]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: fix cpu hotplug
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4
LT
76
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
d7876a08 96 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 97 */
d6322faf 98#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 99
6aa645ea
IM
100#define NICE_0_LOAD SCHED_LOAD_SCALE
101#define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
1da177e4
LT
103/*
104 * These are the 'tuning knobs' of the scheduler:
105 *
a4ec24b4 106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
107 * Timeslices get refilled after they expire.
108 */
1da177e4 109#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 110
d0b27fa7
PZ
111/*
112 * single value that denotes runtime == period, ie unlimited time.
113 */
114#define RUNTIME_INF ((u64)~0ULL)
115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
3f33a7ce 139 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
d0b27fa7 157struct rt_bandwidth {
ea736ed5
IM
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock;
160 ktime_t rt_period;
161 u64 rt_runtime;
162 struct hrtimer rt_period_timer;
d0b27fa7
PZ
163};
164
165static struct rt_bandwidth def_rt_bandwidth;
166
167static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
168
169static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
170{
171 struct rt_bandwidth *rt_b =
172 container_of(timer, struct rt_bandwidth, rt_period_timer);
173 ktime_t now;
174 int overrun;
175 int idle = 0;
176
177 for (;;) {
178 now = hrtimer_cb_get_time(timer);
179 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
180
181 if (!overrun)
182 break;
183
184 idle = do_sched_rt_period_timer(rt_b, overrun);
185 }
186
187 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
188}
189
190static
191void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
192{
193 rt_b->rt_period = ns_to_ktime(period);
194 rt_b->rt_runtime = runtime;
195
ac086bc2
PZ
196 spin_lock_init(&rt_b->rt_runtime_lock);
197
d0b27fa7
PZ
198 hrtimer_init(&rt_b->rt_period_timer,
199 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200 rt_b->rt_period_timer.function = sched_rt_period_timer;
201 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
202}
203
204static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
205{
206 ktime_t now;
207
208 if (rt_b->rt_runtime == RUNTIME_INF)
209 return;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 return;
213
214 spin_lock(&rt_b->rt_runtime_lock);
215 for (;;) {
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 break;
218
219 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221 hrtimer_start(&rt_b->rt_period_timer,
222 rt_b->rt_period_timer.expires,
223 HRTIMER_MODE_ABS);
224 }
225 spin_unlock(&rt_b->rt_runtime_lock);
226}
227
228#ifdef CONFIG_RT_GROUP_SCHED
229static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
230{
231 hrtimer_cancel(&rt_b->rt_period_timer);
232}
233#endif
234
712555ee
HC
235/*
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
238 */
239static DEFINE_MUTEX(sched_domains_mutex);
240
052f1dc7 241#ifdef CONFIG_GROUP_SCHED
29f59db3 242
68318b8e
SV
243#include <linux/cgroup.h>
244
29f59db3
SV
245struct cfs_rq;
246
6f505b16
PZ
247static LIST_HEAD(task_groups);
248
29f59db3 249/* task group related information */
4cf86d77 250struct task_group {
052f1dc7 251#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
252 struct cgroup_subsys_state css;
253#endif
052f1dc7
PZ
254
255#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
052f1dc7
PZ
261#endif
262
263#ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
266
d0b27fa7 267 struct rt_bandwidth rt_bandwidth;
052f1dc7 268#endif
6b2d7700 269
ae8393e5 270 struct rcu_head rcu;
6f505b16 271 struct list_head list;
f473aa5e
PZ
272
273 struct task_group *parent;
274 struct list_head siblings;
275 struct list_head children;
29f59db3
SV
276};
277
354d60c2 278#ifdef CONFIG_USER_SCHED
eff766a6
PZ
279
280/*
281 * Root task group.
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
284 */
285struct task_group root_task_group;
286
052f1dc7 287#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
288/* Default task group's sched entity on each cpu */
289static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290/* Default task group's cfs_rq on each cpu */
291static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
292#endif
293
294#ifdef CONFIG_RT_GROUP_SCHED
295static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 297#endif
eff766a6
PZ
298#else
299#define root_task_group init_task_group
354d60c2 300#endif
6f505b16 301
8ed36996 302/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
303 * a task group's cpu shares.
304 */
8ed36996 305static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 306
052f1dc7 307#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
308#ifdef CONFIG_USER_SCHED
309# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
310#else
311# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
312#endif
313
cb4ad1ff 314/*
2e084786
LJ
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
cb4ad1ff
MX
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
321 */
18d95a28 322#define MIN_SHARES 2
2e084786 323#define MAX_SHARES (1UL << 18)
18d95a28 324
052f1dc7
PZ
325static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326#endif
327
29f59db3 328/* Default task group.
3a252015 329 * Every task in system belong to this group at bootup.
29f59db3 330 */
434d53b0 331struct task_group init_task_group;
29f59db3
SV
332
333/* return group to which a task belongs */
4cf86d77 334static inline struct task_group *task_group(struct task_struct *p)
29f59db3 335{
4cf86d77 336 struct task_group *tg;
9b5b7751 337
052f1dc7 338#ifdef CONFIG_USER_SCHED
24e377a8 339 tg = p->user->tg;
052f1dc7 340#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
24e377a8 343#else
41a2d6cf 344 tg = &init_task_group;
24e377a8 345#endif
9b5b7751 346 return tg;
29f59db3
SV
347}
348
349/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 350static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 351{
052f1dc7 352#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
052f1dc7 355#endif
6f505b16 356
052f1dc7 357#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 360#endif
29f59db3
SV
361}
362
363#else
364
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 366
052f1dc7 367#endif /* CONFIG_GROUP_SCHED */
29f59db3 368
6aa645ea
IM
369/* CFS-related fields in a runqueue */
370struct cfs_rq {
371 struct load_weight load;
372 unsigned long nr_running;
373
6aa645ea 374 u64 exec_clock;
e9acbff6 375 u64 min_vruntime;
6aa645ea
IM
376
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
4a55bd5e
PZ
379
380 struct list_head tasks;
381 struct list_head *balance_iterator;
382
383 /*
384 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
385 * It is set to NULL otherwise (i.e when none are currently running).
386 */
aa2ac252 387 struct sched_entity *curr, *next;
ddc97297
PZ
388
389 unsigned long nr_spread_over;
390
62160e3f 391#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
393
41a2d6cf
IM
394 /*
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
398 *
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
401 */
41a2d6cf
IM
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
404#endif
405};
1da177e4 406
6aa645ea
IM
407/* Real-Time classes' related field in a runqueue: */
408struct rt_rq {
409 struct rt_prio_array active;
63489e45 410 unsigned long rt_nr_running;
052f1dc7 411#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
412 int highest_prio; /* highest queued rt task prio */
413#endif
fa85ae24 414#ifdef CONFIG_SMP
73fe6aae 415 unsigned long rt_nr_migratory;
a22d7fc1 416 int overloaded;
fa85ae24 417#endif
6f505b16 418 int rt_throttled;
fa85ae24 419 u64 rt_time;
ac086bc2 420 u64 rt_runtime;
ea736ed5 421 /* Nests inside the rq lock: */
ac086bc2 422 spinlock_t rt_runtime_lock;
6f505b16 423
052f1dc7 424#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
425 unsigned long rt_nr_boosted;
426
6f505b16
PZ
427 struct rq *rq;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
431#endif
6aa645ea
IM
432};
433
57d885fe
GH
434#ifdef CONFIG_SMP
435
436/*
437 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
440 * exclusive cpuset is created, we also create and attach a new root-domain
441 * object.
442 *
57d885fe
GH
443 */
444struct root_domain {
445 atomic_t refcount;
446 cpumask_t span;
447 cpumask_t online;
637f5085 448
0eab9146 449 /*
637f5085
GH
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
452 */
453 cpumask_t rto_mask;
0eab9146 454 atomic_t rto_count;
57d885fe
GH
455};
456
dc938520
GH
457/*
458 * By default the system creates a single root-domain with all cpus as
459 * members (mimicking the global state we have today).
460 */
57d885fe
GH
461static struct root_domain def_root_domain;
462
463#endif
464
1da177e4
LT
465/*
466 * This is the main, per-CPU runqueue data structure.
467 *
468 * Locking rule: those places that want to lock multiple runqueues
469 * (such as the load balancing or the thread migration code), lock
470 * acquire operations must be ordered by ascending &runqueue.
471 */
70b97a7f 472struct rq {
d8016491
IM
473 /* runqueue lock: */
474 spinlock_t lock;
1da177e4
LT
475
476 /*
477 * nr_running and cpu_load should be in the same cacheline because
478 * remote CPUs use both these fields when doing load calculation.
479 */
480 unsigned long nr_running;
6aa645ea
IM
481 #define CPU_LOAD_IDX_MAX 5
482 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 483 unsigned char idle_at_tick;
46cb4b7c 484#ifdef CONFIG_NO_HZ
15934a37 485 unsigned long last_tick_seen;
46cb4b7c
SS
486 unsigned char in_nohz_recently;
487#endif
d8016491
IM
488 /* capture load from *all* tasks on this cpu: */
489 struct load_weight load;
6aa645ea
IM
490 unsigned long nr_load_updates;
491 u64 nr_switches;
492
493 struct cfs_rq cfs;
6f505b16 494 struct rt_rq rt;
6f505b16 495
6aa645ea 496#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
497 /* list of leaf cfs_rq on this cpu: */
498 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
499#endif
500#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 501 struct list_head leaf_rt_rq_list;
1da177e4 502#endif
1da177e4
LT
503
504 /*
505 * This is part of a global counter where only the total sum
506 * over all CPUs matters. A task can increase this counter on
507 * one CPU and if it got migrated afterwards it may decrease
508 * it on another CPU. Always updated under the runqueue lock:
509 */
510 unsigned long nr_uninterruptible;
511
36c8b586 512 struct task_struct *curr, *idle;
c9819f45 513 unsigned long next_balance;
1da177e4 514 struct mm_struct *prev_mm;
6aa645ea 515
3e51f33f 516 u64 clock;
6aa645ea 517
1da177e4
LT
518 atomic_t nr_iowait;
519
520#ifdef CONFIG_SMP
0eab9146 521 struct root_domain *rd;
1da177e4
LT
522 struct sched_domain *sd;
523
524 /* For active balancing */
525 int active_balance;
526 int push_cpu;
d8016491
IM
527 /* cpu of this runqueue: */
528 int cpu;
1da177e4 529
36c8b586 530 struct task_struct *migration_thread;
1da177e4
LT
531 struct list_head migration_queue;
532#endif
533
8f4d37ec
PZ
534#ifdef CONFIG_SCHED_HRTICK
535 unsigned long hrtick_flags;
536 ktime_t hrtick_expire;
537 struct hrtimer hrtick_timer;
538#endif
539
1da177e4
LT
540#ifdef CONFIG_SCHEDSTATS
541 /* latency stats */
542 struct sched_info rq_sched_info;
543
544 /* sys_sched_yield() stats */
480b9434
KC
545 unsigned int yld_exp_empty;
546 unsigned int yld_act_empty;
547 unsigned int yld_both_empty;
548 unsigned int yld_count;
1da177e4
LT
549
550 /* schedule() stats */
480b9434
KC
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
1da177e4
LT
554
555 /* try_to_wake_up() stats */
480b9434
KC
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
b8efb561
IM
558
559 /* BKL stats */
480b9434 560 unsigned int bkl_count;
1da177e4 561#endif
fcb99371 562 struct lock_class_key rq_lock_key;
1da177e4
LT
563};
564
f34e3b61 565static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 566
dd41f596
IM
567static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
568{
569 rq->curr->sched_class->check_preempt_curr(rq, p);
570}
571
0a2966b4
CL
572static inline int cpu_of(struct rq *rq)
573{
574#ifdef CONFIG_SMP
575 return rq->cpu;
576#else
577 return 0;
578#endif
579}
580
674311d5
NP
581/*
582 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 583 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
584 *
585 * The domain tree of any CPU may only be accessed from within
586 * preempt-disabled sections.
587 */
48f24c4d
IM
588#define for_each_domain(cpu, __sd) \
589 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
590
591#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
592#define this_rq() (&__get_cpu_var(runqueues))
593#define task_rq(p) cpu_rq(task_cpu(p))
594#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
595
3e51f33f
PZ
596static inline void update_rq_clock(struct rq *rq)
597{
598 rq->clock = sched_clock_cpu(cpu_of(rq));
599}
600
bf5c91ba
IM
601/*
602 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
603 */
604#ifdef CONFIG_SCHED_DEBUG
605# define const_debug __read_mostly
606#else
607# define const_debug static const
608#endif
609
610/*
611 * Debugging: various feature bits
612 */
f00b45c1
PZ
613
614#define SCHED_FEAT(name, enabled) \
615 __SCHED_FEAT_##name ,
616
bf5c91ba 617enum {
f00b45c1 618#include "sched_features.h"
bf5c91ba
IM
619};
620
f00b45c1
PZ
621#undef SCHED_FEAT
622
623#define SCHED_FEAT(name, enabled) \
624 (1UL << __SCHED_FEAT_##name) * enabled |
625
bf5c91ba 626const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
627#include "sched_features.h"
628 0;
629
630#undef SCHED_FEAT
631
632#ifdef CONFIG_SCHED_DEBUG
633#define SCHED_FEAT(name, enabled) \
634 #name ,
635
983ed7a6 636static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
637#include "sched_features.h"
638 NULL
639};
640
641#undef SCHED_FEAT
642
983ed7a6 643static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
644{
645 filp->private_data = inode->i_private;
646 return 0;
647}
648
649static ssize_t
650sched_feat_read(struct file *filp, char __user *ubuf,
651 size_t cnt, loff_t *ppos)
652{
653 char *buf;
654 int r = 0;
655 int len = 0;
656 int i;
657
658 for (i = 0; sched_feat_names[i]; i++) {
659 len += strlen(sched_feat_names[i]);
660 len += 4;
661 }
662
663 buf = kmalloc(len + 2, GFP_KERNEL);
664 if (!buf)
665 return -ENOMEM;
666
667 for (i = 0; sched_feat_names[i]; i++) {
668 if (sysctl_sched_features & (1UL << i))
669 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
670 else
c24b7c52 671 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
672 }
673
674 r += sprintf(buf + r, "\n");
675 WARN_ON(r >= len + 2);
676
677 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
678
679 kfree(buf);
680
681 return r;
682}
683
684static ssize_t
685sched_feat_write(struct file *filp, const char __user *ubuf,
686 size_t cnt, loff_t *ppos)
687{
688 char buf[64];
689 char *cmp = buf;
690 int neg = 0;
691 int i;
692
693 if (cnt > 63)
694 cnt = 63;
695
696 if (copy_from_user(&buf, ubuf, cnt))
697 return -EFAULT;
698
699 buf[cnt] = 0;
700
c24b7c52 701 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
702 neg = 1;
703 cmp += 3;
704 }
705
706 for (i = 0; sched_feat_names[i]; i++) {
707 int len = strlen(sched_feat_names[i]);
708
709 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
710 if (neg)
711 sysctl_sched_features &= ~(1UL << i);
712 else
713 sysctl_sched_features |= (1UL << i);
714 break;
715 }
716 }
717
718 if (!sched_feat_names[i])
719 return -EINVAL;
720
721 filp->f_pos += cnt;
722
723 return cnt;
724}
725
726static struct file_operations sched_feat_fops = {
727 .open = sched_feat_open,
728 .read = sched_feat_read,
729 .write = sched_feat_write,
730};
731
732static __init int sched_init_debug(void)
733{
f00b45c1
PZ
734 debugfs_create_file("sched_features", 0644, NULL, NULL,
735 &sched_feat_fops);
736
737 return 0;
738}
739late_initcall(sched_init_debug);
740
741#endif
742
743#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 744
b82d9fdd
PZ
745/*
746 * Number of tasks to iterate in a single balance run.
747 * Limited because this is done with IRQs disabled.
748 */
749const_debug unsigned int sysctl_sched_nr_migrate = 32;
750
fa85ae24 751/*
9f0c1e56 752 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
753 * default: 1s
754 */
9f0c1e56 755unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 756
6892b75e
IM
757static __read_mostly int scheduler_running;
758
9f0c1e56
PZ
759/*
760 * part of the period that we allow rt tasks to run in us.
761 * default: 0.95s
762 */
763int sysctl_sched_rt_runtime = 950000;
fa85ae24 764
d0b27fa7
PZ
765static inline u64 global_rt_period(void)
766{
767 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
768}
769
770static inline u64 global_rt_runtime(void)
771{
772 if (sysctl_sched_rt_period < 0)
773 return RUNTIME_INF;
774
775 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
776}
fa85ae24 777
690229a0 778unsigned long long time_sync_thresh = 100000;
27ec4407
IM
779
780static DEFINE_PER_CPU(unsigned long long, time_offset);
781static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
782
e436d800 783/*
27ec4407
IM
784 * Global lock which we take every now and then to synchronize
785 * the CPUs time. This method is not warp-safe, but it's good
786 * enough to synchronize slowly diverging time sources and thus
787 * it's good enough for tracing:
e436d800 788 */
27ec4407
IM
789static DEFINE_SPINLOCK(time_sync_lock);
790static unsigned long long prev_global_time;
791
dfbf4a1b 792static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 793{
dfbf4a1b
IM
794 /*
795 * We want this inlined, to not get tracer function calls
796 * in this critical section:
797 */
798 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
799 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
800
801 if (time < prev_global_time) {
802 per_cpu(time_offset, cpu) += prev_global_time - time;
803 time = prev_global_time;
804 } else {
805 prev_global_time = time;
806 }
807
dfbf4a1b
IM
808 __raw_spin_unlock(&time_sync_lock.raw_lock);
809 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
810
811 return time;
812}
813
814static unsigned long long __cpu_clock(int cpu)
e436d800 815{
e436d800 816 unsigned long long now;
e436d800 817
8ced5f69
IM
818 /*
819 * Only call sched_clock() if the scheduler has already been
820 * initialized (some code might call cpu_clock() very early):
821 */
6892b75e
IM
822 if (unlikely(!scheduler_running))
823 return 0;
824
3e51f33f 825 now = sched_clock_cpu(cpu);
e436d800
IM
826
827 return now;
828}
27ec4407
IM
829
830/*
831 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
832 * clock constructed from sched_clock():
833 */
834unsigned long long cpu_clock(int cpu)
835{
836 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 837 unsigned long flags;
27ec4407 838
dfbf4a1b 839 local_irq_save(flags);
27ec4407
IM
840 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
841 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
842 delta_time = time-prev_cpu_time;
843
dfbf4a1b 844 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 845 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
846 per_cpu(prev_cpu_time, cpu) = time;
847 }
848 local_irq_restore(flags);
27ec4407
IM
849
850 return time;
851}
a58f6f25 852EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 853
1da177e4 854#ifndef prepare_arch_switch
4866cde0
NP
855# define prepare_arch_switch(next) do { } while (0)
856#endif
857#ifndef finish_arch_switch
858# define finish_arch_switch(prev) do { } while (0)
859#endif
860
051a1d1a
DA
861static inline int task_current(struct rq *rq, struct task_struct *p)
862{
863 return rq->curr == p;
864}
865
4866cde0 866#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 867static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 868{
051a1d1a 869 return task_current(rq, p);
4866cde0
NP
870}
871
70b97a7f 872static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
873{
874}
875
70b97a7f 876static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 877{
da04c035
IM
878#ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881#endif
8a25d5de
IM
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
4866cde0
NP
889 spin_unlock_irq(&rq->lock);
890}
891
892#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 893static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
894{
895#ifdef CONFIG_SMP
896 return p->oncpu;
897#else
051a1d1a 898 return task_current(rq, p);
4866cde0
NP
899#endif
900}
901
70b97a7f 902static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911#endif
912#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914#else
915 spin_unlock(&rq->lock);
916#endif
917}
918
70b97a7f 919static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
920{
921#ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929#endif
930#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
1da177e4 932#endif
4866cde0
NP
933}
934#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 935
b29739f9
IM
936/*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
70b97a7f 940static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
941 __acquires(rq->lock)
942{
3a5c359a
AK
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
b29739f9 948 spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4
LT
952/*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 954 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
955 * explicitly disabling preemption.
956 */
70b97a7f 957static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a
AK
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
1da177e4 968 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
975 spin_unlock(&rq->lock);
976}
977
70b97a7f 978static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
979 __releases(rq->lock)
980{
981 spin_unlock_irqrestore(&rq->lock, *flags);
982}
983
1da177e4 984/*
cc2a73b5 985 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 986 */
a9957449 987static struct rq *this_rq_lock(void)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4
LT
991
992 local_irq_disable();
993 rq = this_rq();
994 spin_lock(&rq->lock);
995
996 return rq;
997}
998
8f4d37ec
PZ
999static void __resched_task(struct task_struct *p, int tif_bit);
1000
1001static inline void resched_task(struct task_struct *p)
1002{
1003 __resched_task(p, TIF_NEED_RESCHED);
1004}
1005
1006#ifdef CONFIG_SCHED_HRTICK
1007/*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
1017static inline void resched_hrt(struct task_struct *p)
1018{
1019 __resched_task(p, TIF_HRTICK_RESCHED);
1020}
1021
1022static inline void resched_rq(struct rq *rq)
1023{
1024 unsigned long flags;
1025
1026 spin_lock_irqsave(&rq->lock, flags);
1027 resched_task(rq->curr);
1028 spin_unlock_irqrestore(&rq->lock, flags);
1029}
1030
1031enum {
1032 HRTICK_SET, /* re-programm hrtick_timer */
1033 HRTICK_RESET, /* not a new slice */
b328ca18 1034 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1035};
1036
1037/*
1038 * Use hrtick when:
1039 * - enabled by features
1040 * - hrtimer is actually high res
1041 */
1042static inline int hrtick_enabled(struct rq *rq)
1043{
1044 if (!sched_feat(HRTICK))
1045 return 0;
b328ca18
PZ
1046 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1047 return 0;
8f4d37ec
PZ
1048 return hrtimer_is_hres_active(&rq->hrtick_timer);
1049}
1050
1051/*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056static void hrtick_start(struct rq *rq, u64 delay, int reset)
1057{
1058 assert_spin_locked(&rq->lock);
1059
1060 /*
1061 * preempt at: now + delay
1062 */
1063 rq->hrtick_expire =
1064 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1065 /*
1066 * indicate we need to program the timer
1067 */
1068 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1069 if (reset)
1070 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1071
1072 /*
1073 * New slices are called from the schedule path and don't need a
1074 * forced reschedule.
1075 */
1076 if (reset)
1077 resched_hrt(rq->curr);
1078}
1079
1080static void hrtick_clear(struct rq *rq)
1081{
1082 if (hrtimer_active(&rq->hrtick_timer))
1083 hrtimer_cancel(&rq->hrtick_timer);
1084}
1085
1086/*
1087 * Update the timer from the possible pending state.
1088 */
1089static void hrtick_set(struct rq *rq)
1090{
1091 ktime_t time;
1092 int set, reset;
1093 unsigned long flags;
1094
1095 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1096
1097 spin_lock_irqsave(&rq->lock, flags);
1098 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1099 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1100 time = rq->hrtick_expire;
1101 clear_thread_flag(TIF_HRTICK_RESCHED);
1102 spin_unlock_irqrestore(&rq->lock, flags);
1103
1104 if (set) {
1105 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1106 if (reset && !hrtimer_active(&rq->hrtick_timer))
1107 resched_rq(rq);
1108 } else
1109 hrtick_clear(rq);
1110}
1111
1112/*
1113 * High-resolution timer tick.
1114 * Runs from hardirq context with interrupts disabled.
1115 */
1116static enum hrtimer_restart hrtick(struct hrtimer *timer)
1117{
1118 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1119
1120 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1121
1122 spin_lock(&rq->lock);
3e51f33f 1123 update_rq_clock(rq);
8f4d37ec
PZ
1124 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1125 spin_unlock(&rq->lock);
1126
1127 return HRTIMER_NORESTART;
1128}
1129
95e904c7 1130#ifdef CONFIG_SMP
b328ca18
PZ
1131static void hotplug_hrtick_disable(int cpu)
1132{
1133 struct rq *rq = cpu_rq(cpu);
1134 unsigned long flags;
1135
1136 spin_lock_irqsave(&rq->lock, flags);
1137 rq->hrtick_flags = 0;
1138 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1139 spin_unlock_irqrestore(&rq->lock, flags);
1140
1141 hrtick_clear(rq);
1142}
1143
1144static void hotplug_hrtick_enable(int cpu)
1145{
1146 struct rq *rq = cpu_rq(cpu);
1147 unsigned long flags;
1148
1149 spin_lock_irqsave(&rq->lock, flags);
1150 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1151 spin_unlock_irqrestore(&rq->lock, flags);
1152}
1153
1154static int
1155hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1156{
1157 int cpu = (int)(long)hcpu;
1158
1159 switch (action) {
1160 case CPU_UP_CANCELED:
1161 case CPU_UP_CANCELED_FROZEN:
1162 case CPU_DOWN_PREPARE:
1163 case CPU_DOWN_PREPARE_FROZEN:
1164 case CPU_DEAD:
1165 case CPU_DEAD_FROZEN:
1166 hotplug_hrtick_disable(cpu);
1167 return NOTIFY_OK;
1168
1169 case CPU_UP_PREPARE:
1170 case CPU_UP_PREPARE_FROZEN:
1171 case CPU_DOWN_FAILED:
1172 case CPU_DOWN_FAILED_FROZEN:
1173 case CPU_ONLINE:
1174 case CPU_ONLINE_FROZEN:
1175 hotplug_hrtick_enable(cpu);
1176 return NOTIFY_OK;
1177 }
1178
1179 return NOTIFY_DONE;
1180}
1181
1182static void init_hrtick(void)
1183{
1184 hotcpu_notifier(hotplug_hrtick, 0);
1185}
95e904c7 1186#endif /* CONFIG_SMP */
b328ca18
PZ
1187
1188static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1189{
1190 rq->hrtick_flags = 0;
1191 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1192 rq->hrtick_timer.function = hrtick;
1193 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1194}
1195
1196void hrtick_resched(void)
1197{
1198 struct rq *rq;
1199 unsigned long flags;
1200
1201 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1202 return;
1203
1204 local_irq_save(flags);
1205 rq = cpu_rq(smp_processor_id());
1206 hrtick_set(rq);
1207 local_irq_restore(flags);
1208}
1209#else
1210static inline void hrtick_clear(struct rq *rq)
1211{
1212}
1213
1214static inline void hrtick_set(struct rq *rq)
1215{
1216}
1217
1218static inline void init_rq_hrtick(struct rq *rq)
1219{
1220}
1221
1222void hrtick_resched(void)
1223{
1224}
b328ca18
PZ
1225
1226static inline void init_hrtick(void)
1227{
1228}
8f4d37ec
PZ
1229#endif
1230
c24d20db
IM
1231/*
1232 * resched_task - mark a task 'to be rescheduled now'.
1233 *
1234 * On UP this means the setting of the need_resched flag, on SMP it
1235 * might also involve a cross-CPU call to trigger the scheduler on
1236 * the target CPU.
1237 */
1238#ifdef CONFIG_SMP
1239
1240#ifndef tsk_is_polling
1241#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1242#endif
1243
8f4d37ec 1244static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1245{
1246 int cpu;
1247
1248 assert_spin_locked(&task_rq(p)->lock);
1249
8f4d37ec 1250 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1251 return;
1252
8f4d37ec 1253 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1254
1255 cpu = task_cpu(p);
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /* NEED_RESCHED must be visible before we test polling */
1260 smp_mb();
1261 if (!tsk_is_polling(p))
1262 smp_send_reschedule(cpu);
1263}
1264
1265static void resched_cpu(int cpu)
1266{
1267 struct rq *rq = cpu_rq(cpu);
1268 unsigned long flags;
1269
1270 if (!spin_trylock_irqsave(&rq->lock, flags))
1271 return;
1272 resched_task(cpu_curr(cpu));
1273 spin_unlock_irqrestore(&rq->lock, flags);
1274}
06d8308c
TG
1275
1276#ifdef CONFIG_NO_HZ
1277/*
1278 * When add_timer_on() enqueues a timer into the timer wheel of an
1279 * idle CPU then this timer might expire before the next timer event
1280 * which is scheduled to wake up that CPU. In case of a completely
1281 * idle system the next event might even be infinite time into the
1282 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1283 * leaves the inner idle loop so the newly added timer is taken into
1284 * account when the CPU goes back to idle and evaluates the timer
1285 * wheel for the next timer event.
1286 */
1287void wake_up_idle_cpu(int cpu)
1288{
1289 struct rq *rq = cpu_rq(cpu);
1290
1291 if (cpu == smp_processor_id())
1292 return;
1293
1294 /*
1295 * This is safe, as this function is called with the timer
1296 * wheel base lock of (cpu) held. When the CPU is on the way
1297 * to idle and has not yet set rq->curr to idle then it will
1298 * be serialized on the timer wheel base lock and take the new
1299 * timer into account automatically.
1300 */
1301 if (rq->curr != rq->idle)
1302 return;
1303
1304 /*
1305 * We can set TIF_RESCHED on the idle task of the other CPU
1306 * lockless. The worst case is that the other CPU runs the
1307 * idle task through an additional NOOP schedule()
1308 */
1309 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1310
1311 /* NEED_RESCHED must be visible before we test polling */
1312 smp_mb();
1313 if (!tsk_is_polling(rq->idle))
1314 smp_send_reschedule(cpu);
1315}
1316#endif
1317
c24d20db 1318#else
8f4d37ec 1319static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1320{
1321 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1322 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1323}
1324#endif
1325
45bf76df
IM
1326#if BITS_PER_LONG == 32
1327# define WMULT_CONST (~0UL)
1328#else
1329# define WMULT_CONST (1UL << 32)
1330#endif
1331
1332#define WMULT_SHIFT 32
1333
194081eb
IM
1334/*
1335 * Shift right and round:
1336 */
cf2ab469 1337#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1338
cb1c4fc9 1339static unsigned long
45bf76df
IM
1340calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1341 struct load_weight *lw)
1342{
1343 u64 tmp;
1344
7a232e03
LJ
1345 if (!lw->inv_weight) {
1346 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1347 lw->inv_weight = 1;
1348 else
1349 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1350 / (lw->weight+1);
1351 }
45bf76df
IM
1352
1353 tmp = (u64)delta_exec * weight;
1354 /*
1355 * Check whether we'd overflow the 64-bit multiplication:
1356 */
194081eb 1357 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1358 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1359 WMULT_SHIFT/2);
1360 else
cf2ab469 1361 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1362
ecf691da 1363 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1364}
1365
f9305d4a
IM
1366static inline unsigned long
1367calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1368{
1369 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1370}
1371
1091985b 1372static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1373{
1374 lw->weight += inc;
e89996ae 1375 lw->inv_weight = 0;
45bf76df
IM
1376}
1377
1091985b 1378static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1379{
1380 lw->weight -= dec;
e89996ae 1381 lw->inv_weight = 0;
45bf76df
IM
1382}
1383
2dd73a4f
PW
1384/*
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1389 * scaled version of the new time slice allocation that they receive on time
1390 * slice expiry etc.
1391 */
1392
dd41f596
IM
1393#define WEIGHT_IDLEPRIO 2
1394#define WMULT_IDLEPRIO (1 << 31)
1395
1396/*
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1401 *
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
dd41f596
IM
1407 */
1408static const int prio_to_weight[40] = {
254753dc
IM
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1417};
1418
5714d2de
IM
1419/*
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1421 *
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1425 */
dd41f596 1426static const u32 prio_to_wmult[40] = {
254753dc
IM
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1435};
2dd73a4f 1436
dd41f596
IM
1437static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1438
1439/*
1440 * runqueue iterator, to support SMP load-balancing between different
1441 * scheduling classes, without having to expose their internal data
1442 * structures to the load-balancing proper:
1443 */
1444struct rq_iterator {
1445 void *arg;
1446 struct task_struct *(*start)(void *);
1447 struct task_struct *(*next)(void *);
1448};
1449
e1d1484f
PW
1450#ifdef CONFIG_SMP
1451static unsigned long
1452balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1453 unsigned long max_load_move, struct sched_domain *sd,
1454 enum cpu_idle_type idle, int *all_pinned,
1455 int *this_best_prio, struct rq_iterator *iterator);
1456
1457static int
1458iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1459 struct sched_domain *sd, enum cpu_idle_type idle,
1460 struct rq_iterator *iterator);
e1d1484f 1461#endif
dd41f596 1462
d842de87
SV
1463#ifdef CONFIG_CGROUP_CPUACCT
1464static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1465#else
1466static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1467#endif
1468
18d95a28
PZ
1469static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1470{
1471 update_load_add(&rq->load, load);
1472}
1473
1474static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1475{
1476 update_load_sub(&rq->load, load);
1477}
1478
e7693a36
GH
1479#ifdef CONFIG_SMP
1480static unsigned long source_load(int cpu, int type);
1481static unsigned long target_load(int cpu, int type);
1482static unsigned long cpu_avg_load_per_task(int cpu);
1483static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1484#else /* CONFIG_SMP */
1485
1486#ifdef CONFIG_FAIR_GROUP_SCHED
1487static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1488{
1489}
1490#endif
1491
e7693a36
GH
1492#endif /* CONFIG_SMP */
1493
dd41f596 1494#include "sched_stats.h"
dd41f596 1495#include "sched_idletask.c"
5522d5d5
IM
1496#include "sched_fair.c"
1497#include "sched_rt.c"
dd41f596
IM
1498#ifdef CONFIG_SCHED_DEBUG
1499# include "sched_debug.c"
1500#endif
1501
1502#define sched_class_highest (&rt_sched_class)
1503
6363ca57
IM
1504static inline void inc_load(struct rq *rq, const struct task_struct *p)
1505{
1506 update_load_add(&rq->load, p->se.load.weight);
1507}
1508
1509static inline void dec_load(struct rq *rq, const struct task_struct *p)
1510{
1511 update_load_sub(&rq->load, p->se.load.weight);
1512}
1513
1514static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1515{
1516 rq->nr_running++;
6363ca57 1517 inc_load(rq, p);
9c217245
IM
1518}
1519
6363ca57 1520static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1521{
1522 rq->nr_running--;
6363ca57 1523 dec_load(rq, p);
9c217245
IM
1524}
1525
45bf76df
IM
1526static void set_load_weight(struct task_struct *p)
1527{
1528 if (task_has_rt_policy(p)) {
dd41f596
IM
1529 p->se.load.weight = prio_to_weight[0] * 2;
1530 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1531 return;
1532 }
45bf76df 1533
dd41f596
IM
1534 /*
1535 * SCHED_IDLE tasks get minimal weight:
1536 */
1537 if (p->policy == SCHED_IDLE) {
1538 p->se.load.weight = WEIGHT_IDLEPRIO;
1539 p->se.load.inv_weight = WMULT_IDLEPRIO;
1540 return;
1541 }
71f8bd46 1542
dd41f596
IM
1543 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1544 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1545}
1546
8159f87e 1547static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1548{
dd41f596 1549 sched_info_queued(p);
fd390f6a 1550 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1551 p->se.on_rq = 1;
71f8bd46
IM
1552}
1553
69be72c1 1554static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1555{
f02231e5 1556 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1557 p->se.on_rq = 0;
71f8bd46
IM
1558}
1559
14531189 1560/*
dd41f596 1561 * __normal_prio - return the priority that is based on the static prio
14531189 1562 */
14531189
IM
1563static inline int __normal_prio(struct task_struct *p)
1564{
dd41f596 1565 return p->static_prio;
14531189
IM
1566}
1567
b29739f9
IM
1568/*
1569 * Calculate the expected normal priority: i.e. priority
1570 * without taking RT-inheritance into account. Might be
1571 * boosted by interactivity modifiers. Changes upon fork,
1572 * setprio syscalls, and whenever the interactivity
1573 * estimator recalculates.
1574 */
36c8b586 1575static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1576{
1577 int prio;
1578
e05606d3 1579 if (task_has_rt_policy(p))
b29739f9
IM
1580 prio = MAX_RT_PRIO-1 - p->rt_priority;
1581 else
1582 prio = __normal_prio(p);
1583 return prio;
1584}
1585
1586/*
1587 * Calculate the current priority, i.e. the priority
1588 * taken into account by the scheduler. This value might
1589 * be boosted by RT tasks, or might be boosted by
1590 * interactivity modifiers. Will be RT if the task got
1591 * RT-boosted. If not then it returns p->normal_prio.
1592 */
36c8b586 1593static int effective_prio(struct task_struct *p)
b29739f9
IM
1594{
1595 p->normal_prio = normal_prio(p);
1596 /*
1597 * If we are RT tasks or we were boosted to RT priority,
1598 * keep the priority unchanged. Otherwise, update priority
1599 * to the normal priority:
1600 */
1601 if (!rt_prio(p->prio))
1602 return p->normal_prio;
1603 return p->prio;
1604}
1605
1da177e4 1606/*
dd41f596 1607 * activate_task - move a task to the runqueue.
1da177e4 1608 */
dd41f596 1609static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1610{
d9514f6c 1611 if (task_contributes_to_load(p))
dd41f596 1612 rq->nr_uninterruptible--;
1da177e4 1613
8159f87e 1614 enqueue_task(rq, p, wakeup);
6363ca57 1615 inc_nr_running(p, rq);
1da177e4
LT
1616}
1617
1da177e4
LT
1618/*
1619 * deactivate_task - remove a task from the runqueue.
1620 */
2e1cb74a 1621static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1622{
d9514f6c 1623 if (task_contributes_to_load(p))
dd41f596
IM
1624 rq->nr_uninterruptible++;
1625
69be72c1 1626 dequeue_task(rq, p, sleep);
6363ca57 1627 dec_nr_running(p, rq);
1da177e4
LT
1628}
1629
1da177e4
LT
1630/**
1631 * task_curr - is this task currently executing on a CPU?
1632 * @p: the task in question.
1633 */
36c8b586 1634inline int task_curr(const struct task_struct *p)
1da177e4
LT
1635{
1636 return cpu_curr(task_cpu(p)) == p;
1637}
1638
2dd73a4f
PW
1639/* Used instead of source_load when we know the type == 0 */
1640unsigned long weighted_cpuload(const int cpu)
1641{
495eca49 1642 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1643}
1644
1645static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1646{
6f505b16 1647 set_task_rq(p, cpu);
dd41f596 1648#ifdef CONFIG_SMP
ce96b5ac
DA
1649 /*
1650 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1651 * successfuly executed on another CPU. We must ensure that updates of
1652 * per-task data have been completed by this moment.
1653 */
1654 smp_wmb();
dd41f596 1655 task_thread_info(p)->cpu = cpu;
dd41f596 1656#endif
2dd73a4f
PW
1657}
1658
cb469845
SR
1659static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1660 const struct sched_class *prev_class,
1661 int oldprio, int running)
1662{
1663 if (prev_class != p->sched_class) {
1664 if (prev_class->switched_from)
1665 prev_class->switched_from(rq, p, running);
1666 p->sched_class->switched_to(rq, p, running);
1667 } else
1668 p->sched_class->prio_changed(rq, p, oldprio, running);
1669}
1670
1da177e4 1671#ifdef CONFIG_SMP
c65cc870 1672
cc367732
IM
1673/*
1674 * Is this task likely cache-hot:
1675 */
e7693a36 1676static int
cc367732
IM
1677task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1678{
1679 s64 delta;
1680
f540a608
IM
1681 /*
1682 * Buddy candidates are cache hot:
1683 */
d25ce4cd 1684 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1685 return 1;
1686
cc367732
IM
1687 if (p->sched_class != &fair_sched_class)
1688 return 0;
1689
6bc1665b
IM
1690 if (sysctl_sched_migration_cost == -1)
1691 return 1;
1692 if (sysctl_sched_migration_cost == 0)
1693 return 0;
1694
cc367732
IM
1695 delta = now - p->se.exec_start;
1696
1697 return delta < (s64)sysctl_sched_migration_cost;
1698}
1699
1700
dd41f596 1701void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1702{
dd41f596
IM
1703 int old_cpu = task_cpu(p);
1704 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1705 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1706 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1707 u64 clock_offset;
dd41f596
IM
1708
1709 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1710
1711#ifdef CONFIG_SCHEDSTATS
1712 if (p->se.wait_start)
1713 p->se.wait_start -= clock_offset;
dd41f596
IM
1714 if (p->se.sleep_start)
1715 p->se.sleep_start -= clock_offset;
1716 if (p->se.block_start)
1717 p->se.block_start -= clock_offset;
cc367732
IM
1718 if (old_cpu != new_cpu) {
1719 schedstat_inc(p, se.nr_migrations);
1720 if (task_hot(p, old_rq->clock, NULL))
1721 schedstat_inc(p, se.nr_forced2_migrations);
1722 }
6cfb0d5d 1723#endif
2830cf8c
SV
1724 p->se.vruntime -= old_cfsrq->min_vruntime -
1725 new_cfsrq->min_vruntime;
dd41f596
IM
1726
1727 __set_task_cpu(p, new_cpu);
c65cc870
IM
1728}
1729
70b97a7f 1730struct migration_req {
1da177e4 1731 struct list_head list;
1da177e4 1732
36c8b586 1733 struct task_struct *task;
1da177e4
LT
1734 int dest_cpu;
1735
1da177e4 1736 struct completion done;
70b97a7f 1737};
1da177e4
LT
1738
1739/*
1740 * The task's runqueue lock must be held.
1741 * Returns true if you have to wait for migration thread.
1742 */
36c8b586 1743static int
70b97a7f 1744migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1745{
70b97a7f 1746 struct rq *rq = task_rq(p);
1da177e4
LT
1747
1748 /*
1749 * If the task is not on a runqueue (and not running), then
1750 * it is sufficient to simply update the task's cpu field.
1751 */
dd41f596 1752 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1753 set_task_cpu(p, dest_cpu);
1754 return 0;
1755 }
1756
1757 init_completion(&req->done);
1da177e4
LT
1758 req->task = p;
1759 req->dest_cpu = dest_cpu;
1760 list_add(&req->list, &rq->migration_queue);
48f24c4d 1761
1da177e4
LT
1762 return 1;
1763}
1764
1765/*
1766 * wait_task_inactive - wait for a thread to unschedule.
1767 *
1768 * The caller must ensure that the task *will* unschedule sometime soon,
1769 * else this function might spin for a *long* time. This function can't
1770 * be called with interrupts off, or it may introduce deadlock with
1771 * smp_call_function() if an IPI is sent by the same process we are
1772 * waiting to become inactive.
1773 */
36c8b586 1774void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1775{
1776 unsigned long flags;
dd41f596 1777 int running, on_rq;
70b97a7f 1778 struct rq *rq;
1da177e4 1779
3a5c359a
AK
1780 for (;;) {
1781 /*
1782 * We do the initial early heuristics without holding
1783 * any task-queue locks at all. We'll only try to get
1784 * the runqueue lock when things look like they will
1785 * work out!
1786 */
1787 rq = task_rq(p);
fa490cfd 1788
3a5c359a
AK
1789 /*
1790 * If the task is actively running on another CPU
1791 * still, just relax and busy-wait without holding
1792 * any locks.
1793 *
1794 * NOTE! Since we don't hold any locks, it's not
1795 * even sure that "rq" stays as the right runqueue!
1796 * But we don't care, since "task_running()" will
1797 * return false if the runqueue has changed and p
1798 * is actually now running somewhere else!
1799 */
1800 while (task_running(rq, p))
1801 cpu_relax();
fa490cfd 1802
3a5c359a
AK
1803 /*
1804 * Ok, time to look more closely! We need the rq
1805 * lock now, to be *sure*. If we're wrong, we'll
1806 * just go back and repeat.
1807 */
1808 rq = task_rq_lock(p, &flags);
1809 running = task_running(rq, p);
1810 on_rq = p->se.on_rq;
1811 task_rq_unlock(rq, &flags);
fa490cfd 1812
3a5c359a
AK
1813 /*
1814 * Was it really running after all now that we
1815 * checked with the proper locks actually held?
1816 *
1817 * Oops. Go back and try again..
1818 */
1819 if (unlikely(running)) {
1820 cpu_relax();
1821 continue;
1822 }
fa490cfd 1823
3a5c359a
AK
1824 /*
1825 * It's not enough that it's not actively running,
1826 * it must be off the runqueue _entirely_, and not
1827 * preempted!
1828 *
1829 * So if it wa still runnable (but just not actively
1830 * running right now), it's preempted, and we should
1831 * yield - it could be a while.
1832 */
1833 if (unlikely(on_rq)) {
1834 schedule_timeout_uninterruptible(1);
1835 continue;
1836 }
fa490cfd 1837
3a5c359a
AK
1838 /*
1839 * Ahh, all good. It wasn't running, and it wasn't
1840 * runnable, which means that it will never become
1841 * running in the future either. We're all done!
1842 */
1843 break;
1844 }
1da177e4
LT
1845}
1846
1847/***
1848 * kick_process - kick a running thread to enter/exit the kernel
1849 * @p: the to-be-kicked thread
1850 *
1851 * Cause a process which is running on another CPU to enter
1852 * kernel-mode, without any delay. (to get signals handled.)
1853 *
1854 * NOTE: this function doesnt have to take the runqueue lock,
1855 * because all it wants to ensure is that the remote task enters
1856 * the kernel. If the IPI races and the task has been migrated
1857 * to another CPU then no harm is done and the purpose has been
1858 * achieved as well.
1859 */
36c8b586 1860void kick_process(struct task_struct *p)
1da177e4
LT
1861{
1862 int cpu;
1863
1864 preempt_disable();
1865 cpu = task_cpu(p);
1866 if ((cpu != smp_processor_id()) && task_curr(p))
1867 smp_send_reschedule(cpu);
1868 preempt_enable();
1869}
1870
1871/*
2dd73a4f
PW
1872 * Return a low guess at the load of a migration-source cpu weighted
1873 * according to the scheduling class and "nice" value.
1da177e4
LT
1874 *
1875 * We want to under-estimate the load of migration sources, to
1876 * balance conservatively.
1877 */
a9957449 1878static unsigned long source_load(int cpu, int type)
1da177e4 1879{
70b97a7f 1880 struct rq *rq = cpu_rq(cpu);
dd41f596 1881 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1882
3b0bd9bc 1883 if (type == 0)
dd41f596 1884 return total;
b910472d 1885
dd41f596 1886 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1887}
1888
1889/*
2dd73a4f
PW
1890 * Return a high guess at the load of a migration-target cpu weighted
1891 * according to the scheduling class and "nice" value.
1da177e4 1892 */
a9957449 1893static unsigned long target_load(int cpu, int type)
1da177e4 1894{
70b97a7f 1895 struct rq *rq = cpu_rq(cpu);
dd41f596 1896 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1897
7897986b 1898 if (type == 0)
dd41f596 1899 return total;
3b0bd9bc 1900
dd41f596 1901 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1902}
1903
1904/*
1905 * Return the average load per task on the cpu's run queue
1906 */
e7693a36 1907static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1908{
70b97a7f 1909 struct rq *rq = cpu_rq(cpu);
dd41f596 1910 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1911 unsigned long n = rq->nr_running;
1912
dd41f596 1913 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1914}
1915
147cbb4b
NP
1916/*
1917 * find_idlest_group finds and returns the least busy CPU group within the
1918 * domain.
1919 */
1920static struct sched_group *
1921find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1922{
1923 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1924 unsigned long min_load = ULONG_MAX, this_load = 0;
1925 int load_idx = sd->forkexec_idx;
1926 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1927
1928 do {
1929 unsigned long load, avg_load;
1930 int local_group;
1931 int i;
1932
da5a5522
BD
1933 /* Skip over this group if it has no CPUs allowed */
1934 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1935 continue;
da5a5522 1936
147cbb4b 1937 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1938
1939 /* Tally up the load of all CPUs in the group */
1940 avg_load = 0;
1941
1942 for_each_cpu_mask(i, group->cpumask) {
1943 /* Bias balancing toward cpus of our domain */
1944 if (local_group)
1945 load = source_load(i, load_idx);
1946 else
1947 load = target_load(i, load_idx);
1948
1949 avg_load += load;
1950 }
1951
1952 /* Adjust by relative CPU power of the group */
5517d86b
ED
1953 avg_load = sg_div_cpu_power(group,
1954 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1955
1956 if (local_group) {
1957 this_load = avg_load;
1958 this = group;
1959 } else if (avg_load < min_load) {
1960 min_load = avg_load;
1961 idlest = group;
1962 }
3a5c359a 1963 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1964
1965 if (!idlest || 100*this_load < imbalance*min_load)
1966 return NULL;
1967 return idlest;
1968}
1969
1970/*
0feaece9 1971 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1972 */
95cdf3b7 1973static int
7c16ec58
MT
1974find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1975 cpumask_t *tmp)
147cbb4b
NP
1976{
1977 unsigned long load, min_load = ULONG_MAX;
1978 int idlest = -1;
1979 int i;
1980
da5a5522 1981 /* Traverse only the allowed CPUs */
7c16ec58 1982 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1983
7c16ec58 1984 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1985 load = weighted_cpuload(i);
147cbb4b
NP
1986
1987 if (load < min_load || (load == min_load && i == this_cpu)) {
1988 min_load = load;
1989 idlest = i;
1990 }
1991 }
1992
1993 return idlest;
1994}
1995
476d139c
NP
1996/*
1997 * sched_balance_self: balance the current task (running on cpu) in domains
1998 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1999 * SD_BALANCE_EXEC.
2000 *
2001 * Balance, ie. select the least loaded group.
2002 *
2003 * Returns the target CPU number, or the same CPU if no balancing is needed.
2004 *
2005 * preempt must be disabled.
2006 */
2007static int sched_balance_self(int cpu, int flag)
2008{
2009 struct task_struct *t = current;
2010 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2011
c96d145e 2012 for_each_domain(cpu, tmp) {
9761eea8
IM
2013 /*
2014 * If power savings logic is enabled for a domain, stop there.
2015 */
5c45bf27
SS
2016 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2017 break;
476d139c
NP
2018 if (tmp->flags & flag)
2019 sd = tmp;
c96d145e 2020 }
476d139c
NP
2021
2022 while (sd) {
7c16ec58 2023 cpumask_t span, tmpmask;
476d139c 2024 struct sched_group *group;
1a848870
SS
2025 int new_cpu, weight;
2026
2027 if (!(sd->flags & flag)) {
2028 sd = sd->child;
2029 continue;
2030 }
476d139c
NP
2031
2032 span = sd->span;
2033 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2034 if (!group) {
2035 sd = sd->child;
2036 continue;
2037 }
476d139c 2038
7c16ec58 2039 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2040 if (new_cpu == -1 || new_cpu == cpu) {
2041 /* Now try balancing at a lower domain level of cpu */
2042 sd = sd->child;
2043 continue;
2044 }
476d139c 2045
1a848870 2046 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2047 cpu = new_cpu;
476d139c
NP
2048 sd = NULL;
2049 weight = cpus_weight(span);
2050 for_each_domain(cpu, tmp) {
2051 if (weight <= cpus_weight(tmp->span))
2052 break;
2053 if (tmp->flags & flag)
2054 sd = tmp;
2055 }
2056 /* while loop will break here if sd == NULL */
2057 }
2058
2059 return cpu;
2060}
2061
2062#endif /* CONFIG_SMP */
1da177e4 2063
1da177e4
LT
2064/***
2065 * try_to_wake_up - wake up a thread
2066 * @p: the to-be-woken-up thread
2067 * @state: the mask of task states that can be woken
2068 * @sync: do a synchronous wakeup?
2069 *
2070 * Put it on the run-queue if it's not already there. The "current"
2071 * thread is always on the run-queue (except when the actual
2072 * re-schedule is in progress), and as such you're allowed to do
2073 * the simpler "current->state = TASK_RUNNING" to mark yourself
2074 * runnable without the overhead of this.
2075 *
2076 * returns failure only if the task is already active.
2077 */
36c8b586 2078static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2079{
cc367732 2080 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2081 unsigned long flags;
2082 long old_state;
70b97a7f 2083 struct rq *rq;
1da177e4 2084
b85d0667
IM
2085 if (!sched_feat(SYNC_WAKEUPS))
2086 sync = 0;
2087
04e2f174 2088 smp_wmb();
1da177e4
LT
2089 rq = task_rq_lock(p, &flags);
2090 old_state = p->state;
2091 if (!(old_state & state))
2092 goto out;
2093
dd41f596 2094 if (p->se.on_rq)
1da177e4
LT
2095 goto out_running;
2096
2097 cpu = task_cpu(p);
cc367732 2098 orig_cpu = cpu;
1da177e4
LT
2099 this_cpu = smp_processor_id();
2100
2101#ifdef CONFIG_SMP
2102 if (unlikely(task_running(rq, p)))
2103 goto out_activate;
2104
5d2f5a61
DA
2105 cpu = p->sched_class->select_task_rq(p, sync);
2106 if (cpu != orig_cpu) {
2107 set_task_cpu(p, cpu);
1da177e4
LT
2108 task_rq_unlock(rq, &flags);
2109 /* might preempt at this point */
2110 rq = task_rq_lock(p, &flags);
2111 old_state = p->state;
2112 if (!(old_state & state))
2113 goto out;
dd41f596 2114 if (p->se.on_rq)
1da177e4
LT
2115 goto out_running;
2116
2117 this_cpu = smp_processor_id();
2118 cpu = task_cpu(p);
2119 }
2120
e7693a36
GH
2121#ifdef CONFIG_SCHEDSTATS
2122 schedstat_inc(rq, ttwu_count);
2123 if (cpu == this_cpu)
2124 schedstat_inc(rq, ttwu_local);
2125 else {
2126 struct sched_domain *sd;
2127 for_each_domain(this_cpu, sd) {
2128 if (cpu_isset(cpu, sd->span)) {
2129 schedstat_inc(sd, ttwu_wake_remote);
2130 break;
2131 }
2132 }
2133 }
e7693a36
GH
2134#endif
2135
1da177e4
LT
2136out_activate:
2137#endif /* CONFIG_SMP */
cc367732
IM
2138 schedstat_inc(p, se.nr_wakeups);
2139 if (sync)
2140 schedstat_inc(p, se.nr_wakeups_sync);
2141 if (orig_cpu != cpu)
2142 schedstat_inc(p, se.nr_wakeups_migrate);
2143 if (cpu == this_cpu)
2144 schedstat_inc(p, se.nr_wakeups_local);
2145 else
2146 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2147 update_rq_clock(rq);
dd41f596 2148 activate_task(rq, p, 1);
1da177e4
LT
2149 success = 1;
2150
2151out_running:
4ae7d5ce
IM
2152 check_preempt_curr(rq, p);
2153
1da177e4 2154 p->state = TASK_RUNNING;
9a897c5a
SR
2155#ifdef CONFIG_SMP
2156 if (p->sched_class->task_wake_up)
2157 p->sched_class->task_wake_up(rq, p);
2158#endif
1da177e4
LT
2159out:
2160 task_rq_unlock(rq, &flags);
2161
2162 return success;
2163}
2164
7ad5b3a5 2165int wake_up_process(struct task_struct *p)
1da177e4 2166{
d9514f6c 2167 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2168}
1da177e4
LT
2169EXPORT_SYMBOL(wake_up_process);
2170
7ad5b3a5 2171int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2172{
2173 return try_to_wake_up(p, state, 0);
2174}
2175
1da177e4
LT
2176/*
2177 * Perform scheduler related setup for a newly forked process p.
2178 * p is forked by current.
dd41f596
IM
2179 *
2180 * __sched_fork() is basic setup used by init_idle() too:
2181 */
2182static void __sched_fork(struct task_struct *p)
2183{
dd41f596
IM
2184 p->se.exec_start = 0;
2185 p->se.sum_exec_runtime = 0;
f6cf891c 2186 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2187 p->se.last_wakeup = 0;
2188 p->se.avg_overlap = 0;
6cfb0d5d
IM
2189
2190#ifdef CONFIG_SCHEDSTATS
2191 p->se.wait_start = 0;
dd41f596
IM
2192 p->se.sum_sleep_runtime = 0;
2193 p->se.sleep_start = 0;
dd41f596
IM
2194 p->se.block_start = 0;
2195 p->se.sleep_max = 0;
2196 p->se.block_max = 0;
2197 p->se.exec_max = 0;
eba1ed4b 2198 p->se.slice_max = 0;
dd41f596 2199 p->se.wait_max = 0;
6cfb0d5d 2200#endif
476d139c 2201
fa717060 2202 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2203 p->se.on_rq = 0;
4a55bd5e 2204 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2205
e107be36
AK
2206#ifdef CONFIG_PREEMPT_NOTIFIERS
2207 INIT_HLIST_HEAD(&p->preempt_notifiers);
2208#endif
2209
1da177e4
LT
2210 /*
2211 * We mark the process as running here, but have not actually
2212 * inserted it onto the runqueue yet. This guarantees that
2213 * nobody will actually run it, and a signal or other external
2214 * event cannot wake it up and insert it on the runqueue either.
2215 */
2216 p->state = TASK_RUNNING;
dd41f596
IM
2217}
2218
2219/*
2220 * fork()/clone()-time setup:
2221 */
2222void sched_fork(struct task_struct *p, int clone_flags)
2223{
2224 int cpu = get_cpu();
2225
2226 __sched_fork(p);
2227
2228#ifdef CONFIG_SMP
2229 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2230#endif
02e4bac2 2231 set_task_cpu(p, cpu);
b29739f9
IM
2232
2233 /*
2234 * Make sure we do not leak PI boosting priority to the child:
2235 */
2236 p->prio = current->normal_prio;
2ddbf952
HS
2237 if (!rt_prio(p->prio))
2238 p->sched_class = &fair_sched_class;
b29739f9 2239
52f17b6c 2240#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2241 if (likely(sched_info_on()))
52f17b6c 2242 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2243#endif
d6077cb8 2244#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2245 p->oncpu = 0;
2246#endif
1da177e4 2247#ifdef CONFIG_PREEMPT
4866cde0 2248 /* Want to start with kernel preemption disabled. */
a1261f54 2249 task_thread_info(p)->preempt_count = 1;
1da177e4 2250#endif
476d139c 2251 put_cpu();
1da177e4
LT
2252}
2253
2254/*
2255 * wake_up_new_task - wake up a newly created task for the first time.
2256 *
2257 * This function will do some initial scheduler statistics housekeeping
2258 * that must be done for every newly created context, then puts the task
2259 * on the runqueue and wakes it.
2260 */
7ad5b3a5 2261void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2262{
2263 unsigned long flags;
dd41f596 2264 struct rq *rq;
1da177e4
LT
2265
2266 rq = task_rq_lock(p, &flags);
147cbb4b 2267 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2268 update_rq_clock(rq);
1da177e4
LT
2269
2270 p->prio = effective_prio(p);
2271
b9dca1e0 2272 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2273 activate_task(rq, p, 0);
1da177e4 2274 } else {
1da177e4 2275 /*
dd41f596
IM
2276 * Let the scheduling class do new task startup
2277 * management (if any):
1da177e4 2278 */
ee0827d8 2279 p->sched_class->task_new(rq, p);
6363ca57 2280 inc_nr_running(p, rq);
1da177e4 2281 }
dd41f596 2282 check_preempt_curr(rq, p);
9a897c5a
SR
2283#ifdef CONFIG_SMP
2284 if (p->sched_class->task_wake_up)
2285 p->sched_class->task_wake_up(rq, p);
2286#endif
dd41f596 2287 task_rq_unlock(rq, &flags);
1da177e4
LT
2288}
2289
e107be36
AK
2290#ifdef CONFIG_PREEMPT_NOTIFIERS
2291
2292/**
421cee29
RD
2293 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2294 * @notifier: notifier struct to register
e107be36
AK
2295 */
2296void preempt_notifier_register(struct preempt_notifier *notifier)
2297{
2298 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2299}
2300EXPORT_SYMBOL_GPL(preempt_notifier_register);
2301
2302/**
2303 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2304 * @notifier: notifier struct to unregister
e107be36
AK
2305 *
2306 * This is safe to call from within a preemption notifier.
2307 */
2308void preempt_notifier_unregister(struct preempt_notifier *notifier)
2309{
2310 hlist_del(&notifier->link);
2311}
2312EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2313
2314static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2315{
2316 struct preempt_notifier *notifier;
2317 struct hlist_node *node;
2318
2319 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2320 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2321}
2322
2323static void
2324fire_sched_out_preempt_notifiers(struct task_struct *curr,
2325 struct task_struct *next)
2326{
2327 struct preempt_notifier *notifier;
2328 struct hlist_node *node;
2329
2330 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2331 notifier->ops->sched_out(notifier, next);
2332}
2333
2334#else
2335
2336static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2337{
2338}
2339
2340static void
2341fire_sched_out_preempt_notifiers(struct task_struct *curr,
2342 struct task_struct *next)
2343{
2344}
2345
2346#endif
2347
4866cde0
NP
2348/**
2349 * prepare_task_switch - prepare to switch tasks
2350 * @rq: the runqueue preparing to switch
421cee29 2351 * @prev: the current task that is being switched out
4866cde0
NP
2352 * @next: the task we are going to switch to.
2353 *
2354 * This is called with the rq lock held and interrupts off. It must
2355 * be paired with a subsequent finish_task_switch after the context
2356 * switch.
2357 *
2358 * prepare_task_switch sets up locking and calls architecture specific
2359 * hooks.
2360 */
e107be36
AK
2361static inline void
2362prepare_task_switch(struct rq *rq, struct task_struct *prev,
2363 struct task_struct *next)
4866cde0 2364{
e107be36 2365 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2366 prepare_lock_switch(rq, next);
2367 prepare_arch_switch(next);
2368}
2369
1da177e4
LT
2370/**
2371 * finish_task_switch - clean up after a task-switch
344babaa 2372 * @rq: runqueue associated with task-switch
1da177e4
LT
2373 * @prev: the thread we just switched away from.
2374 *
4866cde0
NP
2375 * finish_task_switch must be called after the context switch, paired
2376 * with a prepare_task_switch call before the context switch.
2377 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2378 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2379 *
2380 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2381 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2382 * with the lock held can cause deadlocks; see schedule() for
2383 * details.)
2384 */
a9957449 2385static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2386 __releases(rq->lock)
2387{
1da177e4 2388 struct mm_struct *mm = rq->prev_mm;
55a101f8 2389 long prev_state;
1da177e4
LT
2390
2391 rq->prev_mm = NULL;
2392
2393 /*
2394 * A task struct has one reference for the use as "current".
c394cc9f 2395 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2396 * schedule one last time. The schedule call will never return, and
2397 * the scheduled task must drop that reference.
c394cc9f 2398 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2399 * still held, otherwise prev could be scheduled on another cpu, die
2400 * there before we look at prev->state, and then the reference would
2401 * be dropped twice.
2402 * Manfred Spraul <manfred@colorfullife.com>
2403 */
55a101f8 2404 prev_state = prev->state;
4866cde0
NP
2405 finish_arch_switch(prev);
2406 finish_lock_switch(rq, prev);
9a897c5a
SR
2407#ifdef CONFIG_SMP
2408 if (current->sched_class->post_schedule)
2409 current->sched_class->post_schedule(rq);
2410#endif
e8fa1362 2411
e107be36 2412 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2413 if (mm)
2414 mmdrop(mm);
c394cc9f 2415 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2416 /*
2417 * Remove function-return probe instances associated with this
2418 * task and put them back on the free list.
9761eea8 2419 */
c6fd91f0 2420 kprobe_flush_task(prev);
1da177e4 2421 put_task_struct(prev);
c6fd91f0 2422 }
1da177e4
LT
2423}
2424
2425/**
2426 * schedule_tail - first thing a freshly forked thread must call.
2427 * @prev: the thread we just switched away from.
2428 */
36c8b586 2429asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2430 __releases(rq->lock)
2431{
70b97a7f
IM
2432 struct rq *rq = this_rq();
2433
4866cde0
NP
2434 finish_task_switch(rq, prev);
2435#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2436 /* In this case, finish_task_switch does not reenable preemption */
2437 preempt_enable();
2438#endif
1da177e4 2439 if (current->set_child_tid)
b488893a 2440 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2441}
2442
2443/*
2444 * context_switch - switch to the new MM and the new
2445 * thread's register state.
2446 */
dd41f596 2447static inline void
70b97a7f 2448context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2449 struct task_struct *next)
1da177e4 2450{
dd41f596 2451 struct mm_struct *mm, *oldmm;
1da177e4 2452
e107be36 2453 prepare_task_switch(rq, prev, next);
dd41f596
IM
2454 mm = next->mm;
2455 oldmm = prev->active_mm;
9226d125
ZA
2456 /*
2457 * For paravirt, this is coupled with an exit in switch_to to
2458 * combine the page table reload and the switch backend into
2459 * one hypercall.
2460 */
2461 arch_enter_lazy_cpu_mode();
2462
dd41f596 2463 if (unlikely(!mm)) {
1da177e4
LT
2464 next->active_mm = oldmm;
2465 atomic_inc(&oldmm->mm_count);
2466 enter_lazy_tlb(oldmm, next);
2467 } else
2468 switch_mm(oldmm, mm, next);
2469
dd41f596 2470 if (unlikely(!prev->mm)) {
1da177e4 2471 prev->active_mm = NULL;
1da177e4
LT
2472 rq->prev_mm = oldmm;
2473 }
3a5f5e48
IM
2474 /*
2475 * Since the runqueue lock will be released by the next
2476 * task (which is an invalid locking op but in the case
2477 * of the scheduler it's an obvious special-case), so we
2478 * do an early lockdep release here:
2479 */
2480#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2481 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2482#endif
1da177e4
LT
2483
2484 /* Here we just switch the register state and the stack. */
2485 switch_to(prev, next, prev);
2486
dd41f596
IM
2487 barrier();
2488 /*
2489 * this_rq must be evaluated again because prev may have moved
2490 * CPUs since it called schedule(), thus the 'rq' on its stack
2491 * frame will be invalid.
2492 */
2493 finish_task_switch(this_rq(), prev);
1da177e4
LT
2494}
2495
2496/*
2497 * nr_running, nr_uninterruptible and nr_context_switches:
2498 *
2499 * externally visible scheduler statistics: current number of runnable
2500 * threads, current number of uninterruptible-sleeping threads, total
2501 * number of context switches performed since bootup.
2502 */
2503unsigned long nr_running(void)
2504{
2505 unsigned long i, sum = 0;
2506
2507 for_each_online_cpu(i)
2508 sum += cpu_rq(i)->nr_running;
2509
2510 return sum;
2511}
2512
2513unsigned long nr_uninterruptible(void)
2514{
2515 unsigned long i, sum = 0;
2516
0a945022 2517 for_each_possible_cpu(i)
1da177e4
LT
2518 sum += cpu_rq(i)->nr_uninterruptible;
2519
2520 /*
2521 * Since we read the counters lockless, it might be slightly
2522 * inaccurate. Do not allow it to go below zero though:
2523 */
2524 if (unlikely((long)sum < 0))
2525 sum = 0;
2526
2527 return sum;
2528}
2529
2530unsigned long long nr_context_switches(void)
2531{
cc94abfc
SR
2532 int i;
2533 unsigned long long sum = 0;
1da177e4 2534
0a945022 2535 for_each_possible_cpu(i)
1da177e4
LT
2536 sum += cpu_rq(i)->nr_switches;
2537
2538 return sum;
2539}
2540
2541unsigned long nr_iowait(void)
2542{
2543 unsigned long i, sum = 0;
2544
0a945022 2545 for_each_possible_cpu(i)
1da177e4
LT
2546 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2547
2548 return sum;
2549}
2550
db1b1fef
JS
2551unsigned long nr_active(void)
2552{
2553 unsigned long i, running = 0, uninterruptible = 0;
2554
2555 for_each_online_cpu(i) {
2556 running += cpu_rq(i)->nr_running;
2557 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2558 }
2559
2560 if (unlikely((long)uninterruptible < 0))
2561 uninterruptible = 0;
2562
2563 return running + uninterruptible;
2564}
2565
48f24c4d 2566/*
dd41f596
IM
2567 * Update rq->cpu_load[] statistics. This function is usually called every
2568 * scheduler tick (TICK_NSEC).
48f24c4d 2569 */
dd41f596 2570static void update_cpu_load(struct rq *this_rq)
48f24c4d 2571{
495eca49 2572 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2573 int i, scale;
2574
2575 this_rq->nr_load_updates++;
dd41f596
IM
2576
2577 /* Update our load: */
2578 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2579 unsigned long old_load, new_load;
2580
2581 /* scale is effectively 1 << i now, and >> i divides by scale */
2582
2583 old_load = this_rq->cpu_load[i];
2584 new_load = this_load;
a25707f3
IM
2585 /*
2586 * Round up the averaging division if load is increasing. This
2587 * prevents us from getting stuck on 9 if the load is 10, for
2588 * example.
2589 */
2590 if (new_load > old_load)
2591 new_load += scale-1;
dd41f596
IM
2592 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2593 }
48f24c4d
IM
2594}
2595
dd41f596
IM
2596#ifdef CONFIG_SMP
2597
1da177e4
LT
2598/*
2599 * double_rq_lock - safely lock two runqueues
2600 *
2601 * Note this does not disable interrupts like task_rq_lock,
2602 * you need to do so manually before calling.
2603 */
70b97a7f 2604static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2605 __acquires(rq1->lock)
2606 __acquires(rq2->lock)
2607{
054b9108 2608 BUG_ON(!irqs_disabled());
1da177e4
LT
2609 if (rq1 == rq2) {
2610 spin_lock(&rq1->lock);
2611 __acquire(rq2->lock); /* Fake it out ;) */
2612 } else {
c96d145e 2613 if (rq1 < rq2) {
1da177e4
LT
2614 spin_lock(&rq1->lock);
2615 spin_lock(&rq2->lock);
2616 } else {
2617 spin_lock(&rq2->lock);
2618 spin_lock(&rq1->lock);
2619 }
2620 }
6e82a3be
IM
2621 update_rq_clock(rq1);
2622 update_rq_clock(rq2);
1da177e4
LT
2623}
2624
2625/*
2626 * double_rq_unlock - safely unlock two runqueues
2627 *
2628 * Note this does not restore interrupts like task_rq_unlock,
2629 * you need to do so manually after calling.
2630 */
70b97a7f 2631static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2632 __releases(rq1->lock)
2633 __releases(rq2->lock)
2634{
2635 spin_unlock(&rq1->lock);
2636 if (rq1 != rq2)
2637 spin_unlock(&rq2->lock);
2638 else
2639 __release(rq2->lock);
2640}
2641
2642/*
2643 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2644 */
e8fa1362 2645static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2646 __releases(this_rq->lock)
2647 __acquires(busiest->lock)
2648 __acquires(this_rq->lock)
2649{
e8fa1362
SR
2650 int ret = 0;
2651
054b9108
KK
2652 if (unlikely(!irqs_disabled())) {
2653 /* printk() doesn't work good under rq->lock */
2654 spin_unlock(&this_rq->lock);
2655 BUG_ON(1);
2656 }
1da177e4 2657 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2658 if (busiest < this_rq) {
1da177e4
LT
2659 spin_unlock(&this_rq->lock);
2660 spin_lock(&busiest->lock);
2661 spin_lock(&this_rq->lock);
e8fa1362 2662 ret = 1;
1da177e4
LT
2663 } else
2664 spin_lock(&busiest->lock);
2665 }
e8fa1362 2666 return ret;
1da177e4
LT
2667}
2668
1da177e4
LT
2669/*
2670 * If dest_cpu is allowed for this process, migrate the task to it.
2671 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2672 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2673 * the cpu_allowed mask is restored.
2674 */
36c8b586 2675static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2676{
70b97a7f 2677 struct migration_req req;
1da177e4 2678 unsigned long flags;
70b97a7f 2679 struct rq *rq;
1da177e4
LT
2680
2681 rq = task_rq_lock(p, &flags);
2682 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2683 || unlikely(cpu_is_offline(dest_cpu)))
2684 goto out;
2685
2686 /* force the process onto the specified CPU */
2687 if (migrate_task(p, dest_cpu, &req)) {
2688 /* Need to wait for migration thread (might exit: take ref). */
2689 struct task_struct *mt = rq->migration_thread;
36c8b586 2690
1da177e4
LT
2691 get_task_struct(mt);
2692 task_rq_unlock(rq, &flags);
2693 wake_up_process(mt);
2694 put_task_struct(mt);
2695 wait_for_completion(&req.done);
36c8b586 2696
1da177e4
LT
2697 return;
2698 }
2699out:
2700 task_rq_unlock(rq, &flags);
2701}
2702
2703/*
476d139c
NP
2704 * sched_exec - execve() is a valuable balancing opportunity, because at
2705 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2706 */
2707void sched_exec(void)
2708{
1da177e4 2709 int new_cpu, this_cpu = get_cpu();
476d139c 2710 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2711 put_cpu();
476d139c
NP
2712 if (new_cpu != this_cpu)
2713 sched_migrate_task(current, new_cpu);
1da177e4
LT
2714}
2715
2716/*
2717 * pull_task - move a task from a remote runqueue to the local runqueue.
2718 * Both runqueues must be locked.
2719 */
dd41f596
IM
2720static void pull_task(struct rq *src_rq, struct task_struct *p,
2721 struct rq *this_rq, int this_cpu)
1da177e4 2722{
2e1cb74a 2723 deactivate_task(src_rq, p, 0);
1da177e4 2724 set_task_cpu(p, this_cpu);
dd41f596 2725 activate_task(this_rq, p, 0);
1da177e4
LT
2726 /*
2727 * Note that idle threads have a prio of MAX_PRIO, for this test
2728 * to be always true for them.
2729 */
dd41f596 2730 check_preempt_curr(this_rq, p);
1da177e4
LT
2731}
2732
2733/*
2734 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2735 */
858119e1 2736static
70b97a7f 2737int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2738 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2739 int *all_pinned)
1da177e4
LT
2740{
2741 /*
2742 * We do not migrate tasks that are:
2743 * 1) running (obviously), or
2744 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2745 * 3) are cache-hot on their current CPU.
2746 */
cc367732
IM
2747 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2748 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2749 return 0;
cc367732 2750 }
81026794
NP
2751 *all_pinned = 0;
2752
cc367732
IM
2753 if (task_running(rq, p)) {
2754 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2755 return 0;
cc367732 2756 }
1da177e4 2757
da84d961
IM
2758 /*
2759 * Aggressive migration if:
2760 * 1) task is cache cold, or
2761 * 2) too many balance attempts have failed.
2762 */
2763
6bc1665b
IM
2764 if (!task_hot(p, rq->clock, sd) ||
2765 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2766#ifdef CONFIG_SCHEDSTATS
cc367732 2767 if (task_hot(p, rq->clock, sd)) {
da84d961 2768 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2769 schedstat_inc(p, se.nr_forced_migrations);
2770 }
da84d961
IM
2771#endif
2772 return 1;
2773 }
2774
cc367732
IM
2775 if (task_hot(p, rq->clock, sd)) {
2776 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2777 return 0;
cc367732 2778 }
1da177e4
LT
2779 return 1;
2780}
2781
e1d1484f
PW
2782static unsigned long
2783balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2784 unsigned long max_load_move, struct sched_domain *sd,
2785 enum cpu_idle_type idle, int *all_pinned,
2786 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2787{
b82d9fdd 2788 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2789 struct task_struct *p;
2790 long rem_load_move = max_load_move;
1da177e4 2791
e1d1484f 2792 if (max_load_move == 0)
1da177e4
LT
2793 goto out;
2794
81026794
NP
2795 pinned = 1;
2796
1da177e4 2797 /*
dd41f596 2798 * Start the load-balancing iterator:
1da177e4 2799 */
dd41f596
IM
2800 p = iterator->start(iterator->arg);
2801next:
b82d9fdd 2802 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2803 goto out;
50ddd969 2804 /*
b82d9fdd 2805 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2806 * skip a task if it will be the highest priority task (i.e. smallest
2807 * prio value) on its new queue regardless of its load weight
2808 */
dd41f596
IM
2809 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2810 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2811 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2812 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2813 p = iterator->next(iterator->arg);
2814 goto next;
1da177e4
LT
2815 }
2816
dd41f596 2817 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2818 pulled++;
dd41f596 2819 rem_load_move -= p->se.load.weight;
1da177e4 2820
2dd73a4f 2821 /*
b82d9fdd 2822 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2823 */
e1d1484f 2824 if (rem_load_move > 0) {
a4ac01c3
PW
2825 if (p->prio < *this_best_prio)
2826 *this_best_prio = p->prio;
dd41f596
IM
2827 p = iterator->next(iterator->arg);
2828 goto next;
1da177e4
LT
2829 }
2830out:
2831 /*
e1d1484f 2832 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2833 * so we can safely collect pull_task() stats here rather than
2834 * inside pull_task().
2835 */
2836 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2837
2838 if (all_pinned)
2839 *all_pinned = pinned;
e1d1484f
PW
2840
2841 return max_load_move - rem_load_move;
1da177e4
LT
2842}
2843
dd41f596 2844/*
43010659
PW
2845 * move_tasks tries to move up to max_load_move weighted load from busiest to
2846 * this_rq, as part of a balancing operation within domain "sd".
2847 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2848 *
2849 * Called with both runqueues locked.
2850 */
2851static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2852 unsigned long max_load_move,
dd41f596
IM
2853 struct sched_domain *sd, enum cpu_idle_type idle,
2854 int *all_pinned)
2855{
5522d5d5 2856 const struct sched_class *class = sched_class_highest;
43010659 2857 unsigned long total_load_moved = 0;
a4ac01c3 2858 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2859
2860 do {
43010659
PW
2861 total_load_moved +=
2862 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2863 max_load_move - total_load_moved,
a4ac01c3 2864 sd, idle, all_pinned, &this_best_prio);
dd41f596 2865 class = class->next;
43010659 2866 } while (class && max_load_move > total_load_moved);
dd41f596 2867
43010659
PW
2868 return total_load_moved > 0;
2869}
2870
e1d1484f
PW
2871static int
2872iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2873 struct sched_domain *sd, enum cpu_idle_type idle,
2874 struct rq_iterator *iterator)
2875{
2876 struct task_struct *p = iterator->start(iterator->arg);
2877 int pinned = 0;
2878
2879 while (p) {
2880 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2881 pull_task(busiest, p, this_rq, this_cpu);
2882 /*
2883 * Right now, this is only the second place pull_task()
2884 * is called, so we can safely collect pull_task()
2885 * stats here rather than inside pull_task().
2886 */
2887 schedstat_inc(sd, lb_gained[idle]);
2888
2889 return 1;
2890 }
2891 p = iterator->next(iterator->arg);
2892 }
2893
2894 return 0;
2895}
2896
43010659
PW
2897/*
2898 * move_one_task tries to move exactly one task from busiest to this_rq, as
2899 * part of active balancing operations within "domain".
2900 * Returns 1 if successful and 0 otherwise.
2901 *
2902 * Called with both runqueues locked.
2903 */
2904static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2905 struct sched_domain *sd, enum cpu_idle_type idle)
2906{
5522d5d5 2907 const struct sched_class *class;
43010659
PW
2908
2909 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2910 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2911 return 1;
2912
2913 return 0;
dd41f596
IM
2914}
2915
1da177e4
LT
2916/*
2917 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2918 * domain. It calculates and returns the amount of weighted load which
2919 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2920 */
2921static struct sched_group *
2922find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2923 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2924 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2925{
2926 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2927 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2928 unsigned long max_pull;
2dd73a4f
PW
2929 unsigned long busiest_load_per_task, busiest_nr_running;
2930 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2931 int load_idx, group_imb = 0;
5c45bf27
SS
2932#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2933 int power_savings_balance = 1;
2934 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2935 unsigned long min_nr_running = ULONG_MAX;
2936 struct sched_group *group_min = NULL, *group_leader = NULL;
2937#endif
1da177e4
LT
2938
2939 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2940 busiest_load_per_task = busiest_nr_running = 0;
2941 this_load_per_task = this_nr_running = 0;
d15bcfdb 2942 if (idle == CPU_NOT_IDLE)
7897986b 2943 load_idx = sd->busy_idx;
d15bcfdb 2944 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2945 load_idx = sd->newidle_idx;
2946 else
2947 load_idx = sd->idle_idx;
1da177e4
LT
2948
2949 do {
908a7c1b 2950 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2951 int local_group;
2952 int i;
908a7c1b 2953 int __group_imb = 0;
783609c6 2954 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2955 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2956
2957 local_group = cpu_isset(this_cpu, group->cpumask);
2958
783609c6
SS
2959 if (local_group)
2960 balance_cpu = first_cpu(group->cpumask);
2961
1da177e4 2962 /* Tally up the load of all CPUs in the group */
2dd73a4f 2963 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2964 max_cpu_load = 0;
2965 min_cpu_load = ~0UL;
1da177e4
LT
2966
2967 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2968 struct rq *rq;
2969
2970 if (!cpu_isset(i, *cpus))
2971 continue;
2972
2973 rq = cpu_rq(i);
2dd73a4f 2974
9439aab8 2975 if (*sd_idle && rq->nr_running)
5969fe06
NP
2976 *sd_idle = 0;
2977
1da177e4 2978 /* Bias balancing toward cpus of our domain */
783609c6
SS
2979 if (local_group) {
2980 if (idle_cpu(i) && !first_idle_cpu) {
2981 first_idle_cpu = 1;
2982 balance_cpu = i;
2983 }
2984
a2000572 2985 load = target_load(i, load_idx);
908a7c1b 2986 } else {
a2000572 2987 load = source_load(i, load_idx);
908a7c1b
KC
2988 if (load > max_cpu_load)
2989 max_cpu_load = load;
2990 if (min_cpu_load > load)
2991 min_cpu_load = load;
2992 }
1da177e4
LT
2993
2994 avg_load += load;
2dd73a4f 2995 sum_nr_running += rq->nr_running;
dd41f596 2996 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2997 }
2998
783609c6
SS
2999 /*
3000 * First idle cpu or the first cpu(busiest) in this sched group
3001 * is eligible for doing load balancing at this and above
9439aab8
SS
3002 * domains. In the newly idle case, we will allow all the cpu's
3003 * to do the newly idle load balance.
783609c6 3004 */
9439aab8
SS
3005 if (idle != CPU_NEWLY_IDLE && local_group &&
3006 balance_cpu != this_cpu && balance) {
783609c6
SS
3007 *balance = 0;
3008 goto ret;
3009 }
3010
1da177e4 3011 total_load += avg_load;
5517d86b 3012 total_pwr += group->__cpu_power;
1da177e4
LT
3013
3014 /* Adjust by relative CPU power of the group */
5517d86b
ED
3015 avg_load = sg_div_cpu_power(group,
3016 avg_load * SCHED_LOAD_SCALE);
1da177e4 3017
908a7c1b
KC
3018 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3019 __group_imb = 1;
3020
5517d86b 3021 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3022
1da177e4
LT
3023 if (local_group) {
3024 this_load = avg_load;
3025 this = group;
2dd73a4f
PW
3026 this_nr_running = sum_nr_running;
3027 this_load_per_task = sum_weighted_load;
3028 } else if (avg_load > max_load &&
908a7c1b 3029 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3030 max_load = avg_load;
3031 busiest = group;
2dd73a4f
PW
3032 busiest_nr_running = sum_nr_running;
3033 busiest_load_per_task = sum_weighted_load;
908a7c1b 3034 group_imb = __group_imb;
1da177e4 3035 }
5c45bf27
SS
3036
3037#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3038 /*
3039 * Busy processors will not participate in power savings
3040 * balance.
3041 */
dd41f596
IM
3042 if (idle == CPU_NOT_IDLE ||
3043 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3044 goto group_next;
5c45bf27
SS
3045
3046 /*
3047 * If the local group is idle or completely loaded
3048 * no need to do power savings balance at this domain
3049 */
3050 if (local_group && (this_nr_running >= group_capacity ||
3051 !this_nr_running))
3052 power_savings_balance = 0;
3053
dd41f596 3054 /*
5c45bf27
SS
3055 * If a group is already running at full capacity or idle,
3056 * don't include that group in power savings calculations
dd41f596
IM
3057 */
3058 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3059 || !sum_nr_running)
dd41f596 3060 goto group_next;
5c45bf27 3061
dd41f596 3062 /*
5c45bf27 3063 * Calculate the group which has the least non-idle load.
dd41f596
IM
3064 * This is the group from where we need to pick up the load
3065 * for saving power
3066 */
3067 if ((sum_nr_running < min_nr_running) ||
3068 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3069 first_cpu(group->cpumask) <
3070 first_cpu(group_min->cpumask))) {
dd41f596
IM
3071 group_min = group;
3072 min_nr_running = sum_nr_running;
5c45bf27
SS
3073 min_load_per_task = sum_weighted_load /
3074 sum_nr_running;
dd41f596 3075 }
5c45bf27 3076
dd41f596 3077 /*
5c45bf27 3078 * Calculate the group which is almost near its
dd41f596
IM
3079 * capacity but still has some space to pick up some load
3080 * from other group and save more power
3081 */
3082 if (sum_nr_running <= group_capacity - 1) {
3083 if (sum_nr_running > leader_nr_running ||
3084 (sum_nr_running == leader_nr_running &&
3085 first_cpu(group->cpumask) >
3086 first_cpu(group_leader->cpumask))) {
3087 group_leader = group;
3088 leader_nr_running = sum_nr_running;
3089 }
48f24c4d 3090 }
5c45bf27
SS
3091group_next:
3092#endif
1da177e4
LT
3093 group = group->next;
3094 } while (group != sd->groups);
3095
2dd73a4f 3096 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3097 goto out_balanced;
3098
3099 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3100
3101 if (this_load >= avg_load ||
3102 100*max_load <= sd->imbalance_pct*this_load)
3103 goto out_balanced;
3104
2dd73a4f 3105 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3106 if (group_imb)
3107 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3108
1da177e4
LT
3109 /*
3110 * We're trying to get all the cpus to the average_load, so we don't
3111 * want to push ourselves above the average load, nor do we wish to
3112 * reduce the max loaded cpu below the average load, as either of these
3113 * actions would just result in more rebalancing later, and ping-pong
3114 * tasks around. Thus we look for the minimum possible imbalance.
3115 * Negative imbalances (*we* are more loaded than anyone else) will
3116 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3117 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3118 * appear as very large values with unsigned longs.
3119 */
2dd73a4f
PW
3120 if (max_load <= busiest_load_per_task)
3121 goto out_balanced;
3122
3123 /*
3124 * In the presence of smp nice balancing, certain scenarios can have
3125 * max load less than avg load(as we skip the groups at or below
3126 * its cpu_power, while calculating max_load..)
3127 */
3128 if (max_load < avg_load) {
3129 *imbalance = 0;
3130 goto small_imbalance;
3131 }
0c117f1b
SS
3132
3133 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3134 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3135
1da177e4 3136 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3137 *imbalance = min(max_pull * busiest->__cpu_power,
3138 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3139 / SCHED_LOAD_SCALE;
3140
2dd73a4f
PW
3141 /*
3142 * if *imbalance is less than the average load per runnable task
3143 * there is no gaurantee that any tasks will be moved so we'll have
3144 * a think about bumping its value to force at least one task to be
3145 * moved
3146 */
7fd0d2dd 3147 if (*imbalance < busiest_load_per_task) {
48f24c4d 3148 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3149 unsigned int imbn;
3150
3151small_imbalance:
3152 pwr_move = pwr_now = 0;
3153 imbn = 2;
3154 if (this_nr_running) {
3155 this_load_per_task /= this_nr_running;
3156 if (busiest_load_per_task > this_load_per_task)
3157 imbn = 1;
3158 } else
3159 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3160
dd41f596
IM
3161 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3162 busiest_load_per_task * imbn) {
2dd73a4f 3163 *imbalance = busiest_load_per_task;
1da177e4
LT
3164 return busiest;
3165 }
3166
3167 /*
3168 * OK, we don't have enough imbalance to justify moving tasks,
3169 * however we may be able to increase total CPU power used by
3170 * moving them.
3171 */
3172
5517d86b
ED
3173 pwr_now += busiest->__cpu_power *
3174 min(busiest_load_per_task, max_load);
3175 pwr_now += this->__cpu_power *
3176 min(this_load_per_task, this_load);
1da177e4
LT
3177 pwr_now /= SCHED_LOAD_SCALE;
3178
3179 /* Amount of load we'd subtract */
5517d86b
ED
3180 tmp = sg_div_cpu_power(busiest,
3181 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3182 if (max_load > tmp)
5517d86b 3183 pwr_move += busiest->__cpu_power *
2dd73a4f 3184 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3185
3186 /* Amount of load we'd add */
5517d86b 3187 if (max_load * busiest->__cpu_power <
33859f7f 3188 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3189 tmp = sg_div_cpu_power(this,
3190 max_load * busiest->__cpu_power);
1da177e4 3191 else
5517d86b
ED
3192 tmp = sg_div_cpu_power(this,
3193 busiest_load_per_task * SCHED_LOAD_SCALE);
3194 pwr_move += this->__cpu_power *
3195 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3196 pwr_move /= SCHED_LOAD_SCALE;
3197
3198 /* Move if we gain throughput */
7fd0d2dd
SS
3199 if (pwr_move > pwr_now)
3200 *imbalance = busiest_load_per_task;
1da177e4
LT
3201 }
3202
1da177e4
LT
3203 return busiest;
3204
3205out_balanced:
5c45bf27 3206#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3207 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3208 goto ret;
1da177e4 3209
5c45bf27
SS
3210 if (this == group_leader && group_leader != group_min) {
3211 *imbalance = min_load_per_task;
3212 return group_min;
3213 }
5c45bf27 3214#endif
783609c6 3215ret:
1da177e4
LT
3216 *imbalance = 0;
3217 return NULL;
3218}
3219
3220/*
3221 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3222 */
70b97a7f 3223static struct rq *
d15bcfdb 3224find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3225 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3226{
70b97a7f 3227 struct rq *busiest = NULL, *rq;
2dd73a4f 3228 unsigned long max_load = 0;
1da177e4
LT
3229 int i;
3230
3231 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3232 unsigned long wl;
0a2966b4
CL
3233
3234 if (!cpu_isset(i, *cpus))
3235 continue;
3236
48f24c4d 3237 rq = cpu_rq(i);
dd41f596 3238 wl = weighted_cpuload(i);
2dd73a4f 3239
dd41f596 3240 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3241 continue;
1da177e4 3242
dd41f596
IM
3243 if (wl > max_load) {
3244 max_load = wl;
48f24c4d 3245 busiest = rq;
1da177e4
LT
3246 }
3247 }
3248
3249 return busiest;
3250}
3251
77391d71
NP
3252/*
3253 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3254 * so long as it is large enough.
3255 */
3256#define MAX_PINNED_INTERVAL 512
3257
1da177e4
LT
3258/*
3259 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3260 * tasks if there is an imbalance.
1da177e4 3261 */
70b97a7f 3262static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3263 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3264 int *balance, cpumask_t *cpus)
1da177e4 3265{
43010659 3266 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3267 struct sched_group *group;
1da177e4 3268 unsigned long imbalance;
70b97a7f 3269 struct rq *busiest;
fe2eea3f 3270 unsigned long flags;
5969fe06 3271
7c16ec58
MT
3272 cpus_setall(*cpus);
3273
89c4710e
SS
3274 /*
3275 * When power savings policy is enabled for the parent domain, idle
3276 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3277 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3278 * portraying it as CPU_NOT_IDLE.
89c4710e 3279 */
d15bcfdb 3280 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3281 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3282 sd_idle = 1;
1da177e4 3283
2d72376b 3284 schedstat_inc(sd, lb_count[idle]);
1da177e4 3285
0a2966b4
CL
3286redo:
3287 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3288 cpus, balance);
783609c6 3289
06066714 3290 if (*balance == 0)
783609c6 3291 goto out_balanced;
783609c6 3292
1da177e4
LT
3293 if (!group) {
3294 schedstat_inc(sd, lb_nobusyg[idle]);
3295 goto out_balanced;
3296 }
3297
7c16ec58 3298 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3299 if (!busiest) {
3300 schedstat_inc(sd, lb_nobusyq[idle]);
3301 goto out_balanced;
3302 }
3303
db935dbd 3304 BUG_ON(busiest == this_rq);
1da177e4
LT
3305
3306 schedstat_add(sd, lb_imbalance[idle], imbalance);
3307
43010659 3308 ld_moved = 0;
1da177e4
LT
3309 if (busiest->nr_running > 1) {
3310 /*
3311 * Attempt to move tasks. If find_busiest_group has found
3312 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3313 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3314 * correctly treated as an imbalance.
3315 */
fe2eea3f 3316 local_irq_save(flags);
e17224bf 3317 double_rq_lock(this_rq, busiest);
43010659 3318 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3319 imbalance, sd, idle, &all_pinned);
e17224bf 3320 double_rq_unlock(this_rq, busiest);
fe2eea3f 3321 local_irq_restore(flags);
81026794 3322
46cb4b7c
SS
3323 /*
3324 * some other cpu did the load balance for us.
3325 */
43010659 3326 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3327 resched_cpu(this_cpu);
3328
81026794 3329 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3330 if (unlikely(all_pinned)) {
7c16ec58
MT
3331 cpu_clear(cpu_of(busiest), *cpus);
3332 if (!cpus_empty(*cpus))
0a2966b4 3333 goto redo;
81026794 3334 goto out_balanced;
0a2966b4 3335 }
1da177e4 3336 }
81026794 3337
43010659 3338 if (!ld_moved) {
1da177e4
LT
3339 schedstat_inc(sd, lb_failed[idle]);
3340 sd->nr_balance_failed++;
3341
3342 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3343
fe2eea3f 3344 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3345
3346 /* don't kick the migration_thread, if the curr
3347 * task on busiest cpu can't be moved to this_cpu
3348 */
3349 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3350 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3351 all_pinned = 1;
3352 goto out_one_pinned;
3353 }
3354
1da177e4
LT
3355 if (!busiest->active_balance) {
3356 busiest->active_balance = 1;
3357 busiest->push_cpu = this_cpu;
81026794 3358 active_balance = 1;
1da177e4 3359 }
fe2eea3f 3360 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3361 if (active_balance)
1da177e4
LT
3362 wake_up_process(busiest->migration_thread);
3363
3364 /*
3365 * We've kicked active balancing, reset the failure
3366 * counter.
3367 */
39507451 3368 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3369 }
81026794 3370 } else
1da177e4
LT
3371 sd->nr_balance_failed = 0;
3372
81026794 3373 if (likely(!active_balance)) {
1da177e4
LT
3374 /* We were unbalanced, so reset the balancing interval */
3375 sd->balance_interval = sd->min_interval;
81026794
NP
3376 } else {
3377 /*
3378 * If we've begun active balancing, start to back off. This
3379 * case may not be covered by the all_pinned logic if there
3380 * is only 1 task on the busy runqueue (because we don't call
3381 * move_tasks).
3382 */
3383 if (sd->balance_interval < sd->max_interval)
3384 sd->balance_interval *= 2;
1da177e4
LT
3385 }
3386
43010659 3387 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3388 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3389 return -1;
3390 return ld_moved;
1da177e4
LT
3391
3392out_balanced:
1da177e4
LT
3393 schedstat_inc(sd, lb_balanced[idle]);
3394
16cfb1c0 3395 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3396
3397out_one_pinned:
1da177e4 3398 /* tune up the balancing interval */
77391d71
NP
3399 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3400 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3401 sd->balance_interval *= 2;
3402
48f24c4d 3403 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3404 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3405 return -1;
3406 return 0;
1da177e4
LT
3407}
3408
3409/*
3410 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3411 * tasks if there is an imbalance.
3412 *
d15bcfdb 3413 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3414 * this_rq is locked.
3415 */
48f24c4d 3416static int
7c16ec58
MT
3417load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3418 cpumask_t *cpus)
1da177e4
LT
3419{
3420 struct sched_group *group;
70b97a7f 3421 struct rq *busiest = NULL;
1da177e4 3422 unsigned long imbalance;
43010659 3423 int ld_moved = 0;
5969fe06 3424 int sd_idle = 0;
969bb4e4 3425 int all_pinned = 0;
7c16ec58
MT
3426
3427 cpus_setall(*cpus);
5969fe06 3428
89c4710e
SS
3429 /*
3430 * When power savings policy is enabled for the parent domain, idle
3431 * sibling can pick up load irrespective of busy siblings. In this case,
3432 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3433 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3434 */
3435 if (sd->flags & SD_SHARE_CPUPOWER &&
3436 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3437 sd_idle = 1;
1da177e4 3438
2d72376b 3439 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3440redo:
d15bcfdb 3441 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3442 &sd_idle, cpus, NULL);
1da177e4 3443 if (!group) {
d15bcfdb 3444 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3445 goto out_balanced;
1da177e4
LT
3446 }
3447
7c16ec58 3448 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3449 if (!busiest) {
d15bcfdb 3450 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3451 goto out_balanced;
1da177e4
LT
3452 }
3453
db935dbd
NP
3454 BUG_ON(busiest == this_rq);
3455
d15bcfdb 3456 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3457
43010659 3458 ld_moved = 0;
d6d5cfaf
NP
3459 if (busiest->nr_running > 1) {
3460 /* Attempt to move tasks */
3461 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3462 /* this_rq->clock is already updated */
3463 update_rq_clock(busiest);
43010659 3464 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3465 imbalance, sd, CPU_NEWLY_IDLE,
3466 &all_pinned);
d6d5cfaf 3467 spin_unlock(&busiest->lock);
0a2966b4 3468
969bb4e4 3469 if (unlikely(all_pinned)) {
7c16ec58
MT
3470 cpu_clear(cpu_of(busiest), *cpus);
3471 if (!cpus_empty(*cpus))
0a2966b4
CL
3472 goto redo;
3473 }
d6d5cfaf
NP
3474 }
3475
43010659 3476 if (!ld_moved) {
d15bcfdb 3477 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3478 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3480 return -1;
3481 } else
16cfb1c0 3482 sd->nr_balance_failed = 0;
1da177e4 3483
43010659 3484 return ld_moved;
16cfb1c0
NP
3485
3486out_balanced:
d15bcfdb 3487 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3488 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3489 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3490 return -1;
16cfb1c0 3491 sd->nr_balance_failed = 0;
48f24c4d 3492
16cfb1c0 3493 return 0;
1da177e4
LT
3494}
3495
3496/*
3497 * idle_balance is called by schedule() if this_cpu is about to become
3498 * idle. Attempts to pull tasks from other CPUs.
3499 */
70b97a7f 3500static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3501{
3502 struct sched_domain *sd;
dd41f596
IM
3503 int pulled_task = -1;
3504 unsigned long next_balance = jiffies + HZ;
7c16ec58 3505 cpumask_t tmpmask;
1da177e4
LT
3506
3507 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3508 unsigned long interval;
3509
3510 if (!(sd->flags & SD_LOAD_BALANCE))
3511 continue;
3512
3513 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3514 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3515 pulled_task = load_balance_newidle(this_cpu, this_rq,
3516 sd, &tmpmask);
92c4ca5c
CL
3517
3518 interval = msecs_to_jiffies(sd->balance_interval);
3519 if (time_after(next_balance, sd->last_balance + interval))
3520 next_balance = sd->last_balance + interval;
3521 if (pulled_task)
3522 break;
1da177e4 3523 }
dd41f596 3524 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3525 /*
3526 * We are going idle. next_balance may be set based on
3527 * a busy processor. So reset next_balance.
3528 */
3529 this_rq->next_balance = next_balance;
dd41f596 3530 }
1da177e4
LT
3531}
3532
3533/*
3534 * active_load_balance is run by migration threads. It pushes running tasks
3535 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3536 * running on each physical CPU where possible, and avoids physical /
3537 * logical imbalances.
3538 *
3539 * Called with busiest_rq locked.
3540 */
70b97a7f 3541static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3542{
39507451 3543 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3544 struct sched_domain *sd;
3545 struct rq *target_rq;
39507451 3546
48f24c4d 3547 /* Is there any task to move? */
39507451 3548 if (busiest_rq->nr_running <= 1)
39507451
NP
3549 return;
3550
3551 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3552
3553 /*
39507451 3554 * This condition is "impossible", if it occurs
41a2d6cf 3555 * we need to fix it. Originally reported by
39507451 3556 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3557 */
39507451 3558 BUG_ON(busiest_rq == target_rq);
1da177e4 3559
39507451
NP
3560 /* move a task from busiest_rq to target_rq */
3561 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3562 update_rq_clock(busiest_rq);
3563 update_rq_clock(target_rq);
39507451
NP
3564
3565 /* Search for an sd spanning us and the target CPU. */
c96d145e 3566 for_each_domain(target_cpu, sd) {
39507451 3567 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3568 cpu_isset(busiest_cpu, sd->span))
39507451 3569 break;
c96d145e 3570 }
39507451 3571
48f24c4d 3572 if (likely(sd)) {
2d72376b 3573 schedstat_inc(sd, alb_count);
39507451 3574
43010659
PW
3575 if (move_one_task(target_rq, target_cpu, busiest_rq,
3576 sd, CPU_IDLE))
48f24c4d
IM
3577 schedstat_inc(sd, alb_pushed);
3578 else
3579 schedstat_inc(sd, alb_failed);
3580 }
39507451 3581 spin_unlock(&target_rq->lock);
1da177e4
LT
3582}
3583
46cb4b7c
SS
3584#ifdef CONFIG_NO_HZ
3585static struct {
3586 atomic_t load_balancer;
41a2d6cf 3587 cpumask_t cpu_mask;
46cb4b7c
SS
3588} nohz ____cacheline_aligned = {
3589 .load_balancer = ATOMIC_INIT(-1),
3590 .cpu_mask = CPU_MASK_NONE,
3591};
3592
7835b98b 3593/*
46cb4b7c
SS
3594 * This routine will try to nominate the ilb (idle load balancing)
3595 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3596 * load balancing on behalf of all those cpus. If all the cpus in the system
3597 * go into this tickless mode, then there will be no ilb owner (as there is
3598 * no need for one) and all the cpus will sleep till the next wakeup event
3599 * arrives...
3600 *
3601 * For the ilb owner, tick is not stopped. And this tick will be used
3602 * for idle load balancing. ilb owner will still be part of
3603 * nohz.cpu_mask..
7835b98b 3604 *
46cb4b7c
SS
3605 * While stopping the tick, this cpu will become the ilb owner if there
3606 * is no other owner. And will be the owner till that cpu becomes busy
3607 * or if all cpus in the system stop their ticks at which point
3608 * there is no need for ilb owner.
3609 *
3610 * When the ilb owner becomes busy, it nominates another owner, during the
3611 * next busy scheduler_tick()
3612 */
3613int select_nohz_load_balancer(int stop_tick)
3614{
3615 int cpu = smp_processor_id();
3616
3617 if (stop_tick) {
3618 cpu_set(cpu, nohz.cpu_mask);
3619 cpu_rq(cpu)->in_nohz_recently = 1;
3620
3621 /*
3622 * If we are going offline and still the leader, give up!
3623 */
3624 if (cpu_is_offline(cpu) &&
3625 atomic_read(&nohz.load_balancer) == cpu) {
3626 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3627 BUG();
3628 return 0;
3629 }
3630
3631 /* time for ilb owner also to sleep */
3632 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3633 if (atomic_read(&nohz.load_balancer) == cpu)
3634 atomic_set(&nohz.load_balancer, -1);
3635 return 0;
3636 }
3637
3638 if (atomic_read(&nohz.load_balancer) == -1) {
3639 /* make me the ilb owner */
3640 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3641 return 1;
3642 } else if (atomic_read(&nohz.load_balancer) == cpu)
3643 return 1;
3644 } else {
3645 if (!cpu_isset(cpu, nohz.cpu_mask))
3646 return 0;
3647
3648 cpu_clear(cpu, nohz.cpu_mask);
3649
3650 if (atomic_read(&nohz.load_balancer) == cpu)
3651 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3652 BUG();
3653 }
3654 return 0;
3655}
3656#endif
3657
3658static DEFINE_SPINLOCK(balancing);
3659
3660/*
7835b98b
CL
3661 * It checks each scheduling domain to see if it is due to be balanced,
3662 * and initiates a balancing operation if so.
3663 *
3664 * Balancing parameters are set up in arch_init_sched_domains.
3665 */
a9957449 3666static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3667{
46cb4b7c
SS
3668 int balance = 1;
3669 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3670 unsigned long interval;
3671 struct sched_domain *sd;
46cb4b7c 3672 /* Earliest time when we have to do rebalance again */
c9819f45 3673 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3674 int update_next_balance = 0;
7c16ec58 3675 cpumask_t tmp;
1da177e4 3676
46cb4b7c 3677 for_each_domain(cpu, sd) {
1da177e4
LT
3678 if (!(sd->flags & SD_LOAD_BALANCE))
3679 continue;
3680
3681 interval = sd->balance_interval;
d15bcfdb 3682 if (idle != CPU_IDLE)
1da177e4
LT
3683 interval *= sd->busy_factor;
3684
3685 /* scale ms to jiffies */
3686 interval = msecs_to_jiffies(interval);
3687 if (unlikely(!interval))
3688 interval = 1;
dd41f596
IM
3689 if (interval > HZ*NR_CPUS/10)
3690 interval = HZ*NR_CPUS/10;
3691
1da177e4 3692
08c183f3
CL
3693 if (sd->flags & SD_SERIALIZE) {
3694 if (!spin_trylock(&balancing))
3695 goto out;
3696 }
3697
c9819f45 3698 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3699 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3700 /*
3701 * We've pulled tasks over so either we're no
5969fe06
NP
3702 * longer idle, or one of our SMT siblings is
3703 * not idle.
3704 */
d15bcfdb 3705 idle = CPU_NOT_IDLE;
1da177e4 3706 }
1bd77f2d 3707 sd->last_balance = jiffies;
1da177e4 3708 }
08c183f3
CL
3709 if (sd->flags & SD_SERIALIZE)
3710 spin_unlock(&balancing);
3711out:
f549da84 3712 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3713 next_balance = sd->last_balance + interval;
f549da84
SS
3714 update_next_balance = 1;
3715 }
783609c6
SS
3716
3717 /*
3718 * Stop the load balance at this level. There is another
3719 * CPU in our sched group which is doing load balancing more
3720 * actively.
3721 */
3722 if (!balance)
3723 break;
1da177e4 3724 }
f549da84
SS
3725
3726 /*
3727 * next_balance will be updated only when there is a need.
3728 * When the cpu is attached to null domain for ex, it will not be
3729 * updated.
3730 */
3731 if (likely(update_next_balance))
3732 rq->next_balance = next_balance;
46cb4b7c
SS
3733}
3734
3735/*
3736 * run_rebalance_domains is triggered when needed from the scheduler tick.
3737 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3738 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3739 */
3740static void run_rebalance_domains(struct softirq_action *h)
3741{
dd41f596
IM
3742 int this_cpu = smp_processor_id();
3743 struct rq *this_rq = cpu_rq(this_cpu);
3744 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3745 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3746
dd41f596 3747 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3748
3749#ifdef CONFIG_NO_HZ
3750 /*
3751 * If this cpu is the owner for idle load balancing, then do the
3752 * balancing on behalf of the other idle cpus whose ticks are
3753 * stopped.
3754 */
dd41f596
IM
3755 if (this_rq->idle_at_tick &&
3756 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3757 cpumask_t cpus = nohz.cpu_mask;
3758 struct rq *rq;
3759 int balance_cpu;
3760
dd41f596 3761 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3762 for_each_cpu_mask(balance_cpu, cpus) {
3763 /*
3764 * If this cpu gets work to do, stop the load balancing
3765 * work being done for other cpus. Next load
3766 * balancing owner will pick it up.
3767 */
3768 if (need_resched())
3769 break;
3770
de0cf899 3771 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3772
3773 rq = cpu_rq(balance_cpu);
dd41f596
IM
3774 if (time_after(this_rq->next_balance, rq->next_balance))
3775 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3776 }
3777 }
3778#endif
3779}
3780
3781/*
3782 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3783 *
3784 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3785 * idle load balancing owner or decide to stop the periodic load balancing,
3786 * if the whole system is idle.
3787 */
dd41f596 3788static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3789{
46cb4b7c
SS
3790#ifdef CONFIG_NO_HZ
3791 /*
3792 * If we were in the nohz mode recently and busy at the current
3793 * scheduler tick, then check if we need to nominate new idle
3794 * load balancer.
3795 */
3796 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3797 rq->in_nohz_recently = 0;
3798
3799 if (atomic_read(&nohz.load_balancer) == cpu) {
3800 cpu_clear(cpu, nohz.cpu_mask);
3801 atomic_set(&nohz.load_balancer, -1);
3802 }
3803
3804 if (atomic_read(&nohz.load_balancer) == -1) {
3805 /*
3806 * simple selection for now: Nominate the
3807 * first cpu in the nohz list to be the next
3808 * ilb owner.
3809 *
3810 * TBD: Traverse the sched domains and nominate
3811 * the nearest cpu in the nohz.cpu_mask.
3812 */
3813 int ilb = first_cpu(nohz.cpu_mask);
3814
434d53b0 3815 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3816 resched_cpu(ilb);
3817 }
3818 }
3819
3820 /*
3821 * If this cpu is idle and doing idle load balancing for all the
3822 * cpus with ticks stopped, is it time for that to stop?
3823 */
3824 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3825 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3826 resched_cpu(cpu);
3827 return;
3828 }
3829
3830 /*
3831 * If this cpu is idle and the idle load balancing is done by
3832 * someone else, then no need raise the SCHED_SOFTIRQ
3833 */
3834 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3835 cpu_isset(cpu, nohz.cpu_mask))
3836 return;
3837#endif
3838 if (time_after_eq(jiffies, rq->next_balance))
3839 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3840}
dd41f596
IM
3841
3842#else /* CONFIG_SMP */
3843
1da177e4
LT
3844/*
3845 * on UP we do not need to balance between CPUs:
3846 */
70b97a7f 3847static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3848{
3849}
dd41f596 3850
1da177e4
LT
3851#endif
3852
1da177e4
LT
3853DEFINE_PER_CPU(struct kernel_stat, kstat);
3854
3855EXPORT_PER_CPU_SYMBOL(kstat);
3856
3857/*
41b86e9c
IM
3858 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3859 * that have not yet been banked in case the task is currently running.
1da177e4 3860 */
41b86e9c 3861unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3862{
1da177e4 3863 unsigned long flags;
41b86e9c
IM
3864 u64 ns, delta_exec;
3865 struct rq *rq;
48f24c4d 3866
41b86e9c
IM
3867 rq = task_rq_lock(p, &flags);
3868 ns = p->se.sum_exec_runtime;
051a1d1a 3869 if (task_current(rq, p)) {
a8e504d2
IM
3870 update_rq_clock(rq);
3871 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3872 if ((s64)delta_exec > 0)
3873 ns += delta_exec;
3874 }
3875 task_rq_unlock(rq, &flags);
48f24c4d 3876
1da177e4
LT
3877 return ns;
3878}
3879
1da177e4
LT
3880/*
3881 * Account user cpu time to a process.
3882 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3883 * @cputime: the cpu time spent in user space since the last update
3884 */
3885void account_user_time(struct task_struct *p, cputime_t cputime)
3886{
3887 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3888 cputime64_t tmp;
3889
3890 p->utime = cputime_add(p->utime, cputime);
3891
3892 /* Add user time to cpustat. */
3893 tmp = cputime_to_cputime64(cputime);
3894 if (TASK_NICE(p) > 0)
3895 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3896 else
3897 cpustat->user = cputime64_add(cpustat->user, tmp);
3898}
3899
94886b84
LV
3900/*
3901 * Account guest cpu time to a process.
3902 * @p: the process that the cpu time gets accounted to
3903 * @cputime: the cpu time spent in virtual machine since the last update
3904 */
f7402e03 3905static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3906{
3907 cputime64_t tmp;
3908 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3909
3910 tmp = cputime_to_cputime64(cputime);
3911
3912 p->utime = cputime_add(p->utime, cputime);
3913 p->gtime = cputime_add(p->gtime, cputime);
3914
3915 cpustat->user = cputime64_add(cpustat->user, tmp);
3916 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3917}
3918
c66f08be
MN
3919/*
3920 * Account scaled user cpu time to a process.
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in user space since the last update
3923 */
3924void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3925{
3926 p->utimescaled = cputime_add(p->utimescaled, cputime);
3927}
3928
1da177e4
LT
3929/*
3930 * Account system cpu time to a process.
3931 * @p: the process that the cpu time gets accounted to
3932 * @hardirq_offset: the offset to subtract from hardirq_count()
3933 * @cputime: the cpu time spent in kernel space since the last update
3934 */
3935void account_system_time(struct task_struct *p, int hardirq_offset,
3936 cputime_t cputime)
3937{
3938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3939 struct rq *rq = this_rq();
1da177e4
LT
3940 cputime64_t tmp;
3941
983ed7a6
HH
3942 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3943 account_guest_time(p, cputime);
3944 return;
3945 }
94886b84 3946
1da177e4
LT
3947 p->stime = cputime_add(p->stime, cputime);
3948
3949 /* Add system time to cpustat. */
3950 tmp = cputime_to_cputime64(cputime);
3951 if (hardirq_count() - hardirq_offset)
3952 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3953 else if (softirq_count())
3954 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3955 else if (p != rq->idle)
1da177e4 3956 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3957 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3958 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3959 else
3960 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3961 /* Account for system time used */
3962 acct_update_integrals(p);
1da177e4
LT
3963}
3964
c66f08be
MN
3965/*
3966 * Account scaled system cpu time to a process.
3967 * @p: the process that the cpu time gets accounted to
3968 * @hardirq_offset: the offset to subtract from hardirq_count()
3969 * @cputime: the cpu time spent in kernel space since the last update
3970 */
3971void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3972{
3973 p->stimescaled = cputime_add(p->stimescaled, cputime);
3974}
3975
1da177e4
LT
3976/*
3977 * Account for involuntary wait time.
3978 * @p: the process from which the cpu time has been stolen
3979 * @steal: the cpu time spent in involuntary wait
3980 */
3981void account_steal_time(struct task_struct *p, cputime_t steal)
3982{
3983 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3984 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3985 struct rq *rq = this_rq();
1da177e4
LT
3986
3987 if (p == rq->idle) {
3988 p->stime = cputime_add(p->stime, steal);
3989 if (atomic_read(&rq->nr_iowait) > 0)
3990 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3991 else
3992 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3993 } else
1da177e4
LT
3994 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3995}
3996
7835b98b
CL
3997/*
3998 * This function gets called by the timer code, with HZ frequency.
3999 * We call it with interrupts disabled.
4000 *
4001 * It also gets called by the fork code, when changing the parent's
4002 * timeslices.
4003 */
4004void scheduler_tick(void)
4005{
7835b98b
CL
4006 int cpu = smp_processor_id();
4007 struct rq *rq = cpu_rq(cpu);
dd41f596 4008 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4009
4010 sched_clock_tick();
dd41f596
IM
4011
4012 spin_lock(&rq->lock);
3e51f33f 4013 update_rq_clock(rq);
f1a438d8 4014 update_cpu_load(rq);
fa85ae24 4015 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4016 spin_unlock(&rq->lock);
7835b98b 4017
e418e1c2 4018#ifdef CONFIG_SMP
dd41f596
IM
4019 rq->idle_at_tick = idle_cpu(cpu);
4020 trigger_load_balance(rq, cpu);
e418e1c2 4021#endif
1da177e4
LT
4022}
4023
1da177e4
LT
4024#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4025
43627582 4026void __kprobes add_preempt_count(int val)
1da177e4
LT
4027{
4028 /*
4029 * Underflow?
4030 */
9a11b49a
IM
4031 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4032 return;
1da177e4
LT
4033 preempt_count() += val;
4034 /*
4035 * Spinlock count overflowing soon?
4036 */
33859f7f
MOS
4037 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4038 PREEMPT_MASK - 10);
1da177e4
LT
4039}
4040EXPORT_SYMBOL(add_preempt_count);
4041
43627582 4042void __kprobes sub_preempt_count(int val)
1da177e4
LT
4043{
4044 /*
4045 * Underflow?
4046 */
9a11b49a
IM
4047 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4048 return;
1da177e4
LT
4049 /*
4050 * Is the spinlock portion underflowing?
4051 */
9a11b49a
IM
4052 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4053 !(preempt_count() & PREEMPT_MASK)))
4054 return;
4055
1da177e4
LT
4056 preempt_count() -= val;
4057}
4058EXPORT_SYMBOL(sub_preempt_count);
4059
4060#endif
4061
4062/*
dd41f596 4063 * Print scheduling while atomic bug:
1da177e4 4064 */
dd41f596 4065static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4066{
838225b4
SS
4067 struct pt_regs *regs = get_irq_regs();
4068
4069 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4070 prev->comm, prev->pid, preempt_count());
4071
dd41f596
IM
4072 debug_show_held_locks(prev);
4073 if (irqs_disabled())
4074 print_irqtrace_events(prev);
838225b4
SS
4075
4076 if (regs)
4077 show_regs(regs);
4078 else
4079 dump_stack();
dd41f596 4080}
1da177e4 4081
dd41f596
IM
4082/*
4083 * Various schedule()-time debugging checks and statistics:
4084 */
4085static inline void schedule_debug(struct task_struct *prev)
4086{
1da177e4 4087 /*
41a2d6cf 4088 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4089 * schedule() atomically, we ignore that path for now.
4090 * Otherwise, whine if we are scheduling when we should not be.
4091 */
3f33a7ce 4092 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4093 __schedule_bug(prev);
4094
1da177e4
LT
4095 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4096
2d72376b 4097 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4098#ifdef CONFIG_SCHEDSTATS
4099 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4100 schedstat_inc(this_rq(), bkl_count);
4101 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4102 }
4103#endif
dd41f596
IM
4104}
4105
4106/*
4107 * Pick up the highest-prio task:
4108 */
4109static inline struct task_struct *
ff95f3df 4110pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4111{
5522d5d5 4112 const struct sched_class *class;
dd41f596 4113 struct task_struct *p;
1da177e4
LT
4114
4115 /*
dd41f596
IM
4116 * Optimization: we know that if all tasks are in
4117 * the fair class we can call that function directly:
1da177e4 4118 */
dd41f596 4119 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4120 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4121 if (likely(p))
4122 return p;
1da177e4
LT
4123 }
4124
dd41f596
IM
4125 class = sched_class_highest;
4126 for ( ; ; ) {
fb8d4724 4127 p = class->pick_next_task(rq);
dd41f596
IM
4128 if (p)
4129 return p;
4130 /*
4131 * Will never be NULL as the idle class always
4132 * returns a non-NULL p:
4133 */
4134 class = class->next;
4135 }
4136}
1da177e4 4137
dd41f596
IM
4138/*
4139 * schedule() is the main scheduler function.
4140 */
4141asmlinkage void __sched schedule(void)
4142{
4143 struct task_struct *prev, *next;
67ca7bde 4144 unsigned long *switch_count;
dd41f596 4145 struct rq *rq;
dd41f596
IM
4146 int cpu;
4147
4148need_resched:
4149 preempt_disable();
4150 cpu = smp_processor_id();
4151 rq = cpu_rq(cpu);
4152 rcu_qsctr_inc(cpu);
4153 prev = rq->curr;
4154 switch_count = &prev->nivcsw;
4155
4156 release_kernel_lock(prev);
4157need_resched_nonpreemptible:
4158
4159 schedule_debug(prev);
1da177e4 4160
8f4d37ec
PZ
4161 hrtick_clear(rq);
4162
1e819950
IM
4163 /*
4164 * Do the rq-clock update outside the rq lock:
4165 */
4166 local_irq_disable();
3e51f33f 4167 update_rq_clock(rq);
1e819950
IM
4168 spin_lock(&rq->lock);
4169 clear_tsk_need_resched(prev);
1da177e4 4170
1da177e4 4171 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4172 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4173 prev->state = TASK_RUNNING;
16882c1e 4174 else
2e1cb74a 4175 deactivate_task(rq, prev, 1);
dd41f596 4176 switch_count = &prev->nvcsw;
1da177e4
LT
4177 }
4178
9a897c5a
SR
4179#ifdef CONFIG_SMP
4180 if (prev->sched_class->pre_schedule)
4181 prev->sched_class->pre_schedule(rq, prev);
4182#endif
f65eda4f 4183
dd41f596 4184 if (unlikely(!rq->nr_running))
1da177e4 4185 idle_balance(cpu, rq);
1da177e4 4186
31ee529c 4187 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4188 next = pick_next_task(rq, prev);
1da177e4 4189
1da177e4 4190 if (likely(prev != next)) {
673a90a1
DS
4191 sched_info_switch(prev, next);
4192
1da177e4
LT
4193 rq->nr_switches++;
4194 rq->curr = next;
4195 ++*switch_count;
4196
dd41f596 4197 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4198 /*
4199 * the context switch might have flipped the stack from under
4200 * us, hence refresh the local variables.
4201 */
4202 cpu = smp_processor_id();
4203 rq = cpu_rq(cpu);
1da177e4
LT
4204 } else
4205 spin_unlock_irq(&rq->lock);
4206
8f4d37ec
PZ
4207 hrtick_set(rq);
4208
4209 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4210 goto need_resched_nonpreemptible;
8f4d37ec 4211
1da177e4
LT
4212 preempt_enable_no_resched();
4213 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4214 goto need_resched;
4215}
1da177e4
LT
4216EXPORT_SYMBOL(schedule);
4217
4218#ifdef CONFIG_PREEMPT
4219/*
2ed6e34f 4220 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4221 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4222 * occur there and call schedule directly.
4223 */
4224asmlinkage void __sched preempt_schedule(void)
4225{
4226 struct thread_info *ti = current_thread_info();
6478d880 4227
1da177e4
LT
4228 /*
4229 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4230 * we do not want to preempt the current task. Just return..
1da177e4 4231 */
beed33a8 4232 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4233 return;
4234
3a5c359a
AK
4235 do {
4236 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4237 schedule();
3a5c359a 4238 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4239
3a5c359a
AK
4240 /*
4241 * Check again in case we missed a preemption opportunity
4242 * between schedule and now.
4243 */
4244 barrier();
4245 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4246}
1da177e4
LT
4247EXPORT_SYMBOL(preempt_schedule);
4248
4249/*
2ed6e34f 4250 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4251 * off of irq context.
4252 * Note, that this is called and return with irqs disabled. This will
4253 * protect us against recursive calling from irq.
4254 */
4255asmlinkage void __sched preempt_schedule_irq(void)
4256{
4257 struct thread_info *ti = current_thread_info();
6478d880 4258
2ed6e34f 4259 /* Catch callers which need to be fixed */
1da177e4
LT
4260 BUG_ON(ti->preempt_count || !irqs_disabled());
4261
3a5c359a
AK
4262 do {
4263 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4264 local_irq_enable();
4265 schedule();
4266 local_irq_disable();
3a5c359a 4267 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4268
3a5c359a
AK
4269 /*
4270 * Check again in case we missed a preemption opportunity
4271 * between schedule and now.
4272 */
4273 barrier();
4274 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4275}
4276
4277#endif /* CONFIG_PREEMPT */
4278
95cdf3b7
IM
4279int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4280 void *key)
1da177e4 4281{
48f24c4d 4282 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4283}
1da177e4
LT
4284EXPORT_SYMBOL(default_wake_function);
4285
4286/*
41a2d6cf
IM
4287 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4288 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4289 * number) then we wake all the non-exclusive tasks and one exclusive task.
4290 *
4291 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4292 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4293 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4294 */
4295static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4296 int nr_exclusive, int sync, void *key)
4297{
2e45874c 4298 wait_queue_t *curr, *next;
1da177e4 4299
2e45874c 4300 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4301 unsigned flags = curr->flags;
4302
1da177e4 4303 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4304 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4305 break;
4306 }
4307}
4308
4309/**
4310 * __wake_up - wake up threads blocked on a waitqueue.
4311 * @q: the waitqueue
4312 * @mode: which threads
4313 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4314 * @key: is directly passed to the wakeup function
1da177e4 4315 */
7ad5b3a5 4316void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4317 int nr_exclusive, void *key)
1da177e4
LT
4318{
4319 unsigned long flags;
4320
4321 spin_lock_irqsave(&q->lock, flags);
4322 __wake_up_common(q, mode, nr_exclusive, 0, key);
4323 spin_unlock_irqrestore(&q->lock, flags);
4324}
1da177e4
LT
4325EXPORT_SYMBOL(__wake_up);
4326
4327/*
4328 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4329 */
7ad5b3a5 4330void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4331{
4332 __wake_up_common(q, mode, 1, 0, NULL);
4333}
4334
4335/**
67be2dd1 4336 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4337 * @q: the waitqueue
4338 * @mode: which threads
4339 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4340 *
4341 * The sync wakeup differs that the waker knows that it will schedule
4342 * away soon, so while the target thread will be woken up, it will not
4343 * be migrated to another CPU - ie. the two threads are 'synchronized'
4344 * with each other. This can prevent needless bouncing between CPUs.
4345 *
4346 * On UP it can prevent extra preemption.
4347 */
7ad5b3a5 4348void
95cdf3b7 4349__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4350{
4351 unsigned long flags;
4352 int sync = 1;
4353
4354 if (unlikely(!q))
4355 return;
4356
4357 if (unlikely(!nr_exclusive))
4358 sync = 0;
4359
4360 spin_lock_irqsave(&q->lock, flags);
4361 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4362 spin_unlock_irqrestore(&q->lock, flags);
4363}
4364EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4365
b15136e9 4366void complete(struct completion *x)
1da177e4
LT
4367{
4368 unsigned long flags;
4369
4370 spin_lock_irqsave(&x->wait.lock, flags);
4371 x->done++;
d9514f6c 4372 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4373 spin_unlock_irqrestore(&x->wait.lock, flags);
4374}
4375EXPORT_SYMBOL(complete);
4376
b15136e9 4377void complete_all(struct completion *x)
1da177e4
LT
4378{
4379 unsigned long flags;
4380
4381 spin_lock_irqsave(&x->wait.lock, flags);
4382 x->done += UINT_MAX/2;
d9514f6c 4383 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4384 spin_unlock_irqrestore(&x->wait.lock, flags);
4385}
4386EXPORT_SYMBOL(complete_all);
4387
8cbbe86d
AK
4388static inline long __sched
4389do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4390{
1da177e4
LT
4391 if (!x->done) {
4392 DECLARE_WAITQUEUE(wait, current);
4393
4394 wait.flags |= WQ_FLAG_EXCLUSIVE;
4395 __add_wait_queue_tail(&x->wait, &wait);
4396 do {
009e577e
MW
4397 if ((state == TASK_INTERRUPTIBLE &&
4398 signal_pending(current)) ||
4399 (state == TASK_KILLABLE &&
4400 fatal_signal_pending(current))) {
ea71a546
ON
4401 timeout = -ERESTARTSYS;
4402 break;
8cbbe86d
AK
4403 }
4404 __set_current_state(state);
1da177e4
LT
4405 spin_unlock_irq(&x->wait.lock);
4406 timeout = schedule_timeout(timeout);
4407 spin_lock_irq(&x->wait.lock);
ea71a546 4408 } while (!x->done && timeout);
1da177e4 4409 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4410 if (!x->done)
4411 return timeout;
1da177e4
LT
4412 }
4413 x->done--;
ea71a546 4414 return timeout ?: 1;
1da177e4 4415}
1da177e4 4416
8cbbe86d
AK
4417static long __sched
4418wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4419{
1da177e4
LT
4420 might_sleep();
4421
4422 spin_lock_irq(&x->wait.lock);
8cbbe86d 4423 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4424 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4425 return timeout;
4426}
1da177e4 4427
b15136e9 4428void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4429{
4430 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4431}
8cbbe86d 4432EXPORT_SYMBOL(wait_for_completion);
1da177e4 4433
b15136e9 4434unsigned long __sched
8cbbe86d 4435wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4436{
8cbbe86d 4437 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4438}
8cbbe86d 4439EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4440
8cbbe86d 4441int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4442{
51e97990
AK
4443 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4444 if (t == -ERESTARTSYS)
4445 return t;
4446 return 0;
0fec171c 4447}
8cbbe86d 4448EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4449
b15136e9 4450unsigned long __sched
8cbbe86d
AK
4451wait_for_completion_interruptible_timeout(struct completion *x,
4452 unsigned long timeout)
0fec171c 4453{
8cbbe86d 4454 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4455}
8cbbe86d 4456EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4457
009e577e
MW
4458int __sched wait_for_completion_killable(struct completion *x)
4459{
4460 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4461 if (t == -ERESTARTSYS)
4462 return t;
4463 return 0;
4464}
4465EXPORT_SYMBOL(wait_for_completion_killable);
4466
8cbbe86d
AK
4467static long __sched
4468sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4469{
0fec171c
IM
4470 unsigned long flags;
4471 wait_queue_t wait;
4472
4473 init_waitqueue_entry(&wait, current);
1da177e4 4474
8cbbe86d 4475 __set_current_state(state);
1da177e4 4476
8cbbe86d
AK
4477 spin_lock_irqsave(&q->lock, flags);
4478 __add_wait_queue(q, &wait);
4479 spin_unlock(&q->lock);
4480 timeout = schedule_timeout(timeout);
4481 spin_lock_irq(&q->lock);
4482 __remove_wait_queue(q, &wait);
4483 spin_unlock_irqrestore(&q->lock, flags);
4484
4485 return timeout;
4486}
4487
4488void __sched interruptible_sleep_on(wait_queue_head_t *q)
4489{
4490 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4491}
1da177e4
LT
4492EXPORT_SYMBOL(interruptible_sleep_on);
4493
0fec171c 4494long __sched
95cdf3b7 4495interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4496{
8cbbe86d 4497 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4498}
1da177e4
LT
4499EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4500
0fec171c 4501void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4502{
8cbbe86d 4503 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4504}
1da177e4
LT
4505EXPORT_SYMBOL(sleep_on);
4506
0fec171c 4507long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4508{
8cbbe86d 4509 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4510}
1da177e4
LT
4511EXPORT_SYMBOL(sleep_on_timeout);
4512
b29739f9
IM
4513#ifdef CONFIG_RT_MUTEXES
4514
4515/*
4516 * rt_mutex_setprio - set the current priority of a task
4517 * @p: task
4518 * @prio: prio value (kernel-internal form)
4519 *
4520 * This function changes the 'effective' priority of a task. It does
4521 * not touch ->normal_prio like __setscheduler().
4522 *
4523 * Used by the rt_mutex code to implement priority inheritance logic.
4524 */
36c8b586 4525void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4526{
4527 unsigned long flags;
83b699ed 4528 int oldprio, on_rq, running;
70b97a7f 4529 struct rq *rq;
cb469845 4530 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4531
4532 BUG_ON(prio < 0 || prio > MAX_PRIO);
4533
4534 rq = task_rq_lock(p, &flags);
a8e504d2 4535 update_rq_clock(rq);
b29739f9 4536
d5f9f942 4537 oldprio = p->prio;
dd41f596 4538 on_rq = p->se.on_rq;
051a1d1a 4539 running = task_current(rq, p);
0e1f3483 4540 if (on_rq)
69be72c1 4541 dequeue_task(rq, p, 0);
0e1f3483
HS
4542 if (running)
4543 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4544
4545 if (rt_prio(prio))
4546 p->sched_class = &rt_sched_class;
4547 else
4548 p->sched_class = &fair_sched_class;
4549
b29739f9
IM
4550 p->prio = prio;
4551
0e1f3483
HS
4552 if (running)
4553 p->sched_class->set_curr_task(rq);
dd41f596 4554 if (on_rq) {
8159f87e 4555 enqueue_task(rq, p, 0);
cb469845
SR
4556
4557 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4558 }
4559 task_rq_unlock(rq, &flags);
4560}
4561
4562#endif
4563
36c8b586 4564void set_user_nice(struct task_struct *p, long nice)
1da177e4 4565{
dd41f596 4566 int old_prio, delta, on_rq;
1da177e4 4567 unsigned long flags;
70b97a7f 4568 struct rq *rq;
1da177e4
LT
4569
4570 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4571 return;
4572 /*
4573 * We have to be careful, if called from sys_setpriority(),
4574 * the task might be in the middle of scheduling on another CPU.
4575 */
4576 rq = task_rq_lock(p, &flags);
a8e504d2 4577 update_rq_clock(rq);
1da177e4
LT
4578 /*
4579 * The RT priorities are set via sched_setscheduler(), but we still
4580 * allow the 'normal' nice value to be set - but as expected
4581 * it wont have any effect on scheduling until the task is
dd41f596 4582 * SCHED_FIFO/SCHED_RR:
1da177e4 4583 */
e05606d3 4584 if (task_has_rt_policy(p)) {
1da177e4
LT
4585 p->static_prio = NICE_TO_PRIO(nice);
4586 goto out_unlock;
4587 }
dd41f596 4588 on_rq = p->se.on_rq;
6363ca57 4589 if (on_rq) {
69be72c1 4590 dequeue_task(rq, p, 0);
6363ca57
IM
4591 dec_load(rq, p);
4592 }
1da177e4 4593
1da177e4 4594 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4595 set_load_weight(p);
b29739f9
IM
4596 old_prio = p->prio;
4597 p->prio = effective_prio(p);
4598 delta = p->prio - old_prio;
1da177e4 4599
dd41f596 4600 if (on_rq) {
8159f87e 4601 enqueue_task(rq, p, 0);
6363ca57 4602 inc_load(rq, p);
1da177e4 4603 /*
d5f9f942
AM
4604 * If the task increased its priority or is running and
4605 * lowered its priority, then reschedule its CPU:
1da177e4 4606 */
d5f9f942 4607 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4608 resched_task(rq->curr);
4609 }
4610out_unlock:
4611 task_rq_unlock(rq, &flags);
4612}
1da177e4
LT
4613EXPORT_SYMBOL(set_user_nice);
4614
e43379f1
MM
4615/*
4616 * can_nice - check if a task can reduce its nice value
4617 * @p: task
4618 * @nice: nice value
4619 */
36c8b586 4620int can_nice(const struct task_struct *p, const int nice)
e43379f1 4621{
024f4747
MM
4622 /* convert nice value [19,-20] to rlimit style value [1,40] */
4623 int nice_rlim = 20 - nice;
48f24c4d 4624
e43379f1
MM
4625 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4626 capable(CAP_SYS_NICE));
4627}
4628
1da177e4
LT
4629#ifdef __ARCH_WANT_SYS_NICE
4630
4631/*
4632 * sys_nice - change the priority of the current process.
4633 * @increment: priority increment
4634 *
4635 * sys_setpriority is a more generic, but much slower function that
4636 * does similar things.
4637 */
4638asmlinkage long sys_nice(int increment)
4639{
48f24c4d 4640 long nice, retval;
1da177e4
LT
4641
4642 /*
4643 * Setpriority might change our priority at the same moment.
4644 * We don't have to worry. Conceptually one call occurs first
4645 * and we have a single winner.
4646 */
e43379f1
MM
4647 if (increment < -40)
4648 increment = -40;
1da177e4
LT
4649 if (increment > 40)
4650 increment = 40;
4651
4652 nice = PRIO_TO_NICE(current->static_prio) + increment;
4653 if (nice < -20)
4654 nice = -20;
4655 if (nice > 19)
4656 nice = 19;
4657
e43379f1
MM
4658 if (increment < 0 && !can_nice(current, nice))
4659 return -EPERM;
4660
1da177e4
LT
4661 retval = security_task_setnice(current, nice);
4662 if (retval)
4663 return retval;
4664
4665 set_user_nice(current, nice);
4666 return 0;
4667}
4668
4669#endif
4670
4671/**
4672 * task_prio - return the priority value of a given task.
4673 * @p: the task in question.
4674 *
4675 * This is the priority value as seen by users in /proc.
4676 * RT tasks are offset by -200. Normal tasks are centered
4677 * around 0, value goes from -16 to +15.
4678 */
36c8b586 4679int task_prio(const struct task_struct *p)
1da177e4
LT
4680{
4681 return p->prio - MAX_RT_PRIO;
4682}
4683
4684/**
4685 * task_nice - return the nice value of a given task.
4686 * @p: the task in question.
4687 */
36c8b586 4688int task_nice(const struct task_struct *p)
1da177e4
LT
4689{
4690 return TASK_NICE(p);
4691}
150d8bed 4692EXPORT_SYMBOL(task_nice);
1da177e4
LT
4693
4694/**
4695 * idle_cpu - is a given cpu idle currently?
4696 * @cpu: the processor in question.
4697 */
4698int idle_cpu(int cpu)
4699{
4700 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4701}
4702
1da177e4
LT
4703/**
4704 * idle_task - return the idle task for a given cpu.
4705 * @cpu: the processor in question.
4706 */
36c8b586 4707struct task_struct *idle_task(int cpu)
1da177e4
LT
4708{
4709 return cpu_rq(cpu)->idle;
4710}
4711
4712/**
4713 * find_process_by_pid - find a process with a matching PID value.
4714 * @pid: the pid in question.
4715 */
a9957449 4716static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4717{
228ebcbe 4718 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4719}
4720
4721/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4722static void
4723__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4724{
dd41f596 4725 BUG_ON(p->se.on_rq);
48f24c4d 4726
1da177e4 4727 p->policy = policy;
dd41f596
IM
4728 switch (p->policy) {
4729 case SCHED_NORMAL:
4730 case SCHED_BATCH:
4731 case SCHED_IDLE:
4732 p->sched_class = &fair_sched_class;
4733 break;
4734 case SCHED_FIFO:
4735 case SCHED_RR:
4736 p->sched_class = &rt_sched_class;
4737 break;
4738 }
4739
1da177e4 4740 p->rt_priority = prio;
b29739f9
IM
4741 p->normal_prio = normal_prio(p);
4742 /* we are holding p->pi_lock already */
4743 p->prio = rt_mutex_getprio(p);
2dd73a4f 4744 set_load_weight(p);
1da177e4
LT
4745}
4746
4747/**
72fd4a35 4748 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4749 * @p: the task in question.
4750 * @policy: new policy.
4751 * @param: structure containing the new RT priority.
5fe1d75f 4752 *
72fd4a35 4753 * NOTE that the task may be already dead.
1da177e4 4754 */
95cdf3b7
IM
4755int sched_setscheduler(struct task_struct *p, int policy,
4756 struct sched_param *param)
1da177e4 4757{
83b699ed 4758 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4759 unsigned long flags;
cb469845 4760 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4761 struct rq *rq;
1da177e4 4762
66e5393a
SR
4763 /* may grab non-irq protected spin_locks */
4764 BUG_ON(in_interrupt());
1da177e4
LT
4765recheck:
4766 /* double check policy once rq lock held */
4767 if (policy < 0)
4768 policy = oldpolicy = p->policy;
4769 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4770 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4771 policy != SCHED_IDLE)
b0a9499c 4772 return -EINVAL;
1da177e4
LT
4773 /*
4774 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4775 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4776 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4777 */
4778 if (param->sched_priority < 0 ||
95cdf3b7 4779 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4780 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4781 return -EINVAL;
e05606d3 4782 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4783 return -EINVAL;
4784
37e4ab3f
OC
4785 /*
4786 * Allow unprivileged RT tasks to decrease priority:
4787 */
4788 if (!capable(CAP_SYS_NICE)) {
e05606d3 4789 if (rt_policy(policy)) {
8dc3e909 4790 unsigned long rlim_rtprio;
8dc3e909
ON
4791
4792 if (!lock_task_sighand(p, &flags))
4793 return -ESRCH;
4794 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4795 unlock_task_sighand(p, &flags);
4796
4797 /* can't set/change the rt policy */
4798 if (policy != p->policy && !rlim_rtprio)
4799 return -EPERM;
4800
4801 /* can't increase priority */
4802 if (param->sched_priority > p->rt_priority &&
4803 param->sched_priority > rlim_rtprio)
4804 return -EPERM;
4805 }
dd41f596
IM
4806 /*
4807 * Like positive nice levels, dont allow tasks to
4808 * move out of SCHED_IDLE either:
4809 */
4810 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4811 return -EPERM;
5fe1d75f 4812
37e4ab3f
OC
4813 /* can't change other user's priorities */
4814 if ((current->euid != p->euid) &&
4815 (current->euid != p->uid))
4816 return -EPERM;
4817 }
1da177e4 4818
b68aa230
PZ
4819#ifdef CONFIG_RT_GROUP_SCHED
4820 /*
4821 * Do not allow realtime tasks into groups that have no runtime
4822 * assigned.
4823 */
d0b27fa7 4824 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4825 return -EPERM;
4826#endif
4827
1da177e4
LT
4828 retval = security_task_setscheduler(p, policy, param);
4829 if (retval)
4830 return retval;
b29739f9
IM
4831 /*
4832 * make sure no PI-waiters arrive (or leave) while we are
4833 * changing the priority of the task:
4834 */
4835 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4836 /*
4837 * To be able to change p->policy safely, the apropriate
4838 * runqueue lock must be held.
4839 */
b29739f9 4840 rq = __task_rq_lock(p);
1da177e4
LT
4841 /* recheck policy now with rq lock held */
4842 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4843 policy = oldpolicy = -1;
b29739f9
IM
4844 __task_rq_unlock(rq);
4845 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4846 goto recheck;
4847 }
2daa3577 4848 update_rq_clock(rq);
dd41f596 4849 on_rq = p->se.on_rq;
051a1d1a 4850 running = task_current(rq, p);
0e1f3483 4851 if (on_rq)
2e1cb74a 4852 deactivate_task(rq, p, 0);
0e1f3483
HS
4853 if (running)
4854 p->sched_class->put_prev_task(rq, p);
f6b53205 4855
1da177e4 4856 oldprio = p->prio;
dd41f596 4857 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4858
0e1f3483
HS
4859 if (running)
4860 p->sched_class->set_curr_task(rq);
dd41f596
IM
4861 if (on_rq) {
4862 activate_task(rq, p, 0);
cb469845
SR
4863
4864 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4865 }
b29739f9
IM
4866 __task_rq_unlock(rq);
4867 spin_unlock_irqrestore(&p->pi_lock, flags);
4868
95e02ca9
TG
4869 rt_mutex_adjust_pi(p);
4870
1da177e4
LT
4871 return 0;
4872}
4873EXPORT_SYMBOL_GPL(sched_setscheduler);
4874
95cdf3b7
IM
4875static int
4876do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4877{
1da177e4
LT
4878 struct sched_param lparam;
4879 struct task_struct *p;
36c8b586 4880 int retval;
1da177e4
LT
4881
4882 if (!param || pid < 0)
4883 return -EINVAL;
4884 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4885 return -EFAULT;
5fe1d75f
ON
4886
4887 rcu_read_lock();
4888 retval = -ESRCH;
1da177e4 4889 p = find_process_by_pid(pid);
5fe1d75f
ON
4890 if (p != NULL)
4891 retval = sched_setscheduler(p, policy, &lparam);
4892 rcu_read_unlock();
36c8b586 4893
1da177e4
LT
4894 return retval;
4895}
4896
4897/**
4898 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4899 * @pid: the pid in question.
4900 * @policy: new policy.
4901 * @param: structure containing the new RT priority.
4902 */
41a2d6cf
IM
4903asmlinkage long
4904sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4905{
c21761f1
JB
4906 /* negative values for policy are not valid */
4907 if (policy < 0)
4908 return -EINVAL;
4909
1da177e4
LT
4910 return do_sched_setscheduler(pid, policy, param);
4911}
4912
4913/**
4914 * sys_sched_setparam - set/change the RT priority of a thread
4915 * @pid: the pid in question.
4916 * @param: structure containing the new RT priority.
4917 */
4918asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4919{
4920 return do_sched_setscheduler(pid, -1, param);
4921}
4922
4923/**
4924 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4925 * @pid: the pid in question.
4926 */
4927asmlinkage long sys_sched_getscheduler(pid_t pid)
4928{
36c8b586 4929 struct task_struct *p;
3a5c359a 4930 int retval;
1da177e4
LT
4931
4932 if (pid < 0)
3a5c359a 4933 return -EINVAL;
1da177e4
LT
4934
4935 retval = -ESRCH;
4936 read_lock(&tasklist_lock);
4937 p = find_process_by_pid(pid);
4938 if (p) {
4939 retval = security_task_getscheduler(p);
4940 if (!retval)
4941 retval = p->policy;
4942 }
4943 read_unlock(&tasklist_lock);
1da177e4
LT
4944 return retval;
4945}
4946
4947/**
4948 * sys_sched_getscheduler - get the RT priority of a thread
4949 * @pid: the pid in question.
4950 * @param: structure containing the RT priority.
4951 */
4952asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4953{
4954 struct sched_param lp;
36c8b586 4955 struct task_struct *p;
3a5c359a 4956 int retval;
1da177e4
LT
4957
4958 if (!param || pid < 0)
3a5c359a 4959 return -EINVAL;
1da177e4
LT
4960
4961 read_lock(&tasklist_lock);
4962 p = find_process_by_pid(pid);
4963 retval = -ESRCH;
4964 if (!p)
4965 goto out_unlock;
4966
4967 retval = security_task_getscheduler(p);
4968 if (retval)
4969 goto out_unlock;
4970
4971 lp.sched_priority = p->rt_priority;
4972 read_unlock(&tasklist_lock);
4973
4974 /*
4975 * This one might sleep, we cannot do it with a spinlock held ...
4976 */
4977 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4978
1da177e4
LT
4979 return retval;
4980
4981out_unlock:
4982 read_unlock(&tasklist_lock);
4983 return retval;
4984}
4985
b53e921b 4986long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4987{
1da177e4 4988 cpumask_t cpus_allowed;
b53e921b 4989 cpumask_t new_mask = *in_mask;
36c8b586
IM
4990 struct task_struct *p;
4991 int retval;
1da177e4 4992
95402b38 4993 get_online_cpus();
1da177e4
LT
4994 read_lock(&tasklist_lock);
4995
4996 p = find_process_by_pid(pid);
4997 if (!p) {
4998 read_unlock(&tasklist_lock);
95402b38 4999 put_online_cpus();
1da177e4
LT
5000 return -ESRCH;
5001 }
5002
5003 /*
5004 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5005 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5006 * usage count and then drop tasklist_lock.
5007 */
5008 get_task_struct(p);
5009 read_unlock(&tasklist_lock);
5010
5011 retval = -EPERM;
5012 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5013 !capable(CAP_SYS_NICE))
5014 goto out_unlock;
5015
e7834f8f
DQ
5016 retval = security_task_setscheduler(p, 0, NULL);
5017 if (retval)
5018 goto out_unlock;
5019
f9a86fcb 5020 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5021 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5022 again:
7c16ec58 5023 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5024
8707d8b8 5025 if (!retval) {
f9a86fcb 5026 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5027 if (!cpus_subset(new_mask, cpus_allowed)) {
5028 /*
5029 * We must have raced with a concurrent cpuset
5030 * update. Just reset the cpus_allowed to the
5031 * cpuset's cpus_allowed
5032 */
5033 new_mask = cpus_allowed;
5034 goto again;
5035 }
5036 }
1da177e4
LT
5037out_unlock:
5038 put_task_struct(p);
95402b38 5039 put_online_cpus();
1da177e4
LT
5040 return retval;
5041}
5042
5043static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5044 cpumask_t *new_mask)
5045{
5046 if (len < sizeof(cpumask_t)) {
5047 memset(new_mask, 0, sizeof(cpumask_t));
5048 } else if (len > sizeof(cpumask_t)) {
5049 len = sizeof(cpumask_t);
5050 }
5051 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5052}
5053
5054/**
5055 * sys_sched_setaffinity - set the cpu affinity of a process
5056 * @pid: pid of the process
5057 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5058 * @user_mask_ptr: user-space pointer to the new cpu mask
5059 */
5060asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5061 unsigned long __user *user_mask_ptr)
5062{
5063 cpumask_t new_mask;
5064 int retval;
5065
5066 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5067 if (retval)
5068 return retval;
5069
b53e921b 5070 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5071}
5072
5073/*
5074 * Represents all cpu's present in the system
5075 * In systems capable of hotplug, this map could dynamically grow
5076 * as new cpu's are detected in the system via any platform specific
5077 * method, such as ACPI for e.g.
5078 */
5079
4cef0c61 5080cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5081EXPORT_SYMBOL(cpu_present_map);
5082
5083#ifndef CONFIG_SMP
4cef0c61 5084cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5085EXPORT_SYMBOL(cpu_online_map);
5086
4cef0c61 5087cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5088EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5089#endif
5090
5091long sched_getaffinity(pid_t pid, cpumask_t *mask)
5092{
36c8b586 5093 struct task_struct *p;
1da177e4 5094 int retval;
1da177e4 5095
95402b38 5096 get_online_cpus();
1da177e4
LT
5097 read_lock(&tasklist_lock);
5098
5099 retval = -ESRCH;
5100 p = find_process_by_pid(pid);
5101 if (!p)
5102 goto out_unlock;
5103
e7834f8f
DQ
5104 retval = security_task_getscheduler(p);
5105 if (retval)
5106 goto out_unlock;
5107
2f7016d9 5108 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5109
5110out_unlock:
5111 read_unlock(&tasklist_lock);
95402b38 5112 put_online_cpus();
1da177e4 5113
9531b62f 5114 return retval;
1da177e4
LT
5115}
5116
5117/**
5118 * sys_sched_getaffinity - get the cpu affinity of a process
5119 * @pid: pid of the process
5120 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5121 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5122 */
5123asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5124 unsigned long __user *user_mask_ptr)
5125{
5126 int ret;
5127 cpumask_t mask;
5128
5129 if (len < sizeof(cpumask_t))
5130 return -EINVAL;
5131
5132 ret = sched_getaffinity(pid, &mask);
5133 if (ret < 0)
5134 return ret;
5135
5136 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5137 return -EFAULT;
5138
5139 return sizeof(cpumask_t);
5140}
5141
5142/**
5143 * sys_sched_yield - yield the current processor to other threads.
5144 *
dd41f596
IM
5145 * This function yields the current CPU to other tasks. If there are no
5146 * other threads running on this CPU then this function will return.
1da177e4
LT
5147 */
5148asmlinkage long sys_sched_yield(void)
5149{
70b97a7f 5150 struct rq *rq = this_rq_lock();
1da177e4 5151
2d72376b 5152 schedstat_inc(rq, yld_count);
4530d7ab 5153 current->sched_class->yield_task(rq);
1da177e4
LT
5154
5155 /*
5156 * Since we are going to call schedule() anyway, there's
5157 * no need to preempt or enable interrupts:
5158 */
5159 __release(rq->lock);
8a25d5de 5160 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5161 _raw_spin_unlock(&rq->lock);
5162 preempt_enable_no_resched();
5163
5164 schedule();
5165
5166 return 0;
5167}
5168
e7b38404 5169static void __cond_resched(void)
1da177e4 5170{
8e0a43d8
IM
5171#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5172 __might_sleep(__FILE__, __LINE__);
5173#endif
5bbcfd90
IM
5174 /*
5175 * The BKS might be reacquired before we have dropped
5176 * PREEMPT_ACTIVE, which could trigger a second
5177 * cond_resched() call.
5178 */
1da177e4
LT
5179 do {
5180 add_preempt_count(PREEMPT_ACTIVE);
5181 schedule();
5182 sub_preempt_count(PREEMPT_ACTIVE);
5183 } while (need_resched());
5184}
5185
02b67cc3 5186int __sched _cond_resched(void)
1da177e4 5187{
9414232f
IM
5188 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5189 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5190 __cond_resched();
5191 return 1;
5192 }
5193 return 0;
5194}
02b67cc3 5195EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5196
5197/*
5198 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5199 * call schedule, and on return reacquire the lock.
5200 *
41a2d6cf 5201 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5202 * operations here to prevent schedule() from being called twice (once via
5203 * spin_unlock(), once by hand).
5204 */
95cdf3b7 5205int cond_resched_lock(spinlock_t *lock)
1da177e4 5206{
95c354fe 5207 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5208 int ret = 0;
5209
95c354fe 5210 if (spin_needbreak(lock) || resched) {
1da177e4 5211 spin_unlock(lock);
95c354fe
NP
5212 if (resched && need_resched())
5213 __cond_resched();
5214 else
5215 cpu_relax();
6df3cecb 5216 ret = 1;
1da177e4 5217 spin_lock(lock);
1da177e4 5218 }
6df3cecb 5219 return ret;
1da177e4 5220}
1da177e4
LT
5221EXPORT_SYMBOL(cond_resched_lock);
5222
5223int __sched cond_resched_softirq(void)
5224{
5225 BUG_ON(!in_softirq());
5226
9414232f 5227 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5228 local_bh_enable();
1da177e4
LT
5229 __cond_resched();
5230 local_bh_disable();
5231 return 1;
5232 }
5233 return 0;
5234}
1da177e4
LT
5235EXPORT_SYMBOL(cond_resched_softirq);
5236
1da177e4
LT
5237/**
5238 * yield - yield the current processor to other threads.
5239 *
72fd4a35 5240 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5241 * thread runnable and calls sys_sched_yield().
5242 */
5243void __sched yield(void)
5244{
5245 set_current_state(TASK_RUNNING);
5246 sys_sched_yield();
5247}
1da177e4
LT
5248EXPORT_SYMBOL(yield);
5249
5250/*
41a2d6cf 5251 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5252 * that process accounting knows that this is a task in IO wait state.
5253 *
5254 * But don't do that if it is a deliberate, throttling IO wait (this task
5255 * has set its backing_dev_info: the queue against which it should throttle)
5256 */
5257void __sched io_schedule(void)
5258{
70b97a7f 5259 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5260
0ff92245 5261 delayacct_blkio_start();
1da177e4
LT
5262 atomic_inc(&rq->nr_iowait);
5263 schedule();
5264 atomic_dec(&rq->nr_iowait);
0ff92245 5265 delayacct_blkio_end();
1da177e4 5266}
1da177e4
LT
5267EXPORT_SYMBOL(io_schedule);
5268
5269long __sched io_schedule_timeout(long timeout)
5270{
70b97a7f 5271 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5272 long ret;
5273
0ff92245 5274 delayacct_blkio_start();
1da177e4
LT
5275 atomic_inc(&rq->nr_iowait);
5276 ret = schedule_timeout(timeout);
5277 atomic_dec(&rq->nr_iowait);
0ff92245 5278 delayacct_blkio_end();
1da177e4
LT
5279 return ret;
5280}
5281
5282/**
5283 * sys_sched_get_priority_max - return maximum RT priority.
5284 * @policy: scheduling class.
5285 *
5286 * this syscall returns the maximum rt_priority that can be used
5287 * by a given scheduling class.
5288 */
5289asmlinkage long sys_sched_get_priority_max(int policy)
5290{
5291 int ret = -EINVAL;
5292
5293 switch (policy) {
5294 case SCHED_FIFO:
5295 case SCHED_RR:
5296 ret = MAX_USER_RT_PRIO-1;
5297 break;
5298 case SCHED_NORMAL:
b0a9499c 5299 case SCHED_BATCH:
dd41f596 5300 case SCHED_IDLE:
1da177e4
LT
5301 ret = 0;
5302 break;
5303 }
5304 return ret;
5305}
5306
5307/**
5308 * sys_sched_get_priority_min - return minimum RT priority.
5309 * @policy: scheduling class.
5310 *
5311 * this syscall returns the minimum rt_priority that can be used
5312 * by a given scheduling class.
5313 */
5314asmlinkage long sys_sched_get_priority_min(int policy)
5315{
5316 int ret = -EINVAL;
5317
5318 switch (policy) {
5319 case SCHED_FIFO:
5320 case SCHED_RR:
5321 ret = 1;
5322 break;
5323 case SCHED_NORMAL:
b0a9499c 5324 case SCHED_BATCH:
dd41f596 5325 case SCHED_IDLE:
1da177e4
LT
5326 ret = 0;
5327 }
5328 return ret;
5329}
5330
5331/**
5332 * sys_sched_rr_get_interval - return the default timeslice of a process.
5333 * @pid: pid of the process.
5334 * @interval: userspace pointer to the timeslice value.
5335 *
5336 * this syscall writes the default timeslice value of a given process
5337 * into the user-space timespec buffer. A value of '0' means infinity.
5338 */
5339asmlinkage
5340long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5341{
36c8b586 5342 struct task_struct *p;
a4ec24b4 5343 unsigned int time_slice;
3a5c359a 5344 int retval;
1da177e4 5345 struct timespec t;
1da177e4
LT
5346
5347 if (pid < 0)
3a5c359a 5348 return -EINVAL;
1da177e4
LT
5349
5350 retval = -ESRCH;
5351 read_lock(&tasklist_lock);
5352 p = find_process_by_pid(pid);
5353 if (!p)
5354 goto out_unlock;
5355
5356 retval = security_task_getscheduler(p);
5357 if (retval)
5358 goto out_unlock;
5359
77034937
IM
5360 /*
5361 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5362 * tasks that are on an otherwise idle runqueue:
5363 */
5364 time_slice = 0;
5365 if (p->policy == SCHED_RR) {
a4ec24b4 5366 time_slice = DEF_TIMESLICE;
1868f958 5367 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5368 struct sched_entity *se = &p->se;
5369 unsigned long flags;
5370 struct rq *rq;
5371
5372 rq = task_rq_lock(p, &flags);
77034937
IM
5373 if (rq->cfs.load.weight)
5374 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5375 task_rq_unlock(rq, &flags);
5376 }
1da177e4 5377 read_unlock(&tasklist_lock);
a4ec24b4 5378 jiffies_to_timespec(time_slice, &t);
1da177e4 5379 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5380 return retval;
3a5c359a 5381
1da177e4
LT
5382out_unlock:
5383 read_unlock(&tasklist_lock);
5384 return retval;
5385}
5386
2ed6e34f 5387static const char stat_nam[] = "RSDTtZX";
36c8b586 5388
82a1fcb9 5389void sched_show_task(struct task_struct *p)
1da177e4 5390{
1da177e4 5391 unsigned long free = 0;
36c8b586 5392 unsigned state;
1da177e4 5393
1da177e4 5394 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5395 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5396 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5397#if BITS_PER_LONG == 32
1da177e4 5398 if (state == TASK_RUNNING)
cc4ea795 5399 printk(KERN_CONT " running ");
1da177e4 5400 else
cc4ea795 5401 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5402#else
5403 if (state == TASK_RUNNING)
cc4ea795 5404 printk(KERN_CONT " running task ");
1da177e4 5405 else
cc4ea795 5406 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5407#endif
5408#ifdef CONFIG_DEBUG_STACK_USAGE
5409 {
10ebffde 5410 unsigned long *n = end_of_stack(p);
1da177e4
LT
5411 while (!*n)
5412 n++;
10ebffde 5413 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5414 }
5415#endif
ba25f9dc 5416 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5417 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5418
5fb5e6de 5419 show_stack(p, NULL);
1da177e4
LT
5420}
5421
e59e2ae2 5422void show_state_filter(unsigned long state_filter)
1da177e4 5423{
36c8b586 5424 struct task_struct *g, *p;
1da177e4 5425
4bd77321
IM
5426#if BITS_PER_LONG == 32
5427 printk(KERN_INFO
5428 " task PC stack pid father\n");
1da177e4 5429#else
4bd77321
IM
5430 printk(KERN_INFO
5431 " task PC stack pid father\n");
1da177e4
LT
5432#endif
5433 read_lock(&tasklist_lock);
5434 do_each_thread(g, p) {
5435 /*
5436 * reset the NMI-timeout, listing all files on a slow
5437 * console might take alot of time:
5438 */
5439 touch_nmi_watchdog();
39bc89fd 5440 if (!state_filter || (p->state & state_filter))
82a1fcb9 5441 sched_show_task(p);
1da177e4
LT
5442 } while_each_thread(g, p);
5443
04c9167f
JF
5444 touch_all_softlockup_watchdogs();
5445
dd41f596
IM
5446#ifdef CONFIG_SCHED_DEBUG
5447 sysrq_sched_debug_show();
5448#endif
1da177e4 5449 read_unlock(&tasklist_lock);
e59e2ae2
IM
5450 /*
5451 * Only show locks if all tasks are dumped:
5452 */
5453 if (state_filter == -1)
5454 debug_show_all_locks();
1da177e4
LT
5455}
5456
1df21055
IM
5457void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5458{
dd41f596 5459 idle->sched_class = &idle_sched_class;
1df21055
IM
5460}
5461
f340c0d1
IM
5462/**
5463 * init_idle - set up an idle thread for a given CPU
5464 * @idle: task in question
5465 * @cpu: cpu the idle task belongs to
5466 *
5467 * NOTE: this function does not set the idle thread's NEED_RESCHED
5468 * flag, to make booting more robust.
5469 */
5c1e1767 5470void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5471{
70b97a7f 5472 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5473 unsigned long flags;
5474
dd41f596
IM
5475 __sched_fork(idle);
5476 idle->se.exec_start = sched_clock();
5477
b29739f9 5478 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5479 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5480 __set_task_cpu(idle, cpu);
1da177e4
LT
5481
5482 spin_lock_irqsave(&rq->lock, flags);
5483 rq->curr = rq->idle = idle;
4866cde0
NP
5484#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5485 idle->oncpu = 1;
5486#endif
1da177e4
LT
5487 spin_unlock_irqrestore(&rq->lock, flags);
5488
5489 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5490#if defined(CONFIG_PREEMPT)
5491 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5492#else
a1261f54 5493 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5494#endif
dd41f596
IM
5495 /*
5496 * The idle tasks have their own, simple scheduling class:
5497 */
5498 idle->sched_class = &idle_sched_class;
1da177e4
LT
5499}
5500
5501/*
5502 * In a system that switches off the HZ timer nohz_cpu_mask
5503 * indicates which cpus entered this state. This is used
5504 * in the rcu update to wait only for active cpus. For system
5505 * which do not switch off the HZ timer nohz_cpu_mask should
5506 * always be CPU_MASK_NONE.
5507 */
5508cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5509
19978ca6
IM
5510/*
5511 * Increase the granularity value when there are more CPUs,
5512 * because with more CPUs the 'effective latency' as visible
5513 * to users decreases. But the relationship is not linear,
5514 * so pick a second-best guess by going with the log2 of the
5515 * number of CPUs.
5516 *
5517 * This idea comes from the SD scheduler of Con Kolivas:
5518 */
5519static inline void sched_init_granularity(void)
5520{
5521 unsigned int factor = 1 + ilog2(num_online_cpus());
5522 const unsigned long limit = 200000000;
5523
5524 sysctl_sched_min_granularity *= factor;
5525 if (sysctl_sched_min_granularity > limit)
5526 sysctl_sched_min_granularity = limit;
5527
5528 sysctl_sched_latency *= factor;
5529 if (sysctl_sched_latency > limit)
5530 sysctl_sched_latency = limit;
5531
5532 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5533}
5534
1da177e4
LT
5535#ifdef CONFIG_SMP
5536/*
5537 * This is how migration works:
5538 *
70b97a7f 5539 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5540 * runqueue and wake up that CPU's migration thread.
5541 * 2) we down() the locked semaphore => thread blocks.
5542 * 3) migration thread wakes up (implicitly it forces the migrated
5543 * thread off the CPU)
5544 * 4) it gets the migration request and checks whether the migrated
5545 * task is still in the wrong runqueue.
5546 * 5) if it's in the wrong runqueue then the migration thread removes
5547 * it and puts it into the right queue.
5548 * 6) migration thread up()s the semaphore.
5549 * 7) we wake up and the migration is done.
5550 */
5551
5552/*
5553 * Change a given task's CPU affinity. Migrate the thread to a
5554 * proper CPU and schedule it away if the CPU it's executing on
5555 * is removed from the allowed bitmask.
5556 *
5557 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5558 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5559 * call is not atomic; no spinlocks may be held.
5560 */
cd8ba7cd 5561int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5562{
70b97a7f 5563 struct migration_req req;
1da177e4 5564 unsigned long flags;
70b97a7f 5565 struct rq *rq;
48f24c4d 5566 int ret = 0;
1da177e4
LT
5567
5568 rq = task_rq_lock(p, &flags);
cd8ba7cd 5569 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5570 ret = -EINVAL;
5571 goto out;
5572 }
5573
73fe6aae 5574 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5575 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5576 else {
cd8ba7cd
MT
5577 p->cpus_allowed = *new_mask;
5578 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5579 }
5580
1da177e4 5581 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5582 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5583 goto out;
5584
cd8ba7cd 5585 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5586 /* Need help from migration thread: drop lock and wait. */
5587 task_rq_unlock(rq, &flags);
5588 wake_up_process(rq->migration_thread);
5589 wait_for_completion(&req.done);
5590 tlb_migrate_finish(p->mm);
5591 return 0;
5592 }
5593out:
5594 task_rq_unlock(rq, &flags);
48f24c4d 5595
1da177e4
LT
5596 return ret;
5597}
cd8ba7cd 5598EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5599
5600/*
41a2d6cf 5601 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5602 * this because either it can't run here any more (set_cpus_allowed()
5603 * away from this CPU, or CPU going down), or because we're
5604 * attempting to rebalance this task on exec (sched_exec).
5605 *
5606 * So we race with normal scheduler movements, but that's OK, as long
5607 * as the task is no longer on this CPU.
efc30814
KK
5608 *
5609 * Returns non-zero if task was successfully migrated.
1da177e4 5610 */
efc30814 5611static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5612{
70b97a7f 5613 struct rq *rq_dest, *rq_src;
dd41f596 5614 int ret = 0, on_rq;
1da177e4
LT
5615
5616 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5617 return ret;
1da177e4
LT
5618
5619 rq_src = cpu_rq(src_cpu);
5620 rq_dest = cpu_rq(dest_cpu);
5621
5622 double_rq_lock(rq_src, rq_dest);
5623 /* Already moved. */
dc7fab8b
DA
5624 if (task_cpu(p) != src_cpu) {
5625 ret = 1;
1da177e4 5626 goto out;
dc7fab8b 5627 }
1da177e4
LT
5628 /* Affinity changed (again). */
5629 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5630 goto out;
5631
dd41f596 5632 on_rq = p->se.on_rq;
6e82a3be 5633 if (on_rq)
2e1cb74a 5634 deactivate_task(rq_src, p, 0);
6e82a3be 5635
1da177e4 5636 set_task_cpu(p, dest_cpu);
dd41f596
IM
5637 if (on_rq) {
5638 activate_task(rq_dest, p, 0);
5639 check_preempt_curr(rq_dest, p);
1da177e4 5640 }
efc30814 5641 ret = 1;
1da177e4
LT
5642out:
5643 double_rq_unlock(rq_src, rq_dest);
efc30814 5644 return ret;
1da177e4
LT
5645}
5646
5647/*
5648 * migration_thread - this is a highprio system thread that performs
5649 * thread migration by bumping thread off CPU then 'pushing' onto
5650 * another runqueue.
5651 */
95cdf3b7 5652static int migration_thread(void *data)
1da177e4 5653{
1da177e4 5654 int cpu = (long)data;
70b97a7f 5655 struct rq *rq;
1da177e4
LT
5656
5657 rq = cpu_rq(cpu);
5658 BUG_ON(rq->migration_thread != current);
5659
5660 set_current_state(TASK_INTERRUPTIBLE);
5661 while (!kthread_should_stop()) {
70b97a7f 5662 struct migration_req *req;
1da177e4 5663 struct list_head *head;
1da177e4 5664
1da177e4
LT
5665 spin_lock_irq(&rq->lock);
5666
5667 if (cpu_is_offline(cpu)) {
5668 spin_unlock_irq(&rq->lock);
5669 goto wait_to_die;
5670 }
5671
5672 if (rq->active_balance) {
5673 active_load_balance(rq, cpu);
5674 rq->active_balance = 0;
5675 }
5676
5677 head = &rq->migration_queue;
5678
5679 if (list_empty(head)) {
5680 spin_unlock_irq(&rq->lock);
5681 schedule();
5682 set_current_state(TASK_INTERRUPTIBLE);
5683 continue;
5684 }
70b97a7f 5685 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5686 list_del_init(head->next);
5687
674311d5
NP
5688 spin_unlock(&rq->lock);
5689 __migrate_task(req->task, cpu, req->dest_cpu);
5690 local_irq_enable();
1da177e4
LT
5691
5692 complete(&req->done);
5693 }
5694 __set_current_state(TASK_RUNNING);
5695 return 0;
5696
5697wait_to_die:
5698 /* Wait for kthread_stop */
5699 set_current_state(TASK_INTERRUPTIBLE);
5700 while (!kthread_should_stop()) {
5701 schedule();
5702 set_current_state(TASK_INTERRUPTIBLE);
5703 }
5704 __set_current_state(TASK_RUNNING);
5705 return 0;
5706}
5707
5708#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5709
5710static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5711{
5712 int ret;
5713
5714 local_irq_disable();
5715 ret = __migrate_task(p, src_cpu, dest_cpu);
5716 local_irq_enable();
5717 return ret;
5718}
5719
054b9108 5720/*
3a4fa0a2 5721 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5722 * NOTE: interrupts should be disabled by the caller
5723 */
48f24c4d 5724static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5725{
efc30814 5726 unsigned long flags;
1da177e4 5727 cpumask_t mask;
70b97a7f
IM
5728 struct rq *rq;
5729 int dest_cpu;
1da177e4 5730
3a5c359a
AK
5731 do {
5732 /* On same node? */
5733 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5734 cpus_and(mask, mask, p->cpus_allowed);
5735 dest_cpu = any_online_cpu(mask);
5736
5737 /* On any allowed CPU? */
434d53b0 5738 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5739 dest_cpu = any_online_cpu(p->cpus_allowed);
5740
5741 /* No more Mr. Nice Guy. */
434d53b0 5742 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5743 cpumask_t cpus_allowed;
5744
5745 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5746 /*
5747 * Try to stay on the same cpuset, where the
5748 * current cpuset may be a subset of all cpus.
5749 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5750 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5751 * called within calls to cpuset_lock/cpuset_unlock.
5752 */
3a5c359a 5753 rq = task_rq_lock(p, &flags);
470fd646 5754 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5755 dest_cpu = any_online_cpu(p->cpus_allowed);
5756 task_rq_unlock(rq, &flags);
1da177e4 5757
3a5c359a
AK
5758 /*
5759 * Don't tell them about moving exiting tasks or
5760 * kernel threads (both mm NULL), since they never
5761 * leave kernel.
5762 */
41a2d6cf 5763 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5764 printk(KERN_INFO "process %d (%s) no "
5765 "longer affine to cpu%d\n",
41a2d6cf
IM
5766 task_pid_nr(p), p->comm, dead_cpu);
5767 }
3a5c359a 5768 }
f7b4cddc 5769 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5770}
5771
5772/*
5773 * While a dead CPU has no uninterruptible tasks queued at this point,
5774 * it might still have a nonzero ->nr_uninterruptible counter, because
5775 * for performance reasons the counter is not stricly tracking tasks to
5776 * their home CPUs. So we just add the counter to another CPU's counter,
5777 * to keep the global sum constant after CPU-down:
5778 */
70b97a7f 5779static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5780{
7c16ec58 5781 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5782 unsigned long flags;
5783
5784 local_irq_save(flags);
5785 double_rq_lock(rq_src, rq_dest);
5786 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5787 rq_src->nr_uninterruptible = 0;
5788 double_rq_unlock(rq_src, rq_dest);
5789 local_irq_restore(flags);
5790}
5791
5792/* Run through task list and migrate tasks from the dead cpu. */
5793static void migrate_live_tasks(int src_cpu)
5794{
48f24c4d 5795 struct task_struct *p, *t;
1da177e4 5796
f7b4cddc 5797 read_lock(&tasklist_lock);
1da177e4 5798
48f24c4d
IM
5799 do_each_thread(t, p) {
5800 if (p == current)
1da177e4
LT
5801 continue;
5802
48f24c4d
IM
5803 if (task_cpu(p) == src_cpu)
5804 move_task_off_dead_cpu(src_cpu, p);
5805 } while_each_thread(t, p);
1da177e4 5806
f7b4cddc 5807 read_unlock(&tasklist_lock);
1da177e4
LT
5808}
5809
dd41f596
IM
5810/*
5811 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5812 * It does so by boosting its priority to highest possible.
5813 * Used by CPU offline code.
1da177e4
LT
5814 */
5815void sched_idle_next(void)
5816{
48f24c4d 5817 int this_cpu = smp_processor_id();
70b97a7f 5818 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5819 struct task_struct *p = rq->idle;
5820 unsigned long flags;
5821
5822 /* cpu has to be offline */
48f24c4d 5823 BUG_ON(cpu_online(this_cpu));
1da177e4 5824
48f24c4d
IM
5825 /*
5826 * Strictly not necessary since rest of the CPUs are stopped by now
5827 * and interrupts disabled on the current cpu.
1da177e4
LT
5828 */
5829 spin_lock_irqsave(&rq->lock, flags);
5830
dd41f596 5831 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5832
94bc9a7b
DA
5833 update_rq_clock(rq);
5834 activate_task(rq, p, 0);
1da177e4
LT
5835
5836 spin_unlock_irqrestore(&rq->lock, flags);
5837}
5838
48f24c4d
IM
5839/*
5840 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5841 * offline.
5842 */
5843void idle_task_exit(void)
5844{
5845 struct mm_struct *mm = current->active_mm;
5846
5847 BUG_ON(cpu_online(smp_processor_id()));
5848
5849 if (mm != &init_mm)
5850 switch_mm(mm, &init_mm, current);
5851 mmdrop(mm);
5852}
5853
054b9108 5854/* called under rq->lock with disabled interrupts */
36c8b586 5855static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5856{
70b97a7f 5857 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5858
5859 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5860 BUG_ON(!p->exit_state);
1da177e4
LT
5861
5862 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5863 BUG_ON(p->state == TASK_DEAD);
1da177e4 5864
48f24c4d 5865 get_task_struct(p);
1da177e4
LT
5866
5867 /*
5868 * Drop lock around migration; if someone else moves it,
41a2d6cf 5869 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5870 * fine.
5871 */
f7b4cddc 5872 spin_unlock_irq(&rq->lock);
48f24c4d 5873 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5874 spin_lock_irq(&rq->lock);
1da177e4 5875
48f24c4d 5876 put_task_struct(p);
1da177e4
LT
5877}
5878
5879/* release_task() removes task from tasklist, so we won't find dead tasks. */
5880static void migrate_dead_tasks(unsigned int dead_cpu)
5881{
70b97a7f 5882 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5883 struct task_struct *next;
48f24c4d 5884
dd41f596
IM
5885 for ( ; ; ) {
5886 if (!rq->nr_running)
5887 break;
a8e504d2 5888 update_rq_clock(rq);
ff95f3df 5889 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5890 if (!next)
5891 break;
79c53799 5892 next->sched_class->put_prev_task(rq, next);
dd41f596 5893 migrate_dead(dead_cpu, next);
e692ab53 5894
1da177e4
LT
5895 }
5896}
5897#endif /* CONFIG_HOTPLUG_CPU */
5898
e692ab53
NP
5899#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5900
5901static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5902 {
5903 .procname = "sched_domain",
c57baf1e 5904 .mode = 0555,
e0361851 5905 },
38605cae 5906 {0, },
e692ab53
NP
5907};
5908
5909static struct ctl_table sd_ctl_root[] = {
e0361851 5910 {
c57baf1e 5911 .ctl_name = CTL_KERN,
e0361851 5912 .procname = "kernel",
c57baf1e 5913 .mode = 0555,
e0361851
AD
5914 .child = sd_ctl_dir,
5915 },
38605cae 5916 {0, },
e692ab53
NP
5917};
5918
5919static struct ctl_table *sd_alloc_ctl_entry(int n)
5920{
5921 struct ctl_table *entry =
5cf9f062 5922 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5923
e692ab53
NP
5924 return entry;
5925}
5926
6382bc90
MM
5927static void sd_free_ctl_entry(struct ctl_table **tablep)
5928{
cd790076 5929 struct ctl_table *entry;
6382bc90 5930
cd790076
MM
5931 /*
5932 * In the intermediate directories, both the child directory and
5933 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5934 * will always be set. In the lowest directory the names are
cd790076
MM
5935 * static strings and all have proc handlers.
5936 */
5937 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5938 if (entry->child)
5939 sd_free_ctl_entry(&entry->child);
cd790076
MM
5940 if (entry->proc_handler == NULL)
5941 kfree(entry->procname);
5942 }
6382bc90
MM
5943
5944 kfree(*tablep);
5945 *tablep = NULL;
5946}
5947
e692ab53 5948static void
e0361851 5949set_table_entry(struct ctl_table *entry,
e692ab53
NP
5950 const char *procname, void *data, int maxlen,
5951 mode_t mode, proc_handler *proc_handler)
5952{
e692ab53
NP
5953 entry->procname = procname;
5954 entry->data = data;
5955 entry->maxlen = maxlen;
5956 entry->mode = mode;
5957 entry->proc_handler = proc_handler;
5958}
5959
5960static struct ctl_table *
5961sd_alloc_ctl_domain_table(struct sched_domain *sd)
5962{
ace8b3d6 5963 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5964
ad1cdc1d
MM
5965 if (table == NULL)
5966 return NULL;
5967
e0361851 5968 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5969 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5970 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5971 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5972 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5973 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5974 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5975 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5976 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5977 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5978 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5979 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5980 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5981 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5982 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5983 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5984 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5985 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5986 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5987 &sd->cache_nice_tries,
5988 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5989 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5990 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5991 /* &table[11] is terminator */
e692ab53
NP
5992
5993 return table;
5994}
5995
9a4e7159 5996static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5997{
5998 struct ctl_table *entry, *table;
5999 struct sched_domain *sd;
6000 int domain_num = 0, i;
6001 char buf[32];
6002
6003 for_each_domain(cpu, sd)
6004 domain_num++;
6005 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6006 if (table == NULL)
6007 return NULL;
e692ab53
NP
6008
6009 i = 0;
6010 for_each_domain(cpu, sd) {
6011 snprintf(buf, 32, "domain%d", i);
e692ab53 6012 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6013 entry->mode = 0555;
e692ab53
NP
6014 entry->child = sd_alloc_ctl_domain_table(sd);
6015 entry++;
6016 i++;
6017 }
6018 return table;
6019}
6020
6021static struct ctl_table_header *sd_sysctl_header;
6382bc90 6022static void register_sched_domain_sysctl(void)
e692ab53
NP
6023{
6024 int i, cpu_num = num_online_cpus();
6025 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6026 char buf[32];
6027
7378547f
MM
6028 WARN_ON(sd_ctl_dir[0].child);
6029 sd_ctl_dir[0].child = entry;
6030
ad1cdc1d
MM
6031 if (entry == NULL)
6032 return;
6033
97b6ea7b 6034 for_each_online_cpu(i) {
e692ab53 6035 snprintf(buf, 32, "cpu%d", i);
e692ab53 6036 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6037 entry->mode = 0555;
e692ab53 6038 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6039 entry++;
e692ab53 6040 }
7378547f
MM
6041
6042 WARN_ON(sd_sysctl_header);
e692ab53
NP
6043 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6044}
6382bc90 6045
7378547f 6046/* may be called multiple times per register */
6382bc90
MM
6047static void unregister_sched_domain_sysctl(void)
6048{
7378547f
MM
6049 if (sd_sysctl_header)
6050 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6051 sd_sysctl_header = NULL;
7378547f
MM
6052 if (sd_ctl_dir[0].child)
6053 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6054}
e692ab53 6055#else
6382bc90
MM
6056static void register_sched_domain_sysctl(void)
6057{
6058}
6059static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6060{
6061}
6062#endif
6063
1da177e4
LT
6064/*
6065 * migration_call - callback that gets triggered when a CPU is added.
6066 * Here we can start up the necessary migration thread for the new CPU.
6067 */
48f24c4d
IM
6068static int __cpuinit
6069migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6070{
1da177e4 6071 struct task_struct *p;
48f24c4d 6072 int cpu = (long)hcpu;
1da177e4 6073 unsigned long flags;
70b97a7f 6074 struct rq *rq;
1da177e4
LT
6075
6076 switch (action) {
5be9361c 6077
1da177e4 6078 case CPU_UP_PREPARE:
8bb78442 6079 case CPU_UP_PREPARE_FROZEN:
dd41f596 6080 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6081 if (IS_ERR(p))
6082 return NOTIFY_BAD;
1da177e4
LT
6083 kthread_bind(p, cpu);
6084 /* Must be high prio: stop_machine expects to yield to it. */
6085 rq = task_rq_lock(p, &flags);
dd41f596 6086 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6087 task_rq_unlock(rq, &flags);
6088 cpu_rq(cpu)->migration_thread = p;
6089 break;
48f24c4d 6090
1da177e4 6091 case CPU_ONLINE:
8bb78442 6092 case CPU_ONLINE_FROZEN:
3a4fa0a2 6093 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6094 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6095
6096 /* Update our root-domain */
6097 rq = cpu_rq(cpu);
6098 spin_lock_irqsave(&rq->lock, flags);
6099 if (rq->rd) {
6100 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6101 cpu_set(cpu, rq->rd->online);
6102 }
6103 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6104 break;
48f24c4d 6105
1da177e4
LT
6106#ifdef CONFIG_HOTPLUG_CPU
6107 case CPU_UP_CANCELED:
8bb78442 6108 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6109 if (!cpu_rq(cpu)->migration_thread)
6110 break;
41a2d6cf 6111 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6112 kthread_bind(cpu_rq(cpu)->migration_thread,
6113 any_online_cpu(cpu_online_map));
1da177e4
LT
6114 kthread_stop(cpu_rq(cpu)->migration_thread);
6115 cpu_rq(cpu)->migration_thread = NULL;
6116 break;
48f24c4d 6117
1da177e4 6118 case CPU_DEAD:
8bb78442 6119 case CPU_DEAD_FROZEN:
470fd646 6120 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6121 migrate_live_tasks(cpu);
6122 rq = cpu_rq(cpu);
6123 kthread_stop(rq->migration_thread);
6124 rq->migration_thread = NULL;
6125 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6126 spin_lock_irq(&rq->lock);
a8e504d2 6127 update_rq_clock(rq);
2e1cb74a 6128 deactivate_task(rq, rq->idle, 0);
1da177e4 6129 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6130 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6131 rq->idle->sched_class = &idle_sched_class;
1da177e4 6132 migrate_dead_tasks(cpu);
d2da272a 6133 spin_unlock_irq(&rq->lock);
470fd646 6134 cpuset_unlock();
1da177e4
LT
6135 migrate_nr_uninterruptible(rq);
6136 BUG_ON(rq->nr_running != 0);
6137
41a2d6cf
IM
6138 /*
6139 * No need to migrate the tasks: it was best-effort if
6140 * they didn't take sched_hotcpu_mutex. Just wake up
6141 * the requestors.
6142 */
1da177e4
LT
6143 spin_lock_irq(&rq->lock);
6144 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6145 struct migration_req *req;
6146
1da177e4 6147 req = list_entry(rq->migration_queue.next,
70b97a7f 6148 struct migration_req, list);
1da177e4
LT
6149 list_del_init(&req->list);
6150 complete(&req->done);
6151 }
6152 spin_unlock_irq(&rq->lock);
6153 break;
57d885fe 6154
08f503b0
GH
6155 case CPU_DYING:
6156 case CPU_DYING_FROZEN:
57d885fe
GH
6157 /* Update our root-domain */
6158 rq = cpu_rq(cpu);
6159 spin_lock_irqsave(&rq->lock, flags);
6160 if (rq->rd) {
6161 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6162 cpu_clear(cpu, rq->rd->online);
6163 }
6164 spin_unlock_irqrestore(&rq->lock, flags);
6165 break;
1da177e4
LT
6166#endif
6167 }
6168 return NOTIFY_OK;
6169}
6170
6171/* Register at highest priority so that task migration (migrate_all_tasks)
6172 * happens before everything else.
6173 */
26c2143b 6174static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6175 .notifier_call = migration_call,
6176 .priority = 10
6177};
6178
e6fe6649 6179void __init migration_init(void)
1da177e4
LT
6180{
6181 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6182 int err;
48f24c4d
IM
6183
6184 /* Start one for the boot CPU: */
07dccf33
AM
6185 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6186 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6187 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6188 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6189}
6190#endif
6191
6192#ifdef CONFIG_SMP
476f3534 6193
3e9830dc 6194#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6195
7c16ec58
MT
6196static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6197 cpumask_t *groupmask)
1da177e4 6198{
4dcf6aff 6199 struct sched_group *group = sd->groups;
434d53b0 6200 char str[256];
1da177e4 6201
434d53b0 6202 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6203 cpus_clear(*groupmask);
4dcf6aff
IM
6204
6205 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6206
6207 if (!(sd->flags & SD_LOAD_BALANCE)) {
6208 printk("does not load-balance\n");
6209 if (sd->parent)
6210 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6211 " has parent");
6212 return -1;
41c7ce9a
NP
6213 }
6214
4dcf6aff
IM
6215 printk(KERN_CONT "span %s\n", str);
6216
6217 if (!cpu_isset(cpu, sd->span)) {
6218 printk(KERN_ERR "ERROR: domain->span does not contain "
6219 "CPU%d\n", cpu);
6220 }
6221 if (!cpu_isset(cpu, group->cpumask)) {
6222 printk(KERN_ERR "ERROR: domain->groups does not contain"
6223 " CPU%d\n", cpu);
6224 }
1da177e4 6225
4dcf6aff 6226 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6227 do {
4dcf6aff
IM
6228 if (!group) {
6229 printk("\n");
6230 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6231 break;
6232 }
6233
4dcf6aff
IM
6234 if (!group->__cpu_power) {
6235 printk(KERN_CONT "\n");
6236 printk(KERN_ERR "ERROR: domain->cpu_power not "
6237 "set\n");
6238 break;
6239 }
1da177e4 6240
4dcf6aff
IM
6241 if (!cpus_weight(group->cpumask)) {
6242 printk(KERN_CONT "\n");
6243 printk(KERN_ERR "ERROR: empty group\n");
6244 break;
6245 }
1da177e4 6246
7c16ec58 6247 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6248 printk(KERN_CONT "\n");
6249 printk(KERN_ERR "ERROR: repeated CPUs\n");
6250 break;
6251 }
1da177e4 6252
7c16ec58 6253 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6254
434d53b0 6255 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6256 printk(KERN_CONT " %s", str);
1da177e4 6257
4dcf6aff
IM
6258 group = group->next;
6259 } while (group != sd->groups);
6260 printk(KERN_CONT "\n");
1da177e4 6261
7c16ec58 6262 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6263 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6264
7c16ec58 6265 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6266 printk(KERN_ERR "ERROR: parent span is not a superset "
6267 "of domain->span\n");
6268 return 0;
6269}
1da177e4 6270
4dcf6aff
IM
6271static void sched_domain_debug(struct sched_domain *sd, int cpu)
6272{
7c16ec58 6273 cpumask_t *groupmask;
4dcf6aff 6274 int level = 0;
1da177e4 6275
4dcf6aff
IM
6276 if (!sd) {
6277 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6278 return;
6279 }
1da177e4 6280
4dcf6aff
IM
6281 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6282
7c16ec58
MT
6283 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6284 if (!groupmask) {
6285 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6286 return;
6287 }
6288
4dcf6aff 6289 for (;;) {
7c16ec58 6290 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6291 break;
1da177e4
LT
6292 level++;
6293 sd = sd->parent;
33859f7f 6294 if (!sd)
4dcf6aff
IM
6295 break;
6296 }
7c16ec58 6297 kfree(groupmask);
1da177e4
LT
6298}
6299#else
48f24c4d 6300# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6301#endif
6302
1a20ff27 6303static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6304{
6305 if (cpus_weight(sd->span) == 1)
6306 return 1;
6307
6308 /* Following flags need at least 2 groups */
6309 if (sd->flags & (SD_LOAD_BALANCE |
6310 SD_BALANCE_NEWIDLE |
6311 SD_BALANCE_FORK |
89c4710e
SS
6312 SD_BALANCE_EXEC |
6313 SD_SHARE_CPUPOWER |
6314 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6315 if (sd->groups != sd->groups->next)
6316 return 0;
6317 }
6318
6319 /* Following flags don't use groups */
6320 if (sd->flags & (SD_WAKE_IDLE |
6321 SD_WAKE_AFFINE |
6322 SD_WAKE_BALANCE))
6323 return 0;
6324
6325 return 1;
6326}
6327
48f24c4d
IM
6328static int
6329sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6330{
6331 unsigned long cflags = sd->flags, pflags = parent->flags;
6332
6333 if (sd_degenerate(parent))
6334 return 1;
6335
6336 if (!cpus_equal(sd->span, parent->span))
6337 return 0;
6338
6339 /* Does parent contain flags not in child? */
6340 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6341 if (cflags & SD_WAKE_AFFINE)
6342 pflags &= ~SD_WAKE_BALANCE;
6343 /* Flags needing groups don't count if only 1 group in parent */
6344 if (parent->groups == parent->groups->next) {
6345 pflags &= ~(SD_LOAD_BALANCE |
6346 SD_BALANCE_NEWIDLE |
6347 SD_BALANCE_FORK |
89c4710e
SS
6348 SD_BALANCE_EXEC |
6349 SD_SHARE_CPUPOWER |
6350 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6351 }
6352 if (~cflags & pflags)
6353 return 0;
6354
6355 return 1;
6356}
6357
57d885fe
GH
6358static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6359{
6360 unsigned long flags;
6361 const struct sched_class *class;
6362
6363 spin_lock_irqsave(&rq->lock, flags);
6364
6365 if (rq->rd) {
6366 struct root_domain *old_rd = rq->rd;
6367
0eab9146 6368 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6369 if (class->leave_domain)
6370 class->leave_domain(rq);
0eab9146 6371 }
57d885fe 6372
dc938520
GH
6373 cpu_clear(rq->cpu, old_rd->span);
6374 cpu_clear(rq->cpu, old_rd->online);
6375
57d885fe
GH
6376 if (atomic_dec_and_test(&old_rd->refcount))
6377 kfree(old_rd);
6378 }
6379
6380 atomic_inc(&rd->refcount);
6381 rq->rd = rd;
6382
dc938520 6383 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6384 if (cpu_isset(rq->cpu, cpu_online_map))
6385 cpu_set(rq->cpu, rd->online);
dc938520 6386
0eab9146 6387 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6388 if (class->join_domain)
6389 class->join_domain(rq);
0eab9146 6390 }
57d885fe
GH
6391
6392 spin_unlock_irqrestore(&rq->lock, flags);
6393}
6394
dc938520 6395static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6396{
6397 memset(rd, 0, sizeof(*rd));
6398
dc938520
GH
6399 cpus_clear(rd->span);
6400 cpus_clear(rd->online);
57d885fe
GH
6401}
6402
6403static void init_defrootdomain(void)
6404{
dc938520 6405 init_rootdomain(&def_root_domain);
57d885fe
GH
6406 atomic_set(&def_root_domain.refcount, 1);
6407}
6408
dc938520 6409static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6410{
6411 struct root_domain *rd;
6412
6413 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6414 if (!rd)
6415 return NULL;
6416
dc938520 6417 init_rootdomain(rd);
57d885fe
GH
6418
6419 return rd;
6420}
6421
1da177e4 6422/*
0eab9146 6423 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6424 * hold the hotplug lock.
6425 */
0eab9146
IM
6426static void
6427cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6428{
70b97a7f 6429 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6430 struct sched_domain *tmp;
6431
6432 /* Remove the sched domains which do not contribute to scheduling. */
6433 for (tmp = sd; tmp; tmp = tmp->parent) {
6434 struct sched_domain *parent = tmp->parent;
6435 if (!parent)
6436 break;
1a848870 6437 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6438 tmp->parent = parent->parent;
1a848870
SS
6439 if (parent->parent)
6440 parent->parent->child = tmp;
6441 }
245af2c7
SS
6442 }
6443
1a848870 6444 if (sd && sd_degenerate(sd)) {
245af2c7 6445 sd = sd->parent;
1a848870
SS
6446 if (sd)
6447 sd->child = NULL;
6448 }
1da177e4
LT
6449
6450 sched_domain_debug(sd, cpu);
6451
57d885fe 6452 rq_attach_root(rq, rd);
674311d5 6453 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6454}
6455
6456/* cpus with isolated domains */
67af63a6 6457static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6458
6459/* Setup the mask of cpus configured for isolated domains */
6460static int __init isolated_cpu_setup(char *str)
6461{
6462 int ints[NR_CPUS], i;
6463
6464 str = get_options(str, ARRAY_SIZE(ints), ints);
6465 cpus_clear(cpu_isolated_map);
6466 for (i = 1; i <= ints[0]; i++)
6467 if (ints[i] < NR_CPUS)
6468 cpu_set(ints[i], cpu_isolated_map);
6469 return 1;
6470}
6471
8927f494 6472__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6473
6474/*
6711cab4
SS
6475 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6476 * to a function which identifies what group(along with sched group) a CPU
6477 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6478 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6479 *
6480 * init_sched_build_groups will build a circular linked list of the groups
6481 * covered by the given span, and will set each group's ->cpumask correctly,
6482 * and ->cpu_power to 0.
6483 */
a616058b 6484static void
7c16ec58 6485init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6486 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6487 struct sched_group **sg,
6488 cpumask_t *tmpmask),
6489 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6490{
6491 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6492 int i;
6493
7c16ec58
MT
6494 cpus_clear(*covered);
6495
6496 for_each_cpu_mask(i, *span) {
6711cab4 6497 struct sched_group *sg;
7c16ec58 6498 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6499 int j;
6500
7c16ec58 6501 if (cpu_isset(i, *covered))
1da177e4
LT
6502 continue;
6503
7c16ec58 6504 cpus_clear(sg->cpumask);
5517d86b 6505 sg->__cpu_power = 0;
1da177e4 6506
7c16ec58
MT
6507 for_each_cpu_mask(j, *span) {
6508 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6509 continue;
6510
7c16ec58 6511 cpu_set(j, *covered);
1da177e4
LT
6512 cpu_set(j, sg->cpumask);
6513 }
6514 if (!first)
6515 first = sg;
6516 if (last)
6517 last->next = sg;
6518 last = sg;
6519 }
6520 last->next = first;
6521}
6522
9c1cfda2 6523#define SD_NODES_PER_DOMAIN 16
1da177e4 6524
9c1cfda2 6525#ifdef CONFIG_NUMA
198e2f18 6526
9c1cfda2
JH
6527/**
6528 * find_next_best_node - find the next node to include in a sched_domain
6529 * @node: node whose sched_domain we're building
6530 * @used_nodes: nodes already in the sched_domain
6531 *
41a2d6cf 6532 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6533 * finds the closest node not already in the @used_nodes map.
6534 *
6535 * Should use nodemask_t.
6536 */
c5f59f08 6537static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6538{
6539 int i, n, val, min_val, best_node = 0;
6540
6541 min_val = INT_MAX;
6542
6543 for (i = 0; i < MAX_NUMNODES; i++) {
6544 /* Start at @node */
6545 n = (node + i) % MAX_NUMNODES;
6546
6547 if (!nr_cpus_node(n))
6548 continue;
6549
6550 /* Skip already used nodes */
c5f59f08 6551 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6552 continue;
6553
6554 /* Simple min distance search */
6555 val = node_distance(node, n);
6556
6557 if (val < min_val) {
6558 min_val = val;
6559 best_node = n;
6560 }
6561 }
6562
c5f59f08 6563 node_set(best_node, *used_nodes);
9c1cfda2
JH
6564 return best_node;
6565}
6566
6567/**
6568 * sched_domain_node_span - get a cpumask for a node's sched_domain
6569 * @node: node whose cpumask we're constructing
73486722 6570 * @span: resulting cpumask
9c1cfda2 6571 *
41a2d6cf 6572 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6573 * should be one that prevents unnecessary balancing, but also spreads tasks
6574 * out optimally.
6575 */
4bdbaad3 6576static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6577{
c5f59f08 6578 nodemask_t used_nodes;
c5f59f08 6579 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6580 int i;
9c1cfda2 6581
4bdbaad3 6582 cpus_clear(*span);
c5f59f08 6583 nodes_clear(used_nodes);
9c1cfda2 6584
4bdbaad3 6585 cpus_or(*span, *span, *nodemask);
c5f59f08 6586 node_set(node, used_nodes);
9c1cfda2
JH
6587
6588 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6589 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6590
c5f59f08 6591 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6592 cpus_or(*span, *span, *nodemask);
9c1cfda2 6593 }
9c1cfda2
JH
6594}
6595#endif
6596
5c45bf27 6597int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6598
9c1cfda2 6599/*
48f24c4d 6600 * SMT sched-domains:
9c1cfda2 6601 */
1da177e4
LT
6602#ifdef CONFIG_SCHED_SMT
6603static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6604static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6605
41a2d6cf 6606static int
7c16ec58
MT
6607cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6608 cpumask_t *unused)
1da177e4 6609{
6711cab4
SS
6610 if (sg)
6611 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6612 return cpu;
6613}
6614#endif
6615
48f24c4d
IM
6616/*
6617 * multi-core sched-domains:
6618 */
1e9f28fa
SS
6619#ifdef CONFIG_SCHED_MC
6620static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6621static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6622#endif
6623
6624#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6625static int
7c16ec58
MT
6626cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6627 cpumask_t *mask)
1e9f28fa 6628{
6711cab4 6629 int group;
7c16ec58
MT
6630
6631 *mask = per_cpu(cpu_sibling_map, cpu);
6632 cpus_and(*mask, *mask, *cpu_map);
6633 group = first_cpu(*mask);
6711cab4
SS
6634 if (sg)
6635 *sg = &per_cpu(sched_group_core, group);
6636 return group;
1e9f28fa
SS
6637}
6638#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6639static int
7c16ec58
MT
6640cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6641 cpumask_t *unused)
1e9f28fa 6642{
6711cab4
SS
6643 if (sg)
6644 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6645 return cpu;
6646}
6647#endif
6648
1da177e4 6649static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6650static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6651
41a2d6cf 6652static int
7c16ec58
MT
6653cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6654 cpumask_t *mask)
1da177e4 6655{
6711cab4 6656 int group;
48f24c4d 6657#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6658 *mask = cpu_coregroup_map(cpu);
6659 cpus_and(*mask, *mask, *cpu_map);
6660 group = first_cpu(*mask);
1e9f28fa 6661#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6662 *mask = per_cpu(cpu_sibling_map, cpu);
6663 cpus_and(*mask, *mask, *cpu_map);
6664 group = first_cpu(*mask);
1da177e4 6665#else
6711cab4 6666 group = cpu;
1da177e4 6667#endif
6711cab4
SS
6668 if (sg)
6669 *sg = &per_cpu(sched_group_phys, group);
6670 return group;
1da177e4
LT
6671}
6672
6673#ifdef CONFIG_NUMA
1da177e4 6674/*
9c1cfda2
JH
6675 * The init_sched_build_groups can't handle what we want to do with node
6676 * groups, so roll our own. Now each node has its own list of groups which
6677 * gets dynamically allocated.
1da177e4 6678 */
9c1cfda2 6679static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6680static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6681
9c1cfda2 6682static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6683static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6684
6711cab4 6685static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6686 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6687{
6711cab4
SS
6688 int group;
6689
7c16ec58
MT
6690 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6691 cpus_and(*nodemask, *nodemask, *cpu_map);
6692 group = first_cpu(*nodemask);
6711cab4
SS
6693
6694 if (sg)
6695 *sg = &per_cpu(sched_group_allnodes, group);
6696 return group;
1da177e4 6697}
6711cab4 6698
08069033
SS
6699static void init_numa_sched_groups_power(struct sched_group *group_head)
6700{
6701 struct sched_group *sg = group_head;
6702 int j;
6703
6704 if (!sg)
6705 return;
3a5c359a
AK
6706 do {
6707 for_each_cpu_mask(j, sg->cpumask) {
6708 struct sched_domain *sd;
08069033 6709
3a5c359a
AK
6710 sd = &per_cpu(phys_domains, j);
6711 if (j != first_cpu(sd->groups->cpumask)) {
6712 /*
6713 * Only add "power" once for each
6714 * physical package.
6715 */
6716 continue;
6717 }
08069033 6718
3a5c359a
AK
6719 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6720 }
6721 sg = sg->next;
6722 } while (sg != group_head);
08069033 6723}
1da177e4
LT
6724#endif
6725
a616058b 6726#ifdef CONFIG_NUMA
51888ca2 6727/* Free memory allocated for various sched_group structures */
7c16ec58 6728static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6729{
a616058b 6730 int cpu, i;
51888ca2
SV
6731
6732 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6733 struct sched_group **sched_group_nodes
6734 = sched_group_nodes_bycpu[cpu];
6735
51888ca2
SV
6736 if (!sched_group_nodes)
6737 continue;
6738
6739 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6740 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6741
7c16ec58
MT
6742 *nodemask = node_to_cpumask(i);
6743 cpus_and(*nodemask, *nodemask, *cpu_map);
6744 if (cpus_empty(*nodemask))
51888ca2
SV
6745 continue;
6746
6747 if (sg == NULL)
6748 continue;
6749 sg = sg->next;
6750next_sg:
6751 oldsg = sg;
6752 sg = sg->next;
6753 kfree(oldsg);
6754 if (oldsg != sched_group_nodes[i])
6755 goto next_sg;
6756 }
6757 kfree(sched_group_nodes);
6758 sched_group_nodes_bycpu[cpu] = NULL;
6759 }
51888ca2 6760}
a616058b 6761#else
7c16ec58 6762static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6763{
6764}
6765#endif
51888ca2 6766
89c4710e
SS
6767/*
6768 * Initialize sched groups cpu_power.
6769 *
6770 * cpu_power indicates the capacity of sched group, which is used while
6771 * distributing the load between different sched groups in a sched domain.
6772 * Typically cpu_power for all the groups in a sched domain will be same unless
6773 * there are asymmetries in the topology. If there are asymmetries, group
6774 * having more cpu_power will pickup more load compared to the group having
6775 * less cpu_power.
6776 *
6777 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6778 * the maximum number of tasks a group can handle in the presence of other idle
6779 * or lightly loaded groups in the same sched domain.
6780 */
6781static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6782{
6783 struct sched_domain *child;
6784 struct sched_group *group;
6785
6786 WARN_ON(!sd || !sd->groups);
6787
6788 if (cpu != first_cpu(sd->groups->cpumask))
6789 return;
6790
6791 child = sd->child;
6792
5517d86b
ED
6793 sd->groups->__cpu_power = 0;
6794
89c4710e
SS
6795 /*
6796 * For perf policy, if the groups in child domain share resources
6797 * (for example cores sharing some portions of the cache hierarchy
6798 * or SMT), then set this domain groups cpu_power such that each group
6799 * can handle only one task, when there are other idle groups in the
6800 * same sched domain.
6801 */
6802 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6803 (child->flags &
6804 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6805 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6806 return;
6807 }
6808
89c4710e
SS
6809 /*
6810 * add cpu_power of each child group to this groups cpu_power
6811 */
6812 group = child->groups;
6813 do {
5517d86b 6814 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6815 group = group->next;
6816 } while (group != child->groups);
6817}
6818
7c16ec58
MT
6819/*
6820 * Initializers for schedule domains
6821 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6822 */
6823
6824#define SD_INIT(sd, type) sd_init_##type(sd)
6825#define SD_INIT_FUNC(type) \
6826static noinline void sd_init_##type(struct sched_domain *sd) \
6827{ \
6828 memset(sd, 0, sizeof(*sd)); \
6829 *sd = SD_##type##_INIT; \
1d3504fc 6830 sd->level = SD_LV_##type; \
7c16ec58
MT
6831}
6832
6833SD_INIT_FUNC(CPU)
6834#ifdef CONFIG_NUMA
6835 SD_INIT_FUNC(ALLNODES)
6836 SD_INIT_FUNC(NODE)
6837#endif
6838#ifdef CONFIG_SCHED_SMT
6839 SD_INIT_FUNC(SIBLING)
6840#endif
6841#ifdef CONFIG_SCHED_MC
6842 SD_INIT_FUNC(MC)
6843#endif
6844
6845/*
6846 * To minimize stack usage kmalloc room for cpumasks and share the
6847 * space as the usage in build_sched_domains() dictates. Used only
6848 * if the amount of space is significant.
6849 */
6850struct allmasks {
6851 cpumask_t tmpmask; /* make this one first */
6852 union {
6853 cpumask_t nodemask;
6854 cpumask_t this_sibling_map;
6855 cpumask_t this_core_map;
6856 };
6857 cpumask_t send_covered;
6858
6859#ifdef CONFIG_NUMA
6860 cpumask_t domainspan;
6861 cpumask_t covered;
6862 cpumask_t notcovered;
6863#endif
6864};
6865
6866#if NR_CPUS > 128
6867#define SCHED_CPUMASK_ALLOC 1
6868#define SCHED_CPUMASK_FREE(v) kfree(v)
6869#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6870#else
6871#define SCHED_CPUMASK_ALLOC 0
6872#define SCHED_CPUMASK_FREE(v)
6873#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6874#endif
6875
6876#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6877 ((unsigned long)(a) + offsetof(struct allmasks, v))
6878
1d3504fc
HS
6879static int default_relax_domain_level = -1;
6880
6881static int __init setup_relax_domain_level(char *str)
6882{
30e0e178
LZ
6883 unsigned long val;
6884
6885 val = simple_strtoul(str, NULL, 0);
6886 if (val < SD_LV_MAX)
6887 default_relax_domain_level = val;
6888
1d3504fc
HS
6889 return 1;
6890}
6891__setup("relax_domain_level=", setup_relax_domain_level);
6892
6893static void set_domain_attribute(struct sched_domain *sd,
6894 struct sched_domain_attr *attr)
6895{
6896 int request;
6897
6898 if (!attr || attr->relax_domain_level < 0) {
6899 if (default_relax_domain_level < 0)
6900 return;
6901 else
6902 request = default_relax_domain_level;
6903 } else
6904 request = attr->relax_domain_level;
6905 if (request < sd->level) {
6906 /* turn off idle balance on this domain */
6907 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6908 } else {
6909 /* turn on idle balance on this domain */
6910 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6911 }
6912}
6913
1da177e4 6914/*
1a20ff27
DG
6915 * Build sched domains for a given set of cpus and attach the sched domains
6916 * to the individual cpus
1da177e4 6917 */
1d3504fc
HS
6918static int __build_sched_domains(const cpumask_t *cpu_map,
6919 struct sched_domain_attr *attr)
1da177e4
LT
6920{
6921 int i;
57d885fe 6922 struct root_domain *rd;
7c16ec58
MT
6923 SCHED_CPUMASK_DECLARE(allmasks);
6924 cpumask_t *tmpmask;
d1b55138
JH
6925#ifdef CONFIG_NUMA
6926 struct sched_group **sched_group_nodes = NULL;
6711cab4 6927 int sd_allnodes = 0;
d1b55138
JH
6928
6929 /*
6930 * Allocate the per-node list of sched groups
6931 */
5cf9f062 6932 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6933 GFP_KERNEL);
d1b55138
JH
6934 if (!sched_group_nodes) {
6935 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6936 return -ENOMEM;
d1b55138 6937 }
d1b55138 6938#endif
1da177e4 6939
dc938520 6940 rd = alloc_rootdomain();
57d885fe
GH
6941 if (!rd) {
6942 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6943#ifdef CONFIG_NUMA
6944 kfree(sched_group_nodes);
6945#endif
57d885fe
GH
6946 return -ENOMEM;
6947 }
6948
7c16ec58
MT
6949#if SCHED_CPUMASK_ALLOC
6950 /* get space for all scratch cpumask variables */
6951 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6952 if (!allmasks) {
6953 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6954 kfree(rd);
6955#ifdef CONFIG_NUMA
6956 kfree(sched_group_nodes);
6957#endif
6958 return -ENOMEM;
6959 }
6960#endif
6961 tmpmask = (cpumask_t *)allmasks;
6962
6963
6964#ifdef CONFIG_NUMA
6965 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6966#endif
6967
1da177e4 6968 /*
1a20ff27 6969 * Set up domains for cpus specified by the cpu_map.
1da177e4 6970 */
1a20ff27 6971 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6972 struct sched_domain *sd = NULL, *p;
7c16ec58 6973 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 6974
7c16ec58
MT
6975 *nodemask = node_to_cpumask(cpu_to_node(i));
6976 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
6977
6978#ifdef CONFIG_NUMA
dd41f596 6979 if (cpus_weight(*cpu_map) >
7c16ec58 6980 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 6981 sd = &per_cpu(allnodes_domains, i);
7c16ec58 6982 SD_INIT(sd, ALLNODES);
1d3504fc 6983 set_domain_attribute(sd, attr);
9c1cfda2 6984 sd->span = *cpu_map;
7c16ec58 6985 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 6986 p = sd;
6711cab4 6987 sd_allnodes = 1;
9c1cfda2
JH
6988 } else
6989 p = NULL;
6990
1da177e4 6991 sd = &per_cpu(node_domains, i);
7c16ec58 6992 SD_INIT(sd, NODE);
1d3504fc 6993 set_domain_attribute(sd, attr);
4bdbaad3 6994 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 6995 sd->parent = p;
1a848870
SS
6996 if (p)
6997 p->child = sd;
9c1cfda2 6998 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6999#endif
7000
7001 p = sd;
7002 sd = &per_cpu(phys_domains, i);
7c16ec58 7003 SD_INIT(sd, CPU);
1d3504fc 7004 set_domain_attribute(sd, attr);
7c16ec58 7005 sd->span = *nodemask;
1da177e4 7006 sd->parent = p;
1a848870
SS
7007 if (p)
7008 p->child = sd;
7c16ec58 7009 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7010
1e9f28fa
SS
7011#ifdef CONFIG_SCHED_MC
7012 p = sd;
7013 sd = &per_cpu(core_domains, i);
7c16ec58 7014 SD_INIT(sd, MC);
1d3504fc 7015 set_domain_attribute(sd, attr);
1e9f28fa
SS
7016 sd->span = cpu_coregroup_map(i);
7017 cpus_and(sd->span, sd->span, *cpu_map);
7018 sd->parent = p;
1a848870 7019 p->child = sd;
7c16ec58 7020 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7021#endif
7022
1da177e4
LT
7023#ifdef CONFIG_SCHED_SMT
7024 p = sd;
7025 sd = &per_cpu(cpu_domains, i);
7c16ec58 7026 SD_INIT(sd, SIBLING);
1d3504fc 7027 set_domain_attribute(sd, attr);
d5a7430d 7028 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7029 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7030 sd->parent = p;
1a848870 7031 p->child = sd;
7c16ec58 7032 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7033#endif
7034 }
7035
7036#ifdef CONFIG_SCHED_SMT
7037 /* Set up CPU (sibling) groups */
9c1cfda2 7038 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7039 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7040 SCHED_CPUMASK_VAR(send_covered, allmasks);
7041
7042 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7043 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7044 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7045 continue;
7046
dd41f596 7047 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7048 &cpu_to_cpu_group,
7049 send_covered, tmpmask);
1da177e4
LT
7050 }
7051#endif
7052
1e9f28fa
SS
7053#ifdef CONFIG_SCHED_MC
7054 /* Set up multi-core groups */
7055 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7056 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7057 SCHED_CPUMASK_VAR(send_covered, allmasks);
7058
7059 *this_core_map = cpu_coregroup_map(i);
7060 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7061 if (i != first_cpu(*this_core_map))
1e9f28fa 7062 continue;
7c16ec58 7063
dd41f596 7064 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7065 &cpu_to_core_group,
7066 send_covered, tmpmask);
1e9f28fa
SS
7067 }
7068#endif
7069
1da177e4
LT
7070 /* Set up physical groups */
7071 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7072 SCHED_CPUMASK_VAR(nodemask, allmasks);
7073 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7074
7c16ec58
MT
7075 *nodemask = node_to_cpumask(i);
7076 cpus_and(*nodemask, *nodemask, *cpu_map);
7077 if (cpus_empty(*nodemask))
1da177e4
LT
7078 continue;
7079
7c16ec58
MT
7080 init_sched_build_groups(nodemask, cpu_map,
7081 &cpu_to_phys_group,
7082 send_covered, tmpmask);
1da177e4
LT
7083 }
7084
7085#ifdef CONFIG_NUMA
7086 /* Set up node groups */
7c16ec58
MT
7087 if (sd_allnodes) {
7088 SCHED_CPUMASK_VAR(send_covered, allmasks);
7089
7090 init_sched_build_groups(cpu_map, cpu_map,
7091 &cpu_to_allnodes_group,
7092 send_covered, tmpmask);
7093 }
9c1cfda2
JH
7094
7095 for (i = 0; i < MAX_NUMNODES; i++) {
7096 /* Set up node groups */
7097 struct sched_group *sg, *prev;
7c16ec58
MT
7098 SCHED_CPUMASK_VAR(nodemask, allmasks);
7099 SCHED_CPUMASK_VAR(domainspan, allmasks);
7100 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7101 int j;
7102
7c16ec58
MT
7103 *nodemask = node_to_cpumask(i);
7104 cpus_clear(*covered);
7105
7106 cpus_and(*nodemask, *nodemask, *cpu_map);
7107 if (cpus_empty(*nodemask)) {
d1b55138 7108 sched_group_nodes[i] = NULL;
9c1cfda2 7109 continue;
d1b55138 7110 }
9c1cfda2 7111
4bdbaad3 7112 sched_domain_node_span(i, domainspan);
7c16ec58 7113 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7114
15f0b676 7115 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7116 if (!sg) {
7117 printk(KERN_WARNING "Can not alloc domain group for "
7118 "node %d\n", i);
7119 goto error;
7120 }
9c1cfda2 7121 sched_group_nodes[i] = sg;
7c16ec58 7122 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7123 struct sched_domain *sd;
9761eea8 7124
9c1cfda2
JH
7125 sd = &per_cpu(node_domains, j);
7126 sd->groups = sg;
9c1cfda2 7127 }
5517d86b 7128 sg->__cpu_power = 0;
7c16ec58 7129 sg->cpumask = *nodemask;
51888ca2 7130 sg->next = sg;
7c16ec58 7131 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7132 prev = sg;
7133
7134 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7135 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7136 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7137 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7138
7c16ec58
MT
7139 cpus_complement(*notcovered, *covered);
7140 cpus_and(*tmpmask, *notcovered, *cpu_map);
7141 cpus_and(*tmpmask, *tmpmask, *domainspan);
7142 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7143 break;
7144
7c16ec58
MT
7145 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7146 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7147 continue;
7148
15f0b676
SV
7149 sg = kmalloc_node(sizeof(struct sched_group),
7150 GFP_KERNEL, i);
9c1cfda2
JH
7151 if (!sg) {
7152 printk(KERN_WARNING
7153 "Can not alloc domain group for node %d\n", j);
51888ca2 7154 goto error;
9c1cfda2 7155 }
5517d86b 7156 sg->__cpu_power = 0;
7c16ec58 7157 sg->cpumask = *tmpmask;
51888ca2 7158 sg->next = prev->next;
7c16ec58 7159 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7160 prev->next = sg;
7161 prev = sg;
7162 }
9c1cfda2 7163 }
1da177e4
LT
7164#endif
7165
7166 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7167#ifdef CONFIG_SCHED_SMT
1a20ff27 7168 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7169 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7170
89c4710e 7171 init_sched_groups_power(i, sd);
5c45bf27 7172 }
1da177e4 7173#endif
1e9f28fa 7174#ifdef CONFIG_SCHED_MC
5c45bf27 7175 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7176 struct sched_domain *sd = &per_cpu(core_domains, i);
7177
89c4710e 7178 init_sched_groups_power(i, sd);
5c45bf27
SS
7179 }
7180#endif
1e9f28fa 7181
5c45bf27 7182 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7183 struct sched_domain *sd = &per_cpu(phys_domains, i);
7184
89c4710e 7185 init_sched_groups_power(i, sd);
1da177e4
LT
7186 }
7187
9c1cfda2 7188#ifdef CONFIG_NUMA
08069033
SS
7189 for (i = 0; i < MAX_NUMNODES; i++)
7190 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7191
6711cab4
SS
7192 if (sd_allnodes) {
7193 struct sched_group *sg;
f712c0c7 7194
7c16ec58
MT
7195 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7196 tmpmask);
f712c0c7
SS
7197 init_numa_sched_groups_power(sg);
7198 }
9c1cfda2
JH
7199#endif
7200
1da177e4 7201 /* Attach the domains */
1a20ff27 7202 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7203 struct sched_domain *sd;
7204#ifdef CONFIG_SCHED_SMT
7205 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7206#elif defined(CONFIG_SCHED_MC)
7207 sd = &per_cpu(core_domains, i);
1da177e4
LT
7208#else
7209 sd = &per_cpu(phys_domains, i);
7210#endif
57d885fe 7211 cpu_attach_domain(sd, rd, i);
1da177e4 7212 }
51888ca2 7213
7c16ec58 7214 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7215 return 0;
7216
a616058b 7217#ifdef CONFIG_NUMA
51888ca2 7218error:
7c16ec58
MT
7219 free_sched_groups(cpu_map, tmpmask);
7220 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7221 return -ENOMEM;
a616058b 7222#endif
1da177e4 7223}
029190c5 7224
1d3504fc
HS
7225static int build_sched_domains(const cpumask_t *cpu_map)
7226{
7227 return __build_sched_domains(cpu_map, NULL);
7228}
7229
029190c5
PJ
7230static cpumask_t *doms_cur; /* current sched domains */
7231static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7232static struct sched_domain_attr *dattr_cur;
7233 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7234
7235/*
7236 * Special case: If a kmalloc of a doms_cur partition (array of
7237 * cpumask_t) fails, then fallback to a single sched domain,
7238 * as determined by the single cpumask_t fallback_doms.
7239 */
7240static cpumask_t fallback_doms;
7241
22e52b07
HC
7242void __attribute__((weak)) arch_update_cpu_topology(void)
7243{
7244}
7245
f18f982a
MK
7246/*
7247 * Free current domain masks.
7248 * Called after all cpus are attached to NULL domain.
7249 */
7250static void free_sched_domains(void)
7251{
7252 ndoms_cur = 0;
7253 if (doms_cur != &fallback_doms)
7254 kfree(doms_cur);
7255 doms_cur = &fallback_doms;
7256}
7257
1a20ff27 7258/*
41a2d6cf 7259 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7260 * For now this just excludes isolated cpus, but could be used to
7261 * exclude other special cases in the future.
1a20ff27 7262 */
51888ca2 7263static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7264{
7378547f
MM
7265 int err;
7266
22e52b07 7267 arch_update_cpu_topology();
029190c5
PJ
7268 ndoms_cur = 1;
7269 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7270 if (!doms_cur)
7271 doms_cur = &fallback_doms;
7272 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7273 dattr_cur = NULL;
7378547f 7274 err = build_sched_domains(doms_cur);
6382bc90 7275 register_sched_domain_sysctl();
7378547f
MM
7276
7277 return err;
1a20ff27
DG
7278}
7279
7c16ec58
MT
7280static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7281 cpumask_t *tmpmask)
1da177e4 7282{
7c16ec58 7283 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7284}
1da177e4 7285
1a20ff27
DG
7286/*
7287 * Detach sched domains from a group of cpus specified in cpu_map
7288 * These cpus will now be attached to the NULL domain
7289 */
858119e1 7290static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7291{
7c16ec58 7292 cpumask_t tmpmask;
1a20ff27
DG
7293 int i;
7294
6382bc90
MM
7295 unregister_sched_domain_sysctl();
7296
1a20ff27 7297 for_each_cpu_mask(i, *cpu_map)
57d885fe 7298 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7299 synchronize_sched();
7c16ec58 7300 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7301}
7302
1d3504fc
HS
7303/* handle null as "default" */
7304static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7305 struct sched_domain_attr *new, int idx_new)
7306{
7307 struct sched_domain_attr tmp;
7308
7309 /* fast path */
7310 if (!new && !cur)
7311 return 1;
7312
7313 tmp = SD_ATTR_INIT;
7314 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7315 new ? (new + idx_new) : &tmp,
7316 sizeof(struct sched_domain_attr));
7317}
7318
029190c5
PJ
7319/*
7320 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7321 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7322 * doms_new[] to the current sched domain partitioning, doms_cur[].
7323 * It destroys each deleted domain and builds each new domain.
7324 *
7325 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7326 * The masks don't intersect (don't overlap.) We should setup one
7327 * sched domain for each mask. CPUs not in any of the cpumasks will
7328 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7329 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7330 * it as it is.
7331 *
41a2d6cf
IM
7332 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7333 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7334 * failed the kmalloc call, then it can pass in doms_new == NULL,
7335 * and partition_sched_domains() will fallback to the single partition
7336 * 'fallback_doms'.
7337 *
7338 * Call with hotplug lock held
7339 */
1d3504fc
HS
7340void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7341 struct sched_domain_attr *dattr_new)
029190c5
PJ
7342{
7343 int i, j;
7344
712555ee 7345 mutex_lock(&sched_domains_mutex);
a1835615 7346
7378547f
MM
7347 /* always unregister in case we don't destroy any domains */
7348 unregister_sched_domain_sysctl();
7349
029190c5
PJ
7350 if (doms_new == NULL) {
7351 ndoms_new = 1;
7352 doms_new = &fallback_doms;
7353 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7354 dattr_new = NULL;
029190c5
PJ
7355 }
7356
7357 /* Destroy deleted domains */
7358 for (i = 0; i < ndoms_cur; i++) {
7359 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7360 if (cpus_equal(doms_cur[i], doms_new[j])
7361 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7362 goto match1;
7363 }
7364 /* no match - a current sched domain not in new doms_new[] */
7365 detach_destroy_domains(doms_cur + i);
7366match1:
7367 ;
7368 }
7369
7370 /* Build new domains */
7371 for (i = 0; i < ndoms_new; i++) {
7372 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7373 if (cpus_equal(doms_new[i], doms_cur[j])
7374 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7375 goto match2;
7376 }
7377 /* no match - add a new doms_new */
1d3504fc
HS
7378 __build_sched_domains(doms_new + i,
7379 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7380match2:
7381 ;
7382 }
7383
7384 /* Remember the new sched domains */
7385 if (doms_cur != &fallback_doms)
7386 kfree(doms_cur);
1d3504fc 7387 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7388 doms_cur = doms_new;
1d3504fc 7389 dattr_cur = dattr_new;
029190c5 7390 ndoms_cur = ndoms_new;
7378547f
MM
7391
7392 register_sched_domain_sysctl();
a1835615 7393
712555ee 7394 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7395}
7396
5c45bf27 7397#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7398int arch_reinit_sched_domains(void)
5c45bf27
SS
7399{
7400 int err;
7401
95402b38 7402 get_online_cpus();
712555ee 7403 mutex_lock(&sched_domains_mutex);
5c45bf27 7404 detach_destroy_domains(&cpu_online_map);
f18f982a 7405 free_sched_domains();
5c45bf27 7406 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7407 mutex_unlock(&sched_domains_mutex);
95402b38 7408 put_online_cpus();
5c45bf27
SS
7409
7410 return err;
7411}
7412
7413static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7414{
7415 int ret;
7416
7417 if (buf[0] != '0' && buf[0] != '1')
7418 return -EINVAL;
7419
7420 if (smt)
7421 sched_smt_power_savings = (buf[0] == '1');
7422 else
7423 sched_mc_power_savings = (buf[0] == '1');
7424
7425 ret = arch_reinit_sched_domains();
7426
7427 return ret ? ret : count;
7428}
7429
5c45bf27
SS
7430#ifdef CONFIG_SCHED_MC
7431static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7432{
7433 return sprintf(page, "%u\n", sched_mc_power_savings);
7434}
48f24c4d
IM
7435static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7436 const char *buf, size_t count)
5c45bf27
SS
7437{
7438 return sched_power_savings_store(buf, count, 0);
7439}
6707de00
AB
7440static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7441 sched_mc_power_savings_store);
5c45bf27
SS
7442#endif
7443
7444#ifdef CONFIG_SCHED_SMT
7445static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7446{
7447 return sprintf(page, "%u\n", sched_smt_power_savings);
7448}
48f24c4d
IM
7449static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7450 const char *buf, size_t count)
5c45bf27
SS
7451{
7452 return sched_power_savings_store(buf, count, 1);
7453}
6707de00
AB
7454static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7455 sched_smt_power_savings_store);
7456#endif
7457
7458int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7459{
7460 int err = 0;
7461
7462#ifdef CONFIG_SCHED_SMT
7463 if (smt_capable())
7464 err = sysfs_create_file(&cls->kset.kobj,
7465 &attr_sched_smt_power_savings.attr);
7466#endif
7467#ifdef CONFIG_SCHED_MC
7468 if (!err && mc_capable())
7469 err = sysfs_create_file(&cls->kset.kobj,
7470 &attr_sched_mc_power_savings.attr);
7471#endif
7472 return err;
7473}
5c45bf27
SS
7474#endif
7475
1da177e4 7476/*
41a2d6cf 7477 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7478 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7479 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7480 * which will prevent rebalancing while the sched domains are recalculated.
7481 */
7482static int update_sched_domains(struct notifier_block *nfb,
7483 unsigned long action, void *hcpu)
7484{
1da177e4
LT
7485 switch (action) {
7486 case CPU_UP_PREPARE:
8bb78442 7487 case CPU_UP_PREPARE_FROZEN:
1da177e4 7488 case CPU_DOWN_PREPARE:
8bb78442 7489 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7490 detach_destroy_domains(&cpu_online_map);
f18f982a 7491 free_sched_domains();
1da177e4
LT
7492 return NOTIFY_OK;
7493
7494 case CPU_UP_CANCELED:
8bb78442 7495 case CPU_UP_CANCELED_FROZEN:
1da177e4 7496 case CPU_DOWN_FAILED:
8bb78442 7497 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7498 case CPU_ONLINE:
8bb78442 7499 case CPU_ONLINE_FROZEN:
1da177e4 7500 case CPU_DEAD:
8bb78442 7501 case CPU_DEAD_FROZEN:
1da177e4
LT
7502 /*
7503 * Fall through and re-initialise the domains.
7504 */
7505 break;
7506 default:
7507 return NOTIFY_DONE;
7508 }
7509
f18f982a
MK
7510#ifndef CONFIG_CPUSETS
7511 /*
7512 * Create default domain partitioning if cpusets are disabled.
7513 * Otherwise we let cpusets rebuild the domains based on the
7514 * current setup.
7515 */
7516
1da177e4 7517 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7518 arch_init_sched_domains(&cpu_online_map);
f18f982a 7519#endif
1da177e4
LT
7520
7521 return NOTIFY_OK;
7522}
1da177e4
LT
7523
7524void __init sched_init_smp(void)
7525{
5c1e1767
NP
7526 cpumask_t non_isolated_cpus;
7527
434d53b0
MT
7528#if defined(CONFIG_NUMA)
7529 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7530 GFP_KERNEL);
7531 BUG_ON(sched_group_nodes_bycpu == NULL);
7532#endif
95402b38 7533 get_online_cpus();
712555ee 7534 mutex_lock(&sched_domains_mutex);
1a20ff27 7535 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7536 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7537 if (cpus_empty(non_isolated_cpus))
7538 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7539 mutex_unlock(&sched_domains_mutex);
95402b38 7540 put_online_cpus();
1da177e4
LT
7541 /* XXX: Theoretical race here - CPU may be hotplugged now */
7542 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7543 init_hrtick();
5c1e1767
NP
7544
7545 /* Move init over to a non-isolated CPU */
7c16ec58 7546 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7547 BUG();
19978ca6 7548 sched_init_granularity();
1da177e4
LT
7549}
7550#else
7551void __init sched_init_smp(void)
7552{
19978ca6 7553 sched_init_granularity();
1da177e4
LT
7554}
7555#endif /* CONFIG_SMP */
7556
7557int in_sched_functions(unsigned long addr)
7558{
1da177e4
LT
7559 return in_lock_functions(addr) ||
7560 (addr >= (unsigned long)__sched_text_start
7561 && addr < (unsigned long)__sched_text_end);
7562}
7563
a9957449 7564static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7565{
7566 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7567 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7568#ifdef CONFIG_FAIR_GROUP_SCHED
7569 cfs_rq->rq = rq;
7570#endif
67e9fb2a 7571 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7572}
7573
fa85ae24
PZ
7574static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7575{
7576 struct rt_prio_array *array;
7577 int i;
7578
7579 array = &rt_rq->active;
7580 for (i = 0; i < MAX_RT_PRIO; i++) {
7581 INIT_LIST_HEAD(array->queue + i);
7582 __clear_bit(i, array->bitmap);
7583 }
7584 /* delimiter for bitsearch: */
7585 __set_bit(MAX_RT_PRIO, array->bitmap);
7586
052f1dc7 7587#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7588 rt_rq->highest_prio = MAX_RT_PRIO;
7589#endif
fa85ae24
PZ
7590#ifdef CONFIG_SMP
7591 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7592 rt_rq->overloaded = 0;
7593#endif
7594
7595 rt_rq->rt_time = 0;
7596 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7597 rt_rq->rt_runtime = 0;
7598 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7599
052f1dc7 7600#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7601 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7602 rt_rq->rq = rq;
7603#endif
fa85ae24
PZ
7604}
7605
6f505b16 7606#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7607static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7608 struct sched_entity *se, int cpu, int add,
7609 struct sched_entity *parent)
6f505b16 7610{
ec7dc8ac 7611 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7612 tg->cfs_rq[cpu] = cfs_rq;
7613 init_cfs_rq(cfs_rq, rq);
7614 cfs_rq->tg = tg;
7615 if (add)
7616 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7617
7618 tg->se[cpu] = se;
354d60c2
DG
7619 /* se could be NULL for init_task_group */
7620 if (!se)
7621 return;
7622
ec7dc8ac
DG
7623 if (!parent)
7624 se->cfs_rq = &rq->cfs;
7625 else
7626 se->cfs_rq = parent->my_q;
7627
6f505b16
PZ
7628 se->my_q = cfs_rq;
7629 se->load.weight = tg->shares;
e05510d0 7630 se->load.inv_weight = 0;
ec7dc8ac 7631 se->parent = parent;
6f505b16 7632}
052f1dc7 7633#endif
6f505b16 7634
052f1dc7 7635#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7636static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7637 struct sched_rt_entity *rt_se, int cpu, int add,
7638 struct sched_rt_entity *parent)
6f505b16 7639{
ec7dc8ac
DG
7640 struct rq *rq = cpu_rq(cpu);
7641
6f505b16
PZ
7642 tg->rt_rq[cpu] = rt_rq;
7643 init_rt_rq(rt_rq, rq);
7644 rt_rq->tg = tg;
7645 rt_rq->rt_se = rt_se;
ac086bc2 7646 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7647 if (add)
7648 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7649
7650 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7651 if (!rt_se)
7652 return;
7653
ec7dc8ac
DG
7654 if (!parent)
7655 rt_se->rt_rq = &rq->rt;
7656 else
7657 rt_se->rt_rq = parent->my_q;
7658
6f505b16 7659 rt_se->my_q = rt_rq;
ec7dc8ac 7660 rt_se->parent = parent;
6f505b16
PZ
7661 INIT_LIST_HEAD(&rt_se->run_list);
7662}
7663#endif
7664
1da177e4
LT
7665void __init sched_init(void)
7666{
dd41f596 7667 int i, j;
434d53b0
MT
7668 unsigned long alloc_size = 0, ptr;
7669
7670#ifdef CONFIG_FAIR_GROUP_SCHED
7671 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7672#endif
7673#ifdef CONFIG_RT_GROUP_SCHED
7674 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7675#endif
7676#ifdef CONFIG_USER_SCHED
7677 alloc_size *= 2;
434d53b0
MT
7678#endif
7679 /*
7680 * As sched_init() is called before page_alloc is setup,
7681 * we use alloc_bootmem().
7682 */
7683 if (alloc_size) {
5a9d3225 7684 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7685
7686#ifdef CONFIG_FAIR_GROUP_SCHED
7687 init_task_group.se = (struct sched_entity **)ptr;
7688 ptr += nr_cpu_ids * sizeof(void **);
7689
7690 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7691 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7692
7693#ifdef CONFIG_USER_SCHED
7694 root_task_group.se = (struct sched_entity **)ptr;
7695 ptr += nr_cpu_ids * sizeof(void **);
7696
7697 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7698 ptr += nr_cpu_ids * sizeof(void **);
7699#endif
434d53b0
MT
7700#endif
7701#ifdef CONFIG_RT_GROUP_SCHED
7702 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7703 ptr += nr_cpu_ids * sizeof(void **);
7704
7705 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7706 ptr += nr_cpu_ids * sizeof(void **);
7707
7708#ifdef CONFIG_USER_SCHED
7709 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7710 ptr += nr_cpu_ids * sizeof(void **);
7711
7712 root_task_group.rt_rq = (struct rt_rq **)ptr;
7713 ptr += nr_cpu_ids * sizeof(void **);
7714#endif
434d53b0
MT
7715#endif
7716 }
dd41f596 7717
57d885fe
GH
7718#ifdef CONFIG_SMP
7719 init_defrootdomain();
7720#endif
7721
d0b27fa7
PZ
7722 init_rt_bandwidth(&def_rt_bandwidth,
7723 global_rt_period(), global_rt_runtime());
7724
7725#ifdef CONFIG_RT_GROUP_SCHED
7726 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7727 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7728#ifdef CONFIG_USER_SCHED
7729 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7730 global_rt_period(), RUNTIME_INF);
7731#endif
d0b27fa7
PZ
7732#endif
7733
052f1dc7 7734#ifdef CONFIG_GROUP_SCHED
6f505b16 7735 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7736 INIT_LIST_HEAD(&init_task_group.children);
7737
7738#ifdef CONFIG_USER_SCHED
7739 INIT_LIST_HEAD(&root_task_group.children);
7740 init_task_group.parent = &root_task_group;
7741 list_add(&init_task_group.siblings, &root_task_group.children);
7742#endif
6f505b16
PZ
7743#endif
7744
0a945022 7745 for_each_possible_cpu(i) {
70b97a7f 7746 struct rq *rq;
1da177e4
LT
7747
7748 rq = cpu_rq(i);
7749 spin_lock_init(&rq->lock);
fcb99371 7750 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7751 rq->nr_running = 0;
dd41f596 7752 init_cfs_rq(&rq->cfs, rq);
6f505b16 7753 init_rt_rq(&rq->rt, rq);
dd41f596 7754#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7755 init_task_group.shares = init_task_group_load;
6f505b16 7756 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7757#ifdef CONFIG_CGROUP_SCHED
7758 /*
7759 * How much cpu bandwidth does init_task_group get?
7760 *
7761 * In case of task-groups formed thr' the cgroup filesystem, it
7762 * gets 100% of the cpu resources in the system. This overall
7763 * system cpu resource is divided among the tasks of
7764 * init_task_group and its child task-groups in a fair manner,
7765 * based on each entity's (task or task-group's) weight
7766 * (se->load.weight).
7767 *
7768 * In other words, if init_task_group has 10 tasks of weight
7769 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7770 * then A0's share of the cpu resource is:
7771 *
7772 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7773 *
7774 * We achieve this by letting init_task_group's tasks sit
7775 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7776 */
ec7dc8ac 7777 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7778#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7779 root_task_group.shares = NICE_0_LOAD;
7780 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7781 /*
7782 * In case of task-groups formed thr' the user id of tasks,
7783 * init_task_group represents tasks belonging to root user.
7784 * Hence it forms a sibling of all subsequent groups formed.
7785 * In this case, init_task_group gets only a fraction of overall
7786 * system cpu resource, based on the weight assigned to root
7787 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7788 * by letting tasks of init_task_group sit in a separate cfs_rq
7789 * (init_cfs_rq) and having one entity represent this group of
7790 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7791 */
ec7dc8ac 7792 init_tg_cfs_entry(&init_task_group,
6f505b16 7793 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7794 &per_cpu(init_sched_entity, i), i, 1,
7795 root_task_group.se[i]);
6f505b16 7796
052f1dc7 7797#endif
354d60c2
DG
7798#endif /* CONFIG_FAIR_GROUP_SCHED */
7799
7800 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7801#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7802 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7803#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7804 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7805#elif defined CONFIG_USER_SCHED
eff766a6 7806 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7807 init_tg_rt_entry(&init_task_group,
6f505b16 7808 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7809 &per_cpu(init_sched_rt_entity, i), i, 1,
7810 root_task_group.rt_se[i]);
354d60c2 7811#endif
dd41f596 7812#endif
1da177e4 7813
dd41f596
IM
7814 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7815 rq->cpu_load[j] = 0;
1da177e4 7816#ifdef CONFIG_SMP
41c7ce9a 7817 rq->sd = NULL;
57d885fe 7818 rq->rd = NULL;
1da177e4 7819 rq->active_balance = 0;
dd41f596 7820 rq->next_balance = jiffies;
1da177e4 7821 rq->push_cpu = 0;
0a2966b4 7822 rq->cpu = i;
1da177e4
LT
7823 rq->migration_thread = NULL;
7824 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7825 rq_attach_root(rq, &def_root_domain);
1da177e4 7826#endif
8f4d37ec 7827 init_rq_hrtick(rq);
1da177e4 7828 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7829 }
7830
2dd73a4f 7831 set_load_weight(&init_task);
b50f60ce 7832
e107be36
AK
7833#ifdef CONFIG_PREEMPT_NOTIFIERS
7834 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7835#endif
7836
c9819f45
CL
7837#ifdef CONFIG_SMP
7838 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7839#endif
7840
b50f60ce
HC
7841#ifdef CONFIG_RT_MUTEXES
7842 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7843#endif
7844
1da177e4
LT
7845 /*
7846 * The boot idle thread does lazy MMU switching as well:
7847 */
7848 atomic_inc(&init_mm.mm_count);
7849 enter_lazy_tlb(&init_mm, current);
7850
7851 /*
7852 * Make us the idle thread. Technically, schedule() should not be
7853 * called from this thread, however somewhere below it might be,
7854 * but because we are the idle thread, we just pick up running again
7855 * when this runqueue becomes "idle".
7856 */
7857 init_idle(current, smp_processor_id());
dd41f596
IM
7858 /*
7859 * During early bootup we pretend to be a normal task:
7860 */
7861 current->sched_class = &fair_sched_class;
6892b75e
IM
7862
7863 scheduler_running = 1;
1da177e4
LT
7864}
7865
7866#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7867void __might_sleep(char *file, int line)
7868{
48f24c4d 7869#ifdef in_atomic
1da177e4
LT
7870 static unsigned long prev_jiffy; /* ratelimiting */
7871
7872 if ((in_atomic() || irqs_disabled()) &&
7873 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7874 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7875 return;
7876 prev_jiffy = jiffies;
91368d73 7877 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7878 " context at %s:%d\n", file, line);
7879 printk("in_atomic():%d, irqs_disabled():%d\n",
7880 in_atomic(), irqs_disabled());
a4c410f0 7881 debug_show_held_locks(current);
3117df04
IM
7882 if (irqs_disabled())
7883 print_irqtrace_events(current);
1da177e4
LT
7884 dump_stack();
7885 }
7886#endif
7887}
7888EXPORT_SYMBOL(__might_sleep);
7889#endif
7890
7891#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7892static void normalize_task(struct rq *rq, struct task_struct *p)
7893{
7894 int on_rq;
3e51f33f 7895
3a5e4dc1
AK
7896 update_rq_clock(rq);
7897 on_rq = p->se.on_rq;
7898 if (on_rq)
7899 deactivate_task(rq, p, 0);
7900 __setscheduler(rq, p, SCHED_NORMAL, 0);
7901 if (on_rq) {
7902 activate_task(rq, p, 0);
7903 resched_task(rq->curr);
7904 }
7905}
7906
1da177e4
LT
7907void normalize_rt_tasks(void)
7908{
a0f98a1c 7909 struct task_struct *g, *p;
1da177e4 7910 unsigned long flags;
70b97a7f 7911 struct rq *rq;
1da177e4 7912
4cf5d77a 7913 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7914 do_each_thread(g, p) {
178be793
IM
7915 /*
7916 * Only normalize user tasks:
7917 */
7918 if (!p->mm)
7919 continue;
7920
6cfb0d5d 7921 p->se.exec_start = 0;
6cfb0d5d 7922#ifdef CONFIG_SCHEDSTATS
dd41f596 7923 p->se.wait_start = 0;
dd41f596 7924 p->se.sleep_start = 0;
dd41f596 7925 p->se.block_start = 0;
6cfb0d5d 7926#endif
dd41f596
IM
7927
7928 if (!rt_task(p)) {
7929 /*
7930 * Renice negative nice level userspace
7931 * tasks back to 0:
7932 */
7933 if (TASK_NICE(p) < 0 && p->mm)
7934 set_user_nice(p, 0);
1da177e4 7935 continue;
dd41f596 7936 }
1da177e4 7937
4cf5d77a 7938 spin_lock(&p->pi_lock);
b29739f9 7939 rq = __task_rq_lock(p);
1da177e4 7940
178be793 7941 normalize_task(rq, p);
3a5e4dc1 7942
b29739f9 7943 __task_rq_unlock(rq);
4cf5d77a 7944 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7945 } while_each_thread(g, p);
7946
4cf5d77a 7947 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7948}
7949
7950#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7951
7952#ifdef CONFIG_IA64
7953/*
7954 * These functions are only useful for the IA64 MCA handling.
7955 *
7956 * They can only be called when the whole system has been
7957 * stopped - every CPU needs to be quiescent, and no scheduling
7958 * activity can take place. Using them for anything else would
7959 * be a serious bug, and as a result, they aren't even visible
7960 * under any other configuration.
7961 */
7962
7963/**
7964 * curr_task - return the current task for a given cpu.
7965 * @cpu: the processor in question.
7966 *
7967 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7968 */
36c8b586 7969struct task_struct *curr_task(int cpu)
1df5c10a
LT
7970{
7971 return cpu_curr(cpu);
7972}
7973
7974/**
7975 * set_curr_task - set the current task for a given cpu.
7976 * @cpu: the processor in question.
7977 * @p: the task pointer to set.
7978 *
7979 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7980 * are serviced on a separate stack. It allows the architecture to switch the
7981 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7982 * must be called with all CPU's synchronized, and interrupts disabled, the
7983 * and caller must save the original value of the current task (see
7984 * curr_task() above) and restore that value before reenabling interrupts and
7985 * re-starting the system.
7986 *
7987 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7988 */
36c8b586 7989void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7990{
7991 cpu_curr(cpu) = p;
7992}
7993
7994#endif
29f59db3 7995
bccbe08a
PZ
7996#ifdef CONFIG_FAIR_GROUP_SCHED
7997static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7998{
7999 int i;
8000
8001 for_each_possible_cpu(i) {
8002 if (tg->cfs_rq)
8003 kfree(tg->cfs_rq[i]);
8004 if (tg->se)
8005 kfree(tg->se[i]);
6f505b16
PZ
8006 }
8007
8008 kfree(tg->cfs_rq);
8009 kfree(tg->se);
6f505b16
PZ
8010}
8011
ec7dc8ac
DG
8012static
8013int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8014{
29f59db3 8015 struct cfs_rq *cfs_rq;
ec7dc8ac 8016 struct sched_entity *se, *parent_se;
9b5b7751 8017 struct rq *rq;
29f59db3
SV
8018 int i;
8019
434d53b0 8020 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8021 if (!tg->cfs_rq)
8022 goto err;
434d53b0 8023 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8024 if (!tg->se)
8025 goto err;
052f1dc7
PZ
8026
8027 tg->shares = NICE_0_LOAD;
29f59db3
SV
8028
8029 for_each_possible_cpu(i) {
9b5b7751 8030 rq = cpu_rq(i);
29f59db3 8031
6f505b16
PZ
8032 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8033 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8034 if (!cfs_rq)
8035 goto err;
8036
6f505b16
PZ
8037 se = kmalloc_node(sizeof(struct sched_entity),
8038 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8039 if (!se)
8040 goto err;
8041
ec7dc8ac
DG
8042 parent_se = parent ? parent->se[i] : NULL;
8043 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8044 }
8045
8046 return 1;
8047
8048 err:
8049 return 0;
8050}
8051
8052static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8053{
8054 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8055 &cpu_rq(cpu)->leaf_cfs_rq_list);
8056}
8057
8058static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8059{
8060 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8061}
8062#else
8063static inline void free_fair_sched_group(struct task_group *tg)
8064{
8065}
8066
ec7dc8ac
DG
8067static inline
8068int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8069{
8070 return 1;
8071}
8072
8073static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8074{
8075}
8076
8077static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8078{
8079}
052f1dc7
PZ
8080#endif
8081
8082#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8083static void free_rt_sched_group(struct task_group *tg)
8084{
8085 int i;
8086
d0b27fa7
PZ
8087 destroy_rt_bandwidth(&tg->rt_bandwidth);
8088
bccbe08a
PZ
8089 for_each_possible_cpu(i) {
8090 if (tg->rt_rq)
8091 kfree(tg->rt_rq[i]);
8092 if (tg->rt_se)
8093 kfree(tg->rt_se[i]);
8094 }
8095
8096 kfree(tg->rt_rq);
8097 kfree(tg->rt_se);
8098}
8099
ec7dc8ac
DG
8100static
8101int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8102{
8103 struct rt_rq *rt_rq;
ec7dc8ac 8104 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8105 struct rq *rq;
8106 int i;
8107
434d53b0 8108 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8109 if (!tg->rt_rq)
8110 goto err;
434d53b0 8111 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8112 if (!tg->rt_se)
8113 goto err;
8114
d0b27fa7
PZ
8115 init_rt_bandwidth(&tg->rt_bandwidth,
8116 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8117
8118 for_each_possible_cpu(i) {
8119 rq = cpu_rq(i);
8120
6f505b16
PZ
8121 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8122 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8123 if (!rt_rq)
8124 goto err;
29f59db3 8125
6f505b16
PZ
8126 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8127 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8128 if (!rt_se)
8129 goto err;
29f59db3 8130
ec7dc8ac
DG
8131 parent_se = parent ? parent->rt_se[i] : NULL;
8132 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8133 }
8134
bccbe08a
PZ
8135 return 1;
8136
8137 err:
8138 return 0;
8139}
8140
8141static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8142{
8143 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8144 &cpu_rq(cpu)->leaf_rt_rq_list);
8145}
8146
8147static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8148{
8149 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8150}
8151#else
8152static inline void free_rt_sched_group(struct task_group *tg)
8153{
8154}
8155
ec7dc8ac
DG
8156static inline
8157int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8158{
8159 return 1;
8160}
8161
8162static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8163{
8164}
8165
8166static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8167{
8168}
8169#endif
8170
d0b27fa7 8171#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8172static void free_sched_group(struct task_group *tg)
8173{
8174 free_fair_sched_group(tg);
8175 free_rt_sched_group(tg);
8176 kfree(tg);
8177}
8178
8179/* allocate runqueue etc for a new task group */
ec7dc8ac 8180struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8181{
8182 struct task_group *tg;
8183 unsigned long flags;
8184 int i;
8185
8186 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8187 if (!tg)
8188 return ERR_PTR(-ENOMEM);
8189
ec7dc8ac 8190 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8191 goto err;
8192
ec7dc8ac 8193 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8194 goto err;
8195
8ed36996 8196 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8197 for_each_possible_cpu(i) {
bccbe08a
PZ
8198 register_fair_sched_group(tg, i);
8199 register_rt_sched_group(tg, i);
9b5b7751 8200 }
6f505b16 8201 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8202
8203 WARN_ON(!parent); /* root should already exist */
8204
8205 tg->parent = parent;
8206 list_add_rcu(&tg->siblings, &parent->children);
8207 INIT_LIST_HEAD(&tg->children);
8ed36996 8208 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8209
9b5b7751 8210 return tg;
29f59db3
SV
8211
8212err:
6f505b16 8213 free_sched_group(tg);
29f59db3
SV
8214 return ERR_PTR(-ENOMEM);
8215}
8216
9b5b7751 8217/* rcu callback to free various structures associated with a task group */
6f505b16 8218static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8219{
29f59db3 8220 /* now it should be safe to free those cfs_rqs */
6f505b16 8221 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8222}
8223
9b5b7751 8224/* Destroy runqueue etc associated with a task group */
4cf86d77 8225void sched_destroy_group(struct task_group *tg)
29f59db3 8226{
8ed36996 8227 unsigned long flags;
9b5b7751 8228 int i;
29f59db3 8229
8ed36996 8230 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8231 for_each_possible_cpu(i) {
bccbe08a
PZ
8232 unregister_fair_sched_group(tg, i);
8233 unregister_rt_sched_group(tg, i);
9b5b7751 8234 }
6f505b16 8235 list_del_rcu(&tg->list);
f473aa5e 8236 list_del_rcu(&tg->siblings);
8ed36996 8237 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8238
9b5b7751 8239 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8240 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8241}
8242
9b5b7751 8243/* change task's runqueue when it moves between groups.
3a252015
IM
8244 * The caller of this function should have put the task in its new group
8245 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8246 * reflect its new group.
9b5b7751
SV
8247 */
8248void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8249{
8250 int on_rq, running;
8251 unsigned long flags;
8252 struct rq *rq;
8253
8254 rq = task_rq_lock(tsk, &flags);
8255
29f59db3
SV
8256 update_rq_clock(rq);
8257
051a1d1a 8258 running = task_current(rq, tsk);
29f59db3
SV
8259 on_rq = tsk->se.on_rq;
8260
0e1f3483 8261 if (on_rq)
29f59db3 8262 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8263 if (unlikely(running))
8264 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8265
6f505b16 8266 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8267
810b3817
PZ
8268#ifdef CONFIG_FAIR_GROUP_SCHED
8269 if (tsk->sched_class->moved_group)
8270 tsk->sched_class->moved_group(tsk);
8271#endif
8272
0e1f3483
HS
8273 if (unlikely(running))
8274 tsk->sched_class->set_curr_task(rq);
8275 if (on_rq)
7074badb 8276 enqueue_task(rq, tsk, 0);
29f59db3 8277
29f59db3
SV
8278 task_rq_unlock(rq, &flags);
8279}
d0b27fa7 8280#endif
29f59db3 8281
052f1dc7 8282#ifdef CONFIG_FAIR_GROUP_SCHED
6363ca57 8283static void set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8284{
8285 struct cfs_rq *cfs_rq = se->cfs_rq;
6363ca57 8286 struct rq *rq = cfs_rq->rq;
29f59db3
SV
8287 int on_rq;
8288
6363ca57
IM
8289 spin_lock_irq(&rq->lock);
8290
29f59db3 8291 on_rq = se->on_rq;
62fb1851 8292 if (on_rq)
29f59db3
SV
8293 dequeue_entity(cfs_rq, se, 0);
8294
8295 se->load.weight = shares;
e05510d0 8296 se->load.inv_weight = 0;
29f59db3 8297
62fb1851 8298 if (on_rq)
29f59db3 8299 enqueue_entity(cfs_rq, se, 0);
62fb1851 8300
6363ca57 8301 spin_unlock_irq(&rq->lock);
29f59db3
SV
8302}
8303
8ed36996
PZ
8304static DEFINE_MUTEX(shares_mutex);
8305
4cf86d77 8306int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8307{
8308 int i;
8ed36996 8309 unsigned long flags;
c61935fd 8310
ec7dc8ac
DG
8311 /*
8312 * We can't change the weight of the root cgroup.
8313 */
8314 if (!tg->se[0])
8315 return -EINVAL;
8316
18d95a28
PZ
8317 if (shares < MIN_SHARES)
8318 shares = MIN_SHARES;
cb4ad1ff
MX
8319 else if (shares > MAX_SHARES)
8320 shares = MAX_SHARES;
62fb1851 8321
8ed36996 8322 mutex_lock(&shares_mutex);
9b5b7751 8323 if (tg->shares == shares)
5cb350ba 8324 goto done;
29f59db3 8325
8ed36996 8326 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8327 for_each_possible_cpu(i)
8328 unregister_fair_sched_group(tg, i);
f473aa5e 8329 list_del_rcu(&tg->siblings);
8ed36996 8330 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8331
8332 /* wait for any ongoing reference to this group to finish */
8333 synchronize_sched();
8334
8335 /*
8336 * Now we are free to modify the group's share on each cpu
8337 * w/o tripping rebalance_share or load_balance_fair.
8338 */
9b5b7751 8339 tg->shares = shares;
6363ca57 8340 for_each_possible_cpu(i)
cb4ad1ff 8341 set_se_shares(tg->se[i], shares);
29f59db3 8342
6b2d7700
SV
8343 /*
8344 * Enable load balance activity on this group, by inserting it back on
8345 * each cpu's rq->leaf_cfs_rq_list.
8346 */
8ed36996 8347 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8348 for_each_possible_cpu(i)
8349 register_fair_sched_group(tg, i);
f473aa5e 8350 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8351 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8352done:
8ed36996 8353 mutex_unlock(&shares_mutex);
9b5b7751 8354 return 0;
29f59db3
SV
8355}
8356
5cb350ba
DG
8357unsigned long sched_group_shares(struct task_group *tg)
8358{
8359 return tg->shares;
8360}
052f1dc7 8361#endif
5cb350ba 8362
052f1dc7 8363#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8364/*
9f0c1e56 8365 * Ensure that the real time constraints are schedulable.
6f505b16 8366 */
9f0c1e56
PZ
8367static DEFINE_MUTEX(rt_constraints_mutex);
8368
8369static unsigned long to_ratio(u64 period, u64 runtime)
8370{
8371 if (runtime == RUNTIME_INF)
8372 return 1ULL << 16;
8373
6f6d6a1a 8374 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8375}
8376
b40b2e8e
PZ
8377#ifdef CONFIG_CGROUP_SCHED
8378static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8379{
49307fd6 8380 struct task_group *tgi, *parent = tg ? tg->parent : NULL;
b40b2e8e
PZ
8381 unsigned long total = 0;
8382
8383 if (!parent) {
8384 if (global_rt_period() < period)
8385 return 0;
8386
8387 return to_ratio(period, runtime) <
8388 to_ratio(global_rt_period(), global_rt_runtime());
8389 }
8390
8391 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8392 return 0;
8393
8394 rcu_read_lock();
8395 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8396 if (tgi == tg)
8397 continue;
8398
8399 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8400 tgi->rt_bandwidth.rt_runtime);
8401 }
8402 rcu_read_unlock();
8403
8404 return total + to_ratio(period, runtime) <
8405 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8406 parent->rt_bandwidth.rt_runtime);
8407}
8408#elif defined CONFIG_USER_SCHED
9f0c1e56 8409static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8410{
8411 struct task_group *tgi;
8412 unsigned long total = 0;
9f0c1e56 8413 unsigned long global_ratio =
d0b27fa7 8414 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8415
8416 rcu_read_lock();
9f0c1e56
PZ
8417 list_for_each_entry_rcu(tgi, &task_groups, list) {
8418 if (tgi == tg)
8419 continue;
6f505b16 8420
d0b27fa7
PZ
8421 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8422 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8423 }
8424 rcu_read_unlock();
6f505b16 8425
9f0c1e56 8426 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8427}
b40b2e8e 8428#endif
6f505b16 8429
521f1a24
DG
8430/* Must be called with tasklist_lock held */
8431static inline int tg_has_rt_tasks(struct task_group *tg)
8432{
8433 struct task_struct *g, *p;
8434 do_each_thread(g, p) {
8435 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8436 return 1;
8437 } while_each_thread(g, p);
8438 return 0;
8439}
8440
d0b27fa7
PZ
8441static int tg_set_bandwidth(struct task_group *tg,
8442 u64 rt_period, u64 rt_runtime)
6f505b16 8443{
ac086bc2 8444 int i, err = 0;
9f0c1e56 8445
9f0c1e56 8446 mutex_lock(&rt_constraints_mutex);
521f1a24 8447 read_lock(&tasklist_lock);
ac086bc2 8448 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8449 err = -EBUSY;
8450 goto unlock;
8451 }
9f0c1e56
PZ
8452 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8453 err = -EINVAL;
8454 goto unlock;
8455 }
ac086bc2
PZ
8456
8457 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8458 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8459 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8460
8461 for_each_possible_cpu(i) {
8462 struct rt_rq *rt_rq = tg->rt_rq[i];
8463
8464 spin_lock(&rt_rq->rt_runtime_lock);
8465 rt_rq->rt_runtime = rt_runtime;
8466 spin_unlock(&rt_rq->rt_runtime_lock);
8467 }
8468 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8469 unlock:
521f1a24 8470 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8471 mutex_unlock(&rt_constraints_mutex);
8472
8473 return err;
6f505b16
PZ
8474}
8475
d0b27fa7
PZ
8476int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8477{
8478 u64 rt_runtime, rt_period;
8479
8480 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8481 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8482 if (rt_runtime_us < 0)
8483 rt_runtime = RUNTIME_INF;
8484
8485 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8486}
8487
9f0c1e56
PZ
8488long sched_group_rt_runtime(struct task_group *tg)
8489{
8490 u64 rt_runtime_us;
8491
d0b27fa7 8492 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8493 return -1;
8494
d0b27fa7 8495 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8496 do_div(rt_runtime_us, NSEC_PER_USEC);
8497 return rt_runtime_us;
8498}
d0b27fa7
PZ
8499
8500int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8501{
8502 u64 rt_runtime, rt_period;
8503
8504 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8505 rt_runtime = tg->rt_bandwidth.rt_runtime;
8506
619b0488
R
8507 if (rt_period == 0)
8508 return -EINVAL;
8509
d0b27fa7
PZ
8510 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8511}
8512
8513long sched_group_rt_period(struct task_group *tg)
8514{
8515 u64 rt_period_us;
8516
8517 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8518 do_div(rt_period_us, NSEC_PER_USEC);
8519 return rt_period_us;
8520}
8521
8522static int sched_rt_global_constraints(void)
8523{
8524 int ret = 0;
8525
8526 mutex_lock(&rt_constraints_mutex);
8527 if (!__rt_schedulable(NULL, 1, 0))
8528 ret = -EINVAL;
8529 mutex_unlock(&rt_constraints_mutex);
8530
8531 return ret;
8532}
8533#else
8534static int sched_rt_global_constraints(void)
8535{
ac086bc2
PZ
8536 unsigned long flags;
8537 int i;
8538
8539 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8540 for_each_possible_cpu(i) {
8541 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8542
8543 spin_lock(&rt_rq->rt_runtime_lock);
8544 rt_rq->rt_runtime = global_rt_runtime();
8545 spin_unlock(&rt_rq->rt_runtime_lock);
8546 }
8547 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8548
d0b27fa7
PZ
8549 return 0;
8550}
052f1dc7 8551#endif
d0b27fa7
PZ
8552
8553int sched_rt_handler(struct ctl_table *table, int write,
8554 struct file *filp, void __user *buffer, size_t *lenp,
8555 loff_t *ppos)
8556{
8557 int ret;
8558 int old_period, old_runtime;
8559 static DEFINE_MUTEX(mutex);
8560
8561 mutex_lock(&mutex);
8562 old_period = sysctl_sched_rt_period;
8563 old_runtime = sysctl_sched_rt_runtime;
8564
8565 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8566
8567 if (!ret && write) {
8568 ret = sched_rt_global_constraints();
8569 if (ret) {
8570 sysctl_sched_rt_period = old_period;
8571 sysctl_sched_rt_runtime = old_runtime;
8572 } else {
8573 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8574 def_rt_bandwidth.rt_period =
8575 ns_to_ktime(global_rt_period());
8576 }
8577 }
8578 mutex_unlock(&mutex);
8579
8580 return ret;
8581}
68318b8e 8582
052f1dc7 8583#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8584
8585/* return corresponding task_group object of a cgroup */
2b01dfe3 8586static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8587{
2b01dfe3
PM
8588 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8589 struct task_group, css);
68318b8e
SV
8590}
8591
8592static struct cgroup_subsys_state *
2b01dfe3 8593cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8594{
ec7dc8ac 8595 struct task_group *tg, *parent;
68318b8e 8596
2b01dfe3 8597 if (!cgrp->parent) {
68318b8e 8598 /* This is early initialization for the top cgroup */
2b01dfe3 8599 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8600 return &init_task_group.css;
8601 }
8602
ec7dc8ac
DG
8603 parent = cgroup_tg(cgrp->parent);
8604 tg = sched_create_group(parent);
68318b8e
SV
8605 if (IS_ERR(tg))
8606 return ERR_PTR(-ENOMEM);
8607
8608 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8609 tg->css.cgroup = cgrp;
68318b8e
SV
8610
8611 return &tg->css;
8612}
8613
41a2d6cf
IM
8614static void
8615cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8616{
2b01dfe3 8617 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8618
8619 sched_destroy_group(tg);
8620}
8621
41a2d6cf
IM
8622static int
8623cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8624 struct task_struct *tsk)
68318b8e 8625{
b68aa230
PZ
8626#ifdef CONFIG_RT_GROUP_SCHED
8627 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8628 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8629 return -EINVAL;
8630#else
68318b8e
SV
8631 /* We don't support RT-tasks being in separate groups */
8632 if (tsk->sched_class != &fair_sched_class)
8633 return -EINVAL;
b68aa230 8634#endif
68318b8e
SV
8635
8636 return 0;
8637}
8638
8639static void
2b01dfe3 8640cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8641 struct cgroup *old_cont, struct task_struct *tsk)
8642{
8643 sched_move_task(tsk);
8644}
8645
052f1dc7 8646#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8647static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8648 u64 shareval)
68318b8e 8649{
2b01dfe3 8650 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8651}
8652
f4c753b7 8653static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8654{
2b01dfe3 8655 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8656
8657 return (u64) tg->shares;
8658}
052f1dc7 8659#endif
68318b8e 8660
052f1dc7 8661#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8662static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8663 s64 val)
6f505b16 8664{
06ecb27c 8665 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8666}
8667
06ecb27c 8668static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8669{
06ecb27c 8670 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8671}
d0b27fa7
PZ
8672
8673static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8674 u64 rt_period_us)
8675{
8676 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8677}
8678
8679static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8680{
8681 return sched_group_rt_period(cgroup_tg(cgrp));
8682}
052f1dc7 8683#endif
6f505b16 8684
fe5c7cc2 8685static struct cftype cpu_files[] = {
052f1dc7 8686#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8687 {
8688 .name = "shares",
f4c753b7
PM
8689 .read_u64 = cpu_shares_read_u64,
8690 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8691 },
052f1dc7
PZ
8692#endif
8693#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8694 {
9f0c1e56 8695 .name = "rt_runtime_us",
06ecb27c
PM
8696 .read_s64 = cpu_rt_runtime_read,
8697 .write_s64 = cpu_rt_runtime_write,
6f505b16 8698 },
d0b27fa7
PZ
8699 {
8700 .name = "rt_period_us",
f4c753b7
PM
8701 .read_u64 = cpu_rt_period_read_uint,
8702 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8703 },
052f1dc7 8704#endif
68318b8e
SV
8705};
8706
8707static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8708{
fe5c7cc2 8709 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8710}
8711
8712struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8713 .name = "cpu",
8714 .create = cpu_cgroup_create,
8715 .destroy = cpu_cgroup_destroy,
8716 .can_attach = cpu_cgroup_can_attach,
8717 .attach = cpu_cgroup_attach,
8718 .populate = cpu_cgroup_populate,
8719 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8720 .early_init = 1,
8721};
8722
052f1dc7 8723#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8724
8725#ifdef CONFIG_CGROUP_CPUACCT
8726
8727/*
8728 * CPU accounting code for task groups.
8729 *
8730 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8731 * (balbir@in.ibm.com).
8732 */
8733
8734/* track cpu usage of a group of tasks */
8735struct cpuacct {
8736 struct cgroup_subsys_state css;
8737 /* cpuusage holds pointer to a u64-type object on every cpu */
8738 u64 *cpuusage;
8739};
8740
8741struct cgroup_subsys cpuacct_subsys;
8742
8743/* return cpu accounting group corresponding to this container */
32cd756a 8744static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8745{
32cd756a 8746 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8747 struct cpuacct, css);
8748}
8749
8750/* return cpu accounting group to which this task belongs */
8751static inline struct cpuacct *task_ca(struct task_struct *tsk)
8752{
8753 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8754 struct cpuacct, css);
8755}
8756
8757/* create a new cpu accounting group */
8758static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8759 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8760{
8761 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8762
8763 if (!ca)
8764 return ERR_PTR(-ENOMEM);
8765
8766 ca->cpuusage = alloc_percpu(u64);
8767 if (!ca->cpuusage) {
8768 kfree(ca);
8769 return ERR_PTR(-ENOMEM);
8770 }
8771
8772 return &ca->css;
8773}
8774
8775/* destroy an existing cpu accounting group */
41a2d6cf 8776static void
32cd756a 8777cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8778{
32cd756a 8779 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8780
8781 free_percpu(ca->cpuusage);
8782 kfree(ca);
8783}
8784
8785/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8786static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8787{
32cd756a 8788 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8789 u64 totalcpuusage = 0;
8790 int i;
8791
8792 for_each_possible_cpu(i) {
8793 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8794
8795 /*
8796 * Take rq->lock to make 64-bit addition safe on 32-bit
8797 * platforms.
8798 */
8799 spin_lock_irq(&cpu_rq(i)->lock);
8800 totalcpuusage += *cpuusage;
8801 spin_unlock_irq(&cpu_rq(i)->lock);
8802 }
8803
8804 return totalcpuusage;
8805}
8806
0297b803
DG
8807static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8808 u64 reset)
8809{
8810 struct cpuacct *ca = cgroup_ca(cgrp);
8811 int err = 0;
8812 int i;
8813
8814 if (reset) {
8815 err = -EINVAL;
8816 goto out;
8817 }
8818
8819 for_each_possible_cpu(i) {
8820 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8821
8822 spin_lock_irq(&cpu_rq(i)->lock);
8823 *cpuusage = 0;
8824 spin_unlock_irq(&cpu_rq(i)->lock);
8825 }
8826out:
8827 return err;
8828}
8829
d842de87
SV
8830static struct cftype files[] = {
8831 {
8832 .name = "usage",
f4c753b7
PM
8833 .read_u64 = cpuusage_read,
8834 .write_u64 = cpuusage_write,
d842de87
SV
8835 },
8836};
8837
32cd756a 8838static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8839{
32cd756a 8840 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8841}
8842
8843/*
8844 * charge this task's execution time to its accounting group.
8845 *
8846 * called with rq->lock held.
8847 */
8848static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8849{
8850 struct cpuacct *ca;
8851
8852 if (!cpuacct_subsys.active)
8853 return;
8854
8855 ca = task_ca(tsk);
8856 if (ca) {
8857 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8858
8859 *cpuusage += cputime;
8860 }
8861}
8862
8863struct cgroup_subsys cpuacct_subsys = {
8864 .name = "cpuacct",
8865 .create = cpuacct_create,
8866 .destroy = cpuacct_destroy,
8867 .populate = cpuacct_populate,
8868 .subsys_id = cpuacct_subsys_id,
8869};
8870#endif /* CONFIG_CGROUP_CPUACCT */