]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
perf_counter: Rename 'event' to event_id/hw_event
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
380static inline struct task_group *task_group(struct task_struct *p)
381{
382 return NULL;
383}
29f59db3 384
052f1dc7 385#endif /* CONFIG_GROUP_SCHED */
29f59db3 386
6aa645ea
IM
387/* CFS-related fields in a runqueue */
388struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
6aa645ea 392 u64 exec_clock;
e9acbff6 393 u64 min_vruntime;
6aa645ea
IM
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
4a55bd5e
PZ
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
4793241b 405 struct sched_entity *curr, *next, *last;
ddc97297 406
5ac5c4d6 407 unsigned int nr_spread_over;
ddc97297 408
62160e3f 409#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
41a2d6cf
IM
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
41a2d6cf
IM
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
422
423#ifdef CONFIG_SMP
c09595f6 424 /*
c8cba857 425 * the part of load.weight contributed by tasks
c09595f6 426 */
c8cba857 427 unsigned long task_weight;
c09595f6 428
c8cba857
PZ
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
c09595f6 436
c8cba857
PZ
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
f1d239f7
PZ
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
c09595f6 446#endif
6aa645ea
IM
447#endif
448};
1da177e4 449
6aa645ea
IM
450/* Real-Time classes' related field in a runqueue: */
451struct rt_rq {
452 struct rt_prio_array active;
63489e45 453 unsigned long rt_nr_running;
052f1dc7 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
455 struct {
456 int curr; /* highest queued rt task prio */
398a153b 457#ifdef CONFIG_SMP
e864c499 458 int next; /* next highest */
398a153b 459#endif
e864c499 460 } highest_prio;
6f505b16 461#endif
fa85ae24 462#ifdef CONFIG_SMP
73fe6aae 463 unsigned long rt_nr_migratory;
a1ba4d8b 464 unsigned long rt_nr_total;
a22d7fc1 465 int overloaded;
917b627d 466 struct plist_head pushable_tasks;
fa85ae24 467#endif
6f505b16 468 int rt_throttled;
fa85ae24 469 u64 rt_time;
ac086bc2 470 u64 rt_runtime;
ea736ed5 471 /* Nests inside the rq lock: */
ac086bc2 472 spinlock_t rt_runtime_lock;
6f505b16 473
052f1dc7 474#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
475 unsigned long rt_nr_boosted;
476
6f505b16
PZ
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481#endif
6aa645ea
IM
482};
483
57d885fe
GH
484#ifdef CONFIG_SMP
485
486/*
487 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
57d885fe
GH
493 */
494struct root_domain {
495 atomic_t refcount;
c6c4927b
RR
496 cpumask_var_t span;
497 cpumask_var_t online;
637f5085 498
0eab9146 499 /*
637f5085
GH
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
c6c4927b 503 cpumask_var_t rto_mask;
0eab9146 504 atomic_t rto_count;
6e0534f2
GH
505#ifdef CONFIG_SMP
506 struct cpupri cpupri;
507#endif
57d885fe
GH
508};
509
dc938520
GH
510/*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
57d885fe
GH
514static struct root_domain def_root_domain;
515
516#endif
517
1da177e4
LT
518/*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
70b97a7f 525struct rq {
d8016491
IM
526 /* runqueue lock: */
527 spinlock_t lock;
1da177e4
LT
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
6aa645ea
IM
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 536#ifdef CONFIG_NO_HZ
15934a37 537 unsigned long last_tick_seen;
46cb4b7c
SS
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
23a185ca 544 u64 nr_migrations_in;
6aa645ea
IM
545
546 struct cfs_rq cfs;
6f505b16 547 struct rt_rq rt;
6f505b16 548
6aa645ea 549#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
552#endif
553#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 554 struct list_head leaf_rt_rq_list;
1da177e4 555#endif
1da177e4
LT
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
36c8b586 565 struct task_struct *curr, *idle;
c9819f45 566 unsigned long next_balance;
1da177e4 567 struct mm_struct *prev_mm;
6aa645ea 568
3e51f33f 569 u64 clock;
6aa645ea 570
1da177e4
LT
571 atomic_t nr_iowait;
572
573#ifdef CONFIG_SMP
0eab9146 574 struct root_domain *rd;
1da177e4
LT
575 struct sched_domain *sd;
576
a0a522ce 577 unsigned char idle_at_tick;
1da177e4 578 /* For active balancing */
3f029d3c 579 int post_schedule;
1da177e4
LT
580 int active_balance;
581 int push_cpu;
d8016491
IM
582 /* cpu of this runqueue: */
583 int cpu;
1f11eb6a 584 int online;
1da177e4 585
a8a51d5e 586 unsigned long avg_load_per_task;
1da177e4 587
36c8b586 588 struct task_struct *migration_thread;
1da177e4 589 struct list_head migration_queue;
e9e9250b
PZ
590
591 u64 rt_avg;
592 u64 age_stamp;
1da177e4
LT
593#endif
594
dce48a84
TG
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
8f4d37ec 599#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
600#ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603#endif
8f4d37ec
PZ
604 struct hrtimer hrtick_timer;
605#endif
606
1da177e4
LT
607#ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
9c2c4802
KC
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
612
613 /* sys_sched_yield() stats */
480b9434 614 unsigned int yld_count;
1da177e4
LT
615
616 /* schedule() stats */
480b9434
KC
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
1da177e4
LT
620
621 /* try_to_wake_up() stats */
480b9434
KC
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
b8efb561
IM
624
625 /* BKL stats */
480b9434 626 unsigned int bkl_count;
1da177e4
LT
627#endif
628};
629
f34e3b61 630static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 631
7d478721
PZ
632static inline
633void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 634{
7d478721 635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
636}
637
0a2966b4
CL
638static inline int cpu_of(struct rq *rq)
639{
640#ifdef CONFIG_SMP
641 return rq->cpu;
642#else
643 return 0;
644#endif
645}
646
674311d5
NP
647/*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 649 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
48f24c4d
IM
654#define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
656
657#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658#define this_rq() (&__get_cpu_var(runqueues))
659#define task_rq(p) cpu_rq(task_cpu(p))
660#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 661#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 662
aa9c4c0f 663inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
664{
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666}
667
bf5c91ba
IM
668/*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671#ifdef CONFIG_SCHED_DEBUG
672# define const_debug __read_mostly
673#else
674# define const_debug static const
675#endif
676
017730c1
IM
677/**
678 * runqueue_is_locked
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
684int runqueue_is_locked(void)
685{
686 int cpu = get_cpu();
687 struct rq *rq = cpu_rq(cpu);
688 int ret;
689
690 ret = spin_is_locked(&rq->lock);
691 put_cpu();
692 return ret;
693}
694
bf5c91ba
IM
695/*
696 * Debugging: various feature bits
697 */
f00b45c1
PZ
698
699#define SCHED_FEAT(name, enabled) \
700 __SCHED_FEAT_##name ,
701
bf5c91ba 702enum {
f00b45c1 703#include "sched_features.h"
bf5c91ba
IM
704};
705
f00b45c1
PZ
706#undef SCHED_FEAT
707
708#define SCHED_FEAT(name, enabled) \
709 (1UL << __SCHED_FEAT_##name) * enabled |
710
bf5c91ba 711const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
712#include "sched_features.h"
713 0;
714
715#undef SCHED_FEAT
716
717#ifdef CONFIG_SCHED_DEBUG
718#define SCHED_FEAT(name, enabled) \
719 #name ,
720
983ed7a6 721static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
722#include "sched_features.h"
723 NULL
724};
725
726#undef SCHED_FEAT
727
34f3a814 728static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 729{
f00b45c1
PZ
730 int i;
731
732 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
733 if (!(sysctl_sched_features & (1UL << i)))
734 seq_puts(m, "NO_");
735 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 736 }
34f3a814 737 seq_puts(m, "\n");
f00b45c1 738
34f3a814 739 return 0;
f00b45c1
PZ
740}
741
742static ssize_t
743sched_feat_write(struct file *filp, const char __user *ubuf,
744 size_t cnt, loff_t *ppos)
745{
746 char buf[64];
747 char *cmp = buf;
748 int neg = 0;
749 int i;
750
751 if (cnt > 63)
752 cnt = 63;
753
754 if (copy_from_user(&buf, ubuf, cnt))
755 return -EFAULT;
756
757 buf[cnt] = 0;
758
c24b7c52 759 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
760 neg = 1;
761 cmp += 3;
762 }
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 int len = strlen(sched_feat_names[i]);
766
767 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
768 if (neg)
769 sysctl_sched_features &= ~(1UL << i);
770 else
771 sysctl_sched_features |= (1UL << i);
772 break;
773 }
774 }
775
776 if (!sched_feat_names[i])
777 return -EINVAL;
778
779 filp->f_pos += cnt;
780
781 return cnt;
782}
783
34f3a814
LZ
784static int sched_feat_open(struct inode *inode, struct file *filp)
785{
786 return single_open(filp, sched_feat_show, NULL);
787}
788
f00b45c1 789static struct file_operations sched_feat_fops = {
34f3a814
LZ
790 .open = sched_feat_open,
791 .write = sched_feat_write,
792 .read = seq_read,
793 .llseek = seq_lseek,
794 .release = single_release,
f00b45c1
PZ
795};
796
797static __init int sched_init_debug(void)
798{
f00b45c1
PZ
799 debugfs_create_file("sched_features", 0644, NULL, NULL,
800 &sched_feat_fops);
801
802 return 0;
803}
804late_initcall(sched_init_debug);
805
806#endif
807
808#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 809
b82d9fdd
PZ
810/*
811 * Number of tasks to iterate in a single balance run.
812 * Limited because this is done with IRQs disabled.
813 */
814const_debug unsigned int sysctl_sched_nr_migrate = 32;
815
2398f2c6
PZ
816/*
817 * ratelimit for updating the group shares.
55cd5340 818 * default: 0.25ms
2398f2c6 819 */
55cd5340 820unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 821
ffda12a1
PZ
822/*
823 * Inject some fuzzyness into changing the per-cpu group shares
824 * this avoids remote rq-locks at the expense of fairness.
825 * default: 4
826 */
827unsigned int sysctl_sched_shares_thresh = 4;
828
e9e9250b
PZ
829/*
830 * period over which we average the RT time consumption, measured
831 * in ms.
832 *
833 * default: 1s
834 */
835const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
836
fa85ae24 837/*
9f0c1e56 838 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
839 * default: 1s
840 */
9f0c1e56 841unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 842
6892b75e
IM
843static __read_mostly int scheduler_running;
844
9f0c1e56
PZ
845/*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849int sysctl_sched_rt_runtime = 950000;
fa85ae24 850
d0b27fa7
PZ
851static inline u64 global_rt_period(void)
852{
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854}
855
856static inline u64 global_rt_runtime(void)
857{
e26873bb 858 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862}
fa85ae24 863
1da177e4 864#ifndef prepare_arch_switch
4866cde0
NP
865# define prepare_arch_switch(next) do { } while (0)
866#endif
867#ifndef finish_arch_switch
868# define finish_arch_switch(prev) do { } while (0)
869#endif
870
051a1d1a
DA
871static inline int task_current(struct rq *rq, struct task_struct *p)
872{
873 return rq->curr == p;
874}
875
4866cde0 876#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 877static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 878{
051a1d1a 879 return task_current(rq, p);
4866cde0
NP
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884}
885
70b97a7f 886static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 887{
da04c035
IM
888#ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891#endif
8a25d5de
IM
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
4866cde0
NP
899 spin_unlock_irq(&rq->lock);
900}
901
902#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 903static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
904{
905#ifdef CONFIG_SMP
906 return p->oncpu;
907#else
051a1d1a 908 return task_current(rq, p);
4866cde0
NP
909#endif
910}
911
70b97a7f 912static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
913{
914#ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921#endif
922#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924#else
925 spin_unlock(&rq->lock);
926#endif
927}
928
70b97a7f 929static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939#endif
940#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
1da177e4 942#endif
4866cde0
NP
943}
944#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 945
b29739f9
IM
946/*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
70b97a7f 950static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
951 __acquires(rq->lock)
952{
3a5c359a
AK
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
b29739f9 958 spin_unlock(&rq->lock);
b29739f9 959 }
b29739f9
IM
960}
961
1da177e4
LT
962/*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 964 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
965 * explicitly disabling preemption.
966 */
70b97a7f 967static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
968 __acquires(rq->lock)
969{
70b97a7f 970 struct rq *rq;
1da177e4 971
3a5c359a
AK
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
1da177e4 978 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 979 }
1da177e4
LT
980}
981
ad474cac
ON
982void task_rq_unlock_wait(struct task_struct *p)
983{
984 struct rq *rq = task_rq(p);
985
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
988}
989
a9957449 990static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
991 __releases(rq->lock)
992{
993 spin_unlock(&rq->lock);
994}
995
70b97a7f 996static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
997 __releases(rq->lock)
998{
999 spin_unlock_irqrestore(&rq->lock, *flags);
1000}
1001
1da177e4 1002/*
cc2a73b5 1003 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1004 */
a9957449 1005static struct rq *this_rq_lock(void)
1da177e4
LT
1006 __acquires(rq->lock)
1007{
70b97a7f 1008 struct rq *rq;
1da177e4
LT
1009
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1013
1014 return rq;
1015}
1016
8f4d37ec
PZ
1017#ifdef CONFIG_SCHED_HRTICK
1018/*
1019 * Use HR-timers to deliver accurate preemption points.
1020 *
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1024 *
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1027 */
8f4d37ec
PZ
1028
1029/*
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1033 */
1034static inline int hrtick_enabled(struct rq *rq)
1035{
1036 if (!sched_feat(HRTICK))
1037 return 0;
ba42059f 1038 if (!cpu_active(cpu_of(rq)))
b328ca18 1039 return 0;
8f4d37ec
PZ
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1041}
1042
8f4d37ec
PZ
1043static void hrtick_clear(struct rq *rq)
1044{
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1047}
1048
8f4d37ec
PZ
1049/*
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1052 */
1053static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054{
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058
1059 spin_lock(&rq->lock);
3e51f33f 1060 update_rq_clock(rq);
8f4d37ec
PZ
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1063
1064 return HRTIMER_NORESTART;
1065}
1066
95e904c7 1067#ifdef CONFIG_SMP
31656519
PZ
1068/*
1069 * called from hardirq (IPI) context
1070 */
1071static void __hrtick_start(void *arg)
b328ca18 1072{
31656519 1073 struct rq *rq = arg;
b328ca18 1074
31656519
PZ
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
b328ca18
PZ
1079}
1080
31656519
PZ
1081/*
1082 * Called to set the hrtick timer state.
1083 *
1084 * called with rq->lock held and irqs disabled
1085 */
1086static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1087{
31656519
PZ
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1090
cc584b21 1091 hrtimer_set_expires(timer, time);
31656519
PZ
1092
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
6e275637 1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1097 rq->hrtick_csd_pending = 1;
1098 }
b328ca18
PZ
1099}
1100
1101static int
1102hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103{
1104 int cpu = (int)(long)hcpu;
1105
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
31656519 1113 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1114 return NOTIFY_OK;
1115 }
1116
1117 return NOTIFY_DONE;
1118}
1119
fa748203 1120static __init void init_hrtick(void)
b328ca18
PZ
1121{
1122 hotcpu_notifier(hotplug_hrtick, 0);
1123}
31656519
PZ
1124#else
1125/*
1126 * Called to set the hrtick timer state.
1127 *
1128 * called with rq->lock held and irqs disabled
1129 */
1130static void hrtick_start(struct rq *rq, u64 delay)
1131{
7f1e2ca9 1132 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1133 HRTIMER_MODE_REL_PINNED, 0);
31656519 1134}
b328ca18 1135
006c75f1 1136static inline void init_hrtick(void)
8f4d37ec 1137{
8f4d37ec 1138}
31656519 1139#endif /* CONFIG_SMP */
8f4d37ec 1140
31656519 1141static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1142{
31656519
PZ
1143#ifdef CONFIG_SMP
1144 rq->hrtick_csd_pending = 0;
8f4d37ec 1145
31656519
PZ
1146 rq->hrtick_csd.flags = 0;
1147 rq->hrtick_csd.func = __hrtick_start;
1148 rq->hrtick_csd.info = rq;
1149#endif
8f4d37ec 1150
31656519
PZ
1151 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1152 rq->hrtick_timer.function = hrtick;
8f4d37ec 1153}
006c75f1 1154#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1155static inline void hrtick_clear(struct rq *rq)
1156{
1157}
1158
8f4d37ec
PZ
1159static inline void init_rq_hrtick(struct rq *rq)
1160{
1161}
1162
b328ca18
PZ
1163static inline void init_hrtick(void)
1164{
1165}
006c75f1 1166#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1167
c24d20db
IM
1168/*
1169 * resched_task - mark a task 'to be rescheduled now'.
1170 *
1171 * On UP this means the setting of the need_resched flag, on SMP it
1172 * might also involve a cross-CPU call to trigger the scheduler on
1173 * the target CPU.
1174 */
1175#ifdef CONFIG_SMP
1176
1177#ifndef tsk_is_polling
1178#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1179#endif
1180
31656519 1181static void resched_task(struct task_struct *p)
c24d20db
IM
1182{
1183 int cpu;
1184
1185 assert_spin_locked(&task_rq(p)->lock);
1186
5ed0cec0 1187 if (test_tsk_need_resched(p))
c24d20db
IM
1188 return;
1189
5ed0cec0 1190 set_tsk_need_resched(p);
c24d20db
IM
1191
1192 cpu = task_cpu(p);
1193 if (cpu == smp_processor_id())
1194 return;
1195
1196 /* NEED_RESCHED must be visible before we test polling */
1197 smp_mb();
1198 if (!tsk_is_polling(p))
1199 smp_send_reschedule(cpu);
1200}
1201
1202static void resched_cpu(int cpu)
1203{
1204 struct rq *rq = cpu_rq(cpu);
1205 unsigned long flags;
1206
1207 if (!spin_trylock_irqsave(&rq->lock, flags))
1208 return;
1209 resched_task(cpu_curr(cpu));
1210 spin_unlock_irqrestore(&rq->lock, flags);
1211}
06d8308c
TG
1212
1213#ifdef CONFIG_NO_HZ
1214/*
1215 * When add_timer_on() enqueues a timer into the timer wheel of an
1216 * idle CPU then this timer might expire before the next timer event
1217 * which is scheduled to wake up that CPU. In case of a completely
1218 * idle system the next event might even be infinite time into the
1219 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1220 * leaves the inner idle loop so the newly added timer is taken into
1221 * account when the CPU goes back to idle and evaluates the timer
1222 * wheel for the next timer event.
1223 */
1224void wake_up_idle_cpu(int cpu)
1225{
1226 struct rq *rq = cpu_rq(cpu);
1227
1228 if (cpu == smp_processor_id())
1229 return;
1230
1231 /*
1232 * This is safe, as this function is called with the timer
1233 * wheel base lock of (cpu) held. When the CPU is on the way
1234 * to idle and has not yet set rq->curr to idle then it will
1235 * be serialized on the timer wheel base lock and take the new
1236 * timer into account automatically.
1237 */
1238 if (rq->curr != rq->idle)
1239 return;
1240
1241 /*
1242 * We can set TIF_RESCHED on the idle task of the other CPU
1243 * lockless. The worst case is that the other CPU runs the
1244 * idle task through an additional NOOP schedule()
1245 */
5ed0cec0 1246 set_tsk_need_resched(rq->idle);
06d8308c
TG
1247
1248 /* NEED_RESCHED must be visible before we test polling */
1249 smp_mb();
1250 if (!tsk_is_polling(rq->idle))
1251 smp_send_reschedule(cpu);
1252}
6d6bc0ad 1253#endif /* CONFIG_NO_HZ */
06d8308c 1254
e9e9250b
PZ
1255static u64 sched_avg_period(void)
1256{
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258}
1259
1260static void sched_avg_update(struct rq *rq)
1261{
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
1265 rq->age_stamp += period;
1266 rq->rt_avg /= 2;
1267 }
1268}
1269
1270static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271{
1272 rq->rt_avg += rt_delta;
1273 sched_avg_update(rq);
1274}
1275
6d6bc0ad 1276#else /* !CONFIG_SMP */
31656519 1277static void resched_task(struct task_struct *p)
c24d20db
IM
1278{
1279 assert_spin_locked(&task_rq(p)->lock);
31656519 1280 set_tsk_need_resched(p);
c24d20db 1281}
e9e9250b
PZ
1282
1283static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284{
1285}
6d6bc0ad 1286#endif /* CONFIG_SMP */
c24d20db 1287
45bf76df
IM
1288#if BITS_PER_LONG == 32
1289# define WMULT_CONST (~0UL)
1290#else
1291# define WMULT_CONST (1UL << 32)
1292#endif
1293
1294#define WMULT_SHIFT 32
1295
194081eb
IM
1296/*
1297 * Shift right and round:
1298 */
cf2ab469 1299#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1300
a7be37ac
PZ
1301/*
1302 * delta *= weight / lw
1303 */
cb1c4fc9 1304static unsigned long
45bf76df
IM
1305calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307{
1308 u64 tmp;
1309
7a232e03
LJ
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
45bf76df
IM
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
194081eb 1322 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1324 WMULT_SHIFT/2);
1325 else
cf2ab469 1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1327
ecf691da 1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1332{
1333 lw->weight += inc;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1338{
1339 lw->weight -= dec;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
2dd73a4f
PW
1343/*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
cce7ade8
PZ
1352#define WEIGHT_IDLEPRIO 3
1353#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1354
1355/*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
dd41f596
IM
1366 */
1367static const int prio_to_weight[40] = {
254753dc
IM
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1376};
1377
5714d2de
IM
1378/*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
dd41f596 1385static const u32 prio_to_wmult[40] = {
254753dc
IM
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1394};
2dd73a4f 1395
dd41f596
IM
1396static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398/*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407};
1408
e1d1484f
PW
1409#ifdef CONFIG_SMP
1410static unsigned long
1411balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416static int
1417iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
e1d1484f 1420#endif
dd41f596 1421
ef12fefa
BR
1422/* Time spent by the tasks of the cpu accounting group executing in ... */
1423enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428};
1429
d842de87
SV
1430#ifdef CONFIG_CGROUP_CPUACCT
1431static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1432static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1434#else
1435static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1436static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1438#endif
1439
18d95a28
PZ
1440static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_add(&rq->load, load);
1443}
1444
1445static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446{
1447 update_load_sub(&rq->load, load);
1448}
1449
7940ca36 1450#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1451typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1452
1453/*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
eb755805 1457static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1458{
1459 struct task_group *parent, *child;
eb755805 1460 int ret;
c09595f6
PZ
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464down:
eb755805
PZ
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
c09595f6
PZ
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472up:
1473 continue;
1474 }
eb755805
PZ
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
c09595f6
PZ
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
eb755805 1483out_unlock:
c09595f6 1484 rcu_read_unlock();
eb755805
PZ
1485
1486 return ret;
c09595f6
PZ
1487}
1488
eb755805
PZ
1489static int tg_nop(struct task_group *tg, void *data)
1490{
1491 return 0;
c09595f6 1492}
eb755805
PZ
1493#endif
1494
1495#ifdef CONFIG_SMP
f5f08f39
PZ
1496/* Used instead of source_load when we know the type == 0 */
1497static unsigned long weighted_cpuload(const int cpu)
1498{
1499 return cpu_rq(cpu)->load.weight;
1500}
1501
1502/*
1503 * Return a low guess at the load of a migration-source cpu weighted
1504 * according to the scheduling class and "nice" value.
1505 *
1506 * We want to under-estimate the load of migration sources, to
1507 * balance conservatively.
1508 */
1509static unsigned long source_load(int cpu, int type)
1510{
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return min(rq->cpu_load[type-1], total);
1518}
1519
1520/*
1521 * Return a high guess at the load of a migration-target cpu weighted
1522 * according to the scheduling class and "nice" value.
1523 */
1524static unsigned long target_load(int cpu, int type)
1525{
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long total = weighted_cpuload(cpu);
1528
1529 if (type == 0 || !sched_feat(LB_BIAS))
1530 return total;
1531
1532 return max(rq->cpu_load[type-1], total);
1533}
1534
ae154be1
PZ
1535static struct sched_group *group_of(int cpu)
1536{
1537 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1538
1539 if (!sd)
1540 return NULL;
1541
1542 return sd->groups;
1543}
1544
1545static unsigned long power_of(int cpu)
1546{
1547 struct sched_group *group = group_of(cpu);
1548
1549 if (!group)
1550 return SCHED_LOAD_SCALE;
1551
1552 return group->cpu_power;
1553}
1554
eb755805
PZ
1555static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1556
1557static unsigned long cpu_avg_load_per_task(int cpu)
1558{
1559 struct rq *rq = cpu_rq(cpu);
af6d596f 1560 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1561
4cd42620
SR
1562 if (nr_running)
1563 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1564 else
1565 rq->avg_load_per_task = 0;
eb755805
PZ
1566
1567 return rq->avg_load_per_task;
1568}
1569
1570#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1571
34d76c41
PZ
1572struct update_shares_data {
1573 unsigned long rq_weight[NR_CPUS];
1574};
1575
1576static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1577
c09595f6
PZ
1578static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1579
1580/*
1581 * Calculate and set the cpu's group shares.
1582 */
34d76c41
PZ
1583static void update_group_shares_cpu(struct task_group *tg, int cpu,
1584 unsigned long sd_shares,
1585 unsigned long sd_rq_weight,
1586 struct update_shares_data *usd)
18d95a28 1587{
34d76c41 1588 unsigned long shares, rq_weight;
a5004278 1589 int boost = 0;
c09595f6 1590
34d76c41 1591 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1592 if (!rq_weight) {
1593 boost = 1;
1594 rq_weight = NICE_0_LOAD;
1595 }
c8cba857 1596
c09595f6 1597 /*
a8af7246
PZ
1598 * \Sum_j shares_j * rq_weight_i
1599 * shares_i = -----------------------------
1600 * \Sum_j rq_weight_j
c09595f6 1601 */
ec4e0e2f 1602 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1603 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1604
ffda12a1
PZ
1605 if (abs(shares - tg->se[cpu]->load.weight) >
1606 sysctl_sched_shares_thresh) {
1607 struct rq *rq = cpu_rq(cpu);
1608 unsigned long flags;
c09595f6 1609
ffda12a1 1610 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1611 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1612 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1613 __set_se_shares(tg->se[cpu], shares);
1614 spin_unlock_irqrestore(&rq->lock, flags);
1615 }
18d95a28 1616}
c09595f6
PZ
1617
1618/*
c8cba857
PZ
1619 * Re-compute the task group their per cpu shares over the given domain.
1620 * This needs to be done in a bottom-up fashion because the rq weight of a
1621 * parent group depends on the shares of its child groups.
c09595f6 1622 */
eb755805 1623static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1624{
34d76c41
PZ
1625 unsigned long weight, rq_weight = 0, shares = 0;
1626 struct update_shares_data *usd;
eb755805 1627 struct sched_domain *sd = data;
34d76c41 1628 unsigned long flags;
c8cba857 1629 int i;
c09595f6 1630
34d76c41
PZ
1631 if (!tg->se[0])
1632 return 0;
1633
1634 local_irq_save(flags);
1635 usd = &__get_cpu_var(update_shares_data);
1636
758b2cdc 1637 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1638 weight = tg->cfs_rq[i]->load.weight;
1639 usd->rq_weight[i] = weight;
1640
ec4e0e2f
KC
1641 /*
1642 * If there are currently no tasks on the cpu pretend there
1643 * is one of average load so that when a new task gets to
1644 * run here it will not get delayed by group starvation.
1645 */
ec4e0e2f
KC
1646 if (!weight)
1647 weight = NICE_0_LOAD;
1648
ec4e0e2f 1649 rq_weight += weight;
c8cba857 1650 shares += tg->cfs_rq[i]->shares;
c09595f6 1651 }
c09595f6 1652
c8cba857
PZ
1653 if ((!shares && rq_weight) || shares > tg->shares)
1654 shares = tg->shares;
1655
1656 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1657 shares = tg->shares;
c09595f6 1658
758b2cdc 1659 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1660 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1661
1662 local_irq_restore(flags);
eb755805
PZ
1663
1664 return 0;
c09595f6
PZ
1665}
1666
1667/*
c8cba857
PZ
1668 * Compute the cpu's hierarchical load factor for each task group.
1669 * This needs to be done in a top-down fashion because the load of a child
1670 * group is a fraction of its parents load.
c09595f6 1671 */
eb755805 1672static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1673{
c8cba857 1674 unsigned long load;
eb755805 1675 long cpu = (long)data;
c09595f6 1676
c8cba857
PZ
1677 if (!tg->parent) {
1678 load = cpu_rq(cpu)->load.weight;
1679 } else {
1680 load = tg->parent->cfs_rq[cpu]->h_load;
1681 load *= tg->cfs_rq[cpu]->shares;
1682 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1683 }
c09595f6 1684
c8cba857 1685 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1686
eb755805 1687 return 0;
c09595f6
PZ
1688}
1689
c8cba857 1690static void update_shares(struct sched_domain *sd)
4d8d595d 1691{
e7097159
PZ
1692 s64 elapsed;
1693 u64 now;
1694
1695 if (root_task_group_empty())
1696 return;
1697
1698 now = cpu_clock(raw_smp_processor_id());
1699 elapsed = now - sd->last_update;
2398f2c6
PZ
1700
1701 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1702 sd->last_update = now;
eb755805 1703 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1704 }
4d8d595d
PZ
1705}
1706
3e5459b4
PZ
1707static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1708{
e7097159
PZ
1709 if (root_task_group_empty())
1710 return;
1711
3e5459b4
PZ
1712 spin_unlock(&rq->lock);
1713 update_shares(sd);
1714 spin_lock(&rq->lock);
1715}
1716
eb755805 1717static void update_h_load(long cpu)
c09595f6 1718{
e7097159
PZ
1719 if (root_task_group_empty())
1720 return;
1721
eb755805 1722 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1723}
1724
c09595f6
PZ
1725#else
1726
c8cba857 1727static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1728{
1729}
1730
3e5459b4
PZ
1731static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1732{
1733}
1734
18d95a28
PZ
1735#endif
1736
8f45e2b5
GH
1737#ifdef CONFIG_PREEMPT
1738
b78bb868
PZ
1739static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1740
70574a99 1741/*
8f45e2b5
GH
1742 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1743 * way at the expense of forcing extra atomic operations in all
1744 * invocations. This assures that the double_lock is acquired using the
1745 * same underlying policy as the spinlock_t on this architecture, which
1746 * reduces latency compared to the unfair variant below. However, it
1747 * also adds more overhead and therefore may reduce throughput.
70574a99 1748 */
8f45e2b5
GH
1749static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1750 __releases(this_rq->lock)
1751 __acquires(busiest->lock)
1752 __acquires(this_rq->lock)
1753{
1754 spin_unlock(&this_rq->lock);
1755 double_rq_lock(this_rq, busiest);
1756
1757 return 1;
1758}
1759
1760#else
1761/*
1762 * Unfair double_lock_balance: Optimizes throughput at the expense of
1763 * latency by eliminating extra atomic operations when the locks are
1764 * already in proper order on entry. This favors lower cpu-ids and will
1765 * grant the double lock to lower cpus over higher ids under contention,
1766 * regardless of entry order into the function.
1767 */
1768static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1769 __releases(this_rq->lock)
1770 __acquires(busiest->lock)
1771 __acquires(this_rq->lock)
1772{
1773 int ret = 0;
1774
70574a99
AD
1775 if (unlikely(!spin_trylock(&busiest->lock))) {
1776 if (busiest < this_rq) {
1777 spin_unlock(&this_rq->lock);
1778 spin_lock(&busiest->lock);
1779 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1780 ret = 1;
1781 } else
1782 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1783 }
1784 return ret;
1785}
1786
8f45e2b5
GH
1787#endif /* CONFIG_PREEMPT */
1788
1789/*
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 */
1792static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1793{
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
1796 spin_unlock(&this_rq->lock);
1797 BUG_ON(1);
1798 }
1799
1800 return _double_lock_balance(this_rq, busiest);
1801}
1802
70574a99
AD
1803static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1804 __releases(busiest->lock)
1805{
1806 spin_unlock(&busiest->lock);
1807 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1808}
18d95a28
PZ
1809#endif
1810
30432094 1811#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1812static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1813{
30432094 1814#ifdef CONFIG_SMP
34e83e85
IM
1815 cfs_rq->shares = shares;
1816#endif
1817}
30432094 1818#endif
e7693a36 1819
dce48a84
TG
1820static void calc_load_account_active(struct rq *this_rq);
1821
dd41f596 1822#include "sched_stats.h"
dd41f596 1823#include "sched_idletask.c"
5522d5d5
IM
1824#include "sched_fair.c"
1825#include "sched_rt.c"
dd41f596
IM
1826#ifdef CONFIG_SCHED_DEBUG
1827# include "sched_debug.c"
1828#endif
1829
1830#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1831#define for_each_class(class) \
1832 for (class = sched_class_highest; class; class = class->next)
dd41f596 1833
c09595f6 1834static void inc_nr_running(struct rq *rq)
9c217245
IM
1835{
1836 rq->nr_running++;
9c217245
IM
1837}
1838
c09595f6 1839static void dec_nr_running(struct rq *rq)
9c217245
IM
1840{
1841 rq->nr_running--;
9c217245
IM
1842}
1843
45bf76df
IM
1844static void set_load_weight(struct task_struct *p)
1845{
1846 if (task_has_rt_policy(p)) {
dd41f596
IM
1847 p->se.load.weight = prio_to_weight[0] * 2;
1848 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1849 return;
1850 }
45bf76df 1851
dd41f596
IM
1852 /*
1853 * SCHED_IDLE tasks get minimal weight:
1854 */
1855 if (p->policy == SCHED_IDLE) {
1856 p->se.load.weight = WEIGHT_IDLEPRIO;
1857 p->se.load.inv_weight = WMULT_IDLEPRIO;
1858 return;
1859 }
71f8bd46 1860
dd41f596
IM
1861 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1862 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1863}
1864
2087a1ad
GH
1865static void update_avg(u64 *avg, u64 sample)
1866{
1867 s64 diff = sample - *avg;
1868 *avg += diff >> 3;
1869}
1870
8159f87e 1871static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1872{
831451ac
PZ
1873 if (wakeup)
1874 p->se.start_runtime = p->se.sum_exec_runtime;
1875
dd41f596 1876 sched_info_queued(p);
fd390f6a 1877 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1878 p->se.on_rq = 1;
71f8bd46
IM
1879}
1880
69be72c1 1881static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1882{
831451ac
PZ
1883 if (sleep) {
1884 if (p->se.last_wakeup) {
1885 update_avg(&p->se.avg_overlap,
1886 p->se.sum_exec_runtime - p->se.last_wakeup);
1887 p->se.last_wakeup = 0;
1888 } else {
1889 update_avg(&p->se.avg_wakeup,
1890 sysctl_sched_wakeup_granularity);
1891 }
2087a1ad
GH
1892 }
1893
46ac22ba 1894 sched_info_dequeued(p);
f02231e5 1895 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1896 p->se.on_rq = 0;
71f8bd46
IM
1897}
1898
14531189 1899/*
dd41f596 1900 * __normal_prio - return the priority that is based on the static prio
14531189 1901 */
14531189
IM
1902static inline int __normal_prio(struct task_struct *p)
1903{
dd41f596 1904 return p->static_prio;
14531189
IM
1905}
1906
b29739f9
IM
1907/*
1908 * Calculate the expected normal priority: i.e. priority
1909 * without taking RT-inheritance into account. Might be
1910 * boosted by interactivity modifiers. Changes upon fork,
1911 * setprio syscalls, and whenever the interactivity
1912 * estimator recalculates.
1913 */
36c8b586 1914static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1915{
1916 int prio;
1917
e05606d3 1918 if (task_has_rt_policy(p))
b29739f9
IM
1919 prio = MAX_RT_PRIO-1 - p->rt_priority;
1920 else
1921 prio = __normal_prio(p);
1922 return prio;
1923}
1924
1925/*
1926 * Calculate the current priority, i.e. the priority
1927 * taken into account by the scheduler. This value might
1928 * be boosted by RT tasks, or might be boosted by
1929 * interactivity modifiers. Will be RT if the task got
1930 * RT-boosted. If not then it returns p->normal_prio.
1931 */
36c8b586 1932static int effective_prio(struct task_struct *p)
b29739f9
IM
1933{
1934 p->normal_prio = normal_prio(p);
1935 /*
1936 * If we are RT tasks or we were boosted to RT priority,
1937 * keep the priority unchanged. Otherwise, update priority
1938 * to the normal priority:
1939 */
1940 if (!rt_prio(p->prio))
1941 return p->normal_prio;
1942 return p->prio;
1943}
1944
1da177e4 1945/*
dd41f596 1946 * activate_task - move a task to the runqueue.
1da177e4 1947 */
dd41f596 1948static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1949{
d9514f6c 1950 if (task_contributes_to_load(p))
dd41f596 1951 rq->nr_uninterruptible--;
1da177e4 1952
8159f87e 1953 enqueue_task(rq, p, wakeup);
c09595f6 1954 inc_nr_running(rq);
1da177e4
LT
1955}
1956
1da177e4
LT
1957/*
1958 * deactivate_task - remove a task from the runqueue.
1959 */
2e1cb74a 1960static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1961{
d9514f6c 1962 if (task_contributes_to_load(p))
dd41f596
IM
1963 rq->nr_uninterruptible++;
1964
69be72c1 1965 dequeue_task(rq, p, sleep);
c09595f6 1966 dec_nr_running(rq);
1da177e4
LT
1967}
1968
1da177e4
LT
1969/**
1970 * task_curr - is this task currently executing on a CPU?
1971 * @p: the task in question.
1972 */
36c8b586 1973inline int task_curr(const struct task_struct *p)
1da177e4
LT
1974{
1975 return cpu_curr(task_cpu(p)) == p;
1976}
1977
dd41f596
IM
1978static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1979{
6f505b16 1980 set_task_rq(p, cpu);
dd41f596 1981#ifdef CONFIG_SMP
ce96b5ac
DA
1982 /*
1983 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1984 * successfuly executed on another CPU. We must ensure that updates of
1985 * per-task data have been completed by this moment.
1986 */
1987 smp_wmb();
dd41f596 1988 task_thread_info(p)->cpu = cpu;
dd41f596 1989#endif
2dd73a4f
PW
1990}
1991
cb469845
SR
1992static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1993 const struct sched_class *prev_class,
1994 int oldprio, int running)
1995{
1996 if (prev_class != p->sched_class) {
1997 if (prev_class->switched_from)
1998 prev_class->switched_from(rq, p, running);
1999 p->sched_class->switched_to(rq, p, running);
2000 } else
2001 p->sched_class->prio_changed(rq, p, oldprio, running);
2002}
2003
1da177e4 2004#ifdef CONFIG_SMP
cc367732
IM
2005/*
2006 * Is this task likely cache-hot:
2007 */
e7693a36 2008static int
cc367732
IM
2009task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2010{
2011 s64 delta;
2012
f540a608
IM
2013 /*
2014 * Buddy candidates are cache hot:
2015 */
4793241b
PZ
2016 if (sched_feat(CACHE_HOT_BUDDY) &&
2017 (&p->se == cfs_rq_of(&p->se)->next ||
2018 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2019 return 1;
2020
cc367732
IM
2021 if (p->sched_class != &fair_sched_class)
2022 return 0;
2023
6bc1665b
IM
2024 if (sysctl_sched_migration_cost == -1)
2025 return 1;
2026 if (sysctl_sched_migration_cost == 0)
2027 return 0;
2028
cc367732
IM
2029 delta = now - p->se.exec_start;
2030
2031 return delta < (s64)sysctl_sched_migration_cost;
2032}
2033
2034
dd41f596 2035void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2036{
dd41f596
IM
2037 int old_cpu = task_cpu(p);
2038 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2039 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2040 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2041 u64 clock_offset;
dd41f596
IM
2042
2043 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2044
de1d7286 2045 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2046
6cfb0d5d
IM
2047#ifdef CONFIG_SCHEDSTATS
2048 if (p->se.wait_start)
2049 p->se.wait_start -= clock_offset;
dd41f596
IM
2050 if (p->se.sleep_start)
2051 p->se.sleep_start -= clock_offset;
2052 if (p->se.block_start)
2053 p->se.block_start -= clock_offset;
6c594c21 2054#endif
cc367732 2055 if (old_cpu != new_cpu) {
6c594c21 2056 p->se.nr_migrations++;
23a185ca 2057 new_rq->nr_migrations_in++;
6c594c21 2058#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2059 if (task_hot(p, old_rq->clock, NULL))
2060 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2061#endif
e5289d4a
PZ
2062 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2063 1, 1, NULL, 0);
6c594c21 2064 }
2830cf8c
SV
2065 p->se.vruntime -= old_cfsrq->min_vruntime -
2066 new_cfsrq->min_vruntime;
dd41f596
IM
2067
2068 __set_task_cpu(p, new_cpu);
c65cc870
IM
2069}
2070
70b97a7f 2071struct migration_req {
1da177e4 2072 struct list_head list;
1da177e4 2073
36c8b586 2074 struct task_struct *task;
1da177e4
LT
2075 int dest_cpu;
2076
1da177e4 2077 struct completion done;
70b97a7f 2078};
1da177e4
LT
2079
2080/*
2081 * The task's runqueue lock must be held.
2082 * Returns true if you have to wait for migration thread.
2083 */
36c8b586 2084static int
70b97a7f 2085migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2086{
70b97a7f 2087 struct rq *rq = task_rq(p);
1da177e4
LT
2088
2089 /*
2090 * If the task is not on a runqueue (and not running), then
2091 * it is sufficient to simply update the task's cpu field.
2092 */
dd41f596 2093 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2094 set_task_cpu(p, dest_cpu);
2095 return 0;
2096 }
2097
2098 init_completion(&req->done);
1da177e4
LT
2099 req->task = p;
2100 req->dest_cpu = dest_cpu;
2101 list_add(&req->list, &rq->migration_queue);
48f24c4d 2102
1da177e4
LT
2103 return 1;
2104}
2105
a26b89f0
MM
2106/*
2107 * wait_task_context_switch - wait for a thread to complete at least one
2108 * context switch.
2109 *
2110 * @p must not be current.
2111 */
2112void wait_task_context_switch(struct task_struct *p)
2113{
2114 unsigned long nvcsw, nivcsw, flags;
2115 int running;
2116 struct rq *rq;
2117
2118 nvcsw = p->nvcsw;
2119 nivcsw = p->nivcsw;
2120 for (;;) {
2121 /*
2122 * The runqueue is assigned before the actual context
2123 * switch. We need to take the runqueue lock.
2124 *
2125 * We could check initially without the lock but it is
2126 * very likely that we need to take the lock in every
2127 * iteration.
2128 */
2129 rq = task_rq_lock(p, &flags);
2130 running = task_running(rq, p);
2131 task_rq_unlock(rq, &flags);
2132
2133 if (likely(!running))
2134 break;
2135 /*
2136 * The switch count is incremented before the actual
2137 * context switch. We thus wait for two switches to be
2138 * sure at least one completed.
2139 */
2140 if ((p->nvcsw - nvcsw) > 1)
2141 break;
2142 if ((p->nivcsw - nivcsw) > 1)
2143 break;
2144
2145 cpu_relax();
2146 }
2147}
2148
1da177e4
LT
2149/*
2150 * wait_task_inactive - wait for a thread to unschedule.
2151 *
85ba2d86
RM
2152 * If @match_state is nonzero, it's the @p->state value just checked and
2153 * not expected to change. If it changes, i.e. @p might have woken up,
2154 * then return zero. When we succeed in waiting for @p to be off its CPU,
2155 * we return a positive number (its total switch count). If a second call
2156 * a short while later returns the same number, the caller can be sure that
2157 * @p has remained unscheduled the whole time.
2158 *
1da177e4
LT
2159 * The caller must ensure that the task *will* unschedule sometime soon,
2160 * else this function might spin for a *long* time. This function can't
2161 * be called with interrupts off, or it may introduce deadlock with
2162 * smp_call_function() if an IPI is sent by the same process we are
2163 * waiting to become inactive.
2164 */
85ba2d86 2165unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2166{
2167 unsigned long flags;
dd41f596 2168 int running, on_rq;
85ba2d86 2169 unsigned long ncsw;
70b97a7f 2170 struct rq *rq;
1da177e4 2171
3a5c359a
AK
2172 for (;;) {
2173 /*
2174 * We do the initial early heuristics without holding
2175 * any task-queue locks at all. We'll only try to get
2176 * the runqueue lock when things look like they will
2177 * work out!
2178 */
2179 rq = task_rq(p);
fa490cfd 2180
3a5c359a
AK
2181 /*
2182 * If the task is actively running on another CPU
2183 * still, just relax and busy-wait without holding
2184 * any locks.
2185 *
2186 * NOTE! Since we don't hold any locks, it's not
2187 * even sure that "rq" stays as the right runqueue!
2188 * But we don't care, since "task_running()" will
2189 * return false if the runqueue has changed and p
2190 * is actually now running somewhere else!
2191 */
85ba2d86
RM
2192 while (task_running(rq, p)) {
2193 if (match_state && unlikely(p->state != match_state))
2194 return 0;
3a5c359a 2195 cpu_relax();
85ba2d86 2196 }
fa490cfd 2197
3a5c359a
AK
2198 /*
2199 * Ok, time to look more closely! We need the rq
2200 * lock now, to be *sure*. If we're wrong, we'll
2201 * just go back and repeat.
2202 */
2203 rq = task_rq_lock(p, &flags);
0a16b607 2204 trace_sched_wait_task(rq, p);
3a5c359a
AK
2205 running = task_running(rq, p);
2206 on_rq = p->se.on_rq;
85ba2d86 2207 ncsw = 0;
f31e11d8 2208 if (!match_state || p->state == match_state)
93dcf55f 2209 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2210 task_rq_unlock(rq, &flags);
fa490cfd 2211
85ba2d86
RM
2212 /*
2213 * If it changed from the expected state, bail out now.
2214 */
2215 if (unlikely(!ncsw))
2216 break;
2217
3a5c359a
AK
2218 /*
2219 * Was it really running after all now that we
2220 * checked with the proper locks actually held?
2221 *
2222 * Oops. Go back and try again..
2223 */
2224 if (unlikely(running)) {
2225 cpu_relax();
2226 continue;
2227 }
fa490cfd 2228
3a5c359a
AK
2229 /*
2230 * It's not enough that it's not actively running,
2231 * it must be off the runqueue _entirely_, and not
2232 * preempted!
2233 *
80dd99b3 2234 * So if it was still runnable (but just not actively
3a5c359a
AK
2235 * running right now), it's preempted, and we should
2236 * yield - it could be a while.
2237 */
2238 if (unlikely(on_rq)) {
2239 schedule_timeout_uninterruptible(1);
2240 continue;
2241 }
fa490cfd 2242
3a5c359a
AK
2243 /*
2244 * Ahh, all good. It wasn't running, and it wasn't
2245 * runnable, which means that it will never become
2246 * running in the future either. We're all done!
2247 */
2248 break;
2249 }
85ba2d86
RM
2250
2251 return ncsw;
1da177e4
LT
2252}
2253
2254/***
2255 * kick_process - kick a running thread to enter/exit the kernel
2256 * @p: the to-be-kicked thread
2257 *
2258 * Cause a process which is running on another CPU to enter
2259 * kernel-mode, without any delay. (to get signals handled.)
2260 *
2261 * NOTE: this function doesnt have to take the runqueue lock,
2262 * because all it wants to ensure is that the remote task enters
2263 * the kernel. If the IPI races and the task has been migrated
2264 * to another CPU then no harm is done and the purpose has been
2265 * achieved as well.
2266 */
36c8b586 2267void kick_process(struct task_struct *p)
1da177e4
LT
2268{
2269 int cpu;
2270
2271 preempt_disable();
2272 cpu = task_cpu(p);
2273 if ((cpu != smp_processor_id()) && task_curr(p))
2274 smp_send_reschedule(cpu);
2275 preempt_enable();
2276}
b43e3521 2277EXPORT_SYMBOL_GPL(kick_process);
476d139c 2278#endif /* CONFIG_SMP */
1da177e4 2279
0793a61d
TG
2280/**
2281 * task_oncpu_function_call - call a function on the cpu on which a task runs
2282 * @p: the task to evaluate
2283 * @func: the function to be called
2284 * @info: the function call argument
2285 *
2286 * Calls the function @func when the task is currently running. This might
2287 * be on the current CPU, which just calls the function directly
2288 */
2289void task_oncpu_function_call(struct task_struct *p,
2290 void (*func) (void *info), void *info)
2291{
2292 int cpu;
2293
2294 preempt_disable();
2295 cpu = task_cpu(p);
2296 if (task_curr(p))
2297 smp_call_function_single(cpu, func, info, 1);
2298 preempt_enable();
2299}
2300
1da177e4
LT
2301/***
2302 * try_to_wake_up - wake up a thread
2303 * @p: the to-be-woken-up thread
2304 * @state: the mask of task states that can be woken
2305 * @sync: do a synchronous wakeup?
2306 *
2307 * Put it on the run-queue if it's not already there. The "current"
2308 * thread is always on the run-queue (except when the actual
2309 * re-schedule is in progress), and as such you're allowed to do
2310 * the simpler "current->state = TASK_RUNNING" to mark yourself
2311 * runnable without the overhead of this.
2312 *
2313 * returns failure only if the task is already active.
2314 */
7d478721
PZ
2315static int try_to_wake_up(struct task_struct *p, unsigned int state,
2316 int wake_flags)
1da177e4 2317{
cc367732 2318 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2319 unsigned long flags;
70b97a7f 2320 struct rq *rq;
1da177e4 2321
b85d0667 2322 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2323 wake_flags &= ~WF_SYNC;
2398f2c6 2324
e9c84311 2325 this_cpu = get_cpu();
2398f2c6 2326
04e2f174 2327 smp_wmb();
1da177e4 2328 rq = task_rq_lock(p, &flags);
03e89e45 2329 update_rq_clock(rq);
e9c84311 2330 if (!(p->state & state))
1da177e4
LT
2331 goto out;
2332
dd41f596 2333 if (p->se.on_rq)
1da177e4
LT
2334 goto out_running;
2335
2336 cpu = task_cpu(p);
cc367732 2337 orig_cpu = cpu;
1da177e4
LT
2338
2339#ifdef CONFIG_SMP
2340 if (unlikely(task_running(rq, p)))
2341 goto out_activate;
2342
e9c84311
PZ
2343 /*
2344 * In order to handle concurrent wakeups and release the rq->lock
2345 * we put the task in TASK_WAKING state.
eb24073b
IM
2346 *
2347 * First fix up the nr_uninterruptible count:
e9c84311 2348 */
eb24073b
IM
2349 if (task_contributes_to_load(p))
2350 rq->nr_uninterruptible--;
e9c84311
PZ
2351 p->state = TASK_WAKING;
2352 task_rq_unlock(rq, &flags);
2353
7d478721 2354 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
e9c84311 2355 if (cpu != orig_cpu)
5d2f5a61 2356 set_task_cpu(p, cpu);
1da177e4 2357
e9c84311
PZ
2358 rq = task_rq_lock(p, &flags);
2359 WARN_ON(p->state != TASK_WAKING);
2360 cpu = task_cpu(p);
1da177e4 2361
e7693a36
GH
2362#ifdef CONFIG_SCHEDSTATS
2363 schedstat_inc(rq, ttwu_count);
2364 if (cpu == this_cpu)
2365 schedstat_inc(rq, ttwu_local);
2366 else {
2367 struct sched_domain *sd;
2368 for_each_domain(this_cpu, sd) {
758b2cdc 2369 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2370 schedstat_inc(sd, ttwu_wake_remote);
2371 break;
2372 }
2373 }
2374 }
6d6bc0ad 2375#endif /* CONFIG_SCHEDSTATS */
e7693a36 2376
1da177e4
LT
2377out_activate:
2378#endif /* CONFIG_SMP */
cc367732 2379 schedstat_inc(p, se.nr_wakeups);
7d478721 2380 if (wake_flags & WF_SYNC)
cc367732
IM
2381 schedstat_inc(p, se.nr_wakeups_sync);
2382 if (orig_cpu != cpu)
2383 schedstat_inc(p, se.nr_wakeups_migrate);
2384 if (cpu == this_cpu)
2385 schedstat_inc(p, se.nr_wakeups_local);
2386 else
2387 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2388 activate_task(rq, p, 1);
1da177e4
LT
2389 success = 1;
2390
831451ac
PZ
2391 /*
2392 * Only attribute actual wakeups done by this task.
2393 */
2394 if (!in_interrupt()) {
2395 struct sched_entity *se = &current->se;
2396 u64 sample = se->sum_exec_runtime;
2397
2398 if (se->last_wakeup)
2399 sample -= se->last_wakeup;
2400 else
2401 sample -= se->start_runtime;
2402 update_avg(&se->avg_wakeup, sample);
2403
2404 se->last_wakeup = se->sum_exec_runtime;
2405 }
2406
1da177e4 2407out_running:
468a15bb 2408 trace_sched_wakeup(rq, p, success);
7d478721 2409 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2410
1da177e4 2411 p->state = TASK_RUNNING;
9a897c5a
SR
2412#ifdef CONFIG_SMP
2413 if (p->sched_class->task_wake_up)
2414 p->sched_class->task_wake_up(rq, p);
2415#endif
1da177e4
LT
2416out:
2417 task_rq_unlock(rq, &flags);
e9c84311 2418 put_cpu();
1da177e4
LT
2419
2420 return success;
2421}
2422
50fa610a
DH
2423/**
2424 * wake_up_process - Wake up a specific process
2425 * @p: The process to be woken up.
2426 *
2427 * Attempt to wake up the nominated process and move it to the set of runnable
2428 * processes. Returns 1 if the process was woken up, 0 if it was already
2429 * running.
2430 *
2431 * It may be assumed that this function implies a write memory barrier before
2432 * changing the task state if and only if any tasks are woken up.
2433 */
7ad5b3a5 2434int wake_up_process(struct task_struct *p)
1da177e4 2435{
d9514f6c 2436 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2437}
1da177e4
LT
2438EXPORT_SYMBOL(wake_up_process);
2439
7ad5b3a5 2440int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2441{
2442 return try_to_wake_up(p, state, 0);
2443}
2444
1da177e4
LT
2445/*
2446 * Perform scheduler related setup for a newly forked process p.
2447 * p is forked by current.
dd41f596
IM
2448 *
2449 * __sched_fork() is basic setup used by init_idle() too:
2450 */
2451static void __sched_fork(struct task_struct *p)
2452{
dd41f596
IM
2453 p->se.exec_start = 0;
2454 p->se.sum_exec_runtime = 0;
f6cf891c 2455 p->se.prev_sum_exec_runtime = 0;
6c594c21 2456 p->se.nr_migrations = 0;
4ae7d5ce
IM
2457 p->se.last_wakeup = 0;
2458 p->se.avg_overlap = 0;
831451ac
PZ
2459 p->se.start_runtime = 0;
2460 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2461 p->se.avg_running = 0;
6cfb0d5d
IM
2462
2463#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2464 p->se.wait_start = 0;
2465 p->se.wait_max = 0;
2466 p->se.wait_count = 0;
2467 p->se.wait_sum = 0;
2468
2469 p->se.sleep_start = 0;
2470 p->se.sleep_max = 0;
2471 p->se.sum_sleep_runtime = 0;
2472
2473 p->se.block_start = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
2476 p->se.slice_max = 0;
2477
2478 p->se.nr_migrations_cold = 0;
2479 p->se.nr_failed_migrations_affine = 0;
2480 p->se.nr_failed_migrations_running = 0;
2481 p->se.nr_failed_migrations_hot = 0;
2482 p->se.nr_forced_migrations = 0;
2483 p->se.nr_forced2_migrations = 0;
2484
2485 p->se.nr_wakeups = 0;
2486 p->se.nr_wakeups_sync = 0;
2487 p->se.nr_wakeups_migrate = 0;
2488 p->se.nr_wakeups_local = 0;
2489 p->se.nr_wakeups_remote = 0;
2490 p->se.nr_wakeups_affine = 0;
2491 p->se.nr_wakeups_affine_attempts = 0;
2492 p->se.nr_wakeups_passive = 0;
2493 p->se.nr_wakeups_idle = 0;
2494
6cfb0d5d 2495#endif
476d139c 2496
fa717060 2497 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2498 p->se.on_rq = 0;
4a55bd5e 2499 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2500
e107be36
AK
2501#ifdef CONFIG_PREEMPT_NOTIFIERS
2502 INIT_HLIST_HEAD(&p->preempt_notifiers);
2503#endif
2504
1da177e4
LT
2505 /*
2506 * We mark the process as running here, but have not actually
2507 * inserted it onto the runqueue yet. This guarantees that
2508 * nobody will actually run it, and a signal or other external
2509 * event cannot wake it up and insert it on the runqueue either.
2510 */
2511 p->state = TASK_RUNNING;
dd41f596
IM
2512}
2513
2514/*
2515 * fork()/clone()-time setup:
2516 */
2517void sched_fork(struct task_struct *p, int clone_flags)
2518{
2519 int cpu = get_cpu();
2520
2521 __sched_fork(p);
2522
b29739f9 2523 /*
b9dc29e7 2524 * Make sure we do not leak PI boosting priority to the child.
b29739f9
IM
2525 */
2526 p->prio = current->normal_prio;
ca94c442 2527
b9dc29e7
MG
2528 /*
2529 * Revert to default priority/policy on fork if requested.
2530 */
2531 if (unlikely(p->sched_reset_on_fork)) {
2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2533 p->policy = SCHED_NORMAL;
2534
2535 if (p->normal_prio < DEFAULT_PRIO)
2536 p->prio = DEFAULT_PRIO;
2537
6c697bdf
MG
2538 if (PRIO_TO_NICE(p->static_prio) < 0) {
2539 p->static_prio = NICE_TO_PRIO(0);
2540 set_load_weight(p);
2541 }
2542
b9dc29e7
MG
2543 /*
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2546 */
2547 p->sched_reset_on_fork = 0;
2548 }
ca94c442 2549
2ddbf952
HS
2550 if (!rt_prio(p->prio))
2551 p->sched_class = &fair_sched_class;
b29739f9 2552
5f3edc1b
PZ
2553#ifdef CONFIG_SMP
2554 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2555#endif
2556 set_task_cpu(p, cpu);
2557
52f17b6c 2558#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2559 if (likely(sched_info_on()))
52f17b6c 2560 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2561#endif
d6077cb8 2562#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2563 p->oncpu = 0;
2564#endif
1da177e4 2565#ifdef CONFIG_PREEMPT
4866cde0 2566 /* Want to start with kernel preemption disabled. */
a1261f54 2567 task_thread_info(p)->preempt_count = 1;
1da177e4 2568#endif
917b627d
GH
2569 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2570
476d139c 2571 put_cpu();
1da177e4
LT
2572}
2573
2574/*
2575 * wake_up_new_task - wake up a newly created task for the first time.
2576 *
2577 * This function will do some initial scheduler statistics housekeeping
2578 * that must be done for every newly created context, then puts the task
2579 * on the runqueue and wakes it.
2580 */
7ad5b3a5 2581void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2582{
2583 unsigned long flags;
dd41f596 2584 struct rq *rq;
1da177e4
LT
2585
2586 rq = task_rq_lock(p, &flags);
147cbb4b 2587 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2588 update_rq_clock(rq);
1da177e4
LT
2589
2590 p->prio = effective_prio(p);
2591
b9dca1e0 2592 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2593 activate_task(rq, p, 0);
1da177e4 2594 } else {
1da177e4 2595 /*
dd41f596
IM
2596 * Let the scheduling class do new task startup
2597 * management (if any):
1da177e4 2598 */
ee0827d8 2599 p->sched_class->task_new(rq, p);
c09595f6 2600 inc_nr_running(rq);
1da177e4 2601 }
c71dd42d 2602 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2603 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2604#ifdef CONFIG_SMP
2605 if (p->sched_class->task_wake_up)
2606 p->sched_class->task_wake_up(rq, p);
2607#endif
dd41f596 2608 task_rq_unlock(rq, &flags);
1da177e4
LT
2609}
2610
e107be36
AK
2611#ifdef CONFIG_PREEMPT_NOTIFIERS
2612
2613/**
80dd99b3 2614 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2615 * @notifier: notifier struct to register
e107be36
AK
2616 */
2617void preempt_notifier_register(struct preempt_notifier *notifier)
2618{
2619 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2620}
2621EXPORT_SYMBOL_GPL(preempt_notifier_register);
2622
2623/**
2624 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2625 * @notifier: notifier struct to unregister
e107be36
AK
2626 *
2627 * This is safe to call from within a preemption notifier.
2628 */
2629void preempt_notifier_unregister(struct preempt_notifier *notifier)
2630{
2631 hlist_del(&notifier->link);
2632}
2633EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2634
2635static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2636{
2637 struct preempt_notifier *notifier;
2638 struct hlist_node *node;
2639
2640 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2641 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2642}
2643
2644static void
2645fire_sched_out_preempt_notifiers(struct task_struct *curr,
2646 struct task_struct *next)
2647{
2648 struct preempt_notifier *notifier;
2649 struct hlist_node *node;
2650
2651 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2652 notifier->ops->sched_out(notifier, next);
2653}
2654
6d6bc0ad 2655#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2656
2657static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2658{
2659}
2660
2661static void
2662fire_sched_out_preempt_notifiers(struct task_struct *curr,
2663 struct task_struct *next)
2664{
2665}
2666
6d6bc0ad 2667#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2668
4866cde0
NP
2669/**
2670 * prepare_task_switch - prepare to switch tasks
2671 * @rq: the runqueue preparing to switch
421cee29 2672 * @prev: the current task that is being switched out
4866cde0
NP
2673 * @next: the task we are going to switch to.
2674 *
2675 * This is called with the rq lock held and interrupts off. It must
2676 * be paired with a subsequent finish_task_switch after the context
2677 * switch.
2678 *
2679 * prepare_task_switch sets up locking and calls architecture specific
2680 * hooks.
2681 */
e107be36
AK
2682static inline void
2683prepare_task_switch(struct rq *rq, struct task_struct *prev,
2684 struct task_struct *next)
4866cde0 2685{
e107be36 2686 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2687 prepare_lock_switch(rq, next);
2688 prepare_arch_switch(next);
2689}
2690
1da177e4
LT
2691/**
2692 * finish_task_switch - clean up after a task-switch
344babaa 2693 * @rq: runqueue associated with task-switch
1da177e4
LT
2694 * @prev: the thread we just switched away from.
2695 *
4866cde0
NP
2696 * finish_task_switch must be called after the context switch, paired
2697 * with a prepare_task_switch call before the context switch.
2698 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2699 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2700 *
2701 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2702 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2703 * with the lock held can cause deadlocks; see schedule() for
2704 * details.)
2705 */
a9957449 2706static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2707 __releases(rq->lock)
2708{
1da177e4 2709 struct mm_struct *mm = rq->prev_mm;
55a101f8 2710 long prev_state;
1da177e4
LT
2711
2712 rq->prev_mm = NULL;
2713
2714 /*
2715 * A task struct has one reference for the use as "current".
c394cc9f 2716 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2717 * schedule one last time. The schedule call will never return, and
2718 * the scheduled task must drop that reference.
c394cc9f 2719 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2720 * still held, otherwise prev could be scheduled on another cpu, die
2721 * there before we look at prev->state, and then the reference would
2722 * be dropped twice.
2723 * Manfred Spraul <manfred@colorfullife.com>
2724 */
55a101f8 2725 prev_state = prev->state;
4866cde0 2726 finish_arch_switch(prev);
0793a61d 2727 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2728 finish_lock_switch(rq, prev);
e8fa1362 2729
e107be36 2730 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2731 if (mm)
2732 mmdrop(mm);
c394cc9f 2733 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2734 /*
2735 * Remove function-return probe instances associated with this
2736 * task and put them back on the free list.
9761eea8 2737 */
c6fd91f0 2738 kprobe_flush_task(prev);
1da177e4 2739 put_task_struct(prev);
c6fd91f0 2740 }
1da177e4
LT
2741}
2742
3f029d3c
GH
2743#ifdef CONFIG_SMP
2744
2745/* assumes rq->lock is held */
2746static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2747{
2748 if (prev->sched_class->pre_schedule)
2749 prev->sched_class->pre_schedule(rq, prev);
2750}
2751
2752/* rq->lock is NOT held, but preemption is disabled */
2753static inline void post_schedule(struct rq *rq)
2754{
2755 if (rq->post_schedule) {
2756 unsigned long flags;
2757
2758 spin_lock_irqsave(&rq->lock, flags);
2759 if (rq->curr->sched_class->post_schedule)
2760 rq->curr->sched_class->post_schedule(rq);
2761 spin_unlock_irqrestore(&rq->lock, flags);
2762
2763 rq->post_schedule = 0;
2764 }
2765}
2766
2767#else
da19ab51 2768
3f029d3c
GH
2769static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2770{
2771}
2772
2773static inline void post_schedule(struct rq *rq)
2774{
1da177e4
LT
2775}
2776
3f029d3c
GH
2777#endif
2778
1da177e4
LT
2779/**
2780 * schedule_tail - first thing a freshly forked thread must call.
2781 * @prev: the thread we just switched away from.
2782 */
36c8b586 2783asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2784 __releases(rq->lock)
2785{
70b97a7f
IM
2786 struct rq *rq = this_rq();
2787
4866cde0 2788 finish_task_switch(rq, prev);
da19ab51 2789
3f029d3c
GH
2790 /*
2791 * FIXME: do we need to worry about rq being invalidated by the
2792 * task_switch?
2793 */
2794 post_schedule(rq);
70b97a7f 2795
4866cde0
NP
2796#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2797 /* In this case, finish_task_switch does not reenable preemption */
2798 preempt_enable();
2799#endif
1da177e4 2800 if (current->set_child_tid)
b488893a 2801 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2802}
2803
2804/*
2805 * context_switch - switch to the new MM and the new
2806 * thread's register state.
2807 */
dd41f596 2808static inline void
70b97a7f 2809context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2810 struct task_struct *next)
1da177e4 2811{
dd41f596 2812 struct mm_struct *mm, *oldmm;
1da177e4 2813
e107be36 2814 prepare_task_switch(rq, prev, next);
0a16b607 2815 trace_sched_switch(rq, prev, next);
dd41f596
IM
2816 mm = next->mm;
2817 oldmm = prev->active_mm;
9226d125
ZA
2818 /*
2819 * For paravirt, this is coupled with an exit in switch_to to
2820 * combine the page table reload and the switch backend into
2821 * one hypercall.
2822 */
224101ed 2823 arch_start_context_switch(prev);
9226d125 2824
dd41f596 2825 if (unlikely(!mm)) {
1da177e4
LT
2826 next->active_mm = oldmm;
2827 atomic_inc(&oldmm->mm_count);
2828 enter_lazy_tlb(oldmm, next);
2829 } else
2830 switch_mm(oldmm, mm, next);
2831
dd41f596 2832 if (unlikely(!prev->mm)) {
1da177e4 2833 prev->active_mm = NULL;
1da177e4
LT
2834 rq->prev_mm = oldmm;
2835 }
3a5f5e48
IM
2836 /*
2837 * Since the runqueue lock will be released by the next
2838 * task (which is an invalid locking op but in the case
2839 * of the scheduler it's an obvious special-case), so we
2840 * do an early lockdep release here:
2841 */
2842#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2843 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2844#endif
1da177e4
LT
2845
2846 /* Here we just switch the register state and the stack. */
2847 switch_to(prev, next, prev);
2848
dd41f596
IM
2849 barrier();
2850 /*
2851 * this_rq must be evaluated again because prev may have moved
2852 * CPUs since it called schedule(), thus the 'rq' on its stack
2853 * frame will be invalid.
2854 */
2855 finish_task_switch(this_rq(), prev);
1da177e4
LT
2856}
2857
2858/*
2859 * nr_running, nr_uninterruptible and nr_context_switches:
2860 *
2861 * externally visible scheduler statistics: current number of runnable
2862 * threads, current number of uninterruptible-sleeping threads, total
2863 * number of context switches performed since bootup.
2864 */
2865unsigned long nr_running(void)
2866{
2867 unsigned long i, sum = 0;
2868
2869 for_each_online_cpu(i)
2870 sum += cpu_rq(i)->nr_running;
2871
2872 return sum;
2873}
2874
2875unsigned long nr_uninterruptible(void)
2876{
2877 unsigned long i, sum = 0;
2878
0a945022 2879 for_each_possible_cpu(i)
1da177e4
LT
2880 sum += cpu_rq(i)->nr_uninterruptible;
2881
2882 /*
2883 * Since we read the counters lockless, it might be slightly
2884 * inaccurate. Do not allow it to go below zero though:
2885 */
2886 if (unlikely((long)sum < 0))
2887 sum = 0;
2888
2889 return sum;
2890}
2891
2892unsigned long long nr_context_switches(void)
2893{
cc94abfc
SR
2894 int i;
2895 unsigned long long sum = 0;
1da177e4 2896
0a945022 2897 for_each_possible_cpu(i)
1da177e4
LT
2898 sum += cpu_rq(i)->nr_switches;
2899
2900 return sum;
2901}
2902
2903unsigned long nr_iowait(void)
2904{
2905 unsigned long i, sum = 0;
2906
0a945022 2907 for_each_possible_cpu(i)
1da177e4
LT
2908 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2909
2910 return sum;
2911}
2912
dce48a84
TG
2913/* Variables and functions for calc_load */
2914static atomic_long_t calc_load_tasks;
2915static unsigned long calc_load_update;
2916unsigned long avenrun[3];
2917EXPORT_SYMBOL(avenrun);
2918
2d02494f
TG
2919/**
2920 * get_avenrun - get the load average array
2921 * @loads: pointer to dest load array
2922 * @offset: offset to add
2923 * @shift: shift count to shift the result left
2924 *
2925 * These values are estimates at best, so no need for locking.
2926 */
2927void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2928{
2929 loads[0] = (avenrun[0] + offset) << shift;
2930 loads[1] = (avenrun[1] + offset) << shift;
2931 loads[2] = (avenrun[2] + offset) << shift;
2932}
2933
dce48a84
TG
2934static unsigned long
2935calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2936{
dce48a84
TG
2937 load *= exp;
2938 load += active * (FIXED_1 - exp);
2939 return load >> FSHIFT;
2940}
db1b1fef 2941
dce48a84
TG
2942/*
2943 * calc_load - update the avenrun load estimates 10 ticks after the
2944 * CPUs have updated calc_load_tasks.
2945 */
2946void calc_global_load(void)
2947{
2948 unsigned long upd = calc_load_update + 10;
2949 long active;
2950
2951 if (time_before(jiffies, upd))
2952 return;
db1b1fef 2953
dce48a84
TG
2954 active = atomic_long_read(&calc_load_tasks);
2955 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2956
dce48a84
TG
2957 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2958 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2959 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2960
2961 calc_load_update += LOAD_FREQ;
2962}
2963
2964/*
2965 * Either called from update_cpu_load() or from a cpu going idle
2966 */
2967static void calc_load_account_active(struct rq *this_rq)
2968{
2969 long nr_active, delta;
2970
2971 nr_active = this_rq->nr_running;
2972 nr_active += (long) this_rq->nr_uninterruptible;
2973
2974 if (nr_active != this_rq->calc_load_active) {
2975 delta = nr_active - this_rq->calc_load_active;
2976 this_rq->calc_load_active = nr_active;
2977 atomic_long_add(delta, &calc_load_tasks);
2978 }
db1b1fef
JS
2979}
2980
23a185ca
PM
2981/*
2982 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
2983 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2984 */
23a185ca
PM
2985u64 cpu_nr_migrations(int cpu)
2986{
2987 return cpu_rq(cpu)->nr_migrations_in;
2988}
2989
48f24c4d 2990/*
dd41f596
IM
2991 * Update rq->cpu_load[] statistics. This function is usually called every
2992 * scheduler tick (TICK_NSEC).
48f24c4d 2993 */
dd41f596 2994static void update_cpu_load(struct rq *this_rq)
48f24c4d 2995{
495eca49 2996 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2997 int i, scale;
2998
2999 this_rq->nr_load_updates++;
dd41f596
IM
3000
3001 /* Update our load: */
3002 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3003 unsigned long old_load, new_load;
3004
3005 /* scale is effectively 1 << i now, and >> i divides by scale */
3006
3007 old_load = this_rq->cpu_load[i];
3008 new_load = this_load;
a25707f3
IM
3009 /*
3010 * Round up the averaging division if load is increasing. This
3011 * prevents us from getting stuck on 9 if the load is 10, for
3012 * example.
3013 */
3014 if (new_load > old_load)
3015 new_load += scale-1;
dd41f596
IM
3016 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3017 }
dce48a84
TG
3018
3019 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3020 this_rq->calc_load_update += LOAD_FREQ;
3021 calc_load_account_active(this_rq);
3022 }
48f24c4d
IM
3023}
3024
dd41f596
IM
3025#ifdef CONFIG_SMP
3026
1da177e4
LT
3027/*
3028 * double_rq_lock - safely lock two runqueues
3029 *
3030 * Note this does not disable interrupts like task_rq_lock,
3031 * you need to do so manually before calling.
3032 */
70b97a7f 3033static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3034 __acquires(rq1->lock)
3035 __acquires(rq2->lock)
3036{
054b9108 3037 BUG_ON(!irqs_disabled());
1da177e4
LT
3038 if (rq1 == rq2) {
3039 spin_lock(&rq1->lock);
3040 __acquire(rq2->lock); /* Fake it out ;) */
3041 } else {
c96d145e 3042 if (rq1 < rq2) {
1da177e4 3043 spin_lock(&rq1->lock);
5e710e37 3044 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3045 } else {
3046 spin_lock(&rq2->lock);
5e710e37 3047 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3048 }
3049 }
6e82a3be
IM
3050 update_rq_clock(rq1);
3051 update_rq_clock(rq2);
1da177e4
LT
3052}
3053
3054/*
3055 * double_rq_unlock - safely unlock two runqueues
3056 *
3057 * Note this does not restore interrupts like task_rq_unlock,
3058 * you need to do so manually after calling.
3059 */
70b97a7f 3060static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3061 __releases(rq1->lock)
3062 __releases(rq2->lock)
3063{
3064 spin_unlock(&rq1->lock);
3065 if (rq1 != rq2)
3066 spin_unlock(&rq2->lock);
3067 else
3068 __release(rq2->lock);
3069}
3070
1da177e4
LT
3071/*
3072 * If dest_cpu is allowed for this process, migrate the task to it.
3073 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3075 * the cpu_allowed mask is restored.
3076 */
36c8b586 3077static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3078{
70b97a7f 3079 struct migration_req req;
1da177e4 3080 unsigned long flags;
70b97a7f 3081 struct rq *rq;
1da177e4
LT
3082
3083 rq = task_rq_lock(p, &flags);
96f874e2 3084 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3085 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3086 goto out;
3087
3088 /* force the process onto the specified CPU */
3089 if (migrate_task(p, dest_cpu, &req)) {
3090 /* Need to wait for migration thread (might exit: take ref). */
3091 struct task_struct *mt = rq->migration_thread;
36c8b586 3092
1da177e4
LT
3093 get_task_struct(mt);
3094 task_rq_unlock(rq, &flags);
3095 wake_up_process(mt);
3096 put_task_struct(mt);
3097 wait_for_completion(&req.done);
36c8b586 3098
1da177e4
LT
3099 return;
3100 }
3101out:
3102 task_rq_unlock(rq, &flags);
3103}
3104
3105/*
476d139c
NP
3106 * sched_exec - execve() is a valuable balancing opportunity, because at
3107 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3108 */
3109void sched_exec(void)
3110{
1da177e4 3111 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3112 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3113 put_cpu();
476d139c
NP
3114 if (new_cpu != this_cpu)
3115 sched_migrate_task(current, new_cpu);
1da177e4
LT
3116}
3117
3118/*
3119 * pull_task - move a task from a remote runqueue to the local runqueue.
3120 * Both runqueues must be locked.
3121 */
dd41f596
IM
3122static void pull_task(struct rq *src_rq, struct task_struct *p,
3123 struct rq *this_rq, int this_cpu)
1da177e4 3124{
2e1cb74a 3125 deactivate_task(src_rq, p, 0);
1da177e4 3126 set_task_cpu(p, this_cpu);
dd41f596 3127 activate_task(this_rq, p, 0);
1da177e4
LT
3128 /*
3129 * Note that idle threads have a prio of MAX_PRIO, for this test
3130 * to be always true for them.
3131 */
15afe09b 3132 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3133}
3134
3135/*
3136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3137 */
858119e1 3138static
70b97a7f 3139int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3140 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3141 int *all_pinned)
1da177e4 3142{
708dc512 3143 int tsk_cache_hot = 0;
1da177e4
LT
3144 /*
3145 * We do not migrate tasks that are:
3146 * 1) running (obviously), or
3147 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 * 3) are cache-hot on their current CPU.
3149 */
96f874e2 3150 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3151 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3152 return 0;
cc367732 3153 }
81026794
NP
3154 *all_pinned = 0;
3155
cc367732
IM
3156 if (task_running(rq, p)) {
3157 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3158 return 0;
cc367732 3159 }
1da177e4 3160
da84d961
IM
3161 /*
3162 * Aggressive migration if:
3163 * 1) task is cache cold, or
3164 * 2) too many balance attempts have failed.
3165 */
3166
708dc512
LH
3167 tsk_cache_hot = task_hot(p, rq->clock, sd);
3168 if (!tsk_cache_hot ||
3169 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3170#ifdef CONFIG_SCHEDSTATS
708dc512 3171 if (tsk_cache_hot) {
da84d961 3172 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3173 schedstat_inc(p, se.nr_forced_migrations);
3174 }
da84d961
IM
3175#endif
3176 return 1;
3177 }
3178
708dc512 3179 if (tsk_cache_hot) {
cc367732 3180 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3181 return 0;
cc367732 3182 }
1da177e4
LT
3183 return 1;
3184}
3185
e1d1484f
PW
3186static unsigned long
3187balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3188 unsigned long max_load_move, struct sched_domain *sd,
3189 enum cpu_idle_type idle, int *all_pinned,
3190 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3191{
051c6764 3192 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3193 struct task_struct *p;
3194 long rem_load_move = max_load_move;
1da177e4 3195
e1d1484f 3196 if (max_load_move == 0)
1da177e4
LT
3197 goto out;
3198
81026794
NP
3199 pinned = 1;
3200
1da177e4 3201 /*
dd41f596 3202 * Start the load-balancing iterator:
1da177e4 3203 */
dd41f596
IM
3204 p = iterator->start(iterator->arg);
3205next:
b82d9fdd 3206 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3207 goto out;
051c6764
PZ
3208
3209 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3210 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3211 p = iterator->next(iterator->arg);
3212 goto next;
1da177e4
LT
3213 }
3214
dd41f596 3215 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3216 pulled++;
dd41f596 3217 rem_load_move -= p->se.load.weight;
1da177e4 3218
7e96fa58
GH
3219#ifdef CONFIG_PREEMPT
3220 /*
3221 * NEWIDLE balancing is a source of latency, so preemptible kernels
3222 * will stop after the first task is pulled to minimize the critical
3223 * section.
3224 */
3225 if (idle == CPU_NEWLY_IDLE)
3226 goto out;
3227#endif
3228
2dd73a4f 3229 /*
b82d9fdd 3230 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3231 */
e1d1484f 3232 if (rem_load_move > 0) {
a4ac01c3
PW
3233 if (p->prio < *this_best_prio)
3234 *this_best_prio = p->prio;
dd41f596
IM
3235 p = iterator->next(iterator->arg);
3236 goto next;
1da177e4
LT
3237 }
3238out:
3239 /*
e1d1484f 3240 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3241 * so we can safely collect pull_task() stats here rather than
3242 * inside pull_task().
3243 */
3244 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3245
3246 if (all_pinned)
3247 *all_pinned = pinned;
e1d1484f
PW
3248
3249 return max_load_move - rem_load_move;
1da177e4
LT
3250}
3251
dd41f596 3252/*
43010659
PW
3253 * move_tasks tries to move up to max_load_move weighted load from busiest to
3254 * this_rq, as part of a balancing operation within domain "sd".
3255 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3256 *
3257 * Called with both runqueues locked.
3258 */
3259static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3260 unsigned long max_load_move,
dd41f596
IM
3261 struct sched_domain *sd, enum cpu_idle_type idle,
3262 int *all_pinned)
3263{
5522d5d5 3264 const struct sched_class *class = sched_class_highest;
43010659 3265 unsigned long total_load_moved = 0;
a4ac01c3 3266 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3267
3268 do {
43010659
PW
3269 total_load_moved +=
3270 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3271 max_load_move - total_load_moved,
a4ac01c3 3272 sd, idle, all_pinned, &this_best_prio);
dd41f596 3273 class = class->next;
c4acb2c0 3274
7e96fa58
GH
3275#ifdef CONFIG_PREEMPT
3276 /*
3277 * NEWIDLE balancing is a source of latency, so preemptible
3278 * kernels will stop after the first task is pulled to minimize
3279 * the critical section.
3280 */
c4acb2c0
GH
3281 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3282 break;
7e96fa58 3283#endif
43010659 3284 } while (class && max_load_move > total_load_moved);
dd41f596 3285
43010659
PW
3286 return total_load_moved > 0;
3287}
3288
e1d1484f
PW
3289static int
3290iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 struct rq_iterator *iterator)
3293{
3294 struct task_struct *p = iterator->start(iterator->arg);
3295 int pinned = 0;
3296
3297 while (p) {
3298 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3299 pull_task(busiest, p, this_rq, this_cpu);
3300 /*
3301 * Right now, this is only the second place pull_task()
3302 * is called, so we can safely collect pull_task()
3303 * stats here rather than inside pull_task().
3304 */
3305 schedstat_inc(sd, lb_gained[idle]);
3306
3307 return 1;
3308 }
3309 p = iterator->next(iterator->arg);
3310 }
3311
3312 return 0;
3313}
3314
43010659
PW
3315/*
3316 * move_one_task tries to move exactly one task from busiest to this_rq, as
3317 * part of active balancing operations within "domain".
3318 * Returns 1 if successful and 0 otherwise.
3319 *
3320 * Called with both runqueues locked.
3321 */
3322static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3323 struct sched_domain *sd, enum cpu_idle_type idle)
3324{
5522d5d5 3325 const struct sched_class *class;
43010659 3326
cde7e5ca 3327 for_each_class(class) {
e1d1484f 3328 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3329 return 1;
cde7e5ca 3330 }
43010659
PW
3331
3332 return 0;
dd41f596 3333}
67bb6c03 3334/********** Helpers for find_busiest_group ************************/
1da177e4 3335/*
222d656d
GS
3336 * sd_lb_stats - Structure to store the statistics of a sched_domain
3337 * during load balancing.
1da177e4 3338 */
222d656d
GS
3339struct sd_lb_stats {
3340 struct sched_group *busiest; /* Busiest group in this sd */
3341 struct sched_group *this; /* Local group in this sd */
3342 unsigned long total_load; /* Total load of all groups in sd */
3343 unsigned long total_pwr; /* Total power of all groups in sd */
3344 unsigned long avg_load; /* Average load across all groups in sd */
3345
3346 /** Statistics of this group */
3347 unsigned long this_load;
3348 unsigned long this_load_per_task;
3349 unsigned long this_nr_running;
3350
3351 /* Statistics of the busiest group */
3352 unsigned long max_load;
3353 unsigned long busiest_load_per_task;
3354 unsigned long busiest_nr_running;
3355
3356 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3357#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3358 int power_savings_balance; /* Is powersave balance needed for this sd */
3359 struct sched_group *group_min; /* Least loaded group in sd */
3360 struct sched_group *group_leader; /* Group which relieves group_min */
3361 unsigned long min_load_per_task; /* load_per_task in group_min */
3362 unsigned long leader_nr_running; /* Nr running of group_leader */
3363 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3364#endif
222d656d 3365};
1da177e4 3366
d5ac537e 3367/*
381be78f
GS
3368 * sg_lb_stats - stats of a sched_group required for load_balancing
3369 */
3370struct sg_lb_stats {
3371 unsigned long avg_load; /*Avg load across the CPUs of the group */
3372 unsigned long group_load; /* Total load over the CPUs of the group */
3373 unsigned long sum_nr_running; /* Nr tasks running in the group */
3374 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3375 unsigned long group_capacity;
3376 int group_imb; /* Is there an imbalance in the group ? */
3377};
408ed066 3378
67bb6c03
GS
3379/**
3380 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3381 * @group: The group whose first cpu is to be returned.
3382 */
3383static inline unsigned int group_first_cpu(struct sched_group *group)
3384{
3385 return cpumask_first(sched_group_cpus(group));
3386}
3387
3388/**
3389 * get_sd_load_idx - Obtain the load index for a given sched domain.
3390 * @sd: The sched_domain whose load_idx is to be obtained.
3391 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3392 */
3393static inline int get_sd_load_idx(struct sched_domain *sd,
3394 enum cpu_idle_type idle)
3395{
3396 int load_idx;
3397
3398 switch (idle) {
3399 case CPU_NOT_IDLE:
7897986b 3400 load_idx = sd->busy_idx;
67bb6c03
GS
3401 break;
3402
3403 case CPU_NEWLY_IDLE:
7897986b 3404 load_idx = sd->newidle_idx;
67bb6c03
GS
3405 break;
3406 default:
7897986b 3407 load_idx = sd->idle_idx;
67bb6c03
GS
3408 break;
3409 }
1da177e4 3410
67bb6c03
GS
3411 return load_idx;
3412}
1da177e4 3413
1da177e4 3414
c071df18
GS
3415#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3416/**
3417 * init_sd_power_savings_stats - Initialize power savings statistics for
3418 * the given sched_domain, during load balancing.
3419 *
3420 * @sd: Sched domain whose power-savings statistics are to be initialized.
3421 * @sds: Variable containing the statistics for sd.
3422 * @idle: Idle status of the CPU at which we're performing load-balancing.
3423 */
3424static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3425 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3426{
3427 /*
3428 * Busy processors will not participate in power savings
3429 * balance.
3430 */
3431 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3432 sds->power_savings_balance = 0;
3433 else {
3434 sds->power_savings_balance = 1;
3435 sds->min_nr_running = ULONG_MAX;
3436 sds->leader_nr_running = 0;
3437 }
3438}
783609c6 3439
c071df18
GS
3440/**
3441 * update_sd_power_savings_stats - Update the power saving stats for a
3442 * sched_domain while performing load balancing.
3443 *
3444 * @group: sched_group belonging to the sched_domain under consideration.
3445 * @sds: Variable containing the statistics of the sched_domain
3446 * @local_group: Does group contain the CPU for which we're performing
3447 * load balancing ?
3448 * @sgs: Variable containing the statistics of the group.
3449 */
3450static inline void update_sd_power_savings_stats(struct sched_group *group,
3451 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3452{
408ed066 3453
c071df18
GS
3454 if (!sds->power_savings_balance)
3455 return;
1da177e4 3456
c071df18
GS
3457 /*
3458 * If the local group is idle or completely loaded
3459 * no need to do power savings balance at this domain
3460 */
3461 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3462 !sds->this_nr_running))
3463 sds->power_savings_balance = 0;
2dd73a4f 3464
c071df18
GS
3465 /*
3466 * If a group is already running at full capacity or idle,
3467 * don't include that group in power savings calculations
3468 */
3469 if (!sds->power_savings_balance ||
3470 sgs->sum_nr_running >= sgs->group_capacity ||
3471 !sgs->sum_nr_running)
3472 return;
5969fe06 3473
c071df18
GS
3474 /*
3475 * Calculate the group which has the least non-idle load.
3476 * This is the group from where we need to pick up the load
3477 * for saving power
3478 */
3479 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3480 (sgs->sum_nr_running == sds->min_nr_running &&
3481 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3482 sds->group_min = group;
3483 sds->min_nr_running = sgs->sum_nr_running;
3484 sds->min_load_per_task = sgs->sum_weighted_load /
3485 sgs->sum_nr_running;
3486 }
783609c6 3487
c071df18
GS
3488 /*
3489 * Calculate the group which is almost near its
3490 * capacity but still has some space to pick up some load
3491 * from other group and save more power
3492 */
d899a789 3493 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3494 return;
1da177e4 3495
c071df18
GS
3496 if (sgs->sum_nr_running > sds->leader_nr_running ||
3497 (sgs->sum_nr_running == sds->leader_nr_running &&
3498 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3499 sds->group_leader = group;
3500 sds->leader_nr_running = sgs->sum_nr_running;
3501 }
3502}
408ed066 3503
c071df18 3504/**
d5ac537e 3505 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3506 * @sds: Variable containing the statistics of the sched_domain
3507 * under consideration.
3508 * @this_cpu: Cpu at which we're currently performing load-balancing.
3509 * @imbalance: Variable to store the imbalance.
3510 *
d5ac537e
RD
3511 * Description:
3512 * Check if we have potential to perform some power-savings balance.
3513 * If yes, set the busiest group to be the least loaded group in the
3514 * sched_domain, so that it's CPUs can be put to idle.
3515 *
c071df18
GS
3516 * Returns 1 if there is potential to perform power-savings balance.
3517 * Else returns 0.
3518 */
3519static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3520 int this_cpu, unsigned long *imbalance)
3521{
3522 if (!sds->power_savings_balance)
3523 return 0;
1da177e4 3524
c071df18
GS
3525 if (sds->this != sds->group_leader ||
3526 sds->group_leader == sds->group_min)
3527 return 0;
783609c6 3528
c071df18
GS
3529 *imbalance = sds->min_load_per_task;
3530 sds->busiest = sds->group_min;
1da177e4 3531
c071df18 3532 return 1;
1da177e4 3533
c071df18
GS
3534}
3535#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3536static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3537 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3538{
3539 return;
3540}
408ed066 3541
c071df18
GS
3542static inline void update_sd_power_savings_stats(struct sched_group *group,
3543 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3544{
3545 return;
3546}
3547
3548static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3549 int this_cpu, unsigned long *imbalance)
3550{
3551 return 0;
3552}
3553#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3554
d6a59aa3
PZ
3555
3556unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3557{
3558 return SCHED_LOAD_SCALE;
3559}
3560
3561unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3562{
3563 return default_scale_freq_power(sd, cpu);
3564}
3565
3566unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3567{
3568 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3569 unsigned long smt_gain = sd->smt_gain;
3570
3571 smt_gain /= weight;
3572
3573 return smt_gain;
3574}
3575
d6a59aa3
PZ
3576unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3577{
3578 return default_scale_smt_power(sd, cpu);
3579}
3580
e9e9250b
PZ
3581unsigned long scale_rt_power(int cpu)
3582{
3583 struct rq *rq = cpu_rq(cpu);
3584 u64 total, available;
3585
3586 sched_avg_update(rq);
3587
3588 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3589 available = total - rq->rt_avg;
3590
3591 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3592 total = SCHED_LOAD_SCALE;
3593
3594 total >>= SCHED_LOAD_SHIFT;
3595
3596 return div_u64(available, total);
3597}
3598
ab29230e
PZ
3599static void update_cpu_power(struct sched_domain *sd, int cpu)
3600{
3601 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3602 unsigned long power = SCHED_LOAD_SCALE;
3603 struct sched_group *sdg = sd->groups;
ab29230e 3604
8e6598af
PZ
3605 if (sched_feat(ARCH_POWER))
3606 power *= arch_scale_freq_power(sd, cpu);
3607 else
3608 power *= default_scale_freq_power(sd, cpu);
3609
d6a59aa3 3610 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3611
3612 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3613 if (sched_feat(ARCH_POWER))
3614 power *= arch_scale_smt_power(sd, cpu);
3615 else
3616 power *= default_scale_smt_power(sd, cpu);
3617
ab29230e
PZ
3618 power >>= SCHED_LOAD_SHIFT;
3619 }
3620
e9e9250b
PZ
3621 power *= scale_rt_power(cpu);
3622 power >>= SCHED_LOAD_SHIFT;
3623
3624 if (!power)
3625 power = 1;
ab29230e 3626
18a3885f 3627 sdg->cpu_power = power;
ab29230e
PZ
3628}
3629
3630static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3631{
3632 struct sched_domain *child = sd->child;
3633 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3634 unsigned long power;
cc9fba7d
PZ
3635
3636 if (!child) {
ab29230e 3637 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3638 return;
3639 }
3640
d7ea17a7 3641 power = 0;
cc9fba7d
PZ
3642
3643 group = child->groups;
3644 do {
d7ea17a7 3645 power += group->cpu_power;
cc9fba7d
PZ
3646 group = group->next;
3647 } while (group != child->groups);
d7ea17a7
IM
3648
3649 sdg->cpu_power = power;
cc9fba7d 3650}
c071df18 3651
1f8c553d
GS
3652/**
3653 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3654 * @group: sched_group whose statistics are to be updated.
3655 * @this_cpu: Cpu for which load balance is currently performed.
3656 * @idle: Idle status of this_cpu
3657 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3658 * @sd_idle: Idle status of the sched_domain containing group.
3659 * @local_group: Does group contain this_cpu.
3660 * @cpus: Set of cpus considered for load balancing.
3661 * @balance: Should we balance.
3662 * @sgs: variable to hold the statistics for this group.
3663 */
cc9fba7d
PZ
3664static inline void update_sg_lb_stats(struct sched_domain *sd,
3665 struct sched_group *group, int this_cpu,
1f8c553d
GS
3666 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3667 int local_group, const struct cpumask *cpus,
3668 int *balance, struct sg_lb_stats *sgs)
3669{
3670 unsigned long load, max_cpu_load, min_cpu_load;
3671 int i;
3672 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3673 unsigned long sum_avg_load_per_task;
3674 unsigned long avg_load_per_task;
3675
cc9fba7d 3676 if (local_group) {
1f8c553d 3677 balance_cpu = group_first_cpu(group);
cc9fba7d 3678 if (balance_cpu == this_cpu)
ab29230e 3679 update_group_power(sd, this_cpu);
cc9fba7d 3680 }
1f8c553d
GS
3681
3682 /* Tally up the load of all CPUs in the group */
3683 sum_avg_load_per_task = avg_load_per_task = 0;
3684 max_cpu_load = 0;
3685 min_cpu_load = ~0UL;
408ed066 3686
1f8c553d
GS
3687 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3688 struct rq *rq = cpu_rq(i);
908a7c1b 3689
1f8c553d
GS
3690 if (*sd_idle && rq->nr_running)
3691 *sd_idle = 0;
5c45bf27 3692
1f8c553d 3693 /* Bias balancing toward cpus of our domain */
1da177e4 3694 if (local_group) {
1f8c553d
GS
3695 if (idle_cpu(i) && !first_idle_cpu) {
3696 first_idle_cpu = 1;
3697 balance_cpu = i;
3698 }
3699
3700 load = target_load(i, load_idx);
3701 } else {
3702 load = source_load(i, load_idx);
3703 if (load > max_cpu_load)
3704 max_cpu_load = load;
3705 if (min_cpu_load > load)
3706 min_cpu_load = load;
1da177e4 3707 }
5c45bf27 3708
1f8c553d
GS
3709 sgs->group_load += load;
3710 sgs->sum_nr_running += rq->nr_running;
3711 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3712
1f8c553d
GS
3713 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3714 }
5c45bf27 3715
1f8c553d
GS
3716 /*
3717 * First idle cpu or the first cpu(busiest) in this sched group
3718 * is eligible for doing load balancing at this and above
3719 * domains. In the newly idle case, we will allow all the cpu's
3720 * to do the newly idle load balance.
3721 */
3722 if (idle != CPU_NEWLY_IDLE && local_group &&
3723 balance_cpu != this_cpu && balance) {
3724 *balance = 0;
3725 return;
3726 }
5c45bf27 3727
1f8c553d 3728 /* Adjust by relative CPU power of the group */
18a3885f 3729 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3730
1f8c553d
GS
3731
3732 /*
3733 * Consider the group unbalanced when the imbalance is larger
3734 * than the average weight of two tasks.
3735 *
3736 * APZ: with cgroup the avg task weight can vary wildly and
3737 * might not be a suitable number - should we keep a
3738 * normalized nr_running number somewhere that negates
3739 * the hierarchy?
3740 */
18a3885f
PZ
3741 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3742 group->cpu_power;
1f8c553d
GS
3743
3744 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3745 sgs->group_imb = 1;
3746
bdb94aa5 3747 sgs->group_capacity =
18a3885f 3748 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3749}
dd41f596 3750
37abe198
GS
3751/**
3752 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3753 * @sd: sched_domain whose statistics are to be updated.
3754 * @this_cpu: Cpu for which load balance is currently performed.
3755 * @idle: Idle status of this_cpu
3756 * @sd_idle: Idle status of the sched_domain containing group.
3757 * @cpus: Set of cpus considered for load balancing.
3758 * @balance: Should we balance.
3759 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3760 */
37abe198
GS
3761static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3762 enum cpu_idle_type idle, int *sd_idle,
3763 const struct cpumask *cpus, int *balance,
3764 struct sd_lb_stats *sds)
1da177e4 3765{
b5d978e0 3766 struct sched_domain *child = sd->child;
222d656d 3767 struct sched_group *group = sd->groups;
37abe198 3768 struct sg_lb_stats sgs;
b5d978e0
PZ
3769 int load_idx, prefer_sibling = 0;
3770
3771 if (child && child->flags & SD_PREFER_SIBLING)
3772 prefer_sibling = 1;
222d656d 3773
c071df18 3774 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3775 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3776
3777 do {
1da177e4 3778 int local_group;
1da177e4 3779
758b2cdc
RR
3780 local_group = cpumask_test_cpu(this_cpu,
3781 sched_group_cpus(group));
381be78f 3782 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3783 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3784 local_group, cpus, balance, &sgs);
1da177e4 3785
37abe198
GS
3786 if (local_group && balance && !(*balance))
3787 return;
783609c6 3788
37abe198 3789 sds->total_load += sgs.group_load;
18a3885f 3790 sds->total_pwr += group->cpu_power;
1da177e4 3791
b5d978e0
PZ
3792 /*
3793 * In case the child domain prefers tasks go to siblings
3794 * first, lower the group capacity to one so that we'll try
3795 * and move all the excess tasks away.
3796 */
3797 if (prefer_sibling)
bdb94aa5 3798 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3799
1da177e4 3800 if (local_group) {
37abe198
GS
3801 sds->this_load = sgs.avg_load;
3802 sds->this = group;
3803 sds->this_nr_running = sgs.sum_nr_running;
3804 sds->this_load_per_task = sgs.sum_weighted_load;
3805 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3806 (sgs.sum_nr_running > sgs.group_capacity ||
3807 sgs.group_imb)) {
37abe198
GS
3808 sds->max_load = sgs.avg_load;
3809 sds->busiest = group;
3810 sds->busiest_nr_running = sgs.sum_nr_running;
3811 sds->busiest_load_per_task = sgs.sum_weighted_load;
3812 sds->group_imb = sgs.group_imb;
48f24c4d 3813 }
5c45bf27 3814
c071df18 3815 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3816 group = group->next;
3817 } while (group != sd->groups);
37abe198 3818}
1da177e4 3819
2e6f44ae
GS
3820/**
3821 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3822 * amongst the groups of a sched_domain, during
3823 * load balancing.
2e6f44ae
GS
3824 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3825 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3826 * @imbalance: Variable to store the imbalance.
3827 */
3828static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3829 int this_cpu, unsigned long *imbalance)
3830{
3831 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3832 unsigned int imbn = 2;
3833
3834 if (sds->this_nr_running) {
3835 sds->this_load_per_task /= sds->this_nr_running;
3836 if (sds->busiest_load_per_task >
3837 sds->this_load_per_task)
3838 imbn = 1;
3839 } else
3840 sds->this_load_per_task =
3841 cpu_avg_load_per_task(this_cpu);
1da177e4 3842
2e6f44ae
GS
3843 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3844 sds->busiest_load_per_task * imbn) {
3845 *imbalance = sds->busiest_load_per_task;
3846 return;
3847 }
908a7c1b 3848
1da177e4 3849 /*
2e6f44ae
GS
3850 * OK, we don't have enough imbalance to justify moving tasks,
3851 * however we may be able to increase total CPU power used by
3852 * moving them.
1da177e4 3853 */
2dd73a4f 3854
18a3885f 3855 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3856 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3857 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3858 min(sds->this_load_per_task, sds->this_load);
3859 pwr_now /= SCHED_LOAD_SCALE;
3860
3861 /* Amount of load we'd subtract */
18a3885f
PZ
3862 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3863 sds->busiest->cpu_power;
2e6f44ae 3864 if (sds->max_load > tmp)
18a3885f 3865 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3866 min(sds->busiest_load_per_task, sds->max_load - tmp);
3867
3868 /* Amount of load we'd add */
18a3885f 3869 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3870 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3871 tmp = (sds->max_load * sds->busiest->cpu_power) /
3872 sds->this->cpu_power;
2e6f44ae 3873 else
18a3885f
PZ
3874 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3875 sds->this->cpu_power;
3876 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3877 min(sds->this_load_per_task, sds->this_load + tmp);
3878 pwr_move /= SCHED_LOAD_SCALE;
3879
3880 /* Move if we gain throughput */
3881 if (pwr_move > pwr_now)
3882 *imbalance = sds->busiest_load_per_task;
3883}
dbc523a3
GS
3884
3885/**
3886 * calculate_imbalance - Calculate the amount of imbalance present within the
3887 * groups of a given sched_domain during load balance.
3888 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3889 * @this_cpu: Cpu for which currently load balance is being performed.
3890 * @imbalance: The variable to store the imbalance.
3891 */
3892static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3893 unsigned long *imbalance)
3894{
3895 unsigned long max_pull;
2dd73a4f
PW
3896 /*
3897 * In the presence of smp nice balancing, certain scenarios can have
3898 * max load less than avg load(as we skip the groups at or below
3899 * its cpu_power, while calculating max_load..)
3900 */
dbc523a3 3901 if (sds->max_load < sds->avg_load) {
2dd73a4f 3902 *imbalance = 0;
dbc523a3 3903 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3904 }
0c117f1b
SS
3905
3906 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3907 max_pull = min(sds->max_load - sds->avg_load,
3908 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3909
1da177e4 3910 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3911 *imbalance = min(max_pull * sds->busiest->cpu_power,
3912 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3913 / SCHED_LOAD_SCALE;
3914
2dd73a4f
PW
3915 /*
3916 * if *imbalance is less than the average load per runnable task
3917 * there is no gaurantee that any tasks will be moved so we'll have
3918 * a think about bumping its value to force at least one task to be
3919 * moved
3920 */
dbc523a3
GS
3921 if (*imbalance < sds->busiest_load_per_task)
3922 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3923
dbc523a3 3924}
37abe198 3925/******* find_busiest_group() helpers end here *********************/
1da177e4 3926
b7bb4c9b
GS
3927/**
3928 * find_busiest_group - Returns the busiest group within the sched_domain
3929 * if there is an imbalance. If there isn't an imbalance, and
3930 * the user has opted for power-savings, it returns a group whose
3931 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3932 * such a group exists.
3933 *
3934 * Also calculates the amount of weighted load which should be moved
3935 * to restore balance.
3936 *
3937 * @sd: The sched_domain whose busiest group is to be returned.
3938 * @this_cpu: The cpu for which load balancing is currently being performed.
3939 * @imbalance: Variable which stores amount of weighted load which should
3940 * be moved to restore balance/put a group to idle.
3941 * @idle: The idle status of this_cpu.
3942 * @sd_idle: The idleness of sd
3943 * @cpus: The set of CPUs under consideration for load-balancing.
3944 * @balance: Pointer to a variable indicating if this_cpu
3945 * is the appropriate cpu to perform load balancing at this_level.
3946 *
3947 * Returns: - the busiest group if imbalance exists.
3948 * - If no imbalance and user has opted for power-savings balance,
3949 * return the least loaded group whose CPUs can be
3950 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3951 */
3952static struct sched_group *
3953find_busiest_group(struct sched_domain *sd, int this_cpu,
3954 unsigned long *imbalance, enum cpu_idle_type idle,
3955 int *sd_idle, const struct cpumask *cpus, int *balance)
3956{
3957 struct sd_lb_stats sds;
1da177e4 3958
37abe198 3959 memset(&sds, 0, sizeof(sds));
1da177e4 3960
37abe198
GS
3961 /*
3962 * Compute the various statistics relavent for load balancing at
3963 * this level.
3964 */
3965 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3966 balance, &sds);
3967
b7bb4c9b
GS
3968 /* Cases where imbalance does not exist from POV of this_cpu */
3969 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3970 * at this level.
3971 * 2) There is no busy sibling group to pull from.
3972 * 3) This group is the busiest group.
3973 * 4) This group is more busy than the avg busieness at this
3974 * sched_domain.
3975 * 5) The imbalance is within the specified limit.
3976 * 6) Any rebalance would lead to ping-pong
3977 */
37abe198
GS
3978 if (balance && !(*balance))
3979 goto ret;
1da177e4 3980
b7bb4c9b
GS
3981 if (!sds.busiest || sds.busiest_nr_running == 0)
3982 goto out_balanced;
1da177e4 3983
b7bb4c9b 3984 if (sds.this_load >= sds.max_load)
1da177e4 3985 goto out_balanced;
1da177e4 3986
222d656d 3987 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3988
b7bb4c9b
GS
3989 if (sds.this_load >= sds.avg_load)
3990 goto out_balanced;
3991
3992 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3993 goto out_balanced;
3994
222d656d
GS
3995 sds.busiest_load_per_task /= sds.busiest_nr_running;
3996 if (sds.group_imb)
3997 sds.busiest_load_per_task =
3998 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3999
1da177e4
LT
4000 /*
4001 * We're trying to get all the cpus to the average_load, so we don't
4002 * want to push ourselves above the average load, nor do we wish to
4003 * reduce the max loaded cpu below the average load, as either of these
4004 * actions would just result in more rebalancing later, and ping-pong
4005 * tasks around. Thus we look for the minimum possible imbalance.
4006 * Negative imbalances (*we* are more loaded than anyone else) will
4007 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4008 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4009 * appear as very large values with unsigned longs.
4010 */
222d656d 4011 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4012 goto out_balanced;
4013
dbc523a3
GS
4014 /* Looks like there is an imbalance. Compute it */
4015 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4016 return sds.busiest;
1da177e4
LT
4017
4018out_balanced:
c071df18
GS
4019 /*
4020 * There is no obvious imbalance. But check if we can do some balancing
4021 * to save power.
4022 */
4023 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4024 return sds.busiest;
783609c6 4025ret:
1da177e4
LT
4026 *imbalance = 0;
4027 return NULL;
4028}
4029
4030/*
4031 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4032 */
70b97a7f 4033static struct rq *
d15bcfdb 4034find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4035 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4036{
70b97a7f 4037 struct rq *busiest = NULL, *rq;
2dd73a4f 4038 unsigned long max_load = 0;
1da177e4
LT
4039 int i;
4040
758b2cdc 4041 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4042 unsigned long power = power_of(i);
4043 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4044 unsigned long wl;
0a2966b4 4045
96f874e2 4046 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4047 continue;
4048
48f24c4d 4049 rq = cpu_rq(i);
bdb94aa5
PZ
4050 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4051 wl /= power;
2dd73a4f 4052
bdb94aa5 4053 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4054 continue;
1da177e4 4055
dd41f596
IM
4056 if (wl > max_load) {
4057 max_load = wl;
48f24c4d 4058 busiest = rq;
1da177e4
LT
4059 }
4060 }
4061
4062 return busiest;
4063}
4064
77391d71
NP
4065/*
4066 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4067 * so long as it is large enough.
4068 */
4069#define MAX_PINNED_INTERVAL 512
4070
df7c8e84
RR
4071/* Working cpumask for load_balance and load_balance_newidle. */
4072static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4073
1da177e4
LT
4074/*
4075 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4076 * tasks if there is an imbalance.
1da177e4 4077 */
70b97a7f 4078static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4079 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4080 int *balance)
1da177e4 4081{
43010659 4082 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4083 struct sched_group *group;
1da177e4 4084 unsigned long imbalance;
70b97a7f 4085 struct rq *busiest;
fe2eea3f 4086 unsigned long flags;
df7c8e84 4087 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4088
96f874e2 4089 cpumask_setall(cpus);
7c16ec58 4090
89c4710e
SS
4091 /*
4092 * When power savings policy is enabled for the parent domain, idle
4093 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4094 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4095 * portraying it as CPU_NOT_IDLE.
89c4710e 4096 */
d15bcfdb 4097 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4098 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4099 sd_idle = 1;
1da177e4 4100
2d72376b 4101 schedstat_inc(sd, lb_count[idle]);
1da177e4 4102
0a2966b4 4103redo:
c8cba857 4104 update_shares(sd);
0a2966b4 4105 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4106 cpus, balance);
783609c6 4107
06066714 4108 if (*balance == 0)
783609c6 4109 goto out_balanced;
783609c6 4110
1da177e4
LT
4111 if (!group) {
4112 schedstat_inc(sd, lb_nobusyg[idle]);
4113 goto out_balanced;
4114 }
4115
7c16ec58 4116 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4117 if (!busiest) {
4118 schedstat_inc(sd, lb_nobusyq[idle]);
4119 goto out_balanced;
4120 }
4121
db935dbd 4122 BUG_ON(busiest == this_rq);
1da177e4
LT
4123
4124 schedstat_add(sd, lb_imbalance[idle], imbalance);
4125
43010659 4126 ld_moved = 0;
1da177e4
LT
4127 if (busiest->nr_running > 1) {
4128 /*
4129 * Attempt to move tasks. If find_busiest_group has found
4130 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4131 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4132 * correctly treated as an imbalance.
4133 */
fe2eea3f 4134 local_irq_save(flags);
e17224bf 4135 double_rq_lock(this_rq, busiest);
43010659 4136 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4137 imbalance, sd, idle, &all_pinned);
e17224bf 4138 double_rq_unlock(this_rq, busiest);
fe2eea3f 4139 local_irq_restore(flags);
81026794 4140
46cb4b7c
SS
4141 /*
4142 * some other cpu did the load balance for us.
4143 */
43010659 4144 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4145 resched_cpu(this_cpu);
4146
81026794 4147 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4148 if (unlikely(all_pinned)) {
96f874e2
RR
4149 cpumask_clear_cpu(cpu_of(busiest), cpus);
4150 if (!cpumask_empty(cpus))
0a2966b4 4151 goto redo;
81026794 4152 goto out_balanced;
0a2966b4 4153 }
1da177e4 4154 }
81026794 4155
43010659 4156 if (!ld_moved) {
1da177e4
LT
4157 schedstat_inc(sd, lb_failed[idle]);
4158 sd->nr_balance_failed++;
4159
4160 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4161
fe2eea3f 4162 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4163
4164 /* don't kick the migration_thread, if the curr
4165 * task on busiest cpu can't be moved to this_cpu
4166 */
96f874e2
RR
4167 if (!cpumask_test_cpu(this_cpu,
4168 &busiest->curr->cpus_allowed)) {
fe2eea3f 4169 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4170 all_pinned = 1;
4171 goto out_one_pinned;
4172 }
4173
1da177e4
LT
4174 if (!busiest->active_balance) {
4175 busiest->active_balance = 1;
4176 busiest->push_cpu = this_cpu;
81026794 4177 active_balance = 1;
1da177e4 4178 }
fe2eea3f 4179 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4180 if (active_balance)
1da177e4
LT
4181 wake_up_process(busiest->migration_thread);
4182
4183 /*
4184 * We've kicked active balancing, reset the failure
4185 * counter.
4186 */
39507451 4187 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4188 }
81026794 4189 } else
1da177e4
LT
4190 sd->nr_balance_failed = 0;
4191
81026794 4192 if (likely(!active_balance)) {
1da177e4
LT
4193 /* We were unbalanced, so reset the balancing interval */
4194 sd->balance_interval = sd->min_interval;
81026794
NP
4195 } else {
4196 /*
4197 * If we've begun active balancing, start to back off. This
4198 * case may not be covered by the all_pinned logic if there
4199 * is only 1 task on the busy runqueue (because we don't call
4200 * move_tasks).
4201 */
4202 if (sd->balance_interval < sd->max_interval)
4203 sd->balance_interval *= 2;
1da177e4
LT
4204 }
4205
43010659 4206 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4207 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4208 ld_moved = -1;
4209
4210 goto out;
1da177e4
LT
4211
4212out_balanced:
1da177e4
LT
4213 schedstat_inc(sd, lb_balanced[idle]);
4214
16cfb1c0 4215 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4216
4217out_one_pinned:
1da177e4 4218 /* tune up the balancing interval */
77391d71
NP
4219 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4220 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4221 sd->balance_interval *= 2;
4222
48f24c4d 4223 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4224 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4225 ld_moved = -1;
4226 else
4227 ld_moved = 0;
4228out:
c8cba857
PZ
4229 if (ld_moved)
4230 update_shares(sd);
c09595f6 4231 return ld_moved;
1da177e4
LT
4232}
4233
4234/*
4235 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4236 * tasks if there is an imbalance.
4237 *
d15bcfdb 4238 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4239 * this_rq is locked.
4240 */
48f24c4d 4241static int
df7c8e84 4242load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4243{
4244 struct sched_group *group;
70b97a7f 4245 struct rq *busiest = NULL;
1da177e4 4246 unsigned long imbalance;
43010659 4247 int ld_moved = 0;
5969fe06 4248 int sd_idle = 0;
969bb4e4 4249 int all_pinned = 0;
df7c8e84 4250 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4251
96f874e2 4252 cpumask_setall(cpus);
5969fe06 4253
89c4710e
SS
4254 /*
4255 * When power savings policy is enabled for the parent domain, idle
4256 * sibling can pick up load irrespective of busy siblings. In this case,
4257 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4258 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4259 */
4260 if (sd->flags & SD_SHARE_CPUPOWER &&
4261 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4262 sd_idle = 1;
1da177e4 4263
2d72376b 4264 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4265redo:
3e5459b4 4266 update_shares_locked(this_rq, sd);
d15bcfdb 4267 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4268 &sd_idle, cpus, NULL);
1da177e4 4269 if (!group) {
d15bcfdb 4270 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4271 goto out_balanced;
1da177e4
LT
4272 }
4273
7c16ec58 4274 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4275 if (!busiest) {
d15bcfdb 4276 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4277 goto out_balanced;
1da177e4
LT
4278 }
4279
db935dbd
NP
4280 BUG_ON(busiest == this_rq);
4281
d15bcfdb 4282 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4283
43010659 4284 ld_moved = 0;
d6d5cfaf
NP
4285 if (busiest->nr_running > 1) {
4286 /* Attempt to move tasks */
4287 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4288 /* this_rq->clock is already updated */
4289 update_rq_clock(busiest);
43010659 4290 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4291 imbalance, sd, CPU_NEWLY_IDLE,
4292 &all_pinned);
1b12bbc7 4293 double_unlock_balance(this_rq, busiest);
0a2966b4 4294
969bb4e4 4295 if (unlikely(all_pinned)) {
96f874e2
RR
4296 cpumask_clear_cpu(cpu_of(busiest), cpus);
4297 if (!cpumask_empty(cpus))
0a2966b4
CL
4298 goto redo;
4299 }
d6d5cfaf
NP
4300 }
4301
43010659 4302 if (!ld_moved) {
36dffab6 4303 int active_balance = 0;
ad273b32 4304
d15bcfdb 4305 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4306 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4307 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4308 return -1;
ad273b32
VS
4309
4310 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4311 return -1;
4312
4313 if (sd->nr_balance_failed++ < 2)
4314 return -1;
4315
4316 /*
4317 * The only task running in a non-idle cpu can be moved to this
4318 * cpu in an attempt to completely freeup the other CPU
4319 * package. The same method used to move task in load_balance()
4320 * have been extended for load_balance_newidle() to speedup
4321 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4322 *
4323 * The package power saving logic comes from
4324 * find_busiest_group(). If there are no imbalance, then
4325 * f_b_g() will return NULL. However when sched_mc={1,2} then
4326 * f_b_g() will select a group from which a running task may be
4327 * pulled to this cpu in order to make the other package idle.
4328 * If there is no opportunity to make a package idle and if
4329 * there are no imbalance, then f_b_g() will return NULL and no
4330 * action will be taken in load_balance_newidle().
4331 *
4332 * Under normal task pull operation due to imbalance, there
4333 * will be more than one task in the source run queue and
4334 * move_tasks() will succeed. ld_moved will be true and this
4335 * active balance code will not be triggered.
4336 */
4337
4338 /* Lock busiest in correct order while this_rq is held */
4339 double_lock_balance(this_rq, busiest);
4340
4341 /*
4342 * don't kick the migration_thread, if the curr
4343 * task on busiest cpu can't be moved to this_cpu
4344 */
6ca09dfc 4345 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4346 double_unlock_balance(this_rq, busiest);
4347 all_pinned = 1;
4348 return ld_moved;
4349 }
4350
4351 if (!busiest->active_balance) {
4352 busiest->active_balance = 1;
4353 busiest->push_cpu = this_cpu;
4354 active_balance = 1;
4355 }
4356
4357 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4358 /*
4359 * Should not call ttwu while holding a rq->lock
4360 */
4361 spin_unlock(&this_rq->lock);
ad273b32
VS
4362 if (active_balance)
4363 wake_up_process(busiest->migration_thread);
da8d5089 4364 spin_lock(&this_rq->lock);
ad273b32 4365
5969fe06 4366 } else
16cfb1c0 4367 sd->nr_balance_failed = 0;
1da177e4 4368
3e5459b4 4369 update_shares_locked(this_rq, sd);
43010659 4370 return ld_moved;
16cfb1c0
NP
4371
4372out_balanced:
d15bcfdb 4373 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4374 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4375 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4376 return -1;
16cfb1c0 4377 sd->nr_balance_failed = 0;
48f24c4d 4378
16cfb1c0 4379 return 0;
1da177e4
LT
4380}
4381
4382/*
4383 * idle_balance is called by schedule() if this_cpu is about to become
4384 * idle. Attempts to pull tasks from other CPUs.
4385 */
70b97a7f 4386static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4387{
4388 struct sched_domain *sd;
efbe027e 4389 int pulled_task = 0;
dd41f596 4390 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4391
4392 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4393 unsigned long interval;
4394
4395 if (!(sd->flags & SD_LOAD_BALANCE))
4396 continue;
4397
4398 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4399 /* If we've pulled tasks over stop searching: */
7c16ec58 4400 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4401 sd);
92c4ca5c
CL
4402
4403 interval = msecs_to_jiffies(sd->balance_interval);
4404 if (time_after(next_balance, sd->last_balance + interval))
4405 next_balance = sd->last_balance + interval;
4406 if (pulled_task)
4407 break;
1da177e4 4408 }
dd41f596 4409 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4410 /*
4411 * We are going idle. next_balance may be set based on
4412 * a busy processor. So reset next_balance.
4413 */
4414 this_rq->next_balance = next_balance;
dd41f596 4415 }
1da177e4
LT
4416}
4417
4418/*
4419 * active_load_balance is run by migration threads. It pushes running tasks
4420 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4421 * running on each physical CPU where possible, and avoids physical /
4422 * logical imbalances.
4423 *
4424 * Called with busiest_rq locked.
4425 */
70b97a7f 4426static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4427{
39507451 4428 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4429 struct sched_domain *sd;
4430 struct rq *target_rq;
39507451 4431
48f24c4d 4432 /* Is there any task to move? */
39507451 4433 if (busiest_rq->nr_running <= 1)
39507451
NP
4434 return;
4435
4436 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4437
4438 /*
39507451 4439 * This condition is "impossible", if it occurs
41a2d6cf 4440 * we need to fix it. Originally reported by
39507451 4441 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4442 */
39507451 4443 BUG_ON(busiest_rq == target_rq);
1da177e4 4444
39507451
NP
4445 /* move a task from busiest_rq to target_rq */
4446 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4447 update_rq_clock(busiest_rq);
4448 update_rq_clock(target_rq);
39507451
NP
4449
4450 /* Search for an sd spanning us and the target CPU. */
c96d145e 4451 for_each_domain(target_cpu, sd) {
39507451 4452 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4453 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4454 break;
c96d145e 4455 }
39507451 4456
48f24c4d 4457 if (likely(sd)) {
2d72376b 4458 schedstat_inc(sd, alb_count);
39507451 4459
43010659
PW
4460 if (move_one_task(target_rq, target_cpu, busiest_rq,
4461 sd, CPU_IDLE))
48f24c4d
IM
4462 schedstat_inc(sd, alb_pushed);
4463 else
4464 schedstat_inc(sd, alb_failed);
4465 }
1b12bbc7 4466 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4467}
4468
46cb4b7c
SS
4469#ifdef CONFIG_NO_HZ
4470static struct {
4471 atomic_t load_balancer;
7d1e6a9b 4472 cpumask_var_t cpu_mask;
f711f609 4473 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4474} nohz ____cacheline_aligned = {
4475 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4476};
4477
eea08f32
AB
4478int get_nohz_load_balancer(void)
4479{
4480 return atomic_read(&nohz.load_balancer);
4481}
4482
f711f609
GS
4483#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4484/**
4485 * lowest_flag_domain - Return lowest sched_domain containing flag.
4486 * @cpu: The cpu whose lowest level of sched domain is to
4487 * be returned.
4488 * @flag: The flag to check for the lowest sched_domain
4489 * for the given cpu.
4490 *
4491 * Returns the lowest sched_domain of a cpu which contains the given flag.
4492 */
4493static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4494{
4495 struct sched_domain *sd;
4496
4497 for_each_domain(cpu, sd)
4498 if (sd && (sd->flags & flag))
4499 break;
4500
4501 return sd;
4502}
4503
4504/**
4505 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4506 * @cpu: The cpu whose domains we're iterating over.
4507 * @sd: variable holding the value of the power_savings_sd
4508 * for cpu.
4509 * @flag: The flag to filter the sched_domains to be iterated.
4510 *
4511 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4512 * set, starting from the lowest sched_domain to the highest.
4513 */
4514#define for_each_flag_domain(cpu, sd, flag) \
4515 for (sd = lowest_flag_domain(cpu, flag); \
4516 (sd && (sd->flags & flag)); sd = sd->parent)
4517
4518/**
4519 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4520 * @ilb_group: group to be checked for semi-idleness
4521 *
4522 * Returns: 1 if the group is semi-idle. 0 otherwise.
4523 *
4524 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4525 * and atleast one non-idle CPU. This helper function checks if the given
4526 * sched_group is semi-idle or not.
4527 */
4528static inline int is_semi_idle_group(struct sched_group *ilb_group)
4529{
4530 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4531 sched_group_cpus(ilb_group));
4532
4533 /*
4534 * A sched_group is semi-idle when it has atleast one busy cpu
4535 * and atleast one idle cpu.
4536 */
4537 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4538 return 0;
4539
4540 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4541 return 0;
4542
4543 return 1;
4544}
4545/**
4546 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4547 * @cpu: The cpu which is nominating a new idle_load_balancer.
4548 *
4549 * Returns: Returns the id of the idle load balancer if it exists,
4550 * Else, returns >= nr_cpu_ids.
4551 *
4552 * This algorithm picks the idle load balancer such that it belongs to a
4553 * semi-idle powersavings sched_domain. The idea is to try and avoid
4554 * completely idle packages/cores just for the purpose of idle load balancing
4555 * when there are other idle cpu's which are better suited for that job.
4556 */
4557static int find_new_ilb(int cpu)
4558{
4559 struct sched_domain *sd;
4560 struct sched_group *ilb_group;
4561
4562 /*
4563 * Have idle load balancer selection from semi-idle packages only
4564 * when power-aware load balancing is enabled
4565 */
4566 if (!(sched_smt_power_savings || sched_mc_power_savings))
4567 goto out_done;
4568
4569 /*
4570 * Optimize for the case when we have no idle CPUs or only one
4571 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4572 */
4573 if (cpumask_weight(nohz.cpu_mask) < 2)
4574 goto out_done;
4575
4576 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4577 ilb_group = sd->groups;
4578
4579 do {
4580 if (is_semi_idle_group(ilb_group))
4581 return cpumask_first(nohz.ilb_grp_nohz_mask);
4582
4583 ilb_group = ilb_group->next;
4584
4585 } while (ilb_group != sd->groups);
4586 }
4587
4588out_done:
4589 return cpumask_first(nohz.cpu_mask);
4590}
4591#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4592static inline int find_new_ilb(int call_cpu)
4593{
6e29ec57 4594 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4595}
4596#endif
4597
7835b98b 4598/*
46cb4b7c
SS
4599 * This routine will try to nominate the ilb (idle load balancing)
4600 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4601 * load balancing on behalf of all those cpus. If all the cpus in the system
4602 * go into this tickless mode, then there will be no ilb owner (as there is
4603 * no need for one) and all the cpus will sleep till the next wakeup event
4604 * arrives...
4605 *
4606 * For the ilb owner, tick is not stopped. And this tick will be used
4607 * for idle load balancing. ilb owner will still be part of
4608 * nohz.cpu_mask..
7835b98b 4609 *
46cb4b7c
SS
4610 * While stopping the tick, this cpu will become the ilb owner if there
4611 * is no other owner. And will be the owner till that cpu becomes busy
4612 * or if all cpus in the system stop their ticks at which point
4613 * there is no need for ilb owner.
4614 *
4615 * When the ilb owner becomes busy, it nominates another owner, during the
4616 * next busy scheduler_tick()
4617 */
4618int select_nohz_load_balancer(int stop_tick)
4619{
4620 int cpu = smp_processor_id();
4621
4622 if (stop_tick) {
46cb4b7c
SS
4623 cpu_rq(cpu)->in_nohz_recently = 1;
4624
483b4ee6
SS
4625 if (!cpu_active(cpu)) {
4626 if (atomic_read(&nohz.load_balancer) != cpu)
4627 return 0;
4628
4629 /*
4630 * If we are going offline and still the leader,
4631 * give up!
4632 */
46cb4b7c
SS
4633 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4634 BUG();
483b4ee6 4635
46cb4b7c
SS
4636 return 0;
4637 }
4638
483b4ee6
SS
4639 cpumask_set_cpu(cpu, nohz.cpu_mask);
4640
46cb4b7c 4641 /* time for ilb owner also to sleep */
7d1e6a9b 4642 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4643 if (atomic_read(&nohz.load_balancer) == cpu)
4644 atomic_set(&nohz.load_balancer, -1);
4645 return 0;
4646 }
4647
4648 if (atomic_read(&nohz.load_balancer) == -1) {
4649 /* make me the ilb owner */
4650 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4651 return 1;
e790fb0b
GS
4652 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4653 int new_ilb;
4654
4655 if (!(sched_smt_power_savings ||
4656 sched_mc_power_savings))
4657 return 1;
4658 /*
4659 * Check to see if there is a more power-efficient
4660 * ilb.
4661 */
4662 new_ilb = find_new_ilb(cpu);
4663 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4664 atomic_set(&nohz.load_balancer, -1);
4665 resched_cpu(new_ilb);
4666 return 0;
4667 }
46cb4b7c 4668 return 1;
e790fb0b 4669 }
46cb4b7c 4670 } else {
7d1e6a9b 4671 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4672 return 0;
4673
7d1e6a9b 4674 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4675
4676 if (atomic_read(&nohz.load_balancer) == cpu)
4677 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4678 BUG();
4679 }
4680 return 0;
4681}
4682#endif
4683
4684static DEFINE_SPINLOCK(balancing);
4685
4686/*
7835b98b
CL
4687 * It checks each scheduling domain to see if it is due to be balanced,
4688 * and initiates a balancing operation if so.
4689 *
4690 * Balancing parameters are set up in arch_init_sched_domains.
4691 */
a9957449 4692static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4693{
46cb4b7c
SS
4694 int balance = 1;
4695 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4696 unsigned long interval;
4697 struct sched_domain *sd;
46cb4b7c 4698 /* Earliest time when we have to do rebalance again */
c9819f45 4699 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4700 int update_next_balance = 0;
d07355f5 4701 int need_serialize;
1da177e4 4702
46cb4b7c 4703 for_each_domain(cpu, sd) {
1da177e4
LT
4704 if (!(sd->flags & SD_LOAD_BALANCE))
4705 continue;
4706
4707 interval = sd->balance_interval;
d15bcfdb 4708 if (idle != CPU_IDLE)
1da177e4
LT
4709 interval *= sd->busy_factor;
4710
4711 /* scale ms to jiffies */
4712 interval = msecs_to_jiffies(interval);
4713 if (unlikely(!interval))
4714 interval = 1;
dd41f596
IM
4715 if (interval > HZ*NR_CPUS/10)
4716 interval = HZ*NR_CPUS/10;
4717
d07355f5 4718 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4719
d07355f5 4720 if (need_serialize) {
08c183f3
CL
4721 if (!spin_trylock(&balancing))
4722 goto out;
4723 }
4724
c9819f45 4725 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4726 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4727 /*
4728 * We've pulled tasks over so either we're no
5969fe06
NP
4729 * longer idle, or one of our SMT siblings is
4730 * not idle.
4731 */
d15bcfdb 4732 idle = CPU_NOT_IDLE;
1da177e4 4733 }
1bd77f2d 4734 sd->last_balance = jiffies;
1da177e4 4735 }
d07355f5 4736 if (need_serialize)
08c183f3
CL
4737 spin_unlock(&balancing);
4738out:
f549da84 4739 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4740 next_balance = sd->last_balance + interval;
f549da84
SS
4741 update_next_balance = 1;
4742 }
783609c6
SS
4743
4744 /*
4745 * Stop the load balance at this level. There is another
4746 * CPU in our sched group which is doing load balancing more
4747 * actively.
4748 */
4749 if (!balance)
4750 break;
1da177e4 4751 }
f549da84
SS
4752
4753 /*
4754 * next_balance will be updated only when there is a need.
4755 * When the cpu is attached to null domain for ex, it will not be
4756 * updated.
4757 */
4758 if (likely(update_next_balance))
4759 rq->next_balance = next_balance;
46cb4b7c
SS
4760}
4761
4762/*
4763 * run_rebalance_domains is triggered when needed from the scheduler tick.
4764 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4765 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4766 */
4767static void run_rebalance_domains(struct softirq_action *h)
4768{
dd41f596
IM
4769 int this_cpu = smp_processor_id();
4770 struct rq *this_rq = cpu_rq(this_cpu);
4771 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4772 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4773
dd41f596 4774 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4775
4776#ifdef CONFIG_NO_HZ
4777 /*
4778 * If this cpu is the owner for idle load balancing, then do the
4779 * balancing on behalf of the other idle cpus whose ticks are
4780 * stopped.
4781 */
dd41f596
IM
4782 if (this_rq->idle_at_tick &&
4783 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4784 struct rq *rq;
4785 int balance_cpu;
4786
7d1e6a9b
RR
4787 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4788 if (balance_cpu == this_cpu)
4789 continue;
4790
46cb4b7c
SS
4791 /*
4792 * If this cpu gets work to do, stop the load balancing
4793 * work being done for other cpus. Next load
4794 * balancing owner will pick it up.
4795 */
4796 if (need_resched())
4797 break;
4798
de0cf899 4799 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4800
4801 rq = cpu_rq(balance_cpu);
dd41f596
IM
4802 if (time_after(this_rq->next_balance, rq->next_balance))
4803 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4804 }
4805 }
4806#endif
4807}
4808
8a0be9ef
FW
4809static inline int on_null_domain(int cpu)
4810{
4811 return !rcu_dereference(cpu_rq(cpu)->sd);
4812}
4813
46cb4b7c
SS
4814/*
4815 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4816 *
4817 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4818 * idle load balancing owner or decide to stop the periodic load balancing,
4819 * if the whole system is idle.
4820 */
dd41f596 4821static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4822{
46cb4b7c
SS
4823#ifdef CONFIG_NO_HZ
4824 /*
4825 * If we were in the nohz mode recently and busy at the current
4826 * scheduler tick, then check if we need to nominate new idle
4827 * load balancer.
4828 */
4829 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4830 rq->in_nohz_recently = 0;
4831
4832 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4833 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4834 atomic_set(&nohz.load_balancer, -1);
4835 }
4836
4837 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4838 int ilb = find_new_ilb(cpu);
46cb4b7c 4839
434d53b0 4840 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4841 resched_cpu(ilb);
4842 }
4843 }
4844
4845 /*
4846 * If this cpu is idle and doing idle load balancing for all the
4847 * cpus with ticks stopped, is it time for that to stop?
4848 */
4849 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4850 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4851 resched_cpu(cpu);
4852 return;
4853 }
4854
4855 /*
4856 * If this cpu is idle and the idle load balancing is done by
4857 * someone else, then no need raise the SCHED_SOFTIRQ
4858 */
4859 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4860 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4861 return;
4862#endif
8a0be9ef
FW
4863 /* Don't need to rebalance while attached to NULL domain */
4864 if (time_after_eq(jiffies, rq->next_balance) &&
4865 likely(!on_null_domain(cpu)))
46cb4b7c 4866 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4867}
dd41f596
IM
4868
4869#else /* CONFIG_SMP */
4870
1da177e4
LT
4871/*
4872 * on UP we do not need to balance between CPUs:
4873 */
70b97a7f 4874static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4875{
4876}
dd41f596 4877
1da177e4
LT
4878#endif
4879
1da177e4
LT
4880DEFINE_PER_CPU(struct kernel_stat, kstat);
4881
4882EXPORT_PER_CPU_SYMBOL(kstat);
4883
4884/*
c5f8d995 4885 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4886 * @p in case that task is currently running.
c5f8d995
HS
4887 *
4888 * Called with task_rq_lock() held on @rq.
1da177e4 4889 */
c5f8d995
HS
4890static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4891{
4892 u64 ns = 0;
4893
4894 if (task_current(rq, p)) {
4895 update_rq_clock(rq);
4896 ns = rq->clock - p->se.exec_start;
4897 if ((s64)ns < 0)
4898 ns = 0;
4899 }
4900
4901 return ns;
4902}
4903
bb34d92f 4904unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4905{
1da177e4 4906 unsigned long flags;
41b86e9c 4907 struct rq *rq;
bb34d92f 4908 u64 ns = 0;
48f24c4d 4909
41b86e9c 4910 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4911 ns = do_task_delta_exec(p, rq);
4912 task_rq_unlock(rq, &flags);
1508487e 4913
c5f8d995
HS
4914 return ns;
4915}
f06febc9 4916
c5f8d995
HS
4917/*
4918 * Return accounted runtime for the task.
4919 * In case the task is currently running, return the runtime plus current's
4920 * pending runtime that have not been accounted yet.
4921 */
4922unsigned long long task_sched_runtime(struct task_struct *p)
4923{
4924 unsigned long flags;
4925 struct rq *rq;
4926 u64 ns = 0;
4927
4928 rq = task_rq_lock(p, &flags);
4929 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4930 task_rq_unlock(rq, &flags);
4931
4932 return ns;
4933}
48f24c4d 4934
c5f8d995
HS
4935/*
4936 * Return sum_exec_runtime for the thread group.
4937 * In case the task is currently running, return the sum plus current's
4938 * pending runtime that have not been accounted yet.
4939 *
4940 * Note that the thread group might have other running tasks as well,
4941 * so the return value not includes other pending runtime that other
4942 * running tasks might have.
4943 */
4944unsigned long long thread_group_sched_runtime(struct task_struct *p)
4945{
4946 struct task_cputime totals;
4947 unsigned long flags;
4948 struct rq *rq;
4949 u64 ns;
4950
4951 rq = task_rq_lock(p, &flags);
4952 thread_group_cputime(p, &totals);
4953 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4954 task_rq_unlock(rq, &flags);
48f24c4d 4955
1da177e4
LT
4956 return ns;
4957}
4958
1da177e4
LT
4959/*
4960 * Account user cpu time to a process.
4961 * @p: the process that the cpu time gets accounted to
1da177e4 4962 * @cputime: the cpu time spent in user space since the last update
457533a7 4963 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4964 */
457533a7
MS
4965void account_user_time(struct task_struct *p, cputime_t cputime,
4966 cputime_t cputime_scaled)
1da177e4
LT
4967{
4968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4969 cputime64_t tmp;
4970
457533a7 4971 /* Add user time to process. */
1da177e4 4972 p->utime = cputime_add(p->utime, cputime);
457533a7 4973 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4974 account_group_user_time(p, cputime);
1da177e4
LT
4975
4976 /* Add user time to cpustat. */
4977 tmp = cputime_to_cputime64(cputime);
4978 if (TASK_NICE(p) > 0)
4979 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4980 else
4981 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4982
4983 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4984 /* Account for user time used */
4985 acct_update_integrals(p);
1da177e4
LT
4986}
4987
94886b84
LV
4988/*
4989 * Account guest cpu time to a process.
4990 * @p: the process that the cpu time gets accounted to
4991 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4992 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4993 */
457533a7
MS
4994static void account_guest_time(struct task_struct *p, cputime_t cputime,
4995 cputime_t cputime_scaled)
94886b84
LV
4996{
4997 cputime64_t tmp;
4998 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4999
5000 tmp = cputime_to_cputime64(cputime);
5001
457533a7 5002 /* Add guest time to process. */
94886b84 5003 p->utime = cputime_add(p->utime, cputime);
457533a7 5004 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5005 account_group_user_time(p, cputime);
94886b84
LV
5006 p->gtime = cputime_add(p->gtime, cputime);
5007
457533a7 5008 /* Add guest time to cpustat. */
94886b84
LV
5009 cpustat->user = cputime64_add(cpustat->user, tmp);
5010 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5011}
5012
1da177e4
LT
5013/*
5014 * Account system cpu time to a process.
5015 * @p: the process that the cpu time gets accounted to
5016 * @hardirq_offset: the offset to subtract from hardirq_count()
5017 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5018 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5019 */
5020void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5021 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5022{
5023 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5024 cputime64_t tmp;
5025
983ed7a6 5026 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5027 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5028 return;
5029 }
94886b84 5030
457533a7 5031 /* Add system time to process. */
1da177e4 5032 p->stime = cputime_add(p->stime, cputime);
457533a7 5033 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5034 account_group_system_time(p, cputime);
1da177e4
LT
5035
5036 /* Add system time to cpustat. */
5037 tmp = cputime_to_cputime64(cputime);
5038 if (hardirq_count() - hardirq_offset)
5039 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5040 else if (softirq_count())
5041 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5042 else
79741dd3
MS
5043 cpustat->system = cputime64_add(cpustat->system, tmp);
5044
ef12fefa
BR
5045 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5046
1da177e4
LT
5047 /* Account for system time used */
5048 acct_update_integrals(p);
1da177e4
LT
5049}
5050
c66f08be 5051/*
1da177e4 5052 * Account for involuntary wait time.
1da177e4 5053 * @steal: the cpu time spent in involuntary wait
c66f08be 5054 */
79741dd3 5055void account_steal_time(cputime_t cputime)
c66f08be 5056{
79741dd3
MS
5057 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5058 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5059
5060 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5061}
5062
1da177e4 5063/*
79741dd3
MS
5064 * Account for idle time.
5065 * @cputime: the cpu time spent in idle wait
1da177e4 5066 */
79741dd3 5067void account_idle_time(cputime_t cputime)
1da177e4
LT
5068{
5069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5070 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5071 struct rq *rq = this_rq();
1da177e4 5072
79741dd3
MS
5073 if (atomic_read(&rq->nr_iowait) > 0)
5074 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5075 else
5076 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5077}
5078
79741dd3
MS
5079#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5080
5081/*
5082 * Account a single tick of cpu time.
5083 * @p: the process that the cpu time gets accounted to
5084 * @user_tick: indicates if the tick is a user or a system tick
5085 */
5086void account_process_tick(struct task_struct *p, int user_tick)
5087{
5088 cputime_t one_jiffy = jiffies_to_cputime(1);
5089 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5090 struct rq *rq = this_rq();
5091
5092 if (user_tick)
5093 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5094 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5095 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5096 one_jiffy_scaled);
5097 else
5098 account_idle_time(one_jiffy);
5099}
5100
5101/*
5102 * Account multiple ticks of steal time.
5103 * @p: the process from which the cpu time has been stolen
5104 * @ticks: number of stolen ticks
5105 */
5106void account_steal_ticks(unsigned long ticks)
5107{
5108 account_steal_time(jiffies_to_cputime(ticks));
5109}
5110
5111/*
5112 * Account multiple ticks of idle time.
5113 * @ticks: number of stolen ticks
5114 */
5115void account_idle_ticks(unsigned long ticks)
5116{
5117 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5118}
5119
79741dd3
MS
5120#endif
5121
49048622
BS
5122/*
5123 * Use precise platform statistics if available:
5124 */
5125#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5126cputime_t task_utime(struct task_struct *p)
5127{
5128 return p->utime;
5129}
5130
5131cputime_t task_stime(struct task_struct *p)
5132{
5133 return p->stime;
5134}
5135#else
5136cputime_t task_utime(struct task_struct *p)
5137{
5138 clock_t utime = cputime_to_clock_t(p->utime),
5139 total = utime + cputime_to_clock_t(p->stime);
5140 u64 temp;
5141
5142 /*
5143 * Use CFS's precise accounting:
5144 */
5145 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5146
5147 if (total) {
5148 temp *= utime;
5149 do_div(temp, total);
5150 }
5151 utime = (clock_t)temp;
5152
5153 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5154 return p->prev_utime;
5155}
5156
5157cputime_t task_stime(struct task_struct *p)
5158{
5159 clock_t stime;
5160
5161 /*
5162 * Use CFS's precise accounting. (we subtract utime from
5163 * the total, to make sure the total observed by userspace
5164 * grows monotonically - apps rely on that):
5165 */
5166 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5167 cputime_to_clock_t(task_utime(p));
5168
5169 if (stime >= 0)
5170 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5171
5172 return p->prev_stime;
5173}
5174#endif
5175
5176inline cputime_t task_gtime(struct task_struct *p)
5177{
5178 return p->gtime;
5179}
5180
7835b98b
CL
5181/*
5182 * This function gets called by the timer code, with HZ frequency.
5183 * We call it with interrupts disabled.
5184 *
5185 * It also gets called by the fork code, when changing the parent's
5186 * timeslices.
5187 */
5188void scheduler_tick(void)
5189{
7835b98b
CL
5190 int cpu = smp_processor_id();
5191 struct rq *rq = cpu_rq(cpu);
dd41f596 5192 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5193
5194 sched_clock_tick();
dd41f596
IM
5195
5196 spin_lock(&rq->lock);
3e51f33f 5197 update_rq_clock(rq);
f1a438d8 5198 update_cpu_load(rq);
fa85ae24 5199 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5200 spin_unlock(&rq->lock);
7835b98b 5201
e220d2dc
PZ
5202 perf_counter_task_tick(curr, cpu);
5203
e418e1c2 5204#ifdef CONFIG_SMP
dd41f596
IM
5205 rq->idle_at_tick = idle_cpu(cpu);
5206 trigger_load_balance(rq, cpu);
e418e1c2 5207#endif
1da177e4
LT
5208}
5209
132380a0 5210notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5211{
5212 if (in_lock_functions(addr)) {
5213 addr = CALLER_ADDR2;
5214 if (in_lock_functions(addr))
5215 addr = CALLER_ADDR3;
5216 }
5217 return addr;
5218}
1da177e4 5219
7e49fcce
SR
5220#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5221 defined(CONFIG_PREEMPT_TRACER))
5222
43627582 5223void __kprobes add_preempt_count(int val)
1da177e4 5224{
6cd8a4bb 5225#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5226 /*
5227 * Underflow?
5228 */
9a11b49a
IM
5229 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5230 return;
6cd8a4bb 5231#endif
1da177e4 5232 preempt_count() += val;
6cd8a4bb 5233#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5234 /*
5235 * Spinlock count overflowing soon?
5236 */
33859f7f
MOS
5237 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5238 PREEMPT_MASK - 10);
6cd8a4bb
SR
5239#endif
5240 if (preempt_count() == val)
5241 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5242}
5243EXPORT_SYMBOL(add_preempt_count);
5244
43627582 5245void __kprobes sub_preempt_count(int val)
1da177e4 5246{
6cd8a4bb 5247#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5248 /*
5249 * Underflow?
5250 */
01e3eb82 5251 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5252 return;
1da177e4
LT
5253 /*
5254 * Is the spinlock portion underflowing?
5255 */
9a11b49a
IM
5256 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5257 !(preempt_count() & PREEMPT_MASK)))
5258 return;
6cd8a4bb 5259#endif
9a11b49a 5260
6cd8a4bb
SR
5261 if (preempt_count() == val)
5262 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5263 preempt_count() -= val;
5264}
5265EXPORT_SYMBOL(sub_preempt_count);
5266
5267#endif
5268
5269/*
dd41f596 5270 * Print scheduling while atomic bug:
1da177e4 5271 */
dd41f596 5272static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5273{
838225b4
SS
5274 struct pt_regs *regs = get_irq_regs();
5275
5276 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5277 prev->comm, prev->pid, preempt_count());
5278
dd41f596 5279 debug_show_held_locks(prev);
e21f5b15 5280 print_modules();
dd41f596
IM
5281 if (irqs_disabled())
5282 print_irqtrace_events(prev);
838225b4
SS
5283
5284 if (regs)
5285 show_regs(regs);
5286 else
5287 dump_stack();
dd41f596 5288}
1da177e4 5289
dd41f596
IM
5290/*
5291 * Various schedule()-time debugging checks and statistics:
5292 */
5293static inline void schedule_debug(struct task_struct *prev)
5294{
1da177e4 5295 /*
41a2d6cf 5296 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5297 * schedule() atomically, we ignore that path for now.
5298 * Otherwise, whine if we are scheduling when we should not be.
5299 */
3f33a7ce 5300 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5301 __schedule_bug(prev);
5302
1da177e4
LT
5303 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5304
2d72376b 5305 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5306#ifdef CONFIG_SCHEDSTATS
5307 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5308 schedstat_inc(this_rq(), bkl_count);
5309 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5310 }
5311#endif
dd41f596
IM
5312}
5313
ad4b78bb 5314static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5315{
ad4b78bb 5316 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5317
ad4b78bb 5318 update_avg(&p->se.avg_running, runtime);
df1c99d4 5319
ad4b78bb 5320 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5321 /*
5322 * In order to avoid avg_overlap growing stale when we are
5323 * indeed overlapping and hence not getting put to sleep, grow
5324 * the avg_overlap on preemption.
5325 *
5326 * We use the average preemption runtime because that
5327 * correlates to the amount of cache footprint a task can
5328 * build up.
5329 */
ad4b78bb
PZ
5330 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5331 update_avg(&p->se.avg_overlap, runtime);
5332 } else {
5333 update_avg(&p->se.avg_running, 0);
df1c99d4 5334 }
ad4b78bb 5335 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5336}
5337
dd41f596
IM
5338/*
5339 * Pick up the highest-prio task:
5340 */
5341static inline struct task_struct *
b67802ea 5342pick_next_task(struct rq *rq)
dd41f596 5343{
5522d5d5 5344 const struct sched_class *class;
dd41f596 5345 struct task_struct *p;
1da177e4
LT
5346
5347 /*
dd41f596
IM
5348 * Optimization: we know that if all tasks are in
5349 * the fair class we can call that function directly:
1da177e4 5350 */
dd41f596 5351 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5352 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5353 if (likely(p))
5354 return p;
1da177e4
LT
5355 }
5356
dd41f596
IM
5357 class = sched_class_highest;
5358 for ( ; ; ) {
fb8d4724 5359 p = class->pick_next_task(rq);
dd41f596
IM
5360 if (p)
5361 return p;
5362 /*
5363 * Will never be NULL as the idle class always
5364 * returns a non-NULL p:
5365 */
5366 class = class->next;
5367 }
5368}
1da177e4 5369
dd41f596
IM
5370/*
5371 * schedule() is the main scheduler function.
5372 */
ff743345 5373asmlinkage void __sched schedule(void)
dd41f596
IM
5374{
5375 struct task_struct *prev, *next;
67ca7bde 5376 unsigned long *switch_count;
dd41f596 5377 struct rq *rq;
31656519 5378 int cpu;
dd41f596 5379
ff743345
PZ
5380need_resched:
5381 preempt_disable();
dd41f596
IM
5382 cpu = smp_processor_id();
5383 rq = cpu_rq(cpu);
d6714c22 5384 rcu_sched_qs(cpu);
dd41f596
IM
5385 prev = rq->curr;
5386 switch_count = &prev->nivcsw;
5387
5388 release_kernel_lock(prev);
5389need_resched_nonpreemptible:
5390
5391 schedule_debug(prev);
1da177e4 5392
31656519 5393 if (sched_feat(HRTICK))
f333fdc9 5394 hrtick_clear(rq);
8f4d37ec 5395
8cd162ce 5396 spin_lock_irq(&rq->lock);
3e51f33f 5397 update_rq_clock(rq);
1e819950 5398 clear_tsk_need_resched(prev);
1da177e4 5399
1da177e4 5400 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5401 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5402 prev->state = TASK_RUNNING;
16882c1e 5403 else
2e1cb74a 5404 deactivate_task(rq, prev, 1);
dd41f596 5405 switch_count = &prev->nvcsw;
1da177e4
LT
5406 }
5407
3f029d3c 5408 pre_schedule(rq, prev);
f65eda4f 5409
dd41f596 5410 if (unlikely(!rq->nr_running))
1da177e4 5411 idle_balance(cpu, rq);
1da177e4 5412
df1c99d4 5413 put_prev_task(rq, prev);
b67802ea 5414 next = pick_next_task(rq);
1da177e4 5415
1da177e4 5416 if (likely(prev != next)) {
673a90a1 5417 sched_info_switch(prev, next);
564c2b21 5418 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5419
1da177e4
LT
5420 rq->nr_switches++;
5421 rq->curr = next;
5422 ++*switch_count;
5423
dd41f596 5424 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5425 /*
5426 * the context switch might have flipped the stack from under
5427 * us, hence refresh the local variables.
5428 */
5429 cpu = smp_processor_id();
5430 rq = cpu_rq(cpu);
1da177e4
LT
5431 } else
5432 spin_unlock_irq(&rq->lock);
5433
3f029d3c 5434 post_schedule(rq);
1da177e4 5435
8f4d37ec 5436 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5437 goto need_resched_nonpreemptible;
8f4d37ec 5438
1da177e4 5439 preempt_enable_no_resched();
ff743345 5440 if (need_resched())
1da177e4
LT
5441 goto need_resched;
5442}
1da177e4
LT
5443EXPORT_SYMBOL(schedule);
5444
0d66bf6d
PZ
5445#ifdef CONFIG_SMP
5446/*
5447 * Look out! "owner" is an entirely speculative pointer
5448 * access and not reliable.
5449 */
5450int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5451{
5452 unsigned int cpu;
5453 struct rq *rq;
5454
5455 if (!sched_feat(OWNER_SPIN))
5456 return 0;
5457
5458#ifdef CONFIG_DEBUG_PAGEALLOC
5459 /*
5460 * Need to access the cpu field knowing that
5461 * DEBUG_PAGEALLOC could have unmapped it if
5462 * the mutex owner just released it and exited.
5463 */
5464 if (probe_kernel_address(&owner->cpu, cpu))
5465 goto out;
5466#else
5467 cpu = owner->cpu;
5468#endif
5469
5470 /*
5471 * Even if the access succeeded (likely case),
5472 * the cpu field may no longer be valid.
5473 */
5474 if (cpu >= nr_cpumask_bits)
5475 goto out;
5476
5477 /*
5478 * We need to validate that we can do a
5479 * get_cpu() and that we have the percpu area.
5480 */
5481 if (!cpu_online(cpu))
5482 goto out;
5483
5484 rq = cpu_rq(cpu);
5485
5486 for (;;) {
5487 /*
5488 * Owner changed, break to re-assess state.
5489 */
5490 if (lock->owner != owner)
5491 break;
5492
5493 /*
5494 * Is that owner really running on that cpu?
5495 */
5496 if (task_thread_info(rq->curr) != owner || need_resched())
5497 return 0;
5498
5499 cpu_relax();
5500 }
5501out:
5502 return 1;
5503}
5504#endif
5505
1da177e4
LT
5506#ifdef CONFIG_PREEMPT
5507/*
2ed6e34f 5508 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5509 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5510 * occur there and call schedule directly.
5511 */
5512asmlinkage void __sched preempt_schedule(void)
5513{
5514 struct thread_info *ti = current_thread_info();
6478d880 5515
1da177e4
LT
5516 /*
5517 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5518 * we do not want to preempt the current task. Just return..
1da177e4 5519 */
beed33a8 5520 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5521 return;
5522
3a5c359a
AK
5523 do {
5524 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5525 schedule();
3a5c359a 5526 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5527
3a5c359a
AK
5528 /*
5529 * Check again in case we missed a preemption opportunity
5530 * between schedule and now.
5531 */
5532 barrier();
5ed0cec0 5533 } while (need_resched());
1da177e4 5534}
1da177e4
LT
5535EXPORT_SYMBOL(preempt_schedule);
5536
5537/*
2ed6e34f 5538 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5539 * off of irq context.
5540 * Note, that this is called and return with irqs disabled. This will
5541 * protect us against recursive calling from irq.
5542 */
5543asmlinkage void __sched preempt_schedule_irq(void)
5544{
5545 struct thread_info *ti = current_thread_info();
6478d880 5546
2ed6e34f 5547 /* Catch callers which need to be fixed */
1da177e4
LT
5548 BUG_ON(ti->preempt_count || !irqs_disabled());
5549
3a5c359a
AK
5550 do {
5551 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5552 local_irq_enable();
5553 schedule();
5554 local_irq_disable();
3a5c359a 5555 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5556
3a5c359a
AK
5557 /*
5558 * Check again in case we missed a preemption opportunity
5559 * between schedule and now.
5560 */
5561 barrier();
5ed0cec0 5562 } while (need_resched());
1da177e4
LT
5563}
5564
5565#endif /* CONFIG_PREEMPT */
5566
63859d4f 5567int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5568 void *key)
1da177e4 5569{
63859d4f 5570 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5571}
1da177e4
LT
5572EXPORT_SYMBOL(default_wake_function);
5573
5574/*
41a2d6cf
IM
5575 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5576 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5577 * number) then we wake all the non-exclusive tasks and one exclusive task.
5578 *
5579 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5580 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5581 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5582 */
78ddb08f 5583static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5584 int nr_exclusive, int wake_flags, void *key)
1da177e4 5585{
2e45874c 5586 wait_queue_t *curr, *next;
1da177e4 5587
2e45874c 5588 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5589 unsigned flags = curr->flags;
5590
63859d4f 5591 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5592 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5593 break;
5594 }
5595}
5596
5597/**
5598 * __wake_up - wake up threads blocked on a waitqueue.
5599 * @q: the waitqueue
5600 * @mode: which threads
5601 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5602 * @key: is directly passed to the wakeup function
50fa610a
DH
5603 *
5604 * It may be assumed that this function implies a write memory barrier before
5605 * changing the task state if and only if any tasks are woken up.
1da177e4 5606 */
7ad5b3a5 5607void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5608 int nr_exclusive, void *key)
1da177e4
LT
5609{
5610 unsigned long flags;
5611
5612 spin_lock_irqsave(&q->lock, flags);
5613 __wake_up_common(q, mode, nr_exclusive, 0, key);
5614 spin_unlock_irqrestore(&q->lock, flags);
5615}
1da177e4
LT
5616EXPORT_SYMBOL(__wake_up);
5617
5618/*
5619 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5620 */
7ad5b3a5 5621void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5622{
5623 __wake_up_common(q, mode, 1, 0, NULL);
5624}
5625
4ede816a
DL
5626void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5627{
5628 __wake_up_common(q, mode, 1, 0, key);
5629}
5630
1da177e4 5631/**
4ede816a 5632 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5633 * @q: the waitqueue
5634 * @mode: which threads
5635 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5636 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5637 *
5638 * The sync wakeup differs that the waker knows that it will schedule
5639 * away soon, so while the target thread will be woken up, it will not
5640 * be migrated to another CPU - ie. the two threads are 'synchronized'
5641 * with each other. This can prevent needless bouncing between CPUs.
5642 *
5643 * On UP it can prevent extra preemption.
50fa610a
DH
5644 *
5645 * It may be assumed that this function implies a write memory barrier before
5646 * changing the task state if and only if any tasks are woken up.
1da177e4 5647 */
4ede816a
DL
5648void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5649 int nr_exclusive, void *key)
1da177e4
LT
5650{
5651 unsigned long flags;
7d478721 5652 int wake_flags = WF_SYNC;
1da177e4
LT
5653
5654 if (unlikely(!q))
5655 return;
5656
5657 if (unlikely(!nr_exclusive))
7d478721 5658 wake_flags = 0;
1da177e4
LT
5659
5660 spin_lock_irqsave(&q->lock, flags);
7d478721 5661 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5662 spin_unlock_irqrestore(&q->lock, flags);
5663}
4ede816a
DL
5664EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5665
5666/*
5667 * __wake_up_sync - see __wake_up_sync_key()
5668 */
5669void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5670{
5671 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5672}
1da177e4
LT
5673EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5674
65eb3dc6
KD
5675/**
5676 * complete: - signals a single thread waiting on this completion
5677 * @x: holds the state of this particular completion
5678 *
5679 * This will wake up a single thread waiting on this completion. Threads will be
5680 * awakened in the same order in which they were queued.
5681 *
5682 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5683 *
5684 * It may be assumed that this function implies a write memory barrier before
5685 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5686 */
b15136e9 5687void complete(struct completion *x)
1da177e4
LT
5688{
5689 unsigned long flags;
5690
5691 spin_lock_irqsave(&x->wait.lock, flags);
5692 x->done++;
d9514f6c 5693 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5694 spin_unlock_irqrestore(&x->wait.lock, flags);
5695}
5696EXPORT_SYMBOL(complete);
5697
65eb3dc6
KD
5698/**
5699 * complete_all: - signals all threads waiting on this completion
5700 * @x: holds the state of this particular completion
5701 *
5702 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5703 *
5704 * It may be assumed that this function implies a write memory barrier before
5705 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5706 */
b15136e9 5707void complete_all(struct completion *x)
1da177e4
LT
5708{
5709 unsigned long flags;
5710
5711 spin_lock_irqsave(&x->wait.lock, flags);
5712 x->done += UINT_MAX/2;
d9514f6c 5713 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5714 spin_unlock_irqrestore(&x->wait.lock, flags);
5715}
5716EXPORT_SYMBOL(complete_all);
5717
8cbbe86d
AK
5718static inline long __sched
5719do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5720{
1da177e4
LT
5721 if (!x->done) {
5722 DECLARE_WAITQUEUE(wait, current);
5723
5724 wait.flags |= WQ_FLAG_EXCLUSIVE;
5725 __add_wait_queue_tail(&x->wait, &wait);
5726 do {
94d3d824 5727 if (signal_pending_state(state, current)) {
ea71a546
ON
5728 timeout = -ERESTARTSYS;
5729 break;
8cbbe86d
AK
5730 }
5731 __set_current_state(state);
1da177e4
LT
5732 spin_unlock_irq(&x->wait.lock);
5733 timeout = schedule_timeout(timeout);
5734 spin_lock_irq(&x->wait.lock);
ea71a546 5735 } while (!x->done && timeout);
1da177e4 5736 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5737 if (!x->done)
5738 return timeout;
1da177e4
LT
5739 }
5740 x->done--;
ea71a546 5741 return timeout ?: 1;
1da177e4 5742}
1da177e4 5743
8cbbe86d
AK
5744static long __sched
5745wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5746{
1da177e4
LT
5747 might_sleep();
5748
5749 spin_lock_irq(&x->wait.lock);
8cbbe86d 5750 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5751 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5752 return timeout;
5753}
1da177e4 5754
65eb3dc6
KD
5755/**
5756 * wait_for_completion: - waits for completion of a task
5757 * @x: holds the state of this particular completion
5758 *
5759 * This waits to be signaled for completion of a specific task. It is NOT
5760 * interruptible and there is no timeout.
5761 *
5762 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5763 * and interrupt capability. Also see complete().
5764 */
b15136e9 5765void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5766{
5767 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5768}
8cbbe86d 5769EXPORT_SYMBOL(wait_for_completion);
1da177e4 5770
65eb3dc6
KD
5771/**
5772 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5773 * @x: holds the state of this particular completion
5774 * @timeout: timeout value in jiffies
5775 *
5776 * This waits for either a completion of a specific task to be signaled or for a
5777 * specified timeout to expire. The timeout is in jiffies. It is not
5778 * interruptible.
5779 */
b15136e9 5780unsigned long __sched
8cbbe86d 5781wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5782{
8cbbe86d 5783 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5784}
8cbbe86d 5785EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5786
65eb3dc6
KD
5787/**
5788 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5789 * @x: holds the state of this particular completion
5790 *
5791 * This waits for completion of a specific task to be signaled. It is
5792 * interruptible.
5793 */
8cbbe86d 5794int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5795{
51e97990
AK
5796 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5797 if (t == -ERESTARTSYS)
5798 return t;
5799 return 0;
0fec171c 5800}
8cbbe86d 5801EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5802
65eb3dc6
KD
5803/**
5804 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5805 * @x: holds the state of this particular completion
5806 * @timeout: timeout value in jiffies
5807 *
5808 * This waits for either a completion of a specific task to be signaled or for a
5809 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5810 */
b15136e9 5811unsigned long __sched
8cbbe86d
AK
5812wait_for_completion_interruptible_timeout(struct completion *x,
5813 unsigned long timeout)
0fec171c 5814{
8cbbe86d 5815 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5816}
8cbbe86d 5817EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5818
65eb3dc6
KD
5819/**
5820 * wait_for_completion_killable: - waits for completion of a task (killable)
5821 * @x: holds the state of this particular completion
5822 *
5823 * This waits to be signaled for completion of a specific task. It can be
5824 * interrupted by a kill signal.
5825 */
009e577e
MW
5826int __sched wait_for_completion_killable(struct completion *x)
5827{
5828 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5829 if (t == -ERESTARTSYS)
5830 return t;
5831 return 0;
5832}
5833EXPORT_SYMBOL(wait_for_completion_killable);
5834
be4de352
DC
5835/**
5836 * try_wait_for_completion - try to decrement a completion without blocking
5837 * @x: completion structure
5838 *
5839 * Returns: 0 if a decrement cannot be done without blocking
5840 * 1 if a decrement succeeded.
5841 *
5842 * If a completion is being used as a counting completion,
5843 * attempt to decrement the counter without blocking. This
5844 * enables us to avoid waiting if the resource the completion
5845 * is protecting is not available.
5846 */
5847bool try_wait_for_completion(struct completion *x)
5848{
5849 int ret = 1;
5850
5851 spin_lock_irq(&x->wait.lock);
5852 if (!x->done)
5853 ret = 0;
5854 else
5855 x->done--;
5856 spin_unlock_irq(&x->wait.lock);
5857 return ret;
5858}
5859EXPORT_SYMBOL(try_wait_for_completion);
5860
5861/**
5862 * completion_done - Test to see if a completion has any waiters
5863 * @x: completion structure
5864 *
5865 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5866 * 1 if there are no waiters.
5867 *
5868 */
5869bool completion_done(struct completion *x)
5870{
5871 int ret = 1;
5872
5873 spin_lock_irq(&x->wait.lock);
5874 if (!x->done)
5875 ret = 0;
5876 spin_unlock_irq(&x->wait.lock);
5877 return ret;
5878}
5879EXPORT_SYMBOL(completion_done);
5880
8cbbe86d
AK
5881static long __sched
5882sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5883{
0fec171c
IM
5884 unsigned long flags;
5885 wait_queue_t wait;
5886
5887 init_waitqueue_entry(&wait, current);
1da177e4 5888
8cbbe86d 5889 __set_current_state(state);
1da177e4 5890
8cbbe86d
AK
5891 spin_lock_irqsave(&q->lock, flags);
5892 __add_wait_queue(q, &wait);
5893 spin_unlock(&q->lock);
5894 timeout = schedule_timeout(timeout);
5895 spin_lock_irq(&q->lock);
5896 __remove_wait_queue(q, &wait);
5897 spin_unlock_irqrestore(&q->lock, flags);
5898
5899 return timeout;
5900}
5901
5902void __sched interruptible_sleep_on(wait_queue_head_t *q)
5903{
5904 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5905}
1da177e4
LT
5906EXPORT_SYMBOL(interruptible_sleep_on);
5907
0fec171c 5908long __sched
95cdf3b7 5909interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5910{
8cbbe86d 5911 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5912}
1da177e4
LT
5913EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5914
0fec171c 5915void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5916{
8cbbe86d 5917 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5918}
1da177e4
LT
5919EXPORT_SYMBOL(sleep_on);
5920
0fec171c 5921long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5922{
8cbbe86d 5923 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5924}
1da177e4
LT
5925EXPORT_SYMBOL(sleep_on_timeout);
5926
b29739f9
IM
5927#ifdef CONFIG_RT_MUTEXES
5928
5929/*
5930 * rt_mutex_setprio - set the current priority of a task
5931 * @p: task
5932 * @prio: prio value (kernel-internal form)
5933 *
5934 * This function changes the 'effective' priority of a task. It does
5935 * not touch ->normal_prio like __setscheduler().
5936 *
5937 * Used by the rt_mutex code to implement priority inheritance logic.
5938 */
36c8b586 5939void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5940{
5941 unsigned long flags;
83b699ed 5942 int oldprio, on_rq, running;
70b97a7f 5943 struct rq *rq;
cb469845 5944 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5945
5946 BUG_ON(prio < 0 || prio > MAX_PRIO);
5947
5948 rq = task_rq_lock(p, &flags);
a8e504d2 5949 update_rq_clock(rq);
b29739f9 5950
d5f9f942 5951 oldprio = p->prio;
dd41f596 5952 on_rq = p->se.on_rq;
051a1d1a 5953 running = task_current(rq, p);
0e1f3483 5954 if (on_rq)
69be72c1 5955 dequeue_task(rq, p, 0);
0e1f3483
HS
5956 if (running)
5957 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5958
5959 if (rt_prio(prio))
5960 p->sched_class = &rt_sched_class;
5961 else
5962 p->sched_class = &fair_sched_class;
5963
b29739f9
IM
5964 p->prio = prio;
5965
0e1f3483
HS
5966 if (running)
5967 p->sched_class->set_curr_task(rq);
dd41f596 5968 if (on_rq) {
8159f87e 5969 enqueue_task(rq, p, 0);
cb469845
SR
5970
5971 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5972 }
5973 task_rq_unlock(rq, &flags);
5974}
5975
5976#endif
5977
36c8b586 5978void set_user_nice(struct task_struct *p, long nice)
1da177e4 5979{
dd41f596 5980 int old_prio, delta, on_rq;
1da177e4 5981 unsigned long flags;
70b97a7f 5982 struct rq *rq;
1da177e4
LT
5983
5984 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5985 return;
5986 /*
5987 * We have to be careful, if called from sys_setpriority(),
5988 * the task might be in the middle of scheduling on another CPU.
5989 */
5990 rq = task_rq_lock(p, &flags);
a8e504d2 5991 update_rq_clock(rq);
1da177e4
LT
5992 /*
5993 * The RT priorities are set via sched_setscheduler(), but we still
5994 * allow the 'normal' nice value to be set - but as expected
5995 * it wont have any effect on scheduling until the task is
dd41f596 5996 * SCHED_FIFO/SCHED_RR:
1da177e4 5997 */
e05606d3 5998 if (task_has_rt_policy(p)) {
1da177e4
LT
5999 p->static_prio = NICE_TO_PRIO(nice);
6000 goto out_unlock;
6001 }
dd41f596 6002 on_rq = p->se.on_rq;
c09595f6 6003 if (on_rq)
69be72c1 6004 dequeue_task(rq, p, 0);
1da177e4 6005
1da177e4 6006 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6007 set_load_weight(p);
b29739f9
IM
6008 old_prio = p->prio;
6009 p->prio = effective_prio(p);
6010 delta = p->prio - old_prio;
1da177e4 6011
dd41f596 6012 if (on_rq) {
8159f87e 6013 enqueue_task(rq, p, 0);
1da177e4 6014 /*
d5f9f942
AM
6015 * If the task increased its priority or is running and
6016 * lowered its priority, then reschedule its CPU:
1da177e4 6017 */
d5f9f942 6018 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6019 resched_task(rq->curr);
6020 }
6021out_unlock:
6022 task_rq_unlock(rq, &flags);
6023}
1da177e4
LT
6024EXPORT_SYMBOL(set_user_nice);
6025
e43379f1
MM
6026/*
6027 * can_nice - check if a task can reduce its nice value
6028 * @p: task
6029 * @nice: nice value
6030 */
36c8b586 6031int can_nice(const struct task_struct *p, const int nice)
e43379f1 6032{
024f4747
MM
6033 /* convert nice value [19,-20] to rlimit style value [1,40] */
6034 int nice_rlim = 20 - nice;
48f24c4d 6035
e43379f1
MM
6036 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6037 capable(CAP_SYS_NICE));
6038}
6039
1da177e4
LT
6040#ifdef __ARCH_WANT_SYS_NICE
6041
6042/*
6043 * sys_nice - change the priority of the current process.
6044 * @increment: priority increment
6045 *
6046 * sys_setpriority is a more generic, but much slower function that
6047 * does similar things.
6048 */
5add95d4 6049SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6050{
48f24c4d 6051 long nice, retval;
1da177e4
LT
6052
6053 /*
6054 * Setpriority might change our priority at the same moment.
6055 * We don't have to worry. Conceptually one call occurs first
6056 * and we have a single winner.
6057 */
e43379f1
MM
6058 if (increment < -40)
6059 increment = -40;
1da177e4
LT
6060 if (increment > 40)
6061 increment = 40;
6062
2b8f836f 6063 nice = TASK_NICE(current) + increment;
1da177e4
LT
6064 if (nice < -20)
6065 nice = -20;
6066 if (nice > 19)
6067 nice = 19;
6068
e43379f1
MM
6069 if (increment < 0 && !can_nice(current, nice))
6070 return -EPERM;
6071
1da177e4
LT
6072 retval = security_task_setnice(current, nice);
6073 if (retval)
6074 return retval;
6075
6076 set_user_nice(current, nice);
6077 return 0;
6078}
6079
6080#endif
6081
6082/**
6083 * task_prio - return the priority value of a given task.
6084 * @p: the task in question.
6085 *
6086 * This is the priority value as seen by users in /proc.
6087 * RT tasks are offset by -200. Normal tasks are centered
6088 * around 0, value goes from -16 to +15.
6089 */
36c8b586 6090int task_prio(const struct task_struct *p)
1da177e4
LT
6091{
6092 return p->prio - MAX_RT_PRIO;
6093}
6094
6095/**
6096 * task_nice - return the nice value of a given task.
6097 * @p: the task in question.
6098 */
36c8b586 6099int task_nice(const struct task_struct *p)
1da177e4
LT
6100{
6101 return TASK_NICE(p);
6102}
150d8bed 6103EXPORT_SYMBOL(task_nice);
1da177e4
LT
6104
6105/**
6106 * idle_cpu - is a given cpu idle currently?
6107 * @cpu: the processor in question.
6108 */
6109int idle_cpu(int cpu)
6110{
6111 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6112}
6113
1da177e4
LT
6114/**
6115 * idle_task - return the idle task for a given cpu.
6116 * @cpu: the processor in question.
6117 */
36c8b586 6118struct task_struct *idle_task(int cpu)
1da177e4
LT
6119{
6120 return cpu_rq(cpu)->idle;
6121}
6122
6123/**
6124 * find_process_by_pid - find a process with a matching PID value.
6125 * @pid: the pid in question.
6126 */
a9957449 6127static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6128{
228ebcbe 6129 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6130}
6131
6132/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6133static void
6134__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6135{
dd41f596 6136 BUG_ON(p->se.on_rq);
48f24c4d 6137
1da177e4 6138 p->policy = policy;
dd41f596
IM
6139 switch (p->policy) {
6140 case SCHED_NORMAL:
6141 case SCHED_BATCH:
6142 case SCHED_IDLE:
6143 p->sched_class = &fair_sched_class;
6144 break;
6145 case SCHED_FIFO:
6146 case SCHED_RR:
6147 p->sched_class = &rt_sched_class;
6148 break;
6149 }
6150
1da177e4 6151 p->rt_priority = prio;
b29739f9
IM
6152 p->normal_prio = normal_prio(p);
6153 /* we are holding p->pi_lock already */
6154 p->prio = rt_mutex_getprio(p);
2dd73a4f 6155 set_load_weight(p);
1da177e4
LT
6156}
6157
c69e8d9c
DH
6158/*
6159 * check the target process has a UID that matches the current process's
6160 */
6161static bool check_same_owner(struct task_struct *p)
6162{
6163 const struct cred *cred = current_cred(), *pcred;
6164 bool match;
6165
6166 rcu_read_lock();
6167 pcred = __task_cred(p);
6168 match = (cred->euid == pcred->euid ||
6169 cred->euid == pcred->uid);
6170 rcu_read_unlock();
6171 return match;
6172}
6173
961ccddd
RR
6174static int __sched_setscheduler(struct task_struct *p, int policy,
6175 struct sched_param *param, bool user)
1da177e4 6176{
83b699ed 6177 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6178 unsigned long flags;
cb469845 6179 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6180 struct rq *rq;
ca94c442 6181 int reset_on_fork;
1da177e4 6182
66e5393a
SR
6183 /* may grab non-irq protected spin_locks */
6184 BUG_ON(in_interrupt());
1da177e4
LT
6185recheck:
6186 /* double check policy once rq lock held */
ca94c442
LP
6187 if (policy < 0) {
6188 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6189 policy = oldpolicy = p->policy;
ca94c442
LP
6190 } else {
6191 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6192 policy &= ~SCHED_RESET_ON_FORK;
6193
6194 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6195 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6196 policy != SCHED_IDLE)
6197 return -EINVAL;
6198 }
6199
1da177e4
LT
6200 /*
6201 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6202 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6203 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6204 */
6205 if (param->sched_priority < 0 ||
95cdf3b7 6206 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6207 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6208 return -EINVAL;
e05606d3 6209 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6210 return -EINVAL;
6211
37e4ab3f
OC
6212 /*
6213 * Allow unprivileged RT tasks to decrease priority:
6214 */
961ccddd 6215 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6216 if (rt_policy(policy)) {
8dc3e909 6217 unsigned long rlim_rtprio;
8dc3e909
ON
6218
6219 if (!lock_task_sighand(p, &flags))
6220 return -ESRCH;
6221 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6222 unlock_task_sighand(p, &flags);
6223
6224 /* can't set/change the rt policy */
6225 if (policy != p->policy && !rlim_rtprio)
6226 return -EPERM;
6227
6228 /* can't increase priority */
6229 if (param->sched_priority > p->rt_priority &&
6230 param->sched_priority > rlim_rtprio)
6231 return -EPERM;
6232 }
dd41f596
IM
6233 /*
6234 * Like positive nice levels, dont allow tasks to
6235 * move out of SCHED_IDLE either:
6236 */
6237 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6238 return -EPERM;
5fe1d75f 6239
37e4ab3f 6240 /* can't change other user's priorities */
c69e8d9c 6241 if (!check_same_owner(p))
37e4ab3f 6242 return -EPERM;
ca94c442
LP
6243
6244 /* Normal users shall not reset the sched_reset_on_fork flag */
6245 if (p->sched_reset_on_fork && !reset_on_fork)
6246 return -EPERM;
37e4ab3f 6247 }
1da177e4 6248
725aad24 6249 if (user) {
b68aa230 6250#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6251 /*
6252 * Do not allow realtime tasks into groups that have no runtime
6253 * assigned.
6254 */
9a7e0b18
PZ
6255 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6256 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6257 return -EPERM;
b68aa230
PZ
6258#endif
6259
725aad24
JF
6260 retval = security_task_setscheduler(p, policy, param);
6261 if (retval)
6262 return retval;
6263 }
6264
b29739f9
IM
6265 /*
6266 * make sure no PI-waiters arrive (or leave) while we are
6267 * changing the priority of the task:
6268 */
6269 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6270 /*
6271 * To be able to change p->policy safely, the apropriate
6272 * runqueue lock must be held.
6273 */
b29739f9 6274 rq = __task_rq_lock(p);
1da177e4
LT
6275 /* recheck policy now with rq lock held */
6276 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6277 policy = oldpolicy = -1;
b29739f9
IM
6278 __task_rq_unlock(rq);
6279 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6280 goto recheck;
6281 }
2daa3577 6282 update_rq_clock(rq);
dd41f596 6283 on_rq = p->se.on_rq;
051a1d1a 6284 running = task_current(rq, p);
0e1f3483 6285 if (on_rq)
2e1cb74a 6286 deactivate_task(rq, p, 0);
0e1f3483
HS
6287 if (running)
6288 p->sched_class->put_prev_task(rq, p);
f6b53205 6289
ca94c442
LP
6290 p->sched_reset_on_fork = reset_on_fork;
6291
1da177e4 6292 oldprio = p->prio;
dd41f596 6293 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6294
0e1f3483
HS
6295 if (running)
6296 p->sched_class->set_curr_task(rq);
dd41f596
IM
6297 if (on_rq) {
6298 activate_task(rq, p, 0);
cb469845
SR
6299
6300 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6301 }
b29739f9
IM
6302 __task_rq_unlock(rq);
6303 spin_unlock_irqrestore(&p->pi_lock, flags);
6304
95e02ca9
TG
6305 rt_mutex_adjust_pi(p);
6306
1da177e4
LT
6307 return 0;
6308}
961ccddd
RR
6309
6310/**
6311 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6312 * @p: the task in question.
6313 * @policy: new policy.
6314 * @param: structure containing the new RT priority.
6315 *
6316 * NOTE that the task may be already dead.
6317 */
6318int sched_setscheduler(struct task_struct *p, int policy,
6319 struct sched_param *param)
6320{
6321 return __sched_setscheduler(p, policy, param, true);
6322}
1da177e4
LT
6323EXPORT_SYMBOL_GPL(sched_setscheduler);
6324
961ccddd
RR
6325/**
6326 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6327 * @p: the task in question.
6328 * @policy: new policy.
6329 * @param: structure containing the new RT priority.
6330 *
6331 * Just like sched_setscheduler, only don't bother checking if the
6332 * current context has permission. For example, this is needed in
6333 * stop_machine(): we create temporary high priority worker threads,
6334 * but our caller might not have that capability.
6335 */
6336int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6337 struct sched_param *param)
6338{
6339 return __sched_setscheduler(p, policy, param, false);
6340}
6341
95cdf3b7
IM
6342static int
6343do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6344{
1da177e4
LT
6345 struct sched_param lparam;
6346 struct task_struct *p;
36c8b586 6347 int retval;
1da177e4
LT
6348
6349 if (!param || pid < 0)
6350 return -EINVAL;
6351 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6352 return -EFAULT;
5fe1d75f
ON
6353
6354 rcu_read_lock();
6355 retval = -ESRCH;
1da177e4 6356 p = find_process_by_pid(pid);
5fe1d75f
ON
6357 if (p != NULL)
6358 retval = sched_setscheduler(p, policy, &lparam);
6359 rcu_read_unlock();
36c8b586 6360
1da177e4
LT
6361 return retval;
6362}
6363
6364/**
6365 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6366 * @pid: the pid in question.
6367 * @policy: new policy.
6368 * @param: structure containing the new RT priority.
6369 */
5add95d4
HC
6370SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6371 struct sched_param __user *, param)
1da177e4 6372{
c21761f1
JB
6373 /* negative values for policy are not valid */
6374 if (policy < 0)
6375 return -EINVAL;
6376
1da177e4
LT
6377 return do_sched_setscheduler(pid, policy, param);
6378}
6379
6380/**
6381 * sys_sched_setparam - set/change the RT priority of a thread
6382 * @pid: the pid in question.
6383 * @param: structure containing the new RT priority.
6384 */
5add95d4 6385SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6386{
6387 return do_sched_setscheduler(pid, -1, param);
6388}
6389
6390/**
6391 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6392 * @pid: the pid in question.
6393 */
5add95d4 6394SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6395{
36c8b586 6396 struct task_struct *p;
3a5c359a 6397 int retval;
1da177e4
LT
6398
6399 if (pid < 0)
3a5c359a 6400 return -EINVAL;
1da177e4
LT
6401
6402 retval = -ESRCH;
6403 read_lock(&tasklist_lock);
6404 p = find_process_by_pid(pid);
6405 if (p) {
6406 retval = security_task_getscheduler(p);
6407 if (!retval)
ca94c442
LP
6408 retval = p->policy
6409 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6410 }
6411 read_unlock(&tasklist_lock);
1da177e4
LT
6412 return retval;
6413}
6414
6415/**
ca94c442 6416 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6417 * @pid: the pid in question.
6418 * @param: structure containing the RT priority.
6419 */
5add95d4 6420SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6421{
6422 struct sched_param lp;
36c8b586 6423 struct task_struct *p;
3a5c359a 6424 int retval;
1da177e4
LT
6425
6426 if (!param || pid < 0)
3a5c359a 6427 return -EINVAL;
1da177e4
LT
6428
6429 read_lock(&tasklist_lock);
6430 p = find_process_by_pid(pid);
6431 retval = -ESRCH;
6432 if (!p)
6433 goto out_unlock;
6434
6435 retval = security_task_getscheduler(p);
6436 if (retval)
6437 goto out_unlock;
6438
6439 lp.sched_priority = p->rt_priority;
6440 read_unlock(&tasklist_lock);
6441
6442 /*
6443 * This one might sleep, we cannot do it with a spinlock held ...
6444 */
6445 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6446
1da177e4
LT
6447 return retval;
6448
6449out_unlock:
6450 read_unlock(&tasklist_lock);
6451 return retval;
6452}
6453
96f874e2 6454long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6455{
5a16f3d3 6456 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6457 struct task_struct *p;
6458 int retval;
1da177e4 6459
95402b38 6460 get_online_cpus();
1da177e4
LT
6461 read_lock(&tasklist_lock);
6462
6463 p = find_process_by_pid(pid);
6464 if (!p) {
6465 read_unlock(&tasklist_lock);
95402b38 6466 put_online_cpus();
1da177e4
LT
6467 return -ESRCH;
6468 }
6469
6470 /*
6471 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6472 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6473 * usage count and then drop tasklist_lock.
6474 */
6475 get_task_struct(p);
6476 read_unlock(&tasklist_lock);
6477
5a16f3d3
RR
6478 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6479 retval = -ENOMEM;
6480 goto out_put_task;
6481 }
6482 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6483 retval = -ENOMEM;
6484 goto out_free_cpus_allowed;
6485 }
1da177e4 6486 retval = -EPERM;
c69e8d9c 6487 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6488 goto out_unlock;
6489
e7834f8f
DQ
6490 retval = security_task_setscheduler(p, 0, NULL);
6491 if (retval)
6492 goto out_unlock;
6493
5a16f3d3
RR
6494 cpuset_cpus_allowed(p, cpus_allowed);
6495 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6496 again:
5a16f3d3 6497 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6498
8707d8b8 6499 if (!retval) {
5a16f3d3
RR
6500 cpuset_cpus_allowed(p, cpus_allowed);
6501 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6502 /*
6503 * We must have raced with a concurrent cpuset
6504 * update. Just reset the cpus_allowed to the
6505 * cpuset's cpus_allowed
6506 */
5a16f3d3 6507 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6508 goto again;
6509 }
6510 }
1da177e4 6511out_unlock:
5a16f3d3
RR
6512 free_cpumask_var(new_mask);
6513out_free_cpus_allowed:
6514 free_cpumask_var(cpus_allowed);
6515out_put_task:
1da177e4 6516 put_task_struct(p);
95402b38 6517 put_online_cpus();
1da177e4
LT
6518 return retval;
6519}
6520
6521static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6522 struct cpumask *new_mask)
1da177e4 6523{
96f874e2
RR
6524 if (len < cpumask_size())
6525 cpumask_clear(new_mask);
6526 else if (len > cpumask_size())
6527 len = cpumask_size();
6528
1da177e4
LT
6529 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6530}
6531
6532/**
6533 * sys_sched_setaffinity - set the cpu affinity of a process
6534 * @pid: pid of the process
6535 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6536 * @user_mask_ptr: user-space pointer to the new cpu mask
6537 */
5add95d4
HC
6538SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6539 unsigned long __user *, user_mask_ptr)
1da177e4 6540{
5a16f3d3 6541 cpumask_var_t new_mask;
1da177e4
LT
6542 int retval;
6543
5a16f3d3
RR
6544 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6545 return -ENOMEM;
1da177e4 6546
5a16f3d3
RR
6547 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6548 if (retval == 0)
6549 retval = sched_setaffinity(pid, new_mask);
6550 free_cpumask_var(new_mask);
6551 return retval;
1da177e4
LT
6552}
6553
96f874e2 6554long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6555{
36c8b586 6556 struct task_struct *p;
1da177e4 6557 int retval;
1da177e4 6558
95402b38 6559 get_online_cpus();
1da177e4
LT
6560 read_lock(&tasklist_lock);
6561
6562 retval = -ESRCH;
6563 p = find_process_by_pid(pid);
6564 if (!p)
6565 goto out_unlock;
6566
e7834f8f
DQ
6567 retval = security_task_getscheduler(p);
6568 if (retval)
6569 goto out_unlock;
6570
96f874e2 6571 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6572
6573out_unlock:
6574 read_unlock(&tasklist_lock);
95402b38 6575 put_online_cpus();
1da177e4 6576
9531b62f 6577 return retval;
1da177e4
LT
6578}
6579
6580/**
6581 * sys_sched_getaffinity - get the cpu affinity of a process
6582 * @pid: pid of the process
6583 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6584 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6585 */
5add95d4
HC
6586SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6587 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6588{
6589 int ret;
f17c8607 6590 cpumask_var_t mask;
1da177e4 6591
f17c8607 6592 if (len < cpumask_size())
1da177e4
LT
6593 return -EINVAL;
6594
f17c8607
RR
6595 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6596 return -ENOMEM;
1da177e4 6597
f17c8607
RR
6598 ret = sched_getaffinity(pid, mask);
6599 if (ret == 0) {
6600 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6601 ret = -EFAULT;
6602 else
6603 ret = cpumask_size();
6604 }
6605 free_cpumask_var(mask);
1da177e4 6606
f17c8607 6607 return ret;
1da177e4
LT
6608}
6609
6610/**
6611 * sys_sched_yield - yield the current processor to other threads.
6612 *
dd41f596
IM
6613 * This function yields the current CPU to other tasks. If there are no
6614 * other threads running on this CPU then this function will return.
1da177e4 6615 */
5add95d4 6616SYSCALL_DEFINE0(sched_yield)
1da177e4 6617{
70b97a7f 6618 struct rq *rq = this_rq_lock();
1da177e4 6619
2d72376b 6620 schedstat_inc(rq, yld_count);
4530d7ab 6621 current->sched_class->yield_task(rq);
1da177e4
LT
6622
6623 /*
6624 * Since we are going to call schedule() anyway, there's
6625 * no need to preempt or enable interrupts:
6626 */
6627 __release(rq->lock);
8a25d5de 6628 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6629 _raw_spin_unlock(&rq->lock);
6630 preempt_enable_no_resched();
6631
6632 schedule();
6633
6634 return 0;
6635}
6636
d86ee480
PZ
6637static inline int should_resched(void)
6638{
6639 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6640}
6641
e7b38404 6642static void __cond_resched(void)
1da177e4 6643{
e7aaaa69
FW
6644 add_preempt_count(PREEMPT_ACTIVE);
6645 schedule();
6646 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6647}
6648
02b67cc3 6649int __sched _cond_resched(void)
1da177e4 6650{
d86ee480 6651 if (should_resched()) {
1da177e4
LT
6652 __cond_resched();
6653 return 1;
6654 }
6655 return 0;
6656}
02b67cc3 6657EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6658
6659/*
613afbf8 6660 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6661 * call schedule, and on return reacquire the lock.
6662 *
41a2d6cf 6663 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6664 * operations here to prevent schedule() from being called twice (once via
6665 * spin_unlock(), once by hand).
6666 */
613afbf8 6667int __cond_resched_lock(spinlock_t *lock)
1da177e4 6668{
d86ee480 6669 int resched = should_resched();
6df3cecb
JK
6670 int ret = 0;
6671
f607c668
PZ
6672 lockdep_assert_held(lock);
6673
95c354fe 6674 if (spin_needbreak(lock) || resched) {
1da177e4 6675 spin_unlock(lock);
d86ee480 6676 if (resched)
95c354fe
NP
6677 __cond_resched();
6678 else
6679 cpu_relax();
6df3cecb 6680 ret = 1;
1da177e4 6681 spin_lock(lock);
1da177e4 6682 }
6df3cecb 6683 return ret;
1da177e4 6684}
613afbf8 6685EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6686
613afbf8 6687int __sched __cond_resched_softirq(void)
1da177e4
LT
6688{
6689 BUG_ON(!in_softirq());
6690
d86ee480 6691 if (should_resched()) {
98d82567 6692 local_bh_enable();
1da177e4
LT
6693 __cond_resched();
6694 local_bh_disable();
6695 return 1;
6696 }
6697 return 0;
6698}
613afbf8 6699EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6700
1da177e4
LT
6701/**
6702 * yield - yield the current processor to other threads.
6703 *
72fd4a35 6704 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6705 * thread runnable and calls sys_sched_yield().
6706 */
6707void __sched yield(void)
6708{
6709 set_current_state(TASK_RUNNING);
6710 sys_sched_yield();
6711}
1da177e4
LT
6712EXPORT_SYMBOL(yield);
6713
6714/*
41a2d6cf 6715 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6716 * that process accounting knows that this is a task in IO wait state.
6717 *
6718 * But don't do that if it is a deliberate, throttling IO wait (this task
6719 * has set its backing_dev_info: the queue against which it should throttle)
6720 */
6721void __sched io_schedule(void)
6722{
54d35f29 6723 struct rq *rq = raw_rq();
1da177e4 6724
0ff92245 6725 delayacct_blkio_start();
1da177e4 6726 atomic_inc(&rq->nr_iowait);
8f0dfc34 6727 current->in_iowait = 1;
1da177e4 6728 schedule();
8f0dfc34 6729 current->in_iowait = 0;
1da177e4 6730 atomic_dec(&rq->nr_iowait);
0ff92245 6731 delayacct_blkio_end();
1da177e4 6732}
1da177e4
LT
6733EXPORT_SYMBOL(io_schedule);
6734
6735long __sched io_schedule_timeout(long timeout)
6736{
54d35f29 6737 struct rq *rq = raw_rq();
1da177e4
LT
6738 long ret;
6739
0ff92245 6740 delayacct_blkio_start();
1da177e4 6741 atomic_inc(&rq->nr_iowait);
8f0dfc34 6742 current->in_iowait = 1;
1da177e4 6743 ret = schedule_timeout(timeout);
8f0dfc34 6744 current->in_iowait = 0;
1da177e4 6745 atomic_dec(&rq->nr_iowait);
0ff92245 6746 delayacct_blkio_end();
1da177e4
LT
6747 return ret;
6748}
6749
6750/**
6751 * sys_sched_get_priority_max - return maximum RT priority.
6752 * @policy: scheduling class.
6753 *
6754 * this syscall returns the maximum rt_priority that can be used
6755 * by a given scheduling class.
6756 */
5add95d4 6757SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6758{
6759 int ret = -EINVAL;
6760
6761 switch (policy) {
6762 case SCHED_FIFO:
6763 case SCHED_RR:
6764 ret = MAX_USER_RT_PRIO-1;
6765 break;
6766 case SCHED_NORMAL:
b0a9499c 6767 case SCHED_BATCH:
dd41f596 6768 case SCHED_IDLE:
1da177e4
LT
6769 ret = 0;
6770 break;
6771 }
6772 return ret;
6773}
6774
6775/**
6776 * sys_sched_get_priority_min - return minimum RT priority.
6777 * @policy: scheduling class.
6778 *
6779 * this syscall returns the minimum rt_priority that can be used
6780 * by a given scheduling class.
6781 */
5add95d4 6782SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6783{
6784 int ret = -EINVAL;
6785
6786 switch (policy) {
6787 case SCHED_FIFO:
6788 case SCHED_RR:
6789 ret = 1;
6790 break;
6791 case SCHED_NORMAL:
b0a9499c 6792 case SCHED_BATCH:
dd41f596 6793 case SCHED_IDLE:
1da177e4
LT
6794 ret = 0;
6795 }
6796 return ret;
6797}
6798
6799/**
6800 * sys_sched_rr_get_interval - return the default timeslice of a process.
6801 * @pid: pid of the process.
6802 * @interval: userspace pointer to the timeslice value.
6803 *
6804 * this syscall writes the default timeslice value of a given process
6805 * into the user-space timespec buffer. A value of '0' means infinity.
6806 */
17da2bd9 6807SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6808 struct timespec __user *, interval)
1da177e4 6809{
36c8b586 6810 struct task_struct *p;
a4ec24b4 6811 unsigned int time_slice;
3a5c359a 6812 int retval;
1da177e4 6813 struct timespec t;
1da177e4
LT
6814
6815 if (pid < 0)
3a5c359a 6816 return -EINVAL;
1da177e4
LT
6817
6818 retval = -ESRCH;
6819 read_lock(&tasklist_lock);
6820 p = find_process_by_pid(pid);
6821 if (!p)
6822 goto out_unlock;
6823
6824 retval = security_task_getscheduler(p);
6825 if (retval)
6826 goto out_unlock;
6827
77034937
IM
6828 /*
6829 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6830 * tasks that are on an otherwise idle runqueue:
6831 */
6832 time_slice = 0;
6833 if (p->policy == SCHED_RR) {
a4ec24b4 6834 time_slice = DEF_TIMESLICE;
1868f958 6835 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6836 struct sched_entity *se = &p->se;
6837 unsigned long flags;
6838 struct rq *rq;
6839
6840 rq = task_rq_lock(p, &flags);
77034937
IM
6841 if (rq->cfs.load.weight)
6842 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6843 task_rq_unlock(rq, &flags);
6844 }
1da177e4 6845 read_unlock(&tasklist_lock);
a4ec24b4 6846 jiffies_to_timespec(time_slice, &t);
1da177e4 6847 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6848 return retval;
3a5c359a 6849
1da177e4
LT
6850out_unlock:
6851 read_unlock(&tasklist_lock);
6852 return retval;
6853}
6854
7c731e0a 6855static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6856
82a1fcb9 6857void sched_show_task(struct task_struct *p)
1da177e4 6858{
1da177e4 6859 unsigned long free = 0;
36c8b586 6860 unsigned state;
1da177e4 6861
1da177e4 6862 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6863 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6864 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6865#if BITS_PER_LONG == 32
1da177e4 6866 if (state == TASK_RUNNING)
cc4ea795 6867 printk(KERN_CONT " running ");
1da177e4 6868 else
cc4ea795 6869 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6870#else
6871 if (state == TASK_RUNNING)
cc4ea795 6872 printk(KERN_CONT " running task ");
1da177e4 6873 else
cc4ea795 6874 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6875#endif
6876#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6877 free = stack_not_used(p);
1da177e4 6878#endif
aa47b7e0
DR
6879 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6880 task_pid_nr(p), task_pid_nr(p->real_parent),
6881 (unsigned long)task_thread_info(p)->flags);
1da177e4 6882
5fb5e6de 6883 show_stack(p, NULL);
1da177e4
LT
6884}
6885
e59e2ae2 6886void show_state_filter(unsigned long state_filter)
1da177e4 6887{
36c8b586 6888 struct task_struct *g, *p;
1da177e4 6889
4bd77321
IM
6890#if BITS_PER_LONG == 32
6891 printk(KERN_INFO
6892 " task PC stack pid father\n");
1da177e4 6893#else
4bd77321
IM
6894 printk(KERN_INFO
6895 " task PC stack pid father\n");
1da177e4
LT
6896#endif
6897 read_lock(&tasklist_lock);
6898 do_each_thread(g, p) {
6899 /*
6900 * reset the NMI-timeout, listing all files on a slow
6901 * console might take alot of time:
6902 */
6903 touch_nmi_watchdog();
39bc89fd 6904 if (!state_filter || (p->state & state_filter))
82a1fcb9 6905 sched_show_task(p);
1da177e4
LT
6906 } while_each_thread(g, p);
6907
04c9167f
JF
6908 touch_all_softlockup_watchdogs();
6909
dd41f596
IM
6910#ifdef CONFIG_SCHED_DEBUG
6911 sysrq_sched_debug_show();
6912#endif
1da177e4 6913 read_unlock(&tasklist_lock);
e59e2ae2
IM
6914 /*
6915 * Only show locks if all tasks are dumped:
6916 */
6917 if (state_filter == -1)
6918 debug_show_all_locks();
1da177e4
LT
6919}
6920
1df21055
IM
6921void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6922{
dd41f596 6923 idle->sched_class = &idle_sched_class;
1df21055
IM
6924}
6925
f340c0d1
IM
6926/**
6927 * init_idle - set up an idle thread for a given CPU
6928 * @idle: task in question
6929 * @cpu: cpu the idle task belongs to
6930 *
6931 * NOTE: this function does not set the idle thread's NEED_RESCHED
6932 * flag, to make booting more robust.
6933 */
5c1e1767 6934void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6935{
70b97a7f 6936 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6937 unsigned long flags;
6938
5cbd54ef
IM
6939 spin_lock_irqsave(&rq->lock, flags);
6940
dd41f596
IM
6941 __sched_fork(idle);
6942 idle->se.exec_start = sched_clock();
6943
b29739f9 6944 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6945 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6946 __set_task_cpu(idle, cpu);
1da177e4 6947
1da177e4 6948 rq->curr = rq->idle = idle;
4866cde0
NP
6949#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6950 idle->oncpu = 1;
6951#endif
1da177e4
LT
6952 spin_unlock_irqrestore(&rq->lock, flags);
6953
6954 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6955#if defined(CONFIG_PREEMPT)
6956 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6957#else
a1261f54 6958 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6959#endif
dd41f596
IM
6960 /*
6961 * The idle tasks have their own, simple scheduling class:
6962 */
6963 idle->sched_class = &idle_sched_class;
fb52607a 6964 ftrace_graph_init_task(idle);
1da177e4
LT
6965}
6966
6967/*
6968 * In a system that switches off the HZ timer nohz_cpu_mask
6969 * indicates which cpus entered this state. This is used
6970 * in the rcu update to wait only for active cpus. For system
6971 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6972 * always be CPU_BITS_NONE.
1da177e4 6973 */
6a7b3dc3 6974cpumask_var_t nohz_cpu_mask;
1da177e4 6975
19978ca6
IM
6976/*
6977 * Increase the granularity value when there are more CPUs,
6978 * because with more CPUs the 'effective latency' as visible
6979 * to users decreases. But the relationship is not linear,
6980 * so pick a second-best guess by going with the log2 of the
6981 * number of CPUs.
6982 *
6983 * This idea comes from the SD scheduler of Con Kolivas:
6984 */
6985static inline void sched_init_granularity(void)
6986{
6987 unsigned int factor = 1 + ilog2(num_online_cpus());
6988 const unsigned long limit = 200000000;
6989
6990 sysctl_sched_min_granularity *= factor;
6991 if (sysctl_sched_min_granularity > limit)
6992 sysctl_sched_min_granularity = limit;
6993
6994 sysctl_sched_latency *= factor;
6995 if (sysctl_sched_latency > limit)
6996 sysctl_sched_latency = limit;
6997
6998 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6999
7000 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7001}
7002
1da177e4
LT
7003#ifdef CONFIG_SMP
7004/*
7005 * This is how migration works:
7006 *
70b97a7f 7007 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7008 * runqueue and wake up that CPU's migration thread.
7009 * 2) we down() the locked semaphore => thread blocks.
7010 * 3) migration thread wakes up (implicitly it forces the migrated
7011 * thread off the CPU)
7012 * 4) it gets the migration request and checks whether the migrated
7013 * task is still in the wrong runqueue.
7014 * 5) if it's in the wrong runqueue then the migration thread removes
7015 * it and puts it into the right queue.
7016 * 6) migration thread up()s the semaphore.
7017 * 7) we wake up and the migration is done.
7018 */
7019
7020/*
7021 * Change a given task's CPU affinity. Migrate the thread to a
7022 * proper CPU and schedule it away if the CPU it's executing on
7023 * is removed from the allowed bitmask.
7024 *
7025 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7026 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7027 * call is not atomic; no spinlocks may be held.
7028 */
96f874e2 7029int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7030{
70b97a7f 7031 struct migration_req req;
1da177e4 7032 unsigned long flags;
70b97a7f 7033 struct rq *rq;
48f24c4d 7034 int ret = 0;
1da177e4
LT
7035
7036 rq = task_rq_lock(p, &flags);
96f874e2 7037 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7038 ret = -EINVAL;
7039 goto out;
7040 }
7041
9985b0ba 7042 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7043 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7044 ret = -EINVAL;
7045 goto out;
7046 }
7047
73fe6aae 7048 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7049 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7050 else {
96f874e2
RR
7051 cpumask_copy(&p->cpus_allowed, new_mask);
7052 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7053 }
7054
1da177e4 7055 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7056 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7057 goto out;
7058
1e5ce4f4 7059 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7060 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7061 struct task_struct *mt = rq->migration_thread;
7062
7063 get_task_struct(mt);
1da177e4
LT
7064 task_rq_unlock(rq, &flags);
7065 wake_up_process(rq->migration_thread);
693525e3 7066 put_task_struct(mt);
1da177e4
LT
7067 wait_for_completion(&req.done);
7068 tlb_migrate_finish(p->mm);
7069 return 0;
7070 }
7071out:
7072 task_rq_unlock(rq, &flags);
48f24c4d 7073
1da177e4
LT
7074 return ret;
7075}
cd8ba7cd 7076EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7077
7078/*
41a2d6cf 7079 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7080 * this because either it can't run here any more (set_cpus_allowed()
7081 * away from this CPU, or CPU going down), or because we're
7082 * attempting to rebalance this task on exec (sched_exec).
7083 *
7084 * So we race with normal scheduler movements, but that's OK, as long
7085 * as the task is no longer on this CPU.
efc30814
KK
7086 *
7087 * Returns non-zero if task was successfully migrated.
1da177e4 7088 */
efc30814 7089static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7090{
70b97a7f 7091 struct rq *rq_dest, *rq_src;
dd41f596 7092 int ret = 0, on_rq;
1da177e4 7093
e761b772 7094 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7095 return ret;
1da177e4
LT
7096
7097 rq_src = cpu_rq(src_cpu);
7098 rq_dest = cpu_rq(dest_cpu);
7099
7100 double_rq_lock(rq_src, rq_dest);
7101 /* Already moved. */
7102 if (task_cpu(p) != src_cpu)
b1e38734 7103 goto done;
1da177e4 7104 /* Affinity changed (again). */
96f874e2 7105 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7106 goto fail;
1da177e4 7107
dd41f596 7108 on_rq = p->se.on_rq;
6e82a3be 7109 if (on_rq)
2e1cb74a 7110 deactivate_task(rq_src, p, 0);
6e82a3be 7111
1da177e4 7112 set_task_cpu(p, dest_cpu);
dd41f596
IM
7113 if (on_rq) {
7114 activate_task(rq_dest, p, 0);
15afe09b 7115 check_preempt_curr(rq_dest, p, 0);
1da177e4 7116 }
b1e38734 7117done:
efc30814 7118 ret = 1;
b1e38734 7119fail:
1da177e4 7120 double_rq_unlock(rq_src, rq_dest);
efc30814 7121 return ret;
1da177e4
LT
7122}
7123
03b042bf
PM
7124#define RCU_MIGRATION_IDLE 0
7125#define RCU_MIGRATION_NEED_QS 1
7126#define RCU_MIGRATION_GOT_QS 2
7127#define RCU_MIGRATION_MUST_SYNC 3
7128
1da177e4
LT
7129/*
7130 * migration_thread - this is a highprio system thread that performs
7131 * thread migration by bumping thread off CPU then 'pushing' onto
7132 * another runqueue.
7133 */
95cdf3b7 7134static int migration_thread(void *data)
1da177e4 7135{
03b042bf 7136 int badcpu;
1da177e4 7137 int cpu = (long)data;
70b97a7f 7138 struct rq *rq;
1da177e4
LT
7139
7140 rq = cpu_rq(cpu);
7141 BUG_ON(rq->migration_thread != current);
7142
7143 set_current_state(TASK_INTERRUPTIBLE);
7144 while (!kthread_should_stop()) {
70b97a7f 7145 struct migration_req *req;
1da177e4 7146 struct list_head *head;
1da177e4 7147
1da177e4
LT
7148 spin_lock_irq(&rq->lock);
7149
7150 if (cpu_is_offline(cpu)) {
7151 spin_unlock_irq(&rq->lock);
371cbb38 7152 break;
1da177e4
LT
7153 }
7154
7155 if (rq->active_balance) {
7156 active_load_balance(rq, cpu);
7157 rq->active_balance = 0;
7158 }
7159
7160 head = &rq->migration_queue;
7161
7162 if (list_empty(head)) {
7163 spin_unlock_irq(&rq->lock);
7164 schedule();
7165 set_current_state(TASK_INTERRUPTIBLE);
7166 continue;
7167 }
70b97a7f 7168 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7169 list_del_init(head->next);
7170
03b042bf
PM
7171 if (req->task != NULL) {
7172 spin_unlock(&rq->lock);
7173 __migrate_task(req->task, cpu, req->dest_cpu);
7174 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7175 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7176 spin_unlock(&rq->lock);
7177 } else {
7178 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7179 spin_unlock(&rq->lock);
7180 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7181 }
674311d5 7182 local_irq_enable();
1da177e4
LT
7183
7184 complete(&req->done);
7185 }
7186 __set_current_state(TASK_RUNNING);
1da177e4 7187
1da177e4
LT
7188 return 0;
7189}
7190
7191#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7192
7193static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7194{
7195 int ret;
7196
7197 local_irq_disable();
7198 ret = __migrate_task(p, src_cpu, dest_cpu);
7199 local_irq_enable();
7200 return ret;
7201}
7202
054b9108 7203/*
3a4fa0a2 7204 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7205 */
48f24c4d 7206static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7207{
70b97a7f 7208 int dest_cpu;
6ca09dfc 7209 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7210
7211again:
7212 /* Look for allowed, online CPU in same node. */
7213 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7214 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7215 goto move;
7216
7217 /* Any allowed, online CPU? */
7218 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7219 if (dest_cpu < nr_cpu_ids)
7220 goto move;
7221
7222 /* No more Mr. Nice Guy. */
7223 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7224 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7225 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7226
e76bd8d9
RR
7227 /*
7228 * Don't tell them about moving exiting tasks or
7229 * kernel threads (both mm NULL), since they never
7230 * leave kernel.
7231 */
7232 if (p->mm && printk_ratelimit()) {
7233 printk(KERN_INFO "process %d (%s) no "
7234 "longer affine to cpu%d\n",
7235 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7236 }
e76bd8d9
RR
7237 }
7238
7239move:
7240 /* It can have affinity changed while we were choosing. */
7241 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7242 goto again;
1da177e4
LT
7243}
7244
7245/*
7246 * While a dead CPU has no uninterruptible tasks queued at this point,
7247 * it might still have a nonzero ->nr_uninterruptible counter, because
7248 * for performance reasons the counter is not stricly tracking tasks to
7249 * their home CPUs. So we just add the counter to another CPU's counter,
7250 * to keep the global sum constant after CPU-down:
7251 */
70b97a7f 7252static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7253{
1e5ce4f4 7254 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7255 unsigned long flags;
7256
7257 local_irq_save(flags);
7258 double_rq_lock(rq_src, rq_dest);
7259 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7260 rq_src->nr_uninterruptible = 0;
7261 double_rq_unlock(rq_src, rq_dest);
7262 local_irq_restore(flags);
7263}
7264
7265/* Run through task list and migrate tasks from the dead cpu. */
7266static void migrate_live_tasks(int src_cpu)
7267{
48f24c4d 7268 struct task_struct *p, *t;
1da177e4 7269
f7b4cddc 7270 read_lock(&tasklist_lock);
1da177e4 7271
48f24c4d
IM
7272 do_each_thread(t, p) {
7273 if (p == current)
1da177e4
LT
7274 continue;
7275
48f24c4d
IM
7276 if (task_cpu(p) == src_cpu)
7277 move_task_off_dead_cpu(src_cpu, p);
7278 } while_each_thread(t, p);
1da177e4 7279
f7b4cddc 7280 read_unlock(&tasklist_lock);
1da177e4
LT
7281}
7282
dd41f596
IM
7283/*
7284 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7285 * It does so by boosting its priority to highest possible.
7286 * Used by CPU offline code.
1da177e4
LT
7287 */
7288void sched_idle_next(void)
7289{
48f24c4d 7290 int this_cpu = smp_processor_id();
70b97a7f 7291 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7292 struct task_struct *p = rq->idle;
7293 unsigned long flags;
7294
7295 /* cpu has to be offline */
48f24c4d 7296 BUG_ON(cpu_online(this_cpu));
1da177e4 7297
48f24c4d
IM
7298 /*
7299 * Strictly not necessary since rest of the CPUs are stopped by now
7300 * and interrupts disabled on the current cpu.
1da177e4
LT
7301 */
7302 spin_lock_irqsave(&rq->lock, flags);
7303
dd41f596 7304 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7305
94bc9a7b
DA
7306 update_rq_clock(rq);
7307 activate_task(rq, p, 0);
1da177e4
LT
7308
7309 spin_unlock_irqrestore(&rq->lock, flags);
7310}
7311
48f24c4d
IM
7312/*
7313 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7314 * offline.
7315 */
7316void idle_task_exit(void)
7317{
7318 struct mm_struct *mm = current->active_mm;
7319
7320 BUG_ON(cpu_online(smp_processor_id()));
7321
7322 if (mm != &init_mm)
7323 switch_mm(mm, &init_mm, current);
7324 mmdrop(mm);
7325}
7326
054b9108 7327/* called under rq->lock with disabled interrupts */
36c8b586 7328static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7329{
70b97a7f 7330 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7331
7332 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7333 BUG_ON(!p->exit_state);
1da177e4
LT
7334
7335 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7336 BUG_ON(p->state == TASK_DEAD);
1da177e4 7337
48f24c4d 7338 get_task_struct(p);
1da177e4
LT
7339
7340 /*
7341 * Drop lock around migration; if someone else moves it,
41a2d6cf 7342 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7343 * fine.
7344 */
f7b4cddc 7345 spin_unlock_irq(&rq->lock);
48f24c4d 7346 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7347 spin_lock_irq(&rq->lock);
1da177e4 7348
48f24c4d 7349 put_task_struct(p);
1da177e4
LT
7350}
7351
7352/* release_task() removes task from tasklist, so we won't find dead tasks. */
7353static void migrate_dead_tasks(unsigned int dead_cpu)
7354{
70b97a7f 7355 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7356 struct task_struct *next;
48f24c4d 7357
dd41f596
IM
7358 for ( ; ; ) {
7359 if (!rq->nr_running)
7360 break;
a8e504d2 7361 update_rq_clock(rq);
b67802ea 7362 next = pick_next_task(rq);
dd41f596
IM
7363 if (!next)
7364 break;
79c53799 7365 next->sched_class->put_prev_task(rq, next);
dd41f596 7366 migrate_dead(dead_cpu, next);
e692ab53 7367
1da177e4
LT
7368 }
7369}
dce48a84
TG
7370
7371/*
7372 * remove the tasks which were accounted by rq from calc_load_tasks.
7373 */
7374static void calc_global_load_remove(struct rq *rq)
7375{
7376 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7377 rq->calc_load_active = 0;
dce48a84 7378}
1da177e4
LT
7379#endif /* CONFIG_HOTPLUG_CPU */
7380
e692ab53
NP
7381#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7382
7383static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7384 {
7385 .procname = "sched_domain",
c57baf1e 7386 .mode = 0555,
e0361851 7387 },
38605cae 7388 {0, },
e692ab53
NP
7389};
7390
7391static struct ctl_table sd_ctl_root[] = {
e0361851 7392 {
c57baf1e 7393 .ctl_name = CTL_KERN,
e0361851 7394 .procname = "kernel",
c57baf1e 7395 .mode = 0555,
e0361851
AD
7396 .child = sd_ctl_dir,
7397 },
38605cae 7398 {0, },
e692ab53
NP
7399};
7400
7401static struct ctl_table *sd_alloc_ctl_entry(int n)
7402{
7403 struct ctl_table *entry =
5cf9f062 7404 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7405
e692ab53
NP
7406 return entry;
7407}
7408
6382bc90
MM
7409static void sd_free_ctl_entry(struct ctl_table **tablep)
7410{
cd790076 7411 struct ctl_table *entry;
6382bc90 7412
cd790076
MM
7413 /*
7414 * In the intermediate directories, both the child directory and
7415 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7416 * will always be set. In the lowest directory the names are
cd790076
MM
7417 * static strings and all have proc handlers.
7418 */
7419 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7420 if (entry->child)
7421 sd_free_ctl_entry(&entry->child);
cd790076
MM
7422 if (entry->proc_handler == NULL)
7423 kfree(entry->procname);
7424 }
6382bc90
MM
7425
7426 kfree(*tablep);
7427 *tablep = NULL;
7428}
7429
e692ab53 7430static void
e0361851 7431set_table_entry(struct ctl_table *entry,
e692ab53
NP
7432 const char *procname, void *data, int maxlen,
7433 mode_t mode, proc_handler *proc_handler)
7434{
e692ab53
NP
7435 entry->procname = procname;
7436 entry->data = data;
7437 entry->maxlen = maxlen;
7438 entry->mode = mode;
7439 entry->proc_handler = proc_handler;
7440}
7441
7442static struct ctl_table *
7443sd_alloc_ctl_domain_table(struct sched_domain *sd)
7444{
a5d8c348 7445 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7446
ad1cdc1d
MM
7447 if (table == NULL)
7448 return NULL;
7449
e0361851 7450 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7451 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7452 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7453 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7454 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7455 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7456 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7457 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7458 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7459 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7460 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7461 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7462 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7463 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7464 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7465 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7466 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7467 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7468 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7469 &sd->cache_nice_tries,
7470 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7471 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7472 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7473 set_table_entry(&table[11], "name", sd->name,
7474 CORENAME_MAX_SIZE, 0444, proc_dostring);
7475 /* &table[12] is terminator */
e692ab53
NP
7476
7477 return table;
7478}
7479
9a4e7159 7480static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7481{
7482 struct ctl_table *entry, *table;
7483 struct sched_domain *sd;
7484 int domain_num = 0, i;
7485 char buf[32];
7486
7487 for_each_domain(cpu, sd)
7488 domain_num++;
7489 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7490 if (table == NULL)
7491 return NULL;
e692ab53
NP
7492
7493 i = 0;
7494 for_each_domain(cpu, sd) {
7495 snprintf(buf, 32, "domain%d", i);
e692ab53 7496 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7497 entry->mode = 0555;
e692ab53
NP
7498 entry->child = sd_alloc_ctl_domain_table(sd);
7499 entry++;
7500 i++;
7501 }
7502 return table;
7503}
7504
7505static struct ctl_table_header *sd_sysctl_header;
6382bc90 7506static void register_sched_domain_sysctl(void)
e692ab53
NP
7507{
7508 int i, cpu_num = num_online_cpus();
7509 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7510 char buf[32];
7511
7378547f
MM
7512 WARN_ON(sd_ctl_dir[0].child);
7513 sd_ctl_dir[0].child = entry;
7514
ad1cdc1d
MM
7515 if (entry == NULL)
7516 return;
7517
97b6ea7b 7518 for_each_online_cpu(i) {
e692ab53 7519 snprintf(buf, 32, "cpu%d", i);
e692ab53 7520 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7521 entry->mode = 0555;
e692ab53 7522 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7523 entry++;
e692ab53 7524 }
7378547f
MM
7525
7526 WARN_ON(sd_sysctl_header);
e692ab53
NP
7527 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7528}
6382bc90 7529
7378547f 7530/* may be called multiple times per register */
6382bc90
MM
7531static void unregister_sched_domain_sysctl(void)
7532{
7378547f
MM
7533 if (sd_sysctl_header)
7534 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7535 sd_sysctl_header = NULL;
7378547f
MM
7536 if (sd_ctl_dir[0].child)
7537 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7538}
e692ab53 7539#else
6382bc90
MM
7540static void register_sched_domain_sysctl(void)
7541{
7542}
7543static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7544{
7545}
7546#endif
7547
1f11eb6a
GH
7548static void set_rq_online(struct rq *rq)
7549{
7550 if (!rq->online) {
7551 const struct sched_class *class;
7552
c6c4927b 7553 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7554 rq->online = 1;
7555
7556 for_each_class(class) {
7557 if (class->rq_online)
7558 class->rq_online(rq);
7559 }
7560 }
7561}
7562
7563static void set_rq_offline(struct rq *rq)
7564{
7565 if (rq->online) {
7566 const struct sched_class *class;
7567
7568 for_each_class(class) {
7569 if (class->rq_offline)
7570 class->rq_offline(rq);
7571 }
7572
c6c4927b 7573 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7574 rq->online = 0;
7575 }
7576}
7577
1da177e4
LT
7578/*
7579 * migration_call - callback that gets triggered when a CPU is added.
7580 * Here we can start up the necessary migration thread for the new CPU.
7581 */
48f24c4d
IM
7582static int __cpuinit
7583migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7584{
1da177e4 7585 struct task_struct *p;
48f24c4d 7586 int cpu = (long)hcpu;
1da177e4 7587 unsigned long flags;
70b97a7f 7588 struct rq *rq;
1da177e4
LT
7589
7590 switch (action) {
5be9361c 7591
1da177e4 7592 case CPU_UP_PREPARE:
8bb78442 7593 case CPU_UP_PREPARE_FROZEN:
dd41f596 7594 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7595 if (IS_ERR(p))
7596 return NOTIFY_BAD;
1da177e4
LT
7597 kthread_bind(p, cpu);
7598 /* Must be high prio: stop_machine expects to yield to it. */
7599 rq = task_rq_lock(p, &flags);
dd41f596 7600 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7601 task_rq_unlock(rq, &flags);
371cbb38 7602 get_task_struct(p);
1da177e4 7603 cpu_rq(cpu)->migration_thread = p;
a468d389 7604 rq->calc_load_update = calc_load_update;
1da177e4 7605 break;
48f24c4d 7606
1da177e4 7607 case CPU_ONLINE:
8bb78442 7608 case CPU_ONLINE_FROZEN:
3a4fa0a2 7609 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7610 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7611
7612 /* Update our root-domain */
7613 rq = cpu_rq(cpu);
7614 spin_lock_irqsave(&rq->lock, flags);
7615 if (rq->rd) {
c6c4927b 7616 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7617
7618 set_rq_online(rq);
1f94ef59
GH
7619 }
7620 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7621 break;
48f24c4d 7622
1da177e4
LT
7623#ifdef CONFIG_HOTPLUG_CPU
7624 case CPU_UP_CANCELED:
8bb78442 7625 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7626 if (!cpu_rq(cpu)->migration_thread)
7627 break;
41a2d6cf 7628 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7629 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7630 cpumask_any(cpu_online_mask));
1da177e4 7631 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7632 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7633 cpu_rq(cpu)->migration_thread = NULL;
7634 break;
48f24c4d 7635
1da177e4 7636 case CPU_DEAD:
8bb78442 7637 case CPU_DEAD_FROZEN:
470fd646 7638 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7639 migrate_live_tasks(cpu);
7640 rq = cpu_rq(cpu);
7641 kthread_stop(rq->migration_thread);
371cbb38 7642 put_task_struct(rq->migration_thread);
1da177e4
LT
7643 rq->migration_thread = NULL;
7644 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7645 spin_lock_irq(&rq->lock);
a8e504d2 7646 update_rq_clock(rq);
2e1cb74a 7647 deactivate_task(rq, rq->idle, 0);
1da177e4 7648 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7649 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7650 rq->idle->sched_class = &idle_sched_class;
1da177e4 7651 migrate_dead_tasks(cpu);
d2da272a 7652 spin_unlock_irq(&rq->lock);
470fd646 7653 cpuset_unlock();
1da177e4
LT
7654 migrate_nr_uninterruptible(rq);
7655 BUG_ON(rq->nr_running != 0);
dce48a84 7656 calc_global_load_remove(rq);
41a2d6cf
IM
7657 /*
7658 * No need to migrate the tasks: it was best-effort if
7659 * they didn't take sched_hotcpu_mutex. Just wake up
7660 * the requestors.
7661 */
1da177e4
LT
7662 spin_lock_irq(&rq->lock);
7663 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7664 struct migration_req *req;
7665
1da177e4 7666 req = list_entry(rq->migration_queue.next,
70b97a7f 7667 struct migration_req, list);
1da177e4 7668 list_del_init(&req->list);
9a2bd244 7669 spin_unlock_irq(&rq->lock);
1da177e4 7670 complete(&req->done);
9a2bd244 7671 spin_lock_irq(&rq->lock);
1da177e4
LT
7672 }
7673 spin_unlock_irq(&rq->lock);
7674 break;
57d885fe 7675
08f503b0
GH
7676 case CPU_DYING:
7677 case CPU_DYING_FROZEN:
57d885fe
GH
7678 /* Update our root-domain */
7679 rq = cpu_rq(cpu);
7680 spin_lock_irqsave(&rq->lock, flags);
7681 if (rq->rd) {
c6c4927b 7682 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7683 set_rq_offline(rq);
57d885fe
GH
7684 }
7685 spin_unlock_irqrestore(&rq->lock, flags);
7686 break;
1da177e4
LT
7687#endif
7688 }
7689 return NOTIFY_OK;
7690}
7691
f38b0820
PM
7692/*
7693 * Register at high priority so that task migration (migrate_all_tasks)
7694 * happens before everything else. This has to be lower priority than
7695 * the notifier in the perf_counter subsystem, though.
1da177e4 7696 */
26c2143b 7697static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7698 .notifier_call = migration_call,
7699 .priority = 10
7700};
7701
7babe8db 7702static int __init migration_init(void)
1da177e4
LT
7703{
7704 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7705 int err;
48f24c4d
IM
7706
7707 /* Start one for the boot CPU: */
07dccf33
AM
7708 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7709 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7710 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7711 register_cpu_notifier(&migration_notifier);
7babe8db 7712
a004cd42 7713 return 0;
1da177e4 7714}
7babe8db 7715early_initcall(migration_init);
1da177e4
LT
7716#endif
7717
7718#ifdef CONFIG_SMP
476f3534 7719
3e9830dc 7720#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7721
7c16ec58 7722static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7723 struct cpumask *groupmask)
1da177e4 7724{
4dcf6aff 7725 struct sched_group *group = sd->groups;
434d53b0 7726 char str[256];
1da177e4 7727
968ea6d8 7728 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7729 cpumask_clear(groupmask);
4dcf6aff
IM
7730
7731 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7732
7733 if (!(sd->flags & SD_LOAD_BALANCE)) {
7734 printk("does not load-balance\n");
7735 if (sd->parent)
7736 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7737 " has parent");
7738 return -1;
41c7ce9a
NP
7739 }
7740
eefd796a 7741 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7742
758b2cdc 7743 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7744 printk(KERN_ERR "ERROR: domain->span does not contain "
7745 "CPU%d\n", cpu);
7746 }
758b2cdc 7747 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7748 printk(KERN_ERR "ERROR: domain->groups does not contain"
7749 " CPU%d\n", cpu);
7750 }
1da177e4 7751
4dcf6aff 7752 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7753 do {
4dcf6aff
IM
7754 if (!group) {
7755 printk("\n");
7756 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7757 break;
7758 }
7759
18a3885f 7760 if (!group->cpu_power) {
4dcf6aff
IM
7761 printk(KERN_CONT "\n");
7762 printk(KERN_ERR "ERROR: domain->cpu_power not "
7763 "set\n");
7764 break;
7765 }
1da177e4 7766
758b2cdc 7767 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7768 printk(KERN_CONT "\n");
7769 printk(KERN_ERR "ERROR: empty group\n");
7770 break;
7771 }
1da177e4 7772
758b2cdc 7773 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7774 printk(KERN_CONT "\n");
7775 printk(KERN_ERR "ERROR: repeated CPUs\n");
7776 break;
7777 }
1da177e4 7778
758b2cdc 7779 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7780
968ea6d8 7781 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7782
7783 printk(KERN_CONT " %s", str);
18a3885f
PZ
7784 if (group->cpu_power != SCHED_LOAD_SCALE) {
7785 printk(KERN_CONT " (cpu_power = %d)",
7786 group->cpu_power);
381512cf 7787 }
1da177e4 7788
4dcf6aff
IM
7789 group = group->next;
7790 } while (group != sd->groups);
7791 printk(KERN_CONT "\n");
1da177e4 7792
758b2cdc 7793 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7794 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7795
758b2cdc
RR
7796 if (sd->parent &&
7797 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7798 printk(KERN_ERR "ERROR: parent span is not a superset "
7799 "of domain->span\n");
7800 return 0;
7801}
1da177e4 7802
4dcf6aff
IM
7803static void sched_domain_debug(struct sched_domain *sd, int cpu)
7804{
d5dd3db1 7805 cpumask_var_t groupmask;
4dcf6aff 7806 int level = 0;
1da177e4 7807
4dcf6aff
IM
7808 if (!sd) {
7809 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7810 return;
7811 }
1da177e4 7812
4dcf6aff
IM
7813 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7814
d5dd3db1 7815 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7816 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7817 return;
7818 }
7819
4dcf6aff 7820 for (;;) {
7c16ec58 7821 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7822 break;
1da177e4
LT
7823 level++;
7824 sd = sd->parent;
33859f7f 7825 if (!sd)
4dcf6aff
IM
7826 break;
7827 }
d5dd3db1 7828 free_cpumask_var(groupmask);
1da177e4 7829}
6d6bc0ad 7830#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7831# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7832#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7833
1a20ff27 7834static int sd_degenerate(struct sched_domain *sd)
245af2c7 7835{
758b2cdc 7836 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7837 return 1;
7838
7839 /* Following flags need at least 2 groups */
7840 if (sd->flags & (SD_LOAD_BALANCE |
7841 SD_BALANCE_NEWIDLE |
7842 SD_BALANCE_FORK |
89c4710e
SS
7843 SD_BALANCE_EXEC |
7844 SD_SHARE_CPUPOWER |
7845 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7846 if (sd->groups != sd->groups->next)
7847 return 0;
7848 }
7849
7850 /* Following flags don't use groups */
c88d5910 7851 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7852 return 0;
7853
7854 return 1;
7855}
7856
48f24c4d
IM
7857static int
7858sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7859{
7860 unsigned long cflags = sd->flags, pflags = parent->flags;
7861
7862 if (sd_degenerate(parent))
7863 return 1;
7864
758b2cdc 7865 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7866 return 0;
7867
245af2c7
SS
7868 /* Flags needing groups don't count if only 1 group in parent */
7869 if (parent->groups == parent->groups->next) {
7870 pflags &= ~(SD_LOAD_BALANCE |
7871 SD_BALANCE_NEWIDLE |
7872 SD_BALANCE_FORK |
89c4710e
SS
7873 SD_BALANCE_EXEC |
7874 SD_SHARE_CPUPOWER |
7875 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7876 if (nr_node_ids == 1)
7877 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7878 }
7879 if (~cflags & pflags)
7880 return 0;
7881
7882 return 1;
7883}
7884
c6c4927b
RR
7885static void free_rootdomain(struct root_domain *rd)
7886{
68e74568
RR
7887 cpupri_cleanup(&rd->cpupri);
7888
c6c4927b
RR
7889 free_cpumask_var(rd->rto_mask);
7890 free_cpumask_var(rd->online);
7891 free_cpumask_var(rd->span);
7892 kfree(rd);
7893}
7894
57d885fe
GH
7895static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7896{
a0490fa3 7897 struct root_domain *old_rd = NULL;
57d885fe 7898 unsigned long flags;
57d885fe
GH
7899
7900 spin_lock_irqsave(&rq->lock, flags);
7901
7902 if (rq->rd) {
a0490fa3 7903 old_rd = rq->rd;
57d885fe 7904
c6c4927b 7905 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7906 set_rq_offline(rq);
57d885fe 7907
c6c4927b 7908 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7909
a0490fa3
IM
7910 /*
7911 * If we dont want to free the old_rt yet then
7912 * set old_rd to NULL to skip the freeing later
7913 * in this function:
7914 */
7915 if (!atomic_dec_and_test(&old_rd->refcount))
7916 old_rd = NULL;
57d885fe
GH
7917 }
7918
7919 atomic_inc(&rd->refcount);
7920 rq->rd = rd;
7921
c6c4927b 7922 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7923 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7924 set_rq_online(rq);
57d885fe
GH
7925
7926 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7927
7928 if (old_rd)
7929 free_rootdomain(old_rd);
57d885fe
GH
7930}
7931
fd5e1b5d 7932static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7933{
36b7b6d4
PE
7934 gfp_t gfp = GFP_KERNEL;
7935
57d885fe
GH
7936 memset(rd, 0, sizeof(*rd));
7937
36b7b6d4
PE
7938 if (bootmem)
7939 gfp = GFP_NOWAIT;
c6c4927b 7940
36b7b6d4 7941 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7942 goto out;
36b7b6d4 7943 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7944 goto free_span;
36b7b6d4 7945 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7946 goto free_online;
6e0534f2 7947
0fb53029 7948 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7949 goto free_rto_mask;
c6c4927b 7950 return 0;
6e0534f2 7951
68e74568
RR
7952free_rto_mask:
7953 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7954free_online:
7955 free_cpumask_var(rd->online);
7956free_span:
7957 free_cpumask_var(rd->span);
0c910d28 7958out:
c6c4927b 7959 return -ENOMEM;
57d885fe
GH
7960}
7961
7962static void init_defrootdomain(void)
7963{
c6c4927b
RR
7964 init_rootdomain(&def_root_domain, true);
7965
57d885fe
GH
7966 atomic_set(&def_root_domain.refcount, 1);
7967}
7968
dc938520 7969static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7970{
7971 struct root_domain *rd;
7972
7973 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7974 if (!rd)
7975 return NULL;
7976
c6c4927b
RR
7977 if (init_rootdomain(rd, false) != 0) {
7978 kfree(rd);
7979 return NULL;
7980 }
57d885fe
GH
7981
7982 return rd;
7983}
7984
1da177e4 7985/*
0eab9146 7986 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7987 * hold the hotplug lock.
7988 */
0eab9146
IM
7989static void
7990cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7991{
70b97a7f 7992 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7993 struct sched_domain *tmp;
7994
7995 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7996 for (tmp = sd; tmp; ) {
245af2c7
SS
7997 struct sched_domain *parent = tmp->parent;
7998 if (!parent)
7999 break;
f29c9b1c 8000
1a848870 8001 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8002 tmp->parent = parent->parent;
1a848870
SS
8003 if (parent->parent)
8004 parent->parent->child = tmp;
f29c9b1c
LZ
8005 } else
8006 tmp = tmp->parent;
245af2c7
SS
8007 }
8008
1a848870 8009 if (sd && sd_degenerate(sd)) {
245af2c7 8010 sd = sd->parent;
1a848870
SS
8011 if (sd)
8012 sd->child = NULL;
8013 }
1da177e4
LT
8014
8015 sched_domain_debug(sd, cpu);
8016
57d885fe 8017 rq_attach_root(rq, rd);
674311d5 8018 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8019}
8020
8021/* cpus with isolated domains */
dcc30a35 8022static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8023
8024/* Setup the mask of cpus configured for isolated domains */
8025static int __init isolated_cpu_setup(char *str)
8026{
968ea6d8 8027 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8028 return 1;
8029}
8030
8927f494 8031__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8032
8033/*
6711cab4
SS
8034 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8035 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8036 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8037 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8038 *
8039 * init_sched_build_groups will build a circular linked list of the groups
8040 * covered by the given span, and will set each group's ->cpumask correctly,
8041 * and ->cpu_power to 0.
8042 */
a616058b 8043static void
96f874e2
RR
8044init_sched_build_groups(const struct cpumask *span,
8045 const struct cpumask *cpu_map,
8046 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8047 struct sched_group **sg,
96f874e2
RR
8048 struct cpumask *tmpmask),
8049 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8050{
8051 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8052 int i;
8053
96f874e2 8054 cpumask_clear(covered);
7c16ec58 8055
abcd083a 8056 for_each_cpu(i, span) {
6711cab4 8057 struct sched_group *sg;
7c16ec58 8058 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8059 int j;
8060
758b2cdc 8061 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8062 continue;
8063
758b2cdc 8064 cpumask_clear(sched_group_cpus(sg));
18a3885f 8065 sg->cpu_power = 0;
1da177e4 8066
abcd083a 8067 for_each_cpu(j, span) {
7c16ec58 8068 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8069 continue;
8070
96f874e2 8071 cpumask_set_cpu(j, covered);
758b2cdc 8072 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8073 }
8074 if (!first)
8075 first = sg;
8076 if (last)
8077 last->next = sg;
8078 last = sg;
8079 }
8080 last->next = first;
8081}
8082
9c1cfda2 8083#define SD_NODES_PER_DOMAIN 16
1da177e4 8084
9c1cfda2 8085#ifdef CONFIG_NUMA
198e2f18 8086
9c1cfda2
JH
8087/**
8088 * find_next_best_node - find the next node to include in a sched_domain
8089 * @node: node whose sched_domain we're building
8090 * @used_nodes: nodes already in the sched_domain
8091 *
41a2d6cf 8092 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8093 * finds the closest node not already in the @used_nodes map.
8094 *
8095 * Should use nodemask_t.
8096 */
c5f59f08 8097static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8098{
8099 int i, n, val, min_val, best_node = 0;
8100
8101 min_val = INT_MAX;
8102
076ac2af 8103 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8104 /* Start at @node */
076ac2af 8105 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8106
8107 if (!nr_cpus_node(n))
8108 continue;
8109
8110 /* Skip already used nodes */
c5f59f08 8111 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8112 continue;
8113
8114 /* Simple min distance search */
8115 val = node_distance(node, n);
8116
8117 if (val < min_val) {
8118 min_val = val;
8119 best_node = n;
8120 }
8121 }
8122
c5f59f08 8123 node_set(best_node, *used_nodes);
9c1cfda2
JH
8124 return best_node;
8125}
8126
8127/**
8128 * sched_domain_node_span - get a cpumask for a node's sched_domain
8129 * @node: node whose cpumask we're constructing
73486722 8130 * @span: resulting cpumask
9c1cfda2 8131 *
41a2d6cf 8132 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8133 * should be one that prevents unnecessary balancing, but also spreads tasks
8134 * out optimally.
8135 */
96f874e2 8136static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8137{
c5f59f08 8138 nodemask_t used_nodes;
48f24c4d 8139 int i;
9c1cfda2 8140
6ca09dfc 8141 cpumask_clear(span);
c5f59f08 8142 nodes_clear(used_nodes);
9c1cfda2 8143
6ca09dfc 8144 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8145 node_set(node, used_nodes);
9c1cfda2
JH
8146
8147 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8148 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8149
6ca09dfc 8150 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8151 }
9c1cfda2 8152}
6d6bc0ad 8153#endif /* CONFIG_NUMA */
9c1cfda2 8154
5c45bf27 8155int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8156
6c99e9ad
RR
8157/*
8158 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8159 *
8160 * ( See the the comments in include/linux/sched.h:struct sched_group
8161 * and struct sched_domain. )
6c99e9ad
RR
8162 */
8163struct static_sched_group {
8164 struct sched_group sg;
8165 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8166};
8167
8168struct static_sched_domain {
8169 struct sched_domain sd;
8170 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8171};
8172
49a02c51
AH
8173struct s_data {
8174#ifdef CONFIG_NUMA
8175 int sd_allnodes;
8176 cpumask_var_t domainspan;
8177 cpumask_var_t covered;
8178 cpumask_var_t notcovered;
8179#endif
8180 cpumask_var_t nodemask;
8181 cpumask_var_t this_sibling_map;
8182 cpumask_var_t this_core_map;
8183 cpumask_var_t send_covered;
8184 cpumask_var_t tmpmask;
8185 struct sched_group **sched_group_nodes;
8186 struct root_domain *rd;
8187};
8188
2109b99e
AH
8189enum s_alloc {
8190 sa_sched_groups = 0,
8191 sa_rootdomain,
8192 sa_tmpmask,
8193 sa_send_covered,
8194 sa_this_core_map,
8195 sa_this_sibling_map,
8196 sa_nodemask,
8197 sa_sched_group_nodes,
8198#ifdef CONFIG_NUMA
8199 sa_notcovered,
8200 sa_covered,
8201 sa_domainspan,
8202#endif
8203 sa_none,
8204};
8205
9c1cfda2 8206/*
48f24c4d 8207 * SMT sched-domains:
9c1cfda2 8208 */
1da177e4 8209#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8210static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8211static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8212
41a2d6cf 8213static int
96f874e2
RR
8214cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8215 struct sched_group **sg, struct cpumask *unused)
1da177e4 8216{
6711cab4 8217 if (sg)
6c99e9ad 8218 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8219 return cpu;
8220}
6d6bc0ad 8221#endif /* CONFIG_SCHED_SMT */
1da177e4 8222
48f24c4d
IM
8223/*
8224 * multi-core sched-domains:
8225 */
1e9f28fa 8226#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8227static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8228static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8229#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8230
8231#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8232static int
96f874e2
RR
8233cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8234 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8235{
6711cab4 8236 int group;
7c16ec58 8237
c69fc56d 8238 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8239 group = cpumask_first(mask);
6711cab4 8240 if (sg)
6c99e9ad 8241 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8242 return group;
1e9f28fa
SS
8243}
8244#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8245static int
96f874e2
RR
8246cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8247 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8248{
6711cab4 8249 if (sg)
6c99e9ad 8250 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8251 return cpu;
8252}
8253#endif
8254
6c99e9ad
RR
8255static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8256static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8257
41a2d6cf 8258static int
96f874e2
RR
8259cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8260 struct sched_group **sg, struct cpumask *mask)
1da177e4 8261{
6711cab4 8262 int group;
48f24c4d 8263#ifdef CONFIG_SCHED_MC
6ca09dfc 8264 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8265 group = cpumask_first(mask);
1e9f28fa 8266#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8267 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8268 group = cpumask_first(mask);
1da177e4 8269#else
6711cab4 8270 group = cpu;
1da177e4 8271#endif
6711cab4 8272 if (sg)
6c99e9ad 8273 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8274 return group;
1da177e4
LT
8275}
8276
8277#ifdef CONFIG_NUMA
1da177e4 8278/*
9c1cfda2
JH
8279 * The init_sched_build_groups can't handle what we want to do with node
8280 * groups, so roll our own. Now each node has its own list of groups which
8281 * gets dynamically allocated.
1da177e4 8282 */
62ea9ceb 8283static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8284static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8285
62ea9ceb 8286static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8287static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8288
96f874e2
RR
8289static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8290 struct sched_group **sg,
8291 struct cpumask *nodemask)
9c1cfda2 8292{
6711cab4
SS
8293 int group;
8294
6ca09dfc 8295 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8296 group = cpumask_first(nodemask);
6711cab4
SS
8297
8298 if (sg)
6c99e9ad 8299 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8300 return group;
1da177e4 8301}
6711cab4 8302
08069033
SS
8303static void init_numa_sched_groups_power(struct sched_group *group_head)
8304{
8305 struct sched_group *sg = group_head;
8306 int j;
8307
8308 if (!sg)
8309 return;
3a5c359a 8310 do {
758b2cdc 8311 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8312 struct sched_domain *sd;
08069033 8313
6c99e9ad 8314 sd = &per_cpu(phys_domains, j).sd;
13318a71 8315 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8316 /*
8317 * Only add "power" once for each
8318 * physical package.
8319 */
8320 continue;
8321 }
08069033 8322
18a3885f 8323 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8324 }
8325 sg = sg->next;
8326 } while (sg != group_head);
08069033 8327}
0601a88d
AH
8328
8329static int build_numa_sched_groups(struct s_data *d,
8330 const struct cpumask *cpu_map, int num)
8331{
8332 struct sched_domain *sd;
8333 struct sched_group *sg, *prev;
8334 int n, j;
8335
8336 cpumask_clear(d->covered);
8337 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8338 if (cpumask_empty(d->nodemask)) {
8339 d->sched_group_nodes[num] = NULL;
8340 goto out;
8341 }
8342
8343 sched_domain_node_span(num, d->domainspan);
8344 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8345
8346 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8347 GFP_KERNEL, num);
8348 if (!sg) {
8349 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8350 num);
8351 return -ENOMEM;
8352 }
8353 d->sched_group_nodes[num] = sg;
8354
8355 for_each_cpu(j, d->nodemask) {
8356 sd = &per_cpu(node_domains, j).sd;
8357 sd->groups = sg;
8358 }
8359
18a3885f 8360 sg->cpu_power = 0;
0601a88d
AH
8361 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8362 sg->next = sg;
8363 cpumask_or(d->covered, d->covered, d->nodemask);
8364
8365 prev = sg;
8366 for (j = 0; j < nr_node_ids; j++) {
8367 n = (num + j) % nr_node_ids;
8368 cpumask_complement(d->notcovered, d->covered);
8369 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8370 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8371 if (cpumask_empty(d->tmpmask))
8372 break;
8373 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8374 if (cpumask_empty(d->tmpmask))
8375 continue;
8376 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8377 GFP_KERNEL, num);
8378 if (!sg) {
8379 printk(KERN_WARNING
8380 "Can not alloc domain group for node %d\n", j);
8381 return -ENOMEM;
8382 }
18a3885f 8383 sg->cpu_power = 0;
0601a88d
AH
8384 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8385 sg->next = prev->next;
8386 cpumask_or(d->covered, d->covered, d->tmpmask);
8387 prev->next = sg;
8388 prev = sg;
8389 }
8390out:
8391 return 0;
8392}
6d6bc0ad 8393#endif /* CONFIG_NUMA */
1da177e4 8394
a616058b 8395#ifdef CONFIG_NUMA
51888ca2 8396/* Free memory allocated for various sched_group structures */
96f874e2
RR
8397static void free_sched_groups(const struct cpumask *cpu_map,
8398 struct cpumask *nodemask)
51888ca2 8399{
a616058b 8400 int cpu, i;
51888ca2 8401
abcd083a 8402 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8403 struct sched_group **sched_group_nodes
8404 = sched_group_nodes_bycpu[cpu];
8405
51888ca2
SV
8406 if (!sched_group_nodes)
8407 continue;
8408
076ac2af 8409 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8410 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8411
6ca09dfc 8412 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8413 if (cpumask_empty(nodemask))
51888ca2
SV
8414 continue;
8415
8416 if (sg == NULL)
8417 continue;
8418 sg = sg->next;
8419next_sg:
8420 oldsg = sg;
8421 sg = sg->next;
8422 kfree(oldsg);
8423 if (oldsg != sched_group_nodes[i])
8424 goto next_sg;
8425 }
8426 kfree(sched_group_nodes);
8427 sched_group_nodes_bycpu[cpu] = NULL;
8428 }
51888ca2 8429}
6d6bc0ad 8430#else /* !CONFIG_NUMA */
96f874e2
RR
8431static void free_sched_groups(const struct cpumask *cpu_map,
8432 struct cpumask *nodemask)
a616058b
SS
8433{
8434}
6d6bc0ad 8435#endif /* CONFIG_NUMA */
51888ca2 8436
89c4710e
SS
8437/*
8438 * Initialize sched groups cpu_power.
8439 *
8440 * cpu_power indicates the capacity of sched group, which is used while
8441 * distributing the load between different sched groups in a sched domain.
8442 * Typically cpu_power for all the groups in a sched domain will be same unless
8443 * there are asymmetries in the topology. If there are asymmetries, group
8444 * having more cpu_power will pickup more load compared to the group having
8445 * less cpu_power.
89c4710e
SS
8446 */
8447static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8448{
8449 struct sched_domain *child;
8450 struct sched_group *group;
f93e65c1
PZ
8451 long power;
8452 int weight;
89c4710e
SS
8453
8454 WARN_ON(!sd || !sd->groups);
8455
13318a71 8456 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8457 return;
8458
8459 child = sd->child;
8460
18a3885f 8461 sd->groups->cpu_power = 0;
5517d86b 8462
f93e65c1
PZ
8463 if (!child) {
8464 power = SCHED_LOAD_SCALE;
8465 weight = cpumask_weight(sched_domain_span(sd));
8466 /*
8467 * SMT siblings share the power of a single core.
a52bfd73
PZ
8468 * Usually multiple threads get a better yield out of
8469 * that one core than a single thread would have,
8470 * reflect that in sd->smt_gain.
f93e65c1 8471 */
a52bfd73
PZ
8472 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8473 power *= sd->smt_gain;
f93e65c1 8474 power /= weight;
a52bfd73
PZ
8475 power >>= SCHED_LOAD_SHIFT;
8476 }
18a3885f 8477 sd->groups->cpu_power += power;
89c4710e
SS
8478 return;
8479 }
8480
89c4710e 8481 /*
f93e65c1 8482 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8483 */
8484 group = child->groups;
8485 do {
18a3885f 8486 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8487 group = group->next;
8488 } while (group != child->groups);
8489}
8490
7c16ec58
MT
8491/*
8492 * Initializers for schedule domains
8493 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8494 */
8495
a5d8c348
IM
8496#ifdef CONFIG_SCHED_DEBUG
8497# define SD_INIT_NAME(sd, type) sd->name = #type
8498#else
8499# define SD_INIT_NAME(sd, type) do { } while (0)
8500#endif
8501
7c16ec58 8502#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8503
7c16ec58
MT
8504#define SD_INIT_FUNC(type) \
8505static noinline void sd_init_##type(struct sched_domain *sd) \
8506{ \
8507 memset(sd, 0, sizeof(*sd)); \
8508 *sd = SD_##type##_INIT; \
1d3504fc 8509 sd->level = SD_LV_##type; \
a5d8c348 8510 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8511}
8512
8513SD_INIT_FUNC(CPU)
8514#ifdef CONFIG_NUMA
8515 SD_INIT_FUNC(ALLNODES)
8516 SD_INIT_FUNC(NODE)
8517#endif
8518#ifdef CONFIG_SCHED_SMT
8519 SD_INIT_FUNC(SIBLING)
8520#endif
8521#ifdef CONFIG_SCHED_MC
8522 SD_INIT_FUNC(MC)
8523#endif
8524
1d3504fc
HS
8525static int default_relax_domain_level = -1;
8526
8527static int __init setup_relax_domain_level(char *str)
8528{
30e0e178
LZ
8529 unsigned long val;
8530
8531 val = simple_strtoul(str, NULL, 0);
8532 if (val < SD_LV_MAX)
8533 default_relax_domain_level = val;
8534
1d3504fc
HS
8535 return 1;
8536}
8537__setup("relax_domain_level=", setup_relax_domain_level);
8538
8539static void set_domain_attribute(struct sched_domain *sd,
8540 struct sched_domain_attr *attr)
8541{
8542 int request;
8543
8544 if (!attr || attr->relax_domain_level < 0) {
8545 if (default_relax_domain_level < 0)
8546 return;
8547 else
8548 request = default_relax_domain_level;
8549 } else
8550 request = attr->relax_domain_level;
8551 if (request < sd->level) {
8552 /* turn off idle balance on this domain */
c88d5910 8553 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8554 } else {
8555 /* turn on idle balance on this domain */
c88d5910 8556 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8557 }
8558}
8559
2109b99e
AH
8560static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8561 const struct cpumask *cpu_map)
8562{
8563 switch (what) {
8564 case sa_sched_groups:
8565 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8566 d->sched_group_nodes = NULL;
8567 case sa_rootdomain:
8568 free_rootdomain(d->rd); /* fall through */
8569 case sa_tmpmask:
8570 free_cpumask_var(d->tmpmask); /* fall through */
8571 case sa_send_covered:
8572 free_cpumask_var(d->send_covered); /* fall through */
8573 case sa_this_core_map:
8574 free_cpumask_var(d->this_core_map); /* fall through */
8575 case sa_this_sibling_map:
8576 free_cpumask_var(d->this_sibling_map); /* fall through */
8577 case sa_nodemask:
8578 free_cpumask_var(d->nodemask); /* fall through */
8579 case sa_sched_group_nodes:
d1b55138 8580#ifdef CONFIG_NUMA
2109b99e
AH
8581 kfree(d->sched_group_nodes); /* fall through */
8582 case sa_notcovered:
8583 free_cpumask_var(d->notcovered); /* fall through */
8584 case sa_covered:
8585 free_cpumask_var(d->covered); /* fall through */
8586 case sa_domainspan:
8587 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8588#endif
2109b99e
AH
8589 case sa_none:
8590 break;
8591 }
8592}
3404c8d9 8593
2109b99e
AH
8594static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8595 const struct cpumask *cpu_map)
8596{
3404c8d9 8597#ifdef CONFIG_NUMA
2109b99e
AH
8598 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8599 return sa_none;
8600 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8601 return sa_domainspan;
8602 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8603 return sa_covered;
8604 /* Allocate the per-node list of sched groups */
8605 d->sched_group_nodes = kcalloc(nr_node_ids,
8606 sizeof(struct sched_group *), GFP_KERNEL);
8607 if (!d->sched_group_nodes) {
d1b55138 8608 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8609 return sa_notcovered;
d1b55138 8610 }
2109b99e 8611 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8612#endif
2109b99e
AH
8613 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8614 return sa_sched_group_nodes;
8615 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8616 return sa_nodemask;
8617 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8618 return sa_this_sibling_map;
8619 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8620 return sa_this_core_map;
8621 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8622 return sa_send_covered;
8623 d->rd = alloc_rootdomain();
8624 if (!d->rd) {
57d885fe 8625 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8626 return sa_tmpmask;
57d885fe 8627 }
2109b99e
AH
8628 return sa_rootdomain;
8629}
57d885fe 8630
7f4588f3
AH
8631static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8632 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8633{
8634 struct sched_domain *sd = NULL;
7c16ec58 8635#ifdef CONFIG_NUMA
7f4588f3 8636 struct sched_domain *parent;
1da177e4 8637
7f4588f3
AH
8638 d->sd_allnodes = 0;
8639 if (cpumask_weight(cpu_map) >
8640 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8641 sd = &per_cpu(allnodes_domains, i).sd;
8642 SD_INIT(sd, ALLNODES);
1d3504fc 8643 set_domain_attribute(sd, attr);
7f4588f3
AH
8644 cpumask_copy(sched_domain_span(sd), cpu_map);
8645 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8646 d->sd_allnodes = 1;
8647 }
8648 parent = sd;
8649
8650 sd = &per_cpu(node_domains, i).sd;
8651 SD_INIT(sd, NODE);
8652 set_domain_attribute(sd, attr);
8653 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8654 sd->parent = parent;
8655 if (parent)
8656 parent->child = sd;
8657 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8658#endif
7f4588f3
AH
8659 return sd;
8660}
1da177e4 8661
87cce662
AH
8662static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8663 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8664 struct sched_domain *parent, int i)
8665{
8666 struct sched_domain *sd;
8667 sd = &per_cpu(phys_domains, i).sd;
8668 SD_INIT(sd, CPU);
8669 set_domain_attribute(sd, attr);
8670 cpumask_copy(sched_domain_span(sd), d->nodemask);
8671 sd->parent = parent;
8672 if (parent)
8673 parent->child = sd;
8674 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8675 return sd;
8676}
1da177e4 8677
410c4081
AH
8678static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8679 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8680 struct sched_domain *parent, int i)
8681{
8682 struct sched_domain *sd = parent;
1e9f28fa 8683#ifdef CONFIG_SCHED_MC
410c4081
AH
8684 sd = &per_cpu(core_domains, i).sd;
8685 SD_INIT(sd, MC);
8686 set_domain_attribute(sd, attr);
8687 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8688 sd->parent = parent;
8689 parent->child = sd;
8690 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8691#endif
410c4081
AH
8692 return sd;
8693}
1e9f28fa 8694
d8173535
AH
8695static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8696 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8697 struct sched_domain *parent, int i)
8698{
8699 struct sched_domain *sd = parent;
1da177e4 8700#ifdef CONFIG_SCHED_SMT
d8173535
AH
8701 sd = &per_cpu(cpu_domains, i).sd;
8702 SD_INIT(sd, SIBLING);
8703 set_domain_attribute(sd, attr);
8704 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8705 sd->parent = parent;
8706 parent->child = sd;
8707 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8708#endif
d8173535
AH
8709 return sd;
8710}
1da177e4 8711
0e8e85c9
AH
8712static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8713 const struct cpumask *cpu_map, int cpu)
8714{
8715 switch (l) {
1da177e4 8716#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8717 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8718 cpumask_and(d->this_sibling_map, cpu_map,
8719 topology_thread_cpumask(cpu));
8720 if (cpu == cpumask_first(d->this_sibling_map))
8721 init_sched_build_groups(d->this_sibling_map, cpu_map,
8722 &cpu_to_cpu_group,
8723 d->send_covered, d->tmpmask);
8724 break;
1da177e4 8725#endif
1e9f28fa 8726#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8727 case SD_LV_MC: /* set up multi-core groups */
8728 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8729 if (cpu == cpumask_first(d->this_core_map))
8730 init_sched_build_groups(d->this_core_map, cpu_map,
8731 &cpu_to_core_group,
8732 d->send_covered, d->tmpmask);
8733 break;
1e9f28fa 8734#endif
86548096
AH
8735 case SD_LV_CPU: /* set up physical groups */
8736 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8737 if (!cpumask_empty(d->nodemask))
8738 init_sched_build_groups(d->nodemask, cpu_map,
8739 &cpu_to_phys_group,
8740 d->send_covered, d->tmpmask);
8741 break;
1da177e4 8742#ifdef CONFIG_NUMA
de616e36
AH
8743 case SD_LV_ALLNODES:
8744 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8745 d->send_covered, d->tmpmask);
8746 break;
8747#endif
0e8e85c9
AH
8748 default:
8749 break;
7c16ec58 8750 }
0e8e85c9 8751}
9c1cfda2 8752
2109b99e
AH
8753/*
8754 * Build sched domains for a given set of cpus and attach the sched domains
8755 * to the individual cpus
8756 */
8757static int __build_sched_domains(const struct cpumask *cpu_map,
8758 struct sched_domain_attr *attr)
8759{
8760 enum s_alloc alloc_state = sa_none;
8761 struct s_data d;
294b0c96 8762 struct sched_domain *sd;
2109b99e 8763 int i;
7c16ec58 8764#ifdef CONFIG_NUMA
2109b99e 8765 d.sd_allnodes = 0;
7c16ec58 8766#endif
9c1cfda2 8767
2109b99e
AH
8768 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8769 if (alloc_state != sa_rootdomain)
8770 goto error;
8771 alloc_state = sa_sched_groups;
9c1cfda2 8772
1da177e4 8773 /*
1a20ff27 8774 * Set up domains for cpus specified by the cpu_map.
1da177e4 8775 */
abcd083a 8776 for_each_cpu(i, cpu_map) {
49a02c51
AH
8777 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8778 cpu_map);
9761eea8 8779
7f4588f3 8780 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8781 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8782 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8783 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8784 }
9c1cfda2 8785
abcd083a 8786 for_each_cpu(i, cpu_map) {
0e8e85c9 8787 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8788 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8789 }
9c1cfda2 8790
1da177e4 8791 /* Set up physical groups */
86548096
AH
8792 for (i = 0; i < nr_node_ids; i++)
8793 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8794
1da177e4
LT
8795#ifdef CONFIG_NUMA
8796 /* Set up node groups */
de616e36
AH
8797 if (d.sd_allnodes)
8798 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8799
0601a88d
AH
8800 for (i = 0; i < nr_node_ids; i++)
8801 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8802 goto error;
1da177e4
LT
8803#endif
8804
8805 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8806#ifdef CONFIG_SCHED_SMT
abcd083a 8807 for_each_cpu(i, cpu_map) {
294b0c96 8808 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8809 init_sched_groups_power(i, sd);
5c45bf27 8810 }
1da177e4 8811#endif
1e9f28fa 8812#ifdef CONFIG_SCHED_MC
abcd083a 8813 for_each_cpu(i, cpu_map) {
294b0c96 8814 sd = &per_cpu(core_domains, i).sd;
89c4710e 8815 init_sched_groups_power(i, sd);
5c45bf27
SS
8816 }
8817#endif
1e9f28fa 8818
abcd083a 8819 for_each_cpu(i, cpu_map) {
294b0c96 8820 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8821 init_sched_groups_power(i, sd);
1da177e4
LT
8822 }
8823
9c1cfda2 8824#ifdef CONFIG_NUMA
076ac2af 8825 for (i = 0; i < nr_node_ids; i++)
49a02c51 8826 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8827
49a02c51 8828 if (d.sd_allnodes) {
6711cab4 8829 struct sched_group *sg;
f712c0c7 8830
96f874e2 8831 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8832 d.tmpmask);
f712c0c7
SS
8833 init_numa_sched_groups_power(sg);
8834 }
9c1cfda2
JH
8835#endif
8836
1da177e4 8837 /* Attach the domains */
abcd083a 8838 for_each_cpu(i, cpu_map) {
1da177e4 8839#ifdef CONFIG_SCHED_SMT
6c99e9ad 8840 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8841#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8842 sd = &per_cpu(core_domains, i).sd;
1da177e4 8843#else
6c99e9ad 8844 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8845#endif
49a02c51 8846 cpu_attach_domain(sd, d.rd, i);
1da177e4 8847 }
51888ca2 8848
2109b99e
AH
8849 d.sched_group_nodes = NULL; /* don't free this we still need it */
8850 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8851 return 0;
51888ca2 8852
51888ca2 8853error:
2109b99e
AH
8854 __free_domain_allocs(&d, alloc_state, cpu_map);
8855 return -ENOMEM;
1da177e4 8856}
029190c5 8857
96f874e2 8858static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8859{
8860 return __build_sched_domains(cpu_map, NULL);
8861}
8862
96f874e2 8863static struct cpumask *doms_cur; /* current sched domains */
029190c5 8864static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8865static struct sched_domain_attr *dattr_cur;
8866 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8867
8868/*
8869 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8870 * cpumask) fails, then fallback to a single sched domain,
8871 * as determined by the single cpumask fallback_doms.
029190c5 8872 */
4212823f 8873static cpumask_var_t fallback_doms;
029190c5 8874
ee79d1bd
HC
8875/*
8876 * arch_update_cpu_topology lets virtualized architectures update the
8877 * cpu core maps. It is supposed to return 1 if the topology changed
8878 * or 0 if it stayed the same.
8879 */
8880int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8881{
ee79d1bd 8882 return 0;
22e52b07
HC
8883}
8884
1a20ff27 8885/*
41a2d6cf 8886 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8887 * For now this just excludes isolated cpus, but could be used to
8888 * exclude other special cases in the future.
1a20ff27 8889 */
96f874e2 8890static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8891{
7378547f
MM
8892 int err;
8893
22e52b07 8894 arch_update_cpu_topology();
029190c5 8895 ndoms_cur = 1;
96f874e2 8896 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8897 if (!doms_cur)
4212823f 8898 doms_cur = fallback_doms;
dcc30a35 8899 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8900 dattr_cur = NULL;
7378547f 8901 err = build_sched_domains(doms_cur);
6382bc90 8902 register_sched_domain_sysctl();
7378547f
MM
8903
8904 return err;
1a20ff27
DG
8905}
8906
96f874e2
RR
8907static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8908 struct cpumask *tmpmask)
1da177e4 8909{
7c16ec58 8910 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8911}
1da177e4 8912
1a20ff27
DG
8913/*
8914 * Detach sched domains from a group of cpus specified in cpu_map
8915 * These cpus will now be attached to the NULL domain
8916 */
96f874e2 8917static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8918{
96f874e2
RR
8919 /* Save because hotplug lock held. */
8920 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8921 int i;
8922
abcd083a 8923 for_each_cpu(i, cpu_map)
57d885fe 8924 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8925 synchronize_sched();
96f874e2 8926 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8927}
8928
1d3504fc
HS
8929/* handle null as "default" */
8930static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8931 struct sched_domain_attr *new, int idx_new)
8932{
8933 struct sched_domain_attr tmp;
8934
8935 /* fast path */
8936 if (!new && !cur)
8937 return 1;
8938
8939 tmp = SD_ATTR_INIT;
8940 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8941 new ? (new + idx_new) : &tmp,
8942 sizeof(struct sched_domain_attr));
8943}
8944
029190c5
PJ
8945/*
8946 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8947 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8948 * doms_new[] to the current sched domain partitioning, doms_cur[].
8949 * It destroys each deleted domain and builds each new domain.
8950 *
96f874e2 8951 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8952 * The masks don't intersect (don't overlap.) We should setup one
8953 * sched domain for each mask. CPUs not in any of the cpumasks will
8954 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8955 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8956 * it as it is.
8957 *
41a2d6cf
IM
8958 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8959 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8960 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8961 * ndoms_new == 1, and partition_sched_domains() will fallback to
8962 * the single partition 'fallback_doms', it also forces the domains
8963 * to be rebuilt.
029190c5 8964 *
96f874e2 8965 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8966 * ndoms_new == 0 is a special case for destroying existing domains,
8967 * and it will not create the default domain.
dfb512ec 8968 *
029190c5
PJ
8969 * Call with hotplug lock held
8970 */
96f874e2
RR
8971/* FIXME: Change to struct cpumask *doms_new[] */
8972void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8973 struct sched_domain_attr *dattr_new)
029190c5 8974{
dfb512ec 8975 int i, j, n;
d65bd5ec 8976 int new_topology;
029190c5 8977
712555ee 8978 mutex_lock(&sched_domains_mutex);
a1835615 8979
7378547f
MM
8980 /* always unregister in case we don't destroy any domains */
8981 unregister_sched_domain_sysctl();
8982
d65bd5ec
HC
8983 /* Let architecture update cpu core mappings. */
8984 new_topology = arch_update_cpu_topology();
8985
dfb512ec 8986 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8987
8988 /* Destroy deleted domains */
8989 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8990 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8991 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8992 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8993 goto match1;
8994 }
8995 /* no match - a current sched domain not in new doms_new[] */
8996 detach_destroy_domains(doms_cur + i);
8997match1:
8998 ;
8999 }
9000
e761b772
MK
9001 if (doms_new == NULL) {
9002 ndoms_cur = 0;
4212823f 9003 doms_new = fallback_doms;
dcc30a35 9004 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9005 WARN_ON_ONCE(dattr_new);
e761b772
MK
9006 }
9007
029190c5
PJ
9008 /* Build new domains */
9009 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9010 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 9011 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9012 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9013 goto match2;
9014 }
9015 /* no match - add a new doms_new */
1d3504fc
HS
9016 __build_sched_domains(doms_new + i,
9017 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9018match2:
9019 ;
9020 }
9021
9022 /* Remember the new sched domains */
4212823f 9023 if (doms_cur != fallback_doms)
029190c5 9024 kfree(doms_cur);
1d3504fc 9025 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9026 doms_cur = doms_new;
1d3504fc 9027 dattr_cur = dattr_new;
029190c5 9028 ndoms_cur = ndoms_new;
7378547f
MM
9029
9030 register_sched_domain_sysctl();
a1835615 9031
712555ee 9032 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9033}
9034
5c45bf27 9035#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9036static void arch_reinit_sched_domains(void)
5c45bf27 9037{
95402b38 9038 get_online_cpus();
dfb512ec
MK
9039
9040 /* Destroy domains first to force the rebuild */
9041 partition_sched_domains(0, NULL, NULL);
9042
e761b772 9043 rebuild_sched_domains();
95402b38 9044 put_online_cpus();
5c45bf27
SS
9045}
9046
9047static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9048{
afb8a9b7 9049 unsigned int level = 0;
5c45bf27 9050
afb8a9b7
GS
9051 if (sscanf(buf, "%u", &level) != 1)
9052 return -EINVAL;
9053
9054 /*
9055 * level is always be positive so don't check for
9056 * level < POWERSAVINGS_BALANCE_NONE which is 0
9057 * What happens on 0 or 1 byte write,
9058 * need to check for count as well?
9059 */
9060
9061 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9062 return -EINVAL;
9063
9064 if (smt)
afb8a9b7 9065 sched_smt_power_savings = level;
5c45bf27 9066 else
afb8a9b7 9067 sched_mc_power_savings = level;
5c45bf27 9068
c70f22d2 9069 arch_reinit_sched_domains();
5c45bf27 9070
c70f22d2 9071 return count;
5c45bf27
SS
9072}
9073
5c45bf27 9074#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9075static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9076 char *page)
5c45bf27
SS
9077{
9078 return sprintf(page, "%u\n", sched_mc_power_savings);
9079}
f718cd4a 9080static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9081 const char *buf, size_t count)
5c45bf27
SS
9082{
9083 return sched_power_savings_store(buf, count, 0);
9084}
f718cd4a
AK
9085static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9086 sched_mc_power_savings_show,
9087 sched_mc_power_savings_store);
5c45bf27
SS
9088#endif
9089
9090#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9091static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9092 char *page)
5c45bf27
SS
9093{
9094 return sprintf(page, "%u\n", sched_smt_power_savings);
9095}
f718cd4a 9096static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9097 const char *buf, size_t count)
5c45bf27
SS
9098{
9099 return sched_power_savings_store(buf, count, 1);
9100}
f718cd4a
AK
9101static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9102 sched_smt_power_savings_show,
6707de00
AB
9103 sched_smt_power_savings_store);
9104#endif
9105
39aac648 9106int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9107{
9108 int err = 0;
9109
9110#ifdef CONFIG_SCHED_SMT
9111 if (smt_capable())
9112 err = sysfs_create_file(&cls->kset.kobj,
9113 &attr_sched_smt_power_savings.attr);
9114#endif
9115#ifdef CONFIG_SCHED_MC
9116 if (!err && mc_capable())
9117 err = sysfs_create_file(&cls->kset.kobj,
9118 &attr_sched_mc_power_savings.attr);
9119#endif
9120 return err;
9121}
6d6bc0ad 9122#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9123
e761b772 9124#ifndef CONFIG_CPUSETS
1da177e4 9125/*
e761b772
MK
9126 * Add online and remove offline CPUs from the scheduler domains.
9127 * When cpusets are enabled they take over this function.
1da177e4
LT
9128 */
9129static int update_sched_domains(struct notifier_block *nfb,
9130 unsigned long action, void *hcpu)
e761b772
MK
9131{
9132 switch (action) {
9133 case CPU_ONLINE:
9134 case CPU_ONLINE_FROZEN:
9135 case CPU_DEAD:
9136 case CPU_DEAD_FROZEN:
dfb512ec 9137 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9138 return NOTIFY_OK;
9139
9140 default:
9141 return NOTIFY_DONE;
9142 }
9143}
9144#endif
9145
9146static int update_runtime(struct notifier_block *nfb,
9147 unsigned long action, void *hcpu)
1da177e4 9148{
7def2be1
PZ
9149 int cpu = (int)(long)hcpu;
9150
1da177e4 9151 switch (action) {
1da177e4 9152 case CPU_DOWN_PREPARE:
8bb78442 9153 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9154 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9155 return NOTIFY_OK;
9156
1da177e4 9157 case CPU_DOWN_FAILED:
8bb78442 9158 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9159 case CPU_ONLINE:
8bb78442 9160 case CPU_ONLINE_FROZEN:
7def2be1 9161 enable_runtime(cpu_rq(cpu));
e761b772
MK
9162 return NOTIFY_OK;
9163
1da177e4
LT
9164 default:
9165 return NOTIFY_DONE;
9166 }
1da177e4 9167}
1da177e4
LT
9168
9169void __init sched_init_smp(void)
9170{
dcc30a35
RR
9171 cpumask_var_t non_isolated_cpus;
9172
9173 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9174
434d53b0
MT
9175#if defined(CONFIG_NUMA)
9176 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9177 GFP_KERNEL);
9178 BUG_ON(sched_group_nodes_bycpu == NULL);
9179#endif
95402b38 9180 get_online_cpus();
712555ee 9181 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9182 arch_init_sched_domains(cpu_online_mask);
9183 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9184 if (cpumask_empty(non_isolated_cpus))
9185 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9186 mutex_unlock(&sched_domains_mutex);
95402b38 9187 put_online_cpus();
e761b772
MK
9188
9189#ifndef CONFIG_CPUSETS
1da177e4
LT
9190 /* XXX: Theoretical race here - CPU may be hotplugged now */
9191 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9192#endif
9193
9194 /* RT runtime code needs to handle some hotplug events */
9195 hotcpu_notifier(update_runtime, 0);
9196
b328ca18 9197 init_hrtick();
5c1e1767
NP
9198
9199 /* Move init over to a non-isolated CPU */
dcc30a35 9200 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9201 BUG();
19978ca6 9202 sched_init_granularity();
dcc30a35 9203 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9204
9205 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9206 init_sched_rt_class();
1da177e4
LT
9207}
9208#else
9209void __init sched_init_smp(void)
9210{
19978ca6 9211 sched_init_granularity();
1da177e4
LT
9212}
9213#endif /* CONFIG_SMP */
9214
cd1bb94b
AB
9215const_debug unsigned int sysctl_timer_migration = 1;
9216
1da177e4
LT
9217int in_sched_functions(unsigned long addr)
9218{
1da177e4
LT
9219 return in_lock_functions(addr) ||
9220 (addr >= (unsigned long)__sched_text_start
9221 && addr < (unsigned long)__sched_text_end);
9222}
9223
a9957449 9224static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9225{
9226 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9227 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9228#ifdef CONFIG_FAIR_GROUP_SCHED
9229 cfs_rq->rq = rq;
9230#endif
67e9fb2a 9231 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9232}
9233
fa85ae24
PZ
9234static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9235{
9236 struct rt_prio_array *array;
9237 int i;
9238
9239 array = &rt_rq->active;
9240 for (i = 0; i < MAX_RT_PRIO; i++) {
9241 INIT_LIST_HEAD(array->queue + i);
9242 __clear_bit(i, array->bitmap);
9243 }
9244 /* delimiter for bitsearch: */
9245 __set_bit(MAX_RT_PRIO, array->bitmap);
9246
052f1dc7 9247#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9248 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9249#ifdef CONFIG_SMP
e864c499 9250 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9251#endif
48d5e258 9252#endif
fa85ae24
PZ
9253#ifdef CONFIG_SMP
9254 rt_rq->rt_nr_migratory = 0;
fa85ae24 9255 rt_rq->overloaded = 0;
c20b08e3 9256 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9257#endif
9258
9259 rt_rq->rt_time = 0;
9260 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9261 rt_rq->rt_runtime = 0;
9262 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9263
052f1dc7 9264#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9265 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9266 rt_rq->rq = rq;
9267#endif
fa85ae24
PZ
9268}
9269
6f505b16 9270#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9271static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9272 struct sched_entity *se, int cpu, int add,
9273 struct sched_entity *parent)
6f505b16 9274{
ec7dc8ac 9275 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9276 tg->cfs_rq[cpu] = cfs_rq;
9277 init_cfs_rq(cfs_rq, rq);
9278 cfs_rq->tg = tg;
9279 if (add)
9280 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9281
9282 tg->se[cpu] = se;
354d60c2
DG
9283 /* se could be NULL for init_task_group */
9284 if (!se)
9285 return;
9286
ec7dc8ac
DG
9287 if (!parent)
9288 se->cfs_rq = &rq->cfs;
9289 else
9290 se->cfs_rq = parent->my_q;
9291
6f505b16
PZ
9292 se->my_q = cfs_rq;
9293 se->load.weight = tg->shares;
e05510d0 9294 se->load.inv_weight = 0;
ec7dc8ac 9295 se->parent = parent;
6f505b16 9296}
052f1dc7 9297#endif
6f505b16 9298
052f1dc7 9299#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9300static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9301 struct sched_rt_entity *rt_se, int cpu, int add,
9302 struct sched_rt_entity *parent)
6f505b16 9303{
ec7dc8ac
DG
9304 struct rq *rq = cpu_rq(cpu);
9305
6f505b16
PZ
9306 tg->rt_rq[cpu] = rt_rq;
9307 init_rt_rq(rt_rq, rq);
9308 rt_rq->tg = tg;
9309 rt_rq->rt_se = rt_se;
ac086bc2 9310 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9311 if (add)
9312 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9313
9314 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9315 if (!rt_se)
9316 return;
9317
ec7dc8ac
DG
9318 if (!parent)
9319 rt_se->rt_rq = &rq->rt;
9320 else
9321 rt_se->rt_rq = parent->my_q;
9322
6f505b16 9323 rt_se->my_q = rt_rq;
ec7dc8ac 9324 rt_se->parent = parent;
6f505b16
PZ
9325 INIT_LIST_HEAD(&rt_se->run_list);
9326}
9327#endif
9328
1da177e4
LT
9329void __init sched_init(void)
9330{
dd41f596 9331 int i, j;
434d53b0
MT
9332 unsigned long alloc_size = 0, ptr;
9333
9334#ifdef CONFIG_FAIR_GROUP_SCHED
9335 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9336#endif
9337#ifdef CONFIG_RT_GROUP_SCHED
9338 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9339#endif
9340#ifdef CONFIG_USER_SCHED
9341 alloc_size *= 2;
df7c8e84
RR
9342#endif
9343#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9344 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9345#endif
9346 /*
9347 * As sched_init() is called before page_alloc is setup,
9348 * we use alloc_bootmem().
9349 */
9350 if (alloc_size) {
36b7b6d4 9351 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9352
9353#ifdef CONFIG_FAIR_GROUP_SCHED
9354 init_task_group.se = (struct sched_entity **)ptr;
9355 ptr += nr_cpu_ids * sizeof(void **);
9356
9357 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9358 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9359
9360#ifdef CONFIG_USER_SCHED
9361 root_task_group.se = (struct sched_entity **)ptr;
9362 ptr += nr_cpu_ids * sizeof(void **);
9363
9364 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9365 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9366#endif /* CONFIG_USER_SCHED */
9367#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9368#ifdef CONFIG_RT_GROUP_SCHED
9369 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9370 ptr += nr_cpu_ids * sizeof(void **);
9371
9372 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9373 ptr += nr_cpu_ids * sizeof(void **);
9374
9375#ifdef CONFIG_USER_SCHED
9376 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9377 ptr += nr_cpu_ids * sizeof(void **);
9378
9379 root_task_group.rt_rq = (struct rt_rq **)ptr;
9380 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9381#endif /* CONFIG_USER_SCHED */
9382#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9383#ifdef CONFIG_CPUMASK_OFFSTACK
9384 for_each_possible_cpu(i) {
9385 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9386 ptr += cpumask_size();
9387 }
9388#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9389 }
dd41f596 9390
57d885fe
GH
9391#ifdef CONFIG_SMP
9392 init_defrootdomain();
9393#endif
9394
d0b27fa7
PZ
9395 init_rt_bandwidth(&def_rt_bandwidth,
9396 global_rt_period(), global_rt_runtime());
9397
9398#ifdef CONFIG_RT_GROUP_SCHED
9399 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9400 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9401#ifdef CONFIG_USER_SCHED
9402 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9403 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9404#endif /* CONFIG_USER_SCHED */
9405#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9406
052f1dc7 9407#ifdef CONFIG_GROUP_SCHED
6f505b16 9408 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9409 INIT_LIST_HEAD(&init_task_group.children);
9410
9411#ifdef CONFIG_USER_SCHED
9412 INIT_LIST_HEAD(&root_task_group.children);
9413 init_task_group.parent = &root_task_group;
9414 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9415#endif /* CONFIG_USER_SCHED */
9416#endif /* CONFIG_GROUP_SCHED */
6f505b16 9417
0a945022 9418 for_each_possible_cpu(i) {
70b97a7f 9419 struct rq *rq;
1da177e4
LT
9420
9421 rq = cpu_rq(i);
9422 spin_lock_init(&rq->lock);
7897986b 9423 rq->nr_running = 0;
dce48a84
TG
9424 rq->calc_load_active = 0;
9425 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9426 init_cfs_rq(&rq->cfs, rq);
6f505b16 9427 init_rt_rq(&rq->rt, rq);
dd41f596 9428#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9429 init_task_group.shares = init_task_group_load;
6f505b16 9430 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9431#ifdef CONFIG_CGROUP_SCHED
9432 /*
9433 * How much cpu bandwidth does init_task_group get?
9434 *
9435 * In case of task-groups formed thr' the cgroup filesystem, it
9436 * gets 100% of the cpu resources in the system. This overall
9437 * system cpu resource is divided among the tasks of
9438 * init_task_group and its child task-groups in a fair manner,
9439 * based on each entity's (task or task-group's) weight
9440 * (se->load.weight).
9441 *
9442 * In other words, if init_task_group has 10 tasks of weight
9443 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9444 * then A0's share of the cpu resource is:
9445 *
0d905bca 9446 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9447 *
9448 * We achieve this by letting init_task_group's tasks sit
9449 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9450 */
ec7dc8ac 9451 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9452#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9453 root_task_group.shares = NICE_0_LOAD;
9454 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9455 /*
9456 * In case of task-groups formed thr' the user id of tasks,
9457 * init_task_group represents tasks belonging to root user.
9458 * Hence it forms a sibling of all subsequent groups formed.
9459 * In this case, init_task_group gets only a fraction of overall
9460 * system cpu resource, based on the weight assigned to root
9461 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9462 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9463 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9464 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9465 */
ec7dc8ac 9466 init_tg_cfs_entry(&init_task_group,
84e9dabf 9467 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9468 &per_cpu(init_sched_entity, i), i, 1,
9469 root_task_group.se[i]);
6f505b16 9470
052f1dc7 9471#endif
354d60c2
DG
9472#endif /* CONFIG_FAIR_GROUP_SCHED */
9473
9474 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9475#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9476 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9477#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9478 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9479#elif defined CONFIG_USER_SCHED
eff766a6 9480 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9481 init_tg_rt_entry(&init_task_group,
6f505b16 9482 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9483 &per_cpu(init_sched_rt_entity, i), i, 1,
9484 root_task_group.rt_se[i]);
354d60c2 9485#endif
dd41f596 9486#endif
1da177e4 9487
dd41f596
IM
9488 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9489 rq->cpu_load[j] = 0;
1da177e4 9490#ifdef CONFIG_SMP
41c7ce9a 9491 rq->sd = NULL;
57d885fe 9492 rq->rd = NULL;
3f029d3c 9493 rq->post_schedule = 0;
1da177e4 9494 rq->active_balance = 0;
dd41f596 9495 rq->next_balance = jiffies;
1da177e4 9496 rq->push_cpu = 0;
0a2966b4 9497 rq->cpu = i;
1f11eb6a 9498 rq->online = 0;
1da177e4
LT
9499 rq->migration_thread = NULL;
9500 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9501 rq_attach_root(rq, &def_root_domain);
1da177e4 9502#endif
8f4d37ec 9503 init_rq_hrtick(rq);
1da177e4 9504 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9505 }
9506
2dd73a4f 9507 set_load_weight(&init_task);
b50f60ce 9508
e107be36
AK
9509#ifdef CONFIG_PREEMPT_NOTIFIERS
9510 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9511#endif
9512
c9819f45 9513#ifdef CONFIG_SMP
962cf36c 9514 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9515#endif
9516
b50f60ce
HC
9517#ifdef CONFIG_RT_MUTEXES
9518 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9519#endif
9520
1da177e4
LT
9521 /*
9522 * The boot idle thread does lazy MMU switching as well:
9523 */
9524 atomic_inc(&init_mm.mm_count);
9525 enter_lazy_tlb(&init_mm, current);
9526
9527 /*
9528 * Make us the idle thread. Technically, schedule() should not be
9529 * called from this thread, however somewhere below it might be,
9530 * but because we are the idle thread, we just pick up running again
9531 * when this runqueue becomes "idle".
9532 */
9533 init_idle(current, smp_processor_id());
dce48a84
TG
9534
9535 calc_load_update = jiffies + LOAD_FREQ;
9536
dd41f596
IM
9537 /*
9538 * During early bootup we pretend to be a normal task:
9539 */
9540 current->sched_class = &fair_sched_class;
6892b75e 9541
6a7b3dc3 9542 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9543 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9544#ifdef CONFIG_SMP
7d1e6a9b 9545#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9546 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9547 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9548#endif
4bdddf8f 9549 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9550#endif /* SMP */
6a7b3dc3 9551
0d905bca
IM
9552 perf_counter_init();
9553
6892b75e 9554 scheduler_running = 1;
1da177e4
LT
9555}
9556
9557#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9558static inline int preempt_count_equals(int preempt_offset)
9559{
9560 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9561
9562 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9563}
9564
9565void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9566{
48f24c4d 9567#ifdef in_atomic
1da177e4
LT
9568 static unsigned long prev_jiffy; /* ratelimiting */
9569
e4aafea2
FW
9570 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9571 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9572 return;
9573 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9574 return;
9575 prev_jiffy = jiffies;
9576
9577 printk(KERN_ERR
9578 "BUG: sleeping function called from invalid context at %s:%d\n",
9579 file, line);
9580 printk(KERN_ERR
9581 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9582 in_atomic(), irqs_disabled(),
9583 current->pid, current->comm);
9584
9585 debug_show_held_locks(current);
9586 if (irqs_disabled())
9587 print_irqtrace_events(current);
9588 dump_stack();
1da177e4
LT
9589#endif
9590}
9591EXPORT_SYMBOL(__might_sleep);
9592#endif
9593
9594#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9595static void normalize_task(struct rq *rq, struct task_struct *p)
9596{
9597 int on_rq;
3e51f33f 9598
3a5e4dc1
AK
9599 update_rq_clock(rq);
9600 on_rq = p->se.on_rq;
9601 if (on_rq)
9602 deactivate_task(rq, p, 0);
9603 __setscheduler(rq, p, SCHED_NORMAL, 0);
9604 if (on_rq) {
9605 activate_task(rq, p, 0);
9606 resched_task(rq->curr);
9607 }
9608}
9609
1da177e4
LT
9610void normalize_rt_tasks(void)
9611{
a0f98a1c 9612 struct task_struct *g, *p;
1da177e4 9613 unsigned long flags;
70b97a7f 9614 struct rq *rq;
1da177e4 9615
4cf5d77a 9616 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9617 do_each_thread(g, p) {
178be793
IM
9618 /*
9619 * Only normalize user tasks:
9620 */
9621 if (!p->mm)
9622 continue;
9623
6cfb0d5d 9624 p->se.exec_start = 0;
6cfb0d5d 9625#ifdef CONFIG_SCHEDSTATS
dd41f596 9626 p->se.wait_start = 0;
dd41f596 9627 p->se.sleep_start = 0;
dd41f596 9628 p->se.block_start = 0;
6cfb0d5d 9629#endif
dd41f596
IM
9630
9631 if (!rt_task(p)) {
9632 /*
9633 * Renice negative nice level userspace
9634 * tasks back to 0:
9635 */
9636 if (TASK_NICE(p) < 0 && p->mm)
9637 set_user_nice(p, 0);
1da177e4 9638 continue;
dd41f596 9639 }
1da177e4 9640
4cf5d77a 9641 spin_lock(&p->pi_lock);
b29739f9 9642 rq = __task_rq_lock(p);
1da177e4 9643
178be793 9644 normalize_task(rq, p);
3a5e4dc1 9645
b29739f9 9646 __task_rq_unlock(rq);
4cf5d77a 9647 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9648 } while_each_thread(g, p);
9649
4cf5d77a 9650 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9651}
9652
9653#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9654
9655#ifdef CONFIG_IA64
9656/*
9657 * These functions are only useful for the IA64 MCA handling.
9658 *
9659 * They can only be called when the whole system has been
9660 * stopped - every CPU needs to be quiescent, and no scheduling
9661 * activity can take place. Using them for anything else would
9662 * be a serious bug, and as a result, they aren't even visible
9663 * under any other configuration.
9664 */
9665
9666/**
9667 * curr_task - return the current task for a given cpu.
9668 * @cpu: the processor in question.
9669 *
9670 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9671 */
36c8b586 9672struct task_struct *curr_task(int cpu)
1df5c10a
LT
9673{
9674 return cpu_curr(cpu);
9675}
9676
9677/**
9678 * set_curr_task - set the current task for a given cpu.
9679 * @cpu: the processor in question.
9680 * @p: the task pointer to set.
9681 *
9682 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9683 * are serviced on a separate stack. It allows the architecture to switch the
9684 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9685 * must be called with all CPU's synchronized, and interrupts disabled, the
9686 * and caller must save the original value of the current task (see
9687 * curr_task() above) and restore that value before reenabling interrupts and
9688 * re-starting the system.
9689 *
9690 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9691 */
36c8b586 9692void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9693{
9694 cpu_curr(cpu) = p;
9695}
9696
9697#endif
29f59db3 9698
bccbe08a
PZ
9699#ifdef CONFIG_FAIR_GROUP_SCHED
9700static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9701{
9702 int i;
9703
9704 for_each_possible_cpu(i) {
9705 if (tg->cfs_rq)
9706 kfree(tg->cfs_rq[i]);
9707 if (tg->se)
9708 kfree(tg->se[i]);
6f505b16
PZ
9709 }
9710
9711 kfree(tg->cfs_rq);
9712 kfree(tg->se);
6f505b16
PZ
9713}
9714
ec7dc8ac
DG
9715static
9716int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9717{
29f59db3 9718 struct cfs_rq *cfs_rq;
eab17229 9719 struct sched_entity *se;
9b5b7751 9720 struct rq *rq;
29f59db3
SV
9721 int i;
9722
434d53b0 9723 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9724 if (!tg->cfs_rq)
9725 goto err;
434d53b0 9726 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9727 if (!tg->se)
9728 goto err;
052f1dc7
PZ
9729
9730 tg->shares = NICE_0_LOAD;
29f59db3
SV
9731
9732 for_each_possible_cpu(i) {
9b5b7751 9733 rq = cpu_rq(i);
29f59db3 9734
eab17229
LZ
9735 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9736 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9737 if (!cfs_rq)
9738 goto err;
9739
eab17229
LZ
9740 se = kzalloc_node(sizeof(struct sched_entity),
9741 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9742 if (!se)
9743 goto err;
9744
eab17229 9745 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9746 }
9747
9748 return 1;
9749
9750 err:
9751 return 0;
9752}
9753
9754static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9755{
9756 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9757 &cpu_rq(cpu)->leaf_cfs_rq_list);
9758}
9759
9760static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9761{
9762 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9763}
6d6bc0ad 9764#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9765static inline void free_fair_sched_group(struct task_group *tg)
9766{
9767}
9768
ec7dc8ac
DG
9769static inline
9770int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9771{
9772 return 1;
9773}
9774
9775static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9776{
9777}
9778
9779static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9780{
9781}
6d6bc0ad 9782#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9783
9784#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9785static void free_rt_sched_group(struct task_group *tg)
9786{
9787 int i;
9788
d0b27fa7
PZ
9789 destroy_rt_bandwidth(&tg->rt_bandwidth);
9790
bccbe08a
PZ
9791 for_each_possible_cpu(i) {
9792 if (tg->rt_rq)
9793 kfree(tg->rt_rq[i]);
9794 if (tg->rt_se)
9795 kfree(tg->rt_se[i]);
9796 }
9797
9798 kfree(tg->rt_rq);
9799 kfree(tg->rt_se);
9800}
9801
ec7dc8ac
DG
9802static
9803int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9804{
9805 struct rt_rq *rt_rq;
eab17229 9806 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9807 struct rq *rq;
9808 int i;
9809
434d53b0 9810 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9811 if (!tg->rt_rq)
9812 goto err;
434d53b0 9813 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9814 if (!tg->rt_se)
9815 goto err;
9816
d0b27fa7
PZ
9817 init_rt_bandwidth(&tg->rt_bandwidth,
9818 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9819
9820 for_each_possible_cpu(i) {
9821 rq = cpu_rq(i);
9822
eab17229
LZ
9823 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9824 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9825 if (!rt_rq)
9826 goto err;
29f59db3 9827
eab17229
LZ
9828 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9829 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9830 if (!rt_se)
9831 goto err;
29f59db3 9832
eab17229 9833 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9834 }
9835
bccbe08a
PZ
9836 return 1;
9837
9838 err:
9839 return 0;
9840}
9841
9842static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9843{
9844 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9845 &cpu_rq(cpu)->leaf_rt_rq_list);
9846}
9847
9848static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9849{
9850 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9851}
6d6bc0ad 9852#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9853static inline void free_rt_sched_group(struct task_group *tg)
9854{
9855}
9856
ec7dc8ac
DG
9857static inline
9858int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9859{
9860 return 1;
9861}
9862
9863static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9864{
9865}
9866
9867static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9868{
9869}
6d6bc0ad 9870#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9871
d0b27fa7 9872#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9873static void free_sched_group(struct task_group *tg)
9874{
9875 free_fair_sched_group(tg);
9876 free_rt_sched_group(tg);
9877 kfree(tg);
9878}
9879
9880/* allocate runqueue etc for a new task group */
ec7dc8ac 9881struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9882{
9883 struct task_group *tg;
9884 unsigned long flags;
9885 int i;
9886
9887 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9888 if (!tg)
9889 return ERR_PTR(-ENOMEM);
9890
ec7dc8ac 9891 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9892 goto err;
9893
ec7dc8ac 9894 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9895 goto err;
9896
8ed36996 9897 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9898 for_each_possible_cpu(i) {
bccbe08a
PZ
9899 register_fair_sched_group(tg, i);
9900 register_rt_sched_group(tg, i);
9b5b7751 9901 }
6f505b16 9902 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9903
9904 WARN_ON(!parent); /* root should already exist */
9905
9906 tg->parent = parent;
f473aa5e 9907 INIT_LIST_HEAD(&tg->children);
09f2724a 9908 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9909 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9910
9b5b7751 9911 return tg;
29f59db3
SV
9912
9913err:
6f505b16 9914 free_sched_group(tg);
29f59db3
SV
9915 return ERR_PTR(-ENOMEM);
9916}
9917
9b5b7751 9918/* rcu callback to free various structures associated with a task group */
6f505b16 9919static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9920{
29f59db3 9921 /* now it should be safe to free those cfs_rqs */
6f505b16 9922 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9923}
9924
9b5b7751 9925/* Destroy runqueue etc associated with a task group */
4cf86d77 9926void sched_destroy_group(struct task_group *tg)
29f59db3 9927{
8ed36996 9928 unsigned long flags;
9b5b7751 9929 int i;
29f59db3 9930
8ed36996 9931 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9932 for_each_possible_cpu(i) {
bccbe08a
PZ
9933 unregister_fair_sched_group(tg, i);
9934 unregister_rt_sched_group(tg, i);
9b5b7751 9935 }
6f505b16 9936 list_del_rcu(&tg->list);
f473aa5e 9937 list_del_rcu(&tg->siblings);
8ed36996 9938 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9939
9b5b7751 9940 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9941 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9942}
9943
9b5b7751 9944/* change task's runqueue when it moves between groups.
3a252015
IM
9945 * The caller of this function should have put the task in its new group
9946 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9947 * reflect its new group.
9b5b7751
SV
9948 */
9949void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9950{
9951 int on_rq, running;
9952 unsigned long flags;
9953 struct rq *rq;
9954
9955 rq = task_rq_lock(tsk, &flags);
9956
29f59db3
SV
9957 update_rq_clock(rq);
9958
051a1d1a 9959 running = task_current(rq, tsk);
29f59db3
SV
9960 on_rq = tsk->se.on_rq;
9961
0e1f3483 9962 if (on_rq)
29f59db3 9963 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9964 if (unlikely(running))
9965 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9966
6f505b16 9967 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9968
810b3817
PZ
9969#ifdef CONFIG_FAIR_GROUP_SCHED
9970 if (tsk->sched_class->moved_group)
9971 tsk->sched_class->moved_group(tsk);
9972#endif
9973
0e1f3483
HS
9974 if (unlikely(running))
9975 tsk->sched_class->set_curr_task(rq);
9976 if (on_rq)
7074badb 9977 enqueue_task(rq, tsk, 0);
29f59db3 9978
29f59db3
SV
9979 task_rq_unlock(rq, &flags);
9980}
6d6bc0ad 9981#endif /* CONFIG_GROUP_SCHED */
29f59db3 9982
052f1dc7 9983#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9984static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9985{
9986 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9987 int on_rq;
9988
29f59db3 9989 on_rq = se->on_rq;
62fb1851 9990 if (on_rq)
29f59db3
SV
9991 dequeue_entity(cfs_rq, se, 0);
9992
9993 se->load.weight = shares;
e05510d0 9994 se->load.inv_weight = 0;
29f59db3 9995
62fb1851 9996 if (on_rq)
29f59db3 9997 enqueue_entity(cfs_rq, se, 0);
c09595f6 9998}
62fb1851 9999
c09595f6
PZ
10000static void set_se_shares(struct sched_entity *se, unsigned long shares)
10001{
10002 struct cfs_rq *cfs_rq = se->cfs_rq;
10003 struct rq *rq = cfs_rq->rq;
10004 unsigned long flags;
10005
10006 spin_lock_irqsave(&rq->lock, flags);
10007 __set_se_shares(se, shares);
10008 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10009}
10010
8ed36996
PZ
10011static DEFINE_MUTEX(shares_mutex);
10012
4cf86d77 10013int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10014{
10015 int i;
8ed36996 10016 unsigned long flags;
c61935fd 10017
ec7dc8ac
DG
10018 /*
10019 * We can't change the weight of the root cgroup.
10020 */
10021 if (!tg->se[0])
10022 return -EINVAL;
10023
18d95a28
PZ
10024 if (shares < MIN_SHARES)
10025 shares = MIN_SHARES;
cb4ad1ff
MX
10026 else if (shares > MAX_SHARES)
10027 shares = MAX_SHARES;
62fb1851 10028
8ed36996 10029 mutex_lock(&shares_mutex);
9b5b7751 10030 if (tg->shares == shares)
5cb350ba 10031 goto done;
29f59db3 10032
8ed36996 10033 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10034 for_each_possible_cpu(i)
10035 unregister_fair_sched_group(tg, i);
f473aa5e 10036 list_del_rcu(&tg->siblings);
8ed36996 10037 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10038
10039 /* wait for any ongoing reference to this group to finish */
10040 synchronize_sched();
10041
10042 /*
10043 * Now we are free to modify the group's share on each cpu
10044 * w/o tripping rebalance_share or load_balance_fair.
10045 */
9b5b7751 10046 tg->shares = shares;
c09595f6
PZ
10047 for_each_possible_cpu(i) {
10048 /*
10049 * force a rebalance
10050 */
10051 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10052 set_se_shares(tg->se[i], shares);
c09595f6 10053 }
29f59db3 10054
6b2d7700
SV
10055 /*
10056 * Enable load balance activity on this group, by inserting it back on
10057 * each cpu's rq->leaf_cfs_rq_list.
10058 */
8ed36996 10059 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10060 for_each_possible_cpu(i)
10061 register_fair_sched_group(tg, i);
f473aa5e 10062 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10063 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10064done:
8ed36996 10065 mutex_unlock(&shares_mutex);
9b5b7751 10066 return 0;
29f59db3
SV
10067}
10068
5cb350ba
DG
10069unsigned long sched_group_shares(struct task_group *tg)
10070{
10071 return tg->shares;
10072}
052f1dc7 10073#endif
5cb350ba 10074
052f1dc7 10075#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10076/*
9f0c1e56 10077 * Ensure that the real time constraints are schedulable.
6f505b16 10078 */
9f0c1e56
PZ
10079static DEFINE_MUTEX(rt_constraints_mutex);
10080
10081static unsigned long to_ratio(u64 period, u64 runtime)
10082{
10083 if (runtime == RUNTIME_INF)
9a7e0b18 10084 return 1ULL << 20;
9f0c1e56 10085
9a7e0b18 10086 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10087}
10088
9a7e0b18
PZ
10089/* Must be called with tasklist_lock held */
10090static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10091{
9a7e0b18 10092 struct task_struct *g, *p;
b40b2e8e 10093
9a7e0b18
PZ
10094 do_each_thread(g, p) {
10095 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10096 return 1;
10097 } while_each_thread(g, p);
b40b2e8e 10098
9a7e0b18
PZ
10099 return 0;
10100}
b40b2e8e 10101
9a7e0b18
PZ
10102struct rt_schedulable_data {
10103 struct task_group *tg;
10104 u64 rt_period;
10105 u64 rt_runtime;
10106};
b40b2e8e 10107
9a7e0b18
PZ
10108static int tg_schedulable(struct task_group *tg, void *data)
10109{
10110 struct rt_schedulable_data *d = data;
10111 struct task_group *child;
10112 unsigned long total, sum = 0;
10113 u64 period, runtime;
b40b2e8e 10114
9a7e0b18
PZ
10115 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10116 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10117
9a7e0b18
PZ
10118 if (tg == d->tg) {
10119 period = d->rt_period;
10120 runtime = d->rt_runtime;
b40b2e8e 10121 }
b40b2e8e 10122
98a4826b
PZ
10123#ifdef CONFIG_USER_SCHED
10124 if (tg == &root_task_group) {
10125 period = global_rt_period();
10126 runtime = global_rt_runtime();
10127 }
10128#endif
10129
4653f803
PZ
10130 /*
10131 * Cannot have more runtime than the period.
10132 */
10133 if (runtime > period && runtime != RUNTIME_INF)
10134 return -EINVAL;
6f505b16 10135
4653f803
PZ
10136 /*
10137 * Ensure we don't starve existing RT tasks.
10138 */
9a7e0b18
PZ
10139 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10140 return -EBUSY;
6f505b16 10141
9a7e0b18 10142 total = to_ratio(period, runtime);
6f505b16 10143
4653f803
PZ
10144 /*
10145 * Nobody can have more than the global setting allows.
10146 */
10147 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10148 return -EINVAL;
6f505b16 10149
4653f803
PZ
10150 /*
10151 * The sum of our children's runtime should not exceed our own.
10152 */
9a7e0b18
PZ
10153 list_for_each_entry_rcu(child, &tg->children, siblings) {
10154 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10155 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10156
9a7e0b18
PZ
10157 if (child == d->tg) {
10158 period = d->rt_period;
10159 runtime = d->rt_runtime;
10160 }
6f505b16 10161
9a7e0b18 10162 sum += to_ratio(period, runtime);
9f0c1e56 10163 }
6f505b16 10164
9a7e0b18
PZ
10165 if (sum > total)
10166 return -EINVAL;
10167
10168 return 0;
6f505b16
PZ
10169}
10170
9a7e0b18 10171static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10172{
9a7e0b18
PZ
10173 struct rt_schedulable_data data = {
10174 .tg = tg,
10175 .rt_period = period,
10176 .rt_runtime = runtime,
10177 };
10178
10179 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10180}
10181
d0b27fa7
PZ
10182static int tg_set_bandwidth(struct task_group *tg,
10183 u64 rt_period, u64 rt_runtime)
6f505b16 10184{
ac086bc2 10185 int i, err = 0;
9f0c1e56 10186
9f0c1e56 10187 mutex_lock(&rt_constraints_mutex);
521f1a24 10188 read_lock(&tasklist_lock);
9a7e0b18
PZ
10189 err = __rt_schedulable(tg, rt_period, rt_runtime);
10190 if (err)
9f0c1e56 10191 goto unlock;
ac086bc2
PZ
10192
10193 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10194 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10195 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10196
10197 for_each_possible_cpu(i) {
10198 struct rt_rq *rt_rq = tg->rt_rq[i];
10199
10200 spin_lock(&rt_rq->rt_runtime_lock);
10201 rt_rq->rt_runtime = rt_runtime;
10202 spin_unlock(&rt_rq->rt_runtime_lock);
10203 }
10204 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10205 unlock:
521f1a24 10206 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10207 mutex_unlock(&rt_constraints_mutex);
10208
10209 return err;
6f505b16
PZ
10210}
10211
d0b27fa7
PZ
10212int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10213{
10214 u64 rt_runtime, rt_period;
10215
10216 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10217 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10218 if (rt_runtime_us < 0)
10219 rt_runtime = RUNTIME_INF;
10220
10221 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10222}
10223
9f0c1e56
PZ
10224long sched_group_rt_runtime(struct task_group *tg)
10225{
10226 u64 rt_runtime_us;
10227
d0b27fa7 10228 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10229 return -1;
10230
d0b27fa7 10231 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10232 do_div(rt_runtime_us, NSEC_PER_USEC);
10233 return rt_runtime_us;
10234}
d0b27fa7
PZ
10235
10236int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10237{
10238 u64 rt_runtime, rt_period;
10239
10240 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10241 rt_runtime = tg->rt_bandwidth.rt_runtime;
10242
619b0488
R
10243 if (rt_period == 0)
10244 return -EINVAL;
10245
d0b27fa7
PZ
10246 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10247}
10248
10249long sched_group_rt_period(struct task_group *tg)
10250{
10251 u64 rt_period_us;
10252
10253 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10254 do_div(rt_period_us, NSEC_PER_USEC);
10255 return rt_period_us;
10256}
10257
10258static int sched_rt_global_constraints(void)
10259{
4653f803 10260 u64 runtime, period;
d0b27fa7
PZ
10261 int ret = 0;
10262
ec5d4989
HS
10263 if (sysctl_sched_rt_period <= 0)
10264 return -EINVAL;
10265
4653f803
PZ
10266 runtime = global_rt_runtime();
10267 period = global_rt_period();
10268
10269 /*
10270 * Sanity check on the sysctl variables.
10271 */
10272 if (runtime > period && runtime != RUNTIME_INF)
10273 return -EINVAL;
10b612f4 10274
d0b27fa7 10275 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10276 read_lock(&tasklist_lock);
4653f803 10277 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10278 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10279 mutex_unlock(&rt_constraints_mutex);
10280
10281 return ret;
10282}
54e99124
DG
10283
10284int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10285{
10286 /* Don't accept realtime tasks when there is no way for them to run */
10287 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10288 return 0;
10289
10290 return 1;
10291}
10292
6d6bc0ad 10293#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10294static int sched_rt_global_constraints(void)
10295{
ac086bc2
PZ
10296 unsigned long flags;
10297 int i;
10298
ec5d4989
HS
10299 if (sysctl_sched_rt_period <= 0)
10300 return -EINVAL;
10301
60aa605d
PZ
10302 /*
10303 * There's always some RT tasks in the root group
10304 * -- migration, kstopmachine etc..
10305 */
10306 if (sysctl_sched_rt_runtime == 0)
10307 return -EBUSY;
10308
ac086bc2
PZ
10309 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10310 for_each_possible_cpu(i) {
10311 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10312
10313 spin_lock(&rt_rq->rt_runtime_lock);
10314 rt_rq->rt_runtime = global_rt_runtime();
10315 spin_unlock(&rt_rq->rt_runtime_lock);
10316 }
10317 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10318
d0b27fa7
PZ
10319 return 0;
10320}
6d6bc0ad 10321#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10322
10323int sched_rt_handler(struct ctl_table *table, int write,
10324 struct file *filp, void __user *buffer, size_t *lenp,
10325 loff_t *ppos)
10326{
10327 int ret;
10328 int old_period, old_runtime;
10329 static DEFINE_MUTEX(mutex);
10330
10331 mutex_lock(&mutex);
10332 old_period = sysctl_sched_rt_period;
10333 old_runtime = sysctl_sched_rt_runtime;
10334
10335 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10336
10337 if (!ret && write) {
10338 ret = sched_rt_global_constraints();
10339 if (ret) {
10340 sysctl_sched_rt_period = old_period;
10341 sysctl_sched_rt_runtime = old_runtime;
10342 } else {
10343 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10344 def_rt_bandwidth.rt_period =
10345 ns_to_ktime(global_rt_period());
10346 }
10347 }
10348 mutex_unlock(&mutex);
10349
10350 return ret;
10351}
68318b8e 10352
052f1dc7 10353#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10354
10355/* return corresponding task_group object of a cgroup */
2b01dfe3 10356static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10357{
2b01dfe3
PM
10358 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10359 struct task_group, css);
68318b8e
SV
10360}
10361
10362static struct cgroup_subsys_state *
2b01dfe3 10363cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10364{
ec7dc8ac 10365 struct task_group *tg, *parent;
68318b8e 10366
2b01dfe3 10367 if (!cgrp->parent) {
68318b8e 10368 /* This is early initialization for the top cgroup */
68318b8e
SV
10369 return &init_task_group.css;
10370 }
10371
ec7dc8ac
DG
10372 parent = cgroup_tg(cgrp->parent);
10373 tg = sched_create_group(parent);
68318b8e
SV
10374 if (IS_ERR(tg))
10375 return ERR_PTR(-ENOMEM);
10376
68318b8e
SV
10377 return &tg->css;
10378}
10379
41a2d6cf
IM
10380static void
10381cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10382{
2b01dfe3 10383 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10384
10385 sched_destroy_group(tg);
10386}
10387
41a2d6cf
IM
10388static int
10389cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10390 struct task_struct *tsk)
68318b8e 10391{
b68aa230 10392#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10393 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10394 return -EINVAL;
10395#else
68318b8e
SV
10396 /* We don't support RT-tasks being in separate groups */
10397 if (tsk->sched_class != &fair_sched_class)
10398 return -EINVAL;
b68aa230 10399#endif
68318b8e
SV
10400
10401 return 0;
10402}
10403
10404static void
2b01dfe3 10405cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10406 struct cgroup *old_cont, struct task_struct *tsk)
10407{
10408 sched_move_task(tsk);
10409}
10410
052f1dc7 10411#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10412static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10413 u64 shareval)
68318b8e 10414{
2b01dfe3 10415 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10416}
10417
f4c753b7 10418static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10419{
2b01dfe3 10420 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10421
10422 return (u64) tg->shares;
10423}
6d6bc0ad 10424#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10425
052f1dc7 10426#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10427static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10428 s64 val)
6f505b16 10429{
06ecb27c 10430 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10431}
10432
06ecb27c 10433static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10434{
06ecb27c 10435 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10436}
d0b27fa7
PZ
10437
10438static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10439 u64 rt_period_us)
10440{
10441 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10442}
10443
10444static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10445{
10446 return sched_group_rt_period(cgroup_tg(cgrp));
10447}
6d6bc0ad 10448#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10449
fe5c7cc2 10450static struct cftype cpu_files[] = {
052f1dc7 10451#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10452 {
10453 .name = "shares",
f4c753b7
PM
10454 .read_u64 = cpu_shares_read_u64,
10455 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10456 },
052f1dc7
PZ
10457#endif
10458#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10459 {
9f0c1e56 10460 .name = "rt_runtime_us",
06ecb27c
PM
10461 .read_s64 = cpu_rt_runtime_read,
10462 .write_s64 = cpu_rt_runtime_write,
6f505b16 10463 },
d0b27fa7
PZ
10464 {
10465 .name = "rt_period_us",
f4c753b7
PM
10466 .read_u64 = cpu_rt_period_read_uint,
10467 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10468 },
052f1dc7 10469#endif
68318b8e
SV
10470};
10471
10472static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10473{
fe5c7cc2 10474 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10475}
10476
10477struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10478 .name = "cpu",
10479 .create = cpu_cgroup_create,
10480 .destroy = cpu_cgroup_destroy,
10481 .can_attach = cpu_cgroup_can_attach,
10482 .attach = cpu_cgroup_attach,
10483 .populate = cpu_cgroup_populate,
10484 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10485 .early_init = 1,
10486};
10487
052f1dc7 10488#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10489
10490#ifdef CONFIG_CGROUP_CPUACCT
10491
10492/*
10493 * CPU accounting code for task groups.
10494 *
10495 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10496 * (balbir@in.ibm.com).
10497 */
10498
934352f2 10499/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10500struct cpuacct {
10501 struct cgroup_subsys_state css;
10502 /* cpuusage holds pointer to a u64-type object on every cpu */
10503 u64 *cpuusage;
ef12fefa 10504 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10505 struct cpuacct *parent;
d842de87
SV
10506};
10507
10508struct cgroup_subsys cpuacct_subsys;
10509
10510/* return cpu accounting group corresponding to this container */
32cd756a 10511static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10512{
32cd756a 10513 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10514 struct cpuacct, css);
10515}
10516
10517/* return cpu accounting group to which this task belongs */
10518static inline struct cpuacct *task_ca(struct task_struct *tsk)
10519{
10520 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10521 struct cpuacct, css);
10522}
10523
10524/* create a new cpu accounting group */
10525static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10526 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10527{
10528 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10529 int i;
d842de87
SV
10530
10531 if (!ca)
ef12fefa 10532 goto out;
d842de87
SV
10533
10534 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10535 if (!ca->cpuusage)
10536 goto out_free_ca;
10537
10538 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10539 if (percpu_counter_init(&ca->cpustat[i], 0))
10540 goto out_free_counters;
d842de87 10541
934352f2
BR
10542 if (cgrp->parent)
10543 ca->parent = cgroup_ca(cgrp->parent);
10544
d842de87 10545 return &ca->css;
ef12fefa
BR
10546
10547out_free_counters:
10548 while (--i >= 0)
10549 percpu_counter_destroy(&ca->cpustat[i]);
10550 free_percpu(ca->cpuusage);
10551out_free_ca:
10552 kfree(ca);
10553out:
10554 return ERR_PTR(-ENOMEM);
d842de87
SV
10555}
10556
10557/* destroy an existing cpu accounting group */
41a2d6cf 10558static void
32cd756a 10559cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10560{
32cd756a 10561 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10562 int i;
d842de87 10563
ef12fefa
BR
10564 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10565 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10566 free_percpu(ca->cpuusage);
10567 kfree(ca);
10568}
10569
720f5498
KC
10570static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10571{
b36128c8 10572 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10573 u64 data;
10574
10575#ifndef CONFIG_64BIT
10576 /*
10577 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10578 */
10579 spin_lock_irq(&cpu_rq(cpu)->lock);
10580 data = *cpuusage;
10581 spin_unlock_irq(&cpu_rq(cpu)->lock);
10582#else
10583 data = *cpuusage;
10584#endif
10585
10586 return data;
10587}
10588
10589static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10590{
b36128c8 10591 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10592
10593#ifndef CONFIG_64BIT
10594 /*
10595 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10596 */
10597 spin_lock_irq(&cpu_rq(cpu)->lock);
10598 *cpuusage = val;
10599 spin_unlock_irq(&cpu_rq(cpu)->lock);
10600#else
10601 *cpuusage = val;
10602#endif
10603}
10604
d842de87 10605/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10606static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10607{
32cd756a 10608 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10609 u64 totalcpuusage = 0;
10610 int i;
10611
720f5498
KC
10612 for_each_present_cpu(i)
10613 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10614
10615 return totalcpuusage;
10616}
10617
0297b803
DG
10618static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10619 u64 reset)
10620{
10621 struct cpuacct *ca = cgroup_ca(cgrp);
10622 int err = 0;
10623 int i;
10624
10625 if (reset) {
10626 err = -EINVAL;
10627 goto out;
10628 }
10629
720f5498
KC
10630 for_each_present_cpu(i)
10631 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10632
0297b803
DG
10633out:
10634 return err;
10635}
10636
e9515c3c
KC
10637static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10638 struct seq_file *m)
10639{
10640 struct cpuacct *ca = cgroup_ca(cgroup);
10641 u64 percpu;
10642 int i;
10643
10644 for_each_present_cpu(i) {
10645 percpu = cpuacct_cpuusage_read(ca, i);
10646 seq_printf(m, "%llu ", (unsigned long long) percpu);
10647 }
10648 seq_printf(m, "\n");
10649 return 0;
10650}
10651
ef12fefa
BR
10652static const char *cpuacct_stat_desc[] = {
10653 [CPUACCT_STAT_USER] = "user",
10654 [CPUACCT_STAT_SYSTEM] = "system",
10655};
10656
10657static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10658 struct cgroup_map_cb *cb)
10659{
10660 struct cpuacct *ca = cgroup_ca(cgrp);
10661 int i;
10662
10663 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10664 s64 val = percpu_counter_read(&ca->cpustat[i]);
10665 val = cputime64_to_clock_t(val);
10666 cb->fill(cb, cpuacct_stat_desc[i], val);
10667 }
10668 return 0;
10669}
10670
d842de87
SV
10671static struct cftype files[] = {
10672 {
10673 .name = "usage",
f4c753b7
PM
10674 .read_u64 = cpuusage_read,
10675 .write_u64 = cpuusage_write,
d842de87 10676 },
e9515c3c
KC
10677 {
10678 .name = "usage_percpu",
10679 .read_seq_string = cpuacct_percpu_seq_read,
10680 },
ef12fefa
BR
10681 {
10682 .name = "stat",
10683 .read_map = cpuacct_stats_show,
10684 },
d842de87
SV
10685};
10686
32cd756a 10687static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10688{
32cd756a 10689 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10690}
10691
10692/*
10693 * charge this task's execution time to its accounting group.
10694 *
10695 * called with rq->lock held.
10696 */
10697static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10698{
10699 struct cpuacct *ca;
934352f2 10700 int cpu;
d842de87 10701
c40c6f85 10702 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10703 return;
10704
934352f2 10705 cpu = task_cpu(tsk);
a18b83b7
BR
10706
10707 rcu_read_lock();
10708
d842de87 10709 ca = task_ca(tsk);
d842de87 10710
934352f2 10711 for (; ca; ca = ca->parent) {
b36128c8 10712 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10713 *cpuusage += cputime;
10714 }
a18b83b7
BR
10715
10716 rcu_read_unlock();
d842de87
SV
10717}
10718
ef12fefa
BR
10719/*
10720 * Charge the system/user time to the task's accounting group.
10721 */
10722static void cpuacct_update_stats(struct task_struct *tsk,
10723 enum cpuacct_stat_index idx, cputime_t val)
10724{
10725 struct cpuacct *ca;
10726
10727 if (unlikely(!cpuacct_subsys.active))
10728 return;
10729
10730 rcu_read_lock();
10731 ca = task_ca(tsk);
10732
10733 do {
10734 percpu_counter_add(&ca->cpustat[idx], val);
10735 ca = ca->parent;
10736 } while (ca);
10737 rcu_read_unlock();
10738}
10739
d842de87
SV
10740struct cgroup_subsys cpuacct_subsys = {
10741 .name = "cpuacct",
10742 .create = cpuacct_create,
10743 .destroy = cpuacct_destroy,
10744 .populate = cpuacct_populate,
10745 .subsys_id = cpuacct_subsys_id,
10746};
10747#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10748
10749#ifndef CONFIG_SMP
10750
10751int rcu_expedited_torture_stats(char *page)
10752{
10753 return 0;
10754}
10755EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10756
10757void synchronize_sched_expedited(void)
10758{
10759}
10760EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10761
10762#else /* #ifndef CONFIG_SMP */
10763
10764static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10765static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10766
10767#define RCU_EXPEDITED_STATE_POST -2
10768#define RCU_EXPEDITED_STATE_IDLE -1
10769
10770static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10771
10772int rcu_expedited_torture_stats(char *page)
10773{
10774 int cnt = 0;
10775 int cpu;
10776
10777 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10778 for_each_online_cpu(cpu) {
10779 cnt += sprintf(&page[cnt], " %d:%d",
10780 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10781 }
10782 cnt += sprintf(&page[cnt], "\n");
10783 return cnt;
10784}
10785EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10786
10787static long synchronize_sched_expedited_count;
10788
10789/*
10790 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10791 * approach to force grace period to end quickly. This consumes
10792 * significant time on all CPUs, and is thus not recommended for
10793 * any sort of common-case code.
10794 *
10795 * Note that it is illegal to call this function while holding any
10796 * lock that is acquired by a CPU-hotplug notifier. Failing to
10797 * observe this restriction will result in deadlock.
10798 */
10799void synchronize_sched_expedited(void)
10800{
10801 int cpu;
10802 unsigned long flags;
10803 bool need_full_sync = 0;
10804 struct rq *rq;
10805 struct migration_req *req;
10806 long snap;
10807 int trycount = 0;
10808
10809 smp_mb(); /* ensure prior mod happens before capturing snap. */
10810 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10811 get_online_cpus();
10812 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10813 put_online_cpus();
10814 if (trycount++ < 10)
10815 udelay(trycount * num_online_cpus());
10816 else {
10817 synchronize_sched();
10818 return;
10819 }
10820 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10821 smp_mb(); /* ensure test happens before caller kfree */
10822 return;
10823 }
10824 get_online_cpus();
10825 }
10826 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10827 for_each_online_cpu(cpu) {
10828 rq = cpu_rq(cpu);
10829 req = &per_cpu(rcu_migration_req, cpu);
10830 init_completion(&req->done);
10831 req->task = NULL;
10832 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10833 spin_lock_irqsave(&rq->lock, flags);
10834 list_add(&req->list, &rq->migration_queue);
10835 spin_unlock_irqrestore(&rq->lock, flags);
10836 wake_up_process(rq->migration_thread);
10837 }
10838 for_each_online_cpu(cpu) {
10839 rcu_expedited_state = cpu;
10840 req = &per_cpu(rcu_migration_req, cpu);
10841 rq = cpu_rq(cpu);
10842 wait_for_completion(&req->done);
10843 spin_lock_irqsave(&rq->lock, flags);
10844 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10845 need_full_sync = 1;
10846 req->dest_cpu = RCU_MIGRATION_IDLE;
10847 spin_unlock_irqrestore(&rq->lock, flags);
10848 }
10849 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10850 mutex_unlock(&rcu_sched_expedited_mutex);
10851 put_online_cpus();
10852 if (need_full_sync)
10853 synchronize_sched();
10854}
10855EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10856
10857#endif /* #else #ifndef CONFIG_SMP */