]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Use lockdep-based checking on rcu_dereference()
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
0986b11b 473 raw_spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491 527 /* runqueue lock: */
05fa785c 528 raw_spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
d11c563d
PM
648#define for_each_domain_rd(p) \
649 rcu_dereference_check((p), \
650 rcu_read_lock_sched_held() || \
651 lockdep_is_held(&sched_domains_mutex))
652
674311d5
NP
653/*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 655 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
48f24c4d 660#define for_each_domain(cpu, __sd) \
d11c563d 661 for (__sd = for_each_domain_rd(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
662
663#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664#define this_rq() (&__get_cpu_var(runqueues))
665#define task_rq(p) cpu_rq(task_cpu(p))
666#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 667#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 668
aa9c4c0f 669inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
670{
671 rq->clock = sched_clock_cpu(cpu_of(rq));
672}
673
bf5c91ba
IM
674/*
675 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
676 */
677#ifdef CONFIG_SCHED_DEBUG
678# define const_debug __read_mostly
679#else
680# define const_debug static const
681#endif
682
017730c1
IM
683/**
684 * runqueue_is_locked
e17b38bf 685 * @cpu: the processor in question.
017730c1
IM
686 *
687 * Returns true if the current cpu runqueue is locked.
688 * This interface allows printk to be called with the runqueue lock
689 * held and know whether or not it is OK to wake up the klogd.
690 */
89f19f04 691int runqueue_is_locked(int cpu)
017730c1 692{
05fa785c 693 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
694}
695
bf5c91ba
IM
696/*
697 * Debugging: various feature bits
698 */
f00b45c1
PZ
699
700#define SCHED_FEAT(name, enabled) \
701 __SCHED_FEAT_##name ,
702
bf5c91ba 703enum {
f00b45c1 704#include "sched_features.h"
bf5c91ba
IM
705};
706
f00b45c1
PZ
707#undef SCHED_FEAT
708
709#define SCHED_FEAT(name, enabled) \
710 (1UL << __SCHED_FEAT_##name) * enabled |
711
bf5c91ba 712const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
713#include "sched_features.h"
714 0;
715
716#undef SCHED_FEAT
717
718#ifdef CONFIG_SCHED_DEBUG
719#define SCHED_FEAT(name, enabled) \
720 #name ,
721
983ed7a6 722static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
723#include "sched_features.h"
724 NULL
725};
726
727#undef SCHED_FEAT
728
34f3a814 729static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 730{
f00b45c1
PZ
731 int i;
732
733 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
734 if (!(sysctl_sched_features & (1UL << i)))
735 seq_puts(m, "NO_");
736 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 737 }
34f3a814 738 seq_puts(m, "\n");
f00b45c1 739
34f3a814 740 return 0;
f00b45c1
PZ
741}
742
743static ssize_t
744sched_feat_write(struct file *filp, const char __user *ubuf,
745 size_t cnt, loff_t *ppos)
746{
747 char buf[64];
748 char *cmp = buf;
749 int neg = 0;
750 int i;
751
752 if (cnt > 63)
753 cnt = 63;
754
755 if (copy_from_user(&buf, ubuf, cnt))
756 return -EFAULT;
757
758 buf[cnt] = 0;
759
c24b7c52 760 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
761 neg = 1;
762 cmp += 3;
763 }
764
765 for (i = 0; sched_feat_names[i]; i++) {
766 int len = strlen(sched_feat_names[i]);
767
768 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
769 if (neg)
770 sysctl_sched_features &= ~(1UL << i);
771 else
772 sysctl_sched_features |= (1UL << i);
773 break;
774 }
775 }
776
777 if (!sched_feat_names[i])
778 return -EINVAL;
779
42994724 780 *ppos += cnt;
f00b45c1
PZ
781
782 return cnt;
783}
784
34f3a814
LZ
785static int sched_feat_open(struct inode *inode, struct file *filp)
786{
787 return single_open(filp, sched_feat_show, NULL);
788}
789
828c0950 790static const struct file_operations sched_feat_fops = {
34f3a814
LZ
791 .open = sched_feat_open,
792 .write = sched_feat_write,
793 .read = seq_read,
794 .llseek = seq_lseek,
795 .release = single_release,
f00b45c1
PZ
796};
797
798static __init int sched_init_debug(void)
799{
f00b45c1
PZ
800 debugfs_create_file("sched_features", 0644, NULL, NULL,
801 &sched_feat_fops);
802
803 return 0;
804}
805late_initcall(sched_init_debug);
806
807#endif
808
809#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 810
b82d9fdd
PZ
811/*
812 * Number of tasks to iterate in a single balance run.
813 * Limited because this is done with IRQs disabled.
814 */
815const_debug unsigned int sysctl_sched_nr_migrate = 32;
816
2398f2c6
PZ
817/*
818 * ratelimit for updating the group shares.
55cd5340 819 * default: 0.25ms
2398f2c6 820 */
55cd5340 821unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 822unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 823
ffda12a1
PZ
824/*
825 * Inject some fuzzyness into changing the per-cpu group shares
826 * this avoids remote rq-locks at the expense of fairness.
827 * default: 4
828 */
829unsigned int sysctl_sched_shares_thresh = 4;
830
e9e9250b
PZ
831/*
832 * period over which we average the RT time consumption, measured
833 * in ms.
834 *
835 * default: 1s
836 */
837const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
838
fa85ae24 839/*
9f0c1e56 840 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
841 * default: 1s
842 */
9f0c1e56 843unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 844
6892b75e
IM
845static __read_mostly int scheduler_running;
846
9f0c1e56
PZ
847/*
848 * part of the period that we allow rt tasks to run in us.
849 * default: 0.95s
850 */
851int sysctl_sched_rt_runtime = 950000;
fa85ae24 852
d0b27fa7
PZ
853static inline u64 global_rt_period(void)
854{
855 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
856}
857
858static inline u64 global_rt_runtime(void)
859{
e26873bb 860 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
861 return RUNTIME_INF;
862
863 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
864}
fa85ae24 865
1da177e4 866#ifndef prepare_arch_switch
4866cde0
NP
867# define prepare_arch_switch(next) do { } while (0)
868#endif
869#ifndef finish_arch_switch
870# define finish_arch_switch(prev) do { } while (0)
871#endif
872
051a1d1a
DA
873static inline int task_current(struct rq *rq, struct task_struct *p)
874{
875 return rq->curr == p;
876}
877
4866cde0 878#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 879static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 880{
051a1d1a 881 return task_current(rq, p);
4866cde0
NP
882}
883
70b97a7f 884static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
885{
886}
887
70b97a7f 888static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 889{
da04c035
IM
890#ifdef CONFIG_DEBUG_SPINLOCK
891 /* this is a valid case when another task releases the spinlock */
892 rq->lock.owner = current;
893#endif
8a25d5de
IM
894 /*
895 * If we are tracking spinlock dependencies then we have to
896 * fix up the runqueue lock - which gets 'carried over' from
897 * prev into current:
898 */
899 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
900
05fa785c 901 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
902}
903
904#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 905static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
906{
907#ifdef CONFIG_SMP
908 return p->oncpu;
909#else
051a1d1a 910 return task_current(rq, p);
4866cde0
NP
911#endif
912}
913
70b97a7f 914static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
915{
916#ifdef CONFIG_SMP
917 /*
918 * We can optimise this out completely for !SMP, because the
919 * SMP rebalancing from interrupt is the only thing that cares
920 * here.
921 */
922 next->oncpu = 1;
923#endif
924#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 925 raw_spin_unlock_irq(&rq->lock);
4866cde0 926#else
05fa785c 927 raw_spin_unlock(&rq->lock);
4866cde0
NP
928#endif
929}
930
70b97a7f 931static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
932{
933#ifdef CONFIG_SMP
934 /*
935 * After ->oncpu is cleared, the task can be moved to a different CPU.
936 * We must ensure this doesn't happen until the switch is completely
937 * finished.
938 */
939 smp_wmb();
940 prev->oncpu = 0;
941#endif
942#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
943 local_irq_enable();
1da177e4 944#endif
4866cde0
NP
945}
946#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 947
b29739f9
IM
948/*
949 * __task_rq_lock - lock the runqueue a given task resides on.
950 * Must be called interrupts disabled.
951 */
70b97a7f 952static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
953 __acquires(rq->lock)
954{
3a5c359a
AK
955 for (;;) {
956 struct rq *rq = task_rq(p);
05fa785c 957 raw_spin_lock(&rq->lock);
3a5c359a
AK
958 if (likely(rq == task_rq(p)))
959 return rq;
05fa785c 960 raw_spin_unlock(&rq->lock);
b29739f9 961 }
b29739f9
IM
962}
963
1da177e4
LT
964/*
965 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 966 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
967 * explicitly disabling preemption.
968 */
70b97a7f 969static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
970 __acquires(rq->lock)
971{
70b97a7f 972 struct rq *rq;
1da177e4 973
3a5c359a
AK
974 for (;;) {
975 local_irq_save(*flags);
976 rq = task_rq(p);
05fa785c 977 raw_spin_lock(&rq->lock);
3a5c359a
AK
978 if (likely(rq == task_rq(p)))
979 return rq;
05fa785c 980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 981 }
1da177e4
LT
982}
983
ad474cac
ON
984void task_rq_unlock_wait(struct task_struct *p)
985{
986 struct rq *rq = task_rq(p);
987
988 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 989 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
990}
991
a9957449 992static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
993 __releases(rq->lock)
994{
05fa785c 995 raw_spin_unlock(&rq->lock);
b29739f9
IM
996}
997
70b97a7f 998static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
999 __releases(rq->lock)
1000{
05fa785c 1001 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
1002}
1003
1da177e4 1004/*
cc2a73b5 1005 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1006 */
a9957449 1007static struct rq *this_rq_lock(void)
1da177e4
LT
1008 __acquires(rq->lock)
1009{
70b97a7f 1010 struct rq *rq;
1da177e4
LT
1011
1012 local_irq_disable();
1013 rq = this_rq();
05fa785c 1014 raw_spin_lock(&rq->lock);
1da177e4
LT
1015
1016 return rq;
1017}
1018
8f4d37ec
PZ
1019#ifdef CONFIG_SCHED_HRTICK
1020/*
1021 * Use HR-timers to deliver accurate preemption points.
1022 *
1023 * Its all a bit involved since we cannot program an hrt while holding the
1024 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1025 * reschedule event.
1026 *
1027 * When we get rescheduled we reprogram the hrtick_timer outside of the
1028 * rq->lock.
1029 */
8f4d37ec
PZ
1030
1031/*
1032 * Use hrtick when:
1033 * - enabled by features
1034 * - hrtimer is actually high res
1035 */
1036static inline int hrtick_enabled(struct rq *rq)
1037{
1038 if (!sched_feat(HRTICK))
1039 return 0;
ba42059f 1040 if (!cpu_active(cpu_of(rq)))
b328ca18 1041 return 0;
8f4d37ec
PZ
1042 return hrtimer_is_hres_active(&rq->hrtick_timer);
1043}
1044
8f4d37ec
PZ
1045static void hrtick_clear(struct rq *rq)
1046{
1047 if (hrtimer_active(&rq->hrtick_timer))
1048 hrtimer_cancel(&rq->hrtick_timer);
1049}
1050
8f4d37ec
PZ
1051/*
1052 * High-resolution timer tick.
1053 * Runs from hardirq context with interrupts disabled.
1054 */
1055static enum hrtimer_restart hrtick(struct hrtimer *timer)
1056{
1057 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1058
1059 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1060
05fa785c 1061 raw_spin_lock(&rq->lock);
3e51f33f 1062 update_rq_clock(rq);
8f4d37ec 1063 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1064 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1065
1066 return HRTIMER_NORESTART;
1067}
1068
95e904c7 1069#ifdef CONFIG_SMP
31656519
PZ
1070/*
1071 * called from hardirq (IPI) context
1072 */
1073static void __hrtick_start(void *arg)
b328ca18 1074{
31656519 1075 struct rq *rq = arg;
b328ca18 1076
05fa785c 1077 raw_spin_lock(&rq->lock);
31656519
PZ
1078 hrtimer_restart(&rq->hrtick_timer);
1079 rq->hrtick_csd_pending = 0;
05fa785c 1080 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1081}
1082
31656519
PZ
1083/*
1084 * Called to set the hrtick timer state.
1085 *
1086 * called with rq->lock held and irqs disabled
1087 */
1088static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1089{
31656519
PZ
1090 struct hrtimer *timer = &rq->hrtick_timer;
1091 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1092
cc584b21 1093 hrtimer_set_expires(timer, time);
31656519
PZ
1094
1095 if (rq == this_rq()) {
1096 hrtimer_restart(timer);
1097 } else if (!rq->hrtick_csd_pending) {
6e275637 1098 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1099 rq->hrtick_csd_pending = 1;
1100 }
b328ca18
PZ
1101}
1102
1103static int
1104hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1105{
1106 int cpu = (int)(long)hcpu;
1107
1108 switch (action) {
1109 case CPU_UP_CANCELED:
1110 case CPU_UP_CANCELED_FROZEN:
1111 case CPU_DOWN_PREPARE:
1112 case CPU_DOWN_PREPARE_FROZEN:
1113 case CPU_DEAD:
1114 case CPU_DEAD_FROZEN:
31656519 1115 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1116 return NOTIFY_OK;
1117 }
1118
1119 return NOTIFY_DONE;
1120}
1121
fa748203 1122static __init void init_hrtick(void)
b328ca18
PZ
1123{
1124 hotcpu_notifier(hotplug_hrtick, 0);
1125}
31656519
PZ
1126#else
1127/*
1128 * Called to set the hrtick timer state.
1129 *
1130 * called with rq->lock held and irqs disabled
1131 */
1132static void hrtick_start(struct rq *rq, u64 delay)
1133{
7f1e2ca9 1134 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1135 HRTIMER_MODE_REL_PINNED, 0);
31656519 1136}
b328ca18 1137
006c75f1 1138static inline void init_hrtick(void)
8f4d37ec 1139{
8f4d37ec 1140}
31656519 1141#endif /* CONFIG_SMP */
8f4d37ec 1142
31656519 1143static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1144{
31656519
PZ
1145#ifdef CONFIG_SMP
1146 rq->hrtick_csd_pending = 0;
8f4d37ec 1147
31656519
PZ
1148 rq->hrtick_csd.flags = 0;
1149 rq->hrtick_csd.func = __hrtick_start;
1150 rq->hrtick_csd.info = rq;
1151#endif
8f4d37ec 1152
31656519
PZ
1153 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1154 rq->hrtick_timer.function = hrtick;
8f4d37ec 1155}
006c75f1 1156#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1157static inline void hrtick_clear(struct rq *rq)
1158{
1159}
1160
8f4d37ec
PZ
1161static inline void init_rq_hrtick(struct rq *rq)
1162{
1163}
1164
b328ca18
PZ
1165static inline void init_hrtick(void)
1166{
1167}
006c75f1 1168#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1169
c24d20db
IM
1170/*
1171 * resched_task - mark a task 'to be rescheduled now'.
1172 *
1173 * On UP this means the setting of the need_resched flag, on SMP it
1174 * might also involve a cross-CPU call to trigger the scheduler on
1175 * the target CPU.
1176 */
1177#ifdef CONFIG_SMP
1178
1179#ifndef tsk_is_polling
1180#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1181#endif
1182
31656519 1183static void resched_task(struct task_struct *p)
c24d20db
IM
1184{
1185 int cpu;
1186
05fa785c 1187 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1188
5ed0cec0 1189 if (test_tsk_need_resched(p))
c24d20db
IM
1190 return;
1191
5ed0cec0 1192 set_tsk_need_resched(p);
c24d20db
IM
1193
1194 cpu = task_cpu(p);
1195 if (cpu == smp_processor_id())
1196 return;
1197
1198 /* NEED_RESCHED must be visible before we test polling */
1199 smp_mb();
1200 if (!tsk_is_polling(p))
1201 smp_send_reschedule(cpu);
1202}
1203
1204static void resched_cpu(int cpu)
1205{
1206 struct rq *rq = cpu_rq(cpu);
1207 unsigned long flags;
1208
05fa785c 1209 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1210 return;
1211 resched_task(cpu_curr(cpu));
05fa785c 1212 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1213}
06d8308c
TG
1214
1215#ifdef CONFIG_NO_HZ
1216/*
1217 * When add_timer_on() enqueues a timer into the timer wheel of an
1218 * idle CPU then this timer might expire before the next timer event
1219 * which is scheduled to wake up that CPU. In case of a completely
1220 * idle system the next event might even be infinite time into the
1221 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1222 * leaves the inner idle loop so the newly added timer is taken into
1223 * account when the CPU goes back to idle and evaluates the timer
1224 * wheel for the next timer event.
1225 */
1226void wake_up_idle_cpu(int cpu)
1227{
1228 struct rq *rq = cpu_rq(cpu);
1229
1230 if (cpu == smp_processor_id())
1231 return;
1232
1233 /*
1234 * This is safe, as this function is called with the timer
1235 * wheel base lock of (cpu) held. When the CPU is on the way
1236 * to idle and has not yet set rq->curr to idle then it will
1237 * be serialized on the timer wheel base lock and take the new
1238 * timer into account automatically.
1239 */
1240 if (rq->curr != rq->idle)
1241 return;
1242
1243 /*
1244 * We can set TIF_RESCHED on the idle task of the other CPU
1245 * lockless. The worst case is that the other CPU runs the
1246 * idle task through an additional NOOP schedule()
1247 */
5ed0cec0 1248 set_tsk_need_resched(rq->idle);
06d8308c
TG
1249
1250 /* NEED_RESCHED must be visible before we test polling */
1251 smp_mb();
1252 if (!tsk_is_polling(rq->idle))
1253 smp_send_reschedule(cpu);
1254}
6d6bc0ad 1255#endif /* CONFIG_NO_HZ */
06d8308c 1256
e9e9250b
PZ
1257static u64 sched_avg_period(void)
1258{
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260}
1261
1262static void sched_avg_update(struct rq *rq)
1263{
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
1267 rq->age_stamp += period;
1268 rq->rt_avg /= 2;
1269 }
1270}
1271
1272static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1273{
1274 rq->rt_avg += rt_delta;
1275 sched_avg_update(rq);
1276}
1277
6d6bc0ad 1278#else /* !CONFIG_SMP */
31656519 1279static void resched_task(struct task_struct *p)
c24d20db 1280{
05fa785c 1281 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1282 set_tsk_need_resched(p);
c24d20db 1283}
e9e9250b
PZ
1284
1285static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1286{
1287}
6d6bc0ad 1288#endif /* CONFIG_SMP */
c24d20db 1289
45bf76df
IM
1290#if BITS_PER_LONG == 32
1291# define WMULT_CONST (~0UL)
1292#else
1293# define WMULT_CONST (1UL << 32)
1294#endif
1295
1296#define WMULT_SHIFT 32
1297
194081eb
IM
1298/*
1299 * Shift right and round:
1300 */
cf2ab469 1301#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1302
a7be37ac
PZ
1303/*
1304 * delta *= weight / lw
1305 */
cb1c4fc9 1306static unsigned long
45bf76df
IM
1307calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1308 struct load_weight *lw)
1309{
1310 u64 tmp;
1311
7a232e03
LJ
1312 if (!lw->inv_weight) {
1313 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1314 lw->inv_weight = 1;
1315 else
1316 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1317 / (lw->weight+1);
1318 }
45bf76df
IM
1319
1320 tmp = (u64)delta_exec * weight;
1321 /*
1322 * Check whether we'd overflow the 64-bit multiplication:
1323 */
194081eb 1324 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1325 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1326 WMULT_SHIFT/2);
1327 else
cf2ab469 1328 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1329
ecf691da 1330 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1334{
1335 lw->weight += inc;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
1091985b 1339static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1340{
1341 lw->weight -= dec;
e89996ae 1342 lw->inv_weight = 0;
45bf76df
IM
1343}
1344
2dd73a4f
PW
1345/*
1346 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1347 * of tasks with abnormal "nice" values across CPUs the contribution that
1348 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1349 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1350 * scaled version of the new time slice allocation that they receive on time
1351 * slice expiry etc.
1352 */
1353
cce7ade8
PZ
1354#define WEIGHT_IDLEPRIO 3
1355#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1356
1357/*
1358 * Nice levels are multiplicative, with a gentle 10% change for every
1359 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1360 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1361 * that remained on nice 0.
1362 *
1363 * The "10% effect" is relative and cumulative: from _any_ nice level,
1364 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1365 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1366 * If a task goes up by ~10% and another task goes down by ~10% then
1367 * the relative distance between them is ~25%.)
dd41f596
IM
1368 */
1369static const int prio_to_weight[40] = {
254753dc
IM
1370 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1371 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1372 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1373 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1374 /* 0 */ 1024, 820, 655, 526, 423,
1375 /* 5 */ 335, 272, 215, 172, 137,
1376 /* 10 */ 110, 87, 70, 56, 45,
1377 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1378};
1379
5714d2de
IM
1380/*
1381 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1382 *
1383 * In cases where the weight does not change often, we can use the
1384 * precalculated inverse to speed up arithmetics by turning divisions
1385 * into multiplications:
1386 */
dd41f596 1387static const u32 prio_to_wmult[40] = {
254753dc
IM
1388 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1389 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1390 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1391 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1392 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1393 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1394 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1395 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1396};
2dd73a4f 1397
dd41f596
IM
1398static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1399
1400/*
1401 * runqueue iterator, to support SMP load-balancing between different
1402 * scheduling classes, without having to expose their internal data
1403 * structures to the load-balancing proper:
1404 */
1405struct rq_iterator {
1406 void *arg;
1407 struct task_struct *(*start)(void *);
1408 struct task_struct *(*next)(void *);
1409};
1410
e1d1484f
PW
1411#ifdef CONFIG_SMP
1412static unsigned long
1413balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 unsigned long max_load_move, struct sched_domain *sd,
1415 enum cpu_idle_type idle, int *all_pinned,
1416 int *this_best_prio, struct rq_iterator *iterator);
1417
1418static int
1419iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1420 struct sched_domain *sd, enum cpu_idle_type idle,
1421 struct rq_iterator *iterator);
e1d1484f 1422#endif
dd41f596 1423
ef12fefa
BR
1424/* Time spent by the tasks of the cpu accounting group executing in ... */
1425enum cpuacct_stat_index {
1426 CPUACCT_STAT_USER, /* ... user mode */
1427 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1428
1429 CPUACCT_STAT_NSTATS,
1430};
1431
d842de87
SV
1432#ifdef CONFIG_CGROUP_CPUACCT
1433static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1434static void cpuacct_update_stats(struct task_struct *tsk,
1435 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1436#else
1437static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1438static inline void cpuacct_update_stats(struct task_struct *tsk,
1439 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1440#endif
1441
18d95a28
PZ
1442static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_add(&rq->load, load);
1445}
1446
1447static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1448{
1449 update_load_sub(&rq->load, load);
1450}
1451
7940ca36 1452#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1453typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1454
1455/*
1456 * Iterate the full tree, calling @down when first entering a node and @up when
1457 * leaving it for the final time.
1458 */
eb755805 1459static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1460{
1461 struct task_group *parent, *child;
eb755805 1462 int ret;
c09595f6
PZ
1463
1464 rcu_read_lock();
1465 parent = &root_task_group;
1466down:
eb755805
PZ
1467 ret = (*down)(parent, data);
1468 if (ret)
1469 goto out_unlock;
c09595f6
PZ
1470 list_for_each_entry_rcu(child, &parent->children, siblings) {
1471 parent = child;
1472 goto down;
1473
1474up:
1475 continue;
1476 }
eb755805
PZ
1477 ret = (*up)(parent, data);
1478 if (ret)
1479 goto out_unlock;
c09595f6
PZ
1480
1481 child = parent;
1482 parent = parent->parent;
1483 if (parent)
1484 goto up;
eb755805 1485out_unlock:
c09595f6 1486 rcu_read_unlock();
eb755805
PZ
1487
1488 return ret;
c09595f6
PZ
1489}
1490
eb755805
PZ
1491static int tg_nop(struct task_group *tg, void *data)
1492{
1493 return 0;
c09595f6 1494}
eb755805
PZ
1495#endif
1496
1497#ifdef CONFIG_SMP
f5f08f39
PZ
1498/* Used instead of source_load when we know the type == 0 */
1499static unsigned long weighted_cpuload(const int cpu)
1500{
1501 return cpu_rq(cpu)->load.weight;
1502}
1503
1504/*
1505 * Return a low guess at the load of a migration-source cpu weighted
1506 * according to the scheduling class and "nice" value.
1507 *
1508 * We want to under-estimate the load of migration sources, to
1509 * balance conservatively.
1510 */
1511static unsigned long source_load(int cpu, int type)
1512{
1513 struct rq *rq = cpu_rq(cpu);
1514 unsigned long total = weighted_cpuload(cpu);
1515
1516 if (type == 0 || !sched_feat(LB_BIAS))
1517 return total;
1518
1519 return min(rq->cpu_load[type-1], total);
1520}
1521
1522/*
1523 * Return a high guess at the load of a migration-target cpu weighted
1524 * according to the scheduling class and "nice" value.
1525 */
1526static unsigned long target_load(int cpu, int type)
1527{
1528 struct rq *rq = cpu_rq(cpu);
1529 unsigned long total = weighted_cpuload(cpu);
1530
1531 if (type == 0 || !sched_feat(LB_BIAS))
1532 return total;
1533
1534 return max(rq->cpu_load[type-1], total);
1535}
1536
ae154be1
PZ
1537static struct sched_group *group_of(int cpu)
1538{
d11c563d 1539 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1540
1541 if (!sd)
1542 return NULL;
1543
1544 return sd->groups;
1545}
1546
1547static unsigned long power_of(int cpu)
1548{
1549 struct sched_group *group = group_of(cpu);
1550
1551 if (!group)
1552 return SCHED_LOAD_SCALE;
1553
1554 return group->cpu_power;
1555}
1556
eb755805
PZ
1557static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1558
1559static unsigned long cpu_avg_load_per_task(int cpu)
1560{
1561 struct rq *rq = cpu_rq(cpu);
af6d596f 1562 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1563
4cd42620
SR
1564 if (nr_running)
1565 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1566 else
1567 rq->avg_load_per_task = 0;
eb755805
PZ
1568
1569 return rq->avg_load_per_task;
1570}
1571
1572#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1573
4a6cc4bd 1574static __read_mostly unsigned long *update_shares_data;
34d76c41 1575
c09595f6
PZ
1576static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1577
1578/*
1579 * Calculate and set the cpu's group shares.
1580 */
34d76c41
PZ
1581static void update_group_shares_cpu(struct task_group *tg, int cpu,
1582 unsigned long sd_shares,
1583 unsigned long sd_rq_weight,
4a6cc4bd 1584 unsigned long *usd_rq_weight)
18d95a28 1585{
34d76c41 1586 unsigned long shares, rq_weight;
a5004278 1587 int boost = 0;
c09595f6 1588
4a6cc4bd 1589 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1590 if (!rq_weight) {
1591 boost = 1;
1592 rq_weight = NICE_0_LOAD;
1593 }
c8cba857 1594
c09595f6 1595 /*
a8af7246
PZ
1596 * \Sum_j shares_j * rq_weight_i
1597 * shares_i = -----------------------------
1598 * \Sum_j rq_weight_j
c09595f6 1599 */
ec4e0e2f 1600 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1601 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1602
ffda12a1
PZ
1603 if (abs(shares - tg->se[cpu]->load.weight) >
1604 sysctl_sched_shares_thresh) {
1605 struct rq *rq = cpu_rq(cpu);
1606 unsigned long flags;
c09595f6 1607
05fa785c 1608 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1609 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1610 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1611 __set_se_shares(tg->se[cpu], shares);
05fa785c 1612 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1613 }
18d95a28 1614}
c09595f6
PZ
1615
1616/*
c8cba857
PZ
1617 * Re-compute the task group their per cpu shares over the given domain.
1618 * This needs to be done in a bottom-up fashion because the rq weight of a
1619 * parent group depends on the shares of its child groups.
c09595f6 1620 */
eb755805 1621static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1622{
cd8ad40d 1623 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1624 unsigned long *usd_rq_weight;
eb755805 1625 struct sched_domain *sd = data;
34d76c41 1626 unsigned long flags;
c8cba857 1627 int i;
c09595f6 1628
34d76c41
PZ
1629 if (!tg->se[0])
1630 return 0;
1631
1632 local_irq_save(flags);
4a6cc4bd 1633 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1634
758b2cdc 1635 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1636 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1637 usd_rq_weight[i] = weight;
34d76c41 1638
cd8ad40d 1639 rq_weight += weight;
ec4e0e2f
KC
1640 /*
1641 * If there are currently no tasks on the cpu pretend there
1642 * is one of average load so that when a new task gets to
1643 * run here it will not get delayed by group starvation.
1644 */
ec4e0e2f
KC
1645 if (!weight)
1646 weight = NICE_0_LOAD;
1647
cd8ad40d 1648 sum_weight += weight;
c8cba857 1649 shares += tg->cfs_rq[i]->shares;
c09595f6 1650 }
c09595f6 1651
cd8ad40d
PZ
1652 if (!rq_weight)
1653 rq_weight = sum_weight;
1654
c8cba857
PZ
1655 if ((!shares && rq_weight) || shares > tg->shares)
1656 shares = tg->shares;
1657
1658 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1659 shares = tg->shares;
c09595f6 1660
758b2cdc 1661 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1662 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1663
1664 local_irq_restore(flags);
eb755805
PZ
1665
1666 return 0;
c09595f6
PZ
1667}
1668
1669/*
c8cba857
PZ
1670 * Compute the cpu's hierarchical load factor for each task group.
1671 * This needs to be done in a top-down fashion because the load of a child
1672 * group is a fraction of its parents load.
c09595f6 1673 */
eb755805 1674static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1675{
c8cba857 1676 unsigned long load;
eb755805 1677 long cpu = (long)data;
c09595f6 1678
c8cba857
PZ
1679 if (!tg->parent) {
1680 load = cpu_rq(cpu)->load.weight;
1681 } else {
1682 load = tg->parent->cfs_rq[cpu]->h_load;
1683 load *= tg->cfs_rq[cpu]->shares;
1684 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1685 }
c09595f6 1686
c8cba857 1687 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1688
eb755805 1689 return 0;
c09595f6
PZ
1690}
1691
c8cba857 1692static void update_shares(struct sched_domain *sd)
4d8d595d 1693{
e7097159
PZ
1694 s64 elapsed;
1695 u64 now;
1696
1697 if (root_task_group_empty())
1698 return;
1699
1700 now = cpu_clock(raw_smp_processor_id());
1701 elapsed = now - sd->last_update;
2398f2c6
PZ
1702
1703 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1704 sd->last_update = now;
eb755805 1705 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1706 }
4d8d595d
PZ
1707}
1708
3e5459b4
PZ
1709static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1710{
e7097159
PZ
1711 if (root_task_group_empty())
1712 return;
1713
05fa785c 1714 raw_spin_unlock(&rq->lock);
3e5459b4 1715 update_shares(sd);
05fa785c 1716 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1717}
1718
eb755805 1719static void update_h_load(long cpu)
c09595f6 1720{
e7097159
PZ
1721 if (root_task_group_empty())
1722 return;
1723
eb755805 1724 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1725}
1726
c09595f6
PZ
1727#else
1728
c8cba857 1729static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1730{
1731}
1732
3e5459b4
PZ
1733static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1734{
1735}
1736
18d95a28
PZ
1737#endif
1738
8f45e2b5
GH
1739#ifdef CONFIG_PREEMPT
1740
b78bb868
PZ
1741static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1742
70574a99 1743/*
8f45e2b5
GH
1744 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1745 * way at the expense of forcing extra atomic operations in all
1746 * invocations. This assures that the double_lock is acquired using the
1747 * same underlying policy as the spinlock_t on this architecture, which
1748 * reduces latency compared to the unfair variant below. However, it
1749 * also adds more overhead and therefore may reduce throughput.
70574a99 1750 */
8f45e2b5
GH
1751static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1752 __releases(this_rq->lock)
1753 __acquires(busiest->lock)
1754 __acquires(this_rq->lock)
1755{
05fa785c 1756 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1757 double_rq_lock(this_rq, busiest);
1758
1759 return 1;
1760}
1761
1762#else
1763/*
1764 * Unfair double_lock_balance: Optimizes throughput at the expense of
1765 * latency by eliminating extra atomic operations when the locks are
1766 * already in proper order on entry. This favors lower cpu-ids and will
1767 * grant the double lock to lower cpus over higher ids under contention,
1768 * regardless of entry order into the function.
1769 */
1770static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1771 __releases(this_rq->lock)
1772 __acquires(busiest->lock)
1773 __acquires(this_rq->lock)
1774{
1775 int ret = 0;
1776
05fa785c 1777 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1778 if (busiest < this_rq) {
05fa785c
TG
1779 raw_spin_unlock(&this_rq->lock);
1780 raw_spin_lock(&busiest->lock);
1781 raw_spin_lock_nested(&this_rq->lock,
1782 SINGLE_DEPTH_NESTING);
70574a99
AD
1783 ret = 1;
1784 } else
05fa785c
TG
1785 raw_spin_lock_nested(&busiest->lock,
1786 SINGLE_DEPTH_NESTING);
70574a99
AD
1787 }
1788 return ret;
1789}
1790
8f45e2b5
GH
1791#endif /* CONFIG_PREEMPT */
1792
1793/*
1794 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1795 */
1796static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1797{
1798 if (unlikely(!irqs_disabled())) {
1799 /* printk() doesn't work good under rq->lock */
05fa785c 1800 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1801 BUG_ON(1);
1802 }
1803
1804 return _double_lock_balance(this_rq, busiest);
1805}
1806
70574a99
AD
1807static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1808 __releases(busiest->lock)
1809{
05fa785c 1810 raw_spin_unlock(&busiest->lock);
70574a99
AD
1811 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1812}
18d95a28
PZ
1813#endif
1814
30432094 1815#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1816static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1817{
30432094 1818#ifdef CONFIG_SMP
34e83e85
IM
1819 cfs_rq->shares = shares;
1820#endif
1821}
30432094 1822#endif
e7693a36 1823
dce48a84 1824static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1825static void update_sysctl(void);
acb4a848 1826static int get_update_sysctl_factor(void);
dce48a84 1827
cd29fe6f
PZ
1828static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1829{
1830 set_task_rq(p, cpu);
1831#ifdef CONFIG_SMP
1832 /*
1833 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1834 * successfuly executed on another CPU. We must ensure that updates of
1835 * per-task data have been completed by this moment.
1836 */
1837 smp_wmb();
1838 task_thread_info(p)->cpu = cpu;
1839#endif
1840}
dce48a84 1841
dd41f596 1842#include "sched_stats.h"
dd41f596 1843#include "sched_idletask.c"
5522d5d5
IM
1844#include "sched_fair.c"
1845#include "sched_rt.c"
dd41f596
IM
1846#ifdef CONFIG_SCHED_DEBUG
1847# include "sched_debug.c"
1848#endif
1849
1850#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1851#define for_each_class(class) \
1852 for (class = sched_class_highest; class; class = class->next)
dd41f596 1853
c09595f6 1854static void inc_nr_running(struct rq *rq)
9c217245
IM
1855{
1856 rq->nr_running++;
9c217245
IM
1857}
1858
c09595f6 1859static void dec_nr_running(struct rq *rq)
9c217245
IM
1860{
1861 rq->nr_running--;
9c217245
IM
1862}
1863
45bf76df
IM
1864static void set_load_weight(struct task_struct *p)
1865{
1866 if (task_has_rt_policy(p)) {
dd41f596
IM
1867 p->se.load.weight = prio_to_weight[0] * 2;
1868 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1869 return;
1870 }
45bf76df 1871
dd41f596
IM
1872 /*
1873 * SCHED_IDLE tasks get minimal weight:
1874 */
1875 if (p->policy == SCHED_IDLE) {
1876 p->se.load.weight = WEIGHT_IDLEPRIO;
1877 p->se.load.inv_weight = WMULT_IDLEPRIO;
1878 return;
1879 }
71f8bd46 1880
dd41f596
IM
1881 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1882 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1883}
1884
2087a1ad
GH
1885static void update_avg(u64 *avg, u64 sample)
1886{
1887 s64 diff = sample - *avg;
1888 *avg += diff >> 3;
1889}
1890
8159f87e 1891static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1892{
831451ac
PZ
1893 if (wakeup)
1894 p->se.start_runtime = p->se.sum_exec_runtime;
1895
dd41f596 1896 sched_info_queued(p);
fd390f6a 1897 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1898 p->se.on_rq = 1;
71f8bd46
IM
1899}
1900
69be72c1 1901static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1902{
831451ac
PZ
1903 if (sleep) {
1904 if (p->se.last_wakeup) {
1905 update_avg(&p->se.avg_overlap,
1906 p->se.sum_exec_runtime - p->se.last_wakeup);
1907 p->se.last_wakeup = 0;
1908 } else {
1909 update_avg(&p->se.avg_wakeup,
1910 sysctl_sched_wakeup_granularity);
1911 }
2087a1ad
GH
1912 }
1913
46ac22ba 1914 sched_info_dequeued(p);
f02231e5 1915 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1916 p->se.on_rq = 0;
71f8bd46
IM
1917}
1918
14531189 1919/*
dd41f596 1920 * __normal_prio - return the priority that is based on the static prio
14531189 1921 */
14531189
IM
1922static inline int __normal_prio(struct task_struct *p)
1923{
dd41f596 1924 return p->static_prio;
14531189
IM
1925}
1926
b29739f9
IM
1927/*
1928 * Calculate the expected normal priority: i.e. priority
1929 * without taking RT-inheritance into account. Might be
1930 * boosted by interactivity modifiers. Changes upon fork,
1931 * setprio syscalls, and whenever the interactivity
1932 * estimator recalculates.
1933 */
36c8b586 1934static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1935{
1936 int prio;
1937
e05606d3 1938 if (task_has_rt_policy(p))
b29739f9
IM
1939 prio = MAX_RT_PRIO-1 - p->rt_priority;
1940 else
1941 prio = __normal_prio(p);
1942 return prio;
1943}
1944
1945/*
1946 * Calculate the current priority, i.e. the priority
1947 * taken into account by the scheduler. This value might
1948 * be boosted by RT tasks, or might be boosted by
1949 * interactivity modifiers. Will be RT if the task got
1950 * RT-boosted. If not then it returns p->normal_prio.
1951 */
36c8b586 1952static int effective_prio(struct task_struct *p)
b29739f9
IM
1953{
1954 p->normal_prio = normal_prio(p);
1955 /*
1956 * If we are RT tasks or we were boosted to RT priority,
1957 * keep the priority unchanged. Otherwise, update priority
1958 * to the normal priority:
1959 */
1960 if (!rt_prio(p->prio))
1961 return p->normal_prio;
1962 return p->prio;
1963}
1964
1da177e4 1965/*
dd41f596 1966 * activate_task - move a task to the runqueue.
1da177e4 1967 */
dd41f596 1968static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1969{
d9514f6c 1970 if (task_contributes_to_load(p))
dd41f596 1971 rq->nr_uninterruptible--;
1da177e4 1972
8159f87e 1973 enqueue_task(rq, p, wakeup);
c09595f6 1974 inc_nr_running(rq);
1da177e4
LT
1975}
1976
1da177e4
LT
1977/*
1978 * deactivate_task - remove a task from the runqueue.
1979 */
2e1cb74a 1980static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1981{
d9514f6c 1982 if (task_contributes_to_load(p))
dd41f596
IM
1983 rq->nr_uninterruptible++;
1984
69be72c1 1985 dequeue_task(rq, p, sleep);
c09595f6 1986 dec_nr_running(rq);
1da177e4
LT
1987}
1988
1da177e4
LT
1989/**
1990 * task_curr - is this task currently executing on a CPU?
1991 * @p: the task in question.
1992 */
36c8b586 1993inline int task_curr(const struct task_struct *p)
1da177e4
LT
1994{
1995 return cpu_curr(task_cpu(p)) == p;
1996}
1997
cb469845
SR
1998static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1999 const struct sched_class *prev_class,
2000 int oldprio, int running)
2001{
2002 if (prev_class != p->sched_class) {
2003 if (prev_class->switched_from)
2004 prev_class->switched_from(rq, p, running);
2005 p->sched_class->switched_to(rq, p, running);
2006 } else
2007 p->sched_class->prio_changed(rq, p, oldprio, running);
2008}
2009
1da177e4 2010#ifdef CONFIG_SMP
cc367732
IM
2011/*
2012 * Is this task likely cache-hot:
2013 */
e7693a36 2014static int
cc367732
IM
2015task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2016{
2017 s64 delta;
2018
e6c8fba7
PZ
2019 if (p->sched_class != &fair_sched_class)
2020 return 0;
2021
f540a608
IM
2022 /*
2023 * Buddy candidates are cache hot:
2024 */
f685ceac 2025 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2026 (&p->se == cfs_rq_of(&p->se)->next ||
2027 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2028 return 1;
2029
6bc1665b
IM
2030 if (sysctl_sched_migration_cost == -1)
2031 return 1;
2032 if (sysctl_sched_migration_cost == 0)
2033 return 0;
2034
cc367732
IM
2035 delta = now - p->se.exec_start;
2036
2037 return delta < (s64)sysctl_sched_migration_cost;
2038}
2039
dd41f596 2040void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2041{
e2912009
PZ
2042#ifdef CONFIG_SCHED_DEBUG
2043 /*
2044 * We should never call set_task_cpu() on a blocked task,
2045 * ttwu() will sort out the placement.
2046 */
077614ee
PZ
2047 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2048 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2049#endif
2050
de1d7286 2051 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2052
0c69774e
PZ
2053 if (task_cpu(p) != new_cpu) {
2054 p->se.nr_migrations++;
2055 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2056 }
dd41f596
IM
2057
2058 __set_task_cpu(p, new_cpu);
c65cc870
IM
2059}
2060
70b97a7f 2061struct migration_req {
1da177e4 2062 struct list_head list;
1da177e4 2063
36c8b586 2064 struct task_struct *task;
1da177e4
LT
2065 int dest_cpu;
2066
1da177e4 2067 struct completion done;
70b97a7f 2068};
1da177e4
LT
2069
2070/*
2071 * The task's runqueue lock must be held.
2072 * Returns true if you have to wait for migration thread.
2073 */
36c8b586 2074static int
70b97a7f 2075migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2076{
70b97a7f 2077 struct rq *rq = task_rq(p);
1da177e4
LT
2078
2079 /*
2080 * If the task is not on a runqueue (and not running), then
e2912009 2081 * the next wake-up will properly place the task.
1da177e4 2082 */
e2912009 2083 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2084 return 0;
1da177e4
LT
2085
2086 init_completion(&req->done);
1da177e4
LT
2087 req->task = p;
2088 req->dest_cpu = dest_cpu;
2089 list_add(&req->list, &rq->migration_queue);
48f24c4d 2090
1da177e4
LT
2091 return 1;
2092}
2093
a26b89f0
MM
2094/*
2095 * wait_task_context_switch - wait for a thread to complete at least one
2096 * context switch.
2097 *
2098 * @p must not be current.
2099 */
2100void wait_task_context_switch(struct task_struct *p)
2101{
2102 unsigned long nvcsw, nivcsw, flags;
2103 int running;
2104 struct rq *rq;
2105
2106 nvcsw = p->nvcsw;
2107 nivcsw = p->nivcsw;
2108 for (;;) {
2109 /*
2110 * The runqueue is assigned before the actual context
2111 * switch. We need to take the runqueue lock.
2112 *
2113 * We could check initially without the lock but it is
2114 * very likely that we need to take the lock in every
2115 * iteration.
2116 */
2117 rq = task_rq_lock(p, &flags);
2118 running = task_running(rq, p);
2119 task_rq_unlock(rq, &flags);
2120
2121 if (likely(!running))
2122 break;
2123 /*
2124 * The switch count is incremented before the actual
2125 * context switch. We thus wait for two switches to be
2126 * sure at least one completed.
2127 */
2128 if ((p->nvcsw - nvcsw) > 1)
2129 break;
2130 if ((p->nivcsw - nivcsw) > 1)
2131 break;
2132
2133 cpu_relax();
2134 }
2135}
2136
1da177e4
LT
2137/*
2138 * wait_task_inactive - wait for a thread to unschedule.
2139 *
85ba2d86
RM
2140 * If @match_state is nonzero, it's the @p->state value just checked and
2141 * not expected to change. If it changes, i.e. @p might have woken up,
2142 * then return zero. When we succeed in waiting for @p to be off its CPU,
2143 * we return a positive number (its total switch count). If a second call
2144 * a short while later returns the same number, the caller can be sure that
2145 * @p has remained unscheduled the whole time.
2146 *
1da177e4
LT
2147 * The caller must ensure that the task *will* unschedule sometime soon,
2148 * else this function might spin for a *long* time. This function can't
2149 * be called with interrupts off, or it may introduce deadlock with
2150 * smp_call_function() if an IPI is sent by the same process we are
2151 * waiting to become inactive.
2152 */
85ba2d86 2153unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2154{
2155 unsigned long flags;
dd41f596 2156 int running, on_rq;
85ba2d86 2157 unsigned long ncsw;
70b97a7f 2158 struct rq *rq;
1da177e4 2159
3a5c359a
AK
2160 for (;;) {
2161 /*
2162 * We do the initial early heuristics without holding
2163 * any task-queue locks at all. We'll only try to get
2164 * the runqueue lock when things look like they will
2165 * work out!
2166 */
2167 rq = task_rq(p);
fa490cfd 2168
3a5c359a
AK
2169 /*
2170 * If the task is actively running on another CPU
2171 * still, just relax and busy-wait without holding
2172 * any locks.
2173 *
2174 * NOTE! Since we don't hold any locks, it's not
2175 * even sure that "rq" stays as the right runqueue!
2176 * But we don't care, since "task_running()" will
2177 * return false if the runqueue has changed and p
2178 * is actually now running somewhere else!
2179 */
85ba2d86
RM
2180 while (task_running(rq, p)) {
2181 if (match_state && unlikely(p->state != match_state))
2182 return 0;
3a5c359a 2183 cpu_relax();
85ba2d86 2184 }
fa490cfd 2185
3a5c359a
AK
2186 /*
2187 * Ok, time to look more closely! We need the rq
2188 * lock now, to be *sure*. If we're wrong, we'll
2189 * just go back and repeat.
2190 */
2191 rq = task_rq_lock(p, &flags);
0a16b607 2192 trace_sched_wait_task(rq, p);
3a5c359a
AK
2193 running = task_running(rq, p);
2194 on_rq = p->se.on_rq;
85ba2d86 2195 ncsw = 0;
f31e11d8 2196 if (!match_state || p->state == match_state)
93dcf55f 2197 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2198 task_rq_unlock(rq, &flags);
fa490cfd 2199
85ba2d86
RM
2200 /*
2201 * If it changed from the expected state, bail out now.
2202 */
2203 if (unlikely(!ncsw))
2204 break;
2205
3a5c359a
AK
2206 /*
2207 * Was it really running after all now that we
2208 * checked with the proper locks actually held?
2209 *
2210 * Oops. Go back and try again..
2211 */
2212 if (unlikely(running)) {
2213 cpu_relax();
2214 continue;
2215 }
fa490cfd 2216
3a5c359a
AK
2217 /*
2218 * It's not enough that it's not actively running,
2219 * it must be off the runqueue _entirely_, and not
2220 * preempted!
2221 *
80dd99b3 2222 * So if it was still runnable (but just not actively
3a5c359a
AK
2223 * running right now), it's preempted, and we should
2224 * yield - it could be a while.
2225 */
2226 if (unlikely(on_rq)) {
2227 schedule_timeout_uninterruptible(1);
2228 continue;
2229 }
fa490cfd 2230
3a5c359a
AK
2231 /*
2232 * Ahh, all good. It wasn't running, and it wasn't
2233 * runnable, which means that it will never become
2234 * running in the future either. We're all done!
2235 */
2236 break;
2237 }
85ba2d86
RM
2238
2239 return ncsw;
1da177e4
LT
2240}
2241
2242/***
2243 * kick_process - kick a running thread to enter/exit the kernel
2244 * @p: the to-be-kicked thread
2245 *
2246 * Cause a process which is running on another CPU to enter
2247 * kernel-mode, without any delay. (to get signals handled.)
2248 *
2249 * NOTE: this function doesnt have to take the runqueue lock,
2250 * because all it wants to ensure is that the remote task enters
2251 * the kernel. If the IPI races and the task has been migrated
2252 * to another CPU then no harm is done and the purpose has been
2253 * achieved as well.
2254 */
36c8b586 2255void kick_process(struct task_struct *p)
1da177e4
LT
2256{
2257 int cpu;
2258
2259 preempt_disable();
2260 cpu = task_cpu(p);
2261 if ((cpu != smp_processor_id()) && task_curr(p))
2262 smp_send_reschedule(cpu);
2263 preempt_enable();
2264}
b43e3521 2265EXPORT_SYMBOL_GPL(kick_process);
476d139c 2266#endif /* CONFIG_SMP */
1da177e4 2267
0793a61d
TG
2268/**
2269 * task_oncpu_function_call - call a function on the cpu on which a task runs
2270 * @p: the task to evaluate
2271 * @func: the function to be called
2272 * @info: the function call argument
2273 *
2274 * Calls the function @func when the task is currently running. This might
2275 * be on the current CPU, which just calls the function directly
2276 */
2277void task_oncpu_function_call(struct task_struct *p,
2278 void (*func) (void *info), void *info)
2279{
2280 int cpu;
2281
2282 preempt_disable();
2283 cpu = task_cpu(p);
2284 if (task_curr(p))
2285 smp_call_function_single(cpu, func, info, 1);
2286 preempt_enable();
2287}
2288
970b13ba 2289#ifdef CONFIG_SMP
5da9a0fb
PZ
2290static int select_fallback_rq(int cpu, struct task_struct *p)
2291{
2292 int dest_cpu;
2293 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2294
2295 /* Look for allowed, online CPU in same node. */
2296 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2297 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2298 return dest_cpu;
2299
2300 /* Any allowed, online CPU? */
2301 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2302 if (dest_cpu < nr_cpu_ids)
2303 return dest_cpu;
2304
2305 /* No more Mr. Nice Guy. */
2306 if (dest_cpu >= nr_cpu_ids) {
2307 rcu_read_lock();
2308 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2309 rcu_read_unlock();
2310 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2311
2312 /*
2313 * Don't tell them about moving exiting tasks or
2314 * kernel threads (both mm NULL), since they never
2315 * leave kernel.
2316 */
2317 if (p->mm && printk_ratelimit()) {
2318 printk(KERN_INFO "process %d (%s) no "
2319 "longer affine to cpu%d\n",
2320 task_pid_nr(p), p->comm, cpu);
2321 }
2322 }
2323
2324 return dest_cpu;
2325}
2326
e2912009 2327/*
fabf318e
PZ
2328 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2329 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2330 * by:
e2912009 2331 *
fabf318e
PZ
2332 * exec: is unstable, retry loop
2333 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
e2912009 2334 */
970b13ba
PZ
2335static inline
2336int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2337{
e2912009
PZ
2338 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2339
2340 /*
2341 * In order not to call set_task_cpu() on a blocking task we need
2342 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2343 * cpu.
2344 *
2345 * Since this is common to all placement strategies, this lives here.
2346 *
2347 * [ this allows ->select_task() to simply return task_cpu(p) and
2348 * not worry about this generic constraint ]
2349 */
2350 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2351 !cpu_online(cpu)))
5da9a0fb 2352 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2353
2354 return cpu;
970b13ba
PZ
2355}
2356#endif
2357
1da177e4
LT
2358/***
2359 * try_to_wake_up - wake up a thread
2360 * @p: the to-be-woken-up thread
2361 * @state: the mask of task states that can be woken
2362 * @sync: do a synchronous wakeup?
2363 *
2364 * Put it on the run-queue if it's not already there. The "current"
2365 * thread is always on the run-queue (except when the actual
2366 * re-schedule is in progress), and as such you're allowed to do
2367 * the simpler "current->state = TASK_RUNNING" to mark yourself
2368 * runnable without the overhead of this.
2369 *
2370 * returns failure only if the task is already active.
2371 */
7d478721
PZ
2372static int try_to_wake_up(struct task_struct *p, unsigned int state,
2373 int wake_flags)
1da177e4 2374{
cc367732 2375 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2376 unsigned long flags;
f5dc3753 2377 struct rq *rq, *orig_rq;
1da177e4 2378
b85d0667 2379 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2380 wake_flags &= ~WF_SYNC;
2398f2c6 2381
e9c84311 2382 this_cpu = get_cpu();
2398f2c6 2383
04e2f174 2384 smp_wmb();
f5dc3753 2385 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2386 update_rq_clock(rq);
e9c84311 2387 if (!(p->state & state))
1da177e4
LT
2388 goto out;
2389
dd41f596 2390 if (p->se.on_rq)
1da177e4
LT
2391 goto out_running;
2392
2393 cpu = task_cpu(p);
cc367732 2394 orig_cpu = cpu;
1da177e4
LT
2395
2396#ifdef CONFIG_SMP
2397 if (unlikely(task_running(rq, p)))
2398 goto out_activate;
2399
e9c84311
PZ
2400 /*
2401 * In order to handle concurrent wakeups and release the rq->lock
2402 * we put the task in TASK_WAKING state.
eb24073b
IM
2403 *
2404 * First fix up the nr_uninterruptible count:
e9c84311 2405 */
eb24073b
IM
2406 if (task_contributes_to_load(p))
2407 rq->nr_uninterruptible--;
e9c84311 2408 p->state = TASK_WAKING;
efbbd05a
PZ
2409
2410 if (p->sched_class->task_waking)
2411 p->sched_class->task_waking(rq, p);
2412
ab19cb23 2413 __task_rq_unlock(rq);
e9c84311 2414
970b13ba 2415 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2416 if (cpu != orig_cpu)
5d2f5a61 2417 set_task_cpu(p, cpu);
ab19cb23
PZ
2418
2419 rq = __task_rq_lock(p);
2420 update_rq_clock(rq);
f5dc3753 2421
e9c84311
PZ
2422 WARN_ON(p->state != TASK_WAKING);
2423 cpu = task_cpu(p);
1da177e4 2424
e7693a36
GH
2425#ifdef CONFIG_SCHEDSTATS
2426 schedstat_inc(rq, ttwu_count);
2427 if (cpu == this_cpu)
2428 schedstat_inc(rq, ttwu_local);
2429 else {
2430 struct sched_domain *sd;
2431 for_each_domain(this_cpu, sd) {
758b2cdc 2432 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2433 schedstat_inc(sd, ttwu_wake_remote);
2434 break;
2435 }
2436 }
2437 }
6d6bc0ad 2438#endif /* CONFIG_SCHEDSTATS */
e7693a36 2439
1da177e4
LT
2440out_activate:
2441#endif /* CONFIG_SMP */
cc367732 2442 schedstat_inc(p, se.nr_wakeups);
7d478721 2443 if (wake_flags & WF_SYNC)
cc367732
IM
2444 schedstat_inc(p, se.nr_wakeups_sync);
2445 if (orig_cpu != cpu)
2446 schedstat_inc(p, se.nr_wakeups_migrate);
2447 if (cpu == this_cpu)
2448 schedstat_inc(p, se.nr_wakeups_local);
2449 else
2450 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2451 activate_task(rq, p, 1);
1da177e4
LT
2452 success = 1;
2453
831451ac
PZ
2454 /*
2455 * Only attribute actual wakeups done by this task.
2456 */
2457 if (!in_interrupt()) {
2458 struct sched_entity *se = &current->se;
2459 u64 sample = se->sum_exec_runtime;
2460
2461 if (se->last_wakeup)
2462 sample -= se->last_wakeup;
2463 else
2464 sample -= se->start_runtime;
2465 update_avg(&se->avg_wakeup, sample);
2466
2467 se->last_wakeup = se->sum_exec_runtime;
2468 }
2469
1da177e4 2470out_running:
468a15bb 2471 trace_sched_wakeup(rq, p, success);
7d478721 2472 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2473
1da177e4 2474 p->state = TASK_RUNNING;
9a897c5a 2475#ifdef CONFIG_SMP
efbbd05a
PZ
2476 if (p->sched_class->task_woken)
2477 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2478
2479 if (unlikely(rq->idle_stamp)) {
2480 u64 delta = rq->clock - rq->idle_stamp;
2481 u64 max = 2*sysctl_sched_migration_cost;
2482
2483 if (delta > max)
2484 rq->avg_idle = max;
2485 else
2486 update_avg(&rq->avg_idle, delta);
2487 rq->idle_stamp = 0;
2488 }
9a897c5a 2489#endif
1da177e4
LT
2490out:
2491 task_rq_unlock(rq, &flags);
e9c84311 2492 put_cpu();
1da177e4
LT
2493
2494 return success;
2495}
2496
50fa610a
DH
2497/**
2498 * wake_up_process - Wake up a specific process
2499 * @p: The process to be woken up.
2500 *
2501 * Attempt to wake up the nominated process and move it to the set of runnable
2502 * processes. Returns 1 if the process was woken up, 0 if it was already
2503 * running.
2504 *
2505 * It may be assumed that this function implies a write memory barrier before
2506 * changing the task state if and only if any tasks are woken up.
2507 */
7ad5b3a5 2508int wake_up_process(struct task_struct *p)
1da177e4 2509{
d9514f6c 2510 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2511}
1da177e4
LT
2512EXPORT_SYMBOL(wake_up_process);
2513
7ad5b3a5 2514int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2515{
2516 return try_to_wake_up(p, state, 0);
2517}
2518
1da177e4
LT
2519/*
2520 * Perform scheduler related setup for a newly forked process p.
2521 * p is forked by current.
dd41f596
IM
2522 *
2523 * __sched_fork() is basic setup used by init_idle() too:
2524 */
2525static void __sched_fork(struct task_struct *p)
2526{
dd41f596
IM
2527 p->se.exec_start = 0;
2528 p->se.sum_exec_runtime = 0;
f6cf891c 2529 p->se.prev_sum_exec_runtime = 0;
6c594c21 2530 p->se.nr_migrations = 0;
4ae7d5ce
IM
2531 p->se.last_wakeup = 0;
2532 p->se.avg_overlap = 0;
831451ac
PZ
2533 p->se.start_runtime = 0;
2534 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2535
2536#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2537 p->se.wait_start = 0;
2538 p->se.wait_max = 0;
2539 p->se.wait_count = 0;
2540 p->se.wait_sum = 0;
2541
2542 p->se.sleep_start = 0;
2543 p->se.sleep_max = 0;
2544 p->se.sum_sleep_runtime = 0;
2545
2546 p->se.block_start = 0;
2547 p->se.block_max = 0;
2548 p->se.exec_max = 0;
2549 p->se.slice_max = 0;
2550
2551 p->se.nr_migrations_cold = 0;
2552 p->se.nr_failed_migrations_affine = 0;
2553 p->se.nr_failed_migrations_running = 0;
2554 p->se.nr_failed_migrations_hot = 0;
2555 p->se.nr_forced_migrations = 0;
7793527b
LDM
2556
2557 p->se.nr_wakeups = 0;
2558 p->se.nr_wakeups_sync = 0;
2559 p->se.nr_wakeups_migrate = 0;
2560 p->se.nr_wakeups_local = 0;
2561 p->se.nr_wakeups_remote = 0;
2562 p->se.nr_wakeups_affine = 0;
2563 p->se.nr_wakeups_affine_attempts = 0;
2564 p->se.nr_wakeups_passive = 0;
2565 p->se.nr_wakeups_idle = 0;
2566
6cfb0d5d 2567#endif
476d139c 2568
fa717060 2569 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2570 p->se.on_rq = 0;
4a55bd5e 2571 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2572
e107be36
AK
2573#ifdef CONFIG_PREEMPT_NOTIFIERS
2574 INIT_HLIST_HEAD(&p->preempt_notifiers);
2575#endif
dd41f596
IM
2576}
2577
2578/*
2579 * fork()/clone()-time setup:
2580 */
2581void sched_fork(struct task_struct *p, int clone_flags)
2582{
2583 int cpu = get_cpu();
2584
2585 __sched_fork(p);
06b83b5f
PZ
2586 /*
2587 * We mark the process as waking here. This guarantees that
2588 * nobody will actually run it, and a signal or other external
2589 * event cannot wake it up and insert it on the runqueue either.
2590 */
2591 p->state = TASK_WAKING;
dd41f596 2592
b9dc29e7
MG
2593 /*
2594 * Revert to default priority/policy on fork if requested.
2595 */
2596 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2597 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2598 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2599 p->normal_prio = p->static_prio;
2600 }
b9dc29e7 2601
6c697bdf
MG
2602 if (PRIO_TO_NICE(p->static_prio) < 0) {
2603 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2604 p->normal_prio = p->static_prio;
6c697bdf
MG
2605 set_load_weight(p);
2606 }
2607
b9dc29e7
MG
2608 /*
2609 * We don't need the reset flag anymore after the fork. It has
2610 * fulfilled its duty:
2611 */
2612 p->sched_reset_on_fork = 0;
2613 }
ca94c442 2614
f83f9ac2
PW
2615 /*
2616 * Make sure we do not leak PI boosting priority to the child.
2617 */
2618 p->prio = current->normal_prio;
2619
2ddbf952
HS
2620 if (!rt_prio(p->prio))
2621 p->sched_class = &fair_sched_class;
b29739f9 2622
cd29fe6f
PZ
2623 if (p->sched_class->task_fork)
2624 p->sched_class->task_fork(p);
2625
5f3edc1b
PZ
2626 set_task_cpu(p, cpu);
2627
52f17b6c 2628#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2629 if (likely(sched_info_on()))
52f17b6c 2630 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2631#endif
d6077cb8 2632#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2633 p->oncpu = 0;
2634#endif
1da177e4 2635#ifdef CONFIG_PREEMPT
4866cde0 2636 /* Want to start with kernel preemption disabled. */
a1261f54 2637 task_thread_info(p)->preempt_count = 1;
1da177e4 2638#endif
917b627d
GH
2639 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2640
476d139c 2641 put_cpu();
1da177e4
LT
2642}
2643
2644/*
2645 * wake_up_new_task - wake up a newly created task for the first time.
2646 *
2647 * This function will do some initial scheduler statistics housekeeping
2648 * that must be done for every newly created context, then puts the task
2649 * on the runqueue and wakes it.
2650 */
7ad5b3a5 2651void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2652{
2653 unsigned long flags;
dd41f596 2654 struct rq *rq;
fabf318e
PZ
2655 int cpu = get_cpu();
2656
2657#ifdef CONFIG_SMP
2658 /*
2659 * Fork balancing, do it here and not earlier because:
2660 * - cpus_allowed can change in the fork path
2661 * - any previously selected cpu might disappear through hotplug
2662 *
2663 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2664 * ->cpus_allowed is stable, we have preemption disabled, meaning
2665 * cpu_online_mask is stable.
2666 */
2667 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2668 set_task_cpu(p, cpu);
2669#endif
1da177e4
LT
2670
2671 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2672 BUG_ON(p->state != TASK_WAKING);
2673 p->state = TASK_RUNNING;
a8e504d2 2674 update_rq_clock(rq);
cd29fe6f 2675 activate_task(rq, p, 0);
c71dd42d 2676 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2677 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2678#ifdef CONFIG_SMP
efbbd05a
PZ
2679 if (p->sched_class->task_woken)
2680 p->sched_class->task_woken(rq, p);
9a897c5a 2681#endif
dd41f596 2682 task_rq_unlock(rq, &flags);
fabf318e 2683 put_cpu();
1da177e4
LT
2684}
2685
e107be36
AK
2686#ifdef CONFIG_PREEMPT_NOTIFIERS
2687
2688/**
80dd99b3 2689 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2690 * @notifier: notifier struct to register
e107be36
AK
2691 */
2692void preempt_notifier_register(struct preempt_notifier *notifier)
2693{
2694 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2695}
2696EXPORT_SYMBOL_GPL(preempt_notifier_register);
2697
2698/**
2699 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2700 * @notifier: notifier struct to unregister
e107be36
AK
2701 *
2702 * This is safe to call from within a preemption notifier.
2703 */
2704void preempt_notifier_unregister(struct preempt_notifier *notifier)
2705{
2706 hlist_del(&notifier->link);
2707}
2708EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2709
2710static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2711{
2712 struct preempt_notifier *notifier;
2713 struct hlist_node *node;
2714
2715 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2716 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2717}
2718
2719static void
2720fire_sched_out_preempt_notifiers(struct task_struct *curr,
2721 struct task_struct *next)
2722{
2723 struct preempt_notifier *notifier;
2724 struct hlist_node *node;
2725
2726 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2727 notifier->ops->sched_out(notifier, next);
2728}
2729
6d6bc0ad 2730#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2731
2732static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2733{
2734}
2735
2736static void
2737fire_sched_out_preempt_notifiers(struct task_struct *curr,
2738 struct task_struct *next)
2739{
2740}
2741
6d6bc0ad 2742#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2743
4866cde0
NP
2744/**
2745 * prepare_task_switch - prepare to switch tasks
2746 * @rq: the runqueue preparing to switch
421cee29 2747 * @prev: the current task that is being switched out
4866cde0
NP
2748 * @next: the task we are going to switch to.
2749 *
2750 * This is called with the rq lock held and interrupts off. It must
2751 * be paired with a subsequent finish_task_switch after the context
2752 * switch.
2753 *
2754 * prepare_task_switch sets up locking and calls architecture specific
2755 * hooks.
2756 */
e107be36
AK
2757static inline void
2758prepare_task_switch(struct rq *rq, struct task_struct *prev,
2759 struct task_struct *next)
4866cde0 2760{
e107be36 2761 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2762 prepare_lock_switch(rq, next);
2763 prepare_arch_switch(next);
2764}
2765
1da177e4
LT
2766/**
2767 * finish_task_switch - clean up after a task-switch
344babaa 2768 * @rq: runqueue associated with task-switch
1da177e4
LT
2769 * @prev: the thread we just switched away from.
2770 *
4866cde0
NP
2771 * finish_task_switch must be called after the context switch, paired
2772 * with a prepare_task_switch call before the context switch.
2773 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2774 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2775 *
2776 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2777 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2778 * with the lock held can cause deadlocks; see schedule() for
2779 * details.)
2780 */
a9957449 2781static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2782 __releases(rq->lock)
2783{
1da177e4 2784 struct mm_struct *mm = rq->prev_mm;
55a101f8 2785 long prev_state;
1da177e4
LT
2786
2787 rq->prev_mm = NULL;
2788
2789 /*
2790 * A task struct has one reference for the use as "current".
c394cc9f 2791 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2792 * schedule one last time. The schedule call will never return, and
2793 * the scheduled task must drop that reference.
c394cc9f 2794 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2795 * still held, otherwise prev could be scheduled on another cpu, die
2796 * there before we look at prev->state, and then the reference would
2797 * be dropped twice.
2798 * Manfred Spraul <manfred@colorfullife.com>
2799 */
55a101f8 2800 prev_state = prev->state;
4866cde0 2801 finish_arch_switch(prev);
cdd6c482 2802 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2803 finish_lock_switch(rq, prev);
e8fa1362 2804
e107be36 2805 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2806 if (mm)
2807 mmdrop(mm);
c394cc9f 2808 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2809 /*
2810 * Remove function-return probe instances associated with this
2811 * task and put them back on the free list.
9761eea8 2812 */
c6fd91f0 2813 kprobe_flush_task(prev);
1da177e4 2814 put_task_struct(prev);
c6fd91f0 2815 }
1da177e4
LT
2816}
2817
3f029d3c
GH
2818#ifdef CONFIG_SMP
2819
2820/* assumes rq->lock is held */
2821static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2822{
2823 if (prev->sched_class->pre_schedule)
2824 prev->sched_class->pre_schedule(rq, prev);
2825}
2826
2827/* rq->lock is NOT held, but preemption is disabled */
2828static inline void post_schedule(struct rq *rq)
2829{
2830 if (rq->post_schedule) {
2831 unsigned long flags;
2832
05fa785c 2833 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2834 if (rq->curr->sched_class->post_schedule)
2835 rq->curr->sched_class->post_schedule(rq);
05fa785c 2836 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2837
2838 rq->post_schedule = 0;
2839 }
2840}
2841
2842#else
da19ab51 2843
3f029d3c
GH
2844static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2845{
2846}
2847
2848static inline void post_schedule(struct rq *rq)
2849{
1da177e4
LT
2850}
2851
3f029d3c
GH
2852#endif
2853
1da177e4
LT
2854/**
2855 * schedule_tail - first thing a freshly forked thread must call.
2856 * @prev: the thread we just switched away from.
2857 */
36c8b586 2858asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2859 __releases(rq->lock)
2860{
70b97a7f
IM
2861 struct rq *rq = this_rq();
2862
4866cde0 2863 finish_task_switch(rq, prev);
da19ab51 2864
3f029d3c
GH
2865 /*
2866 * FIXME: do we need to worry about rq being invalidated by the
2867 * task_switch?
2868 */
2869 post_schedule(rq);
70b97a7f 2870
4866cde0
NP
2871#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2872 /* In this case, finish_task_switch does not reenable preemption */
2873 preempt_enable();
2874#endif
1da177e4 2875 if (current->set_child_tid)
b488893a 2876 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2877}
2878
2879/*
2880 * context_switch - switch to the new MM and the new
2881 * thread's register state.
2882 */
dd41f596 2883static inline void
70b97a7f 2884context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2885 struct task_struct *next)
1da177e4 2886{
dd41f596 2887 struct mm_struct *mm, *oldmm;
1da177e4 2888
e107be36 2889 prepare_task_switch(rq, prev, next);
0a16b607 2890 trace_sched_switch(rq, prev, next);
dd41f596
IM
2891 mm = next->mm;
2892 oldmm = prev->active_mm;
9226d125
ZA
2893 /*
2894 * For paravirt, this is coupled with an exit in switch_to to
2895 * combine the page table reload and the switch backend into
2896 * one hypercall.
2897 */
224101ed 2898 arch_start_context_switch(prev);
9226d125 2899
710390d9 2900 if (likely(!mm)) {
1da177e4
LT
2901 next->active_mm = oldmm;
2902 atomic_inc(&oldmm->mm_count);
2903 enter_lazy_tlb(oldmm, next);
2904 } else
2905 switch_mm(oldmm, mm, next);
2906
710390d9 2907 if (likely(!prev->mm)) {
1da177e4 2908 prev->active_mm = NULL;
1da177e4
LT
2909 rq->prev_mm = oldmm;
2910 }
3a5f5e48
IM
2911 /*
2912 * Since the runqueue lock will be released by the next
2913 * task (which is an invalid locking op but in the case
2914 * of the scheduler it's an obvious special-case), so we
2915 * do an early lockdep release here:
2916 */
2917#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2918 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2919#endif
1da177e4
LT
2920
2921 /* Here we just switch the register state and the stack. */
2922 switch_to(prev, next, prev);
2923
dd41f596
IM
2924 barrier();
2925 /*
2926 * this_rq must be evaluated again because prev may have moved
2927 * CPUs since it called schedule(), thus the 'rq' on its stack
2928 * frame will be invalid.
2929 */
2930 finish_task_switch(this_rq(), prev);
1da177e4
LT
2931}
2932
2933/*
2934 * nr_running, nr_uninterruptible and nr_context_switches:
2935 *
2936 * externally visible scheduler statistics: current number of runnable
2937 * threads, current number of uninterruptible-sleeping threads, total
2938 * number of context switches performed since bootup.
2939 */
2940unsigned long nr_running(void)
2941{
2942 unsigned long i, sum = 0;
2943
2944 for_each_online_cpu(i)
2945 sum += cpu_rq(i)->nr_running;
2946
2947 return sum;
2948}
2949
2950unsigned long nr_uninterruptible(void)
2951{
2952 unsigned long i, sum = 0;
2953
0a945022 2954 for_each_possible_cpu(i)
1da177e4
LT
2955 sum += cpu_rq(i)->nr_uninterruptible;
2956
2957 /*
2958 * Since we read the counters lockless, it might be slightly
2959 * inaccurate. Do not allow it to go below zero though:
2960 */
2961 if (unlikely((long)sum < 0))
2962 sum = 0;
2963
2964 return sum;
2965}
2966
2967unsigned long long nr_context_switches(void)
2968{
cc94abfc
SR
2969 int i;
2970 unsigned long long sum = 0;
1da177e4 2971
0a945022 2972 for_each_possible_cpu(i)
1da177e4
LT
2973 sum += cpu_rq(i)->nr_switches;
2974
2975 return sum;
2976}
2977
2978unsigned long nr_iowait(void)
2979{
2980 unsigned long i, sum = 0;
2981
0a945022 2982 for_each_possible_cpu(i)
1da177e4
LT
2983 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2984
2985 return sum;
2986}
2987
69d25870
AV
2988unsigned long nr_iowait_cpu(void)
2989{
2990 struct rq *this = this_rq();
2991 return atomic_read(&this->nr_iowait);
2992}
2993
2994unsigned long this_cpu_load(void)
2995{
2996 struct rq *this = this_rq();
2997 return this->cpu_load[0];
2998}
2999
3000
dce48a84
TG
3001/* Variables and functions for calc_load */
3002static atomic_long_t calc_load_tasks;
3003static unsigned long calc_load_update;
3004unsigned long avenrun[3];
3005EXPORT_SYMBOL(avenrun);
3006
2d02494f
TG
3007/**
3008 * get_avenrun - get the load average array
3009 * @loads: pointer to dest load array
3010 * @offset: offset to add
3011 * @shift: shift count to shift the result left
3012 *
3013 * These values are estimates at best, so no need for locking.
3014 */
3015void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3016{
3017 loads[0] = (avenrun[0] + offset) << shift;
3018 loads[1] = (avenrun[1] + offset) << shift;
3019 loads[2] = (avenrun[2] + offset) << shift;
3020}
3021
dce48a84
TG
3022static unsigned long
3023calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3024{
dce48a84
TG
3025 load *= exp;
3026 load += active * (FIXED_1 - exp);
3027 return load >> FSHIFT;
3028}
db1b1fef 3029
dce48a84
TG
3030/*
3031 * calc_load - update the avenrun load estimates 10 ticks after the
3032 * CPUs have updated calc_load_tasks.
3033 */
3034void calc_global_load(void)
3035{
3036 unsigned long upd = calc_load_update + 10;
3037 long active;
3038
3039 if (time_before(jiffies, upd))
3040 return;
db1b1fef 3041
dce48a84
TG
3042 active = atomic_long_read(&calc_load_tasks);
3043 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3044
dce48a84
TG
3045 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3046 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3047 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3048
3049 calc_load_update += LOAD_FREQ;
3050}
3051
3052/*
3053 * Either called from update_cpu_load() or from a cpu going idle
3054 */
3055static void calc_load_account_active(struct rq *this_rq)
3056{
3057 long nr_active, delta;
3058
3059 nr_active = this_rq->nr_running;
3060 nr_active += (long) this_rq->nr_uninterruptible;
3061
3062 if (nr_active != this_rq->calc_load_active) {
3063 delta = nr_active - this_rq->calc_load_active;
3064 this_rq->calc_load_active = nr_active;
3065 atomic_long_add(delta, &calc_load_tasks);
3066 }
db1b1fef
JS
3067}
3068
48f24c4d 3069/*
dd41f596
IM
3070 * Update rq->cpu_load[] statistics. This function is usually called every
3071 * scheduler tick (TICK_NSEC).
48f24c4d 3072 */
dd41f596 3073static void update_cpu_load(struct rq *this_rq)
48f24c4d 3074{
495eca49 3075 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3076 int i, scale;
3077
3078 this_rq->nr_load_updates++;
dd41f596
IM
3079
3080 /* Update our load: */
3081 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3082 unsigned long old_load, new_load;
3083
3084 /* scale is effectively 1 << i now, and >> i divides by scale */
3085
3086 old_load = this_rq->cpu_load[i];
3087 new_load = this_load;
a25707f3
IM
3088 /*
3089 * Round up the averaging division if load is increasing. This
3090 * prevents us from getting stuck on 9 if the load is 10, for
3091 * example.
3092 */
3093 if (new_load > old_load)
3094 new_load += scale-1;
dd41f596
IM
3095 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3096 }
dce48a84
TG
3097
3098 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3099 this_rq->calc_load_update += LOAD_FREQ;
3100 calc_load_account_active(this_rq);
3101 }
48f24c4d
IM
3102}
3103
dd41f596
IM
3104#ifdef CONFIG_SMP
3105
1da177e4
LT
3106/*
3107 * double_rq_lock - safely lock two runqueues
3108 *
3109 * Note this does not disable interrupts like task_rq_lock,
3110 * you need to do so manually before calling.
3111 */
70b97a7f 3112static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3113 __acquires(rq1->lock)
3114 __acquires(rq2->lock)
3115{
054b9108 3116 BUG_ON(!irqs_disabled());
1da177e4 3117 if (rq1 == rq2) {
05fa785c 3118 raw_spin_lock(&rq1->lock);
1da177e4
LT
3119 __acquire(rq2->lock); /* Fake it out ;) */
3120 } else {
c96d145e 3121 if (rq1 < rq2) {
05fa785c
TG
3122 raw_spin_lock(&rq1->lock);
3123 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3124 } else {
05fa785c
TG
3125 raw_spin_lock(&rq2->lock);
3126 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3127 }
3128 }
6e82a3be
IM
3129 update_rq_clock(rq1);
3130 update_rq_clock(rq2);
1da177e4
LT
3131}
3132
3133/*
3134 * double_rq_unlock - safely unlock two runqueues
3135 *
3136 * Note this does not restore interrupts like task_rq_unlock,
3137 * you need to do so manually after calling.
3138 */
70b97a7f 3139static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3140 __releases(rq1->lock)
3141 __releases(rq2->lock)
3142{
05fa785c 3143 raw_spin_unlock(&rq1->lock);
1da177e4 3144 if (rq1 != rq2)
05fa785c 3145 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3146 else
3147 __release(rq2->lock);
3148}
3149
1da177e4 3150/*
38022906
PZ
3151 * sched_exec - execve() is a valuable balancing opportunity, because at
3152 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3153 */
38022906 3154void sched_exec(void)
1da177e4 3155{
38022906 3156 struct task_struct *p = current;
70b97a7f 3157 struct migration_req req;
38022906 3158 int dest_cpu, this_cpu;
1da177e4 3159 unsigned long flags;
70b97a7f 3160 struct rq *rq;
1da177e4 3161
38022906
PZ
3162again:
3163 this_cpu = get_cpu();
3164 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3165 if (dest_cpu == this_cpu) {
3166 put_cpu();
3167 return;
3168 }
3169
1da177e4 3170 rq = task_rq_lock(p, &flags);
38022906
PZ
3171 put_cpu();
3172
3173 /*
3174 * select_task_rq() can race against ->cpus_allowed
3175 */
96f874e2 3176 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3177 || unlikely(!cpu_active(dest_cpu))) {
3178 task_rq_unlock(rq, &flags);
3179 goto again;
3180 }
1da177e4
LT
3181
3182 /* force the process onto the specified CPU */
3183 if (migrate_task(p, dest_cpu, &req)) {
3184 /* Need to wait for migration thread (might exit: take ref). */
3185 struct task_struct *mt = rq->migration_thread;
36c8b586 3186
1da177e4
LT
3187 get_task_struct(mt);
3188 task_rq_unlock(rq, &flags);
3189 wake_up_process(mt);
3190 put_task_struct(mt);
3191 wait_for_completion(&req.done);
36c8b586 3192
1da177e4
LT
3193 return;
3194 }
1da177e4
LT
3195 task_rq_unlock(rq, &flags);
3196}
3197
1da177e4
LT
3198/*
3199 * pull_task - move a task from a remote runqueue to the local runqueue.
3200 * Both runqueues must be locked.
3201 */
dd41f596
IM
3202static void pull_task(struct rq *src_rq, struct task_struct *p,
3203 struct rq *this_rq, int this_cpu)
1da177e4 3204{
2e1cb74a 3205 deactivate_task(src_rq, p, 0);
1da177e4 3206 set_task_cpu(p, this_cpu);
dd41f596 3207 activate_task(this_rq, p, 0);
15afe09b 3208 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3209}
3210
3211/*
3212 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3213 */
858119e1 3214static
70b97a7f 3215int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3216 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3217 int *all_pinned)
1da177e4 3218{
708dc512 3219 int tsk_cache_hot = 0;
1da177e4
LT
3220 /*
3221 * We do not migrate tasks that are:
3222 * 1) running (obviously), or
3223 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3224 * 3) are cache-hot on their current CPU.
3225 */
96f874e2 3226 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3227 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3228 return 0;
cc367732 3229 }
81026794
NP
3230 *all_pinned = 0;
3231
cc367732
IM
3232 if (task_running(rq, p)) {
3233 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3234 return 0;
cc367732 3235 }
1da177e4 3236
da84d961
IM
3237 /*
3238 * Aggressive migration if:
3239 * 1) task is cache cold, or
3240 * 2) too many balance attempts have failed.
3241 */
3242
708dc512
LH
3243 tsk_cache_hot = task_hot(p, rq->clock, sd);
3244 if (!tsk_cache_hot ||
3245 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3246#ifdef CONFIG_SCHEDSTATS
708dc512 3247 if (tsk_cache_hot) {
da84d961 3248 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3249 schedstat_inc(p, se.nr_forced_migrations);
3250 }
da84d961
IM
3251#endif
3252 return 1;
3253 }
3254
708dc512 3255 if (tsk_cache_hot) {
cc367732 3256 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3257 return 0;
cc367732 3258 }
1da177e4
LT
3259 return 1;
3260}
3261
e1d1484f
PW
3262static unsigned long
3263balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3264 unsigned long max_load_move, struct sched_domain *sd,
3265 enum cpu_idle_type idle, int *all_pinned,
3266 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3267{
051c6764 3268 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3269 struct task_struct *p;
3270 long rem_load_move = max_load_move;
1da177e4 3271
e1d1484f 3272 if (max_load_move == 0)
1da177e4
LT
3273 goto out;
3274
81026794
NP
3275 pinned = 1;
3276
1da177e4 3277 /*
dd41f596 3278 * Start the load-balancing iterator:
1da177e4 3279 */
dd41f596
IM
3280 p = iterator->start(iterator->arg);
3281next:
b82d9fdd 3282 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3283 goto out;
051c6764
PZ
3284
3285 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3286 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3287 p = iterator->next(iterator->arg);
3288 goto next;
1da177e4
LT
3289 }
3290
dd41f596 3291 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3292 pulled++;
dd41f596 3293 rem_load_move -= p->se.load.weight;
1da177e4 3294
7e96fa58
GH
3295#ifdef CONFIG_PREEMPT
3296 /*
3297 * NEWIDLE balancing is a source of latency, so preemptible kernels
3298 * will stop after the first task is pulled to minimize the critical
3299 * section.
3300 */
3301 if (idle == CPU_NEWLY_IDLE)
3302 goto out;
3303#endif
3304
2dd73a4f 3305 /*
b82d9fdd 3306 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3307 */
e1d1484f 3308 if (rem_load_move > 0) {
a4ac01c3
PW
3309 if (p->prio < *this_best_prio)
3310 *this_best_prio = p->prio;
dd41f596
IM
3311 p = iterator->next(iterator->arg);
3312 goto next;
1da177e4
LT
3313 }
3314out:
3315 /*
e1d1484f 3316 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3317 * so we can safely collect pull_task() stats here rather than
3318 * inside pull_task().
3319 */
3320 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3321
3322 if (all_pinned)
3323 *all_pinned = pinned;
e1d1484f
PW
3324
3325 return max_load_move - rem_load_move;
1da177e4
LT
3326}
3327
dd41f596 3328/*
43010659
PW
3329 * move_tasks tries to move up to max_load_move weighted load from busiest to
3330 * this_rq, as part of a balancing operation within domain "sd".
3331 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3332 *
3333 * Called with both runqueues locked.
3334 */
3335static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3336 unsigned long max_load_move,
dd41f596
IM
3337 struct sched_domain *sd, enum cpu_idle_type idle,
3338 int *all_pinned)
3339{
5522d5d5 3340 const struct sched_class *class = sched_class_highest;
43010659 3341 unsigned long total_load_moved = 0;
a4ac01c3 3342 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3343
3344 do {
43010659
PW
3345 total_load_moved +=
3346 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3347 max_load_move - total_load_moved,
a4ac01c3 3348 sd, idle, all_pinned, &this_best_prio);
dd41f596 3349 class = class->next;
c4acb2c0 3350
7e96fa58
GH
3351#ifdef CONFIG_PREEMPT
3352 /*
3353 * NEWIDLE balancing is a source of latency, so preemptible
3354 * kernels will stop after the first task is pulled to minimize
3355 * the critical section.
3356 */
c4acb2c0
GH
3357 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3358 break;
7e96fa58 3359#endif
43010659 3360 } while (class && max_load_move > total_load_moved);
dd41f596 3361
43010659
PW
3362 return total_load_moved > 0;
3363}
3364
e1d1484f
PW
3365static int
3366iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3367 struct sched_domain *sd, enum cpu_idle_type idle,
3368 struct rq_iterator *iterator)
3369{
3370 struct task_struct *p = iterator->start(iterator->arg);
3371 int pinned = 0;
3372
3373 while (p) {
3374 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3375 pull_task(busiest, p, this_rq, this_cpu);
3376 /*
3377 * Right now, this is only the second place pull_task()
3378 * is called, so we can safely collect pull_task()
3379 * stats here rather than inside pull_task().
3380 */
3381 schedstat_inc(sd, lb_gained[idle]);
3382
3383 return 1;
3384 }
3385 p = iterator->next(iterator->arg);
3386 }
3387
3388 return 0;
3389}
3390
43010659
PW
3391/*
3392 * move_one_task tries to move exactly one task from busiest to this_rq, as
3393 * part of active balancing operations within "domain".
3394 * Returns 1 if successful and 0 otherwise.
3395 *
3396 * Called with both runqueues locked.
3397 */
3398static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3399 struct sched_domain *sd, enum cpu_idle_type idle)
3400{
5522d5d5 3401 const struct sched_class *class;
43010659 3402
cde7e5ca 3403 for_each_class(class) {
e1d1484f 3404 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3405 return 1;
cde7e5ca 3406 }
43010659
PW
3407
3408 return 0;
dd41f596 3409}
67bb6c03 3410/********** Helpers for find_busiest_group ************************/
1da177e4 3411/*
222d656d
GS
3412 * sd_lb_stats - Structure to store the statistics of a sched_domain
3413 * during load balancing.
1da177e4 3414 */
222d656d
GS
3415struct sd_lb_stats {
3416 struct sched_group *busiest; /* Busiest group in this sd */
3417 struct sched_group *this; /* Local group in this sd */
3418 unsigned long total_load; /* Total load of all groups in sd */
3419 unsigned long total_pwr; /* Total power of all groups in sd */
3420 unsigned long avg_load; /* Average load across all groups in sd */
3421
3422 /** Statistics of this group */
3423 unsigned long this_load;
3424 unsigned long this_load_per_task;
3425 unsigned long this_nr_running;
3426
3427 /* Statistics of the busiest group */
3428 unsigned long max_load;
3429 unsigned long busiest_load_per_task;
3430 unsigned long busiest_nr_running;
3431
3432 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3433#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3434 int power_savings_balance; /* Is powersave balance needed for this sd */
3435 struct sched_group *group_min; /* Least loaded group in sd */
3436 struct sched_group *group_leader; /* Group which relieves group_min */
3437 unsigned long min_load_per_task; /* load_per_task in group_min */
3438 unsigned long leader_nr_running; /* Nr running of group_leader */
3439 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3440#endif
222d656d 3441};
1da177e4 3442
d5ac537e 3443/*
381be78f
GS
3444 * sg_lb_stats - stats of a sched_group required for load_balancing
3445 */
3446struct sg_lb_stats {
3447 unsigned long avg_load; /*Avg load across the CPUs of the group */
3448 unsigned long group_load; /* Total load over the CPUs of the group */
3449 unsigned long sum_nr_running; /* Nr tasks running in the group */
3450 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3451 unsigned long group_capacity;
3452 int group_imb; /* Is there an imbalance in the group ? */
3453};
408ed066 3454
67bb6c03
GS
3455/**
3456 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3457 * @group: The group whose first cpu is to be returned.
3458 */
3459static inline unsigned int group_first_cpu(struct sched_group *group)
3460{
3461 return cpumask_first(sched_group_cpus(group));
3462}
3463
3464/**
3465 * get_sd_load_idx - Obtain the load index for a given sched domain.
3466 * @sd: The sched_domain whose load_idx is to be obtained.
3467 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3468 */
3469static inline int get_sd_load_idx(struct sched_domain *sd,
3470 enum cpu_idle_type idle)
3471{
3472 int load_idx;
3473
3474 switch (idle) {
3475 case CPU_NOT_IDLE:
7897986b 3476 load_idx = sd->busy_idx;
67bb6c03
GS
3477 break;
3478
3479 case CPU_NEWLY_IDLE:
7897986b 3480 load_idx = sd->newidle_idx;
67bb6c03
GS
3481 break;
3482 default:
7897986b 3483 load_idx = sd->idle_idx;
67bb6c03
GS
3484 break;
3485 }
1da177e4 3486
67bb6c03
GS
3487 return load_idx;
3488}
1da177e4 3489
1da177e4 3490
c071df18
GS
3491#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3492/**
3493 * init_sd_power_savings_stats - Initialize power savings statistics for
3494 * the given sched_domain, during load balancing.
3495 *
3496 * @sd: Sched domain whose power-savings statistics are to be initialized.
3497 * @sds: Variable containing the statistics for sd.
3498 * @idle: Idle status of the CPU at which we're performing load-balancing.
3499 */
3500static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3501 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3502{
3503 /*
3504 * Busy processors will not participate in power savings
3505 * balance.
3506 */
3507 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3508 sds->power_savings_balance = 0;
3509 else {
3510 sds->power_savings_balance = 1;
3511 sds->min_nr_running = ULONG_MAX;
3512 sds->leader_nr_running = 0;
3513 }
3514}
783609c6 3515
c071df18
GS
3516/**
3517 * update_sd_power_savings_stats - Update the power saving stats for a
3518 * sched_domain while performing load balancing.
3519 *
3520 * @group: sched_group belonging to the sched_domain under consideration.
3521 * @sds: Variable containing the statistics of the sched_domain
3522 * @local_group: Does group contain the CPU for which we're performing
3523 * load balancing ?
3524 * @sgs: Variable containing the statistics of the group.
3525 */
3526static inline void update_sd_power_savings_stats(struct sched_group *group,
3527 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3528{
408ed066 3529
c071df18
GS
3530 if (!sds->power_savings_balance)
3531 return;
1da177e4 3532
c071df18
GS
3533 /*
3534 * If the local group is idle or completely loaded
3535 * no need to do power savings balance at this domain
3536 */
3537 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3538 !sds->this_nr_running))
3539 sds->power_savings_balance = 0;
2dd73a4f 3540
c071df18
GS
3541 /*
3542 * If a group is already running at full capacity or idle,
3543 * don't include that group in power savings calculations
3544 */
3545 if (!sds->power_savings_balance ||
3546 sgs->sum_nr_running >= sgs->group_capacity ||
3547 !sgs->sum_nr_running)
3548 return;
5969fe06 3549
c071df18
GS
3550 /*
3551 * Calculate the group which has the least non-idle load.
3552 * This is the group from where we need to pick up the load
3553 * for saving power
3554 */
3555 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3556 (sgs->sum_nr_running == sds->min_nr_running &&
3557 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3558 sds->group_min = group;
3559 sds->min_nr_running = sgs->sum_nr_running;
3560 sds->min_load_per_task = sgs->sum_weighted_load /
3561 sgs->sum_nr_running;
3562 }
783609c6 3563
c071df18
GS
3564 /*
3565 * Calculate the group which is almost near its
3566 * capacity but still has some space to pick up some load
3567 * from other group and save more power
3568 */
d899a789 3569 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3570 return;
1da177e4 3571
c071df18
GS
3572 if (sgs->sum_nr_running > sds->leader_nr_running ||
3573 (sgs->sum_nr_running == sds->leader_nr_running &&
3574 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3575 sds->group_leader = group;
3576 sds->leader_nr_running = sgs->sum_nr_running;
3577 }
3578}
408ed066 3579
c071df18 3580/**
d5ac537e 3581 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3582 * @sds: Variable containing the statistics of the sched_domain
3583 * under consideration.
3584 * @this_cpu: Cpu at which we're currently performing load-balancing.
3585 * @imbalance: Variable to store the imbalance.
3586 *
d5ac537e
RD
3587 * Description:
3588 * Check if we have potential to perform some power-savings balance.
3589 * If yes, set the busiest group to be the least loaded group in the
3590 * sched_domain, so that it's CPUs can be put to idle.
3591 *
c071df18
GS
3592 * Returns 1 if there is potential to perform power-savings balance.
3593 * Else returns 0.
3594 */
3595static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3596 int this_cpu, unsigned long *imbalance)
3597{
3598 if (!sds->power_savings_balance)
3599 return 0;
1da177e4 3600
c071df18
GS
3601 if (sds->this != sds->group_leader ||
3602 sds->group_leader == sds->group_min)
3603 return 0;
783609c6 3604
c071df18
GS
3605 *imbalance = sds->min_load_per_task;
3606 sds->busiest = sds->group_min;
1da177e4 3607
c071df18 3608 return 1;
1da177e4 3609
c071df18
GS
3610}
3611#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3612static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3613 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3614{
3615 return;
3616}
408ed066 3617
c071df18
GS
3618static inline void update_sd_power_savings_stats(struct sched_group *group,
3619 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3620{
3621 return;
3622}
3623
3624static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3625 int this_cpu, unsigned long *imbalance)
3626{
3627 return 0;
3628}
3629#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3630
d6a59aa3
PZ
3631
3632unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3633{
3634 return SCHED_LOAD_SCALE;
3635}
3636
3637unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3638{
3639 return default_scale_freq_power(sd, cpu);
3640}
3641
3642unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3643{
3644 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3645 unsigned long smt_gain = sd->smt_gain;
3646
3647 smt_gain /= weight;
3648
3649 return smt_gain;
3650}
3651
d6a59aa3
PZ
3652unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3653{
3654 return default_scale_smt_power(sd, cpu);
3655}
3656
e9e9250b
PZ
3657unsigned long scale_rt_power(int cpu)
3658{
3659 struct rq *rq = cpu_rq(cpu);
3660 u64 total, available;
3661
3662 sched_avg_update(rq);
3663
3664 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3665 available = total - rq->rt_avg;
3666
3667 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3668 total = SCHED_LOAD_SCALE;
3669
3670 total >>= SCHED_LOAD_SHIFT;
3671
3672 return div_u64(available, total);
3673}
3674
ab29230e
PZ
3675static void update_cpu_power(struct sched_domain *sd, int cpu)
3676{
3677 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3678 unsigned long power = SCHED_LOAD_SCALE;
3679 struct sched_group *sdg = sd->groups;
ab29230e 3680
8e6598af
PZ
3681 if (sched_feat(ARCH_POWER))
3682 power *= arch_scale_freq_power(sd, cpu);
3683 else
3684 power *= default_scale_freq_power(sd, cpu);
3685
d6a59aa3 3686 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3687
3688 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3689 if (sched_feat(ARCH_POWER))
3690 power *= arch_scale_smt_power(sd, cpu);
3691 else
3692 power *= default_scale_smt_power(sd, cpu);
3693
ab29230e
PZ
3694 power >>= SCHED_LOAD_SHIFT;
3695 }
3696
e9e9250b
PZ
3697 power *= scale_rt_power(cpu);
3698 power >>= SCHED_LOAD_SHIFT;
3699
3700 if (!power)
3701 power = 1;
ab29230e 3702
18a3885f 3703 sdg->cpu_power = power;
ab29230e
PZ
3704}
3705
3706static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3707{
3708 struct sched_domain *child = sd->child;
3709 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3710 unsigned long power;
cc9fba7d
PZ
3711
3712 if (!child) {
ab29230e 3713 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3714 return;
3715 }
3716
d7ea17a7 3717 power = 0;
cc9fba7d
PZ
3718
3719 group = child->groups;
3720 do {
d7ea17a7 3721 power += group->cpu_power;
cc9fba7d
PZ
3722 group = group->next;
3723 } while (group != child->groups);
d7ea17a7
IM
3724
3725 sdg->cpu_power = power;
cc9fba7d 3726}
c071df18 3727
1f8c553d
GS
3728/**
3729 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3730 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3731 * @group: sched_group whose statistics are to be updated.
3732 * @this_cpu: Cpu for which load balance is currently performed.
3733 * @idle: Idle status of this_cpu
3734 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3735 * @sd_idle: Idle status of the sched_domain containing group.
3736 * @local_group: Does group contain this_cpu.
3737 * @cpus: Set of cpus considered for load balancing.
3738 * @balance: Should we balance.
3739 * @sgs: variable to hold the statistics for this group.
3740 */
cc9fba7d
PZ
3741static inline void update_sg_lb_stats(struct sched_domain *sd,
3742 struct sched_group *group, int this_cpu,
1f8c553d
GS
3743 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3744 int local_group, const struct cpumask *cpus,
3745 int *balance, struct sg_lb_stats *sgs)
3746{
3747 unsigned long load, max_cpu_load, min_cpu_load;
3748 int i;
3749 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3750 unsigned long sum_avg_load_per_task;
3751 unsigned long avg_load_per_task;
3752
cc9fba7d 3753 if (local_group) {
1f8c553d 3754 balance_cpu = group_first_cpu(group);
cc9fba7d 3755 if (balance_cpu == this_cpu)
ab29230e 3756 update_group_power(sd, this_cpu);
cc9fba7d 3757 }
1f8c553d
GS
3758
3759 /* Tally up the load of all CPUs in the group */
3760 sum_avg_load_per_task = avg_load_per_task = 0;
3761 max_cpu_load = 0;
3762 min_cpu_load = ~0UL;
408ed066 3763
1f8c553d
GS
3764 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3765 struct rq *rq = cpu_rq(i);
908a7c1b 3766
1f8c553d
GS
3767 if (*sd_idle && rq->nr_running)
3768 *sd_idle = 0;
5c45bf27 3769
1f8c553d 3770 /* Bias balancing toward cpus of our domain */
1da177e4 3771 if (local_group) {
1f8c553d
GS
3772 if (idle_cpu(i) && !first_idle_cpu) {
3773 first_idle_cpu = 1;
3774 balance_cpu = i;
3775 }
3776
3777 load = target_load(i, load_idx);
3778 } else {
3779 load = source_load(i, load_idx);
3780 if (load > max_cpu_load)
3781 max_cpu_load = load;
3782 if (min_cpu_load > load)
3783 min_cpu_load = load;
1da177e4 3784 }
5c45bf27 3785
1f8c553d
GS
3786 sgs->group_load += load;
3787 sgs->sum_nr_running += rq->nr_running;
3788 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3789
1f8c553d
GS
3790 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3791 }
5c45bf27 3792
1f8c553d
GS
3793 /*
3794 * First idle cpu or the first cpu(busiest) in this sched group
3795 * is eligible for doing load balancing at this and above
3796 * domains. In the newly idle case, we will allow all the cpu's
3797 * to do the newly idle load balance.
3798 */
3799 if (idle != CPU_NEWLY_IDLE && local_group &&
3800 balance_cpu != this_cpu && balance) {
3801 *balance = 0;
3802 return;
3803 }
5c45bf27 3804
1f8c553d 3805 /* Adjust by relative CPU power of the group */
18a3885f 3806 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3807
1f8c553d
GS
3808
3809 /*
3810 * Consider the group unbalanced when the imbalance is larger
3811 * than the average weight of two tasks.
3812 *
3813 * APZ: with cgroup the avg task weight can vary wildly and
3814 * might not be a suitable number - should we keep a
3815 * normalized nr_running number somewhere that negates
3816 * the hierarchy?
3817 */
18a3885f
PZ
3818 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3819 group->cpu_power;
1f8c553d
GS
3820
3821 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3822 sgs->group_imb = 1;
3823
bdb94aa5 3824 sgs->group_capacity =
18a3885f 3825 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3826}
dd41f596 3827
37abe198
GS
3828/**
3829 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3830 * @sd: sched_domain whose statistics are to be updated.
3831 * @this_cpu: Cpu for which load balance is currently performed.
3832 * @idle: Idle status of this_cpu
3833 * @sd_idle: Idle status of the sched_domain containing group.
3834 * @cpus: Set of cpus considered for load balancing.
3835 * @balance: Should we balance.
3836 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3837 */
37abe198
GS
3838static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3839 enum cpu_idle_type idle, int *sd_idle,
3840 const struct cpumask *cpus, int *balance,
3841 struct sd_lb_stats *sds)
1da177e4 3842{
b5d978e0 3843 struct sched_domain *child = sd->child;
222d656d 3844 struct sched_group *group = sd->groups;
37abe198 3845 struct sg_lb_stats sgs;
b5d978e0
PZ
3846 int load_idx, prefer_sibling = 0;
3847
3848 if (child && child->flags & SD_PREFER_SIBLING)
3849 prefer_sibling = 1;
222d656d 3850
c071df18 3851 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3852 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3853
3854 do {
1da177e4 3855 int local_group;
1da177e4 3856
758b2cdc
RR
3857 local_group = cpumask_test_cpu(this_cpu,
3858 sched_group_cpus(group));
381be78f 3859 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3860 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3861 local_group, cpus, balance, &sgs);
1da177e4 3862
37abe198
GS
3863 if (local_group && balance && !(*balance))
3864 return;
783609c6 3865
37abe198 3866 sds->total_load += sgs.group_load;
18a3885f 3867 sds->total_pwr += group->cpu_power;
1da177e4 3868
b5d978e0
PZ
3869 /*
3870 * In case the child domain prefers tasks go to siblings
3871 * first, lower the group capacity to one so that we'll try
3872 * and move all the excess tasks away.
3873 */
3874 if (prefer_sibling)
bdb94aa5 3875 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3876
1da177e4 3877 if (local_group) {
37abe198
GS
3878 sds->this_load = sgs.avg_load;
3879 sds->this = group;
3880 sds->this_nr_running = sgs.sum_nr_running;
3881 sds->this_load_per_task = sgs.sum_weighted_load;
3882 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3883 (sgs.sum_nr_running > sgs.group_capacity ||
3884 sgs.group_imb)) {
37abe198
GS
3885 sds->max_load = sgs.avg_load;
3886 sds->busiest = group;
3887 sds->busiest_nr_running = sgs.sum_nr_running;
3888 sds->busiest_load_per_task = sgs.sum_weighted_load;
3889 sds->group_imb = sgs.group_imb;
48f24c4d 3890 }
5c45bf27 3891
c071df18 3892 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3893 group = group->next;
3894 } while (group != sd->groups);
37abe198 3895}
1da177e4 3896
2e6f44ae
GS
3897/**
3898 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3899 * amongst the groups of a sched_domain, during
3900 * load balancing.
2e6f44ae
GS
3901 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3902 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3903 * @imbalance: Variable to store the imbalance.
3904 */
3905static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3906 int this_cpu, unsigned long *imbalance)
3907{
3908 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3909 unsigned int imbn = 2;
3910
3911 if (sds->this_nr_running) {
3912 sds->this_load_per_task /= sds->this_nr_running;
3913 if (sds->busiest_load_per_task >
3914 sds->this_load_per_task)
3915 imbn = 1;
3916 } else
3917 sds->this_load_per_task =
3918 cpu_avg_load_per_task(this_cpu);
1da177e4 3919
2e6f44ae
GS
3920 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3921 sds->busiest_load_per_task * imbn) {
3922 *imbalance = sds->busiest_load_per_task;
3923 return;
3924 }
908a7c1b 3925
1da177e4 3926 /*
2e6f44ae
GS
3927 * OK, we don't have enough imbalance to justify moving tasks,
3928 * however we may be able to increase total CPU power used by
3929 * moving them.
1da177e4 3930 */
2dd73a4f 3931
18a3885f 3932 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3933 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3934 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3935 min(sds->this_load_per_task, sds->this_load);
3936 pwr_now /= SCHED_LOAD_SCALE;
3937
3938 /* Amount of load we'd subtract */
18a3885f
PZ
3939 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3940 sds->busiest->cpu_power;
2e6f44ae 3941 if (sds->max_load > tmp)
18a3885f 3942 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3943 min(sds->busiest_load_per_task, sds->max_load - tmp);
3944
3945 /* Amount of load we'd add */
18a3885f 3946 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3947 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3948 tmp = (sds->max_load * sds->busiest->cpu_power) /
3949 sds->this->cpu_power;
2e6f44ae 3950 else
18a3885f
PZ
3951 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3952 sds->this->cpu_power;
3953 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3954 min(sds->this_load_per_task, sds->this_load + tmp);
3955 pwr_move /= SCHED_LOAD_SCALE;
3956
3957 /* Move if we gain throughput */
3958 if (pwr_move > pwr_now)
3959 *imbalance = sds->busiest_load_per_task;
3960}
dbc523a3
GS
3961
3962/**
3963 * calculate_imbalance - Calculate the amount of imbalance present within the
3964 * groups of a given sched_domain during load balance.
3965 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3966 * @this_cpu: Cpu for which currently load balance is being performed.
3967 * @imbalance: The variable to store the imbalance.
3968 */
3969static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3970 unsigned long *imbalance)
3971{
3972 unsigned long max_pull;
2dd73a4f
PW
3973 /*
3974 * In the presence of smp nice balancing, certain scenarios can have
3975 * max load less than avg load(as we skip the groups at or below
3976 * its cpu_power, while calculating max_load..)
3977 */
dbc523a3 3978 if (sds->max_load < sds->avg_load) {
2dd73a4f 3979 *imbalance = 0;
dbc523a3 3980 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3981 }
0c117f1b
SS
3982
3983 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3984 max_pull = min(sds->max_load - sds->avg_load,
3985 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3986
1da177e4 3987 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3988 *imbalance = min(max_pull * sds->busiest->cpu_power,
3989 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3990 / SCHED_LOAD_SCALE;
3991
2dd73a4f
PW
3992 /*
3993 * if *imbalance is less than the average load per runnable task
3994 * there is no gaurantee that any tasks will be moved so we'll have
3995 * a think about bumping its value to force at least one task to be
3996 * moved
3997 */
dbc523a3
GS
3998 if (*imbalance < sds->busiest_load_per_task)
3999 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 4000
dbc523a3 4001}
37abe198 4002/******* find_busiest_group() helpers end here *********************/
1da177e4 4003
b7bb4c9b
GS
4004/**
4005 * find_busiest_group - Returns the busiest group within the sched_domain
4006 * if there is an imbalance. If there isn't an imbalance, and
4007 * the user has opted for power-savings, it returns a group whose
4008 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4009 * such a group exists.
4010 *
4011 * Also calculates the amount of weighted load which should be moved
4012 * to restore balance.
4013 *
4014 * @sd: The sched_domain whose busiest group is to be returned.
4015 * @this_cpu: The cpu for which load balancing is currently being performed.
4016 * @imbalance: Variable which stores amount of weighted load which should
4017 * be moved to restore balance/put a group to idle.
4018 * @idle: The idle status of this_cpu.
4019 * @sd_idle: The idleness of sd
4020 * @cpus: The set of CPUs under consideration for load-balancing.
4021 * @balance: Pointer to a variable indicating if this_cpu
4022 * is the appropriate cpu to perform load balancing at this_level.
4023 *
4024 * Returns: - the busiest group if imbalance exists.
4025 * - If no imbalance and user has opted for power-savings balance,
4026 * return the least loaded group whose CPUs can be
4027 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4028 */
4029static struct sched_group *
4030find_busiest_group(struct sched_domain *sd, int this_cpu,
4031 unsigned long *imbalance, enum cpu_idle_type idle,
4032 int *sd_idle, const struct cpumask *cpus, int *balance)
4033{
4034 struct sd_lb_stats sds;
1da177e4 4035
37abe198 4036 memset(&sds, 0, sizeof(sds));
1da177e4 4037
37abe198
GS
4038 /*
4039 * Compute the various statistics relavent for load balancing at
4040 * this level.
4041 */
4042 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4043 balance, &sds);
4044
b7bb4c9b
GS
4045 /* Cases where imbalance does not exist from POV of this_cpu */
4046 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4047 * at this level.
4048 * 2) There is no busy sibling group to pull from.
4049 * 3) This group is the busiest group.
4050 * 4) This group is more busy than the avg busieness at this
4051 * sched_domain.
4052 * 5) The imbalance is within the specified limit.
4053 * 6) Any rebalance would lead to ping-pong
4054 */
37abe198
GS
4055 if (balance && !(*balance))
4056 goto ret;
1da177e4 4057
b7bb4c9b
GS
4058 if (!sds.busiest || sds.busiest_nr_running == 0)
4059 goto out_balanced;
1da177e4 4060
b7bb4c9b 4061 if (sds.this_load >= sds.max_load)
1da177e4 4062 goto out_balanced;
1da177e4 4063
222d656d 4064 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4065
b7bb4c9b
GS
4066 if (sds.this_load >= sds.avg_load)
4067 goto out_balanced;
4068
4069 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4070 goto out_balanced;
4071
222d656d
GS
4072 sds.busiest_load_per_task /= sds.busiest_nr_running;
4073 if (sds.group_imb)
4074 sds.busiest_load_per_task =
4075 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4076
1da177e4
LT
4077 /*
4078 * We're trying to get all the cpus to the average_load, so we don't
4079 * want to push ourselves above the average load, nor do we wish to
4080 * reduce the max loaded cpu below the average load, as either of these
4081 * actions would just result in more rebalancing later, and ping-pong
4082 * tasks around. Thus we look for the minimum possible imbalance.
4083 * Negative imbalances (*we* are more loaded than anyone else) will
4084 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4085 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4086 * appear as very large values with unsigned longs.
4087 */
222d656d 4088 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4089 goto out_balanced;
4090
dbc523a3
GS
4091 /* Looks like there is an imbalance. Compute it */
4092 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4093 return sds.busiest;
1da177e4
LT
4094
4095out_balanced:
c071df18
GS
4096 /*
4097 * There is no obvious imbalance. But check if we can do some balancing
4098 * to save power.
4099 */
4100 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4101 return sds.busiest;
783609c6 4102ret:
1da177e4
LT
4103 *imbalance = 0;
4104 return NULL;
4105}
4106
4107/*
4108 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4109 */
70b97a7f 4110static struct rq *
d15bcfdb 4111find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4112 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4113{
70b97a7f 4114 struct rq *busiest = NULL, *rq;
2dd73a4f 4115 unsigned long max_load = 0;
1da177e4
LT
4116 int i;
4117
758b2cdc 4118 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4119 unsigned long power = power_of(i);
4120 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4121 unsigned long wl;
0a2966b4 4122
96f874e2 4123 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4124 continue;
4125
48f24c4d 4126 rq = cpu_rq(i);
bdb94aa5
PZ
4127 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4128 wl /= power;
2dd73a4f 4129
bdb94aa5 4130 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4131 continue;
1da177e4 4132
dd41f596
IM
4133 if (wl > max_load) {
4134 max_load = wl;
48f24c4d 4135 busiest = rq;
1da177e4
LT
4136 }
4137 }
4138
4139 return busiest;
4140}
4141
77391d71
NP
4142/*
4143 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4144 * so long as it is large enough.
4145 */
4146#define MAX_PINNED_INTERVAL 512
4147
df7c8e84
RR
4148/* Working cpumask for load_balance and load_balance_newidle. */
4149static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4150
1da177e4
LT
4151/*
4152 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4153 * tasks if there is an imbalance.
1da177e4 4154 */
70b97a7f 4155static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4156 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4157 int *balance)
1da177e4 4158{
43010659 4159 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4160 struct sched_group *group;
1da177e4 4161 unsigned long imbalance;
70b97a7f 4162 struct rq *busiest;
fe2eea3f 4163 unsigned long flags;
df7c8e84 4164 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4165
6ad4c188 4166 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4167
89c4710e
SS
4168 /*
4169 * When power savings policy is enabled for the parent domain, idle
4170 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4171 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4172 * portraying it as CPU_NOT_IDLE.
89c4710e 4173 */
d15bcfdb 4174 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4175 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4176 sd_idle = 1;
1da177e4 4177
2d72376b 4178 schedstat_inc(sd, lb_count[idle]);
1da177e4 4179
0a2966b4 4180redo:
c8cba857 4181 update_shares(sd);
0a2966b4 4182 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4183 cpus, balance);
783609c6 4184
06066714 4185 if (*balance == 0)
783609c6 4186 goto out_balanced;
783609c6 4187
1da177e4
LT
4188 if (!group) {
4189 schedstat_inc(sd, lb_nobusyg[idle]);
4190 goto out_balanced;
4191 }
4192
7c16ec58 4193 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4194 if (!busiest) {
4195 schedstat_inc(sd, lb_nobusyq[idle]);
4196 goto out_balanced;
4197 }
4198
db935dbd 4199 BUG_ON(busiest == this_rq);
1da177e4
LT
4200
4201 schedstat_add(sd, lb_imbalance[idle], imbalance);
4202
43010659 4203 ld_moved = 0;
1da177e4
LT
4204 if (busiest->nr_running > 1) {
4205 /*
4206 * Attempt to move tasks. If find_busiest_group has found
4207 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4208 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4209 * correctly treated as an imbalance.
4210 */
fe2eea3f 4211 local_irq_save(flags);
e17224bf 4212 double_rq_lock(this_rq, busiest);
43010659 4213 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4214 imbalance, sd, idle, &all_pinned);
e17224bf 4215 double_rq_unlock(this_rq, busiest);
fe2eea3f 4216 local_irq_restore(flags);
81026794 4217
46cb4b7c
SS
4218 /*
4219 * some other cpu did the load balance for us.
4220 */
43010659 4221 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4222 resched_cpu(this_cpu);
4223
81026794 4224 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4225 if (unlikely(all_pinned)) {
96f874e2
RR
4226 cpumask_clear_cpu(cpu_of(busiest), cpus);
4227 if (!cpumask_empty(cpus))
0a2966b4 4228 goto redo;
81026794 4229 goto out_balanced;
0a2966b4 4230 }
1da177e4 4231 }
81026794 4232
43010659 4233 if (!ld_moved) {
1da177e4
LT
4234 schedstat_inc(sd, lb_failed[idle]);
4235 sd->nr_balance_failed++;
4236
4237 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4238
05fa785c 4239 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4240
4241 /* don't kick the migration_thread, if the curr
4242 * task on busiest cpu can't be moved to this_cpu
4243 */
96f874e2
RR
4244 if (!cpumask_test_cpu(this_cpu,
4245 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4246 raw_spin_unlock_irqrestore(&busiest->lock,
4247 flags);
fa3b6ddc
SS
4248 all_pinned = 1;
4249 goto out_one_pinned;
4250 }
4251
1da177e4
LT
4252 if (!busiest->active_balance) {
4253 busiest->active_balance = 1;
4254 busiest->push_cpu = this_cpu;
81026794 4255 active_balance = 1;
1da177e4 4256 }
05fa785c 4257 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4258 if (active_balance)
1da177e4
LT
4259 wake_up_process(busiest->migration_thread);
4260
4261 /*
4262 * We've kicked active balancing, reset the failure
4263 * counter.
4264 */
39507451 4265 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4266 }
81026794 4267 } else
1da177e4
LT
4268 sd->nr_balance_failed = 0;
4269
81026794 4270 if (likely(!active_balance)) {
1da177e4
LT
4271 /* We were unbalanced, so reset the balancing interval */
4272 sd->balance_interval = sd->min_interval;
81026794
NP
4273 } else {
4274 /*
4275 * If we've begun active balancing, start to back off. This
4276 * case may not be covered by the all_pinned logic if there
4277 * is only 1 task on the busy runqueue (because we don't call
4278 * move_tasks).
4279 */
4280 if (sd->balance_interval < sd->max_interval)
4281 sd->balance_interval *= 2;
1da177e4
LT
4282 }
4283
43010659 4284 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4285 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4286 ld_moved = -1;
4287
4288 goto out;
1da177e4
LT
4289
4290out_balanced:
1da177e4
LT
4291 schedstat_inc(sd, lb_balanced[idle]);
4292
16cfb1c0 4293 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4294
4295out_one_pinned:
1da177e4 4296 /* tune up the balancing interval */
77391d71
NP
4297 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4298 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4299 sd->balance_interval *= 2;
4300
48f24c4d 4301 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4302 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4303 ld_moved = -1;
4304 else
4305 ld_moved = 0;
4306out:
c8cba857
PZ
4307 if (ld_moved)
4308 update_shares(sd);
c09595f6 4309 return ld_moved;
1da177e4
LT
4310}
4311
4312/*
4313 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4314 * tasks if there is an imbalance.
4315 *
d15bcfdb 4316 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4317 * this_rq is locked.
4318 */
48f24c4d 4319static int
df7c8e84 4320load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4321{
4322 struct sched_group *group;
70b97a7f 4323 struct rq *busiest = NULL;
1da177e4 4324 unsigned long imbalance;
43010659 4325 int ld_moved = 0;
5969fe06 4326 int sd_idle = 0;
969bb4e4 4327 int all_pinned = 0;
df7c8e84 4328 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4329
6ad4c188 4330 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4331
89c4710e
SS
4332 /*
4333 * When power savings policy is enabled for the parent domain, idle
4334 * sibling can pick up load irrespective of busy siblings. In this case,
4335 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4336 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4337 */
4338 if (sd->flags & SD_SHARE_CPUPOWER &&
4339 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4340 sd_idle = 1;
1da177e4 4341
2d72376b 4342 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4343redo:
3e5459b4 4344 update_shares_locked(this_rq, sd);
d15bcfdb 4345 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4346 &sd_idle, cpus, NULL);
1da177e4 4347 if (!group) {
d15bcfdb 4348 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4349 goto out_balanced;
1da177e4
LT
4350 }
4351
7c16ec58 4352 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4353 if (!busiest) {
d15bcfdb 4354 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4355 goto out_balanced;
1da177e4
LT
4356 }
4357
db935dbd
NP
4358 BUG_ON(busiest == this_rq);
4359
d15bcfdb 4360 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4361
43010659 4362 ld_moved = 0;
d6d5cfaf
NP
4363 if (busiest->nr_running > 1) {
4364 /* Attempt to move tasks */
4365 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4366 /* this_rq->clock is already updated */
4367 update_rq_clock(busiest);
43010659 4368 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4369 imbalance, sd, CPU_NEWLY_IDLE,
4370 &all_pinned);
1b12bbc7 4371 double_unlock_balance(this_rq, busiest);
0a2966b4 4372
969bb4e4 4373 if (unlikely(all_pinned)) {
96f874e2
RR
4374 cpumask_clear_cpu(cpu_of(busiest), cpus);
4375 if (!cpumask_empty(cpus))
0a2966b4
CL
4376 goto redo;
4377 }
d6d5cfaf
NP
4378 }
4379
43010659 4380 if (!ld_moved) {
36dffab6 4381 int active_balance = 0;
ad273b32 4382
d15bcfdb 4383 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4384 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4385 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4386 return -1;
ad273b32
VS
4387
4388 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4389 return -1;
4390
4391 if (sd->nr_balance_failed++ < 2)
4392 return -1;
4393
4394 /*
4395 * The only task running in a non-idle cpu can be moved to this
4396 * cpu in an attempt to completely freeup the other CPU
4397 * package. The same method used to move task in load_balance()
4398 * have been extended for load_balance_newidle() to speedup
4399 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4400 *
4401 * The package power saving logic comes from
4402 * find_busiest_group(). If there are no imbalance, then
4403 * f_b_g() will return NULL. However when sched_mc={1,2} then
4404 * f_b_g() will select a group from which a running task may be
4405 * pulled to this cpu in order to make the other package idle.
4406 * If there is no opportunity to make a package idle and if
4407 * there are no imbalance, then f_b_g() will return NULL and no
4408 * action will be taken in load_balance_newidle().
4409 *
4410 * Under normal task pull operation due to imbalance, there
4411 * will be more than one task in the source run queue and
4412 * move_tasks() will succeed. ld_moved will be true and this
4413 * active balance code will not be triggered.
4414 */
4415
4416 /* Lock busiest in correct order while this_rq is held */
4417 double_lock_balance(this_rq, busiest);
4418
4419 /*
4420 * don't kick the migration_thread, if the curr
4421 * task on busiest cpu can't be moved to this_cpu
4422 */
6ca09dfc 4423 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4424 double_unlock_balance(this_rq, busiest);
4425 all_pinned = 1;
4426 return ld_moved;
4427 }
4428
4429 if (!busiest->active_balance) {
4430 busiest->active_balance = 1;
4431 busiest->push_cpu = this_cpu;
4432 active_balance = 1;
4433 }
4434
4435 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4436 /*
4437 * Should not call ttwu while holding a rq->lock
4438 */
05fa785c 4439 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4440 if (active_balance)
4441 wake_up_process(busiest->migration_thread);
05fa785c 4442 raw_spin_lock(&this_rq->lock);
ad273b32 4443
5969fe06 4444 } else
16cfb1c0 4445 sd->nr_balance_failed = 0;
1da177e4 4446
3e5459b4 4447 update_shares_locked(this_rq, sd);
43010659 4448 return ld_moved;
16cfb1c0
NP
4449
4450out_balanced:
d15bcfdb 4451 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4452 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4453 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4454 return -1;
16cfb1c0 4455 sd->nr_balance_failed = 0;
48f24c4d 4456
16cfb1c0 4457 return 0;
1da177e4
LT
4458}
4459
4460/*
4461 * idle_balance is called by schedule() if this_cpu is about to become
4462 * idle. Attempts to pull tasks from other CPUs.
4463 */
70b97a7f 4464static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4465{
4466 struct sched_domain *sd;
efbe027e 4467 int pulled_task = 0;
dd41f596 4468 unsigned long next_balance = jiffies + HZ;
1da177e4 4469
1b9508f6
MG
4470 this_rq->idle_stamp = this_rq->clock;
4471
4472 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4473 return;
4474
1da177e4 4475 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4476 unsigned long interval;
4477
4478 if (!(sd->flags & SD_LOAD_BALANCE))
4479 continue;
4480
4481 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4482 /* If we've pulled tasks over stop searching: */
7c16ec58 4483 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4484 sd);
92c4ca5c
CL
4485
4486 interval = msecs_to_jiffies(sd->balance_interval);
4487 if (time_after(next_balance, sd->last_balance + interval))
4488 next_balance = sd->last_balance + interval;
1b9508f6
MG
4489 if (pulled_task) {
4490 this_rq->idle_stamp = 0;
92c4ca5c 4491 break;
1b9508f6 4492 }
1da177e4 4493 }
dd41f596 4494 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4495 /*
4496 * We are going idle. next_balance may be set based on
4497 * a busy processor. So reset next_balance.
4498 */
4499 this_rq->next_balance = next_balance;
dd41f596 4500 }
1da177e4
LT
4501}
4502
4503/*
4504 * active_load_balance is run by migration threads. It pushes running tasks
4505 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4506 * running on each physical CPU where possible, and avoids physical /
4507 * logical imbalances.
4508 *
4509 * Called with busiest_rq locked.
4510 */
70b97a7f 4511static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4512{
39507451 4513 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4514 struct sched_domain *sd;
4515 struct rq *target_rq;
39507451 4516
48f24c4d 4517 /* Is there any task to move? */
39507451 4518 if (busiest_rq->nr_running <= 1)
39507451
NP
4519 return;
4520
4521 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4522
4523 /*
39507451 4524 * This condition is "impossible", if it occurs
41a2d6cf 4525 * we need to fix it. Originally reported by
39507451 4526 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4527 */
39507451 4528 BUG_ON(busiest_rq == target_rq);
1da177e4 4529
39507451
NP
4530 /* move a task from busiest_rq to target_rq */
4531 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4532 update_rq_clock(busiest_rq);
4533 update_rq_clock(target_rq);
39507451
NP
4534
4535 /* Search for an sd spanning us and the target CPU. */
c96d145e 4536 for_each_domain(target_cpu, sd) {
39507451 4537 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4538 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4539 break;
c96d145e 4540 }
39507451 4541
48f24c4d 4542 if (likely(sd)) {
2d72376b 4543 schedstat_inc(sd, alb_count);
39507451 4544
43010659
PW
4545 if (move_one_task(target_rq, target_cpu, busiest_rq,
4546 sd, CPU_IDLE))
48f24c4d
IM
4547 schedstat_inc(sd, alb_pushed);
4548 else
4549 schedstat_inc(sd, alb_failed);
4550 }
1b12bbc7 4551 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4552}
4553
46cb4b7c
SS
4554#ifdef CONFIG_NO_HZ
4555static struct {
4556 atomic_t load_balancer;
7d1e6a9b 4557 cpumask_var_t cpu_mask;
f711f609 4558 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4559} nohz ____cacheline_aligned = {
4560 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4561};
4562
eea08f32
AB
4563int get_nohz_load_balancer(void)
4564{
4565 return atomic_read(&nohz.load_balancer);
4566}
4567
f711f609
GS
4568#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4569/**
4570 * lowest_flag_domain - Return lowest sched_domain containing flag.
4571 * @cpu: The cpu whose lowest level of sched domain is to
4572 * be returned.
4573 * @flag: The flag to check for the lowest sched_domain
4574 * for the given cpu.
4575 *
4576 * Returns the lowest sched_domain of a cpu which contains the given flag.
4577 */
4578static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4579{
4580 struct sched_domain *sd;
4581
4582 for_each_domain(cpu, sd)
4583 if (sd && (sd->flags & flag))
4584 break;
4585
4586 return sd;
4587}
4588
4589/**
4590 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4591 * @cpu: The cpu whose domains we're iterating over.
4592 * @sd: variable holding the value of the power_savings_sd
4593 * for cpu.
4594 * @flag: The flag to filter the sched_domains to be iterated.
4595 *
4596 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4597 * set, starting from the lowest sched_domain to the highest.
4598 */
4599#define for_each_flag_domain(cpu, sd, flag) \
4600 for (sd = lowest_flag_domain(cpu, flag); \
4601 (sd && (sd->flags & flag)); sd = sd->parent)
4602
4603/**
4604 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4605 * @ilb_group: group to be checked for semi-idleness
4606 *
4607 * Returns: 1 if the group is semi-idle. 0 otherwise.
4608 *
4609 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4610 * and atleast one non-idle CPU. This helper function checks if the given
4611 * sched_group is semi-idle or not.
4612 */
4613static inline int is_semi_idle_group(struct sched_group *ilb_group)
4614{
4615 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4616 sched_group_cpus(ilb_group));
4617
4618 /*
4619 * A sched_group is semi-idle when it has atleast one busy cpu
4620 * and atleast one idle cpu.
4621 */
4622 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4623 return 0;
4624
4625 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4626 return 0;
4627
4628 return 1;
4629}
4630/**
4631 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4632 * @cpu: The cpu which is nominating a new idle_load_balancer.
4633 *
4634 * Returns: Returns the id of the idle load balancer if it exists,
4635 * Else, returns >= nr_cpu_ids.
4636 *
4637 * This algorithm picks the idle load balancer such that it belongs to a
4638 * semi-idle powersavings sched_domain. The idea is to try and avoid
4639 * completely idle packages/cores just for the purpose of idle load balancing
4640 * when there are other idle cpu's which are better suited for that job.
4641 */
4642static int find_new_ilb(int cpu)
4643{
4644 struct sched_domain *sd;
4645 struct sched_group *ilb_group;
4646
4647 /*
4648 * Have idle load balancer selection from semi-idle packages only
4649 * when power-aware load balancing is enabled
4650 */
4651 if (!(sched_smt_power_savings || sched_mc_power_savings))
4652 goto out_done;
4653
4654 /*
4655 * Optimize for the case when we have no idle CPUs or only one
4656 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4657 */
4658 if (cpumask_weight(nohz.cpu_mask) < 2)
4659 goto out_done;
4660
4661 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4662 ilb_group = sd->groups;
4663
4664 do {
4665 if (is_semi_idle_group(ilb_group))
4666 return cpumask_first(nohz.ilb_grp_nohz_mask);
4667
4668 ilb_group = ilb_group->next;
4669
4670 } while (ilb_group != sd->groups);
4671 }
4672
4673out_done:
4674 return cpumask_first(nohz.cpu_mask);
4675}
4676#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4677static inline int find_new_ilb(int call_cpu)
4678{
6e29ec57 4679 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4680}
4681#endif
4682
7835b98b 4683/*
46cb4b7c
SS
4684 * This routine will try to nominate the ilb (idle load balancing)
4685 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4686 * load balancing on behalf of all those cpus. If all the cpus in the system
4687 * go into this tickless mode, then there will be no ilb owner (as there is
4688 * no need for one) and all the cpus will sleep till the next wakeup event
4689 * arrives...
4690 *
4691 * For the ilb owner, tick is not stopped. And this tick will be used
4692 * for idle load balancing. ilb owner will still be part of
4693 * nohz.cpu_mask..
7835b98b 4694 *
46cb4b7c
SS
4695 * While stopping the tick, this cpu will become the ilb owner if there
4696 * is no other owner. And will be the owner till that cpu becomes busy
4697 * or if all cpus in the system stop their ticks at which point
4698 * there is no need for ilb owner.
4699 *
4700 * When the ilb owner becomes busy, it nominates another owner, during the
4701 * next busy scheduler_tick()
4702 */
4703int select_nohz_load_balancer(int stop_tick)
4704{
4705 int cpu = smp_processor_id();
4706
4707 if (stop_tick) {
46cb4b7c
SS
4708 cpu_rq(cpu)->in_nohz_recently = 1;
4709
483b4ee6
SS
4710 if (!cpu_active(cpu)) {
4711 if (atomic_read(&nohz.load_balancer) != cpu)
4712 return 0;
4713
4714 /*
4715 * If we are going offline and still the leader,
4716 * give up!
4717 */
46cb4b7c
SS
4718 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4719 BUG();
483b4ee6 4720
46cb4b7c
SS
4721 return 0;
4722 }
4723
483b4ee6
SS
4724 cpumask_set_cpu(cpu, nohz.cpu_mask);
4725
46cb4b7c 4726 /* time for ilb owner also to sleep */
6ad4c188 4727 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4728 if (atomic_read(&nohz.load_balancer) == cpu)
4729 atomic_set(&nohz.load_balancer, -1);
4730 return 0;
4731 }
4732
4733 if (atomic_read(&nohz.load_balancer) == -1) {
4734 /* make me the ilb owner */
4735 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4736 return 1;
e790fb0b
GS
4737 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4738 int new_ilb;
4739
4740 if (!(sched_smt_power_savings ||
4741 sched_mc_power_savings))
4742 return 1;
4743 /*
4744 * Check to see if there is a more power-efficient
4745 * ilb.
4746 */
4747 new_ilb = find_new_ilb(cpu);
4748 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4749 atomic_set(&nohz.load_balancer, -1);
4750 resched_cpu(new_ilb);
4751 return 0;
4752 }
46cb4b7c 4753 return 1;
e790fb0b 4754 }
46cb4b7c 4755 } else {
7d1e6a9b 4756 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4757 return 0;
4758
7d1e6a9b 4759 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4760
4761 if (atomic_read(&nohz.load_balancer) == cpu)
4762 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4763 BUG();
4764 }
4765 return 0;
4766}
4767#endif
4768
4769static DEFINE_SPINLOCK(balancing);
4770
4771/*
7835b98b
CL
4772 * It checks each scheduling domain to see if it is due to be balanced,
4773 * and initiates a balancing operation if so.
4774 *
4775 * Balancing parameters are set up in arch_init_sched_domains.
4776 */
a9957449 4777static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4778{
46cb4b7c
SS
4779 int balance = 1;
4780 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4781 unsigned long interval;
4782 struct sched_domain *sd;
46cb4b7c 4783 /* Earliest time when we have to do rebalance again */
c9819f45 4784 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4785 int update_next_balance = 0;
d07355f5 4786 int need_serialize;
1da177e4 4787
46cb4b7c 4788 for_each_domain(cpu, sd) {
1da177e4
LT
4789 if (!(sd->flags & SD_LOAD_BALANCE))
4790 continue;
4791
4792 interval = sd->balance_interval;
d15bcfdb 4793 if (idle != CPU_IDLE)
1da177e4
LT
4794 interval *= sd->busy_factor;
4795
4796 /* scale ms to jiffies */
4797 interval = msecs_to_jiffies(interval);
4798 if (unlikely(!interval))
4799 interval = 1;
dd41f596
IM
4800 if (interval > HZ*NR_CPUS/10)
4801 interval = HZ*NR_CPUS/10;
4802
d07355f5 4803 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4804
d07355f5 4805 if (need_serialize) {
08c183f3
CL
4806 if (!spin_trylock(&balancing))
4807 goto out;
4808 }
4809
c9819f45 4810 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4811 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4812 /*
4813 * We've pulled tasks over so either we're no
5969fe06
NP
4814 * longer idle, or one of our SMT siblings is
4815 * not idle.
4816 */
d15bcfdb 4817 idle = CPU_NOT_IDLE;
1da177e4 4818 }
1bd77f2d 4819 sd->last_balance = jiffies;
1da177e4 4820 }
d07355f5 4821 if (need_serialize)
08c183f3
CL
4822 spin_unlock(&balancing);
4823out:
f549da84 4824 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4825 next_balance = sd->last_balance + interval;
f549da84
SS
4826 update_next_balance = 1;
4827 }
783609c6
SS
4828
4829 /*
4830 * Stop the load balance at this level. There is another
4831 * CPU in our sched group which is doing load balancing more
4832 * actively.
4833 */
4834 if (!balance)
4835 break;
1da177e4 4836 }
f549da84
SS
4837
4838 /*
4839 * next_balance will be updated only when there is a need.
4840 * When the cpu is attached to null domain for ex, it will not be
4841 * updated.
4842 */
4843 if (likely(update_next_balance))
4844 rq->next_balance = next_balance;
46cb4b7c
SS
4845}
4846
4847/*
4848 * run_rebalance_domains is triggered when needed from the scheduler tick.
4849 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4850 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4851 */
4852static void run_rebalance_domains(struct softirq_action *h)
4853{
dd41f596
IM
4854 int this_cpu = smp_processor_id();
4855 struct rq *this_rq = cpu_rq(this_cpu);
4856 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4857 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4858
dd41f596 4859 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4860
4861#ifdef CONFIG_NO_HZ
4862 /*
4863 * If this cpu is the owner for idle load balancing, then do the
4864 * balancing on behalf of the other idle cpus whose ticks are
4865 * stopped.
4866 */
dd41f596
IM
4867 if (this_rq->idle_at_tick &&
4868 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4869 struct rq *rq;
4870 int balance_cpu;
4871
7d1e6a9b
RR
4872 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4873 if (balance_cpu == this_cpu)
4874 continue;
4875
46cb4b7c
SS
4876 /*
4877 * If this cpu gets work to do, stop the load balancing
4878 * work being done for other cpus. Next load
4879 * balancing owner will pick it up.
4880 */
4881 if (need_resched())
4882 break;
4883
de0cf899 4884 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4885
4886 rq = cpu_rq(balance_cpu);
dd41f596
IM
4887 if (time_after(this_rq->next_balance, rq->next_balance))
4888 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4889 }
4890 }
4891#endif
4892}
4893
8a0be9ef
FW
4894static inline int on_null_domain(int cpu)
4895{
d11c563d 4896 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
8a0be9ef
FW
4897}
4898
46cb4b7c
SS
4899/*
4900 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4901 *
4902 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4903 * idle load balancing owner or decide to stop the periodic load balancing,
4904 * if the whole system is idle.
4905 */
dd41f596 4906static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4907{
46cb4b7c
SS
4908#ifdef CONFIG_NO_HZ
4909 /*
4910 * If we were in the nohz mode recently and busy at the current
4911 * scheduler tick, then check if we need to nominate new idle
4912 * load balancer.
4913 */
4914 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4915 rq->in_nohz_recently = 0;
4916
4917 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4918 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4919 atomic_set(&nohz.load_balancer, -1);
4920 }
4921
4922 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4923 int ilb = find_new_ilb(cpu);
46cb4b7c 4924
434d53b0 4925 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4926 resched_cpu(ilb);
4927 }
4928 }
4929
4930 /*
4931 * If this cpu is idle and doing idle load balancing for all the
4932 * cpus with ticks stopped, is it time for that to stop?
4933 */
4934 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4935 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4936 resched_cpu(cpu);
4937 return;
4938 }
4939
4940 /*
4941 * If this cpu is idle and the idle load balancing is done by
4942 * someone else, then no need raise the SCHED_SOFTIRQ
4943 */
4944 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4945 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4946 return;
4947#endif
8a0be9ef
FW
4948 /* Don't need to rebalance while attached to NULL domain */
4949 if (time_after_eq(jiffies, rq->next_balance) &&
4950 likely(!on_null_domain(cpu)))
46cb4b7c 4951 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4952}
dd41f596
IM
4953
4954#else /* CONFIG_SMP */
4955
1da177e4
LT
4956/*
4957 * on UP we do not need to balance between CPUs:
4958 */
70b97a7f 4959static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4960{
4961}
dd41f596 4962
1da177e4
LT
4963#endif
4964
1da177e4
LT
4965DEFINE_PER_CPU(struct kernel_stat, kstat);
4966
4967EXPORT_PER_CPU_SYMBOL(kstat);
4968
4969/*
c5f8d995 4970 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4971 * @p in case that task is currently running.
c5f8d995
HS
4972 *
4973 * Called with task_rq_lock() held on @rq.
1da177e4 4974 */
c5f8d995
HS
4975static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4976{
4977 u64 ns = 0;
4978
4979 if (task_current(rq, p)) {
4980 update_rq_clock(rq);
4981 ns = rq->clock - p->se.exec_start;
4982 if ((s64)ns < 0)
4983 ns = 0;
4984 }
4985
4986 return ns;
4987}
4988
bb34d92f 4989unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4990{
1da177e4 4991 unsigned long flags;
41b86e9c 4992 struct rq *rq;
bb34d92f 4993 u64 ns = 0;
48f24c4d 4994
41b86e9c 4995 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4996 ns = do_task_delta_exec(p, rq);
4997 task_rq_unlock(rq, &flags);
1508487e 4998
c5f8d995
HS
4999 return ns;
5000}
f06febc9 5001
c5f8d995
HS
5002/*
5003 * Return accounted runtime for the task.
5004 * In case the task is currently running, return the runtime plus current's
5005 * pending runtime that have not been accounted yet.
5006 */
5007unsigned long long task_sched_runtime(struct task_struct *p)
5008{
5009 unsigned long flags;
5010 struct rq *rq;
5011 u64 ns = 0;
5012
5013 rq = task_rq_lock(p, &flags);
5014 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5015 task_rq_unlock(rq, &flags);
5016
5017 return ns;
5018}
48f24c4d 5019
c5f8d995
HS
5020/*
5021 * Return sum_exec_runtime for the thread group.
5022 * In case the task is currently running, return the sum plus current's
5023 * pending runtime that have not been accounted yet.
5024 *
5025 * Note that the thread group might have other running tasks as well,
5026 * so the return value not includes other pending runtime that other
5027 * running tasks might have.
5028 */
5029unsigned long long thread_group_sched_runtime(struct task_struct *p)
5030{
5031 struct task_cputime totals;
5032 unsigned long flags;
5033 struct rq *rq;
5034 u64 ns;
5035
5036 rq = task_rq_lock(p, &flags);
5037 thread_group_cputime(p, &totals);
5038 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5039 task_rq_unlock(rq, &flags);
48f24c4d 5040
1da177e4
LT
5041 return ns;
5042}
5043
1da177e4
LT
5044/*
5045 * Account user cpu time to a process.
5046 * @p: the process that the cpu time gets accounted to
1da177e4 5047 * @cputime: the cpu time spent in user space since the last update
457533a7 5048 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5049 */
457533a7
MS
5050void account_user_time(struct task_struct *p, cputime_t cputime,
5051 cputime_t cputime_scaled)
1da177e4
LT
5052{
5053 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5054 cputime64_t tmp;
5055
457533a7 5056 /* Add user time to process. */
1da177e4 5057 p->utime = cputime_add(p->utime, cputime);
457533a7 5058 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5059 account_group_user_time(p, cputime);
1da177e4
LT
5060
5061 /* Add user time to cpustat. */
5062 tmp = cputime_to_cputime64(cputime);
5063 if (TASK_NICE(p) > 0)
5064 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5065 else
5066 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5067
5068 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5069 /* Account for user time used */
5070 acct_update_integrals(p);
1da177e4
LT
5071}
5072
94886b84
LV
5073/*
5074 * Account guest cpu time to a process.
5075 * @p: the process that the cpu time gets accounted to
5076 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5077 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5078 */
457533a7
MS
5079static void account_guest_time(struct task_struct *p, cputime_t cputime,
5080 cputime_t cputime_scaled)
94886b84
LV
5081{
5082 cputime64_t tmp;
5083 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5084
5085 tmp = cputime_to_cputime64(cputime);
5086
457533a7 5087 /* Add guest time to process. */
94886b84 5088 p->utime = cputime_add(p->utime, cputime);
457533a7 5089 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5090 account_group_user_time(p, cputime);
94886b84
LV
5091 p->gtime = cputime_add(p->gtime, cputime);
5092
457533a7 5093 /* Add guest time to cpustat. */
ce0e7b28
RO
5094 if (TASK_NICE(p) > 0) {
5095 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5096 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5097 } else {
5098 cpustat->user = cputime64_add(cpustat->user, tmp);
5099 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5100 }
94886b84
LV
5101}
5102
1da177e4
LT
5103/*
5104 * Account system cpu time to a process.
5105 * @p: the process that the cpu time gets accounted to
5106 * @hardirq_offset: the offset to subtract from hardirq_count()
5107 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5108 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5109 */
5110void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5111 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5112{
5113 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5114 cputime64_t tmp;
5115
983ed7a6 5116 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5117 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5118 return;
5119 }
94886b84 5120
457533a7 5121 /* Add system time to process. */
1da177e4 5122 p->stime = cputime_add(p->stime, cputime);
457533a7 5123 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5124 account_group_system_time(p, cputime);
1da177e4
LT
5125
5126 /* Add system time to cpustat. */
5127 tmp = cputime_to_cputime64(cputime);
5128 if (hardirq_count() - hardirq_offset)
5129 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5130 else if (softirq_count())
5131 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5132 else
79741dd3
MS
5133 cpustat->system = cputime64_add(cpustat->system, tmp);
5134
ef12fefa
BR
5135 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5136
1da177e4
LT
5137 /* Account for system time used */
5138 acct_update_integrals(p);
1da177e4
LT
5139}
5140
c66f08be 5141/*
1da177e4 5142 * Account for involuntary wait time.
1da177e4 5143 * @steal: the cpu time spent in involuntary wait
c66f08be 5144 */
79741dd3 5145void account_steal_time(cputime_t cputime)
c66f08be 5146{
79741dd3
MS
5147 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5148 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5149
5150 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5151}
5152
1da177e4 5153/*
79741dd3
MS
5154 * Account for idle time.
5155 * @cputime: the cpu time spent in idle wait
1da177e4 5156 */
79741dd3 5157void account_idle_time(cputime_t cputime)
1da177e4
LT
5158{
5159 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5160 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5161 struct rq *rq = this_rq();
1da177e4 5162
79741dd3
MS
5163 if (atomic_read(&rq->nr_iowait) > 0)
5164 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5165 else
5166 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5167}
5168
79741dd3
MS
5169#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5170
5171/*
5172 * Account a single tick of cpu time.
5173 * @p: the process that the cpu time gets accounted to
5174 * @user_tick: indicates if the tick is a user or a system tick
5175 */
5176void account_process_tick(struct task_struct *p, int user_tick)
5177{
a42548a1 5178 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5179 struct rq *rq = this_rq();
5180
5181 if (user_tick)
a42548a1 5182 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5183 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5184 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5185 one_jiffy_scaled);
5186 else
a42548a1 5187 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5188}
5189
5190/*
5191 * Account multiple ticks of steal time.
5192 * @p: the process from which the cpu time has been stolen
5193 * @ticks: number of stolen ticks
5194 */
5195void account_steal_ticks(unsigned long ticks)
5196{
5197 account_steal_time(jiffies_to_cputime(ticks));
5198}
5199
5200/*
5201 * Account multiple ticks of idle time.
5202 * @ticks: number of stolen ticks
5203 */
5204void account_idle_ticks(unsigned long ticks)
5205{
5206 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5207}
5208
79741dd3
MS
5209#endif
5210
49048622
BS
5211/*
5212 * Use precise platform statistics if available:
5213 */
5214#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5215void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5216{
d99ca3b9
HS
5217 *ut = p->utime;
5218 *st = p->stime;
49048622
BS
5219}
5220
0cf55e1e 5221void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5222{
0cf55e1e
HS
5223 struct task_cputime cputime;
5224
5225 thread_group_cputime(p, &cputime);
5226
5227 *ut = cputime.utime;
5228 *st = cputime.stime;
49048622
BS
5229}
5230#else
761b1d26
HS
5231
5232#ifndef nsecs_to_cputime
b7b20df9 5233# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5234#endif
5235
d180c5bc 5236void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5237{
d99ca3b9 5238 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5239
5240 /*
5241 * Use CFS's precise accounting:
5242 */
d180c5bc 5243 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5244
5245 if (total) {
d180c5bc
HS
5246 u64 temp;
5247
5248 temp = (u64)(rtime * utime);
49048622 5249 do_div(temp, total);
d180c5bc
HS
5250 utime = (cputime_t)temp;
5251 } else
5252 utime = rtime;
49048622 5253
d180c5bc
HS
5254 /*
5255 * Compare with previous values, to keep monotonicity:
5256 */
761b1d26 5257 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5258 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5259
d99ca3b9
HS
5260 *ut = p->prev_utime;
5261 *st = p->prev_stime;
49048622
BS
5262}
5263
0cf55e1e
HS
5264/*
5265 * Must be called with siglock held.
5266 */
5267void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5268{
0cf55e1e
HS
5269 struct signal_struct *sig = p->signal;
5270 struct task_cputime cputime;
5271 cputime_t rtime, utime, total;
49048622 5272
0cf55e1e 5273 thread_group_cputime(p, &cputime);
49048622 5274
0cf55e1e
HS
5275 total = cputime_add(cputime.utime, cputime.stime);
5276 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5277
0cf55e1e
HS
5278 if (total) {
5279 u64 temp;
49048622 5280
0cf55e1e
HS
5281 temp = (u64)(rtime * cputime.utime);
5282 do_div(temp, total);
5283 utime = (cputime_t)temp;
5284 } else
5285 utime = rtime;
5286
5287 sig->prev_utime = max(sig->prev_utime, utime);
5288 sig->prev_stime = max(sig->prev_stime,
5289 cputime_sub(rtime, sig->prev_utime));
5290
5291 *ut = sig->prev_utime;
5292 *st = sig->prev_stime;
49048622 5293}
49048622 5294#endif
49048622 5295
7835b98b
CL
5296/*
5297 * This function gets called by the timer code, with HZ frequency.
5298 * We call it with interrupts disabled.
5299 *
5300 * It also gets called by the fork code, when changing the parent's
5301 * timeslices.
5302 */
5303void scheduler_tick(void)
5304{
7835b98b
CL
5305 int cpu = smp_processor_id();
5306 struct rq *rq = cpu_rq(cpu);
dd41f596 5307 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5308
5309 sched_clock_tick();
dd41f596 5310
05fa785c 5311 raw_spin_lock(&rq->lock);
3e51f33f 5312 update_rq_clock(rq);
f1a438d8 5313 update_cpu_load(rq);
fa85ae24 5314 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5315 raw_spin_unlock(&rq->lock);
7835b98b 5316
cdd6c482 5317 perf_event_task_tick(curr, cpu);
e220d2dc 5318
e418e1c2 5319#ifdef CONFIG_SMP
dd41f596
IM
5320 rq->idle_at_tick = idle_cpu(cpu);
5321 trigger_load_balance(rq, cpu);
e418e1c2 5322#endif
1da177e4
LT
5323}
5324
132380a0 5325notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5326{
5327 if (in_lock_functions(addr)) {
5328 addr = CALLER_ADDR2;
5329 if (in_lock_functions(addr))
5330 addr = CALLER_ADDR3;
5331 }
5332 return addr;
5333}
1da177e4 5334
7e49fcce
SR
5335#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5336 defined(CONFIG_PREEMPT_TRACER))
5337
43627582 5338void __kprobes add_preempt_count(int val)
1da177e4 5339{
6cd8a4bb 5340#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5341 /*
5342 * Underflow?
5343 */
9a11b49a
IM
5344 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5345 return;
6cd8a4bb 5346#endif
1da177e4 5347 preempt_count() += val;
6cd8a4bb 5348#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5349 /*
5350 * Spinlock count overflowing soon?
5351 */
33859f7f
MOS
5352 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5353 PREEMPT_MASK - 10);
6cd8a4bb
SR
5354#endif
5355 if (preempt_count() == val)
5356 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5357}
5358EXPORT_SYMBOL(add_preempt_count);
5359
43627582 5360void __kprobes sub_preempt_count(int val)
1da177e4 5361{
6cd8a4bb 5362#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5363 /*
5364 * Underflow?
5365 */
01e3eb82 5366 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5367 return;
1da177e4
LT
5368 /*
5369 * Is the spinlock portion underflowing?
5370 */
9a11b49a
IM
5371 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5372 !(preempt_count() & PREEMPT_MASK)))
5373 return;
6cd8a4bb 5374#endif
9a11b49a 5375
6cd8a4bb
SR
5376 if (preempt_count() == val)
5377 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5378 preempt_count() -= val;
5379}
5380EXPORT_SYMBOL(sub_preempt_count);
5381
5382#endif
5383
5384/*
dd41f596 5385 * Print scheduling while atomic bug:
1da177e4 5386 */
dd41f596 5387static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5388{
838225b4
SS
5389 struct pt_regs *regs = get_irq_regs();
5390
3df0fc5b
PZ
5391 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5392 prev->comm, prev->pid, preempt_count());
838225b4 5393
dd41f596 5394 debug_show_held_locks(prev);
e21f5b15 5395 print_modules();
dd41f596
IM
5396 if (irqs_disabled())
5397 print_irqtrace_events(prev);
838225b4
SS
5398
5399 if (regs)
5400 show_regs(regs);
5401 else
5402 dump_stack();
dd41f596 5403}
1da177e4 5404
dd41f596
IM
5405/*
5406 * Various schedule()-time debugging checks and statistics:
5407 */
5408static inline void schedule_debug(struct task_struct *prev)
5409{
1da177e4 5410 /*
41a2d6cf 5411 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5412 * schedule() atomically, we ignore that path for now.
5413 * Otherwise, whine if we are scheduling when we should not be.
5414 */
3f33a7ce 5415 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5416 __schedule_bug(prev);
5417
1da177e4
LT
5418 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5419
2d72376b 5420 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5421#ifdef CONFIG_SCHEDSTATS
5422 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5423 schedstat_inc(this_rq(), bkl_count);
5424 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5425 }
5426#endif
dd41f596
IM
5427}
5428
6cecd084 5429static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5430{
6cecd084
PZ
5431 if (prev->state == TASK_RUNNING) {
5432 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5433
6cecd084
PZ
5434 runtime -= prev->se.prev_sum_exec_runtime;
5435 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5436
5437 /*
5438 * In order to avoid avg_overlap growing stale when we are
5439 * indeed overlapping and hence not getting put to sleep, grow
5440 * the avg_overlap on preemption.
5441 *
5442 * We use the average preemption runtime because that
5443 * correlates to the amount of cache footprint a task can
5444 * build up.
5445 */
6cecd084 5446 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5447 }
6cecd084 5448 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5449}
5450
dd41f596
IM
5451/*
5452 * Pick up the highest-prio task:
5453 */
5454static inline struct task_struct *
b67802ea 5455pick_next_task(struct rq *rq)
dd41f596 5456{
5522d5d5 5457 const struct sched_class *class;
dd41f596 5458 struct task_struct *p;
1da177e4
LT
5459
5460 /*
dd41f596
IM
5461 * Optimization: we know that if all tasks are in
5462 * the fair class we can call that function directly:
1da177e4 5463 */
dd41f596 5464 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5465 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5466 if (likely(p))
5467 return p;
1da177e4
LT
5468 }
5469
dd41f596
IM
5470 class = sched_class_highest;
5471 for ( ; ; ) {
fb8d4724 5472 p = class->pick_next_task(rq);
dd41f596
IM
5473 if (p)
5474 return p;
5475 /*
5476 * Will never be NULL as the idle class always
5477 * returns a non-NULL p:
5478 */
5479 class = class->next;
5480 }
5481}
1da177e4 5482
dd41f596
IM
5483/*
5484 * schedule() is the main scheduler function.
5485 */
ff743345 5486asmlinkage void __sched schedule(void)
dd41f596
IM
5487{
5488 struct task_struct *prev, *next;
67ca7bde 5489 unsigned long *switch_count;
dd41f596 5490 struct rq *rq;
31656519 5491 int cpu;
dd41f596 5492
ff743345
PZ
5493need_resched:
5494 preempt_disable();
dd41f596
IM
5495 cpu = smp_processor_id();
5496 rq = cpu_rq(cpu);
d6714c22 5497 rcu_sched_qs(cpu);
dd41f596
IM
5498 prev = rq->curr;
5499 switch_count = &prev->nivcsw;
5500
5501 release_kernel_lock(prev);
5502need_resched_nonpreemptible:
5503
5504 schedule_debug(prev);
1da177e4 5505
31656519 5506 if (sched_feat(HRTICK))
f333fdc9 5507 hrtick_clear(rq);
8f4d37ec 5508
05fa785c 5509 raw_spin_lock_irq(&rq->lock);
3e51f33f 5510 update_rq_clock(rq);
1e819950 5511 clear_tsk_need_resched(prev);
1da177e4 5512
1da177e4 5513 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5514 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5515 prev->state = TASK_RUNNING;
16882c1e 5516 else
2e1cb74a 5517 deactivate_task(rq, prev, 1);
dd41f596 5518 switch_count = &prev->nvcsw;
1da177e4
LT
5519 }
5520
3f029d3c 5521 pre_schedule(rq, prev);
f65eda4f 5522
dd41f596 5523 if (unlikely(!rq->nr_running))
1da177e4 5524 idle_balance(cpu, rq);
1da177e4 5525
df1c99d4 5526 put_prev_task(rq, prev);
b67802ea 5527 next = pick_next_task(rq);
1da177e4 5528
1da177e4 5529 if (likely(prev != next)) {
673a90a1 5530 sched_info_switch(prev, next);
cdd6c482 5531 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5532
1da177e4
LT
5533 rq->nr_switches++;
5534 rq->curr = next;
5535 ++*switch_count;
5536
dd41f596 5537 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5538 /*
5539 * the context switch might have flipped the stack from under
5540 * us, hence refresh the local variables.
5541 */
5542 cpu = smp_processor_id();
5543 rq = cpu_rq(cpu);
1da177e4 5544 } else
05fa785c 5545 raw_spin_unlock_irq(&rq->lock);
1da177e4 5546
3f029d3c 5547 post_schedule(rq);
1da177e4 5548
6d558c3a
YZ
5549 if (unlikely(reacquire_kernel_lock(current) < 0)) {
5550 prev = rq->curr;
5551 switch_count = &prev->nivcsw;
1da177e4 5552 goto need_resched_nonpreemptible;
6d558c3a 5553 }
8f4d37ec 5554
1da177e4 5555 preempt_enable_no_resched();
ff743345 5556 if (need_resched())
1da177e4
LT
5557 goto need_resched;
5558}
1da177e4
LT
5559EXPORT_SYMBOL(schedule);
5560
c08f7829 5561#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5562/*
5563 * Look out! "owner" is an entirely speculative pointer
5564 * access and not reliable.
5565 */
5566int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5567{
5568 unsigned int cpu;
5569 struct rq *rq;
5570
5571 if (!sched_feat(OWNER_SPIN))
5572 return 0;
5573
5574#ifdef CONFIG_DEBUG_PAGEALLOC
5575 /*
5576 * Need to access the cpu field knowing that
5577 * DEBUG_PAGEALLOC could have unmapped it if
5578 * the mutex owner just released it and exited.
5579 */
5580 if (probe_kernel_address(&owner->cpu, cpu))
5581 goto out;
5582#else
5583 cpu = owner->cpu;
5584#endif
5585
5586 /*
5587 * Even if the access succeeded (likely case),
5588 * the cpu field may no longer be valid.
5589 */
5590 if (cpu >= nr_cpumask_bits)
5591 goto out;
5592
5593 /*
5594 * We need to validate that we can do a
5595 * get_cpu() and that we have the percpu area.
5596 */
5597 if (!cpu_online(cpu))
5598 goto out;
5599
5600 rq = cpu_rq(cpu);
5601
5602 for (;;) {
5603 /*
5604 * Owner changed, break to re-assess state.
5605 */
5606 if (lock->owner != owner)
5607 break;
5608
5609 /*
5610 * Is that owner really running on that cpu?
5611 */
5612 if (task_thread_info(rq->curr) != owner || need_resched())
5613 return 0;
5614
5615 cpu_relax();
5616 }
5617out:
5618 return 1;
5619}
5620#endif
5621
1da177e4
LT
5622#ifdef CONFIG_PREEMPT
5623/*
2ed6e34f 5624 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5625 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5626 * occur there and call schedule directly.
5627 */
5628asmlinkage void __sched preempt_schedule(void)
5629{
5630 struct thread_info *ti = current_thread_info();
6478d880 5631
1da177e4
LT
5632 /*
5633 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5634 * we do not want to preempt the current task. Just return..
1da177e4 5635 */
beed33a8 5636 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5637 return;
5638
3a5c359a
AK
5639 do {
5640 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5641 schedule();
3a5c359a 5642 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5643
3a5c359a
AK
5644 /*
5645 * Check again in case we missed a preemption opportunity
5646 * between schedule and now.
5647 */
5648 barrier();
5ed0cec0 5649 } while (need_resched());
1da177e4 5650}
1da177e4
LT
5651EXPORT_SYMBOL(preempt_schedule);
5652
5653/*
2ed6e34f 5654 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5655 * off of irq context.
5656 * Note, that this is called and return with irqs disabled. This will
5657 * protect us against recursive calling from irq.
5658 */
5659asmlinkage void __sched preempt_schedule_irq(void)
5660{
5661 struct thread_info *ti = current_thread_info();
6478d880 5662
2ed6e34f 5663 /* Catch callers which need to be fixed */
1da177e4
LT
5664 BUG_ON(ti->preempt_count || !irqs_disabled());
5665
3a5c359a
AK
5666 do {
5667 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5668 local_irq_enable();
5669 schedule();
5670 local_irq_disable();
3a5c359a 5671 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5672
3a5c359a
AK
5673 /*
5674 * Check again in case we missed a preemption opportunity
5675 * between schedule and now.
5676 */
5677 barrier();
5ed0cec0 5678 } while (need_resched());
1da177e4
LT
5679}
5680
5681#endif /* CONFIG_PREEMPT */
5682
63859d4f 5683int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5684 void *key)
1da177e4 5685{
63859d4f 5686 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5687}
1da177e4
LT
5688EXPORT_SYMBOL(default_wake_function);
5689
5690/*
41a2d6cf
IM
5691 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5692 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5693 * number) then we wake all the non-exclusive tasks and one exclusive task.
5694 *
5695 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5696 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5697 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5698 */
78ddb08f 5699static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5700 int nr_exclusive, int wake_flags, void *key)
1da177e4 5701{
2e45874c 5702 wait_queue_t *curr, *next;
1da177e4 5703
2e45874c 5704 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5705 unsigned flags = curr->flags;
5706
63859d4f 5707 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5708 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5709 break;
5710 }
5711}
5712
5713/**
5714 * __wake_up - wake up threads blocked on a waitqueue.
5715 * @q: the waitqueue
5716 * @mode: which threads
5717 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5718 * @key: is directly passed to the wakeup function
50fa610a
DH
5719 *
5720 * It may be assumed that this function implies a write memory barrier before
5721 * changing the task state if and only if any tasks are woken up.
1da177e4 5722 */
7ad5b3a5 5723void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5724 int nr_exclusive, void *key)
1da177e4
LT
5725{
5726 unsigned long flags;
5727
5728 spin_lock_irqsave(&q->lock, flags);
5729 __wake_up_common(q, mode, nr_exclusive, 0, key);
5730 spin_unlock_irqrestore(&q->lock, flags);
5731}
1da177e4
LT
5732EXPORT_SYMBOL(__wake_up);
5733
5734/*
5735 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5736 */
7ad5b3a5 5737void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5738{
5739 __wake_up_common(q, mode, 1, 0, NULL);
5740}
5741
4ede816a
DL
5742void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5743{
5744 __wake_up_common(q, mode, 1, 0, key);
5745}
5746
1da177e4 5747/**
4ede816a 5748 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5749 * @q: the waitqueue
5750 * @mode: which threads
5751 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5752 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5753 *
5754 * The sync wakeup differs that the waker knows that it will schedule
5755 * away soon, so while the target thread will be woken up, it will not
5756 * be migrated to another CPU - ie. the two threads are 'synchronized'
5757 * with each other. This can prevent needless bouncing between CPUs.
5758 *
5759 * On UP it can prevent extra preemption.
50fa610a
DH
5760 *
5761 * It may be assumed that this function implies a write memory barrier before
5762 * changing the task state if and only if any tasks are woken up.
1da177e4 5763 */
4ede816a
DL
5764void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5765 int nr_exclusive, void *key)
1da177e4
LT
5766{
5767 unsigned long flags;
7d478721 5768 int wake_flags = WF_SYNC;
1da177e4
LT
5769
5770 if (unlikely(!q))
5771 return;
5772
5773 if (unlikely(!nr_exclusive))
7d478721 5774 wake_flags = 0;
1da177e4
LT
5775
5776 spin_lock_irqsave(&q->lock, flags);
7d478721 5777 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5778 spin_unlock_irqrestore(&q->lock, flags);
5779}
4ede816a
DL
5780EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5781
5782/*
5783 * __wake_up_sync - see __wake_up_sync_key()
5784 */
5785void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5786{
5787 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5788}
1da177e4
LT
5789EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5790
65eb3dc6
KD
5791/**
5792 * complete: - signals a single thread waiting on this completion
5793 * @x: holds the state of this particular completion
5794 *
5795 * This will wake up a single thread waiting on this completion. Threads will be
5796 * awakened in the same order in which they were queued.
5797 *
5798 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5799 *
5800 * It may be assumed that this function implies a write memory barrier before
5801 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5802 */
b15136e9 5803void complete(struct completion *x)
1da177e4
LT
5804{
5805 unsigned long flags;
5806
5807 spin_lock_irqsave(&x->wait.lock, flags);
5808 x->done++;
d9514f6c 5809 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5810 spin_unlock_irqrestore(&x->wait.lock, flags);
5811}
5812EXPORT_SYMBOL(complete);
5813
65eb3dc6
KD
5814/**
5815 * complete_all: - signals all threads waiting on this completion
5816 * @x: holds the state of this particular completion
5817 *
5818 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5819 *
5820 * It may be assumed that this function implies a write memory barrier before
5821 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5822 */
b15136e9 5823void complete_all(struct completion *x)
1da177e4
LT
5824{
5825 unsigned long flags;
5826
5827 spin_lock_irqsave(&x->wait.lock, flags);
5828 x->done += UINT_MAX/2;
d9514f6c 5829 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5830 spin_unlock_irqrestore(&x->wait.lock, flags);
5831}
5832EXPORT_SYMBOL(complete_all);
5833
8cbbe86d
AK
5834static inline long __sched
5835do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5836{
1da177e4
LT
5837 if (!x->done) {
5838 DECLARE_WAITQUEUE(wait, current);
5839
5840 wait.flags |= WQ_FLAG_EXCLUSIVE;
5841 __add_wait_queue_tail(&x->wait, &wait);
5842 do {
94d3d824 5843 if (signal_pending_state(state, current)) {
ea71a546
ON
5844 timeout = -ERESTARTSYS;
5845 break;
8cbbe86d
AK
5846 }
5847 __set_current_state(state);
1da177e4
LT
5848 spin_unlock_irq(&x->wait.lock);
5849 timeout = schedule_timeout(timeout);
5850 spin_lock_irq(&x->wait.lock);
ea71a546 5851 } while (!x->done && timeout);
1da177e4 5852 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5853 if (!x->done)
5854 return timeout;
1da177e4
LT
5855 }
5856 x->done--;
ea71a546 5857 return timeout ?: 1;
1da177e4 5858}
1da177e4 5859
8cbbe86d
AK
5860static long __sched
5861wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5862{
1da177e4
LT
5863 might_sleep();
5864
5865 spin_lock_irq(&x->wait.lock);
8cbbe86d 5866 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5867 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5868 return timeout;
5869}
1da177e4 5870
65eb3dc6
KD
5871/**
5872 * wait_for_completion: - waits for completion of a task
5873 * @x: holds the state of this particular completion
5874 *
5875 * This waits to be signaled for completion of a specific task. It is NOT
5876 * interruptible and there is no timeout.
5877 *
5878 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5879 * and interrupt capability. Also see complete().
5880 */
b15136e9 5881void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5882{
5883 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5884}
8cbbe86d 5885EXPORT_SYMBOL(wait_for_completion);
1da177e4 5886
65eb3dc6
KD
5887/**
5888 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5889 * @x: holds the state of this particular completion
5890 * @timeout: timeout value in jiffies
5891 *
5892 * This waits for either a completion of a specific task to be signaled or for a
5893 * specified timeout to expire. The timeout is in jiffies. It is not
5894 * interruptible.
5895 */
b15136e9 5896unsigned long __sched
8cbbe86d 5897wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5898{
8cbbe86d 5899 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5900}
8cbbe86d 5901EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5902
65eb3dc6
KD
5903/**
5904 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5905 * @x: holds the state of this particular completion
5906 *
5907 * This waits for completion of a specific task to be signaled. It is
5908 * interruptible.
5909 */
8cbbe86d 5910int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5911{
51e97990
AK
5912 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5913 if (t == -ERESTARTSYS)
5914 return t;
5915 return 0;
0fec171c 5916}
8cbbe86d 5917EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5918
65eb3dc6
KD
5919/**
5920 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5921 * @x: holds the state of this particular completion
5922 * @timeout: timeout value in jiffies
5923 *
5924 * This waits for either a completion of a specific task to be signaled or for a
5925 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5926 */
b15136e9 5927unsigned long __sched
8cbbe86d
AK
5928wait_for_completion_interruptible_timeout(struct completion *x,
5929 unsigned long timeout)
0fec171c 5930{
8cbbe86d 5931 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5932}
8cbbe86d 5933EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5934
65eb3dc6
KD
5935/**
5936 * wait_for_completion_killable: - waits for completion of a task (killable)
5937 * @x: holds the state of this particular completion
5938 *
5939 * This waits to be signaled for completion of a specific task. It can be
5940 * interrupted by a kill signal.
5941 */
009e577e
MW
5942int __sched wait_for_completion_killable(struct completion *x)
5943{
5944 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5945 if (t == -ERESTARTSYS)
5946 return t;
5947 return 0;
5948}
5949EXPORT_SYMBOL(wait_for_completion_killable);
5950
be4de352
DC
5951/**
5952 * try_wait_for_completion - try to decrement a completion without blocking
5953 * @x: completion structure
5954 *
5955 * Returns: 0 if a decrement cannot be done without blocking
5956 * 1 if a decrement succeeded.
5957 *
5958 * If a completion is being used as a counting completion,
5959 * attempt to decrement the counter without blocking. This
5960 * enables us to avoid waiting if the resource the completion
5961 * is protecting is not available.
5962 */
5963bool try_wait_for_completion(struct completion *x)
5964{
7539a3b3 5965 unsigned long flags;
be4de352
DC
5966 int ret = 1;
5967
7539a3b3 5968 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5969 if (!x->done)
5970 ret = 0;
5971 else
5972 x->done--;
7539a3b3 5973 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5974 return ret;
5975}
5976EXPORT_SYMBOL(try_wait_for_completion);
5977
5978/**
5979 * completion_done - Test to see if a completion has any waiters
5980 * @x: completion structure
5981 *
5982 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5983 * 1 if there are no waiters.
5984 *
5985 */
5986bool completion_done(struct completion *x)
5987{
7539a3b3 5988 unsigned long flags;
be4de352
DC
5989 int ret = 1;
5990
7539a3b3 5991 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5992 if (!x->done)
5993 ret = 0;
7539a3b3 5994 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5995 return ret;
5996}
5997EXPORT_SYMBOL(completion_done);
5998
8cbbe86d
AK
5999static long __sched
6000sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 6001{
0fec171c
IM
6002 unsigned long flags;
6003 wait_queue_t wait;
6004
6005 init_waitqueue_entry(&wait, current);
1da177e4 6006
8cbbe86d 6007 __set_current_state(state);
1da177e4 6008
8cbbe86d
AK
6009 spin_lock_irqsave(&q->lock, flags);
6010 __add_wait_queue(q, &wait);
6011 spin_unlock(&q->lock);
6012 timeout = schedule_timeout(timeout);
6013 spin_lock_irq(&q->lock);
6014 __remove_wait_queue(q, &wait);
6015 spin_unlock_irqrestore(&q->lock, flags);
6016
6017 return timeout;
6018}
6019
6020void __sched interruptible_sleep_on(wait_queue_head_t *q)
6021{
6022 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6023}
1da177e4
LT
6024EXPORT_SYMBOL(interruptible_sleep_on);
6025
0fec171c 6026long __sched
95cdf3b7 6027interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6028{
8cbbe86d 6029 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6030}
1da177e4
LT
6031EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6032
0fec171c 6033void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6034{
8cbbe86d 6035 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6036}
1da177e4
LT
6037EXPORT_SYMBOL(sleep_on);
6038
0fec171c 6039long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6040{
8cbbe86d 6041 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6042}
1da177e4
LT
6043EXPORT_SYMBOL(sleep_on_timeout);
6044
b29739f9
IM
6045#ifdef CONFIG_RT_MUTEXES
6046
6047/*
6048 * rt_mutex_setprio - set the current priority of a task
6049 * @p: task
6050 * @prio: prio value (kernel-internal form)
6051 *
6052 * This function changes the 'effective' priority of a task. It does
6053 * not touch ->normal_prio like __setscheduler().
6054 *
6055 * Used by the rt_mutex code to implement priority inheritance logic.
6056 */
36c8b586 6057void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6058{
6059 unsigned long flags;
83b699ed 6060 int oldprio, on_rq, running;
70b97a7f 6061 struct rq *rq;
cb469845 6062 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6063
6064 BUG_ON(prio < 0 || prio > MAX_PRIO);
6065
6066 rq = task_rq_lock(p, &flags);
a8e504d2 6067 update_rq_clock(rq);
b29739f9 6068
d5f9f942 6069 oldprio = p->prio;
dd41f596 6070 on_rq = p->se.on_rq;
051a1d1a 6071 running = task_current(rq, p);
0e1f3483 6072 if (on_rq)
69be72c1 6073 dequeue_task(rq, p, 0);
0e1f3483
HS
6074 if (running)
6075 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6076
6077 if (rt_prio(prio))
6078 p->sched_class = &rt_sched_class;
6079 else
6080 p->sched_class = &fair_sched_class;
6081
b29739f9
IM
6082 p->prio = prio;
6083
0e1f3483
HS
6084 if (running)
6085 p->sched_class->set_curr_task(rq);
dd41f596 6086 if (on_rq) {
8159f87e 6087 enqueue_task(rq, p, 0);
cb469845
SR
6088
6089 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6090 }
6091 task_rq_unlock(rq, &flags);
6092}
6093
6094#endif
6095
36c8b586 6096void set_user_nice(struct task_struct *p, long nice)
1da177e4 6097{
dd41f596 6098 int old_prio, delta, on_rq;
1da177e4 6099 unsigned long flags;
70b97a7f 6100 struct rq *rq;
1da177e4
LT
6101
6102 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6103 return;
6104 /*
6105 * We have to be careful, if called from sys_setpriority(),
6106 * the task might be in the middle of scheduling on another CPU.
6107 */
6108 rq = task_rq_lock(p, &flags);
a8e504d2 6109 update_rq_clock(rq);
1da177e4
LT
6110 /*
6111 * The RT priorities are set via sched_setscheduler(), but we still
6112 * allow the 'normal' nice value to be set - but as expected
6113 * it wont have any effect on scheduling until the task is
dd41f596 6114 * SCHED_FIFO/SCHED_RR:
1da177e4 6115 */
e05606d3 6116 if (task_has_rt_policy(p)) {
1da177e4
LT
6117 p->static_prio = NICE_TO_PRIO(nice);
6118 goto out_unlock;
6119 }
dd41f596 6120 on_rq = p->se.on_rq;
c09595f6 6121 if (on_rq)
69be72c1 6122 dequeue_task(rq, p, 0);
1da177e4 6123
1da177e4 6124 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6125 set_load_weight(p);
b29739f9
IM
6126 old_prio = p->prio;
6127 p->prio = effective_prio(p);
6128 delta = p->prio - old_prio;
1da177e4 6129
dd41f596 6130 if (on_rq) {
8159f87e 6131 enqueue_task(rq, p, 0);
1da177e4 6132 /*
d5f9f942
AM
6133 * If the task increased its priority or is running and
6134 * lowered its priority, then reschedule its CPU:
1da177e4 6135 */
d5f9f942 6136 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6137 resched_task(rq->curr);
6138 }
6139out_unlock:
6140 task_rq_unlock(rq, &flags);
6141}
1da177e4
LT
6142EXPORT_SYMBOL(set_user_nice);
6143
e43379f1
MM
6144/*
6145 * can_nice - check if a task can reduce its nice value
6146 * @p: task
6147 * @nice: nice value
6148 */
36c8b586 6149int can_nice(const struct task_struct *p, const int nice)
e43379f1 6150{
024f4747
MM
6151 /* convert nice value [19,-20] to rlimit style value [1,40] */
6152 int nice_rlim = 20 - nice;
48f24c4d 6153
e43379f1
MM
6154 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6155 capable(CAP_SYS_NICE));
6156}
6157
1da177e4
LT
6158#ifdef __ARCH_WANT_SYS_NICE
6159
6160/*
6161 * sys_nice - change the priority of the current process.
6162 * @increment: priority increment
6163 *
6164 * sys_setpriority is a more generic, but much slower function that
6165 * does similar things.
6166 */
5add95d4 6167SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6168{
48f24c4d 6169 long nice, retval;
1da177e4
LT
6170
6171 /*
6172 * Setpriority might change our priority at the same moment.
6173 * We don't have to worry. Conceptually one call occurs first
6174 * and we have a single winner.
6175 */
e43379f1
MM
6176 if (increment < -40)
6177 increment = -40;
1da177e4
LT
6178 if (increment > 40)
6179 increment = 40;
6180
2b8f836f 6181 nice = TASK_NICE(current) + increment;
1da177e4
LT
6182 if (nice < -20)
6183 nice = -20;
6184 if (nice > 19)
6185 nice = 19;
6186
e43379f1
MM
6187 if (increment < 0 && !can_nice(current, nice))
6188 return -EPERM;
6189
1da177e4
LT
6190 retval = security_task_setnice(current, nice);
6191 if (retval)
6192 return retval;
6193
6194 set_user_nice(current, nice);
6195 return 0;
6196}
6197
6198#endif
6199
6200/**
6201 * task_prio - return the priority value of a given task.
6202 * @p: the task in question.
6203 *
6204 * This is the priority value as seen by users in /proc.
6205 * RT tasks are offset by -200. Normal tasks are centered
6206 * around 0, value goes from -16 to +15.
6207 */
36c8b586 6208int task_prio(const struct task_struct *p)
1da177e4
LT
6209{
6210 return p->prio - MAX_RT_PRIO;
6211}
6212
6213/**
6214 * task_nice - return the nice value of a given task.
6215 * @p: the task in question.
6216 */
36c8b586 6217int task_nice(const struct task_struct *p)
1da177e4
LT
6218{
6219 return TASK_NICE(p);
6220}
150d8bed 6221EXPORT_SYMBOL(task_nice);
1da177e4
LT
6222
6223/**
6224 * idle_cpu - is a given cpu idle currently?
6225 * @cpu: the processor in question.
6226 */
6227int idle_cpu(int cpu)
6228{
6229 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6230}
6231
1da177e4
LT
6232/**
6233 * idle_task - return the idle task for a given cpu.
6234 * @cpu: the processor in question.
6235 */
36c8b586 6236struct task_struct *idle_task(int cpu)
1da177e4
LT
6237{
6238 return cpu_rq(cpu)->idle;
6239}
6240
6241/**
6242 * find_process_by_pid - find a process with a matching PID value.
6243 * @pid: the pid in question.
6244 */
a9957449 6245static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6246{
228ebcbe 6247 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6248}
6249
6250/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6251static void
6252__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6253{
dd41f596 6254 BUG_ON(p->se.on_rq);
48f24c4d 6255
1da177e4
LT
6256 p->policy = policy;
6257 p->rt_priority = prio;
b29739f9
IM
6258 p->normal_prio = normal_prio(p);
6259 /* we are holding p->pi_lock already */
6260 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6261 if (rt_prio(p->prio))
6262 p->sched_class = &rt_sched_class;
6263 else
6264 p->sched_class = &fair_sched_class;
2dd73a4f 6265 set_load_weight(p);
1da177e4
LT
6266}
6267
c69e8d9c
DH
6268/*
6269 * check the target process has a UID that matches the current process's
6270 */
6271static bool check_same_owner(struct task_struct *p)
6272{
6273 const struct cred *cred = current_cred(), *pcred;
6274 bool match;
6275
6276 rcu_read_lock();
6277 pcred = __task_cred(p);
6278 match = (cred->euid == pcred->euid ||
6279 cred->euid == pcred->uid);
6280 rcu_read_unlock();
6281 return match;
6282}
6283
961ccddd
RR
6284static int __sched_setscheduler(struct task_struct *p, int policy,
6285 struct sched_param *param, bool user)
1da177e4 6286{
83b699ed 6287 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6288 unsigned long flags;
cb469845 6289 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6290 struct rq *rq;
ca94c442 6291 int reset_on_fork;
1da177e4 6292
66e5393a
SR
6293 /* may grab non-irq protected spin_locks */
6294 BUG_ON(in_interrupt());
1da177e4
LT
6295recheck:
6296 /* double check policy once rq lock held */
ca94c442
LP
6297 if (policy < 0) {
6298 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6299 policy = oldpolicy = p->policy;
ca94c442
LP
6300 } else {
6301 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6302 policy &= ~SCHED_RESET_ON_FORK;
6303
6304 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6305 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6306 policy != SCHED_IDLE)
6307 return -EINVAL;
6308 }
6309
1da177e4
LT
6310 /*
6311 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6312 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6313 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6314 */
6315 if (param->sched_priority < 0 ||
95cdf3b7 6316 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6317 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6318 return -EINVAL;
e05606d3 6319 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6320 return -EINVAL;
6321
37e4ab3f
OC
6322 /*
6323 * Allow unprivileged RT tasks to decrease priority:
6324 */
961ccddd 6325 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6326 if (rt_policy(policy)) {
8dc3e909 6327 unsigned long rlim_rtprio;
8dc3e909
ON
6328
6329 if (!lock_task_sighand(p, &flags))
6330 return -ESRCH;
6331 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6332 unlock_task_sighand(p, &flags);
6333
6334 /* can't set/change the rt policy */
6335 if (policy != p->policy && !rlim_rtprio)
6336 return -EPERM;
6337
6338 /* can't increase priority */
6339 if (param->sched_priority > p->rt_priority &&
6340 param->sched_priority > rlim_rtprio)
6341 return -EPERM;
6342 }
dd41f596
IM
6343 /*
6344 * Like positive nice levels, dont allow tasks to
6345 * move out of SCHED_IDLE either:
6346 */
6347 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6348 return -EPERM;
5fe1d75f 6349
37e4ab3f 6350 /* can't change other user's priorities */
c69e8d9c 6351 if (!check_same_owner(p))
37e4ab3f 6352 return -EPERM;
ca94c442
LP
6353
6354 /* Normal users shall not reset the sched_reset_on_fork flag */
6355 if (p->sched_reset_on_fork && !reset_on_fork)
6356 return -EPERM;
37e4ab3f 6357 }
1da177e4 6358
725aad24 6359 if (user) {
b68aa230 6360#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6361 /*
6362 * Do not allow realtime tasks into groups that have no runtime
6363 * assigned.
6364 */
9a7e0b18
PZ
6365 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6366 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6367 return -EPERM;
b68aa230
PZ
6368#endif
6369
725aad24
JF
6370 retval = security_task_setscheduler(p, policy, param);
6371 if (retval)
6372 return retval;
6373 }
6374
b29739f9
IM
6375 /*
6376 * make sure no PI-waiters arrive (or leave) while we are
6377 * changing the priority of the task:
6378 */
1d615482 6379 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6380 /*
6381 * To be able to change p->policy safely, the apropriate
6382 * runqueue lock must be held.
6383 */
b29739f9 6384 rq = __task_rq_lock(p);
1da177e4
LT
6385 /* recheck policy now with rq lock held */
6386 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6387 policy = oldpolicy = -1;
b29739f9 6388 __task_rq_unlock(rq);
1d615482 6389 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6390 goto recheck;
6391 }
2daa3577 6392 update_rq_clock(rq);
dd41f596 6393 on_rq = p->se.on_rq;
051a1d1a 6394 running = task_current(rq, p);
0e1f3483 6395 if (on_rq)
2e1cb74a 6396 deactivate_task(rq, p, 0);
0e1f3483
HS
6397 if (running)
6398 p->sched_class->put_prev_task(rq, p);
f6b53205 6399
ca94c442
LP
6400 p->sched_reset_on_fork = reset_on_fork;
6401
1da177e4 6402 oldprio = p->prio;
dd41f596 6403 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6404
0e1f3483
HS
6405 if (running)
6406 p->sched_class->set_curr_task(rq);
dd41f596
IM
6407 if (on_rq) {
6408 activate_task(rq, p, 0);
cb469845
SR
6409
6410 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6411 }
b29739f9 6412 __task_rq_unlock(rq);
1d615482 6413 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6414
95e02ca9
TG
6415 rt_mutex_adjust_pi(p);
6416
1da177e4
LT
6417 return 0;
6418}
961ccddd
RR
6419
6420/**
6421 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6422 * @p: the task in question.
6423 * @policy: new policy.
6424 * @param: structure containing the new RT priority.
6425 *
6426 * NOTE that the task may be already dead.
6427 */
6428int sched_setscheduler(struct task_struct *p, int policy,
6429 struct sched_param *param)
6430{
6431 return __sched_setscheduler(p, policy, param, true);
6432}
1da177e4
LT
6433EXPORT_SYMBOL_GPL(sched_setscheduler);
6434
961ccddd
RR
6435/**
6436 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6437 * @p: the task in question.
6438 * @policy: new policy.
6439 * @param: structure containing the new RT priority.
6440 *
6441 * Just like sched_setscheduler, only don't bother checking if the
6442 * current context has permission. For example, this is needed in
6443 * stop_machine(): we create temporary high priority worker threads,
6444 * but our caller might not have that capability.
6445 */
6446int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6447 struct sched_param *param)
6448{
6449 return __sched_setscheduler(p, policy, param, false);
6450}
6451
95cdf3b7
IM
6452static int
6453do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6454{
1da177e4
LT
6455 struct sched_param lparam;
6456 struct task_struct *p;
36c8b586 6457 int retval;
1da177e4
LT
6458
6459 if (!param || pid < 0)
6460 return -EINVAL;
6461 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6462 return -EFAULT;
5fe1d75f
ON
6463
6464 rcu_read_lock();
6465 retval = -ESRCH;
1da177e4 6466 p = find_process_by_pid(pid);
5fe1d75f
ON
6467 if (p != NULL)
6468 retval = sched_setscheduler(p, policy, &lparam);
6469 rcu_read_unlock();
36c8b586 6470
1da177e4
LT
6471 return retval;
6472}
6473
6474/**
6475 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6476 * @pid: the pid in question.
6477 * @policy: new policy.
6478 * @param: structure containing the new RT priority.
6479 */
5add95d4
HC
6480SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6481 struct sched_param __user *, param)
1da177e4 6482{
c21761f1
JB
6483 /* negative values for policy are not valid */
6484 if (policy < 0)
6485 return -EINVAL;
6486
1da177e4
LT
6487 return do_sched_setscheduler(pid, policy, param);
6488}
6489
6490/**
6491 * sys_sched_setparam - set/change the RT priority of a thread
6492 * @pid: the pid in question.
6493 * @param: structure containing the new RT priority.
6494 */
5add95d4 6495SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6496{
6497 return do_sched_setscheduler(pid, -1, param);
6498}
6499
6500/**
6501 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6502 * @pid: the pid in question.
6503 */
5add95d4 6504SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6505{
36c8b586 6506 struct task_struct *p;
3a5c359a 6507 int retval;
1da177e4
LT
6508
6509 if (pid < 0)
3a5c359a 6510 return -EINVAL;
1da177e4
LT
6511
6512 retval = -ESRCH;
5fe85be0 6513 rcu_read_lock();
1da177e4
LT
6514 p = find_process_by_pid(pid);
6515 if (p) {
6516 retval = security_task_getscheduler(p);
6517 if (!retval)
ca94c442
LP
6518 retval = p->policy
6519 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6520 }
5fe85be0 6521 rcu_read_unlock();
1da177e4
LT
6522 return retval;
6523}
6524
6525/**
ca94c442 6526 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6527 * @pid: the pid in question.
6528 * @param: structure containing the RT priority.
6529 */
5add95d4 6530SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6531{
6532 struct sched_param lp;
36c8b586 6533 struct task_struct *p;
3a5c359a 6534 int retval;
1da177e4
LT
6535
6536 if (!param || pid < 0)
3a5c359a 6537 return -EINVAL;
1da177e4 6538
5fe85be0 6539 rcu_read_lock();
1da177e4
LT
6540 p = find_process_by_pid(pid);
6541 retval = -ESRCH;
6542 if (!p)
6543 goto out_unlock;
6544
6545 retval = security_task_getscheduler(p);
6546 if (retval)
6547 goto out_unlock;
6548
6549 lp.sched_priority = p->rt_priority;
5fe85be0 6550 rcu_read_unlock();
1da177e4
LT
6551
6552 /*
6553 * This one might sleep, we cannot do it with a spinlock held ...
6554 */
6555 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6556
1da177e4
LT
6557 return retval;
6558
6559out_unlock:
5fe85be0 6560 rcu_read_unlock();
1da177e4
LT
6561 return retval;
6562}
6563
96f874e2 6564long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6565{
5a16f3d3 6566 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6567 struct task_struct *p;
6568 int retval;
1da177e4 6569
95402b38 6570 get_online_cpus();
23f5d142 6571 rcu_read_lock();
1da177e4
LT
6572
6573 p = find_process_by_pid(pid);
6574 if (!p) {
23f5d142 6575 rcu_read_unlock();
95402b38 6576 put_online_cpus();
1da177e4
LT
6577 return -ESRCH;
6578 }
6579
23f5d142 6580 /* Prevent p going away */
1da177e4 6581 get_task_struct(p);
23f5d142 6582 rcu_read_unlock();
1da177e4 6583
5a16f3d3
RR
6584 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6585 retval = -ENOMEM;
6586 goto out_put_task;
6587 }
6588 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6589 retval = -ENOMEM;
6590 goto out_free_cpus_allowed;
6591 }
1da177e4 6592 retval = -EPERM;
c69e8d9c 6593 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6594 goto out_unlock;
6595
e7834f8f
DQ
6596 retval = security_task_setscheduler(p, 0, NULL);
6597 if (retval)
6598 goto out_unlock;
6599
5a16f3d3
RR
6600 cpuset_cpus_allowed(p, cpus_allowed);
6601 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6602 again:
5a16f3d3 6603 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6604
8707d8b8 6605 if (!retval) {
5a16f3d3
RR
6606 cpuset_cpus_allowed(p, cpus_allowed);
6607 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6608 /*
6609 * We must have raced with a concurrent cpuset
6610 * update. Just reset the cpus_allowed to the
6611 * cpuset's cpus_allowed
6612 */
5a16f3d3 6613 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6614 goto again;
6615 }
6616 }
1da177e4 6617out_unlock:
5a16f3d3
RR
6618 free_cpumask_var(new_mask);
6619out_free_cpus_allowed:
6620 free_cpumask_var(cpus_allowed);
6621out_put_task:
1da177e4 6622 put_task_struct(p);
95402b38 6623 put_online_cpus();
1da177e4
LT
6624 return retval;
6625}
6626
6627static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6628 struct cpumask *new_mask)
1da177e4 6629{
96f874e2
RR
6630 if (len < cpumask_size())
6631 cpumask_clear(new_mask);
6632 else if (len > cpumask_size())
6633 len = cpumask_size();
6634
1da177e4
LT
6635 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6636}
6637
6638/**
6639 * sys_sched_setaffinity - set the cpu affinity of a process
6640 * @pid: pid of the process
6641 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6642 * @user_mask_ptr: user-space pointer to the new cpu mask
6643 */
5add95d4
HC
6644SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6645 unsigned long __user *, user_mask_ptr)
1da177e4 6646{
5a16f3d3 6647 cpumask_var_t new_mask;
1da177e4
LT
6648 int retval;
6649
5a16f3d3
RR
6650 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6651 return -ENOMEM;
1da177e4 6652
5a16f3d3
RR
6653 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6654 if (retval == 0)
6655 retval = sched_setaffinity(pid, new_mask);
6656 free_cpumask_var(new_mask);
6657 return retval;
1da177e4
LT
6658}
6659
96f874e2 6660long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6661{
36c8b586 6662 struct task_struct *p;
31605683
TG
6663 unsigned long flags;
6664 struct rq *rq;
1da177e4 6665 int retval;
1da177e4 6666
95402b38 6667 get_online_cpus();
23f5d142 6668 rcu_read_lock();
1da177e4
LT
6669
6670 retval = -ESRCH;
6671 p = find_process_by_pid(pid);
6672 if (!p)
6673 goto out_unlock;
6674
e7834f8f
DQ
6675 retval = security_task_getscheduler(p);
6676 if (retval)
6677 goto out_unlock;
6678
31605683 6679 rq = task_rq_lock(p, &flags);
96f874e2 6680 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6681 task_rq_unlock(rq, &flags);
1da177e4
LT
6682
6683out_unlock:
23f5d142 6684 rcu_read_unlock();
95402b38 6685 put_online_cpus();
1da177e4 6686
9531b62f 6687 return retval;
1da177e4
LT
6688}
6689
6690/**
6691 * sys_sched_getaffinity - get the cpu affinity of a process
6692 * @pid: pid of the process
6693 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6694 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6695 */
5add95d4
HC
6696SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6697 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6698{
6699 int ret;
f17c8607 6700 cpumask_var_t mask;
1da177e4 6701
f17c8607 6702 if (len < cpumask_size())
1da177e4
LT
6703 return -EINVAL;
6704
f17c8607
RR
6705 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6706 return -ENOMEM;
1da177e4 6707
f17c8607
RR
6708 ret = sched_getaffinity(pid, mask);
6709 if (ret == 0) {
6710 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6711 ret = -EFAULT;
6712 else
6713 ret = cpumask_size();
6714 }
6715 free_cpumask_var(mask);
1da177e4 6716
f17c8607 6717 return ret;
1da177e4
LT
6718}
6719
6720/**
6721 * sys_sched_yield - yield the current processor to other threads.
6722 *
dd41f596
IM
6723 * This function yields the current CPU to other tasks. If there are no
6724 * other threads running on this CPU then this function will return.
1da177e4 6725 */
5add95d4 6726SYSCALL_DEFINE0(sched_yield)
1da177e4 6727{
70b97a7f 6728 struct rq *rq = this_rq_lock();
1da177e4 6729
2d72376b 6730 schedstat_inc(rq, yld_count);
4530d7ab 6731 current->sched_class->yield_task(rq);
1da177e4
LT
6732
6733 /*
6734 * Since we are going to call schedule() anyway, there's
6735 * no need to preempt or enable interrupts:
6736 */
6737 __release(rq->lock);
8a25d5de 6738 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6739 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6740 preempt_enable_no_resched();
6741
6742 schedule();
6743
6744 return 0;
6745}
6746
d86ee480
PZ
6747static inline int should_resched(void)
6748{
6749 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6750}
6751
e7b38404 6752static void __cond_resched(void)
1da177e4 6753{
e7aaaa69
FW
6754 add_preempt_count(PREEMPT_ACTIVE);
6755 schedule();
6756 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6757}
6758
02b67cc3 6759int __sched _cond_resched(void)
1da177e4 6760{
d86ee480 6761 if (should_resched()) {
1da177e4
LT
6762 __cond_resched();
6763 return 1;
6764 }
6765 return 0;
6766}
02b67cc3 6767EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6768
6769/*
613afbf8 6770 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6771 * call schedule, and on return reacquire the lock.
6772 *
41a2d6cf 6773 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6774 * operations here to prevent schedule() from being called twice (once via
6775 * spin_unlock(), once by hand).
6776 */
613afbf8 6777int __cond_resched_lock(spinlock_t *lock)
1da177e4 6778{
d86ee480 6779 int resched = should_resched();
6df3cecb
JK
6780 int ret = 0;
6781
f607c668
PZ
6782 lockdep_assert_held(lock);
6783
95c354fe 6784 if (spin_needbreak(lock) || resched) {
1da177e4 6785 spin_unlock(lock);
d86ee480 6786 if (resched)
95c354fe
NP
6787 __cond_resched();
6788 else
6789 cpu_relax();
6df3cecb 6790 ret = 1;
1da177e4 6791 spin_lock(lock);
1da177e4 6792 }
6df3cecb 6793 return ret;
1da177e4 6794}
613afbf8 6795EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6796
613afbf8 6797int __sched __cond_resched_softirq(void)
1da177e4
LT
6798{
6799 BUG_ON(!in_softirq());
6800
d86ee480 6801 if (should_resched()) {
98d82567 6802 local_bh_enable();
1da177e4
LT
6803 __cond_resched();
6804 local_bh_disable();
6805 return 1;
6806 }
6807 return 0;
6808}
613afbf8 6809EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6810
1da177e4
LT
6811/**
6812 * yield - yield the current processor to other threads.
6813 *
72fd4a35 6814 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6815 * thread runnable and calls sys_sched_yield().
6816 */
6817void __sched yield(void)
6818{
6819 set_current_state(TASK_RUNNING);
6820 sys_sched_yield();
6821}
1da177e4
LT
6822EXPORT_SYMBOL(yield);
6823
6824/*
41a2d6cf 6825 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6826 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6827 */
6828void __sched io_schedule(void)
6829{
54d35f29 6830 struct rq *rq = raw_rq();
1da177e4 6831
0ff92245 6832 delayacct_blkio_start();
1da177e4 6833 atomic_inc(&rq->nr_iowait);
8f0dfc34 6834 current->in_iowait = 1;
1da177e4 6835 schedule();
8f0dfc34 6836 current->in_iowait = 0;
1da177e4 6837 atomic_dec(&rq->nr_iowait);
0ff92245 6838 delayacct_blkio_end();
1da177e4 6839}
1da177e4
LT
6840EXPORT_SYMBOL(io_schedule);
6841
6842long __sched io_schedule_timeout(long timeout)
6843{
54d35f29 6844 struct rq *rq = raw_rq();
1da177e4
LT
6845 long ret;
6846
0ff92245 6847 delayacct_blkio_start();
1da177e4 6848 atomic_inc(&rq->nr_iowait);
8f0dfc34 6849 current->in_iowait = 1;
1da177e4 6850 ret = schedule_timeout(timeout);
8f0dfc34 6851 current->in_iowait = 0;
1da177e4 6852 atomic_dec(&rq->nr_iowait);
0ff92245 6853 delayacct_blkio_end();
1da177e4
LT
6854 return ret;
6855}
6856
6857/**
6858 * sys_sched_get_priority_max - return maximum RT priority.
6859 * @policy: scheduling class.
6860 *
6861 * this syscall returns the maximum rt_priority that can be used
6862 * by a given scheduling class.
6863 */
5add95d4 6864SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6865{
6866 int ret = -EINVAL;
6867
6868 switch (policy) {
6869 case SCHED_FIFO:
6870 case SCHED_RR:
6871 ret = MAX_USER_RT_PRIO-1;
6872 break;
6873 case SCHED_NORMAL:
b0a9499c 6874 case SCHED_BATCH:
dd41f596 6875 case SCHED_IDLE:
1da177e4
LT
6876 ret = 0;
6877 break;
6878 }
6879 return ret;
6880}
6881
6882/**
6883 * sys_sched_get_priority_min - return minimum RT priority.
6884 * @policy: scheduling class.
6885 *
6886 * this syscall returns the minimum rt_priority that can be used
6887 * by a given scheduling class.
6888 */
5add95d4 6889SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6890{
6891 int ret = -EINVAL;
6892
6893 switch (policy) {
6894 case SCHED_FIFO:
6895 case SCHED_RR:
6896 ret = 1;
6897 break;
6898 case SCHED_NORMAL:
b0a9499c 6899 case SCHED_BATCH:
dd41f596 6900 case SCHED_IDLE:
1da177e4
LT
6901 ret = 0;
6902 }
6903 return ret;
6904}
6905
6906/**
6907 * sys_sched_rr_get_interval - return the default timeslice of a process.
6908 * @pid: pid of the process.
6909 * @interval: userspace pointer to the timeslice value.
6910 *
6911 * this syscall writes the default timeslice value of a given process
6912 * into the user-space timespec buffer. A value of '0' means infinity.
6913 */
17da2bd9 6914SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6915 struct timespec __user *, interval)
1da177e4 6916{
36c8b586 6917 struct task_struct *p;
a4ec24b4 6918 unsigned int time_slice;
dba091b9
TG
6919 unsigned long flags;
6920 struct rq *rq;
3a5c359a 6921 int retval;
1da177e4 6922 struct timespec t;
1da177e4
LT
6923
6924 if (pid < 0)
3a5c359a 6925 return -EINVAL;
1da177e4
LT
6926
6927 retval = -ESRCH;
1a551ae7 6928 rcu_read_lock();
1da177e4
LT
6929 p = find_process_by_pid(pid);
6930 if (!p)
6931 goto out_unlock;
6932
6933 retval = security_task_getscheduler(p);
6934 if (retval)
6935 goto out_unlock;
6936
dba091b9
TG
6937 rq = task_rq_lock(p, &flags);
6938 time_slice = p->sched_class->get_rr_interval(rq, p);
6939 task_rq_unlock(rq, &flags);
a4ec24b4 6940
1a551ae7 6941 rcu_read_unlock();
a4ec24b4 6942 jiffies_to_timespec(time_slice, &t);
1da177e4 6943 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6944 return retval;
3a5c359a 6945
1da177e4 6946out_unlock:
1a551ae7 6947 rcu_read_unlock();
1da177e4
LT
6948 return retval;
6949}
6950
7c731e0a 6951static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6952
82a1fcb9 6953void sched_show_task(struct task_struct *p)
1da177e4 6954{
1da177e4 6955 unsigned long free = 0;
36c8b586 6956 unsigned state;
1da177e4 6957
1da177e4 6958 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 6959 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6960 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6961#if BITS_PER_LONG == 32
1da177e4 6962 if (state == TASK_RUNNING)
3df0fc5b 6963 printk(KERN_CONT " running ");
1da177e4 6964 else
3df0fc5b 6965 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6966#else
6967 if (state == TASK_RUNNING)
3df0fc5b 6968 printk(KERN_CONT " running task ");
1da177e4 6969 else
3df0fc5b 6970 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6971#endif
6972#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6973 free = stack_not_used(p);
1da177e4 6974#endif
3df0fc5b 6975 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6976 task_pid_nr(p), task_pid_nr(p->real_parent),
6977 (unsigned long)task_thread_info(p)->flags);
1da177e4 6978
5fb5e6de 6979 show_stack(p, NULL);
1da177e4
LT
6980}
6981
e59e2ae2 6982void show_state_filter(unsigned long state_filter)
1da177e4 6983{
36c8b586 6984 struct task_struct *g, *p;
1da177e4 6985
4bd77321 6986#if BITS_PER_LONG == 32
3df0fc5b
PZ
6987 printk(KERN_INFO
6988 " task PC stack pid father\n");
1da177e4 6989#else
3df0fc5b
PZ
6990 printk(KERN_INFO
6991 " task PC stack pid father\n");
1da177e4
LT
6992#endif
6993 read_lock(&tasklist_lock);
6994 do_each_thread(g, p) {
6995 /*
6996 * reset the NMI-timeout, listing all files on a slow
6997 * console might take alot of time:
6998 */
6999 touch_nmi_watchdog();
39bc89fd 7000 if (!state_filter || (p->state & state_filter))
82a1fcb9 7001 sched_show_task(p);
1da177e4
LT
7002 } while_each_thread(g, p);
7003
04c9167f
JF
7004 touch_all_softlockup_watchdogs();
7005
dd41f596
IM
7006#ifdef CONFIG_SCHED_DEBUG
7007 sysrq_sched_debug_show();
7008#endif
1da177e4 7009 read_unlock(&tasklist_lock);
e59e2ae2
IM
7010 /*
7011 * Only show locks if all tasks are dumped:
7012 */
93335a21 7013 if (!state_filter)
e59e2ae2 7014 debug_show_all_locks();
1da177e4
LT
7015}
7016
1df21055
IM
7017void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7018{
dd41f596 7019 idle->sched_class = &idle_sched_class;
1df21055
IM
7020}
7021
f340c0d1
IM
7022/**
7023 * init_idle - set up an idle thread for a given CPU
7024 * @idle: task in question
7025 * @cpu: cpu the idle task belongs to
7026 *
7027 * NOTE: this function does not set the idle thread's NEED_RESCHED
7028 * flag, to make booting more robust.
7029 */
5c1e1767 7030void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7031{
70b97a7f 7032 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7033 unsigned long flags;
7034
05fa785c 7035 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7036
dd41f596 7037 __sched_fork(idle);
06b83b5f 7038 idle->state = TASK_RUNNING;
dd41f596
IM
7039 idle->se.exec_start = sched_clock();
7040
96f874e2 7041 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7042 __set_task_cpu(idle, cpu);
1da177e4 7043
1da177e4 7044 rq->curr = rq->idle = idle;
4866cde0
NP
7045#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7046 idle->oncpu = 1;
7047#endif
05fa785c 7048 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7049
7050 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7051#if defined(CONFIG_PREEMPT)
7052 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7053#else
a1261f54 7054 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7055#endif
dd41f596
IM
7056 /*
7057 * The idle tasks have their own, simple scheduling class:
7058 */
7059 idle->sched_class = &idle_sched_class;
fb52607a 7060 ftrace_graph_init_task(idle);
1da177e4
LT
7061}
7062
7063/*
7064 * In a system that switches off the HZ timer nohz_cpu_mask
7065 * indicates which cpus entered this state. This is used
7066 * in the rcu update to wait only for active cpus. For system
7067 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7068 * always be CPU_BITS_NONE.
1da177e4 7069 */
6a7b3dc3 7070cpumask_var_t nohz_cpu_mask;
1da177e4 7071
19978ca6
IM
7072/*
7073 * Increase the granularity value when there are more CPUs,
7074 * because with more CPUs the 'effective latency' as visible
7075 * to users decreases. But the relationship is not linear,
7076 * so pick a second-best guess by going with the log2 of the
7077 * number of CPUs.
7078 *
7079 * This idea comes from the SD scheduler of Con Kolivas:
7080 */
acb4a848 7081static int get_update_sysctl_factor(void)
19978ca6 7082{
4ca3ef71 7083 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7084 unsigned int factor;
7085
7086 switch (sysctl_sched_tunable_scaling) {
7087 case SCHED_TUNABLESCALING_NONE:
7088 factor = 1;
7089 break;
7090 case SCHED_TUNABLESCALING_LINEAR:
7091 factor = cpus;
7092 break;
7093 case SCHED_TUNABLESCALING_LOG:
7094 default:
7095 factor = 1 + ilog2(cpus);
7096 break;
7097 }
19978ca6 7098
acb4a848
CE
7099 return factor;
7100}
19978ca6 7101
acb4a848
CE
7102static void update_sysctl(void)
7103{
7104 unsigned int factor = get_update_sysctl_factor();
19978ca6 7105
0bcdcf28
CE
7106#define SET_SYSCTL(name) \
7107 (sysctl_##name = (factor) * normalized_sysctl_##name)
7108 SET_SYSCTL(sched_min_granularity);
7109 SET_SYSCTL(sched_latency);
7110 SET_SYSCTL(sched_wakeup_granularity);
7111 SET_SYSCTL(sched_shares_ratelimit);
7112#undef SET_SYSCTL
7113}
55cd5340 7114
0bcdcf28
CE
7115static inline void sched_init_granularity(void)
7116{
7117 update_sysctl();
19978ca6
IM
7118}
7119
1da177e4
LT
7120#ifdef CONFIG_SMP
7121/*
7122 * This is how migration works:
7123 *
70b97a7f 7124 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7125 * runqueue and wake up that CPU's migration thread.
7126 * 2) we down() the locked semaphore => thread blocks.
7127 * 3) migration thread wakes up (implicitly it forces the migrated
7128 * thread off the CPU)
7129 * 4) it gets the migration request and checks whether the migrated
7130 * task is still in the wrong runqueue.
7131 * 5) if it's in the wrong runqueue then the migration thread removes
7132 * it and puts it into the right queue.
7133 * 6) migration thread up()s the semaphore.
7134 * 7) we wake up and the migration is done.
7135 */
7136
7137/*
7138 * Change a given task's CPU affinity. Migrate the thread to a
7139 * proper CPU and schedule it away if the CPU it's executing on
7140 * is removed from the allowed bitmask.
7141 *
7142 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7143 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7144 * call is not atomic; no spinlocks may be held.
7145 */
96f874e2 7146int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7147{
70b97a7f 7148 struct migration_req req;
1da177e4 7149 unsigned long flags;
70b97a7f 7150 struct rq *rq;
48f24c4d 7151 int ret = 0;
1da177e4 7152
e2912009
PZ
7153 /*
7154 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7155 * the ->cpus_allowed mask from under waking tasks, which would be
7156 * possible when we change rq->lock in ttwu(), so synchronize against
7157 * TASK_WAKING to avoid that.
fabf318e
PZ
7158 *
7159 * Make an exception for freshly cloned tasks, since cpuset namespaces
7160 * might move the task about, we have to validate the target in
7161 * wake_up_new_task() anyway since the cpu might have gone away.
e2912009
PZ
7162 */
7163again:
fabf318e 7164 while (p->state == TASK_WAKING && !(p->flags & PF_STARTING))
e2912009
PZ
7165 cpu_relax();
7166
1da177e4 7167 rq = task_rq_lock(p, &flags);
e2912009 7168
fabf318e 7169 if (p->state == TASK_WAKING && !(p->flags & PF_STARTING)) {
e2912009
PZ
7170 task_rq_unlock(rq, &flags);
7171 goto again;
7172 }
7173
6ad4c188 7174 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7175 ret = -EINVAL;
7176 goto out;
7177 }
7178
9985b0ba 7179 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7180 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7181 ret = -EINVAL;
7182 goto out;
7183 }
7184
73fe6aae 7185 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7186 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7187 else {
96f874e2
RR
7188 cpumask_copy(&p->cpus_allowed, new_mask);
7189 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7190 }
7191
1da177e4 7192 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7193 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7194 goto out;
7195
6ad4c188 7196 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7197 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7198 struct task_struct *mt = rq->migration_thread;
7199
7200 get_task_struct(mt);
1da177e4
LT
7201 task_rq_unlock(rq, &flags);
7202 wake_up_process(rq->migration_thread);
693525e3 7203 put_task_struct(mt);
1da177e4
LT
7204 wait_for_completion(&req.done);
7205 tlb_migrate_finish(p->mm);
7206 return 0;
7207 }
7208out:
7209 task_rq_unlock(rq, &flags);
48f24c4d 7210
1da177e4
LT
7211 return ret;
7212}
cd8ba7cd 7213EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7214
7215/*
41a2d6cf 7216 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7217 * this because either it can't run here any more (set_cpus_allowed()
7218 * away from this CPU, or CPU going down), or because we're
7219 * attempting to rebalance this task on exec (sched_exec).
7220 *
7221 * So we race with normal scheduler movements, but that's OK, as long
7222 * as the task is no longer on this CPU.
efc30814
KK
7223 *
7224 * Returns non-zero if task was successfully migrated.
1da177e4 7225 */
efc30814 7226static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7227{
70b97a7f 7228 struct rq *rq_dest, *rq_src;
e2912009 7229 int ret = 0;
1da177e4 7230
e761b772 7231 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7232 return ret;
1da177e4
LT
7233
7234 rq_src = cpu_rq(src_cpu);
7235 rq_dest = cpu_rq(dest_cpu);
7236
7237 double_rq_lock(rq_src, rq_dest);
7238 /* Already moved. */
7239 if (task_cpu(p) != src_cpu)
b1e38734 7240 goto done;
1da177e4 7241 /* Affinity changed (again). */
96f874e2 7242 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7243 goto fail;
1da177e4 7244
e2912009
PZ
7245 /*
7246 * If we're not on a rq, the next wake-up will ensure we're
7247 * placed properly.
7248 */
7249 if (p->se.on_rq) {
2e1cb74a 7250 deactivate_task(rq_src, p, 0);
e2912009 7251 set_task_cpu(p, dest_cpu);
dd41f596 7252 activate_task(rq_dest, p, 0);
15afe09b 7253 check_preempt_curr(rq_dest, p, 0);
1da177e4 7254 }
b1e38734 7255done:
efc30814 7256 ret = 1;
b1e38734 7257fail:
1da177e4 7258 double_rq_unlock(rq_src, rq_dest);
efc30814 7259 return ret;
1da177e4
LT
7260}
7261
03b042bf
PM
7262#define RCU_MIGRATION_IDLE 0
7263#define RCU_MIGRATION_NEED_QS 1
7264#define RCU_MIGRATION_GOT_QS 2
7265#define RCU_MIGRATION_MUST_SYNC 3
7266
1da177e4
LT
7267/*
7268 * migration_thread - this is a highprio system thread that performs
7269 * thread migration by bumping thread off CPU then 'pushing' onto
7270 * another runqueue.
7271 */
95cdf3b7 7272static int migration_thread(void *data)
1da177e4 7273{
03b042bf 7274 int badcpu;
1da177e4 7275 int cpu = (long)data;
70b97a7f 7276 struct rq *rq;
1da177e4
LT
7277
7278 rq = cpu_rq(cpu);
7279 BUG_ON(rq->migration_thread != current);
7280
7281 set_current_state(TASK_INTERRUPTIBLE);
7282 while (!kthread_should_stop()) {
70b97a7f 7283 struct migration_req *req;
1da177e4 7284 struct list_head *head;
1da177e4 7285
05fa785c 7286 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7287
7288 if (cpu_is_offline(cpu)) {
05fa785c 7289 raw_spin_unlock_irq(&rq->lock);
371cbb38 7290 break;
1da177e4
LT
7291 }
7292
7293 if (rq->active_balance) {
7294 active_load_balance(rq, cpu);
7295 rq->active_balance = 0;
7296 }
7297
7298 head = &rq->migration_queue;
7299
7300 if (list_empty(head)) {
05fa785c 7301 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7302 schedule();
7303 set_current_state(TASK_INTERRUPTIBLE);
7304 continue;
7305 }
70b97a7f 7306 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7307 list_del_init(head->next);
7308
03b042bf 7309 if (req->task != NULL) {
05fa785c 7310 raw_spin_unlock(&rq->lock);
03b042bf
PM
7311 __migrate_task(req->task, cpu, req->dest_cpu);
7312 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7313 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7314 raw_spin_unlock(&rq->lock);
03b042bf
PM
7315 } else {
7316 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7317 raw_spin_unlock(&rq->lock);
03b042bf
PM
7318 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7319 }
674311d5 7320 local_irq_enable();
1da177e4
LT
7321
7322 complete(&req->done);
7323 }
7324 __set_current_state(TASK_RUNNING);
1da177e4 7325
1da177e4
LT
7326 return 0;
7327}
7328
7329#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7330
7331static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7332{
7333 int ret;
7334
7335 local_irq_disable();
7336 ret = __migrate_task(p, src_cpu, dest_cpu);
7337 local_irq_enable();
7338 return ret;
7339}
7340
054b9108 7341/*
3a4fa0a2 7342 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7343 */
48f24c4d 7344static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7345{
70b97a7f 7346 int dest_cpu;
e76bd8d9
RR
7347
7348again:
5da9a0fb 7349 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 7350
e76bd8d9
RR
7351 /* It can have affinity changed while we were choosing. */
7352 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7353 goto again;
1da177e4
LT
7354}
7355
7356/*
7357 * While a dead CPU has no uninterruptible tasks queued at this point,
7358 * it might still have a nonzero ->nr_uninterruptible counter, because
7359 * for performance reasons the counter is not stricly tracking tasks to
7360 * their home CPUs. So we just add the counter to another CPU's counter,
7361 * to keep the global sum constant after CPU-down:
7362 */
70b97a7f 7363static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7364{
6ad4c188 7365 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7366 unsigned long flags;
7367
7368 local_irq_save(flags);
7369 double_rq_lock(rq_src, rq_dest);
7370 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7371 rq_src->nr_uninterruptible = 0;
7372 double_rq_unlock(rq_src, rq_dest);
7373 local_irq_restore(flags);
7374}
7375
7376/* Run through task list and migrate tasks from the dead cpu. */
7377static void migrate_live_tasks(int src_cpu)
7378{
48f24c4d 7379 struct task_struct *p, *t;
1da177e4 7380
f7b4cddc 7381 read_lock(&tasklist_lock);
1da177e4 7382
48f24c4d
IM
7383 do_each_thread(t, p) {
7384 if (p == current)
1da177e4
LT
7385 continue;
7386
48f24c4d
IM
7387 if (task_cpu(p) == src_cpu)
7388 move_task_off_dead_cpu(src_cpu, p);
7389 } while_each_thread(t, p);
1da177e4 7390
f7b4cddc 7391 read_unlock(&tasklist_lock);
1da177e4
LT
7392}
7393
dd41f596
IM
7394/*
7395 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7396 * It does so by boosting its priority to highest possible.
7397 * Used by CPU offline code.
1da177e4
LT
7398 */
7399void sched_idle_next(void)
7400{
48f24c4d 7401 int this_cpu = smp_processor_id();
70b97a7f 7402 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7403 struct task_struct *p = rq->idle;
7404 unsigned long flags;
7405
7406 /* cpu has to be offline */
48f24c4d 7407 BUG_ON(cpu_online(this_cpu));
1da177e4 7408
48f24c4d
IM
7409 /*
7410 * Strictly not necessary since rest of the CPUs are stopped by now
7411 * and interrupts disabled on the current cpu.
1da177e4 7412 */
05fa785c 7413 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7414
dd41f596 7415 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7416
94bc9a7b
DA
7417 update_rq_clock(rq);
7418 activate_task(rq, p, 0);
1da177e4 7419
05fa785c 7420 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7421}
7422
48f24c4d
IM
7423/*
7424 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7425 * offline.
7426 */
7427void idle_task_exit(void)
7428{
7429 struct mm_struct *mm = current->active_mm;
7430
7431 BUG_ON(cpu_online(smp_processor_id()));
7432
7433 if (mm != &init_mm)
7434 switch_mm(mm, &init_mm, current);
7435 mmdrop(mm);
7436}
7437
054b9108 7438/* called under rq->lock with disabled interrupts */
36c8b586 7439static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7440{
70b97a7f 7441 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7442
7443 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7444 BUG_ON(!p->exit_state);
1da177e4
LT
7445
7446 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7447 BUG_ON(p->state == TASK_DEAD);
1da177e4 7448
48f24c4d 7449 get_task_struct(p);
1da177e4
LT
7450
7451 /*
7452 * Drop lock around migration; if someone else moves it,
41a2d6cf 7453 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7454 * fine.
7455 */
05fa785c 7456 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7457 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7458 raw_spin_lock_irq(&rq->lock);
1da177e4 7459
48f24c4d 7460 put_task_struct(p);
1da177e4
LT
7461}
7462
7463/* release_task() removes task from tasklist, so we won't find dead tasks. */
7464static void migrate_dead_tasks(unsigned int dead_cpu)
7465{
70b97a7f 7466 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7467 struct task_struct *next;
48f24c4d 7468
dd41f596
IM
7469 for ( ; ; ) {
7470 if (!rq->nr_running)
7471 break;
a8e504d2 7472 update_rq_clock(rq);
b67802ea 7473 next = pick_next_task(rq);
dd41f596
IM
7474 if (!next)
7475 break;
79c53799 7476 next->sched_class->put_prev_task(rq, next);
dd41f596 7477 migrate_dead(dead_cpu, next);
e692ab53 7478
1da177e4
LT
7479 }
7480}
dce48a84
TG
7481
7482/*
7483 * remove the tasks which were accounted by rq from calc_load_tasks.
7484 */
7485static void calc_global_load_remove(struct rq *rq)
7486{
7487 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7488 rq->calc_load_active = 0;
dce48a84 7489}
1da177e4
LT
7490#endif /* CONFIG_HOTPLUG_CPU */
7491
e692ab53
NP
7492#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7493
7494static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7495 {
7496 .procname = "sched_domain",
c57baf1e 7497 .mode = 0555,
e0361851 7498 },
56992309 7499 {}
e692ab53
NP
7500};
7501
7502static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7503 {
7504 .procname = "kernel",
c57baf1e 7505 .mode = 0555,
e0361851
AD
7506 .child = sd_ctl_dir,
7507 },
56992309 7508 {}
e692ab53
NP
7509};
7510
7511static struct ctl_table *sd_alloc_ctl_entry(int n)
7512{
7513 struct ctl_table *entry =
5cf9f062 7514 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7515
e692ab53
NP
7516 return entry;
7517}
7518
6382bc90
MM
7519static void sd_free_ctl_entry(struct ctl_table **tablep)
7520{
cd790076 7521 struct ctl_table *entry;
6382bc90 7522
cd790076
MM
7523 /*
7524 * In the intermediate directories, both the child directory and
7525 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7526 * will always be set. In the lowest directory the names are
cd790076
MM
7527 * static strings and all have proc handlers.
7528 */
7529 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7530 if (entry->child)
7531 sd_free_ctl_entry(&entry->child);
cd790076
MM
7532 if (entry->proc_handler == NULL)
7533 kfree(entry->procname);
7534 }
6382bc90
MM
7535
7536 kfree(*tablep);
7537 *tablep = NULL;
7538}
7539
e692ab53 7540static void
e0361851 7541set_table_entry(struct ctl_table *entry,
e692ab53
NP
7542 const char *procname, void *data, int maxlen,
7543 mode_t mode, proc_handler *proc_handler)
7544{
e692ab53
NP
7545 entry->procname = procname;
7546 entry->data = data;
7547 entry->maxlen = maxlen;
7548 entry->mode = mode;
7549 entry->proc_handler = proc_handler;
7550}
7551
7552static struct ctl_table *
7553sd_alloc_ctl_domain_table(struct sched_domain *sd)
7554{
a5d8c348 7555 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7556
ad1cdc1d
MM
7557 if (table == NULL)
7558 return NULL;
7559
e0361851 7560 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7561 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7562 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7563 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7564 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7565 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7566 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7567 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7568 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7569 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7570 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7571 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7572 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7573 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7574 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7575 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7576 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7577 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7578 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7579 &sd->cache_nice_tries,
7580 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7581 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7582 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7583 set_table_entry(&table[11], "name", sd->name,
7584 CORENAME_MAX_SIZE, 0444, proc_dostring);
7585 /* &table[12] is terminator */
e692ab53
NP
7586
7587 return table;
7588}
7589
9a4e7159 7590static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7591{
7592 struct ctl_table *entry, *table;
7593 struct sched_domain *sd;
7594 int domain_num = 0, i;
7595 char buf[32];
7596
7597 for_each_domain(cpu, sd)
7598 domain_num++;
7599 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7600 if (table == NULL)
7601 return NULL;
e692ab53
NP
7602
7603 i = 0;
7604 for_each_domain(cpu, sd) {
7605 snprintf(buf, 32, "domain%d", i);
e692ab53 7606 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7607 entry->mode = 0555;
e692ab53
NP
7608 entry->child = sd_alloc_ctl_domain_table(sd);
7609 entry++;
7610 i++;
7611 }
7612 return table;
7613}
7614
7615static struct ctl_table_header *sd_sysctl_header;
6382bc90 7616static void register_sched_domain_sysctl(void)
e692ab53 7617{
6ad4c188 7618 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7619 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7620 char buf[32];
7621
7378547f
MM
7622 WARN_ON(sd_ctl_dir[0].child);
7623 sd_ctl_dir[0].child = entry;
7624
ad1cdc1d
MM
7625 if (entry == NULL)
7626 return;
7627
6ad4c188 7628 for_each_possible_cpu(i) {
e692ab53 7629 snprintf(buf, 32, "cpu%d", i);
e692ab53 7630 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7631 entry->mode = 0555;
e692ab53 7632 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7633 entry++;
e692ab53 7634 }
7378547f
MM
7635
7636 WARN_ON(sd_sysctl_header);
e692ab53
NP
7637 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7638}
6382bc90 7639
7378547f 7640/* may be called multiple times per register */
6382bc90
MM
7641static void unregister_sched_domain_sysctl(void)
7642{
7378547f
MM
7643 if (sd_sysctl_header)
7644 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7645 sd_sysctl_header = NULL;
7378547f
MM
7646 if (sd_ctl_dir[0].child)
7647 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7648}
e692ab53 7649#else
6382bc90
MM
7650static void register_sched_domain_sysctl(void)
7651{
7652}
7653static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7654{
7655}
7656#endif
7657
1f11eb6a
GH
7658static void set_rq_online(struct rq *rq)
7659{
7660 if (!rq->online) {
7661 const struct sched_class *class;
7662
c6c4927b 7663 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7664 rq->online = 1;
7665
7666 for_each_class(class) {
7667 if (class->rq_online)
7668 class->rq_online(rq);
7669 }
7670 }
7671}
7672
7673static void set_rq_offline(struct rq *rq)
7674{
7675 if (rq->online) {
7676 const struct sched_class *class;
7677
7678 for_each_class(class) {
7679 if (class->rq_offline)
7680 class->rq_offline(rq);
7681 }
7682
c6c4927b 7683 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7684 rq->online = 0;
7685 }
7686}
7687
1da177e4
LT
7688/*
7689 * migration_call - callback that gets triggered when a CPU is added.
7690 * Here we can start up the necessary migration thread for the new CPU.
7691 */
48f24c4d
IM
7692static int __cpuinit
7693migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7694{
1da177e4 7695 struct task_struct *p;
48f24c4d 7696 int cpu = (long)hcpu;
1da177e4 7697 unsigned long flags;
70b97a7f 7698 struct rq *rq;
1da177e4
LT
7699
7700 switch (action) {
5be9361c 7701
1da177e4 7702 case CPU_UP_PREPARE:
8bb78442 7703 case CPU_UP_PREPARE_FROZEN:
dd41f596 7704 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7705 if (IS_ERR(p))
7706 return NOTIFY_BAD;
1da177e4
LT
7707 kthread_bind(p, cpu);
7708 /* Must be high prio: stop_machine expects to yield to it. */
7709 rq = task_rq_lock(p, &flags);
dd41f596 7710 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7711 task_rq_unlock(rq, &flags);
371cbb38 7712 get_task_struct(p);
1da177e4 7713 cpu_rq(cpu)->migration_thread = p;
a468d389 7714 rq->calc_load_update = calc_load_update;
1da177e4 7715 break;
48f24c4d 7716
1da177e4 7717 case CPU_ONLINE:
8bb78442 7718 case CPU_ONLINE_FROZEN:
3a4fa0a2 7719 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7720 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7721
7722 /* Update our root-domain */
7723 rq = cpu_rq(cpu);
05fa785c 7724 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7725 if (rq->rd) {
c6c4927b 7726 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7727
7728 set_rq_online(rq);
1f94ef59 7729 }
05fa785c 7730 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7731 break;
48f24c4d 7732
1da177e4
LT
7733#ifdef CONFIG_HOTPLUG_CPU
7734 case CPU_UP_CANCELED:
8bb78442 7735 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7736 if (!cpu_rq(cpu)->migration_thread)
7737 break;
41a2d6cf 7738 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7739 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7740 cpumask_any(cpu_online_mask));
1da177e4 7741 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7742 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7743 cpu_rq(cpu)->migration_thread = NULL;
7744 break;
48f24c4d 7745
1da177e4 7746 case CPU_DEAD:
8bb78442 7747 case CPU_DEAD_FROZEN:
470fd646 7748 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7749 migrate_live_tasks(cpu);
7750 rq = cpu_rq(cpu);
7751 kthread_stop(rq->migration_thread);
371cbb38 7752 put_task_struct(rq->migration_thread);
1da177e4
LT
7753 rq->migration_thread = NULL;
7754 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7755 raw_spin_lock_irq(&rq->lock);
a8e504d2 7756 update_rq_clock(rq);
2e1cb74a 7757 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7758 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7759 rq->idle->sched_class = &idle_sched_class;
1da177e4 7760 migrate_dead_tasks(cpu);
05fa785c 7761 raw_spin_unlock_irq(&rq->lock);
470fd646 7762 cpuset_unlock();
1da177e4
LT
7763 migrate_nr_uninterruptible(rq);
7764 BUG_ON(rq->nr_running != 0);
dce48a84 7765 calc_global_load_remove(rq);
41a2d6cf
IM
7766 /*
7767 * No need to migrate the tasks: it was best-effort if
7768 * they didn't take sched_hotcpu_mutex. Just wake up
7769 * the requestors.
7770 */
05fa785c 7771 raw_spin_lock_irq(&rq->lock);
1da177e4 7772 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7773 struct migration_req *req;
7774
1da177e4 7775 req = list_entry(rq->migration_queue.next,
70b97a7f 7776 struct migration_req, list);
1da177e4 7777 list_del_init(&req->list);
05fa785c 7778 raw_spin_unlock_irq(&rq->lock);
1da177e4 7779 complete(&req->done);
05fa785c 7780 raw_spin_lock_irq(&rq->lock);
1da177e4 7781 }
05fa785c 7782 raw_spin_unlock_irq(&rq->lock);
1da177e4 7783 break;
57d885fe 7784
08f503b0
GH
7785 case CPU_DYING:
7786 case CPU_DYING_FROZEN:
57d885fe
GH
7787 /* Update our root-domain */
7788 rq = cpu_rq(cpu);
05fa785c 7789 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7790 if (rq->rd) {
c6c4927b 7791 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7792 set_rq_offline(rq);
57d885fe 7793 }
05fa785c 7794 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7795 break;
1da177e4
LT
7796#endif
7797 }
7798 return NOTIFY_OK;
7799}
7800
f38b0820
PM
7801/*
7802 * Register at high priority so that task migration (migrate_all_tasks)
7803 * happens before everything else. This has to be lower priority than
cdd6c482 7804 * the notifier in the perf_event subsystem, though.
1da177e4 7805 */
26c2143b 7806static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7807 .notifier_call = migration_call,
7808 .priority = 10
7809};
7810
7babe8db 7811static int __init migration_init(void)
1da177e4
LT
7812{
7813 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7814 int err;
48f24c4d
IM
7815
7816 /* Start one for the boot CPU: */
07dccf33
AM
7817 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7818 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7819 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7820 register_cpu_notifier(&migration_notifier);
7babe8db 7821
a004cd42 7822 return 0;
1da177e4 7823}
7babe8db 7824early_initcall(migration_init);
1da177e4
LT
7825#endif
7826
7827#ifdef CONFIG_SMP
476f3534 7828
3e9830dc 7829#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7830
f6630114
MT
7831static __read_mostly int sched_domain_debug_enabled;
7832
7833static int __init sched_domain_debug_setup(char *str)
7834{
7835 sched_domain_debug_enabled = 1;
7836
7837 return 0;
7838}
7839early_param("sched_debug", sched_domain_debug_setup);
7840
7c16ec58 7841static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7842 struct cpumask *groupmask)
1da177e4 7843{
4dcf6aff 7844 struct sched_group *group = sd->groups;
434d53b0 7845 char str[256];
1da177e4 7846
968ea6d8 7847 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7848 cpumask_clear(groupmask);
4dcf6aff
IM
7849
7850 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7851
7852 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 7853 printk("does not load-balance\n");
4dcf6aff 7854 if (sd->parent)
3df0fc5b
PZ
7855 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7856 " has parent");
4dcf6aff 7857 return -1;
41c7ce9a
NP
7858 }
7859
3df0fc5b 7860 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7861
758b2cdc 7862 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
7863 printk(KERN_ERR "ERROR: domain->span does not contain "
7864 "CPU%d\n", cpu);
4dcf6aff 7865 }
758b2cdc 7866 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
7867 printk(KERN_ERR "ERROR: domain->groups does not contain"
7868 " CPU%d\n", cpu);
4dcf6aff 7869 }
1da177e4 7870
4dcf6aff 7871 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7872 do {
4dcf6aff 7873 if (!group) {
3df0fc5b
PZ
7874 printk("\n");
7875 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7876 break;
7877 }
7878
18a3885f 7879 if (!group->cpu_power) {
3df0fc5b
PZ
7880 printk(KERN_CONT "\n");
7881 printk(KERN_ERR "ERROR: domain->cpu_power not "
7882 "set\n");
4dcf6aff
IM
7883 break;
7884 }
1da177e4 7885
758b2cdc 7886 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
7887 printk(KERN_CONT "\n");
7888 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
7889 break;
7890 }
1da177e4 7891
758b2cdc 7892 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
7893 printk(KERN_CONT "\n");
7894 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
7895 break;
7896 }
1da177e4 7897
758b2cdc 7898 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7899
968ea6d8 7900 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7901
3df0fc5b 7902 printk(KERN_CONT " %s", str);
18a3885f 7903 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
7904 printk(KERN_CONT " (cpu_power = %d)",
7905 group->cpu_power);
381512cf 7906 }
1da177e4 7907
4dcf6aff
IM
7908 group = group->next;
7909 } while (group != sd->groups);
3df0fc5b 7910 printk(KERN_CONT "\n");
1da177e4 7911
758b2cdc 7912 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 7913 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7914
758b2cdc
RR
7915 if (sd->parent &&
7916 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
7917 printk(KERN_ERR "ERROR: parent span is not a superset "
7918 "of domain->span\n");
4dcf6aff
IM
7919 return 0;
7920}
1da177e4 7921
4dcf6aff
IM
7922static void sched_domain_debug(struct sched_domain *sd, int cpu)
7923{
d5dd3db1 7924 cpumask_var_t groupmask;
4dcf6aff 7925 int level = 0;
1da177e4 7926
f6630114
MT
7927 if (!sched_domain_debug_enabled)
7928 return;
7929
4dcf6aff
IM
7930 if (!sd) {
7931 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7932 return;
7933 }
1da177e4 7934
4dcf6aff
IM
7935 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7936
d5dd3db1 7937 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7938 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7939 return;
7940 }
7941
4dcf6aff 7942 for (;;) {
7c16ec58 7943 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7944 break;
1da177e4
LT
7945 level++;
7946 sd = sd->parent;
33859f7f 7947 if (!sd)
4dcf6aff
IM
7948 break;
7949 }
d5dd3db1 7950 free_cpumask_var(groupmask);
1da177e4 7951}
6d6bc0ad 7952#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7953# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7954#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7955
1a20ff27 7956static int sd_degenerate(struct sched_domain *sd)
245af2c7 7957{
758b2cdc 7958 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7959 return 1;
7960
7961 /* Following flags need at least 2 groups */
7962 if (sd->flags & (SD_LOAD_BALANCE |
7963 SD_BALANCE_NEWIDLE |
7964 SD_BALANCE_FORK |
89c4710e
SS
7965 SD_BALANCE_EXEC |
7966 SD_SHARE_CPUPOWER |
7967 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7968 if (sd->groups != sd->groups->next)
7969 return 0;
7970 }
7971
7972 /* Following flags don't use groups */
c88d5910 7973 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7974 return 0;
7975
7976 return 1;
7977}
7978
48f24c4d
IM
7979static int
7980sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7981{
7982 unsigned long cflags = sd->flags, pflags = parent->flags;
7983
7984 if (sd_degenerate(parent))
7985 return 1;
7986
758b2cdc 7987 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7988 return 0;
7989
245af2c7
SS
7990 /* Flags needing groups don't count if only 1 group in parent */
7991 if (parent->groups == parent->groups->next) {
7992 pflags &= ~(SD_LOAD_BALANCE |
7993 SD_BALANCE_NEWIDLE |
7994 SD_BALANCE_FORK |
89c4710e
SS
7995 SD_BALANCE_EXEC |
7996 SD_SHARE_CPUPOWER |
7997 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7998 if (nr_node_ids == 1)
7999 pflags &= ~SD_SERIALIZE;
245af2c7
SS
8000 }
8001 if (~cflags & pflags)
8002 return 0;
8003
8004 return 1;
8005}
8006
c6c4927b
RR
8007static void free_rootdomain(struct root_domain *rd)
8008{
047106ad
PZ
8009 synchronize_sched();
8010
68e74568
RR
8011 cpupri_cleanup(&rd->cpupri);
8012
c6c4927b
RR
8013 free_cpumask_var(rd->rto_mask);
8014 free_cpumask_var(rd->online);
8015 free_cpumask_var(rd->span);
8016 kfree(rd);
8017}
8018
57d885fe
GH
8019static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8020{
a0490fa3 8021 struct root_domain *old_rd = NULL;
57d885fe 8022 unsigned long flags;
57d885fe 8023
05fa785c 8024 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
8025
8026 if (rq->rd) {
a0490fa3 8027 old_rd = rq->rd;
57d885fe 8028
c6c4927b 8029 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8030 set_rq_offline(rq);
57d885fe 8031
c6c4927b 8032 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8033
a0490fa3
IM
8034 /*
8035 * If we dont want to free the old_rt yet then
8036 * set old_rd to NULL to skip the freeing later
8037 * in this function:
8038 */
8039 if (!atomic_dec_and_test(&old_rd->refcount))
8040 old_rd = NULL;
57d885fe
GH
8041 }
8042
8043 atomic_inc(&rd->refcount);
8044 rq->rd = rd;
8045
c6c4927b 8046 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8047 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8048 set_rq_online(rq);
57d885fe 8049
05fa785c 8050 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8051
8052 if (old_rd)
8053 free_rootdomain(old_rd);
57d885fe
GH
8054}
8055
fd5e1b5d 8056static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8057{
36b7b6d4
PE
8058 gfp_t gfp = GFP_KERNEL;
8059
57d885fe
GH
8060 memset(rd, 0, sizeof(*rd));
8061
36b7b6d4
PE
8062 if (bootmem)
8063 gfp = GFP_NOWAIT;
c6c4927b 8064
36b7b6d4 8065 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8066 goto out;
36b7b6d4 8067 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8068 goto free_span;
36b7b6d4 8069 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8070 goto free_online;
6e0534f2 8071
0fb53029 8072 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8073 goto free_rto_mask;
c6c4927b 8074 return 0;
6e0534f2 8075
68e74568
RR
8076free_rto_mask:
8077 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8078free_online:
8079 free_cpumask_var(rd->online);
8080free_span:
8081 free_cpumask_var(rd->span);
0c910d28 8082out:
c6c4927b 8083 return -ENOMEM;
57d885fe
GH
8084}
8085
8086static void init_defrootdomain(void)
8087{
c6c4927b
RR
8088 init_rootdomain(&def_root_domain, true);
8089
57d885fe
GH
8090 atomic_set(&def_root_domain.refcount, 1);
8091}
8092
dc938520 8093static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8094{
8095 struct root_domain *rd;
8096
8097 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8098 if (!rd)
8099 return NULL;
8100
c6c4927b
RR
8101 if (init_rootdomain(rd, false) != 0) {
8102 kfree(rd);
8103 return NULL;
8104 }
57d885fe
GH
8105
8106 return rd;
8107}
8108
1da177e4 8109/*
0eab9146 8110 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8111 * hold the hotplug lock.
8112 */
0eab9146
IM
8113static void
8114cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8115{
70b97a7f 8116 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8117 struct sched_domain *tmp;
8118
8119 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8120 for (tmp = sd; tmp; ) {
245af2c7
SS
8121 struct sched_domain *parent = tmp->parent;
8122 if (!parent)
8123 break;
f29c9b1c 8124
1a848870 8125 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8126 tmp->parent = parent->parent;
1a848870
SS
8127 if (parent->parent)
8128 parent->parent->child = tmp;
f29c9b1c
LZ
8129 } else
8130 tmp = tmp->parent;
245af2c7
SS
8131 }
8132
1a848870 8133 if (sd && sd_degenerate(sd)) {
245af2c7 8134 sd = sd->parent;
1a848870
SS
8135 if (sd)
8136 sd->child = NULL;
8137 }
1da177e4
LT
8138
8139 sched_domain_debug(sd, cpu);
8140
57d885fe 8141 rq_attach_root(rq, rd);
674311d5 8142 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8143}
8144
8145/* cpus with isolated domains */
dcc30a35 8146static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8147
8148/* Setup the mask of cpus configured for isolated domains */
8149static int __init isolated_cpu_setup(char *str)
8150{
bdddd296 8151 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8152 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8153 return 1;
8154}
8155
8927f494 8156__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8157
8158/*
6711cab4
SS
8159 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8160 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8161 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8162 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8163 *
8164 * init_sched_build_groups will build a circular linked list of the groups
8165 * covered by the given span, and will set each group's ->cpumask correctly,
8166 * and ->cpu_power to 0.
8167 */
a616058b 8168static void
96f874e2
RR
8169init_sched_build_groups(const struct cpumask *span,
8170 const struct cpumask *cpu_map,
8171 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8172 struct sched_group **sg,
96f874e2
RR
8173 struct cpumask *tmpmask),
8174 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8175{
8176 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8177 int i;
8178
96f874e2 8179 cpumask_clear(covered);
7c16ec58 8180
abcd083a 8181 for_each_cpu(i, span) {
6711cab4 8182 struct sched_group *sg;
7c16ec58 8183 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8184 int j;
8185
758b2cdc 8186 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8187 continue;
8188
758b2cdc 8189 cpumask_clear(sched_group_cpus(sg));
18a3885f 8190 sg->cpu_power = 0;
1da177e4 8191
abcd083a 8192 for_each_cpu(j, span) {
7c16ec58 8193 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8194 continue;
8195
96f874e2 8196 cpumask_set_cpu(j, covered);
758b2cdc 8197 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8198 }
8199 if (!first)
8200 first = sg;
8201 if (last)
8202 last->next = sg;
8203 last = sg;
8204 }
8205 last->next = first;
8206}
8207
9c1cfda2 8208#define SD_NODES_PER_DOMAIN 16
1da177e4 8209
9c1cfda2 8210#ifdef CONFIG_NUMA
198e2f18 8211
9c1cfda2
JH
8212/**
8213 * find_next_best_node - find the next node to include in a sched_domain
8214 * @node: node whose sched_domain we're building
8215 * @used_nodes: nodes already in the sched_domain
8216 *
41a2d6cf 8217 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8218 * finds the closest node not already in the @used_nodes map.
8219 *
8220 * Should use nodemask_t.
8221 */
c5f59f08 8222static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8223{
8224 int i, n, val, min_val, best_node = 0;
8225
8226 min_val = INT_MAX;
8227
076ac2af 8228 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8229 /* Start at @node */
076ac2af 8230 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8231
8232 if (!nr_cpus_node(n))
8233 continue;
8234
8235 /* Skip already used nodes */
c5f59f08 8236 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8237 continue;
8238
8239 /* Simple min distance search */
8240 val = node_distance(node, n);
8241
8242 if (val < min_val) {
8243 min_val = val;
8244 best_node = n;
8245 }
8246 }
8247
c5f59f08 8248 node_set(best_node, *used_nodes);
9c1cfda2
JH
8249 return best_node;
8250}
8251
8252/**
8253 * sched_domain_node_span - get a cpumask for a node's sched_domain
8254 * @node: node whose cpumask we're constructing
73486722 8255 * @span: resulting cpumask
9c1cfda2 8256 *
41a2d6cf 8257 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8258 * should be one that prevents unnecessary balancing, but also spreads tasks
8259 * out optimally.
8260 */
96f874e2 8261static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8262{
c5f59f08 8263 nodemask_t used_nodes;
48f24c4d 8264 int i;
9c1cfda2 8265
6ca09dfc 8266 cpumask_clear(span);
c5f59f08 8267 nodes_clear(used_nodes);
9c1cfda2 8268
6ca09dfc 8269 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8270 node_set(node, used_nodes);
9c1cfda2
JH
8271
8272 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8273 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8274
6ca09dfc 8275 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8276 }
9c1cfda2 8277}
6d6bc0ad 8278#endif /* CONFIG_NUMA */
9c1cfda2 8279
5c45bf27 8280int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8281
6c99e9ad
RR
8282/*
8283 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8284 *
8285 * ( See the the comments in include/linux/sched.h:struct sched_group
8286 * and struct sched_domain. )
6c99e9ad
RR
8287 */
8288struct static_sched_group {
8289 struct sched_group sg;
8290 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8291};
8292
8293struct static_sched_domain {
8294 struct sched_domain sd;
8295 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8296};
8297
49a02c51
AH
8298struct s_data {
8299#ifdef CONFIG_NUMA
8300 int sd_allnodes;
8301 cpumask_var_t domainspan;
8302 cpumask_var_t covered;
8303 cpumask_var_t notcovered;
8304#endif
8305 cpumask_var_t nodemask;
8306 cpumask_var_t this_sibling_map;
8307 cpumask_var_t this_core_map;
8308 cpumask_var_t send_covered;
8309 cpumask_var_t tmpmask;
8310 struct sched_group **sched_group_nodes;
8311 struct root_domain *rd;
8312};
8313
2109b99e
AH
8314enum s_alloc {
8315 sa_sched_groups = 0,
8316 sa_rootdomain,
8317 sa_tmpmask,
8318 sa_send_covered,
8319 sa_this_core_map,
8320 sa_this_sibling_map,
8321 sa_nodemask,
8322 sa_sched_group_nodes,
8323#ifdef CONFIG_NUMA
8324 sa_notcovered,
8325 sa_covered,
8326 sa_domainspan,
8327#endif
8328 sa_none,
8329};
8330
9c1cfda2 8331/*
48f24c4d 8332 * SMT sched-domains:
9c1cfda2 8333 */
1da177e4 8334#ifdef CONFIG_SCHED_SMT
6c99e9ad 8335static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8336static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8337
41a2d6cf 8338static int
96f874e2
RR
8339cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8340 struct sched_group **sg, struct cpumask *unused)
1da177e4 8341{
6711cab4 8342 if (sg)
1871e52c 8343 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8344 return cpu;
8345}
6d6bc0ad 8346#endif /* CONFIG_SCHED_SMT */
1da177e4 8347
48f24c4d
IM
8348/*
8349 * multi-core sched-domains:
8350 */
1e9f28fa 8351#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8352static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8353static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8354#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8355
8356#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8357static int
96f874e2
RR
8358cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8359 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8360{
6711cab4 8361 int group;
7c16ec58 8362
c69fc56d 8363 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8364 group = cpumask_first(mask);
6711cab4 8365 if (sg)
6c99e9ad 8366 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8367 return group;
1e9f28fa
SS
8368}
8369#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8370static int
96f874e2
RR
8371cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8372 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8373{
6711cab4 8374 if (sg)
6c99e9ad 8375 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8376 return cpu;
8377}
8378#endif
8379
6c99e9ad
RR
8380static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8381static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8382
41a2d6cf 8383static int
96f874e2
RR
8384cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8385 struct sched_group **sg, struct cpumask *mask)
1da177e4 8386{
6711cab4 8387 int group;
48f24c4d 8388#ifdef CONFIG_SCHED_MC
6ca09dfc 8389 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8390 group = cpumask_first(mask);
1e9f28fa 8391#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8392 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8393 group = cpumask_first(mask);
1da177e4 8394#else
6711cab4 8395 group = cpu;
1da177e4 8396#endif
6711cab4 8397 if (sg)
6c99e9ad 8398 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8399 return group;
1da177e4
LT
8400}
8401
8402#ifdef CONFIG_NUMA
1da177e4 8403/*
9c1cfda2
JH
8404 * The init_sched_build_groups can't handle what we want to do with node
8405 * groups, so roll our own. Now each node has its own list of groups which
8406 * gets dynamically allocated.
1da177e4 8407 */
62ea9ceb 8408static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8409static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8410
62ea9ceb 8411static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8412static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8413
96f874e2
RR
8414static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8415 struct sched_group **sg,
8416 struct cpumask *nodemask)
9c1cfda2 8417{
6711cab4
SS
8418 int group;
8419
6ca09dfc 8420 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8421 group = cpumask_first(nodemask);
6711cab4
SS
8422
8423 if (sg)
6c99e9ad 8424 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8425 return group;
1da177e4 8426}
6711cab4 8427
08069033
SS
8428static void init_numa_sched_groups_power(struct sched_group *group_head)
8429{
8430 struct sched_group *sg = group_head;
8431 int j;
8432
8433 if (!sg)
8434 return;
3a5c359a 8435 do {
758b2cdc 8436 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8437 struct sched_domain *sd;
08069033 8438
6c99e9ad 8439 sd = &per_cpu(phys_domains, j).sd;
13318a71 8440 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8441 /*
8442 * Only add "power" once for each
8443 * physical package.
8444 */
8445 continue;
8446 }
08069033 8447
18a3885f 8448 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8449 }
8450 sg = sg->next;
8451 } while (sg != group_head);
08069033 8452}
0601a88d
AH
8453
8454static int build_numa_sched_groups(struct s_data *d,
8455 const struct cpumask *cpu_map, int num)
8456{
8457 struct sched_domain *sd;
8458 struct sched_group *sg, *prev;
8459 int n, j;
8460
8461 cpumask_clear(d->covered);
8462 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8463 if (cpumask_empty(d->nodemask)) {
8464 d->sched_group_nodes[num] = NULL;
8465 goto out;
8466 }
8467
8468 sched_domain_node_span(num, d->domainspan);
8469 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8470
8471 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8472 GFP_KERNEL, num);
8473 if (!sg) {
3df0fc5b
PZ
8474 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8475 num);
0601a88d
AH
8476 return -ENOMEM;
8477 }
8478 d->sched_group_nodes[num] = sg;
8479
8480 for_each_cpu(j, d->nodemask) {
8481 sd = &per_cpu(node_domains, j).sd;
8482 sd->groups = sg;
8483 }
8484
18a3885f 8485 sg->cpu_power = 0;
0601a88d
AH
8486 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8487 sg->next = sg;
8488 cpumask_or(d->covered, d->covered, d->nodemask);
8489
8490 prev = sg;
8491 for (j = 0; j < nr_node_ids; j++) {
8492 n = (num + j) % nr_node_ids;
8493 cpumask_complement(d->notcovered, d->covered);
8494 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8495 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8496 if (cpumask_empty(d->tmpmask))
8497 break;
8498 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8499 if (cpumask_empty(d->tmpmask))
8500 continue;
8501 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8502 GFP_KERNEL, num);
8503 if (!sg) {
3df0fc5b
PZ
8504 printk(KERN_WARNING
8505 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
8506 return -ENOMEM;
8507 }
18a3885f 8508 sg->cpu_power = 0;
0601a88d
AH
8509 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8510 sg->next = prev->next;
8511 cpumask_or(d->covered, d->covered, d->tmpmask);
8512 prev->next = sg;
8513 prev = sg;
8514 }
8515out:
8516 return 0;
8517}
6d6bc0ad 8518#endif /* CONFIG_NUMA */
1da177e4 8519
a616058b 8520#ifdef CONFIG_NUMA
51888ca2 8521/* Free memory allocated for various sched_group structures */
96f874e2
RR
8522static void free_sched_groups(const struct cpumask *cpu_map,
8523 struct cpumask *nodemask)
51888ca2 8524{
a616058b 8525 int cpu, i;
51888ca2 8526
abcd083a 8527 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8528 struct sched_group **sched_group_nodes
8529 = sched_group_nodes_bycpu[cpu];
8530
51888ca2
SV
8531 if (!sched_group_nodes)
8532 continue;
8533
076ac2af 8534 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8535 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8536
6ca09dfc 8537 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8538 if (cpumask_empty(nodemask))
51888ca2
SV
8539 continue;
8540
8541 if (sg == NULL)
8542 continue;
8543 sg = sg->next;
8544next_sg:
8545 oldsg = sg;
8546 sg = sg->next;
8547 kfree(oldsg);
8548 if (oldsg != sched_group_nodes[i])
8549 goto next_sg;
8550 }
8551 kfree(sched_group_nodes);
8552 sched_group_nodes_bycpu[cpu] = NULL;
8553 }
51888ca2 8554}
6d6bc0ad 8555#else /* !CONFIG_NUMA */
96f874e2
RR
8556static void free_sched_groups(const struct cpumask *cpu_map,
8557 struct cpumask *nodemask)
a616058b
SS
8558{
8559}
6d6bc0ad 8560#endif /* CONFIG_NUMA */
51888ca2 8561
89c4710e
SS
8562/*
8563 * Initialize sched groups cpu_power.
8564 *
8565 * cpu_power indicates the capacity of sched group, which is used while
8566 * distributing the load between different sched groups in a sched domain.
8567 * Typically cpu_power for all the groups in a sched domain will be same unless
8568 * there are asymmetries in the topology. If there are asymmetries, group
8569 * having more cpu_power will pickup more load compared to the group having
8570 * less cpu_power.
89c4710e
SS
8571 */
8572static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8573{
8574 struct sched_domain *child;
8575 struct sched_group *group;
f93e65c1
PZ
8576 long power;
8577 int weight;
89c4710e
SS
8578
8579 WARN_ON(!sd || !sd->groups);
8580
13318a71 8581 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8582 return;
8583
8584 child = sd->child;
8585
18a3885f 8586 sd->groups->cpu_power = 0;
5517d86b 8587
f93e65c1
PZ
8588 if (!child) {
8589 power = SCHED_LOAD_SCALE;
8590 weight = cpumask_weight(sched_domain_span(sd));
8591 /*
8592 * SMT siblings share the power of a single core.
a52bfd73
PZ
8593 * Usually multiple threads get a better yield out of
8594 * that one core than a single thread would have,
8595 * reflect that in sd->smt_gain.
f93e65c1 8596 */
a52bfd73
PZ
8597 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8598 power *= sd->smt_gain;
f93e65c1 8599 power /= weight;
a52bfd73
PZ
8600 power >>= SCHED_LOAD_SHIFT;
8601 }
18a3885f 8602 sd->groups->cpu_power += power;
89c4710e
SS
8603 return;
8604 }
8605
89c4710e 8606 /*
f93e65c1 8607 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8608 */
8609 group = child->groups;
8610 do {
18a3885f 8611 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8612 group = group->next;
8613 } while (group != child->groups);
8614}
8615
7c16ec58
MT
8616/*
8617 * Initializers for schedule domains
8618 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8619 */
8620
a5d8c348
IM
8621#ifdef CONFIG_SCHED_DEBUG
8622# define SD_INIT_NAME(sd, type) sd->name = #type
8623#else
8624# define SD_INIT_NAME(sd, type) do { } while (0)
8625#endif
8626
7c16ec58 8627#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8628
7c16ec58
MT
8629#define SD_INIT_FUNC(type) \
8630static noinline void sd_init_##type(struct sched_domain *sd) \
8631{ \
8632 memset(sd, 0, sizeof(*sd)); \
8633 *sd = SD_##type##_INIT; \
1d3504fc 8634 sd->level = SD_LV_##type; \
a5d8c348 8635 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8636}
8637
8638SD_INIT_FUNC(CPU)
8639#ifdef CONFIG_NUMA
8640 SD_INIT_FUNC(ALLNODES)
8641 SD_INIT_FUNC(NODE)
8642#endif
8643#ifdef CONFIG_SCHED_SMT
8644 SD_INIT_FUNC(SIBLING)
8645#endif
8646#ifdef CONFIG_SCHED_MC
8647 SD_INIT_FUNC(MC)
8648#endif
8649
1d3504fc
HS
8650static int default_relax_domain_level = -1;
8651
8652static int __init setup_relax_domain_level(char *str)
8653{
30e0e178
LZ
8654 unsigned long val;
8655
8656 val = simple_strtoul(str, NULL, 0);
8657 if (val < SD_LV_MAX)
8658 default_relax_domain_level = val;
8659
1d3504fc
HS
8660 return 1;
8661}
8662__setup("relax_domain_level=", setup_relax_domain_level);
8663
8664static void set_domain_attribute(struct sched_domain *sd,
8665 struct sched_domain_attr *attr)
8666{
8667 int request;
8668
8669 if (!attr || attr->relax_domain_level < 0) {
8670 if (default_relax_domain_level < 0)
8671 return;
8672 else
8673 request = default_relax_domain_level;
8674 } else
8675 request = attr->relax_domain_level;
8676 if (request < sd->level) {
8677 /* turn off idle balance on this domain */
c88d5910 8678 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8679 } else {
8680 /* turn on idle balance on this domain */
c88d5910 8681 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8682 }
8683}
8684
2109b99e
AH
8685static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8686 const struct cpumask *cpu_map)
8687{
8688 switch (what) {
8689 case sa_sched_groups:
8690 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8691 d->sched_group_nodes = NULL;
8692 case sa_rootdomain:
8693 free_rootdomain(d->rd); /* fall through */
8694 case sa_tmpmask:
8695 free_cpumask_var(d->tmpmask); /* fall through */
8696 case sa_send_covered:
8697 free_cpumask_var(d->send_covered); /* fall through */
8698 case sa_this_core_map:
8699 free_cpumask_var(d->this_core_map); /* fall through */
8700 case sa_this_sibling_map:
8701 free_cpumask_var(d->this_sibling_map); /* fall through */
8702 case sa_nodemask:
8703 free_cpumask_var(d->nodemask); /* fall through */
8704 case sa_sched_group_nodes:
d1b55138 8705#ifdef CONFIG_NUMA
2109b99e
AH
8706 kfree(d->sched_group_nodes); /* fall through */
8707 case sa_notcovered:
8708 free_cpumask_var(d->notcovered); /* fall through */
8709 case sa_covered:
8710 free_cpumask_var(d->covered); /* fall through */
8711 case sa_domainspan:
8712 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8713#endif
2109b99e
AH
8714 case sa_none:
8715 break;
8716 }
8717}
3404c8d9 8718
2109b99e
AH
8719static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8720 const struct cpumask *cpu_map)
8721{
3404c8d9 8722#ifdef CONFIG_NUMA
2109b99e
AH
8723 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8724 return sa_none;
8725 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8726 return sa_domainspan;
8727 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8728 return sa_covered;
8729 /* Allocate the per-node list of sched groups */
8730 d->sched_group_nodes = kcalloc(nr_node_ids,
8731 sizeof(struct sched_group *), GFP_KERNEL);
8732 if (!d->sched_group_nodes) {
3df0fc5b 8733 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8734 return sa_notcovered;
d1b55138 8735 }
2109b99e 8736 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8737#endif
2109b99e
AH
8738 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8739 return sa_sched_group_nodes;
8740 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8741 return sa_nodemask;
8742 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8743 return sa_this_sibling_map;
8744 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8745 return sa_this_core_map;
8746 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8747 return sa_send_covered;
8748 d->rd = alloc_rootdomain();
8749 if (!d->rd) {
3df0fc5b 8750 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8751 return sa_tmpmask;
57d885fe 8752 }
2109b99e
AH
8753 return sa_rootdomain;
8754}
57d885fe 8755
7f4588f3
AH
8756static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8757 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8758{
8759 struct sched_domain *sd = NULL;
7c16ec58 8760#ifdef CONFIG_NUMA
7f4588f3 8761 struct sched_domain *parent;
1da177e4 8762
7f4588f3
AH
8763 d->sd_allnodes = 0;
8764 if (cpumask_weight(cpu_map) >
8765 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8766 sd = &per_cpu(allnodes_domains, i).sd;
8767 SD_INIT(sd, ALLNODES);
1d3504fc 8768 set_domain_attribute(sd, attr);
7f4588f3
AH
8769 cpumask_copy(sched_domain_span(sd), cpu_map);
8770 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8771 d->sd_allnodes = 1;
8772 }
8773 parent = sd;
8774
8775 sd = &per_cpu(node_domains, i).sd;
8776 SD_INIT(sd, NODE);
8777 set_domain_attribute(sd, attr);
8778 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8779 sd->parent = parent;
8780 if (parent)
8781 parent->child = sd;
8782 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8783#endif
7f4588f3
AH
8784 return sd;
8785}
1da177e4 8786
87cce662
AH
8787static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8788 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8789 struct sched_domain *parent, int i)
8790{
8791 struct sched_domain *sd;
8792 sd = &per_cpu(phys_domains, i).sd;
8793 SD_INIT(sd, CPU);
8794 set_domain_attribute(sd, attr);
8795 cpumask_copy(sched_domain_span(sd), d->nodemask);
8796 sd->parent = parent;
8797 if (parent)
8798 parent->child = sd;
8799 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8800 return sd;
8801}
1da177e4 8802
410c4081
AH
8803static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8804 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8805 struct sched_domain *parent, int i)
8806{
8807 struct sched_domain *sd = parent;
1e9f28fa 8808#ifdef CONFIG_SCHED_MC
410c4081
AH
8809 sd = &per_cpu(core_domains, i).sd;
8810 SD_INIT(sd, MC);
8811 set_domain_attribute(sd, attr);
8812 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8813 sd->parent = parent;
8814 parent->child = sd;
8815 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8816#endif
410c4081
AH
8817 return sd;
8818}
1e9f28fa 8819
d8173535
AH
8820static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8821 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8822 struct sched_domain *parent, int i)
8823{
8824 struct sched_domain *sd = parent;
1da177e4 8825#ifdef CONFIG_SCHED_SMT
d8173535
AH
8826 sd = &per_cpu(cpu_domains, i).sd;
8827 SD_INIT(sd, SIBLING);
8828 set_domain_attribute(sd, attr);
8829 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8830 sd->parent = parent;
8831 parent->child = sd;
8832 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8833#endif
d8173535
AH
8834 return sd;
8835}
1da177e4 8836
0e8e85c9
AH
8837static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8838 const struct cpumask *cpu_map, int cpu)
8839{
8840 switch (l) {
1da177e4 8841#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8842 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8843 cpumask_and(d->this_sibling_map, cpu_map,
8844 topology_thread_cpumask(cpu));
8845 if (cpu == cpumask_first(d->this_sibling_map))
8846 init_sched_build_groups(d->this_sibling_map, cpu_map,
8847 &cpu_to_cpu_group,
8848 d->send_covered, d->tmpmask);
8849 break;
1da177e4 8850#endif
1e9f28fa 8851#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8852 case SD_LV_MC: /* set up multi-core groups */
8853 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8854 if (cpu == cpumask_first(d->this_core_map))
8855 init_sched_build_groups(d->this_core_map, cpu_map,
8856 &cpu_to_core_group,
8857 d->send_covered, d->tmpmask);
8858 break;
1e9f28fa 8859#endif
86548096
AH
8860 case SD_LV_CPU: /* set up physical groups */
8861 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8862 if (!cpumask_empty(d->nodemask))
8863 init_sched_build_groups(d->nodemask, cpu_map,
8864 &cpu_to_phys_group,
8865 d->send_covered, d->tmpmask);
8866 break;
1da177e4 8867#ifdef CONFIG_NUMA
de616e36
AH
8868 case SD_LV_ALLNODES:
8869 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8870 d->send_covered, d->tmpmask);
8871 break;
8872#endif
0e8e85c9
AH
8873 default:
8874 break;
7c16ec58 8875 }
0e8e85c9 8876}
9c1cfda2 8877
2109b99e
AH
8878/*
8879 * Build sched domains for a given set of cpus and attach the sched domains
8880 * to the individual cpus
8881 */
8882static int __build_sched_domains(const struct cpumask *cpu_map,
8883 struct sched_domain_attr *attr)
8884{
8885 enum s_alloc alloc_state = sa_none;
8886 struct s_data d;
294b0c96 8887 struct sched_domain *sd;
2109b99e 8888 int i;
7c16ec58 8889#ifdef CONFIG_NUMA
2109b99e 8890 d.sd_allnodes = 0;
7c16ec58 8891#endif
9c1cfda2 8892
2109b99e
AH
8893 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8894 if (alloc_state != sa_rootdomain)
8895 goto error;
8896 alloc_state = sa_sched_groups;
9c1cfda2 8897
1da177e4 8898 /*
1a20ff27 8899 * Set up domains for cpus specified by the cpu_map.
1da177e4 8900 */
abcd083a 8901 for_each_cpu(i, cpu_map) {
49a02c51
AH
8902 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8903 cpu_map);
9761eea8 8904
7f4588f3 8905 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8906 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8907 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8908 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8909 }
9c1cfda2 8910
abcd083a 8911 for_each_cpu(i, cpu_map) {
0e8e85c9 8912 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8913 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8914 }
9c1cfda2 8915
1da177e4 8916 /* Set up physical groups */
86548096
AH
8917 for (i = 0; i < nr_node_ids; i++)
8918 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8919
1da177e4
LT
8920#ifdef CONFIG_NUMA
8921 /* Set up node groups */
de616e36
AH
8922 if (d.sd_allnodes)
8923 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8924
0601a88d
AH
8925 for (i = 0; i < nr_node_ids; i++)
8926 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8927 goto error;
1da177e4
LT
8928#endif
8929
8930 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8931#ifdef CONFIG_SCHED_SMT
abcd083a 8932 for_each_cpu(i, cpu_map) {
294b0c96 8933 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8934 init_sched_groups_power(i, sd);
5c45bf27 8935 }
1da177e4 8936#endif
1e9f28fa 8937#ifdef CONFIG_SCHED_MC
abcd083a 8938 for_each_cpu(i, cpu_map) {
294b0c96 8939 sd = &per_cpu(core_domains, i).sd;
89c4710e 8940 init_sched_groups_power(i, sd);
5c45bf27
SS
8941 }
8942#endif
1e9f28fa 8943
abcd083a 8944 for_each_cpu(i, cpu_map) {
294b0c96 8945 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8946 init_sched_groups_power(i, sd);
1da177e4
LT
8947 }
8948
9c1cfda2 8949#ifdef CONFIG_NUMA
076ac2af 8950 for (i = 0; i < nr_node_ids; i++)
49a02c51 8951 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8952
49a02c51 8953 if (d.sd_allnodes) {
6711cab4 8954 struct sched_group *sg;
f712c0c7 8955
96f874e2 8956 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8957 d.tmpmask);
f712c0c7
SS
8958 init_numa_sched_groups_power(sg);
8959 }
9c1cfda2
JH
8960#endif
8961
1da177e4 8962 /* Attach the domains */
abcd083a 8963 for_each_cpu(i, cpu_map) {
1da177e4 8964#ifdef CONFIG_SCHED_SMT
6c99e9ad 8965 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8966#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8967 sd = &per_cpu(core_domains, i).sd;
1da177e4 8968#else
6c99e9ad 8969 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8970#endif
49a02c51 8971 cpu_attach_domain(sd, d.rd, i);
1da177e4 8972 }
51888ca2 8973
2109b99e
AH
8974 d.sched_group_nodes = NULL; /* don't free this we still need it */
8975 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8976 return 0;
51888ca2 8977
51888ca2 8978error:
2109b99e
AH
8979 __free_domain_allocs(&d, alloc_state, cpu_map);
8980 return -ENOMEM;
1da177e4 8981}
029190c5 8982
96f874e2 8983static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8984{
8985 return __build_sched_domains(cpu_map, NULL);
8986}
8987
acc3f5d7 8988static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8989static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8990static struct sched_domain_attr *dattr_cur;
8991 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8992
8993/*
8994 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8995 * cpumask) fails, then fallback to a single sched domain,
8996 * as determined by the single cpumask fallback_doms.
029190c5 8997 */
4212823f 8998static cpumask_var_t fallback_doms;
029190c5 8999
ee79d1bd
HC
9000/*
9001 * arch_update_cpu_topology lets virtualized architectures update the
9002 * cpu core maps. It is supposed to return 1 if the topology changed
9003 * or 0 if it stayed the same.
9004 */
9005int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 9006{
ee79d1bd 9007 return 0;
22e52b07
HC
9008}
9009
acc3f5d7
RR
9010cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
9011{
9012 int i;
9013 cpumask_var_t *doms;
9014
9015 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
9016 if (!doms)
9017 return NULL;
9018 for (i = 0; i < ndoms; i++) {
9019 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
9020 free_sched_domains(doms, i);
9021 return NULL;
9022 }
9023 }
9024 return doms;
9025}
9026
9027void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9028{
9029 unsigned int i;
9030 for (i = 0; i < ndoms; i++)
9031 free_cpumask_var(doms[i]);
9032 kfree(doms);
9033}
9034
1a20ff27 9035/*
41a2d6cf 9036 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9037 * For now this just excludes isolated cpus, but could be used to
9038 * exclude other special cases in the future.
1a20ff27 9039 */
96f874e2 9040static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9041{
7378547f
MM
9042 int err;
9043
22e52b07 9044 arch_update_cpu_topology();
029190c5 9045 ndoms_cur = 1;
acc3f5d7 9046 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9047 if (!doms_cur)
acc3f5d7
RR
9048 doms_cur = &fallback_doms;
9049 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9050 dattr_cur = NULL;
acc3f5d7 9051 err = build_sched_domains(doms_cur[0]);
6382bc90 9052 register_sched_domain_sysctl();
7378547f
MM
9053
9054 return err;
1a20ff27
DG
9055}
9056
96f874e2
RR
9057static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9058 struct cpumask *tmpmask)
1da177e4 9059{
7c16ec58 9060 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9061}
1da177e4 9062
1a20ff27
DG
9063/*
9064 * Detach sched domains from a group of cpus specified in cpu_map
9065 * These cpus will now be attached to the NULL domain
9066 */
96f874e2 9067static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9068{
96f874e2
RR
9069 /* Save because hotplug lock held. */
9070 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9071 int i;
9072
abcd083a 9073 for_each_cpu(i, cpu_map)
57d885fe 9074 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9075 synchronize_sched();
96f874e2 9076 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9077}
9078
1d3504fc
HS
9079/* handle null as "default" */
9080static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9081 struct sched_domain_attr *new, int idx_new)
9082{
9083 struct sched_domain_attr tmp;
9084
9085 /* fast path */
9086 if (!new && !cur)
9087 return 1;
9088
9089 tmp = SD_ATTR_INIT;
9090 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9091 new ? (new + idx_new) : &tmp,
9092 sizeof(struct sched_domain_attr));
9093}
9094
029190c5
PJ
9095/*
9096 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9097 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9098 * doms_new[] to the current sched domain partitioning, doms_cur[].
9099 * It destroys each deleted domain and builds each new domain.
9100 *
acc3f5d7 9101 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9102 * The masks don't intersect (don't overlap.) We should setup one
9103 * sched domain for each mask. CPUs not in any of the cpumasks will
9104 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9105 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9106 * it as it is.
9107 *
acc3f5d7
RR
9108 * The passed in 'doms_new' should be allocated using
9109 * alloc_sched_domains. This routine takes ownership of it and will
9110 * free_sched_domains it when done with it. If the caller failed the
9111 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9112 * and partition_sched_domains() will fallback to the single partition
9113 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9114 *
96f874e2 9115 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9116 * ndoms_new == 0 is a special case for destroying existing domains,
9117 * and it will not create the default domain.
dfb512ec 9118 *
029190c5
PJ
9119 * Call with hotplug lock held
9120 */
acc3f5d7 9121void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9122 struct sched_domain_attr *dattr_new)
029190c5 9123{
dfb512ec 9124 int i, j, n;
d65bd5ec 9125 int new_topology;
029190c5 9126
712555ee 9127 mutex_lock(&sched_domains_mutex);
a1835615 9128
7378547f
MM
9129 /* always unregister in case we don't destroy any domains */
9130 unregister_sched_domain_sysctl();
9131
d65bd5ec
HC
9132 /* Let architecture update cpu core mappings. */
9133 new_topology = arch_update_cpu_topology();
9134
dfb512ec 9135 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9136
9137 /* Destroy deleted domains */
9138 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9139 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9140 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9141 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9142 goto match1;
9143 }
9144 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9145 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9146match1:
9147 ;
9148 }
9149
e761b772
MK
9150 if (doms_new == NULL) {
9151 ndoms_cur = 0;
acc3f5d7 9152 doms_new = &fallback_doms;
6ad4c188 9153 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9154 WARN_ON_ONCE(dattr_new);
e761b772
MK
9155 }
9156
029190c5
PJ
9157 /* Build new domains */
9158 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9159 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9160 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9161 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9162 goto match2;
9163 }
9164 /* no match - add a new doms_new */
acc3f5d7 9165 __build_sched_domains(doms_new[i],
1d3504fc 9166 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9167match2:
9168 ;
9169 }
9170
9171 /* Remember the new sched domains */
acc3f5d7
RR
9172 if (doms_cur != &fallback_doms)
9173 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9174 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9175 doms_cur = doms_new;
1d3504fc 9176 dattr_cur = dattr_new;
029190c5 9177 ndoms_cur = ndoms_new;
7378547f
MM
9178
9179 register_sched_domain_sysctl();
a1835615 9180
712555ee 9181 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9182}
9183
5c45bf27 9184#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9185static void arch_reinit_sched_domains(void)
5c45bf27 9186{
95402b38 9187 get_online_cpus();
dfb512ec
MK
9188
9189 /* Destroy domains first to force the rebuild */
9190 partition_sched_domains(0, NULL, NULL);
9191
e761b772 9192 rebuild_sched_domains();
95402b38 9193 put_online_cpus();
5c45bf27
SS
9194}
9195
9196static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9197{
afb8a9b7 9198 unsigned int level = 0;
5c45bf27 9199
afb8a9b7
GS
9200 if (sscanf(buf, "%u", &level) != 1)
9201 return -EINVAL;
9202
9203 /*
9204 * level is always be positive so don't check for
9205 * level < POWERSAVINGS_BALANCE_NONE which is 0
9206 * What happens on 0 or 1 byte write,
9207 * need to check for count as well?
9208 */
9209
9210 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9211 return -EINVAL;
9212
9213 if (smt)
afb8a9b7 9214 sched_smt_power_savings = level;
5c45bf27 9215 else
afb8a9b7 9216 sched_mc_power_savings = level;
5c45bf27 9217
c70f22d2 9218 arch_reinit_sched_domains();
5c45bf27 9219
c70f22d2 9220 return count;
5c45bf27
SS
9221}
9222
5c45bf27 9223#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9224static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9225 char *page)
5c45bf27
SS
9226{
9227 return sprintf(page, "%u\n", sched_mc_power_savings);
9228}
f718cd4a 9229static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9230 const char *buf, size_t count)
5c45bf27
SS
9231{
9232 return sched_power_savings_store(buf, count, 0);
9233}
f718cd4a
AK
9234static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9235 sched_mc_power_savings_show,
9236 sched_mc_power_savings_store);
5c45bf27
SS
9237#endif
9238
9239#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9240static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9241 char *page)
5c45bf27
SS
9242{
9243 return sprintf(page, "%u\n", sched_smt_power_savings);
9244}
f718cd4a 9245static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9246 const char *buf, size_t count)
5c45bf27
SS
9247{
9248 return sched_power_savings_store(buf, count, 1);
9249}
f718cd4a
AK
9250static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9251 sched_smt_power_savings_show,
6707de00
AB
9252 sched_smt_power_savings_store);
9253#endif
9254
39aac648 9255int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9256{
9257 int err = 0;
9258
9259#ifdef CONFIG_SCHED_SMT
9260 if (smt_capable())
9261 err = sysfs_create_file(&cls->kset.kobj,
9262 &attr_sched_smt_power_savings.attr);
9263#endif
9264#ifdef CONFIG_SCHED_MC
9265 if (!err && mc_capable())
9266 err = sysfs_create_file(&cls->kset.kobj,
9267 &attr_sched_mc_power_savings.attr);
9268#endif
9269 return err;
9270}
6d6bc0ad 9271#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9272
e761b772 9273#ifndef CONFIG_CPUSETS
1da177e4 9274/*
e761b772
MK
9275 * Add online and remove offline CPUs from the scheduler domains.
9276 * When cpusets are enabled they take over this function.
1da177e4
LT
9277 */
9278static int update_sched_domains(struct notifier_block *nfb,
9279 unsigned long action, void *hcpu)
e761b772
MK
9280{
9281 switch (action) {
9282 case CPU_ONLINE:
9283 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9284 case CPU_DOWN_PREPARE:
9285 case CPU_DOWN_PREPARE_FROZEN:
9286 case CPU_DOWN_FAILED:
9287 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9288 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9289 return NOTIFY_OK;
9290
9291 default:
9292 return NOTIFY_DONE;
9293 }
9294}
9295#endif
9296
9297static int update_runtime(struct notifier_block *nfb,
9298 unsigned long action, void *hcpu)
1da177e4 9299{
7def2be1
PZ
9300 int cpu = (int)(long)hcpu;
9301
1da177e4 9302 switch (action) {
1da177e4 9303 case CPU_DOWN_PREPARE:
8bb78442 9304 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9305 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9306 return NOTIFY_OK;
9307
1da177e4 9308 case CPU_DOWN_FAILED:
8bb78442 9309 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9310 case CPU_ONLINE:
8bb78442 9311 case CPU_ONLINE_FROZEN:
7def2be1 9312 enable_runtime(cpu_rq(cpu));
e761b772
MK
9313 return NOTIFY_OK;
9314
1da177e4
LT
9315 default:
9316 return NOTIFY_DONE;
9317 }
1da177e4 9318}
1da177e4
LT
9319
9320void __init sched_init_smp(void)
9321{
dcc30a35
RR
9322 cpumask_var_t non_isolated_cpus;
9323
9324 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9325 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9326
434d53b0
MT
9327#if defined(CONFIG_NUMA)
9328 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9329 GFP_KERNEL);
9330 BUG_ON(sched_group_nodes_bycpu == NULL);
9331#endif
95402b38 9332 get_online_cpus();
712555ee 9333 mutex_lock(&sched_domains_mutex);
6ad4c188 9334 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9335 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9336 if (cpumask_empty(non_isolated_cpus))
9337 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9338 mutex_unlock(&sched_domains_mutex);
95402b38 9339 put_online_cpus();
e761b772
MK
9340
9341#ifndef CONFIG_CPUSETS
1da177e4
LT
9342 /* XXX: Theoretical race here - CPU may be hotplugged now */
9343 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9344#endif
9345
9346 /* RT runtime code needs to handle some hotplug events */
9347 hotcpu_notifier(update_runtime, 0);
9348
b328ca18 9349 init_hrtick();
5c1e1767
NP
9350
9351 /* Move init over to a non-isolated CPU */
dcc30a35 9352 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9353 BUG();
19978ca6 9354 sched_init_granularity();
dcc30a35 9355 free_cpumask_var(non_isolated_cpus);
4212823f 9356
0e3900e6 9357 init_sched_rt_class();
1da177e4
LT
9358}
9359#else
9360void __init sched_init_smp(void)
9361{
19978ca6 9362 sched_init_granularity();
1da177e4
LT
9363}
9364#endif /* CONFIG_SMP */
9365
cd1bb94b
AB
9366const_debug unsigned int sysctl_timer_migration = 1;
9367
1da177e4
LT
9368int in_sched_functions(unsigned long addr)
9369{
1da177e4
LT
9370 return in_lock_functions(addr) ||
9371 (addr >= (unsigned long)__sched_text_start
9372 && addr < (unsigned long)__sched_text_end);
9373}
9374
a9957449 9375static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9376{
9377 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9378 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9379#ifdef CONFIG_FAIR_GROUP_SCHED
9380 cfs_rq->rq = rq;
9381#endif
67e9fb2a 9382 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9383}
9384
fa85ae24
PZ
9385static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9386{
9387 struct rt_prio_array *array;
9388 int i;
9389
9390 array = &rt_rq->active;
9391 for (i = 0; i < MAX_RT_PRIO; i++) {
9392 INIT_LIST_HEAD(array->queue + i);
9393 __clear_bit(i, array->bitmap);
9394 }
9395 /* delimiter for bitsearch: */
9396 __set_bit(MAX_RT_PRIO, array->bitmap);
9397
052f1dc7 9398#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9399 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9400#ifdef CONFIG_SMP
e864c499 9401 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9402#endif
48d5e258 9403#endif
fa85ae24
PZ
9404#ifdef CONFIG_SMP
9405 rt_rq->rt_nr_migratory = 0;
fa85ae24 9406 rt_rq->overloaded = 0;
05fa785c 9407 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9408#endif
9409
9410 rt_rq->rt_time = 0;
9411 rt_rq->rt_throttled = 0;
ac086bc2 9412 rt_rq->rt_runtime = 0;
0986b11b 9413 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9414
052f1dc7 9415#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9416 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9417 rt_rq->rq = rq;
9418#endif
fa85ae24
PZ
9419}
9420
6f505b16 9421#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9422static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9423 struct sched_entity *se, int cpu, int add,
9424 struct sched_entity *parent)
6f505b16 9425{
ec7dc8ac 9426 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9427 tg->cfs_rq[cpu] = cfs_rq;
9428 init_cfs_rq(cfs_rq, rq);
9429 cfs_rq->tg = tg;
9430 if (add)
9431 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9432
9433 tg->se[cpu] = se;
354d60c2
DG
9434 /* se could be NULL for init_task_group */
9435 if (!se)
9436 return;
9437
ec7dc8ac
DG
9438 if (!parent)
9439 se->cfs_rq = &rq->cfs;
9440 else
9441 se->cfs_rq = parent->my_q;
9442
6f505b16
PZ
9443 se->my_q = cfs_rq;
9444 se->load.weight = tg->shares;
e05510d0 9445 se->load.inv_weight = 0;
ec7dc8ac 9446 se->parent = parent;
6f505b16 9447}
052f1dc7 9448#endif
6f505b16 9449
052f1dc7 9450#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9451static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9452 struct sched_rt_entity *rt_se, int cpu, int add,
9453 struct sched_rt_entity *parent)
6f505b16 9454{
ec7dc8ac
DG
9455 struct rq *rq = cpu_rq(cpu);
9456
6f505b16
PZ
9457 tg->rt_rq[cpu] = rt_rq;
9458 init_rt_rq(rt_rq, rq);
9459 rt_rq->tg = tg;
9460 rt_rq->rt_se = rt_se;
ac086bc2 9461 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9462 if (add)
9463 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9464
9465 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9466 if (!rt_se)
9467 return;
9468
ec7dc8ac
DG
9469 if (!parent)
9470 rt_se->rt_rq = &rq->rt;
9471 else
9472 rt_se->rt_rq = parent->my_q;
9473
6f505b16 9474 rt_se->my_q = rt_rq;
ec7dc8ac 9475 rt_se->parent = parent;
6f505b16
PZ
9476 INIT_LIST_HEAD(&rt_se->run_list);
9477}
9478#endif
9479
1da177e4
LT
9480void __init sched_init(void)
9481{
dd41f596 9482 int i, j;
434d53b0
MT
9483 unsigned long alloc_size = 0, ptr;
9484
9485#ifdef CONFIG_FAIR_GROUP_SCHED
9486 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9487#endif
9488#ifdef CONFIG_RT_GROUP_SCHED
9489 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9490#endif
9491#ifdef CONFIG_USER_SCHED
9492 alloc_size *= 2;
df7c8e84
RR
9493#endif
9494#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9495 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9496#endif
434d53b0 9497 if (alloc_size) {
36b7b6d4 9498 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9499
9500#ifdef CONFIG_FAIR_GROUP_SCHED
9501 init_task_group.se = (struct sched_entity **)ptr;
9502 ptr += nr_cpu_ids * sizeof(void **);
9503
9504 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9505 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9506
9507#ifdef CONFIG_USER_SCHED
9508 root_task_group.se = (struct sched_entity **)ptr;
9509 ptr += nr_cpu_ids * sizeof(void **);
9510
9511 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9512 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9513#endif /* CONFIG_USER_SCHED */
9514#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9515#ifdef CONFIG_RT_GROUP_SCHED
9516 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9517 ptr += nr_cpu_ids * sizeof(void **);
9518
9519 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9520 ptr += nr_cpu_ids * sizeof(void **);
9521
9522#ifdef CONFIG_USER_SCHED
9523 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9524 ptr += nr_cpu_ids * sizeof(void **);
9525
9526 root_task_group.rt_rq = (struct rt_rq **)ptr;
9527 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9528#endif /* CONFIG_USER_SCHED */
9529#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9530#ifdef CONFIG_CPUMASK_OFFSTACK
9531 for_each_possible_cpu(i) {
9532 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9533 ptr += cpumask_size();
9534 }
9535#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9536 }
dd41f596 9537
57d885fe
GH
9538#ifdef CONFIG_SMP
9539 init_defrootdomain();
9540#endif
9541
d0b27fa7
PZ
9542 init_rt_bandwidth(&def_rt_bandwidth,
9543 global_rt_period(), global_rt_runtime());
9544
9545#ifdef CONFIG_RT_GROUP_SCHED
9546 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9547 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9548#ifdef CONFIG_USER_SCHED
9549 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9550 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9551#endif /* CONFIG_USER_SCHED */
9552#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9553
052f1dc7 9554#ifdef CONFIG_GROUP_SCHED
6f505b16 9555 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9556 INIT_LIST_HEAD(&init_task_group.children);
9557
9558#ifdef CONFIG_USER_SCHED
9559 INIT_LIST_HEAD(&root_task_group.children);
9560 init_task_group.parent = &root_task_group;
9561 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9562#endif /* CONFIG_USER_SCHED */
9563#endif /* CONFIG_GROUP_SCHED */
6f505b16 9564
4a6cc4bd
JK
9565#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9566 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9567 __alignof__(unsigned long));
9568#endif
0a945022 9569 for_each_possible_cpu(i) {
70b97a7f 9570 struct rq *rq;
1da177e4
LT
9571
9572 rq = cpu_rq(i);
05fa785c 9573 raw_spin_lock_init(&rq->lock);
7897986b 9574 rq->nr_running = 0;
dce48a84
TG
9575 rq->calc_load_active = 0;
9576 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9577 init_cfs_rq(&rq->cfs, rq);
6f505b16 9578 init_rt_rq(&rq->rt, rq);
dd41f596 9579#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9580 init_task_group.shares = init_task_group_load;
6f505b16 9581 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9582#ifdef CONFIG_CGROUP_SCHED
9583 /*
9584 * How much cpu bandwidth does init_task_group get?
9585 *
9586 * In case of task-groups formed thr' the cgroup filesystem, it
9587 * gets 100% of the cpu resources in the system. This overall
9588 * system cpu resource is divided among the tasks of
9589 * init_task_group and its child task-groups in a fair manner,
9590 * based on each entity's (task or task-group's) weight
9591 * (se->load.weight).
9592 *
9593 * In other words, if init_task_group has 10 tasks of weight
9594 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9595 * then A0's share of the cpu resource is:
9596 *
0d905bca 9597 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9598 *
9599 * We achieve this by letting init_task_group's tasks sit
9600 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9601 */
ec7dc8ac 9602 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9603#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9604 root_task_group.shares = NICE_0_LOAD;
9605 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9606 /*
9607 * In case of task-groups formed thr' the user id of tasks,
9608 * init_task_group represents tasks belonging to root user.
9609 * Hence it forms a sibling of all subsequent groups formed.
9610 * In this case, init_task_group gets only a fraction of overall
9611 * system cpu resource, based on the weight assigned to root
9612 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9613 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9614 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9615 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9616 */
ec7dc8ac 9617 init_tg_cfs_entry(&init_task_group,
84e9dabf 9618 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9619 &per_cpu(init_sched_entity, i), i, 1,
9620 root_task_group.se[i]);
6f505b16 9621
052f1dc7 9622#endif
354d60c2
DG
9623#endif /* CONFIG_FAIR_GROUP_SCHED */
9624
9625 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9626#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9627 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9628#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9629 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9630#elif defined CONFIG_USER_SCHED
eff766a6 9631 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9632 init_tg_rt_entry(&init_task_group,
1871e52c 9633 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9634 &per_cpu(init_sched_rt_entity, i), i, 1,
9635 root_task_group.rt_se[i]);
354d60c2 9636#endif
dd41f596 9637#endif
1da177e4 9638
dd41f596
IM
9639 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9640 rq->cpu_load[j] = 0;
1da177e4 9641#ifdef CONFIG_SMP
41c7ce9a 9642 rq->sd = NULL;
57d885fe 9643 rq->rd = NULL;
3f029d3c 9644 rq->post_schedule = 0;
1da177e4 9645 rq->active_balance = 0;
dd41f596 9646 rq->next_balance = jiffies;
1da177e4 9647 rq->push_cpu = 0;
0a2966b4 9648 rq->cpu = i;
1f11eb6a 9649 rq->online = 0;
1da177e4 9650 rq->migration_thread = NULL;
eae0c9df
MG
9651 rq->idle_stamp = 0;
9652 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9653 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9654 rq_attach_root(rq, &def_root_domain);
1da177e4 9655#endif
8f4d37ec 9656 init_rq_hrtick(rq);
1da177e4 9657 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9658 }
9659
2dd73a4f 9660 set_load_weight(&init_task);
b50f60ce 9661
e107be36
AK
9662#ifdef CONFIG_PREEMPT_NOTIFIERS
9663 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9664#endif
9665
c9819f45 9666#ifdef CONFIG_SMP
962cf36c 9667 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9668#endif
9669
b50f60ce 9670#ifdef CONFIG_RT_MUTEXES
1d615482 9671 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9672#endif
9673
1da177e4
LT
9674 /*
9675 * The boot idle thread does lazy MMU switching as well:
9676 */
9677 atomic_inc(&init_mm.mm_count);
9678 enter_lazy_tlb(&init_mm, current);
9679
9680 /*
9681 * Make us the idle thread. Technically, schedule() should not be
9682 * called from this thread, however somewhere below it might be,
9683 * but because we are the idle thread, we just pick up running again
9684 * when this runqueue becomes "idle".
9685 */
9686 init_idle(current, smp_processor_id());
dce48a84
TG
9687
9688 calc_load_update = jiffies + LOAD_FREQ;
9689
dd41f596
IM
9690 /*
9691 * During early bootup we pretend to be a normal task:
9692 */
9693 current->sched_class = &fair_sched_class;
6892b75e 9694
6a7b3dc3 9695 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9696 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9697#ifdef CONFIG_SMP
7d1e6a9b 9698#ifdef CONFIG_NO_HZ
49557e62 9699 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9700 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9701#endif
bdddd296
RR
9702 /* May be allocated at isolcpus cmdline parse time */
9703 if (cpu_isolated_map == NULL)
9704 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9705#endif /* SMP */
6a7b3dc3 9706
cdd6c482 9707 perf_event_init();
0d905bca 9708
6892b75e 9709 scheduler_running = 1;
1da177e4
LT
9710}
9711
9712#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9713static inline int preempt_count_equals(int preempt_offset)
9714{
234da7bc 9715 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
9716
9717 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9718}
9719
9720void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9721{
48f24c4d 9722#ifdef in_atomic
1da177e4
LT
9723 static unsigned long prev_jiffy; /* ratelimiting */
9724
e4aafea2
FW
9725 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9726 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9727 return;
9728 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9729 return;
9730 prev_jiffy = jiffies;
9731
3df0fc5b
PZ
9732 printk(KERN_ERR
9733 "BUG: sleeping function called from invalid context at %s:%d\n",
9734 file, line);
9735 printk(KERN_ERR
9736 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9737 in_atomic(), irqs_disabled(),
9738 current->pid, current->comm);
aef745fc
IM
9739
9740 debug_show_held_locks(current);
9741 if (irqs_disabled())
9742 print_irqtrace_events(current);
9743 dump_stack();
1da177e4
LT
9744#endif
9745}
9746EXPORT_SYMBOL(__might_sleep);
9747#endif
9748
9749#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9750static void normalize_task(struct rq *rq, struct task_struct *p)
9751{
9752 int on_rq;
3e51f33f 9753
3a5e4dc1
AK
9754 update_rq_clock(rq);
9755 on_rq = p->se.on_rq;
9756 if (on_rq)
9757 deactivate_task(rq, p, 0);
9758 __setscheduler(rq, p, SCHED_NORMAL, 0);
9759 if (on_rq) {
9760 activate_task(rq, p, 0);
9761 resched_task(rq->curr);
9762 }
9763}
9764
1da177e4
LT
9765void normalize_rt_tasks(void)
9766{
a0f98a1c 9767 struct task_struct *g, *p;
1da177e4 9768 unsigned long flags;
70b97a7f 9769 struct rq *rq;
1da177e4 9770
4cf5d77a 9771 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9772 do_each_thread(g, p) {
178be793
IM
9773 /*
9774 * Only normalize user tasks:
9775 */
9776 if (!p->mm)
9777 continue;
9778
6cfb0d5d 9779 p->se.exec_start = 0;
6cfb0d5d 9780#ifdef CONFIG_SCHEDSTATS
dd41f596 9781 p->se.wait_start = 0;
dd41f596 9782 p->se.sleep_start = 0;
dd41f596 9783 p->se.block_start = 0;
6cfb0d5d 9784#endif
dd41f596
IM
9785
9786 if (!rt_task(p)) {
9787 /*
9788 * Renice negative nice level userspace
9789 * tasks back to 0:
9790 */
9791 if (TASK_NICE(p) < 0 && p->mm)
9792 set_user_nice(p, 0);
1da177e4 9793 continue;
dd41f596 9794 }
1da177e4 9795
1d615482 9796 raw_spin_lock(&p->pi_lock);
b29739f9 9797 rq = __task_rq_lock(p);
1da177e4 9798
178be793 9799 normalize_task(rq, p);
3a5e4dc1 9800
b29739f9 9801 __task_rq_unlock(rq);
1d615482 9802 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9803 } while_each_thread(g, p);
9804
4cf5d77a 9805 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9806}
9807
9808#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9809
9810#ifdef CONFIG_IA64
9811/*
9812 * These functions are only useful for the IA64 MCA handling.
9813 *
9814 * They can only be called when the whole system has been
9815 * stopped - every CPU needs to be quiescent, and no scheduling
9816 * activity can take place. Using them for anything else would
9817 * be a serious bug, and as a result, they aren't even visible
9818 * under any other configuration.
9819 */
9820
9821/**
9822 * curr_task - return the current task for a given cpu.
9823 * @cpu: the processor in question.
9824 *
9825 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9826 */
36c8b586 9827struct task_struct *curr_task(int cpu)
1df5c10a
LT
9828{
9829 return cpu_curr(cpu);
9830}
9831
9832/**
9833 * set_curr_task - set the current task for a given cpu.
9834 * @cpu: the processor in question.
9835 * @p: the task pointer to set.
9836 *
9837 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9838 * are serviced on a separate stack. It allows the architecture to switch the
9839 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9840 * must be called with all CPU's synchronized, and interrupts disabled, the
9841 * and caller must save the original value of the current task (see
9842 * curr_task() above) and restore that value before reenabling interrupts and
9843 * re-starting the system.
9844 *
9845 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9846 */
36c8b586 9847void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9848{
9849 cpu_curr(cpu) = p;
9850}
9851
9852#endif
29f59db3 9853
bccbe08a
PZ
9854#ifdef CONFIG_FAIR_GROUP_SCHED
9855static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9856{
9857 int i;
9858
9859 for_each_possible_cpu(i) {
9860 if (tg->cfs_rq)
9861 kfree(tg->cfs_rq[i]);
9862 if (tg->se)
9863 kfree(tg->se[i]);
6f505b16
PZ
9864 }
9865
9866 kfree(tg->cfs_rq);
9867 kfree(tg->se);
6f505b16
PZ
9868}
9869
ec7dc8ac
DG
9870static
9871int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9872{
29f59db3 9873 struct cfs_rq *cfs_rq;
eab17229 9874 struct sched_entity *se;
9b5b7751 9875 struct rq *rq;
29f59db3
SV
9876 int i;
9877
434d53b0 9878 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9879 if (!tg->cfs_rq)
9880 goto err;
434d53b0 9881 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9882 if (!tg->se)
9883 goto err;
052f1dc7
PZ
9884
9885 tg->shares = NICE_0_LOAD;
29f59db3
SV
9886
9887 for_each_possible_cpu(i) {
9b5b7751 9888 rq = cpu_rq(i);
29f59db3 9889
eab17229
LZ
9890 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9891 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9892 if (!cfs_rq)
9893 goto err;
9894
eab17229
LZ
9895 se = kzalloc_node(sizeof(struct sched_entity),
9896 GFP_KERNEL, cpu_to_node(i));
29f59db3 9897 if (!se)
dfc12eb2 9898 goto err_free_rq;
29f59db3 9899
eab17229 9900 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9901 }
9902
9903 return 1;
9904
dfc12eb2
PC
9905 err_free_rq:
9906 kfree(cfs_rq);
bccbe08a
PZ
9907 err:
9908 return 0;
9909}
9910
9911static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9912{
9913 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9914 &cpu_rq(cpu)->leaf_cfs_rq_list);
9915}
9916
9917static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9918{
9919 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9920}
6d6bc0ad 9921#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9922static inline void free_fair_sched_group(struct task_group *tg)
9923{
9924}
9925
ec7dc8ac
DG
9926static inline
9927int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9928{
9929 return 1;
9930}
9931
9932static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9933{
9934}
9935
9936static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9937{
9938}
6d6bc0ad 9939#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9940
9941#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9942static void free_rt_sched_group(struct task_group *tg)
9943{
9944 int i;
9945
d0b27fa7
PZ
9946 destroy_rt_bandwidth(&tg->rt_bandwidth);
9947
bccbe08a
PZ
9948 for_each_possible_cpu(i) {
9949 if (tg->rt_rq)
9950 kfree(tg->rt_rq[i]);
9951 if (tg->rt_se)
9952 kfree(tg->rt_se[i]);
9953 }
9954
9955 kfree(tg->rt_rq);
9956 kfree(tg->rt_se);
9957}
9958
ec7dc8ac
DG
9959static
9960int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9961{
9962 struct rt_rq *rt_rq;
eab17229 9963 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9964 struct rq *rq;
9965 int i;
9966
434d53b0 9967 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9968 if (!tg->rt_rq)
9969 goto err;
434d53b0 9970 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9971 if (!tg->rt_se)
9972 goto err;
9973
d0b27fa7
PZ
9974 init_rt_bandwidth(&tg->rt_bandwidth,
9975 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9976
9977 for_each_possible_cpu(i) {
9978 rq = cpu_rq(i);
9979
eab17229
LZ
9980 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9981 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9982 if (!rt_rq)
9983 goto err;
29f59db3 9984
eab17229
LZ
9985 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9986 GFP_KERNEL, cpu_to_node(i));
6f505b16 9987 if (!rt_se)
dfc12eb2 9988 goto err_free_rq;
29f59db3 9989
eab17229 9990 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9991 }
9992
bccbe08a
PZ
9993 return 1;
9994
dfc12eb2
PC
9995 err_free_rq:
9996 kfree(rt_rq);
bccbe08a
PZ
9997 err:
9998 return 0;
9999}
10000
10001static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10002{
10003 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
10004 &cpu_rq(cpu)->leaf_rt_rq_list);
10005}
10006
10007static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10008{
10009 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10010}
6d6bc0ad 10011#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
10012static inline void free_rt_sched_group(struct task_group *tg)
10013{
10014}
10015
ec7dc8ac
DG
10016static inline
10017int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
10018{
10019 return 1;
10020}
10021
10022static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10023{
10024}
10025
10026static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10027{
10028}
6d6bc0ad 10029#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 10030
d0b27fa7 10031#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10032static void free_sched_group(struct task_group *tg)
10033{
10034 free_fair_sched_group(tg);
10035 free_rt_sched_group(tg);
10036 kfree(tg);
10037}
10038
10039/* allocate runqueue etc for a new task group */
ec7dc8ac 10040struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10041{
10042 struct task_group *tg;
10043 unsigned long flags;
10044 int i;
10045
10046 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10047 if (!tg)
10048 return ERR_PTR(-ENOMEM);
10049
ec7dc8ac 10050 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10051 goto err;
10052
ec7dc8ac 10053 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10054 goto err;
10055
8ed36996 10056 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10057 for_each_possible_cpu(i) {
bccbe08a
PZ
10058 register_fair_sched_group(tg, i);
10059 register_rt_sched_group(tg, i);
9b5b7751 10060 }
6f505b16 10061 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10062
10063 WARN_ON(!parent); /* root should already exist */
10064
10065 tg->parent = parent;
f473aa5e 10066 INIT_LIST_HEAD(&tg->children);
09f2724a 10067 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10068 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10069
9b5b7751 10070 return tg;
29f59db3
SV
10071
10072err:
6f505b16 10073 free_sched_group(tg);
29f59db3
SV
10074 return ERR_PTR(-ENOMEM);
10075}
10076
9b5b7751 10077/* rcu callback to free various structures associated with a task group */
6f505b16 10078static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10079{
29f59db3 10080 /* now it should be safe to free those cfs_rqs */
6f505b16 10081 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10082}
10083
9b5b7751 10084/* Destroy runqueue etc associated with a task group */
4cf86d77 10085void sched_destroy_group(struct task_group *tg)
29f59db3 10086{
8ed36996 10087 unsigned long flags;
9b5b7751 10088 int i;
29f59db3 10089
8ed36996 10090 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10091 for_each_possible_cpu(i) {
bccbe08a
PZ
10092 unregister_fair_sched_group(tg, i);
10093 unregister_rt_sched_group(tg, i);
9b5b7751 10094 }
6f505b16 10095 list_del_rcu(&tg->list);
f473aa5e 10096 list_del_rcu(&tg->siblings);
8ed36996 10097 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10098
9b5b7751 10099 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10100 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10101}
10102
9b5b7751 10103/* change task's runqueue when it moves between groups.
3a252015
IM
10104 * The caller of this function should have put the task in its new group
10105 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10106 * reflect its new group.
9b5b7751
SV
10107 */
10108void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10109{
10110 int on_rq, running;
10111 unsigned long flags;
10112 struct rq *rq;
10113
10114 rq = task_rq_lock(tsk, &flags);
10115
29f59db3
SV
10116 update_rq_clock(rq);
10117
051a1d1a 10118 running = task_current(rq, tsk);
29f59db3
SV
10119 on_rq = tsk->se.on_rq;
10120
0e1f3483 10121 if (on_rq)
29f59db3 10122 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10123 if (unlikely(running))
10124 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10125
6f505b16 10126 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10127
810b3817
PZ
10128#ifdef CONFIG_FAIR_GROUP_SCHED
10129 if (tsk->sched_class->moved_group)
88ec22d3 10130 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
10131#endif
10132
0e1f3483
HS
10133 if (unlikely(running))
10134 tsk->sched_class->set_curr_task(rq);
10135 if (on_rq)
7074badb 10136 enqueue_task(rq, tsk, 0);
29f59db3 10137
29f59db3
SV
10138 task_rq_unlock(rq, &flags);
10139}
6d6bc0ad 10140#endif /* CONFIG_GROUP_SCHED */
29f59db3 10141
052f1dc7 10142#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10143static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10144{
10145 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10146 int on_rq;
10147
29f59db3 10148 on_rq = se->on_rq;
62fb1851 10149 if (on_rq)
29f59db3
SV
10150 dequeue_entity(cfs_rq, se, 0);
10151
10152 se->load.weight = shares;
e05510d0 10153 se->load.inv_weight = 0;
29f59db3 10154
62fb1851 10155 if (on_rq)
29f59db3 10156 enqueue_entity(cfs_rq, se, 0);
c09595f6 10157}
62fb1851 10158
c09595f6
PZ
10159static void set_se_shares(struct sched_entity *se, unsigned long shares)
10160{
10161 struct cfs_rq *cfs_rq = se->cfs_rq;
10162 struct rq *rq = cfs_rq->rq;
10163 unsigned long flags;
10164
05fa785c 10165 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10166 __set_se_shares(se, shares);
05fa785c 10167 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10168}
10169
8ed36996
PZ
10170static DEFINE_MUTEX(shares_mutex);
10171
4cf86d77 10172int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10173{
10174 int i;
8ed36996 10175 unsigned long flags;
c61935fd 10176
ec7dc8ac
DG
10177 /*
10178 * We can't change the weight of the root cgroup.
10179 */
10180 if (!tg->se[0])
10181 return -EINVAL;
10182
18d95a28
PZ
10183 if (shares < MIN_SHARES)
10184 shares = MIN_SHARES;
cb4ad1ff
MX
10185 else if (shares > MAX_SHARES)
10186 shares = MAX_SHARES;
62fb1851 10187
8ed36996 10188 mutex_lock(&shares_mutex);
9b5b7751 10189 if (tg->shares == shares)
5cb350ba 10190 goto done;
29f59db3 10191
8ed36996 10192 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10193 for_each_possible_cpu(i)
10194 unregister_fair_sched_group(tg, i);
f473aa5e 10195 list_del_rcu(&tg->siblings);
8ed36996 10196 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10197
10198 /* wait for any ongoing reference to this group to finish */
10199 synchronize_sched();
10200
10201 /*
10202 * Now we are free to modify the group's share on each cpu
10203 * w/o tripping rebalance_share or load_balance_fair.
10204 */
9b5b7751 10205 tg->shares = shares;
c09595f6
PZ
10206 for_each_possible_cpu(i) {
10207 /*
10208 * force a rebalance
10209 */
10210 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10211 set_se_shares(tg->se[i], shares);
c09595f6 10212 }
29f59db3 10213
6b2d7700
SV
10214 /*
10215 * Enable load balance activity on this group, by inserting it back on
10216 * each cpu's rq->leaf_cfs_rq_list.
10217 */
8ed36996 10218 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10219 for_each_possible_cpu(i)
10220 register_fair_sched_group(tg, i);
f473aa5e 10221 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10222 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10223done:
8ed36996 10224 mutex_unlock(&shares_mutex);
9b5b7751 10225 return 0;
29f59db3
SV
10226}
10227
5cb350ba
DG
10228unsigned long sched_group_shares(struct task_group *tg)
10229{
10230 return tg->shares;
10231}
052f1dc7 10232#endif
5cb350ba 10233
052f1dc7 10234#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10235/*
9f0c1e56 10236 * Ensure that the real time constraints are schedulable.
6f505b16 10237 */
9f0c1e56
PZ
10238static DEFINE_MUTEX(rt_constraints_mutex);
10239
10240static unsigned long to_ratio(u64 period, u64 runtime)
10241{
10242 if (runtime == RUNTIME_INF)
9a7e0b18 10243 return 1ULL << 20;
9f0c1e56 10244
9a7e0b18 10245 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10246}
10247
9a7e0b18
PZ
10248/* Must be called with tasklist_lock held */
10249static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10250{
9a7e0b18 10251 struct task_struct *g, *p;
b40b2e8e 10252
9a7e0b18
PZ
10253 do_each_thread(g, p) {
10254 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10255 return 1;
10256 } while_each_thread(g, p);
b40b2e8e 10257
9a7e0b18
PZ
10258 return 0;
10259}
b40b2e8e 10260
9a7e0b18
PZ
10261struct rt_schedulable_data {
10262 struct task_group *tg;
10263 u64 rt_period;
10264 u64 rt_runtime;
10265};
b40b2e8e 10266
9a7e0b18
PZ
10267static int tg_schedulable(struct task_group *tg, void *data)
10268{
10269 struct rt_schedulable_data *d = data;
10270 struct task_group *child;
10271 unsigned long total, sum = 0;
10272 u64 period, runtime;
b40b2e8e 10273
9a7e0b18
PZ
10274 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10275 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10276
9a7e0b18
PZ
10277 if (tg == d->tg) {
10278 period = d->rt_period;
10279 runtime = d->rt_runtime;
b40b2e8e 10280 }
b40b2e8e 10281
98a4826b
PZ
10282#ifdef CONFIG_USER_SCHED
10283 if (tg == &root_task_group) {
10284 period = global_rt_period();
10285 runtime = global_rt_runtime();
10286 }
10287#endif
10288
4653f803
PZ
10289 /*
10290 * Cannot have more runtime than the period.
10291 */
10292 if (runtime > period && runtime != RUNTIME_INF)
10293 return -EINVAL;
6f505b16 10294
4653f803
PZ
10295 /*
10296 * Ensure we don't starve existing RT tasks.
10297 */
9a7e0b18
PZ
10298 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10299 return -EBUSY;
6f505b16 10300
9a7e0b18 10301 total = to_ratio(period, runtime);
6f505b16 10302
4653f803
PZ
10303 /*
10304 * Nobody can have more than the global setting allows.
10305 */
10306 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10307 return -EINVAL;
6f505b16 10308
4653f803
PZ
10309 /*
10310 * The sum of our children's runtime should not exceed our own.
10311 */
9a7e0b18
PZ
10312 list_for_each_entry_rcu(child, &tg->children, siblings) {
10313 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10314 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10315
9a7e0b18
PZ
10316 if (child == d->tg) {
10317 period = d->rt_period;
10318 runtime = d->rt_runtime;
10319 }
6f505b16 10320
9a7e0b18 10321 sum += to_ratio(period, runtime);
9f0c1e56 10322 }
6f505b16 10323
9a7e0b18
PZ
10324 if (sum > total)
10325 return -EINVAL;
10326
10327 return 0;
6f505b16
PZ
10328}
10329
9a7e0b18 10330static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10331{
9a7e0b18
PZ
10332 struct rt_schedulable_data data = {
10333 .tg = tg,
10334 .rt_period = period,
10335 .rt_runtime = runtime,
10336 };
10337
10338 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10339}
10340
d0b27fa7
PZ
10341static int tg_set_bandwidth(struct task_group *tg,
10342 u64 rt_period, u64 rt_runtime)
6f505b16 10343{
ac086bc2 10344 int i, err = 0;
9f0c1e56 10345
9f0c1e56 10346 mutex_lock(&rt_constraints_mutex);
521f1a24 10347 read_lock(&tasklist_lock);
9a7e0b18
PZ
10348 err = __rt_schedulable(tg, rt_period, rt_runtime);
10349 if (err)
9f0c1e56 10350 goto unlock;
ac086bc2 10351
0986b11b 10352 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10353 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10354 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10355
10356 for_each_possible_cpu(i) {
10357 struct rt_rq *rt_rq = tg->rt_rq[i];
10358
0986b11b 10359 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10360 rt_rq->rt_runtime = rt_runtime;
0986b11b 10361 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10362 }
0986b11b 10363 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10364 unlock:
521f1a24 10365 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10366 mutex_unlock(&rt_constraints_mutex);
10367
10368 return err;
6f505b16
PZ
10369}
10370
d0b27fa7
PZ
10371int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10372{
10373 u64 rt_runtime, rt_period;
10374
10375 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10376 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10377 if (rt_runtime_us < 0)
10378 rt_runtime = RUNTIME_INF;
10379
10380 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10381}
10382
9f0c1e56
PZ
10383long sched_group_rt_runtime(struct task_group *tg)
10384{
10385 u64 rt_runtime_us;
10386
d0b27fa7 10387 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10388 return -1;
10389
d0b27fa7 10390 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10391 do_div(rt_runtime_us, NSEC_PER_USEC);
10392 return rt_runtime_us;
10393}
d0b27fa7
PZ
10394
10395int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10396{
10397 u64 rt_runtime, rt_period;
10398
10399 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10400 rt_runtime = tg->rt_bandwidth.rt_runtime;
10401
619b0488
R
10402 if (rt_period == 0)
10403 return -EINVAL;
10404
d0b27fa7
PZ
10405 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10406}
10407
10408long sched_group_rt_period(struct task_group *tg)
10409{
10410 u64 rt_period_us;
10411
10412 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10413 do_div(rt_period_us, NSEC_PER_USEC);
10414 return rt_period_us;
10415}
10416
10417static int sched_rt_global_constraints(void)
10418{
4653f803 10419 u64 runtime, period;
d0b27fa7
PZ
10420 int ret = 0;
10421
ec5d4989
HS
10422 if (sysctl_sched_rt_period <= 0)
10423 return -EINVAL;
10424
4653f803
PZ
10425 runtime = global_rt_runtime();
10426 period = global_rt_period();
10427
10428 /*
10429 * Sanity check on the sysctl variables.
10430 */
10431 if (runtime > period && runtime != RUNTIME_INF)
10432 return -EINVAL;
10b612f4 10433
d0b27fa7 10434 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10435 read_lock(&tasklist_lock);
4653f803 10436 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10437 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10438 mutex_unlock(&rt_constraints_mutex);
10439
10440 return ret;
10441}
54e99124
DG
10442
10443int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10444{
10445 /* Don't accept realtime tasks when there is no way for them to run */
10446 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10447 return 0;
10448
10449 return 1;
10450}
10451
6d6bc0ad 10452#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10453static int sched_rt_global_constraints(void)
10454{
ac086bc2
PZ
10455 unsigned long flags;
10456 int i;
10457
ec5d4989
HS
10458 if (sysctl_sched_rt_period <= 0)
10459 return -EINVAL;
10460
60aa605d
PZ
10461 /*
10462 * There's always some RT tasks in the root group
10463 * -- migration, kstopmachine etc..
10464 */
10465 if (sysctl_sched_rt_runtime == 0)
10466 return -EBUSY;
10467
0986b11b 10468 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10469 for_each_possible_cpu(i) {
10470 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10471
0986b11b 10472 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10473 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10474 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10475 }
0986b11b 10476 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10477
d0b27fa7
PZ
10478 return 0;
10479}
6d6bc0ad 10480#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10481
10482int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10483 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10484 loff_t *ppos)
10485{
10486 int ret;
10487 int old_period, old_runtime;
10488 static DEFINE_MUTEX(mutex);
10489
10490 mutex_lock(&mutex);
10491 old_period = sysctl_sched_rt_period;
10492 old_runtime = sysctl_sched_rt_runtime;
10493
8d65af78 10494 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10495
10496 if (!ret && write) {
10497 ret = sched_rt_global_constraints();
10498 if (ret) {
10499 sysctl_sched_rt_period = old_period;
10500 sysctl_sched_rt_runtime = old_runtime;
10501 } else {
10502 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10503 def_rt_bandwidth.rt_period =
10504 ns_to_ktime(global_rt_period());
10505 }
10506 }
10507 mutex_unlock(&mutex);
10508
10509 return ret;
10510}
68318b8e 10511
052f1dc7 10512#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10513
10514/* return corresponding task_group object of a cgroup */
2b01dfe3 10515static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10516{
2b01dfe3
PM
10517 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10518 struct task_group, css);
68318b8e
SV
10519}
10520
10521static struct cgroup_subsys_state *
2b01dfe3 10522cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10523{
ec7dc8ac 10524 struct task_group *tg, *parent;
68318b8e 10525
2b01dfe3 10526 if (!cgrp->parent) {
68318b8e 10527 /* This is early initialization for the top cgroup */
68318b8e
SV
10528 return &init_task_group.css;
10529 }
10530
ec7dc8ac
DG
10531 parent = cgroup_tg(cgrp->parent);
10532 tg = sched_create_group(parent);
68318b8e
SV
10533 if (IS_ERR(tg))
10534 return ERR_PTR(-ENOMEM);
10535
68318b8e
SV
10536 return &tg->css;
10537}
10538
41a2d6cf
IM
10539static void
10540cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10541{
2b01dfe3 10542 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10543
10544 sched_destroy_group(tg);
10545}
10546
41a2d6cf 10547static int
be367d09 10548cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10549{
b68aa230 10550#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10551 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10552 return -EINVAL;
10553#else
68318b8e
SV
10554 /* We don't support RT-tasks being in separate groups */
10555 if (tsk->sched_class != &fair_sched_class)
10556 return -EINVAL;
b68aa230 10557#endif
be367d09
BB
10558 return 0;
10559}
68318b8e 10560
be367d09
BB
10561static int
10562cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10563 struct task_struct *tsk, bool threadgroup)
10564{
10565 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10566 if (retval)
10567 return retval;
10568 if (threadgroup) {
10569 struct task_struct *c;
10570 rcu_read_lock();
10571 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10572 retval = cpu_cgroup_can_attach_task(cgrp, c);
10573 if (retval) {
10574 rcu_read_unlock();
10575 return retval;
10576 }
10577 }
10578 rcu_read_unlock();
10579 }
68318b8e
SV
10580 return 0;
10581}
10582
10583static void
2b01dfe3 10584cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10585 struct cgroup *old_cont, struct task_struct *tsk,
10586 bool threadgroup)
68318b8e
SV
10587{
10588 sched_move_task(tsk);
be367d09
BB
10589 if (threadgroup) {
10590 struct task_struct *c;
10591 rcu_read_lock();
10592 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10593 sched_move_task(c);
10594 }
10595 rcu_read_unlock();
10596 }
68318b8e
SV
10597}
10598
052f1dc7 10599#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10600static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10601 u64 shareval)
68318b8e 10602{
2b01dfe3 10603 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10604}
10605
f4c753b7 10606static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10607{
2b01dfe3 10608 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10609
10610 return (u64) tg->shares;
10611}
6d6bc0ad 10612#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10613
052f1dc7 10614#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10615static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10616 s64 val)
6f505b16 10617{
06ecb27c 10618 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10619}
10620
06ecb27c 10621static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10622{
06ecb27c 10623 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10624}
d0b27fa7
PZ
10625
10626static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10627 u64 rt_period_us)
10628{
10629 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10630}
10631
10632static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10633{
10634 return sched_group_rt_period(cgroup_tg(cgrp));
10635}
6d6bc0ad 10636#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10637
fe5c7cc2 10638static struct cftype cpu_files[] = {
052f1dc7 10639#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10640 {
10641 .name = "shares",
f4c753b7
PM
10642 .read_u64 = cpu_shares_read_u64,
10643 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10644 },
052f1dc7
PZ
10645#endif
10646#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10647 {
9f0c1e56 10648 .name = "rt_runtime_us",
06ecb27c
PM
10649 .read_s64 = cpu_rt_runtime_read,
10650 .write_s64 = cpu_rt_runtime_write,
6f505b16 10651 },
d0b27fa7
PZ
10652 {
10653 .name = "rt_period_us",
f4c753b7
PM
10654 .read_u64 = cpu_rt_period_read_uint,
10655 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10656 },
052f1dc7 10657#endif
68318b8e
SV
10658};
10659
10660static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10661{
fe5c7cc2 10662 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10663}
10664
10665struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10666 .name = "cpu",
10667 .create = cpu_cgroup_create,
10668 .destroy = cpu_cgroup_destroy,
10669 .can_attach = cpu_cgroup_can_attach,
10670 .attach = cpu_cgroup_attach,
10671 .populate = cpu_cgroup_populate,
10672 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10673 .early_init = 1,
10674};
10675
052f1dc7 10676#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10677
10678#ifdef CONFIG_CGROUP_CPUACCT
10679
10680/*
10681 * CPU accounting code for task groups.
10682 *
10683 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10684 * (balbir@in.ibm.com).
10685 */
10686
934352f2 10687/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10688struct cpuacct {
10689 struct cgroup_subsys_state css;
10690 /* cpuusage holds pointer to a u64-type object on every cpu */
10691 u64 *cpuusage;
ef12fefa 10692 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10693 struct cpuacct *parent;
d842de87
SV
10694};
10695
10696struct cgroup_subsys cpuacct_subsys;
10697
10698/* return cpu accounting group corresponding to this container */
32cd756a 10699static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10700{
32cd756a 10701 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10702 struct cpuacct, css);
10703}
10704
10705/* return cpu accounting group to which this task belongs */
10706static inline struct cpuacct *task_ca(struct task_struct *tsk)
10707{
10708 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10709 struct cpuacct, css);
10710}
10711
10712/* create a new cpu accounting group */
10713static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10714 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10715{
10716 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10717 int i;
d842de87
SV
10718
10719 if (!ca)
ef12fefa 10720 goto out;
d842de87
SV
10721
10722 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10723 if (!ca->cpuusage)
10724 goto out_free_ca;
10725
10726 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10727 if (percpu_counter_init(&ca->cpustat[i], 0))
10728 goto out_free_counters;
d842de87 10729
934352f2
BR
10730 if (cgrp->parent)
10731 ca->parent = cgroup_ca(cgrp->parent);
10732
d842de87 10733 return &ca->css;
ef12fefa
BR
10734
10735out_free_counters:
10736 while (--i >= 0)
10737 percpu_counter_destroy(&ca->cpustat[i]);
10738 free_percpu(ca->cpuusage);
10739out_free_ca:
10740 kfree(ca);
10741out:
10742 return ERR_PTR(-ENOMEM);
d842de87
SV
10743}
10744
10745/* destroy an existing cpu accounting group */
41a2d6cf 10746static void
32cd756a 10747cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10748{
32cd756a 10749 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10750 int i;
d842de87 10751
ef12fefa
BR
10752 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10753 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10754 free_percpu(ca->cpuusage);
10755 kfree(ca);
10756}
10757
720f5498
KC
10758static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10759{
b36128c8 10760 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10761 u64 data;
10762
10763#ifndef CONFIG_64BIT
10764 /*
10765 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10766 */
05fa785c 10767 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10768 data = *cpuusage;
05fa785c 10769 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10770#else
10771 data = *cpuusage;
10772#endif
10773
10774 return data;
10775}
10776
10777static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10778{
b36128c8 10779 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10780
10781#ifndef CONFIG_64BIT
10782 /*
10783 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10784 */
05fa785c 10785 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10786 *cpuusage = val;
05fa785c 10787 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10788#else
10789 *cpuusage = val;
10790#endif
10791}
10792
d842de87 10793/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10794static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10795{
32cd756a 10796 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10797 u64 totalcpuusage = 0;
10798 int i;
10799
720f5498
KC
10800 for_each_present_cpu(i)
10801 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10802
10803 return totalcpuusage;
10804}
10805
0297b803
DG
10806static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10807 u64 reset)
10808{
10809 struct cpuacct *ca = cgroup_ca(cgrp);
10810 int err = 0;
10811 int i;
10812
10813 if (reset) {
10814 err = -EINVAL;
10815 goto out;
10816 }
10817
720f5498
KC
10818 for_each_present_cpu(i)
10819 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10820
0297b803
DG
10821out:
10822 return err;
10823}
10824
e9515c3c
KC
10825static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10826 struct seq_file *m)
10827{
10828 struct cpuacct *ca = cgroup_ca(cgroup);
10829 u64 percpu;
10830 int i;
10831
10832 for_each_present_cpu(i) {
10833 percpu = cpuacct_cpuusage_read(ca, i);
10834 seq_printf(m, "%llu ", (unsigned long long) percpu);
10835 }
10836 seq_printf(m, "\n");
10837 return 0;
10838}
10839
ef12fefa
BR
10840static const char *cpuacct_stat_desc[] = {
10841 [CPUACCT_STAT_USER] = "user",
10842 [CPUACCT_STAT_SYSTEM] = "system",
10843};
10844
10845static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10846 struct cgroup_map_cb *cb)
10847{
10848 struct cpuacct *ca = cgroup_ca(cgrp);
10849 int i;
10850
10851 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10852 s64 val = percpu_counter_read(&ca->cpustat[i]);
10853 val = cputime64_to_clock_t(val);
10854 cb->fill(cb, cpuacct_stat_desc[i], val);
10855 }
10856 return 0;
10857}
10858
d842de87
SV
10859static struct cftype files[] = {
10860 {
10861 .name = "usage",
f4c753b7
PM
10862 .read_u64 = cpuusage_read,
10863 .write_u64 = cpuusage_write,
d842de87 10864 },
e9515c3c
KC
10865 {
10866 .name = "usage_percpu",
10867 .read_seq_string = cpuacct_percpu_seq_read,
10868 },
ef12fefa
BR
10869 {
10870 .name = "stat",
10871 .read_map = cpuacct_stats_show,
10872 },
d842de87
SV
10873};
10874
32cd756a 10875static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10876{
32cd756a 10877 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10878}
10879
10880/*
10881 * charge this task's execution time to its accounting group.
10882 *
10883 * called with rq->lock held.
10884 */
10885static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10886{
10887 struct cpuacct *ca;
934352f2 10888 int cpu;
d842de87 10889
c40c6f85 10890 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10891 return;
10892
934352f2 10893 cpu = task_cpu(tsk);
a18b83b7
BR
10894
10895 rcu_read_lock();
10896
d842de87 10897 ca = task_ca(tsk);
d842de87 10898
934352f2 10899 for (; ca; ca = ca->parent) {
b36128c8 10900 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10901 *cpuusage += cputime;
10902 }
a18b83b7
BR
10903
10904 rcu_read_unlock();
d842de87
SV
10905}
10906
ef12fefa
BR
10907/*
10908 * Charge the system/user time to the task's accounting group.
10909 */
10910static void cpuacct_update_stats(struct task_struct *tsk,
10911 enum cpuacct_stat_index idx, cputime_t val)
10912{
10913 struct cpuacct *ca;
10914
10915 if (unlikely(!cpuacct_subsys.active))
10916 return;
10917
10918 rcu_read_lock();
10919 ca = task_ca(tsk);
10920
10921 do {
10922 percpu_counter_add(&ca->cpustat[idx], val);
10923 ca = ca->parent;
10924 } while (ca);
10925 rcu_read_unlock();
10926}
10927
d842de87
SV
10928struct cgroup_subsys cpuacct_subsys = {
10929 .name = "cpuacct",
10930 .create = cpuacct_create,
10931 .destroy = cpuacct_destroy,
10932 .populate = cpuacct_populate,
10933 .subsys_id = cpuacct_subsys_id,
10934};
10935#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10936
10937#ifndef CONFIG_SMP
10938
10939int rcu_expedited_torture_stats(char *page)
10940{
10941 return 0;
10942}
10943EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10944
10945void synchronize_sched_expedited(void)
10946{
10947}
10948EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10949
10950#else /* #ifndef CONFIG_SMP */
10951
10952static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10953static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10954
10955#define RCU_EXPEDITED_STATE_POST -2
10956#define RCU_EXPEDITED_STATE_IDLE -1
10957
10958static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10959
10960int rcu_expedited_torture_stats(char *page)
10961{
10962 int cnt = 0;
10963 int cpu;
10964
10965 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10966 for_each_online_cpu(cpu) {
10967 cnt += sprintf(&page[cnt], " %d:%d",
10968 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10969 }
10970 cnt += sprintf(&page[cnt], "\n");
10971 return cnt;
10972}
10973EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10974
10975static long synchronize_sched_expedited_count;
10976
10977/*
10978 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10979 * approach to force grace period to end quickly. This consumes
10980 * significant time on all CPUs, and is thus not recommended for
10981 * any sort of common-case code.
10982 *
10983 * Note that it is illegal to call this function while holding any
10984 * lock that is acquired by a CPU-hotplug notifier. Failing to
10985 * observe this restriction will result in deadlock.
10986 */
10987void synchronize_sched_expedited(void)
10988{
10989 int cpu;
10990 unsigned long flags;
10991 bool need_full_sync = 0;
10992 struct rq *rq;
10993 struct migration_req *req;
10994 long snap;
10995 int trycount = 0;
10996
10997 smp_mb(); /* ensure prior mod happens before capturing snap. */
10998 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10999 get_online_cpus();
11000 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
11001 put_online_cpus();
11002 if (trycount++ < 10)
11003 udelay(trycount * num_online_cpus());
11004 else {
11005 synchronize_sched();
11006 return;
11007 }
11008 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
11009 smp_mb(); /* ensure test happens before caller kfree */
11010 return;
11011 }
11012 get_online_cpus();
11013 }
11014 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
11015 for_each_online_cpu(cpu) {
11016 rq = cpu_rq(cpu);
11017 req = &per_cpu(rcu_migration_req, cpu);
11018 init_completion(&req->done);
11019 req->task = NULL;
11020 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 11021 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 11022 list_add(&req->list, &rq->migration_queue);
05fa785c 11023 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11024 wake_up_process(rq->migration_thread);
11025 }
11026 for_each_online_cpu(cpu) {
11027 rcu_expedited_state = cpu;
11028 req = &per_cpu(rcu_migration_req, cpu);
11029 rq = cpu_rq(cpu);
11030 wait_for_completion(&req->done);
05fa785c 11031 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11032 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11033 need_full_sync = 1;
11034 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11035 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11036 }
11037 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11038 synchronize_sched_expedited_count++;
03b042bf
PM
11039 mutex_unlock(&rcu_sched_expedited_mutex);
11040 put_online_cpus();
11041 if (need_full_sync)
11042 synchronize_sched();
11043}
11044EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11045
11046#endif /* #else #ifndef CONFIG_SMP */