1da177e4 4597 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4598 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4599 break;
4600 }
4601}
4602
4603/**
4604 * __wake_up - wake up threads blocked on a waitqueue.
4605 * @q: the waitqueue
4606 * @mode: which threads
4607 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4608 * @key: is directly passed to the wakeup function
1da177e4 4609 */
7ad5b3a5 4610void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4611 int nr_exclusive, void *key)
1da177e4
LT
4612{
4613 unsigned long flags;
4614
4615 spin_lock_irqsave(&q->lock, flags);
4616 __wake_up_common(q, mode, nr_exclusive, 0, key);
4617 spin_unlock_irqrestore(&q->lock, flags);
4618}
1da177e4
LT
4619EXPORT_SYMBOL(__wake_up);
4620
4621/*
4622 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4623 */
7ad5b3a5 4624void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4625{
4626 __wake_up_common(q, mode, 1, 0, NULL);
4627}
4628
4629/**
67be2dd1 4630 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4631 * @q: the waitqueue
4632 * @mode: which threads
4633 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4634 *
4635 * The sync wakeup differs that the waker knows that it will schedule
4636 * away soon, so while the target thread will be woken up, it will not
4637 * be migrated to another CPU - ie. the two threads are 'synchronized'
4638 * with each other. This can prevent needless bouncing between CPUs.
4639 *
4640 * On UP it can prevent extra preemption.
4641 */
7ad5b3a5 4642void
95cdf3b7 4643__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4644{
4645 unsigned long flags;
4646 int sync = 1;
4647
4648 if (unlikely(!q))
4649 return;
4650
4651 if (unlikely(!nr_exclusive))
4652 sync = 0;
4653
4654 spin_lock_irqsave(&q->lock, flags);
4655 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4656 spin_unlock_irqrestore(&q->lock, flags);
4657}
4658EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4659
65eb3dc6
KD
4660/**
4661 * complete: - signals a single thread waiting on this completion
4662 * @x: holds the state of this particular completion
4663 *
4664 * This will wake up a single thread waiting on this completion. Threads will be
4665 * awakened in the same order in which they were queued.
4666 *
4667 * See also complete_all(), wait_for_completion() and related routines.
4668 */
b15136e9 4669void complete(struct completion *x)
1da177e4
LT
4670{
4671 unsigned long flags;
4672
4673 spin_lock_irqsave(&x->wait.lock, flags);
4674 x->done++;
d9514f6c 4675 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4676 spin_unlock_irqrestore(&x->wait.lock, flags);
4677}
4678EXPORT_SYMBOL(complete);
4679
65eb3dc6
KD
4680/**
4681 * complete_all: - signals all threads waiting on this completion
4682 * @x: holds the state of this particular completion
4683 *
4684 * This will wake up all threads waiting on this particular completion event.
4685 */
b15136e9 4686void complete_all(struct completion *x)
1da177e4
LT
4687{
4688 unsigned long flags;
4689
4690 spin_lock_irqsave(&x->wait.lock, flags);
4691 x->done += UINT_MAX/2;
d9514f6c 4692 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4693 spin_unlock_irqrestore(&x->wait.lock, flags);
4694}
4695EXPORT_SYMBOL(complete_all);
4696
8cbbe86d
AK
4697static inline long __sched
4698do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4699{
1da177e4
LT
4700 if (!x->done) {
4701 DECLARE_WAITQUEUE(wait, current);
4702
4703 wait.flags |= WQ_FLAG_EXCLUSIVE;
4704 __add_wait_queue_tail(&x->wait, &wait);
4705 do {
94d3d824 4706 if (signal_pending_state(state, current)) {
ea71a546
ON
4707 timeout = -ERESTARTSYS;
4708 break;
8cbbe86d
AK
4709 }
4710 __set_current_state(state);
1da177e4
LT
4711 spin_unlock_irq(&x->wait.lock);
4712 timeout = schedule_timeout(timeout);
4713 spin_lock_irq(&x->wait.lock);
ea71a546 4714 } while (!x->done && timeout);
1da177e4 4715 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4716 if (!x->done)
4717 return timeout;
1da177e4
LT
4718 }
4719 x->done--;
ea71a546 4720 return timeout ?: 1;
1da177e4 4721}
1da177e4 4722
8cbbe86d
AK
4723static long __sched
4724wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4725{
1da177e4
LT
4726 might_sleep();
4727
4728 spin_lock_irq(&x->wait.lock);
8cbbe86d 4729 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4730 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4731 return timeout;
4732}
1da177e4 4733
65eb3dc6
KD
4734/**
4735 * wait_for_completion: - waits for completion of a task
4736 * @x: holds the state of this particular completion
4737 *
4738 * This waits to be signaled for completion of a specific task. It is NOT
4739 * interruptible and there is no timeout.
4740 *
4741 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4742 * and interrupt capability. Also see complete().
4743 */
b15136e9 4744void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4745{
4746 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4747}
8cbbe86d 4748EXPORT_SYMBOL(wait_for_completion);
1da177e4 4749
65eb3dc6
KD
4750/**
4751 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4752 * @x: holds the state of this particular completion
4753 * @timeout: timeout value in jiffies
4754 *
4755 * This waits for either a completion of a specific task to be signaled or for a
4756 * specified timeout to expire. The timeout is in jiffies. It is not
4757 * interruptible.
4758 */
b15136e9 4759unsigned long __sched
8cbbe86d 4760wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4761{
8cbbe86d 4762 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4763}
8cbbe86d 4764EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4765
65eb3dc6
KD
4766/**
4767 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4768 * @x: holds the state of this particular completion
4769 *
4770 * This waits for completion of a specific task to be signaled. It is
4771 * interruptible.
4772 */
8cbbe86d 4773int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4774{
51e97990
AK
4775 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4776 if (t == -ERESTARTSYS)
4777 return t;
4778 return 0;
0fec171c 4779}
8cbbe86d 4780EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4781
65eb3dc6
KD
4782/**
4783 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4784 * @x: holds the state of this particular completion
4785 * @timeout: timeout value in jiffies
4786 *
4787 * This waits for either a completion of a specific task to be signaled or for a
4788 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4789 */
b15136e9 4790unsigned long __sched
8cbbe86d
AK
4791wait_for_completion_interruptible_timeout(struct completion *x,
4792 unsigned long timeout)
0fec171c 4793{
8cbbe86d 4794 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4795}
8cbbe86d 4796EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4797
65eb3dc6
KD
4798/**
4799 * wait_for_completion_killable: - waits for completion of a task (killable)
4800 * @x: holds the state of this particular completion
4801 *
4802 * This waits to be signaled for completion of a specific task. It can be
4803 * interrupted by a kill signal.
4804 */
009e577e
MW
4805int __sched wait_for_completion_killable(struct completion *x)
4806{
4807 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4808 if (t == -ERESTARTSYS)
4809 return t;
4810 return 0;
4811}
4812EXPORT_SYMBOL(wait_for_completion_killable);
4813
be4de352
DC
4814/**
4815 * try_wait_for_completion - try to decrement a completion without blocking
4816 * @x: completion structure
4817 *
4818 * Returns: 0 if a decrement cannot be done without blocking
4819 * 1 if a decrement succeeded.
4820 *
4821 * If a completion is being used as a counting completion,
4822 * attempt to decrement the counter without blocking. This
4823 * enables us to avoid waiting if the resource the completion
4824 * is protecting is not available.
4825 */
4826bool try_wait_for_completion(struct completion *x)
4827{
4828 int ret = 1;
4829
4830 spin_lock_irq(&x->wait.lock);
4831 if (!x->done)
4832 ret = 0;
4833 else
4834 x->done--;
4835 spin_unlock_irq(&x->wait.lock);
4836 return ret;
4837}
4838EXPORT_SYMBOL(try_wait_for_completion);
4839
4840/**
4841 * completion_done - Test to see if a completion has any waiters
4842 * @x: completion structure
4843 *
4844 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4845 * 1 if there are no waiters.
4846 *
4847 */
4848bool completion_done(struct completion *x)
4849{
4850 int ret = 1;
4851
4852 spin_lock_irq(&x->wait.lock);
4853 if (!x->done)
4854 ret = 0;
4855 spin_unlock_irq(&x->wait.lock);
4856 return ret;
4857}
4858EXPORT_SYMBOL(completion_done);
4859
8cbbe86d
AK
4860static long __sched
4861sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4862{
0fec171c
IM
4863 unsigned long flags;
4864 wait_queue_t wait;
4865
4866 init_waitqueue_entry(&wait, current);
1da177e4 4867
8cbbe86d 4868 __set_current_state(state);
1da177e4 4869
8cbbe86d
AK
4870 spin_lock_irqsave(&q->lock, flags);
4871 __add_wait_queue(q, &wait);
4872 spin_unlock(&q->lock);
4873 timeout = schedule_timeout(timeout);
4874 spin_lock_irq(&q->lock);
4875 __remove_wait_queue(q, &wait);
4876 spin_unlock_irqrestore(&q->lock, flags);
4877
4878 return timeout;
4879}
4880
4881void __sched interruptible_sleep_on(wait_queue_head_t *q)
4882{
4883 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4884}
1da177e4
LT
4885EXPORT_SYMBOL(interruptible_sleep_on);
4886
0fec171c 4887long __sched
95cdf3b7 4888interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4889{
8cbbe86d 4890 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4891}
1da177e4
LT
4892EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4893
0fec171c 4894void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4895{
8cbbe86d 4896 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4897}
1da177e4
LT
4898EXPORT_SYMBOL(sleep_on);
4899
0fec171c 4900long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4901{
8cbbe86d 4902 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4903}
1da177e4
LT
4904EXPORT_SYMBOL(sleep_on_timeout);
4905
b29739f9
IM
4906#ifdef CONFIG_RT_MUTEXES
4907
4908/*
4909 * rt_mutex_setprio - set the current priority of a task
4910 * @p: task
4911 * @prio: prio value (kernel-internal form)
4912 *
4913 * This function changes the 'effective' priority of a task. It does
4914 * not touch ->normal_prio like __setscheduler().
4915 *
4916 * Used by the rt_mutex code to implement priority inheritance logic.
4917 */
36c8b586 4918void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4919{
4920 unsigned long flags;
83b699ed 4921 int oldprio, on_rq, running;
70b97a7f 4922 struct rq *rq;
cb469845 4923 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4924
4925 BUG_ON(prio < 0 || prio > MAX_PRIO);
4926
4927 rq = task_rq_lock(p, &flags);
a8e504d2 4928 update_rq_clock(rq);
b29739f9 4929
d5f9f942 4930 oldprio = p->prio;
dd41f596 4931 on_rq = p->se.on_rq;
051a1d1a 4932 running = task_current(rq, p);
0e1f3483 4933 if (on_rq)
69be72c1 4934 dequeue_task(rq, p, 0);
0e1f3483
HS
4935 if (running)
4936 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4937
4938 if (rt_prio(prio))
4939 p->sched_class = &rt_sched_class;
4940 else
4941 p->sched_class = &fair_sched_class;
4942
b29739f9
IM
4943 p->prio = prio;
4944
0e1f3483
HS
4945 if (running)
4946 p->sched_class->set_curr_task(rq);
dd41f596 4947 if (on_rq) {
8159f87e 4948 enqueue_task(rq, p, 0);
cb469845
SR
4949
4950 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4951 }
4952 task_rq_unlock(rq, &flags);
4953}
4954
4955#endif
4956
36c8b586 4957void set_user_nice(struct task_struct *p, long nice)
1da177e4 4958{
dd41f596 4959 int old_prio, delta, on_rq;
1da177e4 4960 unsigned long flags;
70b97a7f 4961 struct rq *rq;
1da177e4
LT
4962
4963 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4964 return;
4965 /*
4966 * We have to be careful, if called from sys_setpriority(),
4967 * the task might be in the middle of scheduling on another CPU.
4968 */
4969 rq = task_rq_lock(p, &flags);
a8e504d2 4970 update_rq_clock(rq);
1da177e4
LT
4971 /*
4972 * The RT priorities are set via sched_setscheduler(), but we still
4973 * allow the 'normal' nice value to be set - but as expected
4974 * it wont have any effect on scheduling until the task is
dd41f596 4975 * SCHED_FIFO/SCHED_RR:
1da177e4 4976 */
e05606d3 4977 if (task_has_rt_policy(p)) {
1da177e4
LT
4978 p->static_prio = NICE_TO_PRIO(nice);
4979 goto out_unlock;
4980 }
dd41f596 4981 on_rq = p->se.on_rq;
c09595f6 4982 if (on_rq)
69be72c1 4983 dequeue_task(rq, p, 0);
1da177e4 4984
1da177e4 4985 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4986 set_load_weight(p);
b29739f9
IM
4987 old_prio = p->prio;
4988 p->prio = effective_prio(p);
4989 delta = p->prio - old_prio;
1da177e4 4990
dd41f596 4991 if (on_rq) {
8159f87e 4992 enqueue_task(rq, p, 0);
1da177e4 4993 /*
d5f9f942
AM
4994 * If the task increased its priority or is running and
4995 * lowered its priority, then reschedule its CPU:
1da177e4 4996 */
d5f9f942 4997 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4998 resched_task(rq->curr);
4999 }
5000out_unlock:
5001 task_rq_unlock(rq, &flags);
5002}
1da177e4
LT
5003EXPORT_SYMBOL(set_user_nice);
5004
e43379f1
MM
5005/*
5006 * can_nice - check if a task can reduce its nice value
5007 * @p: task
5008 * @nice: nice value
5009 */
36c8b586 5010int can_nice(const struct task_struct *p, const int nice)
e43379f1 5011{
024f4747
MM
5012 /* convert nice value [19,-20] to rlimit style value [1,40] */
5013 int nice_rlim = 20 - nice;
48f24c4d 5014
e43379f1
MM
5015 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5016 capable(CAP_SYS_NICE));
5017}
5018
1da177e4
LT
5019#ifdef __ARCH_WANT_SYS_NICE
5020
5021/*
5022 * sys_nice - change the priority of the current process.
5023 * @increment: priority increment
5024 *
5025 * sys_setpriority is a more generic, but much slower function that
5026 * does similar things.
5027 */
5028asmlinkage long sys_nice(int increment)
5029{
48f24c4d 5030 long nice, retval;
1da177e4
LT
5031
5032 /*
5033 * Setpriority might change our priority at the same moment.
5034 * We don't have to worry. Conceptually one call occurs first
5035 * and we have a single winner.
5036 */
e43379f1
MM
5037 if (increment < -40)
5038 increment = -40;
1da177e4
LT
5039 if (increment > 40)
5040 increment = 40;
5041
5042 nice = PRIO_TO_NICE(current->static_prio) + increment;
5043 if (nice < -20)
5044 nice = -20;
5045 if (nice > 19)
5046 nice = 19;
5047
e43379f1
MM
5048 if (increment < 0 && !can_nice(current, nice))
5049 return -EPERM;
5050
1da177e4
LT
5051 retval = security_task_setnice(current, nice);
5052 if (retval)
5053 return retval;
5054
5055 set_user_nice(current, nice);
5056 return 0;
5057}
5058
5059#endif
5060
5061/**
5062 * task_prio - return the priority value of a given task.
5063 * @p: the task in question.
5064 *
5065 * This is the priority value as seen by users in /proc.
5066 * RT tasks are offset by -200. Normal tasks are centered
5067 * around 0, value goes from -16 to +15.
5068 */
36c8b586 5069int task_prio(const struct task_struct *p)
1da177e4
LT
5070{
5071 return p->prio - MAX_RT_PRIO;
5072}
5073
5074/**
5075 * task_nice - return the nice value of a given task.
5076 * @p: the task in question.
5077 */
36c8b586 5078int task_nice(const struct task_struct *p)
1da177e4
LT
5079{
5080 return TASK_NICE(p);
5081}
150d8bed 5082EXPORT_SYMBOL(task_nice);
1da177e4
LT
5083
5084/**
5085 * idle_cpu - is a given cpu idle currently?
5086 * @cpu: the processor in question.
5087 */
5088int idle_cpu(int cpu)
5089{
5090 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5091}
5092
1da177e4
LT
5093/**
5094 * idle_task - return the idle task for a given cpu.
5095 * @cpu: the processor in question.
5096 */
36c8b586 5097struct task_struct *idle_task(int cpu)
1da177e4
LT
5098{
5099 return cpu_rq(cpu)->idle;
5100}
5101
5102/**
5103 * find_process_by_pid - find a process with a matching PID value.
5104 * @pid: the pid in question.
5105 */
a9957449 5106static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5107{
228ebcbe 5108 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5109}
5110
5111/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5112static void
5113__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5114{
dd41f596 5115 BUG_ON(p->se.on_rq);
48f24c4d 5116
1da177e4 5117 p->policy = policy;
dd41f596
IM
5118 switch (p->policy) {
5119 case SCHED_NORMAL:
5120 case SCHED_BATCH:
5121 case SCHED_IDLE:
5122 p->sched_class = &fair_sched_class;
5123 break;
5124 case SCHED_FIFO:
5125 case SCHED_RR:
5126 p->sched_class = &rt_sched_class;
5127 break;
5128 }
5129
1da177e4 5130 p->rt_priority = prio;
b29739f9
IM
5131 p->normal_prio = normal_prio(p);
5132 /* we are holding p->pi_lock already */
5133 p->prio = rt_mutex_getprio(p);
2dd73a4f 5134 set_load_weight(p);
1da177e4
LT
5135}
5136
961ccddd
RR
5137static int __sched_setscheduler(struct task_struct *p, int policy,
5138 struct sched_param *param, bool user)
1da177e4 5139{
83b699ed 5140 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5141 unsigned long flags;
cb469845 5142 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5143 struct rq *rq;
1da177e4 5144
66e5393a
SR
5145 /* may grab non-irq protected spin_locks */
5146 BUG_ON(in_interrupt());
1da177e4
LT
5147recheck:
5148 /* double check policy once rq lock held */
5149 if (policy < 0)
5150 policy = oldpolicy = p->policy;
5151 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5152 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5153 policy != SCHED_IDLE)
b0a9499c 5154 return -EINVAL;
1da177e4
LT
5155 /*
5156 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5157 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5158 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5159 */
5160 if (param->sched_priority < 0 ||
95cdf3b7 5161 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5162 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5163 return -EINVAL;
e05606d3 5164 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5165 return -EINVAL;
5166
37e4ab3f
OC
5167 /*
5168 * Allow unprivileged RT tasks to decrease priority:
5169 */
961ccddd 5170 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5171 if (rt_policy(policy)) {
8dc3e909 5172 unsigned long rlim_rtprio;
8dc3e909
ON
5173
5174 if (!lock_task_sighand(p, &flags))
5175 return -ESRCH;
5176 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5177 unlock_task_sighand(p, &flags);
5178
5179 /* can't set/change the rt policy */
5180 if (policy != p->policy && !rlim_rtprio)
5181 return -EPERM;
5182
5183 /* can't increase priority */
5184 if (param->sched_priority > p->rt_priority &&
5185 param->sched_priority > rlim_rtprio)
5186 return -EPERM;
5187 }
dd41f596
IM
5188 /*
5189 * Like positive nice levels, dont allow tasks to
5190 * move out of SCHED_IDLE either:
5191 */
5192 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5193 return -EPERM;
5fe1d75f 5194
37e4ab3f
OC
5195 /* can't change other user's priorities */
5196 if ((current->euid != p->euid) &&
5197 (current->euid != p->uid))
5198 return -EPERM;
5199 }
1da177e4 5200
725aad24 5201 if (user) {
b68aa230 5202#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5203 /*
5204 * Do not allow realtime tasks into groups that have no runtime
5205 * assigned.
5206 */
9a7e0b18
PZ
5207 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5208 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5209 return -EPERM;
b68aa230
PZ
5210#endif
5211
725aad24
JF
5212 retval = security_task_setscheduler(p, policy, param);
5213 if (retval)
5214 return retval;
5215 }
5216
b29739f9
IM
5217 /*
5218 * make sure no PI-waiters arrive (or leave) while we are
5219 * changing the priority of the task:
5220 */
5221 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5222 /*
5223 * To be able to change p->policy safely, the apropriate
5224 * runqueue lock must be held.
5225 */
b29739f9 5226 rq = __task_rq_lock(p);
1da177e4
LT
5227 /* recheck policy now with rq lock held */
5228 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5229 policy = oldpolicy = -1;
b29739f9
IM
5230 __task_rq_unlock(rq);
5231 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5232 goto recheck;
5233 }
2daa3577 5234 update_rq_clock(rq);
dd41f596 5235 on_rq = p->se.on_rq;
051a1d1a 5236 running = task_current(rq, p);
0e1f3483 5237 if (on_rq)
2e1cb74a 5238 deactivate_task(rq, p, 0);
0e1f3483
HS
5239 if (running)
5240 p->sched_class->put_prev_task(rq, p);
f6b53205 5241
1da177e4 5242 oldprio = p->prio;
dd41f596 5243 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5244
0e1f3483
HS
5245 if (running)
5246 p->sched_class->set_curr_task(rq);
dd41f596
IM
5247 if (on_rq) {
5248 activate_task(rq, p, 0);
cb469845
SR
5249
5250 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5251 }
b29739f9
IM
5252 __task_rq_unlock(rq);
5253 spin_unlock_irqrestore(&p->pi_lock, flags);
5254
95e02ca9
TG
5255 rt_mutex_adjust_pi(p);
5256
1da177e4
LT
5257 return 0;
5258}
961ccddd
RR
5259
5260/**
5261 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5262 * @p: the task in question.
5263 * @policy: new policy.
5264 * @param: structure containing the new RT priority.
5265 *
5266 * NOTE that the task may be already dead.
5267 */
5268int sched_setscheduler(struct task_struct *p, int policy,
5269 struct sched_param *param)
5270{
5271 return __sched_setscheduler(p, policy, param, true);
5272}
1da177e4
LT
5273EXPORT_SYMBOL_GPL(sched_setscheduler);
5274
961ccddd
RR
5275/**
5276 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5277 * @p: the task in question.
5278 * @policy: new policy.
5279 * @param: structure containing the new RT priority.
5280 *
5281 * Just like sched_setscheduler, only don't bother checking if the
5282 * current context has permission. For example, this is needed in
5283 * stop_machine(): we create temporary high priority worker threads,
5284 * but our caller might not have that capability.
5285 */
5286int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5287 struct sched_param *param)
5288{
5289 return __sched_setscheduler(p, policy, param, false);
5290}
5291
95cdf3b7
IM
5292static int
5293do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5294{
1da177e4
LT
5295 struct sched_param lparam;
5296 struct task_struct *p;
36c8b586 5297 int retval;
1da177e4
LT
5298
5299 if (!param || pid < 0)
5300 return -EINVAL;
5301 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5302 return -EFAULT;
5fe1d75f
ON
5303
5304 rcu_read_lock();
5305 retval = -ESRCH;
1da177e4 5306 p = find_process_by_pid(pid);
5fe1d75f
ON
5307 if (p != NULL)
5308 retval = sched_setscheduler(p, policy, &lparam);
5309 rcu_read_unlock();
36c8b586 5310
1da177e4
LT
5311 return retval;
5312}
5313
5314/**
5315 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5316 * @pid: the pid in question.
5317 * @policy: new policy.
5318 * @param: structure containing the new RT priority.
5319 */
41a2d6cf
IM
5320asmlinkage long
5321sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5322{
c21761f1
JB
5323 /* negative values for policy are not valid */
5324 if (policy < 0)
5325 return -EINVAL;
5326
1da177e4
LT
5327 return do_sched_setscheduler(pid, policy, param);
5328}
5329
5330/**
5331 * sys_sched_setparam - set/change the RT priority of a thread
5332 * @pid: the pid in question.
5333 * @param: structure containing the new RT priority.
5334 */
5335asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5336{
5337 return do_sched_setscheduler(pid, -1, param);
5338}
5339
5340/**
5341 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5342 * @pid: the pid in question.
5343 */
5344asmlinkage long sys_sched_getscheduler(pid_t pid)
5345{
36c8b586 5346 struct task_struct *p;
3a5c359a 5347 int retval;
1da177e4
LT
5348
5349 if (pid < 0)
3a5c359a 5350 return -EINVAL;
1da177e4
LT
5351
5352 retval = -ESRCH;
5353 read_lock(&tasklist_lock);
5354 p = find_process_by_pid(pid);
5355 if (p) {
5356 retval = security_task_getscheduler(p);
5357 if (!retval)
5358 retval = p->policy;
5359 }
5360 read_unlock(&tasklist_lock);
1da177e4
LT
5361 return retval;
5362}
5363
5364/**
5365 * sys_sched_getscheduler - get the RT priority of a thread
5366 * @pid: the pid in question.
5367 * @param: structure containing the RT priority.
5368 */
5369asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5370{
5371 struct sched_param lp;
36c8b586 5372 struct task_struct *p;
3a5c359a 5373 int retval;
1da177e4
LT
5374
5375 if (!param || pid < 0)
3a5c359a 5376 return -EINVAL;
1da177e4
LT
5377
5378 read_lock(&tasklist_lock);
5379 p = find_process_by_pid(pid);
5380 retval = -ESRCH;
5381 if (!p)
5382 goto out_unlock;
5383
5384 retval = security_task_getscheduler(p);
5385 if (retval)
5386 goto out_unlock;
5387
5388 lp.sched_priority = p->rt_priority;
5389 read_unlock(&tasklist_lock);
5390
5391 /*
5392 * This one might sleep, we cannot do it with a spinlock held ...
5393 */
5394 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5395
1da177e4
LT
5396 return retval;
5397
5398out_unlock:
5399 read_unlock(&tasklist_lock);
5400 return retval;
5401}
5402
b53e921b 5403long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5404{
1da177e4 5405 cpumask_t cpus_allowed;
b53e921b 5406 cpumask_t new_mask = *in_mask;
36c8b586
IM
5407 struct task_struct *p;
5408 int retval;
1da177e4 5409
95402b38 5410 get_online_cpus();
1da177e4
LT
5411 read_lock(&tasklist_lock);
5412
5413 p = find_process_by_pid(pid);
5414 if (!p) {
5415 read_unlock(&tasklist_lock);
95402b38 5416 put_online_cpus();
1da177e4
LT
5417 return -ESRCH;
5418 }
5419
5420 /*
5421 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5422 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5423 * usage count and then drop tasklist_lock.
5424 */
5425 get_task_struct(p);
5426 read_unlock(&tasklist_lock);
5427
5428 retval = -EPERM;
5429 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5430 !capable(CAP_SYS_NICE))
5431 goto out_unlock;
5432
e7834f8f
DQ
5433 retval = security_task_setscheduler(p, 0, NULL);
5434 if (retval)
5435 goto out_unlock;
5436
f9a86fcb 5437 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5438 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5439 again:
7c16ec58 5440 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5441
8707d8b8 5442 if (!retval) {
f9a86fcb 5443 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5444 if (!cpus_subset(new_mask, cpus_allowed)) {
5445 /*
5446 * We must have raced with a concurrent cpuset
5447 * update. Just reset the cpus_allowed to the
5448 * cpuset's cpus_allowed
5449 */
5450 new_mask = cpus_allowed;
5451 goto again;
5452 }
5453 }
1da177e4
LT
5454out_unlock:
5455 put_task_struct(p);
95402b38 5456 put_online_cpus();
1da177e4
LT
5457 return retval;
5458}
5459
5460static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5461 cpumask_t *new_mask)
5462{
5463 if (len < sizeof(cpumask_t)) {
5464 memset(new_mask, 0, sizeof(cpumask_t));
5465 } else if (len > sizeof(cpumask_t)) {
5466 len = sizeof(cpumask_t);
5467 }
5468 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5469}
5470
5471/**
5472 * sys_sched_setaffinity - set the cpu affinity of a process
5473 * @pid: pid of the process
5474 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5475 * @user_mask_ptr: user-space pointer to the new cpu mask
5476 */
5477asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5478 unsigned long __user *user_mask_ptr)
5479{
5480 cpumask_t new_mask;
5481 int retval;
5482
5483 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5484 if (retval)
5485 return retval;
5486
b53e921b 5487 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5488}
5489
1da177e4
LT
5490long sched_getaffinity(pid_t pid, cpumask_t *mask)
5491{
36c8b586 5492 struct task_struct *p;
1da177e4 5493 int retval;
1da177e4 5494
95402b38 5495 get_online_cpus();
1da177e4
LT
5496 read_lock(&tasklist_lock);
5497
5498 retval = -ESRCH;
5499 p = find_process_by_pid(pid);
5500 if (!p)
5501 goto out_unlock;
5502
e7834f8f
DQ
5503 retval = security_task_getscheduler(p);
5504 if (retval)
5505 goto out_unlock;
5506
2f7016d9 5507 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5508
5509out_unlock:
5510 read_unlock(&tasklist_lock);
95402b38 5511 put_online_cpus();
1da177e4 5512
9531b62f 5513 return retval;
1da177e4
LT
5514}
5515
5516/**
5517 * sys_sched_getaffinity - get the cpu affinity of a process
5518 * @pid: pid of the process
5519 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5520 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5521 */
5522asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5523 unsigned long __user *user_mask_ptr)
5524{
5525 int ret;
5526 cpumask_t mask;
5527
5528 if (len < sizeof(cpumask_t))
5529 return -EINVAL;
5530
5531 ret = sched_getaffinity(pid, &mask);
5532 if (ret < 0)
5533 return ret;
5534
5535 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5536 return -EFAULT;
5537
5538 return sizeof(cpumask_t);
5539}
5540
5541/**
5542 * sys_sched_yield - yield the current processor to other threads.
5543 *
dd41f596
IM
5544 * This function yields the current CPU to other tasks. If there are no
5545 * other threads running on this CPU then this function will return.
1da177e4
LT
5546 */
5547asmlinkage long sys_sched_yield(void)
5548{
70b97a7f 5549 struct rq *rq = this_rq_lock();
1da177e4 5550
2d72376b 5551 schedstat_inc(rq, yld_count);
4530d7ab 5552 current->sched_class->yield_task(rq);
1da177e4
LT
5553
5554 /*
5555 * Since we are going to call schedule() anyway, there's
5556 * no need to preempt or enable interrupts:
5557 */
5558 __release(rq->lock);
8a25d5de 5559 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5560 _raw_spin_unlock(&rq->lock);
5561 preempt_enable_no_resched();
5562
5563 schedule();
5564
5565 return 0;
5566}
5567
e7b38404 5568static void __cond_resched(void)
1da177e4 5569{
8e0a43d8
IM
5570#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5571 __might_sleep(__FILE__, __LINE__);
5572#endif
5bbcfd90
IM
5573 /*
5574 * The BKS might be reacquired before we have dropped
5575 * PREEMPT_ACTIVE, which could trigger a second
5576 * cond_resched() call.
5577 */
1da177e4
LT
5578 do {
5579 add_preempt_count(PREEMPT_ACTIVE);
5580 schedule();
5581 sub_preempt_count(PREEMPT_ACTIVE);
5582 } while (need_resched());
5583}
5584
02b67cc3 5585int __sched _cond_resched(void)
1da177e4 5586{
9414232f
IM
5587 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5588 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5589 __cond_resched();
5590 return 1;
5591 }
5592 return 0;
5593}
02b67cc3 5594EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5595
5596/*
5597 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5598 * call schedule, and on return reacquire the lock.
5599 *
41a2d6cf 5600 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5601 * operations here to prevent schedule() from being called twice (once via
5602 * spin_unlock(), once by hand).
5603 */
95cdf3b7 5604int cond_resched_lock(spinlock_t *lock)
1da177e4 5605{
95c354fe 5606 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5607 int ret = 0;
5608
95c354fe 5609 if (spin_needbreak(lock) || resched) {
1da177e4 5610 spin_unlock(lock);
95c354fe
NP
5611 if (resched && need_resched())
5612 __cond_resched();
5613 else
5614 cpu_relax();
6df3cecb 5615 ret = 1;
1da177e4 5616 spin_lock(lock);
1da177e4 5617 }
6df3cecb 5618 return ret;
1da177e4 5619}
1da177e4
LT
5620EXPORT_SYMBOL(cond_resched_lock);
5621
5622int __sched cond_resched_softirq(void)
5623{
5624 BUG_ON(!in_softirq());
5625
9414232f 5626 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5627 local_bh_enable();
1da177e4
LT
5628 __cond_resched();
5629 local_bh_disable();
5630 return 1;
5631 }
5632 return 0;
5633}
1da177e4
LT
5634EXPORT_SYMBOL(cond_resched_softirq);
5635
1da177e4
LT
5636/**
5637 * yield - yield the current processor to other threads.
5638 *
72fd4a35 5639 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5640 * thread runnable and calls sys_sched_yield().
5641 */
5642void __sched yield(void)
5643{
5644 set_current_state(TASK_RUNNING);
5645 sys_sched_yield();
5646}
1da177e4
LT
5647EXPORT_SYMBOL(yield);
5648
5649/*
41a2d6cf 5650 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5651 * that process accounting knows that this is a task in IO wait state.
5652 *
5653 * But don't do that if it is a deliberate, throttling IO wait (this task
5654 * has set its backing_dev_info: the queue against which it should throttle)
5655 */
5656void __sched io_schedule(void)
5657{
70b97a7f 5658 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5659
0ff92245 5660 delayacct_blkio_start();
1da177e4
LT
5661 atomic_inc(&rq->nr_iowait);
5662 schedule();
5663 atomic_dec(&rq->nr_iowait);
0ff92245 5664 delayacct_blkio_end();
1da177e4 5665}
1da177e4
LT
5666EXPORT_SYMBOL(io_schedule);
5667
5668long __sched io_schedule_timeout(long timeout)
5669{
70b97a7f 5670 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5671 long ret;
5672
0ff92245 5673 delayacct_blkio_start();
1da177e4
LT
5674 atomic_inc(&rq->nr_iowait);
5675 ret = schedule_timeout(timeout);
5676 atomic_dec(&rq->nr_iowait);
0ff92245 5677 delayacct_blkio_end();
1da177e4
LT
5678 return ret;
5679}
5680
5681/**
5682 * sys_sched_get_priority_max - return maximum RT priority.
5683 * @policy: scheduling class.
5684 *
5685 * this syscall returns the maximum rt_priority that can be used
5686 * by a given scheduling class.
5687 */
5688asmlinkage long sys_sched_get_priority_max(int policy)
5689{
5690 int ret = -EINVAL;
5691
5692 switch (policy) {
5693 case SCHED_FIFO:
5694 case SCHED_RR:
5695 ret = MAX_USER_RT_PRIO-1;
5696 break;
5697 case SCHED_NORMAL:
b0a9499c 5698 case SCHED_BATCH:
dd41f596 5699 case SCHED_IDLE:
1da177e4
LT
5700 ret = 0;
5701 break;
5702 }
5703 return ret;
5704}
5705
5706/**
5707 * sys_sched_get_priority_min - return minimum RT priority.
5708 * @policy: scheduling class.
5709 *
5710 * this syscall returns the minimum rt_priority that can be used
5711 * by a given scheduling class.
5712 */
5713asmlinkage long sys_sched_get_priority_min(int policy)
5714{
5715 int ret = -EINVAL;
5716
5717 switch (policy) {
5718 case SCHED_FIFO:
5719 case SCHED_RR:
5720 ret = 1;
5721 break;
5722 case SCHED_NORMAL:
b0a9499c 5723 case SCHED_BATCH:
dd41f596 5724 case SCHED_IDLE:
1da177e4
LT
5725 ret = 0;
5726 }
5727 return ret;
5728}
5729
5730/**
5731 * sys_sched_rr_get_interval - return the default timeslice of a process.
5732 * @pid: pid of the process.
5733 * @interval: userspace pointer to the timeslice value.
5734 *
5735 * this syscall writes the default timeslice value of a given process
5736 * into the user-space timespec buffer. A value of '0' means infinity.
5737 */
5738asmlinkage
5739long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5740{
36c8b586 5741 struct task_struct *p;
a4ec24b4 5742 unsigned int time_slice;
3a5c359a 5743 int retval;
1da177e4 5744 struct timespec t;
1da177e4
LT
5745
5746 if (pid < 0)
3a5c359a 5747 return -EINVAL;
1da177e4
LT
5748
5749 retval = -ESRCH;
5750 read_lock(&tasklist_lock);
5751 p = find_process_by_pid(pid);
5752 if (!p)
5753 goto out_unlock;
5754
5755 retval = security_task_getscheduler(p);
5756 if (retval)
5757 goto out_unlock;
5758
77034937
IM
5759 /*
5760 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5761 * tasks that are on an otherwise idle runqueue:
5762 */
5763 time_slice = 0;
5764 if (p->policy == SCHED_RR) {
a4ec24b4 5765 time_slice = DEF_TIMESLICE;
1868f958 5766 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5767 struct sched_entity *se = &p->se;
5768 unsigned long flags;
5769 struct rq *rq;
5770
5771 rq = task_rq_lock(p, &flags);
77034937
IM
5772 if (rq->cfs.load.weight)
5773 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5774 task_rq_unlock(rq, &flags);
5775 }
1da177e4 5776 read_unlock(&tasklist_lock);
a4ec24b4 5777 jiffies_to_timespec(time_slice, &t);
1da177e4 5778 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5779 return retval;
3a5c359a 5780
1da177e4
LT
5781out_unlock:
5782 read_unlock(&tasklist_lock);
5783 return retval;
5784}
5785
7c731e0a 5786static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5787
82a1fcb9 5788void sched_show_task(struct task_struct *p)
1da177e4 5789{
1da177e4 5790 unsigned long free = 0;
36c8b586 5791 unsigned state;
1da177e4 5792
1da177e4 5793 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5794 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5795 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5796#if BITS_PER_LONG == 32
1da177e4 5797 if (state == TASK_RUNNING)
cc4ea795 5798 printk(KERN_CONT " running ");
1da177e4 5799 else
cc4ea795 5800 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5801#else
5802 if (state == TASK_RUNNING)
cc4ea795 5803 printk(KERN_CONT " running task ");
1da177e4 5804 else
cc4ea795 5805 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5806#endif
5807#ifdef CONFIG_DEBUG_STACK_USAGE
5808 {
10ebffde 5809 unsigned long *n = end_of_stack(p);
1da177e4
LT
5810 while (!*n)
5811 n++;
10ebffde 5812 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5813 }
5814#endif
ba25f9dc 5815 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5816 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5817
5fb5e6de 5818 show_stack(p, NULL);
1da177e4
LT
5819}
5820
e59e2ae2 5821void show_state_filter(unsigned long state_filter)
1da177e4 5822{
36c8b586 5823 struct task_struct *g, *p;
1da177e4 5824
4bd77321
IM
5825#if BITS_PER_LONG == 32
5826 printk(KERN_INFO
5827 " task PC stack pid father\n");
1da177e4 5828#else
4bd77321
IM
5829 printk(KERN_INFO
5830 " task PC stack pid father\n");
1da177e4
LT
5831#endif
5832 read_lock(&tasklist_lock);
5833 do_each_thread(g, p) {
5834 /*
5835 * reset the NMI-timeout, listing all files on a slow
5836 * console might take alot of time:
5837 */
5838 touch_nmi_watchdog();
39bc89fd 5839 if (!state_filter || (p->state & state_filter))
82a1fcb9 5840 sched_show_task(p);
1da177e4
LT
5841 } while_each_thread(g, p);
5842
04c9167f
JF
5843 touch_all_softlockup_watchdogs();
5844
dd41f596
IM
5845#ifdef CONFIG_SCHED_DEBUG
5846 sysrq_sched_debug_show();
5847#endif
1da177e4 5848 read_unlock(&tasklist_lock);
e59e2ae2
IM
5849 /*
5850 * Only show locks if all tasks are dumped:
5851 */
5852 if (state_filter == -1)
5853 debug_show_all_locks();
1da177e4
LT
5854}
5855
1df21055
IM
5856void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5857{
dd41f596 5858 idle->sched_class = &idle_sched_class;
1df21055
IM
5859}
5860
f340c0d1
IM
5861/**
5862 * init_idle - set up an idle thread for a given CPU
5863 * @idle: task in question
5864 * @cpu: cpu the idle task belongs to
5865 *
5866 * NOTE: this function does not set the idle thread's NEED_RESCHED
5867 * flag, to make booting more robust.
5868 */
5c1e1767 5869void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5870{
70b97a7f 5871 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5872 unsigned long flags;
5873
5cbd54ef
IM
5874 spin_lock_irqsave(&rq->lock, flags);
5875
dd41f596
IM
5876 __sched_fork(idle);
5877 idle->se.exec_start = sched_clock();
5878
b29739f9 5879 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5880 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5881 __set_task_cpu(idle, cpu);
1da177e4 5882
1da177e4 5883 rq->curr = rq->idle = idle;
4866cde0
NP
5884#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5885 idle->oncpu = 1;
5886#endif
1da177e4
LT
5887 spin_unlock_irqrestore(&rq->lock, flags);
5888
5889 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5890#if defined(CONFIG_PREEMPT)
5891 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5892#else
a1261f54 5893 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5894#endif
dd41f596
IM
5895 /*
5896 * The idle tasks have their own, simple scheduling class:
5897 */
5898 idle->sched_class = &idle_sched_class;
1da177e4
LT
5899}
5900
5901/*
5902 * In a system that switches off the HZ timer nohz_cpu_mask
5903 * indicates which cpus entered this state. This is used
5904 * in the rcu update to wait only for active cpus. For system
5905 * which do not switch off the HZ timer nohz_cpu_mask should
5906 * always be CPU_MASK_NONE.
5907 */
5908cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5909
19978ca6
IM
5910/*
5911 * Increase the granularity value when there are more CPUs,
5912 * because with more CPUs the 'effective latency' as visible
5913 * to users decreases. But the relationship is not linear,
5914 * so pick a second-best guess by going with the log2 of the
5915 * number of CPUs.
5916 *
5917 * This idea comes from the SD scheduler of Con Kolivas:
5918 */
5919static inline void sched_init_granularity(void)
5920{
5921 unsigned int factor = 1 + ilog2(num_online_cpus());
5922 const unsigned long limit = 200000000;
5923
5924 sysctl_sched_min_granularity *= factor;
5925 if (sysctl_sched_min_granularity > limit)
5926 sysctl_sched_min_granularity = limit;
5927
5928 sysctl_sched_latency *= factor;
5929 if (sysctl_sched_latency > limit)
5930 sysctl_sched_latency = limit;
5931
5932 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5933
5934 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5935}
5936
1da177e4
LT
5937#ifdef CONFIG_SMP
5938/*
5939 * This is how migration works:
5940 *
70b97a7f 5941 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5942 * runqueue and wake up that CPU's migration thread.
5943 * 2) we down() the locked semaphore => thread blocks.
5944 * 3) migration thread wakes up (implicitly it forces the migrated
5945 * thread off the CPU)
5946 * 4) it gets the migration request and checks whether the migrated
5947 * task is still in the wrong runqueue.
5948 * 5) if it's in the wrong runqueue then the migration thread removes
5949 * it and puts it into the right queue.
5950 * 6) migration thread up()s the semaphore.
5951 * 7) we wake up and the migration is done.
5952 */
5953
5954/*
5955 * Change a given task's CPU affinity. Migrate the thread to a
5956 * proper CPU and schedule it away if the CPU it's executing on
5957 * is removed from the allowed bitmask.
5958 *
5959 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5960 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5961 * call is not atomic; no spinlocks may be held.
5962 */
cd8ba7cd 5963int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5964{
70b97a7f 5965 struct migration_req req;
1da177e4 5966 unsigned long flags;
70b97a7f 5967 struct rq *rq;
48f24c4d 5968 int ret = 0;
1da177e4
LT
5969
5970 rq = task_rq_lock(p, &flags);
cd8ba7cd 5971 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5972 ret = -EINVAL;
5973 goto out;
5974 }
5975
9985b0ba
DR
5976 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5977 !cpus_equal(p->cpus_allowed, *new_mask))) {
5978 ret = -EINVAL;
5979 goto out;
5980 }
5981
73fe6aae 5982 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5983 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5984 else {
cd8ba7cd
MT
5985 p->cpus_allowed = *new_mask;
5986 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5987 }
5988
1da177e4 5989 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5990 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5991 goto out;
5992
cd8ba7cd 5993 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5994 /* Need help from migration thread: drop lock and wait. */
5995 task_rq_unlock(rq, &flags);
5996 wake_up_process(rq->migration_thread);
5997 wait_for_completion(&req.done);
5998 tlb_migrate_finish(p->mm);
5999 return 0;
6000 }
6001out:
6002 task_rq_unlock(rq, &flags);
48f24c4d 6003
1da177e4
LT
6004 return ret;
6005}
cd8ba7cd 6006EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6007
6008/*
41a2d6cf 6009 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6010 * this because either it can't run here any more (set_cpus_allowed()
6011 * away from this CPU, or CPU going down), or because we're
6012 * attempting to rebalance this task on exec (sched_exec).
6013 *
6014 * So we race with normal scheduler movements, but that's OK, as long
6015 * as the task is no longer on this CPU.
efc30814
KK
6016 *
6017 * Returns non-zero if task was successfully migrated.
1da177e4 6018 */
efc30814 6019static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6020{
70b97a7f 6021 struct rq *rq_dest, *rq_src;
dd41f596 6022 int ret = 0, on_rq;
1da177e4 6023
e761b772 6024 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6025 return ret;
1da177e4
LT
6026
6027 rq_src = cpu_rq(src_cpu);
6028 rq_dest = cpu_rq(dest_cpu);
6029
6030 double_rq_lock(rq_src, rq_dest);
6031 /* Already moved. */
6032 if (task_cpu(p) != src_cpu)
b1e38734 6033 goto done;
1da177e4
LT
6034 /* Affinity changed (again). */
6035 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6036 goto fail;
1da177e4 6037
dd41f596 6038 on_rq = p->se.on_rq;
6e82a3be 6039 if (on_rq)
2e1cb74a 6040 deactivate_task(rq_src, p, 0);
6e82a3be 6041
1da177e4 6042 set_task_cpu(p, dest_cpu);
dd41f596
IM
6043 if (on_rq) {
6044 activate_task(rq_dest, p, 0);
15afe09b 6045 check_preempt_curr(rq_dest, p, 0);
1da177e4 6046 }
b1e38734 6047done:
efc30814 6048 ret = 1;
b1e38734 6049fail:
1da177e4 6050 double_rq_unlock(rq_src, rq_dest);
efc30814 6051 return ret;
1da177e4
LT
6052}
6053
6054/*
6055 * migration_thread - this is a highprio system thread that performs
6056 * thread migration by bumping thread off CPU then 'pushing' onto
6057 * another runqueue.
6058 */
95cdf3b7 6059static int migration_thread(void *data)
1da177e4 6060{
1da177e4 6061 int cpu = (long)data;
70b97a7f 6062 struct rq *rq;
1da177e4
LT
6063
6064 rq = cpu_rq(cpu);
6065 BUG_ON(rq->migration_thread != current);
6066
6067 set_current_state(TASK_INTERRUPTIBLE);
6068 while (!kthread_should_stop()) {
70b97a7f 6069 struct migration_req *req;
1da177e4 6070 struct list_head *head;
1da177e4 6071
1da177e4
LT
6072 spin_lock_irq(&rq->lock);
6073
6074 if (cpu_is_offline(cpu)) {
6075 spin_unlock_irq(&rq->lock);
6076 goto wait_to_die;
6077 }
6078
6079 if (rq->active_balance) {
6080 active_load_balance(rq, cpu);
6081 rq->active_balance = 0;
6082 }
6083
6084 head = &rq->migration_queue;
6085
6086 if (list_empty(head)) {
6087 spin_unlock_irq(&rq->lock);
6088 schedule();
6089 set_current_state(TASK_INTERRUPTIBLE);
6090 continue;
6091 }
70b97a7f 6092 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6093 list_del_init(head->next);
6094
674311d5
NP
6095 spin_unlock(&rq->lock);
6096 __migrate_task(req->task, cpu, req->dest_cpu);
6097 local_irq_enable();
1da177e4
LT
6098
6099 complete(&req->done);
6100 }
6101 __set_current_state(TASK_RUNNING);
6102 return 0;
6103
6104wait_to_die:
6105 /* Wait for kthread_stop */
6106 set_current_state(TASK_INTERRUPTIBLE);
6107 while (!kthread_should_stop()) {
6108 schedule();
6109 set_current_state(TASK_INTERRUPTIBLE);
6110 }
6111 __set_current_state(TASK_RUNNING);
6112 return 0;
6113}
6114
6115#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6116
6117static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6118{
6119 int ret;
6120
6121 local_irq_disable();
6122 ret = __migrate_task(p, src_cpu, dest_cpu);
6123 local_irq_enable();
6124 return ret;
6125}
6126
054b9108 6127/*
3a4fa0a2 6128 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6129 * NOTE: interrupts should be disabled by the caller
6130 */
48f24c4d 6131static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6132{
efc30814 6133 unsigned long flags;
1da177e4 6134 cpumask_t mask;
70b97a7f
IM
6135 struct rq *rq;
6136 int dest_cpu;
1da177e4 6137
3a5c359a
AK
6138 do {
6139 /* On same node? */
6140 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6141 cpus_and(mask, mask, p->cpus_allowed);
6142 dest_cpu = any_online_cpu(mask);
6143
6144 /* On any allowed CPU? */
434d53b0 6145 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6146 dest_cpu = any_online_cpu(p->cpus_allowed);
6147
6148 /* No more Mr. Nice Guy. */
434d53b0 6149 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6150 cpumask_t cpus_allowed;
6151
6152 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6153 /*
6154 * Try to stay on the same cpuset, where the
6155 * current cpuset may be a subset of all cpus.
6156 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6157 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6158 * called within calls to cpuset_lock/cpuset_unlock.
6159 */
3a5c359a 6160 rq = task_rq_lock(p, &flags);
470fd646 6161 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6162 dest_cpu = any_online_cpu(p->cpus_allowed);
6163 task_rq_unlock(rq, &flags);
1da177e4 6164
3a5c359a
AK
6165 /*
6166 * Don't tell them about moving exiting tasks or
6167 * kernel threads (both mm NULL), since they never
6168 * leave kernel.
6169 */
41a2d6cf 6170 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6171 printk(KERN_INFO "process %d (%s) no "
6172 "longer affine to cpu%d\n",
41a2d6cf
IM
6173 task_pid_nr(p), p->comm, dead_cpu);
6174 }
3a5c359a 6175 }
f7b4cddc 6176 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6177}
6178
6179/*
6180 * While a dead CPU has no uninterruptible tasks queued at this point,
6181 * it might still have a nonzero ->nr_uninterruptible counter, because
6182 * for performance reasons the counter is not stricly tracking tasks to
6183 * their home CPUs. So we just add the counter to another CPU's counter,
6184 * to keep the global sum constant after CPU-down:
6185 */
70b97a7f 6186static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6187{
7c16ec58 6188 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6189 unsigned long flags;
6190
6191 local_irq_save(flags);
6192 double_rq_lock(rq_src, rq_dest);
6193 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6194 rq_src->nr_uninterruptible = 0;
6195 double_rq_unlock(rq_src, rq_dest);
6196 local_irq_restore(flags);
6197}
6198
6199/* Run through task list and migrate tasks from the dead cpu. */
6200static void migrate_live_tasks(int src_cpu)
6201{
48f24c4d 6202 struct task_struct *p, *t;
1da177e4 6203
f7b4cddc 6204 read_lock(&tasklist_lock);
1da177e4 6205
48f24c4d
IM
6206 do_each_thread(t, p) {
6207 if (p == current)
1da177e4
LT
6208 continue;
6209
48f24c4d
IM
6210 if (task_cpu(p) == src_cpu)
6211 move_task_off_dead_cpu(src_cpu, p);
6212 } while_each_thread(t, p);
1da177e4 6213
f7b4cddc 6214 read_unlock(&tasklist_lock);
1da177e4
LT
6215}
6216
dd41f596
IM
6217/*
6218 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6219 * It does so by boosting its priority to highest possible.
6220 * Used by CPU offline code.
1da177e4
LT
6221 */
6222void sched_idle_next(void)
6223{
48f24c4d 6224 int this_cpu = smp_processor_id();
70b97a7f 6225 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6226 struct task_struct *p = rq->idle;
6227 unsigned long flags;
6228
6229 /* cpu has to be offline */
48f24c4d 6230 BUG_ON(cpu_online(this_cpu));
1da177e4 6231
48f24c4d
IM
6232 /*
6233 * Strictly not necessary since rest of the CPUs are stopped by now
6234 * and interrupts disabled on the current cpu.
1da177e4
LT
6235 */
6236 spin_lock_irqsave(&rq->lock, flags);
6237
dd41f596 6238 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6239
94bc9a7b
DA
6240 update_rq_clock(rq);
6241 activate_task(rq, p, 0);
1da177e4
LT
6242
6243 spin_unlock_irqrestore(&rq->lock, flags);
6244}
6245
48f24c4d
IM
6246/*
6247 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6248 * offline.
6249 */
6250void idle_task_exit(void)
6251{
6252 struct mm_struct *mm = current->active_mm;
6253
6254 BUG_ON(cpu_online(smp_processor_id()));
6255
6256 if (mm != &init_mm)
6257 switch_mm(mm, &init_mm, current);
6258 mmdrop(mm);
6259}
6260
054b9108 6261/* called under rq->lock with disabled interrupts */
36c8b586 6262static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6263{
70b97a7f 6264 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6265
6266 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6267 BUG_ON(!p->exit_state);
1da177e4
LT
6268
6269 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6270 BUG_ON(p->state == TASK_DEAD);
1da177e4 6271
48f24c4d 6272 get_task_struct(p);
1da177e4
LT
6273
6274 /*
6275 * Drop lock around migration; if someone else moves it,
41a2d6cf 6276 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6277 * fine.
6278 */
f7b4cddc 6279 spin_unlock_irq(&rq->lock);
48f24c4d 6280 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6281 spin_lock_irq(&rq->lock);
1da177e4 6282
48f24c4d 6283 put_task_struct(p);
1da177e4
LT
6284}
6285
6286/* release_task() removes task from tasklist, so we won't find dead tasks. */
6287static void migrate_dead_tasks(unsigned int dead_cpu)
6288{
70b97a7f 6289 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6290 struct task_struct *next;
48f24c4d 6291
dd41f596
IM
6292 for ( ; ; ) {
6293 if (!rq->nr_running)
6294 break;
a8e504d2 6295 update_rq_clock(rq);
ff95f3df 6296 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6297 if (!next)
6298 break;
79c53799 6299 next->sched_class->put_prev_task(rq, next);
dd41f596 6300 migrate_dead(dead_cpu, next);
e692ab53 6301
1da177e4
LT
6302 }
6303}
6304#endif /* CONFIG_HOTPLUG_CPU */
6305
e692ab53
NP
6306#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6307
6308static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6309 {
6310 .procname = "sched_domain",
c57baf1e 6311 .mode = 0555,
e0361851 6312 },
38605cae 6313 {0, },
e692ab53
NP
6314};
6315
6316static struct ctl_table sd_ctl_root[] = {
e0361851 6317 {
c57baf1e 6318 .ctl_name = CTL_KERN,
e0361851 6319 .procname = "kernel",
c57baf1e 6320 .mode = 0555,
e0361851
AD
6321 .child = sd_ctl_dir,
6322 },
38605cae 6323 {0, },
e692ab53
NP
6324};
6325
6326static struct ctl_table *sd_alloc_ctl_entry(int n)
6327{
6328 struct ctl_table *entry =
5cf9f062 6329 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6330
e692ab53
NP
6331 return entry;
6332}
6333
6382bc90
MM
6334static void sd_free_ctl_entry(struct ctl_table **tablep)
6335{
cd790076 6336 struct ctl_table *entry;
6382bc90 6337
cd790076
MM
6338 /*
6339 * In the intermediate directories, both the child directory and
6340 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6341 * will always be set. In the lowest directory the names are
cd790076
MM
6342 * static strings and all have proc handlers.
6343 */
6344 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6345 if (entry->child)
6346 sd_free_ctl_entry(&entry->child);
cd790076
MM
6347 if (entry->proc_handler == NULL)
6348 kfree(entry->procname);
6349 }
6382bc90
MM
6350
6351 kfree(*tablep);
6352 *tablep = NULL;
6353}
6354
e692ab53 6355static void
e0361851 6356set_table_entry(struct ctl_table *entry,
e692ab53
NP
6357 const char *procname, void *data, int maxlen,
6358 mode_t mode, proc_handler *proc_handler)
6359{
e692ab53
NP
6360 entry->procname = procname;
6361 entry->data = data;
6362 entry->maxlen = maxlen;
6363 entry->mode = mode;
6364 entry->proc_handler = proc_handler;
6365}
6366
6367static struct ctl_table *
6368sd_alloc_ctl_domain_table(struct sched_domain *sd)
6369{
a5d8c348 6370 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6371
ad1cdc1d
MM
6372 if (table == NULL)
6373 return NULL;
6374
e0361851 6375 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6376 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6377 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6378 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6379 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6380 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6381 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6382 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6383 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6384 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6385 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6386 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6387 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6388 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6389 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6390 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6391 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6392 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6393 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6394 &sd->cache_nice_tries,
6395 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6396 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6397 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6398 set_table_entry(&table[11], "name", sd->name,
6399 CORENAME_MAX_SIZE, 0444, proc_dostring);
6400 /* &table[12] is terminator */
e692ab53
NP
6401
6402 return table;
6403}
6404
9a4e7159 6405static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6406{
6407 struct ctl_table *entry, *table;
6408 struct sched_domain *sd;
6409 int domain_num = 0, i;
6410 char buf[32];
6411
6412 for_each_domain(cpu, sd)
6413 domain_num++;
6414 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6415 if (table == NULL)
6416 return NULL;
e692ab53
NP
6417
6418 i = 0;
6419 for_each_domain(cpu, sd) {
6420 snprintf(buf, 32, "domain%d", i);
e692ab53 6421 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6422 entry->mode = 0555;
e692ab53
NP
6423 entry->child = sd_alloc_ctl_domain_table(sd);
6424 entry++;
6425 i++;
6426 }
6427 return table;
6428}
6429
6430static struct ctl_table_header *sd_sysctl_header;
6382bc90 6431static void register_sched_domain_sysctl(void)
e692ab53
NP
6432{
6433 int i, cpu_num = num_online_cpus();
6434 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6435 char buf[32];
6436
7378547f
MM
6437 WARN_ON(sd_ctl_dir[0].child);
6438 sd_ctl_dir[0].child = entry;
6439
ad1cdc1d
MM
6440 if (entry == NULL)
6441 return;
6442
97b6ea7b 6443 for_each_online_cpu(i) {
e692ab53 6444 snprintf(buf, 32, "cpu%d", i);
e692ab53 6445 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6446 entry->mode = 0555;
e692ab53 6447 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6448 entry++;
e692ab53 6449 }
7378547f
MM
6450
6451 WARN_ON(sd_sysctl_header);
e692ab53
NP
6452 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6453}
6382bc90 6454
7378547f 6455/* may be called multiple times per register */
6382bc90
MM
6456static void unregister_sched_domain_sysctl(void)
6457{
7378547f
MM
6458 if (sd_sysctl_header)
6459 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6460 sd_sysctl_header = NULL;
7378547f
MM
6461 if (sd_ctl_dir[0].child)
6462 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6463}
e692ab53 6464#else
6382bc90
MM
6465static void register_sched_domain_sysctl(void)
6466{
6467}
6468static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6469{
6470}
6471#endif
6472
1f11eb6a
GH
6473static void set_rq_online(struct rq *rq)
6474{
6475 if (!rq->online) {
6476 const struct sched_class *class;
6477
6478 cpu_set(rq->cpu, rq->rd->online);
6479 rq->online = 1;
6480
6481 for_each_class(class) {
6482 if (class->rq_online)
6483 class->rq_online(rq);
6484 }
6485 }
6486}
6487
6488static void set_rq_offline(struct rq *rq)
6489{
6490 if (rq->online) {
6491 const struct sched_class *class;
6492
6493 for_each_class(class) {
6494 if (class->rq_offline)
6495 class->rq_offline(rq);
6496 }
6497
6498 cpu_clear(rq->cpu, rq->rd->online);
6499 rq->online = 0;
6500 }
6501}
6502
1da177e4
LT
6503/*
6504 * migration_call - callback that gets triggered when a CPU is added.
6505 * Here we can start up the necessary migration thread for the new CPU.
6506 */
48f24c4d
IM
6507static int __cpuinit
6508migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6509{
1da177e4 6510 struct task_struct *p;
48f24c4d 6511 int cpu = (long)hcpu;
1da177e4 6512 unsigned long flags;
70b97a7f 6513 struct rq *rq;
1da177e4
LT
6514
6515 switch (action) {
5be9361c 6516
1da177e4 6517 case CPU_UP_PREPARE:
8bb78442 6518 case CPU_UP_PREPARE_FROZEN:
dd41f596 6519 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6520 if (IS_ERR(p))
6521 return NOTIFY_BAD;
1da177e4
LT
6522 kthread_bind(p, cpu);
6523 /* Must be high prio: stop_machine expects to yield to it. */
6524 rq = task_rq_lock(p, &flags);
dd41f596 6525 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6526 task_rq_unlock(rq, &flags);
6527 cpu_rq(cpu)->migration_thread = p;
6528 break;
48f24c4d 6529
1da177e4 6530 case CPU_ONLINE:
8bb78442 6531 case CPU_ONLINE_FROZEN:
3a4fa0a2 6532 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6533 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6534
6535 /* Update our root-domain */
6536 rq = cpu_rq(cpu);
6537 spin_lock_irqsave(&rq->lock, flags);
6538 if (rq->rd) {
6539 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6540
6541 set_rq_online(rq);
1f94ef59
GH
6542 }
6543 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6544 break;
48f24c4d 6545
1da177e4
LT
6546#ifdef CONFIG_HOTPLUG_CPU
6547 case CPU_UP_CANCELED:
8bb78442 6548 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6549 if (!cpu_rq(cpu)->migration_thread)
6550 break;
41a2d6cf 6551 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6552 kthread_bind(cpu_rq(cpu)->migration_thread,
6553 any_online_cpu(cpu_online_map));
1da177e4
LT
6554 kthread_stop(cpu_rq(cpu)->migration_thread);
6555 cpu_rq(cpu)->migration_thread = NULL;
6556 break;
48f24c4d 6557
1da177e4 6558 case CPU_DEAD:
8bb78442 6559 case CPU_DEAD_FROZEN:
470fd646 6560 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6561 migrate_live_tasks(cpu);
6562 rq = cpu_rq(cpu);
6563 kthread_stop(rq->migration_thread);
6564 rq->migration_thread = NULL;
6565 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6566 spin_lock_irq(&rq->lock);
a8e504d2 6567 update_rq_clock(rq);
2e1cb74a 6568 deactivate_task(rq, rq->idle, 0);
1da177e4 6569 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6570 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6571 rq->idle->sched_class = &idle_sched_class;
1da177e4 6572 migrate_dead_tasks(cpu);
d2da272a 6573 spin_unlock_irq(&rq->lock);
470fd646 6574 cpuset_unlock();
1da177e4
LT
6575 migrate_nr_uninterruptible(rq);
6576 BUG_ON(rq->nr_running != 0);
6577
41a2d6cf
IM
6578 /*
6579 * No need to migrate the tasks: it was best-effort if
6580 * they didn't take sched_hotcpu_mutex. Just wake up
6581 * the requestors.
6582 */
1da177e4
LT
6583 spin_lock_irq(&rq->lock);
6584 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6585 struct migration_req *req;
6586
1da177e4 6587 req = list_entry(rq->migration_queue.next,
70b97a7f 6588 struct migration_req, list);
1da177e4
LT
6589 list_del_init(&req->list);
6590 complete(&req->done);
6591 }
6592 spin_unlock_irq(&rq->lock);
6593 break;
57d885fe 6594
08f503b0
GH
6595 case CPU_DYING:
6596 case CPU_DYING_FROZEN:
57d885fe
GH
6597 /* Update our root-domain */
6598 rq = cpu_rq(cpu);
6599 spin_lock_irqsave(&rq->lock, flags);
6600 if (rq->rd) {
6601 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6602 set_rq_offline(rq);
57d885fe
GH
6603 }
6604 spin_unlock_irqrestore(&rq->lock, flags);
6605 break;
1da177e4
LT
6606#endif
6607 }
6608 return NOTIFY_OK;
6609}
6610
6611/* Register at highest priority so that task migration (migrate_all_tasks)
6612 * happens before everything else.
6613 */
26c2143b 6614static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6615 .notifier_call = migration_call,
6616 .priority = 10
6617};
6618
7babe8db 6619static int __init migration_init(void)
1da177e4
LT
6620{
6621 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6622 int err;
48f24c4d
IM
6623
6624 /* Start one for the boot CPU: */
07dccf33
AM
6625 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6626 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6627 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6628 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6629
6630 return err;
1da177e4 6631}
7babe8db 6632early_initcall(migration_init);
1da177e4
LT
6633#endif
6634
6635#ifdef CONFIG_SMP
476f3534 6636
3e9830dc 6637#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6638
099f98c8
GS
6639static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6640{
6641 switch (lvl) {
6642 case SD_LV_NONE:
6643 return "NONE";
6644 case SD_LV_SIBLING:
6645 return "SIBLING";
6646 case SD_LV_MC:
6647 return "MC";
6648 case SD_LV_CPU:
6649 return "CPU";
6650 case SD_LV_NODE:
6651 return "NODE";
6652 case SD_LV_ALLNODES:
6653 return "ALLNODES";
6654 case SD_LV_MAX:
6655 return "MAX";
6656
6657 }
6658 return "MAX";
6659}
6660
7c16ec58
MT
6661static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6662 cpumask_t *groupmask)
1da177e4 6663{
4dcf6aff 6664 struct sched_group *group = sd->groups;
434d53b0 6665 char str[256];
1da177e4 6666
434d53b0 6667 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6668 cpus_clear(*groupmask);
4dcf6aff
IM
6669
6670 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6671
6672 if (!(sd->flags & SD_LOAD_BALANCE)) {
6673 printk("does not load-balance\n");
6674 if (sd->parent)
6675 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6676 " has parent");
6677 return -1;
41c7ce9a
NP
6678 }
6679
099f98c8
GS
6680 printk(KERN_CONT "span %s level %s\n",
6681 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6682
6683 if (!cpu_isset(cpu, sd->span)) {
6684 printk(KERN_ERR "ERROR: domain->span does not contain "
6685 "CPU%d\n", cpu);
6686 }
6687 if (!cpu_isset(cpu, group->cpumask)) {
6688 printk(KERN_ERR "ERROR: domain->groups does not contain"
6689 " CPU%d\n", cpu);
6690 }
1da177e4 6691
4dcf6aff 6692 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6693 do {
4dcf6aff
IM
6694 if (!group) {
6695 printk("\n");
6696 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6697 break;
6698 }
6699
4dcf6aff
IM
6700 if (!group->__cpu_power) {
6701 printk(KERN_CONT "\n");
6702 printk(KERN_ERR "ERROR: domain->cpu_power not "
6703 "set\n");
6704 break;
6705 }
1da177e4 6706
4dcf6aff
IM
6707 if (!cpus_weight(group->cpumask)) {
6708 printk(KERN_CONT "\n");
6709 printk(KERN_ERR "ERROR: empty group\n");
6710 break;
6711 }
1da177e4 6712
7c16ec58 6713 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6714 printk(KERN_CONT "\n");
6715 printk(KERN_ERR "ERROR: repeated CPUs\n");
6716 break;
6717 }
1da177e4 6718
7c16ec58 6719 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6720
434d53b0 6721 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6722 printk(KERN_CONT " %s", str);
1da177e4 6723
4dcf6aff
IM
6724 group = group->next;
6725 } while (group != sd->groups);
6726 printk(KERN_CONT "\n");
1da177e4 6727
7c16ec58 6728 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6729 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6730
7c16ec58 6731 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6732 printk(KERN_ERR "ERROR: parent span is not a superset "
6733 "of domain->span\n");
6734 return 0;
6735}
1da177e4 6736
4dcf6aff
IM
6737static void sched_domain_debug(struct sched_domain *sd, int cpu)
6738{
7c16ec58 6739 cpumask_t *groupmask;
4dcf6aff 6740 int level = 0;
1da177e4 6741
4dcf6aff
IM
6742 if (!sd) {
6743 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6744 return;
6745 }
1da177e4 6746
4dcf6aff
IM
6747 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6748
7c16ec58
MT
6749 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6750 if (!groupmask) {
6751 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6752 return;
6753 }
6754
4dcf6aff 6755 for (;;) {
7c16ec58 6756 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6757 break;
1da177e4
LT
6758 level++;
6759 sd = sd->parent;
33859f7f 6760 if (!sd)
4dcf6aff
IM
6761 break;
6762 }
7c16ec58 6763 kfree(groupmask);
1da177e4 6764}
6d6bc0ad 6765#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6766# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6767#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6768
1a20ff27 6769static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6770{
6771 if (cpus_weight(sd->span) == 1)
6772 return 1;
6773
6774 /* Following flags need at least 2 groups */
6775 if (sd->flags & (SD_LOAD_BALANCE |
6776 SD_BALANCE_NEWIDLE |
6777 SD_BALANCE_FORK |
89c4710e
SS
6778 SD_BALANCE_EXEC |
6779 SD_SHARE_CPUPOWER |
6780 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6781 if (sd->groups != sd->groups->next)
6782 return 0;
6783 }
6784
6785 /* Following flags don't use groups */
6786 if (sd->flags & (SD_WAKE_IDLE |
6787 SD_WAKE_AFFINE |
6788 SD_WAKE_BALANCE))
6789 return 0;
6790
6791 return 1;
6792}
6793
48f24c4d
IM
6794static int
6795sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6796{
6797 unsigned long cflags = sd->flags, pflags = parent->flags;
6798
6799 if (sd_degenerate(parent))
6800 return 1;
6801
6802 if (!cpus_equal(sd->span, parent->span))
6803 return 0;
6804
6805 /* Does parent contain flags not in child? */
6806 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6807 if (cflags & SD_WAKE_AFFINE)
6808 pflags &= ~SD_WAKE_BALANCE;
6809 /* Flags needing groups don't count if only 1 group in parent */
6810 if (parent->groups == parent->groups->next) {
6811 pflags &= ~(SD_LOAD_BALANCE |
6812 SD_BALANCE_NEWIDLE |
6813 SD_BALANCE_FORK |
89c4710e
SS
6814 SD_BALANCE_EXEC |
6815 SD_SHARE_CPUPOWER |
6816 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6817 }
6818 if (~cflags & pflags)
6819 return 0;
6820
6821 return 1;
6822}
6823
57d885fe
GH
6824static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6825{
6826 unsigned long flags;
57d885fe
GH
6827
6828 spin_lock_irqsave(&rq->lock, flags);
6829
6830 if (rq->rd) {
6831 struct root_domain *old_rd = rq->rd;
6832
1f11eb6a
GH
6833 if (cpu_isset(rq->cpu, old_rd->online))
6834 set_rq_offline(rq);
57d885fe 6835
dc938520 6836 cpu_clear(rq->cpu, old_rd->span);
dc938520 6837
57d885fe
GH
6838 if (atomic_dec_and_test(&old_rd->refcount))
6839 kfree(old_rd);
6840 }
6841
6842 atomic_inc(&rd->refcount);
6843 rq->rd = rd;
6844
dc938520 6845 cpu_set(rq->cpu, rd->span);
1f94ef59 6846 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6847 set_rq_online(rq);
57d885fe
GH
6848
6849 spin_unlock_irqrestore(&rq->lock, flags);
6850}
6851
dc938520 6852static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6853{
6854 memset(rd, 0, sizeof(*rd));
6855
dc938520
GH
6856 cpus_clear(rd->span);
6857 cpus_clear(rd->online);
6e0534f2
GH
6858
6859 cpupri_init(&rd->cpupri);
57d885fe
GH
6860}
6861
6862static void init_defrootdomain(void)
6863{
dc938520 6864 init_rootdomain(&def_root_domain);
57d885fe
GH
6865 atomic_set(&def_root_domain.refcount, 1);
6866}
6867
dc938520 6868static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6869{
6870 struct root_domain *rd;
6871
6872 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6873 if (!rd)
6874 return NULL;
6875
dc938520 6876 init_rootdomain(rd);
57d885fe
GH
6877
6878 return rd;
6879}
6880
1da177e4 6881/*
0eab9146 6882 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6883 * hold the hotplug lock.
6884 */
0eab9146
IM
6885static void
6886cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6887{
70b97a7f 6888 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6889 struct sched_domain *tmp;
6890
6891 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6892 for (tmp = sd; tmp; ) {
245af2c7
SS
6893 struct sched_domain *parent = tmp->parent;
6894 if (!parent)
6895 break;
f29c9b1c 6896
1a848870 6897 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6898 tmp->parent = parent->parent;
1a848870
SS
6899 if (parent->parent)
6900 parent->parent->child = tmp;
f29c9b1c
LZ
6901 } else
6902 tmp = tmp->parent;
245af2c7
SS
6903 }
6904
1a848870 6905 if (sd && sd_degenerate(sd)) {
245af2c7 6906 sd = sd->parent;
1a848870
SS
6907 if (sd)
6908 sd->child = NULL;
6909 }
1da177e4
LT
6910
6911 sched_domain_debug(sd, cpu);
6912
57d885fe 6913 rq_attach_root(rq, rd);
674311d5 6914 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6915}
6916
6917/* cpus with isolated domains */
67af63a6 6918static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6919
6920/* Setup the mask of cpus configured for isolated domains */
6921static int __init isolated_cpu_setup(char *str)
6922{
13b40c1e
MT
6923 static int __initdata ints[NR_CPUS];
6924 int i;
1da177e4
LT
6925
6926 str = get_options(str, ARRAY_SIZE(ints), ints);
6927 cpus_clear(cpu_isolated_map);
6928 for (i = 1; i <= ints[0]; i++)
6929 if (ints[i] < NR_CPUS)
6930 cpu_set(ints[i], cpu_isolated_map);
6931 return 1;
6932}
6933
8927f494 6934__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6935
6936/*
6711cab4
SS
6937 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6938 * to a function which identifies what group(along with sched group) a CPU
6939 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6940 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6941 *
6942 * init_sched_build_groups will build a circular linked list of the groups
6943 * covered by the given span, and will set each group's ->cpumask correctly,
6944 * and ->cpu_power to 0.
6945 */
a616058b 6946static void
7c16ec58 6947init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6948 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6949 struct sched_group **sg,
6950 cpumask_t *tmpmask),
6951 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6952{
6953 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6954 int i;
6955
7c16ec58
MT
6956 cpus_clear(*covered);
6957
363ab6f1 6958 for_each_cpu_mask_nr(i, *span) {
6711cab4 6959 struct sched_group *sg;
7c16ec58 6960 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6961 int j;
6962
7c16ec58 6963 if (cpu_isset(i, *covered))
1da177e4
LT
6964 continue;
6965
7c16ec58 6966 cpus_clear(sg->cpumask);
5517d86b 6967 sg->__cpu_power = 0;
1da177e4 6968
363ab6f1 6969 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6970 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6971 continue;
6972
7c16ec58 6973 cpu_set(j, *covered);
1da177e4
LT
6974 cpu_set(j, sg->cpumask);
6975 }
6976 if (!first)
6977 first = sg;
6978 if (last)
6979 last->next = sg;
6980 last = sg;
6981 }
6982 last->next = first;
6983}
6984
9c1cfda2 6985#define SD_NODES_PER_DOMAIN 16
1da177e4 6986
9c1cfda2 6987#ifdef CONFIG_NUMA
198e2f18 6988
9c1cfda2
JH
6989/**
6990 * find_next_best_node - find the next node to include in a sched_domain
6991 * @node: node whose sched_domain we're building
6992 * @used_nodes: nodes already in the sched_domain
6993 *
41a2d6cf 6994 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6995 * finds the closest node not already in the @used_nodes map.
6996 *
6997 * Should use nodemask_t.
6998 */
c5f59f08 6999static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7000{
7001 int i, n, val, min_val, best_node = 0;
7002
7003 min_val = INT_MAX;
7004
076ac2af 7005 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7006 /* Start at @node */
076ac2af 7007 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7008
7009 if (!nr_cpus_node(n))
7010 continue;
7011
7012 /* Skip already used nodes */
c5f59f08 7013 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7014 continue;
7015
7016 /* Simple min distance search */
7017 val = node_distance(node, n);
7018
7019 if (val < min_val) {
7020 min_val = val;
7021 best_node = n;
7022 }
7023 }
7024
c5f59f08 7025 node_set(best_node, *used_nodes);
9c1cfda2
JH
7026 return best_node;
7027}
7028
7029/**
7030 * sched_domain_node_span - get a cpumask for a node's sched_domain
7031 * @node: node whose cpumask we're constructing
73486722 7032 * @span: resulting cpumask
9c1cfda2 7033 *
41a2d6cf 7034 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7035 * should be one that prevents unnecessary balancing, but also spreads tasks
7036 * out optimally.
7037 */
4bdbaad3 7038static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7039{
c5f59f08 7040 nodemask_t used_nodes;
c5f59f08 7041 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7042 int i;
9c1cfda2 7043
4bdbaad3 7044 cpus_clear(*span);
c5f59f08 7045 nodes_clear(used_nodes);
9c1cfda2 7046
4bdbaad3 7047 cpus_or(*span, *span, *nodemask);
c5f59f08 7048 node_set(node, used_nodes);
9c1cfda2
JH
7049
7050 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7051 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7052
c5f59f08 7053 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7054 cpus_or(*span, *span, *nodemask);
9c1cfda2 7055 }
9c1cfda2 7056}
6d6bc0ad 7057#endif /* CONFIG_NUMA */
9c1cfda2 7058
5c45bf27 7059int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7060
9c1cfda2 7061/*
48f24c4d 7062 * SMT sched-domains:
9c1cfda2 7063 */
1da177e4
LT
7064#ifdef CONFIG_SCHED_SMT
7065static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7066static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7067
41a2d6cf 7068static int
7c16ec58
MT
7069cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7070 cpumask_t *unused)
1da177e4 7071{
6711cab4
SS
7072 if (sg)
7073 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7074 return cpu;
7075}
6d6bc0ad 7076#endif /* CONFIG_SCHED_SMT */
1da177e4 7077
48f24c4d
IM
7078/*
7079 * multi-core sched-domains:
7080 */
1e9f28fa
SS
7081#ifdef CONFIG_SCHED_MC
7082static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7083static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7084#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7085
7086#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7087static int
7c16ec58
MT
7088cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7089 cpumask_t *mask)
1e9f28fa 7090{
6711cab4 7091 int group;
7c16ec58
MT
7092
7093 *mask = per_cpu(cpu_sibling_map, cpu);
7094 cpus_and(*mask, *mask, *cpu_map);
7095 group = first_cpu(*mask);
6711cab4
SS
7096 if (sg)
7097 *sg = &per_cpu(sched_group_core, group);
7098 return group;
1e9f28fa
SS
7099}
7100#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7101static int
7c16ec58
MT
7102cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7103 cpumask_t *unused)
1e9f28fa 7104{
6711cab4
SS
7105 if (sg)
7106 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7107 return cpu;
7108}
7109#endif
7110
1da177e4 7111static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7112static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7113
41a2d6cf 7114static int
7c16ec58
MT
7115cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7116 cpumask_t *mask)
1da177e4 7117{
6711cab4 7118 int group;
48f24c4d 7119#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7120 *mask = cpu_coregroup_map(cpu);
7121 cpus_and(*mask, *mask, *cpu_map);
7122 group = first_cpu(*mask);
1e9f28fa 7123#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7124 *mask = per_cpu(cpu_sibling_map, cpu);
7125 cpus_and(*mask, *mask, *cpu_map);
7126 group = first_cpu(*mask);
1da177e4 7127#else
6711cab4 7128 group = cpu;
1da177e4 7129#endif
6711cab4
SS
7130 if (sg)
7131 *sg = &per_cpu(sched_group_phys, group);
7132 return group;
1da177e4
LT
7133}
7134
7135#ifdef CONFIG_NUMA
1da177e4 7136/*
9c1cfda2
JH
7137 * The init_sched_build_groups can't handle what we want to do with node
7138 * groups, so roll our own. Now each node has its own list of groups which
7139 * gets dynamically allocated.
1da177e4 7140 */
9c1cfda2 7141static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7142static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7143
9c1cfda2 7144static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7145static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7146
6711cab4 7147static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7148 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7149{
6711cab4
SS
7150 int group;
7151
7c16ec58
MT
7152 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7153 cpus_and(*nodemask, *nodemask, *cpu_map);
7154 group = first_cpu(*nodemask);
6711cab4
SS
7155
7156 if (sg)
7157 *sg = &per_cpu(sched_group_allnodes, group);
7158 return group;
1da177e4 7159}
6711cab4 7160
08069033
SS
7161static void init_numa_sched_groups_power(struct sched_group *group_head)
7162{
7163 struct sched_group *sg = group_head;
7164 int j;
7165
7166 if (!sg)
7167 return;
3a5c359a 7168 do {
363ab6f1 7169 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7170 struct sched_domain *sd;
08069033 7171
3a5c359a
AK
7172 sd = &per_cpu(phys_domains, j);
7173 if (j != first_cpu(sd->groups->cpumask)) {
7174 /*
7175 * Only add "power" once for each
7176 * physical package.
7177 */
7178 continue;
7179 }
08069033 7180
3a5c359a
AK
7181 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7182 }
7183 sg = sg->next;
7184 } while (sg != group_head);
08069033 7185}
6d6bc0ad 7186#endif /* CONFIG_NUMA */
1da177e4 7187
a616058b 7188#ifdef CONFIG_NUMA
51888ca2 7189/* Free memory allocated for various sched_group structures */
7c16ec58 7190static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7191{
a616058b 7192 int cpu, i;
51888ca2 7193
363ab6f1 7194 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7195 struct sched_group **sched_group_nodes
7196 = sched_group_nodes_bycpu[cpu];
7197
51888ca2
SV
7198 if (!sched_group_nodes)
7199 continue;
7200
076ac2af 7201 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7202 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7203
7c16ec58
MT
7204 *nodemask = node_to_cpumask(i);
7205 cpus_and(*nodemask, *nodemask, *cpu_map);
7206 if (cpus_empty(*nodemask))
51888ca2
SV
7207 continue;
7208
7209 if (sg == NULL)
7210 continue;
7211 sg = sg->next;
7212next_sg:
7213 oldsg = sg;
7214 sg = sg->next;
7215 kfree(oldsg);
7216 if (oldsg != sched_group_nodes[i])
7217 goto next_sg;
7218 }
7219 kfree(sched_group_nodes);
7220 sched_group_nodes_bycpu[cpu] = NULL;
7221 }
51888ca2 7222}
6d6bc0ad 7223#else /* !CONFIG_NUMA */
7c16ec58 7224static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7225{
7226}
6d6bc0ad 7227#endif /* CONFIG_NUMA */
51888ca2 7228
89c4710e
SS
7229/*
7230 * Initialize sched groups cpu_power.
7231 *
7232 * cpu_power indicates the capacity of sched group, which is used while
7233 * distributing the load between different sched groups in a sched domain.
7234 * Typically cpu_power for all the groups in a sched domain will be same unless
7235 * there are asymmetries in the topology. If there are asymmetries, group
7236 * having more cpu_power will pickup more load compared to the group having
7237 * less cpu_power.
7238 *
7239 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7240 * the maximum number of tasks a group can handle in the presence of other idle
7241 * or lightly loaded groups in the same sched domain.
7242 */
7243static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7244{
7245 struct sched_domain *child;
7246 struct sched_group *group;
7247
7248 WARN_ON(!sd || !sd->groups);
7249
7250 if (cpu != first_cpu(sd->groups->cpumask))
7251 return;
7252
7253 child = sd->child;
7254
5517d86b
ED
7255 sd->groups->__cpu_power = 0;
7256
89c4710e
SS
7257 /*
7258 * For perf policy, if the groups in child domain share resources
7259 * (for example cores sharing some portions of the cache hierarchy
7260 * or SMT), then set this domain groups cpu_power such that each group
7261 * can handle only one task, when there are other idle groups in the
7262 * same sched domain.
7263 */
7264 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7265 (child->flags &
7266 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7267 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7268 return;
7269 }
7270
89c4710e
SS
7271 /*
7272 * add cpu_power of each child group to this groups cpu_power
7273 */
7274 group = child->groups;
7275 do {
5517d86b 7276 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7277 group = group->next;
7278 } while (group != child->groups);
7279}
7280
7c16ec58
MT
7281/*
7282 * Initializers for schedule domains
7283 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7284 */
7285
a5d8c348
IM
7286#ifdef CONFIG_SCHED_DEBUG
7287# define SD_INIT_NAME(sd, type) sd->name = #type
7288#else
7289# define SD_INIT_NAME(sd, type) do { } while (0)
7290#endif
7291
7c16ec58 7292#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7293
7c16ec58
MT
7294#define SD_INIT_FUNC(type) \
7295static noinline void sd_init_##type(struct sched_domain *sd) \
7296{ \
7297 memset(sd, 0, sizeof(*sd)); \
7298 *sd = SD_##type##_INIT; \
1d3504fc 7299 sd->level = SD_LV_##type; \
a5d8c348 7300 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7301}
7302
7303SD_INIT_FUNC(CPU)
7304#ifdef CONFIG_NUMA
7305 SD_INIT_FUNC(ALLNODES)
7306 SD_INIT_FUNC(NODE)
7307#endif
7308#ifdef CONFIG_SCHED_SMT
7309 SD_INIT_FUNC(SIBLING)
7310#endif
7311#ifdef CONFIG_SCHED_MC
7312 SD_INIT_FUNC(MC)
7313#endif
7314
7315/*
7316 * To minimize stack usage kmalloc room for cpumasks and share the
7317 * space as the usage in build_sched_domains() dictates. Used only
7318 * if the amount of space is significant.
7319 */
7320struct allmasks {
7321 cpumask_t tmpmask; /* make this one first */
7322 union {
7323 cpumask_t nodemask;
7324 cpumask_t this_sibling_map;
7325 cpumask_t this_core_map;
7326 };
7327 cpumask_t send_covered;
7328
7329#ifdef CONFIG_NUMA
7330 cpumask_t domainspan;
7331 cpumask_t covered;
7332 cpumask_t notcovered;
7333#endif
7334};
7335
7336#if NR_CPUS > 128
7337#define SCHED_CPUMASK_ALLOC 1
7338#define SCHED_CPUMASK_FREE(v) kfree(v)
7339#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7340#else
7341#define SCHED_CPUMASK_ALLOC 0
7342#define SCHED_CPUMASK_FREE(v)
7343#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7344#endif
7345
7346#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7347 ((unsigned long)(a) + offsetof(struct allmasks, v))
7348
1d3504fc
HS
7349static int default_relax_domain_level = -1;
7350
7351static int __init setup_relax_domain_level(char *str)
7352{
30e0e178
LZ
7353 unsigned long val;
7354
7355 val = simple_strtoul(str, NULL, 0);
7356 if (val < SD_LV_MAX)
7357 default_relax_domain_level = val;
7358
1d3504fc
HS
7359 return 1;
7360}
7361__setup("relax_domain_level=", setup_relax_domain_level);
7362
7363static void set_domain_attribute(struct sched_domain *sd,
7364 struct sched_domain_attr *attr)
7365{
7366 int request;
7367
7368 if (!attr || attr->relax_domain_level < 0) {
7369 if (default_relax_domain_level < 0)
7370 return;
7371 else
7372 request = default_relax_domain_level;
7373 } else
7374 request = attr->relax_domain_level;
7375 if (request < sd->level) {
7376 /* turn off idle balance on this domain */
7377 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7378 } else {
7379 /* turn on idle balance on this domain */
7380 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7381 }
7382}
7383
1da177e4 7384/*
1a20ff27
DG
7385 * Build sched domains for a given set of cpus and attach the sched domains
7386 * to the individual cpus
1da177e4 7387 */
1d3504fc
HS
7388static int __build_sched_domains(const cpumask_t *cpu_map,
7389 struct sched_domain_attr *attr)
1da177e4
LT
7390{
7391 int i;
57d885fe 7392 struct root_domain *rd;
7c16ec58
MT
7393 SCHED_CPUMASK_DECLARE(allmasks);
7394 cpumask_t *tmpmask;
d1b55138
JH
7395#ifdef CONFIG_NUMA
7396 struct sched_group **sched_group_nodes = NULL;
6711cab4 7397 int sd_allnodes = 0;
d1b55138
JH
7398
7399 /*
7400 * Allocate the per-node list of sched groups
7401 */
076ac2af 7402 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7403 GFP_KERNEL);
d1b55138
JH
7404 if (!sched_group_nodes) {
7405 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7406 return -ENOMEM;
d1b55138 7407 }
d1b55138 7408#endif
1da177e4 7409
dc938520 7410 rd = alloc_rootdomain();
57d885fe
GH
7411 if (!rd) {
7412 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7413#ifdef CONFIG_NUMA
7414 kfree(sched_group_nodes);
7415#endif
57d885fe
GH
7416 return -ENOMEM;
7417 }
7418
7c16ec58
MT
7419#if SCHED_CPUMASK_ALLOC
7420 /* get space for all scratch cpumask variables */
7421 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7422 if (!allmasks) {
7423 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7424 kfree(rd);
7425#ifdef CONFIG_NUMA
7426 kfree(sched_group_nodes);
7427#endif
7428 return -ENOMEM;
7429 }
7430#endif
7431 tmpmask = (cpumask_t *)allmasks;
7432
7433
7434#ifdef CONFIG_NUMA
7435 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7436#endif
7437
1da177e4 7438 /*
1a20ff27 7439 * Set up domains for cpus specified by the cpu_map.
1da177e4 7440 */
363ab6f1 7441 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7442 struct sched_domain *sd = NULL, *p;
7c16ec58 7443 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7444
7c16ec58
MT
7445 *nodemask = node_to_cpumask(cpu_to_node(i));
7446 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7447
7448#ifdef CONFIG_NUMA
dd41f596 7449 if (cpus_weight(*cpu_map) >
7c16ec58 7450 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7451 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7452 SD_INIT(sd, ALLNODES);
1d3504fc 7453 set_domain_attribute(sd, attr);
9c1cfda2 7454 sd->span = *cpu_map;
7c16ec58 7455 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7456 p = sd;
6711cab4 7457 sd_allnodes = 1;
9c1cfda2
JH
7458 } else
7459 p = NULL;
7460
1da177e4 7461 sd = &per_cpu(node_domains, i);
7c16ec58 7462 SD_INIT(sd, NODE);
1d3504fc 7463 set_domain_attribute(sd, attr);
4bdbaad3 7464 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7465 sd->parent = p;
1a848870
SS
7466 if (p)
7467 p->child = sd;
9c1cfda2 7468 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7469#endif
7470
7471 p = sd;
7472 sd = &per_cpu(phys_domains, i);
7c16ec58 7473 SD_INIT(sd, CPU);
1d3504fc 7474 set_domain_attribute(sd, attr);
7c16ec58 7475 sd->span = *nodemask;
1da177e4 7476 sd->parent = p;
1a848870
SS
7477 if (p)
7478 p->child = sd;
7c16ec58 7479 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7480
1e9f28fa
SS
7481#ifdef CONFIG_SCHED_MC
7482 p = sd;
7483 sd = &per_cpu(core_domains, i);
7c16ec58 7484 SD_INIT(sd, MC);
1d3504fc 7485 set_domain_attribute(sd, attr);
1e9f28fa
SS
7486 sd->span = cpu_coregroup_map(i);
7487 cpus_and(sd->span, sd->span, *cpu_map);
7488 sd->parent = p;
1a848870 7489 p->child = sd;
7c16ec58 7490 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7491#endif
7492
1da177e4
LT
7493#ifdef CONFIG_SCHED_SMT
7494 p = sd;
7495 sd = &per_cpu(cpu_domains, i);
7c16ec58 7496 SD_INIT(sd, SIBLING);
1d3504fc 7497 set_domain_attribute(sd, attr);
d5a7430d 7498 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7499 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7500 sd->parent = p;
1a848870 7501 p->child = sd;
7c16ec58 7502 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7503#endif
7504 }
7505
7506#ifdef CONFIG_SCHED_SMT
7507 /* Set up CPU (sibling) groups */
363ab6f1 7508 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7509 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7510 SCHED_CPUMASK_VAR(send_covered, allmasks);
7511
7512 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7513 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7514 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7515 continue;
7516
dd41f596 7517 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7518 &cpu_to_cpu_group,
7519 send_covered, tmpmask);
1da177e4
LT
7520 }
7521#endif
7522
1e9f28fa
SS
7523#ifdef CONFIG_SCHED_MC
7524 /* Set up multi-core groups */
363ab6f1 7525 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7526 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7527 SCHED_CPUMASK_VAR(send_covered, allmasks);
7528
7529 *this_core_map = cpu_coregroup_map(i);
7530 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7531 if (i != first_cpu(*this_core_map))
1e9f28fa 7532 continue;
7c16ec58 7533
dd41f596 7534 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7535 &cpu_to_core_group,
7536 send_covered, tmpmask);
1e9f28fa
SS
7537 }
7538#endif
7539
1da177e4 7540 /* Set up physical groups */
076ac2af 7541 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7542 SCHED_CPUMASK_VAR(nodemask, allmasks);
7543 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7544
7c16ec58
MT
7545 *nodemask = node_to_cpumask(i);
7546 cpus_and(*nodemask, *nodemask, *cpu_map);
7547 if (cpus_empty(*nodemask))
1da177e4
LT
7548 continue;
7549
7c16ec58
MT
7550 init_sched_build_groups(nodemask, cpu_map,
7551 &cpu_to_phys_group,
7552 send_covered, tmpmask);
1da177e4
LT
7553 }
7554
7555#ifdef CONFIG_NUMA
7556 /* Set up node groups */
7c16ec58
MT
7557 if (sd_allnodes) {
7558 SCHED_CPUMASK_VAR(send_covered, allmasks);
7559
7560 init_sched_build_groups(cpu_map, cpu_map,
7561 &cpu_to_allnodes_group,
7562 send_covered, tmpmask);
7563 }
9c1cfda2 7564
076ac2af 7565 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7566 /* Set up node groups */
7567 struct sched_group *sg, *prev;
7c16ec58
MT
7568 SCHED_CPUMASK_VAR(nodemask, allmasks);
7569 SCHED_CPUMASK_VAR(domainspan, allmasks);
7570 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7571 int j;
7572
7c16ec58
MT
7573 *nodemask = node_to_cpumask(i);
7574 cpus_clear(*covered);
7575
7576 cpus_and(*nodemask, *nodemask, *cpu_map);
7577 if (cpus_empty(*nodemask)) {
d1b55138 7578 sched_group_nodes[i] = NULL;
9c1cfda2 7579 continue;
d1b55138 7580 }
9c1cfda2 7581
4bdbaad3 7582 sched_domain_node_span(i, domainspan);
7c16ec58 7583 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7584
15f0b676 7585 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7586 if (!sg) {
7587 printk(KERN_WARNING "Can not alloc domain group for "
7588 "node %d\n", i);
7589 goto error;
7590 }
9c1cfda2 7591 sched_group_nodes[i] = sg;
363ab6f1 7592 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7593 struct sched_domain *sd;
9761eea8 7594
9c1cfda2
JH
7595 sd = &per_cpu(node_domains, j);
7596 sd->groups = sg;
9c1cfda2 7597 }
5517d86b 7598 sg->__cpu_power = 0;
7c16ec58 7599 sg->cpumask = *nodemask;
51888ca2 7600 sg->next = sg;
7c16ec58 7601 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7602 prev = sg;
7603
076ac2af 7604 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7605 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7606 int n = (i + j) % nr_node_ids;
c5f59f08 7607 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7608
7c16ec58
MT
7609 cpus_complement(*notcovered, *covered);
7610 cpus_and(*tmpmask, *notcovered, *cpu_map);
7611 cpus_and(*tmpmask, *tmpmask, *domainspan);
7612 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7613 break;
7614
7c16ec58
MT
7615 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7616 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7617 continue;
7618
15f0b676
SV
7619 sg = kmalloc_node(sizeof(struct sched_group),
7620 GFP_KERNEL, i);
9c1cfda2
JH
7621 if (!sg) {
7622 printk(KERN_WARNING
7623 "Can not alloc domain group for node %d\n", j);
51888ca2 7624 goto error;
9c1cfda2 7625 }
5517d86b 7626 sg->__cpu_power = 0;
7c16ec58 7627 sg->cpumask = *tmpmask;
51888ca2 7628 sg->next = prev->next;
7c16ec58 7629 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7630 prev->next = sg;
7631 prev = sg;
7632 }
9c1cfda2 7633 }
1da177e4
LT
7634#endif
7635
7636 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7637#ifdef CONFIG_SCHED_SMT
363ab6f1 7638 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7639 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7640
89c4710e 7641 init_sched_groups_power(i, sd);
5c45bf27 7642 }
1da177e4 7643#endif
1e9f28fa 7644#ifdef CONFIG_SCHED_MC
363ab6f1 7645 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7646 struct sched_domain *sd = &per_cpu(core_domains, i);
7647
89c4710e 7648 init_sched_groups_power(i, sd);
5c45bf27
SS
7649 }
7650#endif
1e9f28fa 7651
363ab6f1 7652 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7653 struct sched_domain *sd = &per_cpu(phys_domains, i);
7654
89c4710e 7655 init_sched_groups_power(i, sd);
1da177e4
LT
7656 }
7657
9c1cfda2 7658#ifdef CONFIG_NUMA
076ac2af 7659 for (i = 0; i < nr_node_ids; i++)
08069033 7660 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7661
6711cab4
SS
7662 if (sd_allnodes) {
7663 struct sched_group *sg;
f712c0c7 7664
7c16ec58
MT
7665 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7666 tmpmask);
f712c0c7
SS
7667 init_numa_sched_groups_power(sg);
7668 }
9c1cfda2
JH
7669#endif
7670
1da177e4 7671 /* Attach the domains */
363ab6f1 7672 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7673 struct sched_domain *sd;
7674#ifdef CONFIG_SCHED_SMT
7675 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7676#elif defined(CONFIG_SCHED_MC)
7677 sd = &per_cpu(core_domains, i);
1da177e4
LT
7678#else
7679 sd = &per_cpu(phys_domains, i);
7680#endif
57d885fe 7681 cpu_attach_domain(sd, rd, i);
1da177e4 7682 }
51888ca2 7683
7c16ec58 7684 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7685 return 0;
7686
a616058b 7687#ifdef CONFIG_NUMA
51888ca2 7688error:
7c16ec58
MT
7689 free_sched_groups(cpu_map, tmpmask);
7690 SCHED_CPUMASK_FREE((void *)allmasks);
ca3273f9 7691 kfree(rd);
51888ca2 7692 return -ENOMEM;
a616058b 7693#endif
1da177e4 7694}
029190c5 7695
1d3504fc
HS
7696static int build_sched_domains(const cpumask_t *cpu_map)
7697{
7698 return __build_sched_domains(cpu_map, NULL);
7699}
7700
029190c5
PJ
7701static cpumask_t *doms_cur; /* current sched domains */
7702static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7703static struct sched_domain_attr *dattr_cur;
7704 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7705
7706/*
7707 * Special case: If a kmalloc of a doms_cur partition (array of
7708 * cpumask_t) fails, then fallback to a single sched domain,
7709 * as determined by the single cpumask_t fallback_doms.
7710 */
7711static cpumask_t fallback_doms;
7712
22e52b07
HC
7713void __attribute__((weak)) arch_update_cpu_topology(void)
7714{
7715}
7716
1a20ff27 7717/*
41a2d6cf 7718 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7719 * For now this just excludes isolated cpus, but could be used to
7720 * exclude other special cases in the future.
1a20ff27 7721 */
51888ca2 7722static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7723{
7378547f
MM
7724 int err;
7725
22e52b07 7726 arch_update_cpu_topology();
029190c5
PJ
7727 ndoms_cur = 1;
7728 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7729 if (!doms_cur)
7730 doms_cur = &fallback_doms;
7731 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7732 dattr_cur = NULL;
7378547f 7733 err = build_sched_domains(doms_cur);
6382bc90 7734 register_sched_domain_sysctl();
7378547f
MM
7735
7736 return err;
1a20ff27
DG
7737}
7738
7c16ec58
MT
7739static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7740 cpumask_t *tmpmask)
1da177e4 7741{
7c16ec58 7742 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7743}
1da177e4 7744
1a20ff27
DG
7745/*
7746 * Detach sched domains from a group of cpus specified in cpu_map
7747 * These cpus will now be attached to the NULL domain
7748 */
858119e1 7749static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7750{
7c16ec58 7751 cpumask_t tmpmask;
1a20ff27
DG
7752 int i;
7753
6382bc90
MM
7754 unregister_sched_domain_sysctl();
7755
363ab6f1 7756 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7757 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7758 synchronize_sched();
7c16ec58 7759 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7760}
7761
1d3504fc
HS
7762/* handle null as "default" */
7763static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7764 struct sched_domain_attr *new, int idx_new)
7765{
7766 struct sched_domain_attr tmp;
7767
7768 /* fast path */
7769 if (!new && !cur)
7770 return 1;
7771
7772 tmp = SD_ATTR_INIT;
7773 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7774 new ? (new + idx_new) : &tmp,
7775 sizeof(struct sched_domain_attr));
7776}
7777
029190c5
PJ
7778/*
7779 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7780 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7781 * doms_new[] to the current sched domain partitioning, doms_cur[].
7782 * It destroys each deleted domain and builds each new domain.
7783 *
7784 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7785 * The masks don't intersect (don't overlap.) We should setup one
7786 * sched domain for each mask. CPUs not in any of the cpumasks will
7787 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7788 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7789 * it as it is.
7790 *
41a2d6cf
IM
7791 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7792 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7793 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7794 * ndoms_new == 1, and partition_sched_domains() will fallback to
7795 * the single partition 'fallback_doms', it also forces the domains
7796 * to be rebuilt.
029190c5 7797 *
700018e0
LZ
7798 * If doms_new == NULL it will be replaced with cpu_online_map.
7799 * ndoms_new == 0 is a special case for destroying existing domains,
7800 * and it will not create the default domain.
dfb512ec 7801 *
029190c5
PJ
7802 * Call with hotplug lock held
7803 */
1d3504fc
HS
7804void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7805 struct sched_domain_attr *dattr_new)
029190c5 7806{
dfb512ec 7807 int i, j, n;
029190c5 7808
712555ee 7809 mutex_lock(&sched_domains_mutex);
a1835615 7810
7378547f
MM
7811 /* always unregister in case we don't destroy any domains */
7812 unregister_sched_domain_sysctl();
7813
dfb512ec 7814 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7815
7816 /* Destroy deleted domains */
7817 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7818 for (j = 0; j < n; j++) {
1d3504fc
HS
7819 if (cpus_equal(doms_cur[i], doms_new[j])
7820 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7821 goto match1;
7822 }
7823 /* no match - a current sched domain not in new doms_new[] */
7824 detach_destroy_domains(doms_cur + i);
7825match1:
7826 ;
7827 }
7828
e761b772
MK
7829 if (doms_new == NULL) {
7830 ndoms_cur = 0;
e761b772
MK
7831 doms_new = &fallback_doms;
7832 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7833 dattr_new = NULL;
7834 }
7835
029190c5
PJ
7836 /* Build new domains */
7837 for (i = 0; i < ndoms_new; i++) {
7838 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7839 if (cpus_equal(doms_new[i], doms_cur[j])
7840 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7841 goto match2;
7842 }
7843 /* no match - add a new doms_new */
1d3504fc
HS
7844 __build_sched_domains(doms_new + i,
7845 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7846match2:
7847 ;
7848 }
7849
7850 /* Remember the new sched domains */
7851 if (doms_cur != &fallback_doms)
7852 kfree(doms_cur);
1d3504fc 7853 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7854 doms_cur = doms_new;
1d3504fc 7855 dattr_cur = dattr_new;
029190c5 7856 ndoms_cur = ndoms_new;
7378547f
MM
7857
7858 register_sched_domain_sysctl();
a1835615 7859
712555ee 7860 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7861}
7862
5c45bf27 7863#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7864int arch_reinit_sched_domains(void)
5c45bf27 7865{
95402b38 7866 get_online_cpus();
dfb512ec
MK
7867
7868 /* Destroy domains first to force the rebuild */
7869 partition_sched_domains(0, NULL, NULL);
7870
e761b772 7871 rebuild_sched_domains();
95402b38 7872 put_online_cpus();
dfb512ec 7873
e761b772 7874 return 0;
5c45bf27
SS
7875}
7876
7877static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7878{
7879 int ret;
7880
7881 if (buf[0] != '0' && buf[0] != '1')
7882 return -EINVAL;
7883
7884 if (smt)
7885 sched_smt_power_savings = (buf[0] == '1');
7886 else
7887 sched_mc_power_savings = (buf[0] == '1');
7888
7889 ret = arch_reinit_sched_domains();
7890
7891 return ret ? ret : count;
7892}
7893
5c45bf27 7894#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7895static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7896 char *page)
5c45bf27
SS
7897{
7898 return sprintf(page, "%u\n", sched_mc_power_savings);
7899}
f718cd4a 7900static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7901 const char *buf, size_t count)
5c45bf27
SS
7902{
7903 return sched_power_savings_store(buf, count, 0);
7904}
f718cd4a
AK
7905static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7906 sched_mc_power_savings_show,
7907 sched_mc_power_savings_store);
5c45bf27
SS
7908#endif
7909
7910#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7911static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7912 char *page)
5c45bf27
SS
7913{
7914 return sprintf(page, "%u\n", sched_smt_power_savings);
7915}
f718cd4a 7916static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7917 const char *buf, size_t count)
5c45bf27
SS
7918{
7919 return sched_power_savings_store(buf, count, 1);
7920}
f718cd4a
AK
7921static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7922 sched_smt_power_savings_show,
6707de00
AB
7923 sched_smt_power_savings_store);
7924#endif
7925
7926int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7927{
7928 int err = 0;
7929
7930#ifdef CONFIG_SCHED_SMT
7931 if (smt_capable())
7932 err = sysfs_create_file(&cls->kset.kobj,
7933 &attr_sched_smt_power_savings.attr);
7934#endif
7935#ifdef CONFIG_SCHED_MC
7936 if (!err && mc_capable())
7937 err = sysfs_create_file(&cls->kset.kobj,
7938 &attr_sched_mc_power_savings.attr);
7939#endif
7940 return err;
7941}
6d6bc0ad 7942#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7943
e761b772 7944#ifndef CONFIG_CPUSETS
1da177e4 7945/*
e761b772
MK
7946 * Add online and remove offline CPUs from the scheduler domains.
7947 * When cpusets are enabled they take over this function.
1da177e4
LT
7948 */
7949static int update_sched_domains(struct notifier_block *nfb,
7950 unsigned long action, void *hcpu)
e761b772
MK
7951{
7952 switch (action) {
7953 case CPU_ONLINE:
7954 case CPU_ONLINE_FROZEN:
7955 case CPU_DEAD:
7956 case CPU_DEAD_FROZEN:
dfb512ec 7957 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7958 return NOTIFY_OK;
7959
7960 default:
7961 return NOTIFY_DONE;
7962 }
7963}
7964#endif
7965
7966static int update_runtime(struct notifier_block *nfb,
7967 unsigned long action, void *hcpu)
1da177e4 7968{
7def2be1
PZ
7969 int cpu = (int)(long)hcpu;
7970
1da177e4 7971 switch (action) {
1da177e4 7972 case CPU_DOWN_PREPARE:
8bb78442 7973 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7974 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7975 return NOTIFY_OK;
7976
1da177e4 7977 case CPU_DOWN_FAILED:
8bb78442 7978 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7979 case CPU_ONLINE:
8bb78442 7980 case CPU_ONLINE_FROZEN:
7def2be1 7981 enable_runtime(cpu_rq(cpu));
e761b772
MK
7982 return NOTIFY_OK;
7983
1da177e4
LT
7984 default:
7985 return NOTIFY_DONE;
7986 }
1da177e4 7987}
1da177e4
LT
7988
7989void __init sched_init_smp(void)
7990{
5c1e1767
NP
7991 cpumask_t non_isolated_cpus;
7992
434d53b0
MT
7993#if defined(CONFIG_NUMA)
7994 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7995 GFP_KERNEL);
7996 BUG_ON(sched_group_nodes_bycpu == NULL);
7997#endif
95402b38 7998 get_online_cpus();
712555ee 7999 mutex_lock(&sched_domains_mutex);
1a20ff27 8000 arch_init_sched_domains(&cpu_online_map);
e5e5673f 8001 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
8002 if (cpus_empty(non_isolated_cpus))
8003 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 8004 mutex_unlock(&sched_domains_mutex);
95402b38 8005 put_online_cpus();
e761b772
MK
8006
8007#ifndef CONFIG_CPUSETS
1da177e4
LT
8008 /* XXX: Theoretical race here - CPU may be hotplugged now */
8009 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8010#endif
8011
8012 /* RT runtime code needs to handle some hotplug events */
8013 hotcpu_notifier(update_runtime, 0);
8014
b328ca18 8015 init_hrtick();
5c1e1767
NP
8016
8017 /* Move init over to a non-isolated CPU */
7c16ec58 8018 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 8019 BUG();
19978ca6 8020 sched_init_granularity();
1da177e4
LT
8021}
8022#else
8023void __init sched_init_smp(void)
8024{
19978ca6 8025 sched_init_granularity();
1da177e4
LT
8026}
8027#endif /* CONFIG_SMP */
8028
8029int in_sched_functions(unsigned long addr)
8030{
1da177e4
LT
8031 return in_lock_functions(addr) ||
8032 (addr >= (unsigned long)__sched_text_start
8033 && addr < (unsigned long)__sched_text_end);
8034}
8035
a9957449 8036static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8037{
8038 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8039 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8040#ifdef CONFIG_FAIR_GROUP_SCHED
8041 cfs_rq->rq = rq;
8042#endif
67e9fb2a 8043 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8044}
8045
fa85ae24
PZ
8046static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8047{
8048 struct rt_prio_array *array;
8049 int i;
8050
8051 array = &rt_rq->active;
8052 for (i = 0; i < MAX_RT_PRIO; i++) {
8053 INIT_LIST_HEAD(array->queue + i);
8054 __clear_bit(i, array->bitmap);
8055 }
8056 /* delimiter for bitsearch: */
8057 __set_bit(MAX_RT_PRIO, array->bitmap);
8058
052f1dc7 8059#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8060 rt_rq->highest_prio = MAX_RT_PRIO;
8061#endif
fa85ae24
PZ
8062#ifdef CONFIG_SMP
8063 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8064 rt_rq->overloaded = 0;
8065#endif
8066
8067 rt_rq->rt_time = 0;
8068 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8069 rt_rq->rt_runtime = 0;
8070 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8071
052f1dc7 8072#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8073 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8074 rt_rq->rq = rq;
8075#endif
fa85ae24
PZ
8076}
8077
6f505b16 8078#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8079static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8080 struct sched_entity *se, int cpu, int add,
8081 struct sched_entity *parent)
6f505b16 8082{
ec7dc8ac 8083 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8084 tg->cfs_rq[cpu] = cfs_rq;
8085 init_cfs_rq(cfs_rq, rq);
8086 cfs_rq->tg = tg;
8087 if (add)
8088 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8089
8090 tg->se[cpu] = se;
354d60c2
DG
8091 /* se could be NULL for init_task_group */
8092 if (!se)
8093 return;
8094
ec7dc8ac
DG
8095 if (!parent)
8096 se->cfs_rq = &rq->cfs;
8097 else
8098 se->cfs_rq = parent->my_q;
8099
6f505b16
PZ
8100 se->my_q = cfs_rq;
8101 se->load.weight = tg->shares;
e05510d0 8102 se->load.inv_weight = 0;
ec7dc8ac 8103 se->parent = parent;
6f505b16 8104}
052f1dc7 8105#endif
6f505b16 8106
052f1dc7 8107#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8108static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8109 struct sched_rt_entity *rt_se, int cpu, int add,
8110 struct sched_rt_entity *parent)
6f505b16 8111{
ec7dc8ac
DG
8112 struct rq *rq = cpu_rq(cpu);
8113
6f505b16
PZ
8114 tg->rt_rq[cpu] = rt_rq;
8115 init_rt_rq(rt_rq, rq);
8116 rt_rq->tg = tg;
8117 rt_rq->rt_se = rt_se;
ac086bc2 8118 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8119 if (add)
8120 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8121
8122 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8123 if (!rt_se)
8124 return;
8125
ec7dc8ac
DG
8126 if (!parent)
8127 rt_se->rt_rq = &rq->rt;
8128 else
8129 rt_se->rt_rq = parent->my_q;
8130
6f505b16 8131 rt_se->my_q = rt_rq;
ec7dc8ac 8132 rt_se->parent = parent;
6f505b16
PZ
8133 INIT_LIST_HEAD(&rt_se->run_list);
8134}
8135#endif
8136
1da177e4
LT
8137void __init sched_init(void)
8138{
dd41f596 8139 int i, j;
434d53b0
MT
8140 unsigned long alloc_size = 0, ptr;
8141
8142#ifdef CONFIG_FAIR_GROUP_SCHED
8143 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8144#endif
8145#ifdef CONFIG_RT_GROUP_SCHED
8146 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8147#endif
8148#ifdef CONFIG_USER_SCHED
8149 alloc_size *= 2;
434d53b0
MT
8150#endif
8151 /*
8152 * As sched_init() is called before page_alloc is setup,
8153 * we use alloc_bootmem().
8154 */
8155 if (alloc_size) {
5a9d3225 8156 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8157
8158#ifdef CONFIG_FAIR_GROUP_SCHED
8159 init_task_group.se = (struct sched_entity **)ptr;
8160 ptr += nr_cpu_ids * sizeof(void **);
8161
8162 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8163 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8164
8165#ifdef CONFIG_USER_SCHED
8166 root_task_group.se = (struct sched_entity **)ptr;
8167 ptr += nr_cpu_ids * sizeof(void **);
8168
8169 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8170 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8171#endif /* CONFIG_USER_SCHED */
8172#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8173#ifdef CONFIG_RT_GROUP_SCHED
8174 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8175 ptr += nr_cpu_ids * sizeof(void **);
8176
8177 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8178 ptr += nr_cpu_ids * sizeof(void **);
8179
8180#ifdef CONFIG_USER_SCHED
8181 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8182 ptr += nr_cpu_ids * sizeof(void **);
8183
8184 root_task_group.rt_rq = (struct rt_rq **)ptr;
8185 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8186#endif /* CONFIG_USER_SCHED */
8187#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8188 }
dd41f596 8189
57d885fe
GH
8190#ifdef CONFIG_SMP
8191 init_defrootdomain();
8192#endif
8193
d0b27fa7
PZ
8194 init_rt_bandwidth(&def_rt_bandwidth,
8195 global_rt_period(), global_rt_runtime());
8196
8197#ifdef CONFIG_RT_GROUP_SCHED
8198 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8199 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8200#ifdef CONFIG_USER_SCHED
8201 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8202 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8203#endif /* CONFIG_USER_SCHED */
8204#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8205
052f1dc7 8206#ifdef CONFIG_GROUP_SCHED
6f505b16 8207 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8208 INIT_LIST_HEAD(&init_task_group.children);
8209
8210#ifdef CONFIG_USER_SCHED
8211 INIT_LIST_HEAD(&root_task_group.children);
8212 init_task_group.parent = &root_task_group;
8213 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8214#endif /* CONFIG_USER_SCHED */
8215#endif /* CONFIG_GROUP_SCHED */
6f505b16 8216
0a945022 8217 for_each_possible_cpu(i) {
70b97a7f 8218 struct rq *rq;
1da177e4
LT
8219
8220 rq = cpu_rq(i);
8221 spin_lock_init(&rq->lock);
7897986b 8222 rq->nr_running = 0;
dd41f596 8223 init_cfs_rq(&rq->cfs, rq);
6f505b16 8224 init_rt_rq(&rq->rt, rq);
dd41f596 8225#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8226 init_task_group.shares = init_task_group_load;
6f505b16 8227 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8228#ifdef CONFIG_CGROUP_SCHED
8229 /*
8230 * How much cpu bandwidth does init_task_group get?
8231 *
8232 * In case of task-groups formed thr' the cgroup filesystem, it
8233 * gets 100% of the cpu resources in the system. This overall
8234 * system cpu resource is divided among the tasks of
8235 * init_task_group and its child task-groups in a fair manner,
8236 * based on each entity's (task or task-group's) weight
8237 * (se->load.weight).
8238 *
8239 * In other words, if init_task_group has 10 tasks of weight
8240 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8241 * then A0's share of the cpu resource is:
8242 *
8243 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8244 *
8245 * We achieve this by letting init_task_group's tasks sit
8246 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8247 */
ec7dc8ac 8248 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8249#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8250 root_task_group.shares = NICE_0_LOAD;
8251 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8252 /*
8253 * In case of task-groups formed thr' the user id of tasks,
8254 * init_task_group represents tasks belonging to root user.
8255 * Hence it forms a sibling of all subsequent groups formed.
8256 * In this case, init_task_group gets only a fraction of overall
8257 * system cpu resource, based on the weight assigned to root
8258 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8259 * by letting tasks of init_task_group sit in a separate cfs_rq
8260 * (init_cfs_rq) and having one entity represent this group of
8261 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8262 */
ec7dc8ac 8263 init_tg_cfs_entry(&init_task_group,
6f505b16 8264 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8265 &per_cpu(init_sched_entity, i), i, 1,
8266 root_task_group.se[i]);
6f505b16 8267
052f1dc7 8268#endif
354d60c2
DG
8269#endif /* CONFIG_FAIR_GROUP_SCHED */
8270
8271 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8272#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8273 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8274#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8275 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8276#elif defined CONFIG_USER_SCHED
eff766a6 8277 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8278 init_tg_rt_entry(&init_task_group,
6f505b16 8279 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8280 &per_cpu(init_sched_rt_entity, i), i, 1,
8281 root_task_group.rt_se[i]);
354d60c2 8282#endif
dd41f596 8283#endif
1da177e4 8284
dd41f596
IM
8285 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8286 rq->cpu_load[j] = 0;
1da177e4 8287#ifdef CONFIG_SMP
41c7ce9a 8288 rq->sd = NULL;
57d885fe 8289 rq->rd = NULL;
1da177e4 8290 rq->active_balance = 0;
dd41f596 8291 rq->next_balance = jiffies;
1da177e4 8292 rq->push_cpu = 0;
0a2966b4 8293 rq->cpu = i;
1f11eb6a 8294 rq->online = 0;
1da177e4
LT
8295 rq->migration_thread = NULL;
8296 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8297 rq_attach_root(rq, &def_root_domain);
1da177e4 8298#endif
8f4d37ec 8299 init_rq_hrtick(rq);
1da177e4 8300 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8301 }
8302
2dd73a4f 8303 set_load_weight(&init_task);
b50f60ce 8304
e107be36
AK
8305#ifdef CONFIG_PREEMPT_NOTIFIERS
8306 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8307#endif
8308
c9819f45 8309#ifdef CONFIG_SMP
962cf36c 8310 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8311#endif
8312
b50f60ce
HC
8313#ifdef CONFIG_RT_MUTEXES
8314 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8315#endif
8316
1da177e4
LT
8317 /*
8318 * The boot idle thread does lazy MMU switching as well:
8319 */
8320 atomic_inc(&init_mm.mm_count);
8321 enter_lazy_tlb(&init_mm, current);
8322
8323 /*
8324 * Make us the idle thread. Technically, schedule() should not be
8325 * called from this thread, however somewhere below it might be,
8326 * but because we are the idle thread, we just pick up running again
8327 * when this runqueue becomes "idle".
8328 */
8329 init_idle(current, smp_processor_id());
dd41f596
IM
8330 /*
8331 * During early bootup we pretend to be a normal task:
8332 */
8333 current->sched_class = &fair_sched_class;
6892b75e
IM
8334
8335 scheduler_running = 1;
1da177e4
LT
8336}
8337
8338#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8339void __might_sleep(char *file, int line)
8340{
48f24c4d 8341#ifdef in_atomic
1da177e4
LT
8342 static unsigned long prev_jiffy; /* ratelimiting */
8343
aef745fc
IM
8344 if ((!in_atomic() && !irqs_disabled()) ||
8345 system_state != SYSTEM_RUNNING || oops_in_progress)
8346 return;
8347 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8348 return;
8349 prev_jiffy = jiffies;
8350
8351 printk(KERN_ERR
8352 "BUG: sleeping function called from invalid context at %s:%d\n",
8353 file, line);
8354 printk(KERN_ERR
8355 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8356 in_atomic(), irqs_disabled(),
8357 current->pid, current->comm);
8358
8359 debug_show_held_locks(current);
8360 if (irqs_disabled())
8361 print_irqtrace_events(current);
8362 dump_stack();
1da177e4
LT
8363#endif
8364}
8365EXPORT_SYMBOL(__might_sleep);
8366#endif
8367
8368#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8369static void normalize_task(struct rq *rq, struct task_struct *p)
8370{
8371 int on_rq;
3e51f33f 8372
3a5e4dc1
AK
8373 update_rq_clock(rq);
8374 on_rq = p->se.on_rq;
8375 if (on_rq)
8376 deactivate_task(rq, p, 0);
8377 __setscheduler(rq, p, SCHED_NORMAL, 0);
8378 if (on_rq) {
8379 activate_task(rq, p, 0);
8380 resched_task(rq->curr);
8381 }
8382}
8383
1da177e4
LT
8384void normalize_rt_tasks(void)
8385{
a0f98a1c 8386 struct task_struct *g, *p;
1da177e4 8387 unsigned long flags;
70b97a7f 8388 struct rq *rq;
1da177e4 8389
4cf5d77a 8390 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8391 do_each_thread(g, p) {
178be793
IM
8392 /*
8393 * Only normalize user tasks:
8394 */
8395 if (!p->mm)
8396 continue;
8397
6cfb0d5d 8398 p->se.exec_start = 0;
6cfb0d5d 8399#ifdef CONFIG_SCHEDSTATS
dd41f596 8400 p->se.wait_start = 0;
dd41f596 8401 p->se.sleep_start = 0;
dd41f596 8402 p->se.block_start = 0;
6cfb0d5d 8403#endif
dd41f596
IM
8404
8405 if (!rt_task(p)) {
8406 /*
8407 * Renice negative nice level userspace
8408 * tasks back to 0:
8409 */
8410 if (TASK_NICE(p) < 0 && p->mm)
8411 set_user_nice(p, 0);
1da177e4 8412 continue;
dd41f596 8413 }
1da177e4 8414
4cf5d77a 8415 spin_lock(&p->pi_lock);
b29739f9 8416 rq = __task_rq_lock(p);
1da177e4 8417
178be793 8418 normalize_task(rq, p);
3a5e4dc1 8419
b29739f9 8420 __task_rq_unlock(rq);
4cf5d77a 8421 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8422 } while_each_thread(g, p);
8423
4cf5d77a 8424 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8425}
8426
8427#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8428
8429#ifdef CONFIG_IA64
8430/*
8431 * These functions are only useful for the IA64 MCA handling.
8432 *
8433 * They can only be called when the whole system has been
8434 * stopped - every CPU needs to be quiescent, and no scheduling
8435 * activity can take place. Using them for anything else would
8436 * be a serious bug, and as a result, they aren't even visible
8437 * under any other configuration.
8438 */
8439
8440/**
8441 * curr_task - return the current task for a given cpu.
8442 * @cpu: the processor in question.
8443 *
8444 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8445 */
36c8b586 8446struct task_struct *curr_task(int cpu)
1df5c10a
LT
8447{
8448 return cpu_curr(cpu);
8449}
8450
8451/**
8452 * set_curr_task - set the current task for a given cpu.
8453 * @cpu: the processor in question.
8454 * @p: the task pointer to set.
8455 *
8456 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8457 * are serviced on a separate stack. It allows the architecture to switch the
8458 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8459 * must be called with all CPU's synchronized, and interrupts disabled, the
8460 * and caller must save the original value of the current task (see
8461 * curr_task() above) and restore that value before reenabling interrupts and
8462 * re-starting the system.
8463 *
8464 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8465 */
36c8b586 8466void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8467{
8468 cpu_curr(cpu) = p;
8469}
8470
8471#endif
29f59db3 8472
bccbe08a
PZ
8473#ifdef CONFIG_FAIR_GROUP_SCHED
8474static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8475{
8476 int i;
8477
8478 for_each_possible_cpu(i) {
8479 if (tg->cfs_rq)
8480 kfree(tg->cfs_rq[i]);
8481 if (tg->se)
8482 kfree(tg->se[i]);
6f505b16
PZ
8483 }
8484
8485 kfree(tg->cfs_rq);
8486 kfree(tg->se);
6f505b16
PZ
8487}
8488
ec7dc8ac
DG
8489static
8490int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8491{
29f59db3 8492 struct cfs_rq *cfs_rq;
ec7dc8ac 8493 struct sched_entity *se, *parent_se;
9b5b7751 8494 struct rq *rq;
29f59db3
SV
8495 int i;
8496
434d53b0 8497 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8498 if (!tg->cfs_rq)
8499 goto err;
434d53b0 8500 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8501 if (!tg->se)
8502 goto err;
052f1dc7
PZ
8503
8504 tg->shares = NICE_0_LOAD;
29f59db3
SV
8505
8506 for_each_possible_cpu(i) {
9b5b7751 8507 rq = cpu_rq(i);
29f59db3 8508
6f505b16
PZ
8509 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8510 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8511 if (!cfs_rq)
8512 goto err;
8513
6f505b16
PZ
8514 se = kmalloc_node(sizeof(struct sched_entity),
8515 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8516 if (!se)
8517 goto err;
8518
ec7dc8ac
DG
8519 parent_se = parent ? parent->se[i] : NULL;
8520 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8521 }
8522
8523 return 1;
8524
8525 err:
8526 return 0;
8527}
8528
8529static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8530{
8531 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8532 &cpu_rq(cpu)->leaf_cfs_rq_list);
8533}
8534
8535static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8536{
8537 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8538}
6d6bc0ad 8539#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8540static inline void free_fair_sched_group(struct task_group *tg)
8541{
8542}
8543
ec7dc8ac
DG
8544static inline
8545int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8546{
8547 return 1;
8548}
8549
8550static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8551{
8552}
8553
8554static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8555{
8556}
6d6bc0ad 8557#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8558
8559#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8560static void free_rt_sched_group(struct task_group *tg)
8561{
8562 int i;
8563
d0b27fa7
PZ
8564 destroy_rt_bandwidth(&tg->rt_bandwidth);
8565
bccbe08a
PZ
8566 for_each_possible_cpu(i) {
8567 if (tg->rt_rq)
8568 kfree(tg->rt_rq[i]);
8569 if (tg->rt_se)
8570 kfree(tg->rt_se[i]);
8571 }
8572
8573 kfree(tg->rt_rq);
8574 kfree(tg->rt_se);
8575}
8576
ec7dc8ac
DG
8577static
8578int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8579{
8580 struct rt_rq *rt_rq;
ec7dc8ac 8581 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8582 struct rq *rq;
8583 int i;
8584
434d53b0 8585 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8586 if (!tg->rt_rq)
8587 goto err;
434d53b0 8588 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8589 if (!tg->rt_se)
8590 goto err;
8591
d0b27fa7
PZ
8592 init_rt_bandwidth(&tg->rt_bandwidth,
8593 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8594
8595 for_each_possible_cpu(i) {
8596 rq = cpu_rq(i);
8597
6f505b16
PZ
8598 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8599 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8600 if (!rt_rq)
8601 goto err;
29f59db3 8602
6f505b16
PZ
8603 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8604 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8605 if (!rt_se)
8606 goto err;
29f59db3 8607
ec7dc8ac
DG
8608 parent_se = parent ? parent->rt_se[i] : NULL;
8609 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8610 }
8611
bccbe08a
PZ
8612 return 1;
8613
8614 err:
8615 return 0;
8616}
8617
8618static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8619{
8620 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8621 &cpu_rq(cpu)->leaf_rt_rq_list);
8622}
8623
8624static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8625{
8626 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8627}
6d6bc0ad 8628#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8629static inline void free_rt_sched_group(struct task_group *tg)
8630{
8631}
8632
ec7dc8ac
DG
8633static inline
8634int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8635{
8636 return 1;
8637}
8638
8639static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8640{
8641}
8642
8643static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8644{
8645}
6d6bc0ad 8646#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8647
d0b27fa7 8648#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8649static void free_sched_group(struct task_group *tg)
8650{
8651 free_fair_sched_group(tg);
8652 free_rt_sched_group(tg);
8653 kfree(tg);
8654}
8655
8656/* allocate runqueue etc for a new task group */
ec7dc8ac 8657struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8658{
8659 struct task_group *tg;
8660 unsigned long flags;
8661 int i;
8662
8663 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8664 if (!tg)
8665 return ERR_PTR(-ENOMEM);
8666
ec7dc8ac 8667 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8668 goto err;
8669
ec7dc8ac 8670 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8671 goto err;
8672
8ed36996 8673 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8674 for_each_possible_cpu(i) {
bccbe08a
PZ
8675 register_fair_sched_group(tg, i);
8676 register_rt_sched_group(tg, i);
9b5b7751 8677 }
6f505b16 8678 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8679
8680 WARN_ON(!parent); /* root should already exist */
8681
8682 tg->parent = parent;
f473aa5e 8683 INIT_LIST_HEAD(&tg->children);
09f2724a 8684 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8685 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8686
9b5b7751 8687 return tg;
29f59db3
SV
8688
8689err:
6f505b16 8690 free_sched_group(tg);
29f59db3
SV
8691 return ERR_PTR(-ENOMEM);
8692}
8693
9b5b7751 8694/* rcu callback to free various structures associated with a task group */
6f505b16 8695static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8696{
29f59db3 8697 /* now it should be safe to free those cfs_rqs */
6f505b16 8698 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8699}
8700
9b5b7751 8701/* Destroy runqueue etc associated with a task group */
4cf86d77 8702void sched_destroy_group(struct task_group *tg)
29f59db3 8703{
8ed36996 8704 unsigned long flags;
9b5b7751 8705 int i;
29f59db3 8706
8ed36996 8707 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8708 for_each_possible_cpu(i) {
bccbe08a
PZ
8709 unregister_fair_sched_group(tg, i);
8710 unregister_rt_sched_group(tg, i);
9b5b7751 8711 }
6f505b16 8712 list_del_rcu(&tg->list);
f473aa5e 8713 list_del_rcu(&tg->siblings);
8ed36996 8714 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8715
9b5b7751 8716 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8717 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8718}
8719
9b5b7751 8720/* change task's runqueue when it moves between groups.
3a252015
IM
8721 * The caller of this function should have put the task in its new group
8722 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8723 * reflect its new group.
9b5b7751
SV
8724 */
8725void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8726{
8727 int on_rq, running;
8728 unsigned long flags;
8729 struct rq *rq;
8730
8731 rq = task_rq_lock(tsk, &flags);
8732
29f59db3
SV
8733 update_rq_clock(rq);
8734
051a1d1a 8735 running = task_current(rq, tsk);
29f59db3
SV
8736 on_rq = tsk->se.on_rq;
8737
0e1f3483 8738 if (on_rq)
29f59db3 8739 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8740 if (unlikely(running))
8741 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8742
6f505b16 8743 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8744
810b3817
PZ
8745#ifdef CONFIG_FAIR_GROUP_SCHED
8746 if (tsk->sched_class->moved_group)
8747 tsk->sched_class->moved_group(tsk);
8748#endif
8749
0e1f3483
HS
8750 if (unlikely(running))
8751 tsk->sched_class->set_curr_task(rq);
8752 if (on_rq)
7074badb 8753 enqueue_task(rq, tsk, 0);
29f59db3 8754
29f59db3
SV
8755 task_rq_unlock(rq, &flags);
8756}
6d6bc0ad 8757#endif /* CONFIG_GROUP_SCHED */
29f59db3 8758
052f1dc7 8759#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8760static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8761{
8762 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8763 int on_rq;
8764
29f59db3 8765 on_rq = se->on_rq;
62fb1851 8766 if (on_rq)
29f59db3
SV
8767 dequeue_entity(cfs_rq, se, 0);
8768
8769 se->load.weight = shares;
e05510d0 8770 se->load.inv_weight = 0;
29f59db3 8771
62fb1851 8772 if (on_rq)
29f59db3 8773 enqueue_entity(cfs_rq, se, 0);
c09595f6 8774}
62fb1851 8775
c09595f6
PZ
8776static void set_se_shares(struct sched_entity *se, unsigned long shares)
8777{
8778 struct cfs_rq *cfs_rq = se->cfs_rq;
8779 struct rq *rq = cfs_rq->rq;
8780 unsigned long flags;
8781
8782 spin_lock_irqsave(&rq->lock, flags);
8783 __set_se_shares(se, shares);
8784 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8785}
8786
8ed36996
PZ
8787static DEFINE_MUTEX(shares_mutex);
8788
4cf86d77 8789int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8790{
8791 int i;
8ed36996 8792 unsigned long flags;
c61935fd 8793
ec7dc8ac
DG
8794 /*
8795 * We can't change the weight of the root cgroup.
8796 */
8797 if (!tg->se[0])
8798 return -EINVAL;
8799
18d95a28
PZ
8800 if (shares < MIN_SHARES)
8801 shares = MIN_SHARES;
cb4ad1ff
MX
8802 else if (shares > MAX_SHARES)
8803 shares = MAX_SHARES;
62fb1851 8804
8ed36996 8805 mutex_lock(&shares_mutex);
9b5b7751 8806 if (tg->shares == shares)
5cb350ba 8807 goto done;
29f59db3 8808
8ed36996 8809 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8810 for_each_possible_cpu(i)
8811 unregister_fair_sched_group(tg, i);
f473aa5e 8812 list_del_rcu(&tg->siblings);
8ed36996 8813 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8814
8815 /* wait for any ongoing reference to this group to finish */
8816 synchronize_sched();
8817
8818 /*
8819 * Now we are free to modify the group's share on each cpu
8820 * w/o tripping rebalance_share or load_balance_fair.
8821 */
9b5b7751 8822 tg->shares = shares;
c09595f6
PZ
8823 for_each_possible_cpu(i) {
8824 /*
8825 * force a rebalance
8826 */
8827 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8828 set_se_shares(tg->se[i], shares);
c09595f6 8829 }
29f59db3 8830
6b2d7700
SV
8831 /*
8832 * Enable load balance activity on this group, by inserting it back on
8833 * each cpu's rq->leaf_cfs_rq_list.
8834 */
8ed36996 8835 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8836 for_each_possible_cpu(i)
8837 register_fair_sched_group(tg, i);
f473aa5e 8838 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8839 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8840done:
8ed36996 8841 mutex_unlock(&shares_mutex);
9b5b7751 8842 return 0;
29f59db3
SV
8843}
8844
5cb350ba
DG
8845unsigned long sched_group_shares(struct task_group *tg)
8846{
8847 return tg->shares;
8848}
052f1dc7 8849#endif
5cb350ba 8850
052f1dc7 8851#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8852/*
9f0c1e56 8853 * Ensure that the real time constraints are schedulable.
6f505b16 8854 */
9f0c1e56
PZ
8855static DEFINE_MUTEX(rt_constraints_mutex);
8856
8857static unsigned long to_ratio(u64 period, u64 runtime)
8858{
8859 if (runtime == RUNTIME_INF)
9a7e0b18 8860 return 1ULL << 20;
9f0c1e56 8861
9a7e0b18 8862 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8863}
8864
9a7e0b18
PZ
8865/* Must be called with tasklist_lock held */
8866static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8867{
9a7e0b18 8868 struct task_struct *g, *p;
b40b2e8e 8869
9a7e0b18
PZ
8870 do_each_thread(g, p) {
8871 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8872 return 1;
8873 } while_each_thread(g, p);
b40b2e8e 8874
9a7e0b18
PZ
8875 return 0;
8876}
b40b2e8e 8877
9a7e0b18
PZ
8878struct rt_schedulable_data {
8879 struct task_group *tg;
8880 u64 rt_period;
8881 u64 rt_runtime;
8882};
b40b2e8e 8883
9a7e0b18
PZ
8884static int tg_schedulable(struct task_group *tg, void *data)
8885{
8886 struct rt_schedulable_data *d = data;
8887 struct task_group *child;
8888 unsigned long total, sum = 0;
8889 u64 period, runtime;
b40b2e8e 8890
9a7e0b18
PZ
8891 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8892 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8893
9a7e0b18
PZ
8894 if (tg == d->tg) {
8895 period = d->rt_period;
8896 runtime = d->rt_runtime;
b40b2e8e 8897 }
b40b2e8e 8898
4653f803
PZ
8899 /*
8900 * Cannot have more runtime than the period.
8901 */
8902 if (runtime > period && runtime != RUNTIME_INF)
8903 return -EINVAL;
6f505b16 8904
4653f803
PZ
8905 /*
8906 * Ensure we don't starve existing RT tasks.
8907 */
9a7e0b18
PZ
8908 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8909 return -EBUSY;
6f505b16 8910
9a7e0b18 8911 total = to_ratio(period, runtime);
6f505b16 8912
4653f803
PZ
8913 /*
8914 * Nobody can have more than the global setting allows.
8915 */
8916 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8917 return -EINVAL;
6f505b16 8918
4653f803
PZ
8919 /*
8920 * The sum of our children's runtime should not exceed our own.
8921 */
9a7e0b18
PZ
8922 list_for_each_entry_rcu(child, &tg->children, siblings) {
8923 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8924 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8925
9a7e0b18
PZ
8926 if (child == d->tg) {
8927 period = d->rt_period;
8928 runtime = d->rt_runtime;
8929 }
6f505b16 8930
9a7e0b18 8931 sum += to_ratio(period, runtime);
9f0c1e56 8932 }
6f505b16 8933
9a7e0b18
PZ
8934 if (sum > total)
8935 return -EINVAL;
8936
8937 return 0;
6f505b16
PZ
8938}
8939
9a7e0b18 8940static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8941{
9a7e0b18
PZ
8942 struct rt_schedulable_data data = {
8943 .tg = tg,
8944 .rt_period = period,
8945 .rt_runtime = runtime,
8946 };
8947
8948 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8949}
8950
d0b27fa7
PZ
8951static int tg_set_bandwidth(struct task_group *tg,
8952 u64 rt_period, u64 rt_runtime)
6f505b16 8953{
ac086bc2 8954 int i, err = 0;
9f0c1e56 8955
9f0c1e56 8956 mutex_lock(&rt_constraints_mutex);
521f1a24 8957 read_lock(&tasklist_lock);
9a7e0b18
PZ
8958 err = __rt_schedulable(tg, rt_period, rt_runtime);
8959 if (err)
9f0c1e56 8960 goto unlock;
ac086bc2
PZ
8961
8962 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8963 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8964 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8965
8966 for_each_possible_cpu(i) {
8967 struct rt_rq *rt_rq = tg->rt_rq[i];
8968
8969 spin_lock(&rt_rq->rt_runtime_lock);
8970 rt_rq->rt_runtime = rt_runtime;
8971 spin_unlock(&rt_rq->rt_runtime_lock);
8972 }
8973 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8974 unlock:
521f1a24 8975 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8976 mutex_unlock(&rt_constraints_mutex);
8977
8978 return err;
6f505b16
PZ
8979}
8980
d0b27fa7
PZ
8981int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8982{
8983 u64 rt_runtime, rt_period;
8984
8985 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8986 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8987 if (rt_runtime_us < 0)
8988 rt_runtime = RUNTIME_INF;
8989
8990 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8991}
8992
9f0c1e56
PZ
8993long sched_group_rt_runtime(struct task_group *tg)
8994{
8995 u64 rt_runtime_us;
8996
d0b27fa7 8997 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8998 return -1;
8999
d0b27fa7 9000 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9001 do_div(rt_runtime_us, NSEC_PER_USEC);
9002 return rt_runtime_us;
9003}
d0b27fa7
PZ
9004
9005int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9006{
9007 u64 rt_runtime, rt_period;
9008
9009 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9010 rt_runtime = tg->rt_bandwidth.rt_runtime;
9011
619b0488
R
9012 if (rt_period == 0)
9013 return -EINVAL;
9014
d0b27fa7
PZ
9015 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9016}
9017
9018long sched_group_rt_period(struct task_group *tg)
9019{
9020 u64 rt_period_us;
9021
9022 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9023 do_div(rt_period_us, NSEC_PER_USEC);
9024 return rt_period_us;
9025}
9026
9027static int sched_rt_global_constraints(void)
9028{
4653f803 9029 u64 runtime, period;
d0b27fa7
PZ
9030 int ret = 0;
9031
ec5d4989
HS
9032 if (sysctl_sched_rt_period <= 0)
9033 return -EINVAL;
9034
4653f803
PZ
9035 runtime = global_rt_runtime();
9036 period = global_rt_period();
9037
9038 /*
9039 * Sanity check on the sysctl variables.
9040 */
9041 if (runtime > period && runtime != RUNTIME_INF)
9042 return -EINVAL;
10b612f4 9043
d0b27fa7 9044 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9045 read_lock(&tasklist_lock);
4653f803 9046 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9047 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9048 mutex_unlock(&rt_constraints_mutex);
9049
9050 return ret;
9051}
6d6bc0ad 9052#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9053static int sched_rt_global_constraints(void)
9054{
ac086bc2
PZ
9055 unsigned long flags;
9056 int i;
9057
ec5d4989
HS
9058 if (sysctl_sched_rt_period <= 0)
9059 return -EINVAL;
9060
ac086bc2
PZ
9061 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9062 for_each_possible_cpu(i) {
9063 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9064
9065 spin_lock(&rt_rq->rt_runtime_lock);
9066 rt_rq->rt_runtime = global_rt_runtime();
9067 spin_unlock(&rt_rq->rt_runtime_lock);
9068 }
9069 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9070
d0b27fa7
PZ
9071 return 0;
9072}
6d6bc0ad 9073#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9074
9075int sched_rt_handler(struct ctl_table *table, int write,
9076 struct file *filp, void __user *buffer, size_t *lenp,
9077 loff_t *ppos)
9078{
9079 int ret;
9080 int old_period, old_runtime;
9081 static DEFINE_MUTEX(mutex);
9082
9083 mutex_lock(&mutex);
9084 old_period = sysctl_sched_rt_period;
9085 old_runtime = sysctl_sched_rt_runtime;
9086
9087 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9088
9089 if (!ret && write) {
9090 ret = sched_rt_global_constraints();
9091 if (ret) {
9092 sysctl_sched_rt_period = old_period;
9093 sysctl_sched_rt_runtime = old_runtime;
9094 } else {
9095 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9096 def_rt_bandwidth.rt_period =
9097 ns_to_ktime(global_rt_period());
9098 }
9099 }
9100 mutex_unlock(&mutex);
9101
9102 return ret;
9103}
68318b8e 9104
052f1dc7 9105#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9106
9107/* return corresponding task_group object of a cgroup */
2b01dfe3 9108static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9109{
2b01dfe3
PM
9110 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9111 struct task_group, css);
68318b8e
SV
9112}
9113
9114static struct cgroup_subsys_state *
2b01dfe3 9115cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9116{
ec7dc8ac 9117 struct task_group *tg, *parent;
68318b8e 9118
2b01dfe3 9119 if (!cgrp->parent) {
68318b8e 9120 /* This is early initialization for the top cgroup */
68318b8e
SV
9121 return &init_task_group.css;
9122 }
9123
ec7dc8ac
DG
9124 parent = cgroup_tg(cgrp->parent);
9125 tg = sched_create_group(parent);
68318b8e
SV
9126 if (IS_ERR(tg))
9127 return ERR_PTR(-ENOMEM);
9128
68318b8e
SV
9129 return &tg->css;
9130}
9131
41a2d6cf
IM
9132static void
9133cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9134{
2b01dfe3 9135 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9136
9137 sched_destroy_group(tg);
9138}
9139
41a2d6cf
IM
9140static int
9141cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9142 struct task_struct *tsk)
68318b8e 9143{
b68aa230
PZ
9144#ifdef CONFIG_RT_GROUP_SCHED
9145 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9146 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9147 return -EINVAL;
9148#else
68318b8e
SV
9149 /* We don't support RT-tasks being in separate groups */
9150 if (tsk->sched_class != &fair_sched_class)
9151 return -EINVAL;
b68aa230 9152#endif
68318b8e
SV
9153
9154 return 0;
9155}
9156
9157static void
2b01dfe3 9158cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9159 struct cgroup *old_cont, struct task_struct *tsk)
9160{
9161 sched_move_task(tsk);
9162}
9163
052f1dc7 9164#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9165static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9166 u64 shareval)
68318b8e 9167{
2b01dfe3 9168 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9169}
9170
f4c753b7 9171static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9172{
2b01dfe3 9173 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9174
9175 return (u64) tg->shares;
9176}
6d6bc0ad 9177#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9178
052f1dc7 9179#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9180static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9181 s64 val)
6f505b16 9182{
06ecb27c 9183 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9184}
9185
06ecb27c 9186static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9187{
06ecb27c 9188 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9189}
d0b27fa7
PZ
9190
9191static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9192 u64 rt_period_us)
9193{
9194 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9195}
9196
9197static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9198{
9199 return sched_group_rt_period(cgroup_tg(cgrp));
9200}
6d6bc0ad 9201#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9202
fe5c7cc2 9203static struct cftype cpu_files[] = {
052f1dc7 9204#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9205 {
9206 .name = "shares",
f4c753b7
PM
9207 .read_u64 = cpu_shares_read_u64,
9208 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9209 },
052f1dc7
PZ
9210#endif
9211#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9212 {
9f0c1e56 9213 .name = "rt_runtime_us",
06ecb27c
PM
9214 .read_s64 = cpu_rt_runtime_read,
9215 .write_s64 = cpu_rt_runtime_write,
6f505b16 9216 },
d0b27fa7
PZ
9217 {
9218 .name = "rt_period_us",
f4c753b7
PM
9219 .read_u64 = cpu_rt_period_read_uint,
9220 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9221 },
052f1dc7 9222#endif
68318b8e
SV
9223};
9224
9225static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9226{
fe5c7cc2 9227 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9228}
9229
9230struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9231 .name = "cpu",
9232 .create = cpu_cgroup_create,
9233 .destroy = cpu_cgroup_destroy,
9234 .can_attach = cpu_cgroup_can_attach,
9235 .attach = cpu_cgroup_attach,
9236 .populate = cpu_cgroup_populate,
9237 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9238 .early_init = 1,
9239};
9240
052f1dc7 9241#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9242
9243#ifdef CONFIG_CGROUP_CPUACCT
9244
9245/*
9246 * CPU accounting code for task groups.
9247 *
9248 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9249 * (balbir@in.ibm.com).
9250 */
9251
9252/* track cpu usage of a group of tasks */
9253struct cpuacct {
9254 struct cgroup_subsys_state css;
9255 /* cpuusage holds pointer to a u64-type object on every cpu */
9256 u64 *cpuusage;
9257};
9258
9259struct cgroup_subsys cpuacct_subsys;
9260
9261/* return cpu accounting group corresponding to this container */
32cd756a 9262static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9263{
32cd756a 9264 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9265 struct cpuacct, css);
9266}
9267
9268/* return cpu accounting group to which this task belongs */
9269static inline struct cpuacct *task_ca(struct task_struct *tsk)
9270{
9271 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9272 struct cpuacct, css);
9273}
9274
9275/* create a new cpu accounting group */
9276static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9277 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9278{
9279 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9280
9281 if (!ca)
9282 return ERR_PTR(-ENOMEM);
9283
9284 ca->cpuusage = alloc_percpu(u64);
9285 if (!ca->cpuusage) {
9286 kfree(ca);
9287 return ERR_PTR(-ENOMEM);
9288 }
9289
9290 return &ca->css;
9291}
9292
9293/* destroy an existing cpu accounting group */
41a2d6cf 9294static void
32cd756a 9295cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9296{
32cd756a 9297 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9298
9299 free_percpu(ca->cpuusage);
9300 kfree(ca);
9301}
9302
9303/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9304static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9305{
32cd756a 9306 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9307 u64 totalcpuusage = 0;
9308 int i;
9309
9310 for_each_possible_cpu(i) {
9311 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9312
9313 /*
9314 * Take rq->lock to make 64-bit addition safe on 32-bit
9315 * platforms.
9316 */
9317 spin_lock_irq(&cpu_rq(i)->lock);
9318 totalcpuusage += *cpuusage;
9319 spin_unlock_irq(&cpu_rq(i)->lock);
9320 }
9321
9322 return totalcpuusage;
9323}
9324
0297b803
DG
9325static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9326 u64 reset)
9327{
9328 struct cpuacct *ca = cgroup_ca(cgrp);
9329 int err = 0;
9330 int i;
9331
9332 if (reset) {
9333 err = -EINVAL;
9334 goto out;
9335 }
9336
9337 for_each_possible_cpu(i) {
9338 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9339
9340 spin_lock_irq(&cpu_rq(i)->lock);
9341 *cpuusage = 0;
9342 spin_unlock_irq(&cpu_rq(i)->lock);
9343 }
9344out:
9345 return err;
9346}
9347
d842de87
SV
9348static struct cftype files[] = {
9349 {
9350 .name = "usage",
f4c753b7
PM
9351 .read_u64 = cpuusage_read,
9352 .write_u64 = cpuusage_write,
d842de87
SV
9353 },
9354};
9355
32cd756a 9356static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9357{
32cd756a 9358 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9359}
9360
9361/*
9362 * charge this task's execution time to its accounting group.
9363 *
9364 * called with rq->lock held.
9365 */
9366static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9367{
9368 struct cpuacct *ca;
9369
9370 if (!cpuacct_subsys.active)
9371 return;
9372
9373 ca = task_ca(tsk);
9374 if (ca) {
9375 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9376
9377 *cpuusage += cputime;
9378 }
9379}
9380
9381struct cgroup_subsys cpuacct_subsys = {
9382 .name = "cpuacct",
9383 .create = cpuacct_create,
9384 .destroy = cpuacct_destroy,
9385 .populate = cpuacct_populate,
9386 .subsys_id = cpuacct_subsys_id,
9387};
9388#endif /* CONFIG_CGROUP_CPUACCT */