]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Fix comments to make them DocBook happy
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2
GH
429#ifdef CONFIG_SMP
430 struct cpupri cpupri;
431#endif
57d885fe
GH
432};
433
dc938520
GH
434/*
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
437 */
57d885fe
GH
438static struct root_domain def_root_domain;
439
440#endif
441
1da177e4
LT
442/*
443 * This is the main, per-CPU runqueue data structure.
444 *
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
448 */
70b97a7f 449struct rq {
d8016491 450 /* runqueue lock: */
05fa785c 451 raw_spinlock_t lock;
1da177e4
LT
452
453 /*
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
456 */
457 unsigned long nr_running;
6aa645ea
IM
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 460 unsigned long last_load_update_tick;
46cb4b7c 461#ifdef CONFIG_NO_HZ
39c0cbe2 462 u64 nohz_stamp;
83cd4fe2 463 unsigned char nohz_balance_kick;
46cb4b7c 464#endif
a64692a3
MG
465 unsigned int skip_clock_update;
466
d8016491
IM
467 /* capture load from *all* tasks on this cpu: */
468 struct load_weight load;
6aa645ea
IM
469 unsigned long nr_load_updates;
470 u64 nr_switches;
471
472 struct cfs_rq cfs;
6f505b16 473 struct rt_rq rt;
6f505b16 474
6aa645ea 475#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
476 /* list of leaf cfs_rq on this cpu: */
477 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
478#endif
479#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 480 struct list_head leaf_rt_rq_list;
1da177e4 481#endif
1da177e4
LT
482
483 /*
484 * This is part of a global counter where only the total sum
485 * over all CPUs matters. A task can increase this counter on
486 * one CPU and if it got migrated afterwards it may decrease
487 * it on another CPU. Always updated under the runqueue lock:
488 */
489 unsigned long nr_uninterruptible;
490
36c8b586 491 struct task_struct *curr, *idle;
c9819f45 492 unsigned long next_balance;
1da177e4 493 struct mm_struct *prev_mm;
6aa645ea 494
3e51f33f 495 u64 clock;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
dce48a84
TG
523 /* calc_load related fields */
524 unsigned long calc_load_update;
525 long calc_load_active;
526
8f4d37ec 527#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
528#ifdef CONFIG_SMP
529 int hrtick_csd_pending;
530 struct call_single_data hrtick_csd;
531#endif
8f4d37ec
PZ
532 struct hrtimer hrtick_timer;
533#endif
534
1da177e4
LT
535#ifdef CONFIG_SCHEDSTATS
536 /* latency stats */
537 struct sched_info rq_sched_info;
9c2c4802
KC
538 unsigned long long rq_cpu_time;
539 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
540
541 /* sys_sched_yield() stats */
480b9434 542 unsigned int yld_count;
1da177e4
LT
543
544 /* schedule() stats */
480b9434
KC
545 unsigned int sched_switch;
546 unsigned int sched_count;
547 unsigned int sched_goidle;
1da177e4
LT
548
549 /* try_to_wake_up() stats */
480b9434
KC
550 unsigned int ttwu_count;
551 unsigned int ttwu_local;
b8efb561
IM
552
553 /* BKL stats */
480b9434 554 unsigned int bkl_count;
1da177e4
LT
555#endif
556};
557
f34e3b61 558static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 559
7d478721
PZ
560static inline
561void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 562{
7d478721 563 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
564
565 /*
566 * A queue event has occurred, and we're going to schedule. In
567 * this case, we can save a useless back to back clock update.
568 */
569 if (test_tsk_need_resched(p))
570 rq->skip_clock_update = 1;
dd41f596
IM
571}
572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
583 rcu_dereference_check((p), \
584 rcu_read_lock_sched_held() || \
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
615 struct cgroup_subsys_state *css;
616
617 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
618 lockdep_is_held(&task_rq(p)->lock));
619 return container_of(css, struct task_group, css);
620}
621
622/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
623static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
624{
625#ifdef CONFIG_FAIR_GROUP_SCHED
626 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
627 p->se.parent = task_group(p)->se[cpu];
628#endif
629
630#ifdef CONFIG_RT_GROUP_SCHED
631 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
632 p->rt.parent = task_group(p)->rt_se[cpu];
633#endif
634}
635
636#else /* CONFIG_CGROUP_SCHED */
637
638static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
639static inline struct task_group *task_group(struct task_struct *p)
640{
641 return NULL;
642}
643
644#endif /* CONFIG_CGROUP_SCHED */
645
aa9c4c0f 646inline void update_rq_clock(struct rq *rq)
3e51f33f 647{
a64692a3
MG
648 if (!rq->skip_clock_update)
649 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
650}
651
bf5c91ba
IM
652/*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655#ifdef CONFIG_SCHED_DEBUG
656# define const_debug __read_mostly
657#else
658# define const_debug static const
659#endif
660
017730c1
IM
661/**
662 * runqueue_is_locked
e17b38bf 663 * @cpu: the processor in question.
017730c1
IM
664 *
665 * Returns true if the current cpu runqueue is locked.
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
89f19f04 669int runqueue_is_locked(int cpu)
017730c1 670{
05fa785c 671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
672}
673
bf5c91ba
IM
674/*
675 * Debugging: various feature bits
676 */
f00b45c1
PZ
677
678#define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
bf5c91ba 681enum {
f00b45c1 682#include "sched_features.h"
bf5c91ba
IM
683};
684
f00b45c1
PZ
685#undef SCHED_FEAT
686
687#define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
bf5c91ba 690const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
691#include "sched_features.h"
692 0;
693
694#undef SCHED_FEAT
695
696#ifdef CONFIG_SCHED_DEBUG
697#define SCHED_FEAT(name, enabled) \
698 #name ,
699
983ed7a6 700static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
701#include "sched_features.h"
702 NULL
703};
704
705#undef SCHED_FEAT
706
34f3a814 707static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 708{
f00b45c1
PZ
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 715 }
34f3a814 716 seq_puts(m, "\n");
f00b45c1 717
34f3a814 718 return 0;
f00b45c1
PZ
719}
720
721static ssize_t
722sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724{
725 char buf[64];
726 char *cmp = buf;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737
c24b7c52 738 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
739 neg = 1;
740 cmp += 3;
741 }
742
743 for (i = 0; sched_feat_names[i]; i++) {
744 int len = strlen(sched_feat_names[i]);
745
746 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
747 if (neg)
748 sysctl_sched_features &= ~(1UL << i);
749 else
750 sysctl_sched_features |= (1UL << i);
751 break;
752 }
753 }
754
755 if (!sched_feat_names[i])
756 return -EINVAL;
757
42994724 758 *ppos += cnt;
f00b45c1
PZ
759
760 return cnt;
761}
762
34f3a814
LZ
763static int sched_feat_open(struct inode *inode, struct file *filp)
764{
765 return single_open(filp, sched_feat_show, NULL);
766}
767
828c0950 768static const struct file_operations sched_feat_fops = {
34f3a814
LZ
769 .open = sched_feat_open,
770 .write = sched_feat_write,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = single_release,
f00b45c1
PZ
774};
775
776static __init int sched_init_debug(void)
777{
f00b45c1
PZ
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
780
781 return 0;
782}
783late_initcall(sched_init_debug);
784
785#endif
786
787#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 788
b82d9fdd
PZ
789/*
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
792 */
793const_debug unsigned int sysctl_sched_nr_migrate = 32;
794
2398f2c6
PZ
795/*
796 * ratelimit for updating the group shares.
55cd5340 797 * default: 0.25ms
2398f2c6 798 */
55cd5340 799unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 800unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 801
ffda12a1
PZ
802/*
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
805 * default: 4
806 */
807unsigned int sysctl_sched_shares_thresh = 4;
808
e9e9250b
PZ
809/*
810 * period over which we average the RT time consumption, measured
811 * in ms.
812 *
813 * default: 1s
814 */
815const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
816
fa85ae24 817/*
9f0c1e56 818 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
819 * default: 1s
820 */
9f0c1e56 821unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 822
6892b75e
IM
823static __read_mostly int scheduler_running;
824
9f0c1e56
PZ
825/*
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
828 */
829int sysctl_sched_rt_runtime = 950000;
fa85ae24 830
d0b27fa7
PZ
831static inline u64 global_rt_period(void)
832{
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834}
835
836static inline u64 global_rt_runtime(void)
837{
e26873bb 838 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
839 return RUNTIME_INF;
840
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842}
fa85ae24 843
1da177e4 844#ifndef prepare_arch_switch
4866cde0
NP
845# define prepare_arch_switch(next) do { } while (0)
846#endif
847#ifndef finish_arch_switch
848# define finish_arch_switch(prev) do { } while (0)
849#endif
850
051a1d1a
DA
851static inline int task_current(struct rq *rq, struct task_struct *p)
852{
853 return rq->curr == p;
854}
855
4866cde0 856#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 857static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 858{
051a1d1a 859 return task_current(rq, p);
4866cde0
NP
860}
861
70b97a7f 862static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
863{
864}
865
70b97a7f 866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 867{
da04c035
IM
868#ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq->lock.owner = current;
871#endif
8a25d5de
IM
872 /*
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
875 * prev into current:
876 */
877 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878
05fa785c 879 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
880}
881
882#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 883static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
884{
885#ifdef CONFIG_SMP
886 return p->oncpu;
887#else
051a1d1a 888 return task_current(rq, p);
4866cde0
NP
889#endif
890}
891
70b97a7f 892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
900 next->oncpu = 1;
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 903 raw_spin_unlock_irq(&rq->lock);
4866cde0 904#else
05fa785c 905 raw_spin_unlock(&rq->lock);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
918 prev->oncpu = 0;
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
1da177e4 922#endif
4866cde0
NP
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 925
0970d299 926/*
65cc8e48
PZ
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
928 * against ttwu().
0970d299
PZ
929 */
930static inline int task_is_waking(struct task_struct *p)
931{
0017d735 932 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
933}
934
b29739f9
IM
935/*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
70b97a7f 939static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
940 __acquires(rq->lock)
941{
0970d299
PZ
942 struct rq *rq;
943
3a5c359a 944 for (;;) {
0970d299 945 rq = task_rq(p);
05fa785c 946 raw_spin_lock(&rq->lock);
65cc8e48 947 if (likely(rq == task_rq(p)))
3a5c359a 948 return rq;
05fa785c 949 raw_spin_unlock(&rq->lock);
b29739f9 950 }
b29739f9
IM
951}
952
1da177e4
LT
953/*
954 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 955 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
956 * explicitly disabling preemption.
957 */
70b97a7f 958static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
959 __acquires(rq->lock)
960{
70b97a7f 961 struct rq *rq;
1da177e4 962
3a5c359a
AK
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
05fa785c 966 raw_spin_lock(&rq->lock);
65cc8e48 967 if (likely(rq == task_rq(p)))
3a5c359a 968 return rq;
05fa785c 969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 970 }
1da177e4
LT
971}
972
a9957449 973static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
974 __releases(rq->lock)
975{
05fa785c 976 raw_spin_unlock(&rq->lock);
b29739f9
IM
977}
978
70b97a7f 979static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
983}
984
1da177e4 985/*
cc2a73b5 986 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 987 */
a9957449 988static struct rq *this_rq_lock(void)
1da177e4
LT
989 __acquires(rq->lock)
990{
70b97a7f 991 struct rq *rq;
1da177e4
LT
992
993 local_irq_disable();
994 rq = this_rq();
05fa785c 995 raw_spin_lock(&rq->lock);
1da177e4
LT
996
997 return rq;
998}
999
8f4d37ec
PZ
1000#ifdef CONFIG_SCHED_HRTICK
1001/*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
8f4d37ec
PZ
1011
1012/*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017static inline int hrtick_enabled(struct rq *rq)
1018{
1019 if (!sched_feat(HRTICK))
1020 return 0;
ba42059f 1021 if (!cpu_active(cpu_of(rq)))
b328ca18 1022 return 0;
8f4d37ec
PZ
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026static void hrtick_clear(struct rq *rq)
1027{
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032/*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037{
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
05fa785c 1042 raw_spin_lock(&rq->lock);
3e51f33f 1043 update_rq_clock(rq);
8f4d37ec 1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1045 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1046
1047 return HRTIMER_NORESTART;
1048}
1049
95e904c7 1050#ifdef CONFIG_SMP
31656519
PZ
1051/*
1052 * called from hardirq (IPI) context
1053 */
1054static void __hrtick_start(void *arg)
b328ca18 1055{
31656519 1056 struct rq *rq = arg;
b328ca18 1057
05fa785c 1058 raw_spin_lock(&rq->lock);
31656519
PZ
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
05fa785c 1061 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1062}
1063
31656519
PZ
1064/*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1070{
31656519
PZ
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1073
cc584b21 1074 hrtimer_set_expires(timer, time);
31656519
PZ
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
6e275637 1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1080 rq->hrtick_csd_pending = 1;
1081 }
b328ca18
PZ
1082}
1083
1084static int
1085hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086{
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
31656519 1096 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101}
1102
fa748203 1103static __init void init_hrtick(void)
b328ca18
PZ
1104{
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106}
31656519
PZ
1107#else
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
1114{
7f1e2ca9 1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1116 HRTIMER_MODE_REL_PINNED, 0);
31656519 1117}
b328ca18 1118
006c75f1 1119static inline void init_hrtick(void)
8f4d37ec 1120{
8f4d37ec 1121}
31656519 1122#endif /* CONFIG_SMP */
8f4d37ec 1123
31656519 1124static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1125{
31656519
PZ
1126#ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
8f4d37ec 1128
31656519
PZ
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132#endif
8f4d37ec 1133
31656519
PZ
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
8f4d37ec 1136}
006c75f1 1137#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1138static inline void hrtick_clear(struct rq *rq)
1139{
1140}
1141
8f4d37ec
PZ
1142static inline void init_rq_hrtick(struct rq *rq)
1143{
1144}
1145
b328ca18
PZ
1146static inline void init_hrtick(void)
1147{
1148}
006c75f1 1149#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1150
c24d20db
IM
1151/*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158#ifdef CONFIG_SMP
1159
1160#ifndef tsk_is_polling
1161#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162#endif
1163
31656519 1164static void resched_task(struct task_struct *p)
c24d20db
IM
1165{
1166 int cpu;
1167
05fa785c 1168 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1169
5ed0cec0 1170 if (test_tsk_need_resched(p))
c24d20db
IM
1171 return;
1172
5ed0cec0 1173 set_tsk_need_resched(p);
c24d20db
IM
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183}
1184
1185static void resched_cpu(int cpu)
1186{
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
05fa785c 1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1191 return;
1192 resched_task(cpu_curr(cpu));
05fa785c 1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1194}
06d8308c
TG
1195
1196#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1197/*
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1200 *
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 */
1205int get_nohz_timer_target(void)
1206{
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1210
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1213 if (!idle_cpu(i))
1214 return i;
1215 }
1216 return cpu;
1217}
06d8308c
TG
1218/*
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1227 */
1228void wake_up_idle_cpu(int cpu)
1229{
1230 struct rq *rq = cpu_rq(cpu);
1231
1232 if (cpu == smp_processor_id())
1233 return;
1234
1235 /*
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1241 */
1242 if (rq->curr != rq->idle)
1243 return;
1244
1245 /*
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1249 */
5ed0cec0 1250 set_tsk_need_resched(rq->idle);
06d8308c
TG
1251
1252 /* NEED_RESCHED must be visible before we test polling */
1253 smp_mb();
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1256}
39c0cbe2
MG
1257
1258int nohz_ratelimit(int cpu)
1259{
1260 struct rq *rq = cpu_rq(cpu);
1261 u64 diff = rq->clock - rq->nohz_stamp;
1262
1263 rq->nohz_stamp = rq->clock;
1264
1265 return diff < (NSEC_PER_SEC / HZ) >> 1;
1266}
1267
6d6bc0ad 1268#endif /* CONFIG_NO_HZ */
06d8308c 1269
e9e9250b
PZ
1270static u64 sched_avg_period(void)
1271{
1272 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1273}
1274
1275static void sched_avg_update(struct rq *rq)
1276{
1277 s64 period = sched_avg_period();
1278
1279 while ((s64)(rq->clock - rq->age_stamp) > period) {
1280 rq->age_stamp += period;
1281 rq->rt_avg /= 2;
1282 }
1283}
1284
1285static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1286{
1287 rq->rt_avg += rt_delta;
1288 sched_avg_update(rq);
1289}
1290
6d6bc0ad 1291#else /* !CONFIG_SMP */
31656519 1292static void resched_task(struct task_struct *p)
c24d20db 1293{
05fa785c 1294 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1295 set_tsk_need_resched(p);
c24d20db 1296}
e9e9250b
PZ
1297
1298static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1299{
1300}
6d6bc0ad 1301#endif /* CONFIG_SMP */
c24d20db 1302
45bf76df
IM
1303#if BITS_PER_LONG == 32
1304# define WMULT_CONST (~0UL)
1305#else
1306# define WMULT_CONST (1UL << 32)
1307#endif
1308
1309#define WMULT_SHIFT 32
1310
194081eb
IM
1311/*
1312 * Shift right and round:
1313 */
cf2ab469 1314#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1315
a7be37ac
PZ
1316/*
1317 * delta *= weight / lw
1318 */
cb1c4fc9 1319static unsigned long
45bf76df
IM
1320calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1321 struct load_weight *lw)
1322{
1323 u64 tmp;
1324
7a232e03
LJ
1325 if (!lw->inv_weight) {
1326 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1327 lw->inv_weight = 1;
1328 else
1329 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1330 / (lw->weight+1);
1331 }
45bf76df
IM
1332
1333 tmp = (u64)delta_exec * weight;
1334 /*
1335 * Check whether we'd overflow the 64-bit multiplication:
1336 */
194081eb 1337 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1338 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1339 WMULT_SHIFT/2);
1340 else
cf2ab469 1341 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1342
ecf691da 1343 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1344}
1345
1091985b 1346static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1347{
1348 lw->weight += inc;
e89996ae 1349 lw->inv_weight = 0;
45bf76df
IM
1350}
1351
1091985b 1352static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1353{
1354 lw->weight -= dec;
e89996ae 1355 lw->inv_weight = 0;
45bf76df
IM
1356}
1357
2dd73a4f
PW
1358/*
1359 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1360 * of tasks with abnormal "nice" values across CPUs the contribution that
1361 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1362 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1363 * scaled version of the new time slice allocation that they receive on time
1364 * slice expiry etc.
1365 */
1366
cce7ade8
PZ
1367#define WEIGHT_IDLEPRIO 3
1368#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1369
1370/*
1371 * Nice levels are multiplicative, with a gentle 10% change for every
1372 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1373 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1374 * that remained on nice 0.
1375 *
1376 * The "10% effect" is relative and cumulative: from _any_ nice level,
1377 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1378 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1379 * If a task goes up by ~10% and another task goes down by ~10% then
1380 * the relative distance between them is ~25%.)
dd41f596
IM
1381 */
1382static const int prio_to_weight[40] = {
254753dc
IM
1383 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1384 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1385 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1386 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1387 /* 0 */ 1024, 820, 655, 526, 423,
1388 /* 5 */ 335, 272, 215, 172, 137,
1389 /* 10 */ 110, 87, 70, 56, 45,
1390 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1391};
1392
5714d2de
IM
1393/*
1394 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1395 *
1396 * In cases where the weight does not change often, we can use the
1397 * precalculated inverse to speed up arithmetics by turning divisions
1398 * into multiplications:
1399 */
dd41f596 1400static const u32 prio_to_wmult[40] = {
254753dc
IM
1401 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1402 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1403 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1404 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1405 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1406 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1407 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1408 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1409};
2dd73a4f 1410
ef12fefa
BR
1411/* Time spent by the tasks of the cpu accounting group executing in ... */
1412enum cpuacct_stat_index {
1413 CPUACCT_STAT_USER, /* ... user mode */
1414 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1415
1416 CPUACCT_STAT_NSTATS,
1417};
1418
d842de87
SV
1419#ifdef CONFIG_CGROUP_CPUACCT
1420static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1421static void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1423#else
1424static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1425static inline void cpuacct_update_stats(struct task_struct *tsk,
1426 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1427#endif
1428
18d95a28
PZ
1429static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1430{
1431 update_load_add(&rq->load, load);
1432}
1433
1434static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_sub(&rq->load, load);
1437}
1438
7940ca36 1439#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1440typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1441
1442/*
1443 * Iterate the full tree, calling @down when first entering a node and @up when
1444 * leaving it for the final time.
1445 */
eb755805 1446static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1447{
1448 struct task_group *parent, *child;
eb755805 1449 int ret;
c09595f6
PZ
1450
1451 rcu_read_lock();
1452 parent = &root_task_group;
1453down:
eb755805
PZ
1454 ret = (*down)(parent, data);
1455 if (ret)
1456 goto out_unlock;
c09595f6
PZ
1457 list_for_each_entry_rcu(child, &parent->children, siblings) {
1458 parent = child;
1459 goto down;
1460
1461up:
1462 continue;
1463 }
eb755805
PZ
1464 ret = (*up)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467
1468 child = parent;
1469 parent = parent->parent;
1470 if (parent)
1471 goto up;
eb755805 1472out_unlock:
c09595f6 1473 rcu_read_unlock();
eb755805
PZ
1474
1475 return ret;
c09595f6
PZ
1476}
1477
eb755805
PZ
1478static int tg_nop(struct task_group *tg, void *data)
1479{
1480 return 0;
c09595f6 1481}
eb755805
PZ
1482#endif
1483
1484#ifdef CONFIG_SMP
f5f08f39
PZ
1485/* Used instead of source_load when we know the type == 0 */
1486static unsigned long weighted_cpuload(const int cpu)
1487{
1488 return cpu_rq(cpu)->load.weight;
1489}
1490
1491/*
1492 * Return a low guess at the load of a migration-source cpu weighted
1493 * according to the scheduling class and "nice" value.
1494 *
1495 * We want to under-estimate the load of migration sources, to
1496 * balance conservatively.
1497 */
1498static unsigned long source_load(int cpu, int type)
1499{
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1502
1503 if (type == 0 || !sched_feat(LB_BIAS))
1504 return total;
1505
1506 return min(rq->cpu_load[type-1], total);
1507}
1508
1509/*
1510 * Return a high guess at the load of a migration-target cpu weighted
1511 * according to the scheduling class and "nice" value.
1512 */
1513static unsigned long target_load(int cpu, int type)
1514{
1515 struct rq *rq = cpu_rq(cpu);
1516 unsigned long total = weighted_cpuload(cpu);
1517
1518 if (type == 0 || !sched_feat(LB_BIAS))
1519 return total;
1520
1521 return max(rq->cpu_load[type-1], total);
1522}
1523
ae154be1
PZ
1524static unsigned long power_of(int cpu)
1525{
e51fd5e2 1526 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1527}
1528
eb755805
PZ
1529static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1530
1531static unsigned long cpu_avg_load_per_task(int cpu)
1532{
1533 struct rq *rq = cpu_rq(cpu);
af6d596f 1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1535
4cd42620
SR
1536 if (nr_running)
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1538 else
1539 rq->avg_load_per_task = 0;
eb755805
PZ
1540
1541 return rq->avg_load_per_task;
1542}
1543
1544#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1545
43cf38eb 1546static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1547
c09595f6
PZ
1548static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1549
1550/*
1551 * Calculate and set the cpu's group shares.
1552 */
34d76c41
PZ
1553static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
4a6cc4bd 1556 unsigned long *usd_rq_weight)
18d95a28 1557{
34d76c41 1558 unsigned long shares, rq_weight;
a5004278 1559 int boost = 0;
c09595f6 1560
4a6cc4bd 1561 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1562 if (!rq_weight) {
1563 boost = 1;
1564 rq_weight = NICE_0_LOAD;
1565 }
c8cba857 1566
c09595f6 1567 /*
a8af7246
PZ
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
c09595f6 1571 */
ec4e0e2f 1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1574
ffda12a1
PZ
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
c09595f6 1579
05fa785c 1580 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1583 __set_se_shares(tg->se[cpu], shares);
05fa785c 1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1585 }
18d95a28 1586}
c09595f6
PZ
1587
1588/*
c8cba857
PZ
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
c09595f6 1592 */
eb755805 1593static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1594{
cd8ad40d 1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1596 unsigned long *usd_rq_weight;
eb755805 1597 struct sched_domain *sd = data;
34d76c41 1598 unsigned long flags;
c8cba857 1599 int i;
c09595f6 1600
34d76c41
PZ
1601 if (!tg->se[0])
1602 return 0;
1603
1604 local_irq_save(flags);
4a6cc4bd 1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1606
758b2cdc 1607 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1608 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1609 usd_rq_weight[i] = weight;
34d76c41 1610
cd8ad40d 1611 rq_weight += weight;
ec4e0e2f
KC
1612 /*
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1616 */
ec4e0e2f
KC
1617 if (!weight)
1618 weight = NICE_0_LOAD;
1619
cd8ad40d 1620 sum_weight += weight;
c8cba857 1621 shares += tg->cfs_rq[i]->shares;
c09595f6 1622 }
c09595f6 1623
cd8ad40d
PZ
1624 if (!rq_weight)
1625 rq_weight = sum_weight;
1626
c8cba857
PZ
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1629
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
c09595f6 1632
758b2cdc 1633 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1635
1636 local_irq_restore(flags);
eb755805
PZ
1637
1638 return 0;
c09595f6
PZ
1639}
1640
1641/*
c8cba857
PZ
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
c09595f6 1645 */
eb755805 1646static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1647{
c8cba857 1648 unsigned long load;
eb755805 1649 long cpu = (long)data;
c09595f6 1650
c8cba857
PZ
1651 if (!tg->parent) {
1652 load = cpu_rq(cpu)->load.weight;
1653 } else {
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1657 }
c09595f6 1658
c8cba857 1659 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1660
eb755805 1661 return 0;
c09595f6
PZ
1662}
1663
c8cba857 1664static void update_shares(struct sched_domain *sd)
4d8d595d 1665{
e7097159
PZ
1666 s64 elapsed;
1667 u64 now;
1668
1669 if (root_task_group_empty())
1670 return;
1671
c676329a 1672 now = local_clock();
e7097159 1673 elapsed = now - sd->last_update;
2398f2c6
PZ
1674
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
eb755805 1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1678 }
4d8d595d
PZ
1679}
1680
eb755805 1681static void update_h_load(long cpu)
c09595f6 1682{
e7097159
PZ
1683 if (root_task_group_empty())
1684 return;
1685
eb755805 1686 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1687}
1688
c09595f6
PZ
1689#else
1690
c8cba857 1691static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1692{
1693}
1694
18d95a28
PZ
1695#endif
1696
8f45e2b5
GH
1697#ifdef CONFIG_PREEMPT
1698
b78bb868
PZ
1699static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1700
70574a99 1701/*
8f45e2b5
GH
1702 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1703 * way at the expense of forcing extra atomic operations in all
1704 * invocations. This assures that the double_lock is acquired using the
1705 * same underlying policy as the spinlock_t on this architecture, which
1706 * reduces latency compared to the unfair variant below. However, it
1707 * also adds more overhead and therefore may reduce throughput.
70574a99 1708 */
8f45e2b5
GH
1709static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1710 __releases(this_rq->lock)
1711 __acquires(busiest->lock)
1712 __acquires(this_rq->lock)
1713{
05fa785c 1714 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1715 double_rq_lock(this_rq, busiest);
1716
1717 return 1;
1718}
1719
1720#else
1721/*
1722 * Unfair double_lock_balance: Optimizes throughput at the expense of
1723 * latency by eliminating extra atomic operations when the locks are
1724 * already in proper order on entry. This favors lower cpu-ids and will
1725 * grant the double lock to lower cpus over higher ids under contention,
1726 * regardless of entry order into the function.
1727 */
1728static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1729 __releases(this_rq->lock)
1730 __acquires(busiest->lock)
1731 __acquires(this_rq->lock)
1732{
1733 int ret = 0;
1734
05fa785c 1735 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1736 if (busiest < this_rq) {
05fa785c
TG
1737 raw_spin_unlock(&this_rq->lock);
1738 raw_spin_lock(&busiest->lock);
1739 raw_spin_lock_nested(&this_rq->lock,
1740 SINGLE_DEPTH_NESTING);
70574a99
AD
1741 ret = 1;
1742 } else
05fa785c
TG
1743 raw_spin_lock_nested(&busiest->lock,
1744 SINGLE_DEPTH_NESTING);
70574a99
AD
1745 }
1746 return ret;
1747}
1748
8f45e2b5
GH
1749#endif /* CONFIG_PREEMPT */
1750
1751/*
1752 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1753 */
1754static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1755{
1756 if (unlikely(!irqs_disabled())) {
1757 /* printk() doesn't work good under rq->lock */
05fa785c 1758 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1759 BUG_ON(1);
1760 }
1761
1762 return _double_lock_balance(this_rq, busiest);
1763}
1764
70574a99
AD
1765static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(busiest->lock)
1767{
05fa785c 1768 raw_spin_unlock(&busiest->lock);
70574a99
AD
1769 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1770}
1e3c88bd
PZ
1771
1772/*
1773 * double_rq_lock - safely lock two runqueues
1774 *
1775 * Note this does not disable interrupts like task_rq_lock,
1776 * you need to do so manually before calling.
1777 */
1778static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1779 __acquires(rq1->lock)
1780 __acquires(rq2->lock)
1781{
1782 BUG_ON(!irqs_disabled());
1783 if (rq1 == rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 __acquire(rq2->lock); /* Fake it out ;) */
1786 } else {
1787 if (rq1 < rq2) {
1788 raw_spin_lock(&rq1->lock);
1789 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1790 } else {
1791 raw_spin_lock(&rq2->lock);
1792 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1793 }
1794 }
1e3c88bd
PZ
1795}
1796
1797/*
1798 * double_rq_unlock - safely unlock two runqueues
1799 *
1800 * Note this does not restore interrupts like task_rq_unlock,
1801 * you need to do so manually after calling.
1802 */
1803static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1804 __releases(rq1->lock)
1805 __releases(rq2->lock)
1806{
1807 raw_spin_unlock(&rq1->lock);
1808 if (rq1 != rq2)
1809 raw_spin_unlock(&rq2->lock);
1810 else
1811 __release(rq2->lock);
1812}
1813
18d95a28
PZ
1814#endif
1815
30432094 1816#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1817static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1818{
30432094 1819#ifdef CONFIG_SMP
34e83e85
IM
1820 cfs_rq->shares = shares;
1821#endif
1822}
30432094 1823#endif
e7693a36 1824
74f5187a 1825static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1826static void update_sysctl(void);
acb4a848 1827static int get_update_sysctl_factor(void);
fdf3e95d 1828static void update_cpu_load(struct rq *this_rq);
dce48a84 1829
cd29fe6f
PZ
1830static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1831{
1832 set_task_rq(p, cpu);
1833#ifdef CONFIG_SMP
1834 /*
1835 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1836 * successfuly executed on another CPU. We must ensure that updates of
1837 * per-task data have been completed by this moment.
1838 */
1839 smp_wmb();
1840 task_thread_info(p)->cpu = cpu;
1841#endif
1842}
dce48a84 1843
1e3c88bd 1844static const struct sched_class rt_sched_class;
dd41f596
IM
1845
1846#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1847#define for_each_class(class) \
1848 for (class = sched_class_highest; class; class = class->next)
dd41f596 1849
1e3c88bd
PZ
1850#include "sched_stats.h"
1851
c09595f6 1852static void inc_nr_running(struct rq *rq)
9c217245
IM
1853{
1854 rq->nr_running++;
9c217245
IM
1855}
1856
c09595f6 1857static void dec_nr_running(struct rq *rq)
9c217245
IM
1858{
1859 rq->nr_running--;
9c217245
IM
1860}
1861
45bf76df
IM
1862static void set_load_weight(struct task_struct *p)
1863{
1864 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1865 p->se.load.weight = 0;
1866 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1867 return;
1868 }
45bf76df 1869
dd41f596
IM
1870 /*
1871 * SCHED_IDLE tasks get minimal weight:
1872 */
1873 if (p->policy == SCHED_IDLE) {
1874 p->se.load.weight = WEIGHT_IDLEPRIO;
1875 p->se.load.inv_weight = WMULT_IDLEPRIO;
1876 return;
1877 }
71f8bd46 1878
dd41f596
IM
1879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1881}
1882
371fd7e7 1883static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1884{
a64692a3 1885 update_rq_clock(rq);
dd41f596 1886 sched_info_queued(p);
371fd7e7 1887 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1888 p->se.on_rq = 1;
71f8bd46
IM
1889}
1890
371fd7e7 1891static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1892{
a64692a3 1893 update_rq_clock(rq);
46ac22ba 1894 sched_info_dequeued(p);
371fd7e7 1895 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1896 p->se.on_rq = 0;
71f8bd46
IM
1897}
1898
1e3c88bd
PZ
1899/*
1900 * activate_task - move a task to the runqueue.
1901 */
371fd7e7 1902static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1903{
1904 if (task_contributes_to_load(p))
1905 rq->nr_uninterruptible--;
1906
371fd7e7 1907 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1908 inc_nr_running(rq);
1909}
1910
1911/*
1912 * deactivate_task - remove a task from the runqueue.
1913 */
371fd7e7 1914static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1915{
1916 if (task_contributes_to_load(p))
1917 rq->nr_uninterruptible++;
1918
371fd7e7 1919 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1920 dec_nr_running(rq);
1921}
1922
1923#include "sched_idletask.c"
1924#include "sched_fair.c"
1925#include "sched_rt.c"
1926#ifdef CONFIG_SCHED_DEBUG
1927# include "sched_debug.c"
1928#endif
1929
14531189 1930/*
dd41f596 1931 * __normal_prio - return the priority that is based on the static prio
14531189 1932 */
14531189
IM
1933static inline int __normal_prio(struct task_struct *p)
1934{
dd41f596 1935 return p->static_prio;
14531189
IM
1936}
1937
b29739f9
IM
1938/*
1939 * Calculate the expected normal priority: i.e. priority
1940 * without taking RT-inheritance into account. Might be
1941 * boosted by interactivity modifiers. Changes upon fork,
1942 * setprio syscalls, and whenever the interactivity
1943 * estimator recalculates.
1944 */
36c8b586 1945static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1946{
1947 int prio;
1948
e05606d3 1949 if (task_has_rt_policy(p))
b29739f9
IM
1950 prio = MAX_RT_PRIO-1 - p->rt_priority;
1951 else
1952 prio = __normal_prio(p);
1953 return prio;
1954}
1955
1956/*
1957 * Calculate the current priority, i.e. the priority
1958 * taken into account by the scheduler. This value might
1959 * be boosted by RT tasks, or might be boosted by
1960 * interactivity modifiers. Will be RT if the task got
1961 * RT-boosted. If not then it returns p->normal_prio.
1962 */
36c8b586 1963static int effective_prio(struct task_struct *p)
b29739f9
IM
1964{
1965 p->normal_prio = normal_prio(p);
1966 /*
1967 * If we are RT tasks or we were boosted to RT priority,
1968 * keep the priority unchanged. Otherwise, update priority
1969 * to the normal priority:
1970 */
1971 if (!rt_prio(p->prio))
1972 return p->normal_prio;
1973 return p->prio;
1974}
1975
1da177e4
LT
1976/**
1977 * task_curr - is this task currently executing on a CPU?
1978 * @p: the task in question.
1979 */
36c8b586 1980inline int task_curr(const struct task_struct *p)
1da177e4
LT
1981{
1982 return cpu_curr(task_cpu(p)) == p;
1983}
1984
cb469845
SR
1985static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1986 const struct sched_class *prev_class,
1987 int oldprio, int running)
1988{
1989 if (prev_class != p->sched_class) {
1990 if (prev_class->switched_from)
1991 prev_class->switched_from(rq, p, running);
1992 p->sched_class->switched_to(rq, p, running);
1993 } else
1994 p->sched_class->prio_changed(rq, p, oldprio, running);
1995}
1996
1da177e4 1997#ifdef CONFIG_SMP
cc367732
IM
1998/*
1999 * Is this task likely cache-hot:
2000 */
e7693a36 2001static int
cc367732
IM
2002task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2003{
2004 s64 delta;
2005
e6c8fba7
PZ
2006 if (p->sched_class != &fair_sched_class)
2007 return 0;
2008
f540a608
IM
2009 /*
2010 * Buddy candidates are cache hot:
2011 */
f685ceac 2012 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2013 (&p->se == cfs_rq_of(&p->se)->next ||
2014 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2015 return 1;
2016
6bc1665b
IM
2017 if (sysctl_sched_migration_cost == -1)
2018 return 1;
2019 if (sysctl_sched_migration_cost == 0)
2020 return 0;
2021
cc367732
IM
2022 delta = now - p->se.exec_start;
2023
2024 return delta < (s64)sysctl_sched_migration_cost;
2025}
2026
dd41f596 2027void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2028{
e2912009
PZ
2029#ifdef CONFIG_SCHED_DEBUG
2030 /*
2031 * We should never call set_task_cpu() on a blocked task,
2032 * ttwu() will sort out the placement.
2033 */
077614ee
PZ
2034 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2035 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2036#endif
2037
de1d7286 2038 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2039
0c69774e
PZ
2040 if (task_cpu(p) != new_cpu) {
2041 p->se.nr_migrations++;
2042 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2043 }
dd41f596
IM
2044
2045 __set_task_cpu(p, new_cpu);
c65cc870
IM
2046}
2047
969c7921 2048struct migration_arg {
36c8b586 2049 struct task_struct *task;
1da177e4 2050 int dest_cpu;
70b97a7f 2051};
1da177e4 2052
969c7921
TH
2053static int migration_cpu_stop(void *data);
2054
1da177e4
LT
2055/*
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2058 */
969c7921 2059static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2060{
70b97a7f 2061 struct rq *rq = task_rq(p);
1da177e4
LT
2062
2063 /*
2064 * If the task is not on a runqueue (and not running), then
e2912009 2065 * the next wake-up will properly place the task.
1da177e4 2066 */
969c7921 2067 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2068}
2069
2070/*
2071 * wait_task_inactive - wait for a thread to unschedule.
2072 *
85ba2d86
RM
2073 * If @match_state is nonzero, it's the @p->state value just checked and
2074 * not expected to change. If it changes, i.e. @p might have woken up,
2075 * then return zero. When we succeed in waiting for @p to be off its CPU,
2076 * we return a positive number (its total switch count). If a second call
2077 * a short while later returns the same number, the caller can be sure that
2078 * @p has remained unscheduled the whole time.
2079 *
1da177e4
LT
2080 * The caller must ensure that the task *will* unschedule sometime soon,
2081 * else this function might spin for a *long* time. This function can't
2082 * be called with interrupts off, or it may introduce deadlock with
2083 * smp_call_function() if an IPI is sent by the same process we are
2084 * waiting to become inactive.
2085 */
85ba2d86 2086unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2087{
2088 unsigned long flags;
dd41f596 2089 int running, on_rq;
85ba2d86 2090 unsigned long ncsw;
70b97a7f 2091 struct rq *rq;
1da177e4 2092
3a5c359a
AK
2093 for (;;) {
2094 /*
2095 * We do the initial early heuristics without holding
2096 * any task-queue locks at all. We'll only try to get
2097 * the runqueue lock when things look like they will
2098 * work out!
2099 */
2100 rq = task_rq(p);
fa490cfd 2101
3a5c359a
AK
2102 /*
2103 * If the task is actively running on another CPU
2104 * still, just relax and busy-wait without holding
2105 * any locks.
2106 *
2107 * NOTE! Since we don't hold any locks, it's not
2108 * even sure that "rq" stays as the right runqueue!
2109 * But we don't care, since "task_running()" will
2110 * return false if the runqueue has changed and p
2111 * is actually now running somewhere else!
2112 */
85ba2d86
RM
2113 while (task_running(rq, p)) {
2114 if (match_state && unlikely(p->state != match_state))
2115 return 0;
3a5c359a 2116 cpu_relax();
85ba2d86 2117 }
fa490cfd 2118
3a5c359a
AK
2119 /*
2120 * Ok, time to look more closely! We need the rq
2121 * lock now, to be *sure*. If we're wrong, we'll
2122 * just go back and repeat.
2123 */
2124 rq = task_rq_lock(p, &flags);
27a9da65 2125 trace_sched_wait_task(p);
3a5c359a
AK
2126 running = task_running(rq, p);
2127 on_rq = p->se.on_rq;
85ba2d86 2128 ncsw = 0;
f31e11d8 2129 if (!match_state || p->state == match_state)
93dcf55f 2130 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2131 task_rq_unlock(rq, &flags);
fa490cfd 2132
85ba2d86
RM
2133 /*
2134 * If it changed from the expected state, bail out now.
2135 */
2136 if (unlikely(!ncsw))
2137 break;
2138
3a5c359a
AK
2139 /*
2140 * Was it really running after all now that we
2141 * checked with the proper locks actually held?
2142 *
2143 * Oops. Go back and try again..
2144 */
2145 if (unlikely(running)) {
2146 cpu_relax();
2147 continue;
2148 }
fa490cfd 2149
3a5c359a
AK
2150 /*
2151 * It's not enough that it's not actively running,
2152 * it must be off the runqueue _entirely_, and not
2153 * preempted!
2154 *
80dd99b3 2155 * So if it was still runnable (but just not actively
3a5c359a
AK
2156 * running right now), it's preempted, and we should
2157 * yield - it could be a while.
2158 */
2159 if (unlikely(on_rq)) {
2160 schedule_timeout_uninterruptible(1);
2161 continue;
2162 }
fa490cfd 2163
3a5c359a
AK
2164 /*
2165 * Ahh, all good. It wasn't running, and it wasn't
2166 * runnable, which means that it will never become
2167 * running in the future either. We're all done!
2168 */
2169 break;
2170 }
85ba2d86
RM
2171
2172 return ncsw;
1da177e4
LT
2173}
2174
2175/***
2176 * kick_process - kick a running thread to enter/exit the kernel
2177 * @p: the to-be-kicked thread
2178 *
2179 * Cause a process which is running on another CPU to enter
2180 * kernel-mode, without any delay. (to get signals handled.)
2181 *
2182 * NOTE: this function doesnt have to take the runqueue lock,
2183 * because all it wants to ensure is that the remote task enters
2184 * the kernel. If the IPI races and the task has been migrated
2185 * to another CPU then no harm is done and the purpose has been
2186 * achieved as well.
2187 */
36c8b586 2188void kick_process(struct task_struct *p)
1da177e4
LT
2189{
2190 int cpu;
2191
2192 preempt_disable();
2193 cpu = task_cpu(p);
2194 if ((cpu != smp_processor_id()) && task_curr(p))
2195 smp_send_reschedule(cpu);
2196 preempt_enable();
2197}
b43e3521 2198EXPORT_SYMBOL_GPL(kick_process);
476d139c 2199#endif /* CONFIG_SMP */
1da177e4 2200
0793a61d
TG
2201/**
2202 * task_oncpu_function_call - call a function on the cpu on which a task runs
2203 * @p: the task to evaluate
2204 * @func: the function to be called
2205 * @info: the function call argument
2206 *
2207 * Calls the function @func when the task is currently running. This might
2208 * be on the current CPU, which just calls the function directly
2209 */
2210void task_oncpu_function_call(struct task_struct *p,
2211 void (*func) (void *info), void *info)
2212{
2213 int cpu;
2214
2215 preempt_disable();
2216 cpu = task_cpu(p);
2217 if (task_curr(p))
2218 smp_call_function_single(cpu, func, info, 1);
2219 preempt_enable();
2220}
2221
970b13ba 2222#ifdef CONFIG_SMP
30da688e
ON
2223/*
2224 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2225 */
5da9a0fb
PZ
2226static int select_fallback_rq(int cpu, struct task_struct *p)
2227{
2228 int dest_cpu;
2229 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2230
2231 /* Look for allowed, online CPU in same node. */
2232 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2233 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2234 return dest_cpu;
2235
2236 /* Any allowed, online CPU? */
2237 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2238 if (dest_cpu < nr_cpu_ids)
2239 return dest_cpu;
2240
2241 /* No more Mr. Nice Guy. */
897f0b3c 2242 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2243 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2244 /*
2245 * Don't tell them about moving exiting tasks or
2246 * kernel threads (both mm NULL), since they never
2247 * leave kernel.
2248 */
2249 if (p->mm && printk_ratelimit()) {
2250 printk(KERN_INFO "process %d (%s) no "
2251 "longer affine to cpu%d\n",
2252 task_pid_nr(p), p->comm, cpu);
2253 }
2254 }
2255
2256 return dest_cpu;
2257}
2258
e2912009 2259/*
30da688e 2260 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2261 */
970b13ba 2262static inline
0017d735 2263int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2264{
0017d735 2265 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2266
2267 /*
2268 * In order not to call set_task_cpu() on a blocking task we need
2269 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2270 * cpu.
2271 *
2272 * Since this is common to all placement strategies, this lives here.
2273 *
2274 * [ this allows ->select_task() to simply return task_cpu(p) and
2275 * not worry about this generic constraint ]
2276 */
2277 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2278 !cpu_online(cpu)))
5da9a0fb 2279 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2280
2281 return cpu;
970b13ba 2282}
09a40af5
MG
2283
2284static void update_avg(u64 *avg, u64 sample)
2285{
2286 s64 diff = sample - *avg;
2287 *avg += diff >> 3;
2288}
970b13ba
PZ
2289#endif
2290
9ed3811a
TH
2291static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2292 bool is_sync, bool is_migrate, bool is_local,
2293 unsigned long en_flags)
2294{
2295 schedstat_inc(p, se.statistics.nr_wakeups);
2296 if (is_sync)
2297 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2298 if (is_migrate)
2299 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2300 if (is_local)
2301 schedstat_inc(p, se.statistics.nr_wakeups_local);
2302 else
2303 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2304
2305 activate_task(rq, p, en_flags);
2306}
2307
2308static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2309 int wake_flags, bool success)
2310{
2311 trace_sched_wakeup(p, success);
2312 check_preempt_curr(rq, p, wake_flags);
2313
2314 p->state = TASK_RUNNING;
2315#ifdef CONFIG_SMP
2316 if (p->sched_class->task_woken)
2317 p->sched_class->task_woken(rq, p);
2318
2319 if (unlikely(rq->idle_stamp)) {
2320 u64 delta = rq->clock - rq->idle_stamp;
2321 u64 max = 2*sysctl_sched_migration_cost;
2322
2323 if (delta > max)
2324 rq->avg_idle = max;
2325 else
2326 update_avg(&rq->avg_idle, delta);
2327 rq->idle_stamp = 0;
2328 }
2329#endif
21aa9af0
TH
2330 /* if a worker is waking up, notify workqueue */
2331 if ((p->flags & PF_WQ_WORKER) && success)
2332 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2333}
2334
2335/**
1da177e4 2336 * try_to_wake_up - wake up a thread
9ed3811a 2337 * @p: the thread to be awakened
1da177e4 2338 * @state: the mask of task states that can be woken
9ed3811a 2339 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2340 *
2341 * Put it on the run-queue if it's not already there. The "current"
2342 * thread is always on the run-queue (except when the actual
2343 * re-schedule is in progress), and as such you're allowed to do
2344 * the simpler "current->state = TASK_RUNNING" to mark yourself
2345 * runnable without the overhead of this.
2346 *
9ed3811a
TH
2347 * Returns %true if @p was woken up, %false if it was already running
2348 * or @state didn't match @p's state.
1da177e4 2349 */
7d478721
PZ
2350static int try_to_wake_up(struct task_struct *p, unsigned int state,
2351 int wake_flags)
1da177e4 2352{
cc367732 2353 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2354 unsigned long flags;
371fd7e7 2355 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2356 struct rq *rq;
1da177e4 2357
e9c84311 2358 this_cpu = get_cpu();
2398f2c6 2359
04e2f174 2360 smp_wmb();
ab3b3aa5 2361 rq = task_rq_lock(p, &flags);
e9c84311 2362 if (!(p->state & state))
1da177e4
LT
2363 goto out;
2364
dd41f596 2365 if (p->se.on_rq)
1da177e4
LT
2366 goto out_running;
2367
2368 cpu = task_cpu(p);
cc367732 2369 orig_cpu = cpu;
1da177e4
LT
2370
2371#ifdef CONFIG_SMP
2372 if (unlikely(task_running(rq, p)))
2373 goto out_activate;
2374
e9c84311
PZ
2375 /*
2376 * In order to handle concurrent wakeups and release the rq->lock
2377 * we put the task in TASK_WAKING state.
eb24073b
IM
2378 *
2379 * First fix up the nr_uninterruptible count:
e9c84311 2380 */
cc87f76a
PZ
2381 if (task_contributes_to_load(p)) {
2382 if (likely(cpu_online(orig_cpu)))
2383 rq->nr_uninterruptible--;
2384 else
2385 this_rq()->nr_uninterruptible--;
2386 }
e9c84311 2387 p->state = TASK_WAKING;
efbbd05a 2388
371fd7e7 2389 if (p->sched_class->task_waking) {
efbbd05a 2390 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2391 en_flags |= ENQUEUE_WAKING;
2392 }
efbbd05a 2393
0017d735
PZ
2394 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2395 if (cpu != orig_cpu)
5d2f5a61 2396 set_task_cpu(p, cpu);
0017d735 2397 __task_rq_unlock(rq);
ab19cb23 2398
0970d299
PZ
2399 rq = cpu_rq(cpu);
2400 raw_spin_lock(&rq->lock);
f5dc3753 2401
0970d299
PZ
2402 /*
2403 * We migrated the task without holding either rq->lock, however
2404 * since the task is not on the task list itself, nobody else
2405 * will try and migrate the task, hence the rq should match the
2406 * cpu we just moved it to.
2407 */
2408 WARN_ON(task_cpu(p) != cpu);
e9c84311 2409 WARN_ON(p->state != TASK_WAKING);
1da177e4 2410
e7693a36
GH
2411#ifdef CONFIG_SCHEDSTATS
2412 schedstat_inc(rq, ttwu_count);
2413 if (cpu == this_cpu)
2414 schedstat_inc(rq, ttwu_local);
2415 else {
2416 struct sched_domain *sd;
2417 for_each_domain(this_cpu, sd) {
758b2cdc 2418 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2419 schedstat_inc(sd, ttwu_wake_remote);
2420 break;
2421 }
2422 }
2423 }
6d6bc0ad 2424#endif /* CONFIG_SCHEDSTATS */
e7693a36 2425
1da177e4
LT
2426out_activate:
2427#endif /* CONFIG_SMP */
9ed3811a
TH
2428 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2429 cpu == this_cpu, en_flags);
1da177e4 2430 success = 1;
1da177e4 2431out_running:
9ed3811a 2432 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2433out:
2434 task_rq_unlock(rq, &flags);
e9c84311 2435 put_cpu();
1da177e4
LT
2436
2437 return success;
2438}
2439
21aa9af0
TH
2440/**
2441 * try_to_wake_up_local - try to wake up a local task with rq lock held
2442 * @p: the thread to be awakened
2443 *
2444 * Put @p on the run-queue if it's not alredy there. The caller must
2445 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2446 * the current task. this_rq() stays locked over invocation.
2447 */
2448static void try_to_wake_up_local(struct task_struct *p)
2449{
2450 struct rq *rq = task_rq(p);
2451 bool success = false;
2452
2453 BUG_ON(rq != this_rq());
2454 BUG_ON(p == current);
2455 lockdep_assert_held(&rq->lock);
2456
2457 if (!(p->state & TASK_NORMAL))
2458 return;
2459
2460 if (!p->se.on_rq) {
2461 if (likely(!task_running(rq, p))) {
2462 schedstat_inc(rq, ttwu_count);
2463 schedstat_inc(rq, ttwu_local);
2464 }
2465 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2466 success = true;
2467 }
2468 ttwu_post_activation(p, rq, 0, success);
2469}
2470
50fa610a
DH
2471/**
2472 * wake_up_process - Wake up a specific process
2473 * @p: The process to be woken up.
2474 *
2475 * Attempt to wake up the nominated process and move it to the set of runnable
2476 * processes. Returns 1 if the process was woken up, 0 if it was already
2477 * running.
2478 *
2479 * It may be assumed that this function implies a write memory barrier before
2480 * changing the task state if and only if any tasks are woken up.
2481 */
7ad5b3a5 2482int wake_up_process(struct task_struct *p)
1da177e4 2483{
d9514f6c 2484 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2485}
1da177e4
LT
2486EXPORT_SYMBOL(wake_up_process);
2487
7ad5b3a5 2488int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2489{
2490 return try_to_wake_up(p, state, 0);
2491}
2492
1da177e4
LT
2493/*
2494 * Perform scheduler related setup for a newly forked process p.
2495 * p is forked by current.
dd41f596
IM
2496 *
2497 * __sched_fork() is basic setup used by init_idle() too:
2498 */
2499static void __sched_fork(struct task_struct *p)
2500{
dd41f596
IM
2501 p->se.exec_start = 0;
2502 p->se.sum_exec_runtime = 0;
f6cf891c 2503 p->se.prev_sum_exec_runtime = 0;
6c594c21 2504 p->se.nr_migrations = 0;
6cfb0d5d
IM
2505
2506#ifdef CONFIG_SCHEDSTATS
41acab88 2507 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2508#endif
476d139c 2509
fa717060 2510 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2511 p->se.on_rq = 0;
4a55bd5e 2512 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2513
e107be36
AK
2514#ifdef CONFIG_PREEMPT_NOTIFIERS
2515 INIT_HLIST_HEAD(&p->preempt_notifiers);
2516#endif
dd41f596
IM
2517}
2518
2519/*
2520 * fork()/clone()-time setup:
2521 */
2522void sched_fork(struct task_struct *p, int clone_flags)
2523{
2524 int cpu = get_cpu();
2525
2526 __sched_fork(p);
06b83b5f 2527 /*
0017d735 2528 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2529 * nobody will actually run it, and a signal or other external
2530 * event cannot wake it up and insert it on the runqueue either.
2531 */
0017d735 2532 p->state = TASK_RUNNING;
dd41f596 2533
b9dc29e7
MG
2534 /*
2535 * Revert to default priority/policy on fork if requested.
2536 */
2537 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2538 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2539 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2540 p->normal_prio = p->static_prio;
2541 }
b9dc29e7 2542
6c697bdf
MG
2543 if (PRIO_TO_NICE(p->static_prio) < 0) {
2544 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2545 p->normal_prio = p->static_prio;
6c697bdf
MG
2546 set_load_weight(p);
2547 }
2548
b9dc29e7
MG
2549 /*
2550 * We don't need the reset flag anymore after the fork. It has
2551 * fulfilled its duty:
2552 */
2553 p->sched_reset_on_fork = 0;
2554 }
ca94c442 2555
f83f9ac2
PW
2556 /*
2557 * Make sure we do not leak PI boosting priority to the child.
2558 */
2559 p->prio = current->normal_prio;
2560
2ddbf952
HS
2561 if (!rt_prio(p->prio))
2562 p->sched_class = &fair_sched_class;
b29739f9 2563
cd29fe6f
PZ
2564 if (p->sched_class->task_fork)
2565 p->sched_class->task_fork(p);
2566
5f3edc1b
PZ
2567 set_task_cpu(p, cpu);
2568
52f17b6c 2569#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2570 if (likely(sched_info_on()))
52f17b6c 2571 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2572#endif
d6077cb8 2573#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2574 p->oncpu = 0;
2575#endif
1da177e4 2576#ifdef CONFIG_PREEMPT
4866cde0 2577 /* Want to start with kernel preemption disabled. */
a1261f54 2578 task_thread_info(p)->preempt_count = 1;
1da177e4 2579#endif
917b627d
GH
2580 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2581
476d139c 2582 put_cpu();
1da177e4
LT
2583}
2584
2585/*
2586 * wake_up_new_task - wake up a newly created task for the first time.
2587 *
2588 * This function will do some initial scheduler statistics housekeeping
2589 * that must be done for every newly created context, then puts the task
2590 * on the runqueue and wakes it.
2591 */
7ad5b3a5 2592void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2593{
2594 unsigned long flags;
dd41f596 2595 struct rq *rq;
c890692b 2596 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2597
2598#ifdef CONFIG_SMP
0017d735
PZ
2599 rq = task_rq_lock(p, &flags);
2600 p->state = TASK_WAKING;
2601
fabf318e
PZ
2602 /*
2603 * Fork balancing, do it here and not earlier because:
2604 * - cpus_allowed can change in the fork path
2605 * - any previously selected cpu might disappear through hotplug
2606 *
0017d735
PZ
2607 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2608 * without people poking at ->cpus_allowed.
fabf318e 2609 */
0017d735 2610 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2611 set_task_cpu(p, cpu);
1da177e4 2612
06b83b5f 2613 p->state = TASK_RUNNING;
0017d735
PZ
2614 task_rq_unlock(rq, &flags);
2615#endif
2616
2617 rq = task_rq_lock(p, &flags);
cd29fe6f 2618 activate_task(rq, p, 0);
27a9da65 2619 trace_sched_wakeup_new(p, 1);
a7558e01 2620 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2621#ifdef CONFIG_SMP
efbbd05a
PZ
2622 if (p->sched_class->task_woken)
2623 p->sched_class->task_woken(rq, p);
9a897c5a 2624#endif
dd41f596 2625 task_rq_unlock(rq, &flags);
fabf318e 2626 put_cpu();
1da177e4
LT
2627}
2628
e107be36
AK
2629#ifdef CONFIG_PREEMPT_NOTIFIERS
2630
2631/**
80dd99b3 2632 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2633 * @notifier: notifier struct to register
e107be36
AK
2634 */
2635void preempt_notifier_register(struct preempt_notifier *notifier)
2636{
2637 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2638}
2639EXPORT_SYMBOL_GPL(preempt_notifier_register);
2640
2641/**
2642 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2643 * @notifier: notifier struct to unregister
e107be36
AK
2644 *
2645 * This is safe to call from within a preemption notifier.
2646 */
2647void preempt_notifier_unregister(struct preempt_notifier *notifier)
2648{
2649 hlist_del(&notifier->link);
2650}
2651EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2652
2653static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2654{
2655 struct preempt_notifier *notifier;
2656 struct hlist_node *node;
2657
2658 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2659 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2660}
2661
2662static void
2663fire_sched_out_preempt_notifiers(struct task_struct *curr,
2664 struct task_struct *next)
2665{
2666 struct preempt_notifier *notifier;
2667 struct hlist_node *node;
2668
2669 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2670 notifier->ops->sched_out(notifier, next);
2671}
2672
6d6bc0ad 2673#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2674
2675static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2676{
2677}
2678
2679static void
2680fire_sched_out_preempt_notifiers(struct task_struct *curr,
2681 struct task_struct *next)
2682{
2683}
2684
6d6bc0ad 2685#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2686
4866cde0
NP
2687/**
2688 * prepare_task_switch - prepare to switch tasks
2689 * @rq: the runqueue preparing to switch
421cee29 2690 * @prev: the current task that is being switched out
4866cde0
NP
2691 * @next: the task we are going to switch to.
2692 *
2693 * This is called with the rq lock held and interrupts off. It must
2694 * be paired with a subsequent finish_task_switch after the context
2695 * switch.
2696 *
2697 * prepare_task_switch sets up locking and calls architecture specific
2698 * hooks.
2699 */
e107be36
AK
2700static inline void
2701prepare_task_switch(struct rq *rq, struct task_struct *prev,
2702 struct task_struct *next)
4866cde0 2703{
e107be36 2704 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2705 prepare_lock_switch(rq, next);
2706 prepare_arch_switch(next);
2707}
2708
1da177e4
LT
2709/**
2710 * finish_task_switch - clean up after a task-switch
344babaa 2711 * @rq: runqueue associated with task-switch
1da177e4
LT
2712 * @prev: the thread we just switched away from.
2713 *
4866cde0
NP
2714 * finish_task_switch must be called after the context switch, paired
2715 * with a prepare_task_switch call before the context switch.
2716 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2717 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2718 *
2719 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2720 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2721 * with the lock held can cause deadlocks; see schedule() for
2722 * details.)
2723 */
a9957449 2724static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2725 __releases(rq->lock)
2726{
1da177e4 2727 struct mm_struct *mm = rq->prev_mm;
55a101f8 2728 long prev_state;
1da177e4
LT
2729
2730 rq->prev_mm = NULL;
2731
2732 /*
2733 * A task struct has one reference for the use as "current".
c394cc9f 2734 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2735 * schedule one last time. The schedule call will never return, and
2736 * the scheduled task must drop that reference.
c394cc9f 2737 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2738 * still held, otherwise prev could be scheduled on another cpu, die
2739 * there before we look at prev->state, and then the reference would
2740 * be dropped twice.
2741 * Manfred Spraul <manfred@colorfullife.com>
2742 */
55a101f8 2743 prev_state = prev->state;
4866cde0 2744 finish_arch_switch(prev);
8381f65d
JI
2745#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2746 local_irq_disable();
2747#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2748 perf_event_task_sched_in(current);
8381f65d
JI
2749#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2750 local_irq_enable();
2751#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2752 finish_lock_switch(rq, prev);
e8fa1362 2753
e107be36 2754 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2755 if (mm)
2756 mmdrop(mm);
c394cc9f 2757 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2758 /*
2759 * Remove function-return probe instances associated with this
2760 * task and put them back on the free list.
9761eea8 2761 */
c6fd91f0 2762 kprobe_flush_task(prev);
1da177e4 2763 put_task_struct(prev);
c6fd91f0 2764 }
1da177e4
LT
2765}
2766
3f029d3c
GH
2767#ifdef CONFIG_SMP
2768
2769/* assumes rq->lock is held */
2770static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2771{
2772 if (prev->sched_class->pre_schedule)
2773 prev->sched_class->pre_schedule(rq, prev);
2774}
2775
2776/* rq->lock is NOT held, but preemption is disabled */
2777static inline void post_schedule(struct rq *rq)
2778{
2779 if (rq->post_schedule) {
2780 unsigned long flags;
2781
05fa785c 2782 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2783 if (rq->curr->sched_class->post_schedule)
2784 rq->curr->sched_class->post_schedule(rq);
05fa785c 2785 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2786
2787 rq->post_schedule = 0;
2788 }
2789}
2790
2791#else
da19ab51 2792
3f029d3c
GH
2793static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2794{
2795}
2796
2797static inline void post_schedule(struct rq *rq)
2798{
1da177e4
LT
2799}
2800
3f029d3c
GH
2801#endif
2802
1da177e4
LT
2803/**
2804 * schedule_tail - first thing a freshly forked thread must call.
2805 * @prev: the thread we just switched away from.
2806 */
36c8b586 2807asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2808 __releases(rq->lock)
2809{
70b97a7f
IM
2810 struct rq *rq = this_rq();
2811
4866cde0 2812 finish_task_switch(rq, prev);
da19ab51 2813
3f029d3c
GH
2814 /*
2815 * FIXME: do we need to worry about rq being invalidated by the
2816 * task_switch?
2817 */
2818 post_schedule(rq);
70b97a7f 2819
4866cde0
NP
2820#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2821 /* In this case, finish_task_switch does not reenable preemption */
2822 preempt_enable();
2823#endif
1da177e4 2824 if (current->set_child_tid)
b488893a 2825 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2826}
2827
2828/*
2829 * context_switch - switch to the new MM and the new
2830 * thread's register state.
2831 */
dd41f596 2832static inline void
70b97a7f 2833context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2834 struct task_struct *next)
1da177e4 2835{
dd41f596 2836 struct mm_struct *mm, *oldmm;
1da177e4 2837
e107be36 2838 prepare_task_switch(rq, prev, next);
27a9da65 2839 trace_sched_switch(prev, next);
dd41f596
IM
2840 mm = next->mm;
2841 oldmm = prev->active_mm;
9226d125
ZA
2842 /*
2843 * For paravirt, this is coupled with an exit in switch_to to
2844 * combine the page table reload and the switch backend into
2845 * one hypercall.
2846 */
224101ed 2847 arch_start_context_switch(prev);
9226d125 2848
710390d9 2849 if (likely(!mm)) {
1da177e4
LT
2850 next->active_mm = oldmm;
2851 atomic_inc(&oldmm->mm_count);
2852 enter_lazy_tlb(oldmm, next);
2853 } else
2854 switch_mm(oldmm, mm, next);
2855
710390d9 2856 if (likely(!prev->mm)) {
1da177e4 2857 prev->active_mm = NULL;
1da177e4
LT
2858 rq->prev_mm = oldmm;
2859 }
3a5f5e48
IM
2860 /*
2861 * Since the runqueue lock will be released by the next
2862 * task (which is an invalid locking op but in the case
2863 * of the scheduler it's an obvious special-case), so we
2864 * do an early lockdep release here:
2865 */
2866#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2867 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2868#endif
1da177e4
LT
2869
2870 /* Here we just switch the register state and the stack. */
2871 switch_to(prev, next, prev);
2872
dd41f596
IM
2873 barrier();
2874 /*
2875 * this_rq must be evaluated again because prev may have moved
2876 * CPUs since it called schedule(), thus the 'rq' on its stack
2877 * frame will be invalid.
2878 */
2879 finish_task_switch(this_rq(), prev);
1da177e4
LT
2880}
2881
2882/*
2883 * nr_running, nr_uninterruptible and nr_context_switches:
2884 *
2885 * externally visible scheduler statistics: current number of runnable
2886 * threads, current number of uninterruptible-sleeping threads, total
2887 * number of context switches performed since bootup.
2888 */
2889unsigned long nr_running(void)
2890{
2891 unsigned long i, sum = 0;
2892
2893 for_each_online_cpu(i)
2894 sum += cpu_rq(i)->nr_running;
2895
2896 return sum;
f711f609 2897}
1da177e4
LT
2898
2899unsigned long nr_uninterruptible(void)
f711f609 2900{
1da177e4 2901 unsigned long i, sum = 0;
f711f609 2902
0a945022 2903 for_each_possible_cpu(i)
1da177e4 2904 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2905
2906 /*
1da177e4
LT
2907 * Since we read the counters lockless, it might be slightly
2908 * inaccurate. Do not allow it to go below zero though:
f711f609 2909 */
1da177e4
LT
2910 if (unlikely((long)sum < 0))
2911 sum = 0;
f711f609 2912
1da177e4 2913 return sum;
f711f609 2914}
f711f609 2915
1da177e4 2916unsigned long long nr_context_switches(void)
46cb4b7c 2917{
cc94abfc
SR
2918 int i;
2919 unsigned long long sum = 0;
46cb4b7c 2920
0a945022 2921 for_each_possible_cpu(i)
1da177e4 2922 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2923
1da177e4
LT
2924 return sum;
2925}
483b4ee6 2926
1da177e4
LT
2927unsigned long nr_iowait(void)
2928{
2929 unsigned long i, sum = 0;
483b4ee6 2930
0a945022 2931 for_each_possible_cpu(i)
1da177e4 2932 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2933
1da177e4
LT
2934 return sum;
2935}
483b4ee6 2936
69d25870
AV
2937unsigned long nr_iowait_cpu(void)
2938{
2939 struct rq *this = this_rq();
2940 return atomic_read(&this->nr_iowait);
2941}
46cb4b7c 2942
69d25870
AV
2943unsigned long this_cpu_load(void)
2944{
2945 struct rq *this = this_rq();
2946 return this->cpu_load[0];
2947}
e790fb0b 2948
46cb4b7c 2949
dce48a84
TG
2950/* Variables and functions for calc_load */
2951static atomic_long_t calc_load_tasks;
2952static unsigned long calc_load_update;
2953unsigned long avenrun[3];
2954EXPORT_SYMBOL(avenrun);
46cb4b7c 2955
74f5187a
PZ
2956static long calc_load_fold_active(struct rq *this_rq)
2957{
2958 long nr_active, delta = 0;
2959
2960 nr_active = this_rq->nr_running;
2961 nr_active += (long) this_rq->nr_uninterruptible;
2962
2963 if (nr_active != this_rq->calc_load_active) {
2964 delta = nr_active - this_rq->calc_load_active;
2965 this_rq->calc_load_active = nr_active;
2966 }
2967
2968 return delta;
2969}
2970
2971#ifdef CONFIG_NO_HZ
2972/*
2973 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2974 *
2975 * When making the ILB scale, we should try to pull this in as well.
2976 */
2977static atomic_long_t calc_load_tasks_idle;
2978
2979static void calc_load_account_idle(struct rq *this_rq)
2980{
2981 long delta;
2982
2983 delta = calc_load_fold_active(this_rq);
2984 if (delta)
2985 atomic_long_add(delta, &calc_load_tasks_idle);
2986}
2987
2988static long calc_load_fold_idle(void)
2989{
2990 long delta = 0;
2991
2992 /*
2993 * Its got a race, we don't care...
2994 */
2995 if (atomic_long_read(&calc_load_tasks_idle))
2996 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2997
2998 return delta;
2999}
3000#else
3001static void calc_load_account_idle(struct rq *this_rq)
3002{
3003}
3004
3005static inline long calc_load_fold_idle(void)
3006{
3007 return 0;
3008}
3009#endif
3010
2d02494f
TG
3011/**
3012 * get_avenrun - get the load average array
3013 * @loads: pointer to dest load array
3014 * @offset: offset to add
3015 * @shift: shift count to shift the result left
3016 *
3017 * These values are estimates at best, so no need for locking.
3018 */
3019void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3020{
3021 loads[0] = (avenrun[0] + offset) << shift;
3022 loads[1] = (avenrun[1] + offset) << shift;
3023 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3024}
46cb4b7c 3025
dce48a84
TG
3026static unsigned long
3027calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3028{
dce48a84
TG
3029 load *= exp;
3030 load += active * (FIXED_1 - exp);
3031 return load >> FSHIFT;
3032}
46cb4b7c
SS
3033
3034/*
dce48a84
TG
3035 * calc_load - update the avenrun load estimates 10 ticks after the
3036 * CPUs have updated calc_load_tasks.
7835b98b 3037 */
dce48a84 3038void calc_global_load(void)
7835b98b 3039{
dce48a84
TG
3040 unsigned long upd = calc_load_update + 10;
3041 long active;
1da177e4 3042
dce48a84
TG
3043 if (time_before(jiffies, upd))
3044 return;
1da177e4 3045
dce48a84
TG
3046 active = atomic_long_read(&calc_load_tasks);
3047 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3048
dce48a84
TG
3049 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3050 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3051 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3052
dce48a84
TG
3053 calc_load_update += LOAD_FREQ;
3054}
1da177e4 3055
dce48a84 3056/*
74f5187a
PZ
3057 * Called from update_cpu_load() to periodically update this CPU's
3058 * active count.
dce48a84
TG
3059 */
3060static void calc_load_account_active(struct rq *this_rq)
3061{
74f5187a 3062 long delta;
08c183f3 3063
74f5187a
PZ
3064 if (time_before(jiffies, this_rq->calc_load_update))
3065 return;
783609c6 3066
74f5187a
PZ
3067 delta = calc_load_fold_active(this_rq);
3068 delta += calc_load_fold_idle();
3069 if (delta)
dce48a84 3070 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3071
3072 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3073}
3074
fdf3e95d
VP
3075/*
3076 * The exact cpuload at various idx values, calculated at every tick would be
3077 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3078 *
3079 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3080 * on nth tick when cpu may be busy, then we have:
3081 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3082 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3083 *
3084 * decay_load_missed() below does efficient calculation of
3085 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3086 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3087 *
3088 * The calculation is approximated on a 128 point scale.
3089 * degrade_zero_ticks is the number of ticks after which load at any
3090 * particular idx is approximated to be zero.
3091 * degrade_factor is a precomputed table, a row for each load idx.
3092 * Each column corresponds to degradation factor for a power of two ticks,
3093 * based on 128 point scale.
3094 * Example:
3095 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3096 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3097 *
3098 * With this power of 2 load factors, we can degrade the load n times
3099 * by looking at 1 bits in n and doing as many mult/shift instead of
3100 * n mult/shifts needed by the exact degradation.
3101 */
3102#define DEGRADE_SHIFT 7
3103static const unsigned char
3104 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3105static const unsigned char
3106 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3107 {0, 0, 0, 0, 0, 0, 0, 0},
3108 {64, 32, 8, 0, 0, 0, 0, 0},
3109 {96, 72, 40, 12, 1, 0, 0},
3110 {112, 98, 75, 43, 15, 1, 0},
3111 {120, 112, 98, 76, 45, 16, 2} };
3112
3113/*
3114 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3115 * would be when CPU is idle and so we just decay the old load without
3116 * adding any new load.
3117 */
3118static unsigned long
3119decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3120{
3121 int j = 0;
3122
3123 if (!missed_updates)
3124 return load;
3125
3126 if (missed_updates >= degrade_zero_ticks[idx])
3127 return 0;
3128
3129 if (idx == 1)
3130 return load >> missed_updates;
3131
3132 while (missed_updates) {
3133 if (missed_updates % 2)
3134 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3135
3136 missed_updates >>= 1;
3137 j++;
3138 }
3139 return load;
3140}
3141
46cb4b7c 3142/*
dd41f596 3143 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3144 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3145 * every tick. We fix it up based on jiffies.
46cb4b7c 3146 */
dd41f596 3147static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3148{
495eca49 3149 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3150 unsigned long curr_jiffies = jiffies;
3151 unsigned long pending_updates;
dd41f596 3152 int i, scale;
46cb4b7c 3153
dd41f596 3154 this_rq->nr_load_updates++;
46cb4b7c 3155
fdf3e95d
VP
3156 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3157 if (curr_jiffies == this_rq->last_load_update_tick)
3158 return;
3159
3160 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3161 this_rq->last_load_update_tick = curr_jiffies;
3162
dd41f596 3163 /* Update our load: */
fdf3e95d
VP
3164 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3165 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3166 unsigned long old_load, new_load;
7d1e6a9b 3167
dd41f596 3168 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3169
dd41f596 3170 old_load = this_rq->cpu_load[i];
fdf3e95d 3171 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3172 new_load = this_load;
a25707f3
IM
3173 /*
3174 * Round up the averaging division if load is increasing. This
3175 * prevents us from getting stuck on 9 if the load is 10, for
3176 * example.
3177 */
3178 if (new_load > old_load)
fdf3e95d
VP
3179 new_load += scale - 1;
3180
3181 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3182 }
fdf3e95d
VP
3183}
3184
3185static void update_cpu_load_active(struct rq *this_rq)
3186{
3187 update_cpu_load(this_rq);
46cb4b7c 3188
74f5187a 3189 calc_load_account_active(this_rq);
46cb4b7c
SS
3190}
3191
dd41f596 3192#ifdef CONFIG_SMP
8a0be9ef 3193
46cb4b7c 3194/*
38022906
PZ
3195 * sched_exec - execve() is a valuable balancing opportunity, because at
3196 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3197 */
38022906 3198void sched_exec(void)
46cb4b7c 3199{
38022906 3200 struct task_struct *p = current;
1da177e4 3201 unsigned long flags;
70b97a7f 3202 struct rq *rq;
0017d735 3203 int dest_cpu;
46cb4b7c 3204
1da177e4 3205 rq = task_rq_lock(p, &flags);
0017d735
PZ
3206 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3207 if (dest_cpu == smp_processor_id())
3208 goto unlock;
38022906 3209
46cb4b7c 3210 /*
38022906 3211 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3212 */
30da688e 3213 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3214 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3215 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3216
1da177e4 3217 task_rq_unlock(rq, &flags);
969c7921 3218 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3219 return;
3220 }
0017d735 3221unlock:
1da177e4 3222 task_rq_unlock(rq, &flags);
1da177e4 3223}
dd41f596 3224
1da177e4
LT
3225#endif
3226
1da177e4
LT
3227DEFINE_PER_CPU(struct kernel_stat, kstat);
3228
3229EXPORT_PER_CPU_SYMBOL(kstat);
3230
3231/*
c5f8d995 3232 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3233 * @p in case that task is currently running.
c5f8d995
HS
3234 *
3235 * Called with task_rq_lock() held on @rq.
1da177e4 3236 */
c5f8d995
HS
3237static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3238{
3239 u64 ns = 0;
3240
3241 if (task_current(rq, p)) {
3242 update_rq_clock(rq);
3243 ns = rq->clock - p->se.exec_start;
3244 if ((s64)ns < 0)
3245 ns = 0;
3246 }
3247
3248 return ns;
3249}
3250
bb34d92f 3251unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3252{
1da177e4 3253 unsigned long flags;
41b86e9c 3254 struct rq *rq;
bb34d92f 3255 u64 ns = 0;
48f24c4d 3256
41b86e9c 3257 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3258 ns = do_task_delta_exec(p, rq);
3259 task_rq_unlock(rq, &flags);
1508487e 3260
c5f8d995
HS
3261 return ns;
3262}
f06febc9 3263
c5f8d995
HS
3264/*
3265 * Return accounted runtime for the task.
3266 * In case the task is currently running, return the runtime plus current's
3267 * pending runtime that have not been accounted yet.
3268 */
3269unsigned long long task_sched_runtime(struct task_struct *p)
3270{
3271 unsigned long flags;
3272 struct rq *rq;
3273 u64 ns = 0;
3274
3275 rq = task_rq_lock(p, &flags);
3276 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3277 task_rq_unlock(rq, &flags);
3278
3279 return ns;
3280}
48f24c4d 3281
c5f8d995
HS
3282/*
3283 * Return sum_exec_runtime for the thread group.
3284 * In case the task is currently running, return the sum plus current's
3285 * pending runtime that have not been accounted yet.
3286 *
3287 * Note that the thread group might have other running tasks as well,
3288 * so the return value not includes other pending runtime that other
3289 * running tasks might have.
3290 */
3291unsigned long long thread_group_sched_runtime(struct task_struct *p)
3292{
3293 struct task_cputime totals;
3294 unsigned long flags;
3295 struct rq *rq;
3296 u64 ns;
3297
3298 rq = task_rq_lock(p, &flags);
3299 thread_group_cputime(p, &totals);
3300 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3301 task_rq_unlock(rq, &flags);
48f24c4d 3302
1da177e4
LT
3303 return ns;
3304}
3305
1da177e4
LT
3306/*
3307 * Account user cpu time to a process.
3308 * @p: the process that the cpu time gets accounted to
1da177e4 3309 * @cputime: the cpu time spent in user space since the last update
457533a7 3310 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3311 */
457533a7
MS
3312void account_user_time(struct task_struct *p, cputime_t cputime,
3313 cputime_t cputime_scaled)
1da177e4
LT
3314{
3315 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3316 cputime64_t tmp;
3317
457533a7 3318 /* Add user time to process. */
1da177e4 3319 p->utime = cputime_add(p->utime, cputime);
457533a7 3320 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3321 account_group_user_time(p, cputime);
1da177e4
LT
3322
3323 /* Add user time to cpustat. */
3324 tmp = cputime_to_cputime64(cputime);
3325 if (TASK_NICE(p) > 0)
3326 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3327 else
3328 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3329
3330 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3331 /* Account for user time used */
3332 acct_update_integrals(p);
1da177e4
LT
3333}
3334
94886b84
LV
3335/*
3336 * Account guest cpu time to a process.
3337 * @p: the process that the cpu time gets accounted to
3338 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3339 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3340 */
457533a7
MS
3341static void account_guest_time(struct task_struct *p, cputime_t cputime,
3342 cputime_t cputime_scaled)
94886b84
LV
3343{
3344 cputime64_t tmp;
3345 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3346
3347 tmp = cputime_to_cputime64(cputime);
3348
457533a7 3349 /* Add guest time to process. */
94886b84 3350 p->utime = cputime_add(p->utime, cputime);
457533a7 3351 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3352 account_group_user_time(p, cputime);
94886b84
LV
3353 p->gtime = cputime_add(p->gtime, cputime);
3354
457533a7 3355 /* Add guest time to cpustat. */
ce0e7b28
RO
3356 if (TASK_NICE(p) > 0) {
3357 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3358 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3359 } else {
3360 cpustat->user = cputime64_add(cpustat->user, tmp);
3361 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3362 }
94886b84
LV
3363}
3364
1da177e4
LT
3365/*
3366 * Account system cpu time to a process.
3367 * @p: the process that the cpu time gets accounted to
3368 * @hardirq_offset: the offset to subtract from hardirq_count()
3369 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3370 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3371 */
3372void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3373 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3374{
3375 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3376 cputime64_t tmp;
3377
983ed7a6 3378 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3379 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3380 return;
3381 }
94886b84 3382
457533a7 3383 /* Add system time to process. */
1da177e4 3384 p->stime = cputime_add(p->stime, cputime);
457533a7 3385 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3386 account_group_system_time(p, cputime);
1da177e4
LT
3387
3388 /* Add system time to cpustat. */
3389 tmp = cputime_to_cputime64(cputime);
3390 if (hardirq_count() - hardirq_offset)
3391 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3392 else if (softirq_count())
3393 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3394 else
79741dd3
MS
3395 cpustat->system = cputime64_add(cpustat->system, tmp);
3396
ef12fefa
BR
3397 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3398
1da177e4
LT
3399 /* Account for system time used */
3400 acct_update_integrals(p);
1da177e4
LT
3401}
3402
c66f08be 3403/*
1da177e4 3404 * Account for involuntary wait time.
1da177e4 3405 * @steal: the cpu time spent in involuntary wait
c66f08be 3406 */
79741dd3 3407void account_steal_time(cputime_t cputime)
c66f08be 3408{
79741dd3
MS
3409 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3410 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3411
3412 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3413}
3414
1da177e4 3415/*
79741dd3
MS
3416 * Account for idle time.
3417 * @cputime: the cpu time spent in idle wait
1da177e4 3418 */
79741dd3 3419void account_idle_time(cputime_t cputime)
1da177e4
LT
3420{
3421 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3422 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3423 struct rq *rq = this_rq();
1da177e4 3424
79741dd3
MS
3425 if (atomic_read(&rq->nr_iowait) > 0)
3426 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3427 else
3428 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3429}
3430
79741dd3
MS
3431#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3432
3433/*
3434 * Account a single tick of cpu time.
3435 * @p: the process that the cpu time gets accounted to
3436 * @user_tick: indicates if the tick is a user or a system tick
3437 */
3438void account_process_tick(struct task_struct *p, int user_tick)
3439{
a42548a1 3440 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3441 struct rq *rq = this_rq();
3442
3443 if (user_tick)
a42548a1 3444 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3445 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3446 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3447 one_jiffy_scaled);
3448 else
a42548a1 3449 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3450}
3451
3452/*
3453 * Account multiple ticks of steal time.
3454 * @p: the process from which the cpu time has been stolen
3455 * @ticks: number of stolen ticks
3456 */
3457void account_steal_ticks(unsigned long ticks)
3458{
3459 account_steal_time(jiffies_to_cputime(ticks));
3460}
3461
3462/*
3463 * Account multiple ticks of idle time.
3464 * @ticks: number of stolen ticks
3465 */
3466void account_idle_ticks(unsigned long ticks)
3467{
3468 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3469}
3470
79741dd3
MS
3471#endif
3472
49048622
BS
3473/*
3474 * Use precise platform statistics if available:
3475 */
3476#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3477void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3478{
d99ca3b9
HS
3479 *ut = p->utime;
3480 *st = p->stime;
49048622
BS
3481}
3482
0cf55e1e 3483void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3484{
0cf55e1e
HS
3485 struct task_cputime cputime;
3486
3487 thread_group_cputime(p, &cputime);
3488
3489 *ut = cputime.utime;
3490 *st = cputime.stime;
49048622
BS
3491}
3492#else
761b1d26
HS
3493
3494#ifndef nsecs_to_cputime
b7b20df9 3495# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3496#endif
3497
d180c5bc 3498void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3499{
d99ca3b9 3500 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3501
3502 /*
3503 * Use CFS's precise accounting:
3504 */
d180c5bc 3505 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3506
3507 if (total) {
d180c5bc
HS
3508 u64 temp;
3509
3510 temp = (u64)(rtime * utime);
49048622 3511 do_div(temp, total);
d180c5bc
HS
3512 utime = (cputime_t)temp;
3513 } else
3514 utime = rtime;
49048622 3515
d180c5bc
HS
3516 /*
3517 * Compare with previous values, to keep monotonicity:
3518 */
761b1d26 3519 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3520 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3521
d99ca3b9
HS
3522 *ut = p->prev_utime;
3523 *st = p->prev_stime;
49048622
BS
3524}
3525
0cf55e1e
HS
3526/*
3527 * Must be called with siglock held.
3528 */
3529void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3530{
0cf55e1e
HS
3531 struct signal_struct *sig = p->signal;
3532 struct task_cputime cputime;
3533 cputime_t rtime, utime, total;
49048622 3534
0cf55e1e 3535 thread_group_cputime(p, &cputime);
49048622 3536
0cf55e1e
HS
3537 total = cputime_add(cputime.utime, cputime.stime);
3538 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3539
0cf55e1e
HS
3540 if (total) {
3541 u64 temp;
49048622 3542
0cf55e1e
HS
3543 temp = (u64)(rtime * cputime.utime);
3544 do_div(temp, total);
3545 utime = (cputime_t)temp;
3546 } else
3547 utime = rtime;
3548
3549 sig->prev_utime = max(sig->prev_utime, utime);
3550 sig->prev_stime = max(sig->prev_stime,
3551 cputime_sub(rtime, sig->prev_utime));
3552
3553 *ut = sig->prev_utime;
3554 *st = sig->prev_stime;
49048622 3555}
49048622 3556#endif
49048622 3557
7835b98b
CL
3558/*
3559 * This function gets called by the timer code, with HZ frequency.
3560 * We call it with interrupts disabled.
3561 *
3562 * It also gets called by the fork code, when changing the parent's
3563 * timeslices.
3564 */
3565void scheduler_tick(void)
3566{
7835b98b
CL
3567 int cpu = smp_processor_id();
3568 struct rq *rq = cpu_rq(cpu);
dd41f596 3569 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3570
3571 sched_clock_tick();
dd41f596 3572
05fa785c 3573 raw_spin_lock(&rq->lock);
3e51f33f 3574 update_rq_clock(rq);
fdf3e95d 3575 update_cpu_load_active(rq);
fa85ae24 3576 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3577 raw_spin_unlock(&rq->lock);
7835b98b 3578
49f47433 3579 perf_event_task_tick(curr);
e220d2dc 3580
e418e1c2 3581#ifdef CONFIG_SMP
dd41f596
IM
3582 rq->idle_at_tick = idle_cpu(cpu);
3583 trigger_load_balance(rq, cpu);
e418e1c2 3584#endif
1da177e4
LT
3585}
3586
132380a0 3587notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3588{
3589 if (in_lock_functions(addr)) {
3590 addr = CALLER_ADDR2;
3591 if (in_lock_functions(addr))
3592 addr = CALLER_ADDR3;
3593 }
3594 return addr;
3595}
1da177e4 3596
7e49fcce
SR
3597#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3598 defined(CONFIG_PREEMPT_TRACER))
3599
43627582 3600void __kprobes add_preempt_count(int val)
1da177e4 3601{
6cd8a4bb 3602#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3603 /*
3604 * Underflow?
3605 */
9a11b49a
IM
3606 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3607 return;
6cd8a4bb 3608#endif
1da177e4 3609 preempt_count() += val;
6cd8a4bb 3610#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3611 /*
3612 * Spinlock count overflowing soon?
3613 */
33859f7f
MOS
3614 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3615 PREEMPT_MASK - 10);
6cd8a4bb
SR
3616#endif
3617 if (preempt_count() == val)
3618 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3619}
3620EXPORT_SYMBOL(add_preempt_count);
3621
43627582 3622void __kprobes sub_preempt_count(int val)
1da177e4 3623{
6cd8a4bb 3624#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3625 /*
3626 * Underflow?
3627 */
01e3eb82 3628 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3629 return;
1da177e4
LT
3630 /*
3631 * Is the spinlock portion underflowing?
3632 */
9a11b49a
IM
3633 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3634 !(preempt_count() & PREEMPT_MASK)))
3635 return;
6cd8a4bb 3636#endif
9a11b49a 3637
6cd8a4bb
SR
3638 if (preempt_count() == val)
3639 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3640 preempt_count() -= val;
3641}
3642EXPORT_SYMBOL(sub_preempt_count);
3643
3644#endif
3645
3646/*
dd41f596 3647 * Print scheduling while atomic bug:
1da177e4 3648 */
dd41f596 3649static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3650{
838225b4
SS
3651 struct pt_regs *regs = get_irq_regs();
3652
3df0fc5b
PZ
3653 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3654 prev->comm, prev->pid, preempt_count());
838225b4 3655
dd41f596 3656 debug_show_held_locks(prev);
e21f5b15 3657 print_modules();
dd41f596
IM
3658 if (irqs_disabled())
3659 print_irqtrace_events(prev);
838225b4
SS
3660
3661 if (regs)
3662 show_regs(regs);
3663 else
3664 dump_stack();
dd41f596 3665}
1da177e4 3666
dd41f596
IM
3667/*
3668 * Various schedule()-time debugging checks and statistics:
3669 */
3670static inline void schedule_debug(struct task_struct *prev)
3671{
1da177e4 3672 /*
41a2d6cf 3673 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3674 * schedule() atomically, we ignore that path for now.
3675 * Otherwise, whine if we are scheduling when we should not be.
3676 */
3f33a7ce 3677 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3678 __schedule_bug(prev);
3679
1da177e4
LT
3680 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3681
2d72376b 3682 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3683#ifdef CONFIG_SCHEDSTATS
3684 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3685 schedstat_inc(this_rq(), bkl_count);
3686 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3687 }
3688#endif
dd41f596
IM
3689}
3690
6cecd084 3691static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3692{
a64692a3
MG
3693 if (prev->se.on_rq)
3694 update_rq_clock(rq);
3695 rq->skip_clock_update = 0;
6cecd084 3696 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3697}
3698
dd41f596
IM
3699/*
3700 * Pick up the highest-prio task:
3701 */
3702static inline struct task_struct *
b67802ea 3703pick_next_task(struct rq *rq)
dd41f596 3704{
5522d5d5 3705 const struct sched_class *class;
dd41f596 3706 struct task_struct *p;
1da177e4
LT
3707
3708 /*
dd41f596
IM
3709 * Optimization: we know that if all tasks are in
3710 * the fair class we can call that function directly:
1da177e4 3711 */
dd41f596 3712 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3713 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3714 if (likely(p))
3715 return p;
1da177e4
LT
3716 }
3717
dd41f596
IM
3718 class = sched_class_highest;
3719 for ( ; ; ) {
fb8d4724 3720 p = class->pick_next_task(rq);
dd41f596
IM
3721 if (p)
3722 return p;
3723 /*
3724 * Will never be NULL as the idle class always
3725 * returns a non-NULL p:
3726 */
3727 class = class->next;
3728 }
3729}
1da177e4 3730
dd41f596
IM
3731/*
3732 * schedule() is the main scheduler function.
3733 */
ff743345 3734asmlinkage void __sched schedule(void)
dd41f596
IM
3735{
3736 struct task_struct *prev, *next;
67ca7bde 3737 unsigned long *switch_count;
dd41f596 3738 struct rq *rq;
31656519 3739 int cpu;
dd41f596 3740
ff743345
PZ
3741need_resched:
3742 preempt_disable();
dd41f596
IM
3743 cpu = smp_processor_id();
3744 rq = cpu_rq(cpu);
25502a6c 3745 rcu_note_context_switch(cpu);
dd41f596 3746 prev = rq->curr;
dd41f596
IM
3747
3748 release_kernel_lock(prev);
3749need_resched_nonpreemptible:
3750
3751 schedule_debug(prev);
1da177e4 3752
31656519 3753 if (sched_feat(HRTICK))
f333fdc9 3754 hrtick_clear(rq);
8f4d37ec 3755
05fa785c 3756 raw_spin_lock_irq(&rq->lock);
1e819950 3757 clear_tsk_need_resched(prev);
1da177e4 3758
246d86b5 3759 switch_count = &prev->nivcsw;
1da177e4 3760 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3761 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3762 prev->state = TASK_RUNNING;
21aa9af0
TH
3763 } else {
3764 /*
3765 * If a worker is going to sleep, notify and
3766 * ask workqueue whether it wants to wake up a
3767 * task to maintain concurrency. If so, wake
3768 * up the task.
3769 */
3770 if (prev->flags & PF_WQ_WORKER) {
3771 struct task_struct *to_wakeup;
3772
3773 to_wakeup = wq_worker_sleeping(prev, cpu);
3774 if (to_wakeup)
3775 try_to_wake_up_local(to_wakeup);
3776 }
371fd7e7 3777 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3778 }
dd41f596 3779 switch_count = &prev->nvcsw;
1da177e4
LT
3780 }
3781
3f029d3c 3782 pre_schedule(rq, prev);
f65eda4f 3783
dd41f596 3784 if (unlikely(!rq->nr_running))
1da177e4 3785 idle_balance(cpu, rq);
1da177e4 3786
df1c99d4 3787 put_prev_task(rq, prev);
b67802ea 3788 next = pick_next_task(rq);
1da177e4 3789
1da177e4 3790 if (likely(prev != next)) {
673a90a1 3791 sched_info_switch(prev, next);
49f47433 3792 perf_event_task_sched_out(prev, next);
673a90a1 3793
1da177e4
LT
3794 rq->nr_switches++;
3795 rq->curr = next;
3796 ++*switch_count;
3797
dd41f596 3798 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3799 /*
246d86b5
ON
3800 * The context switch have flipped the stack from under us
3801 * and restored the local variables which were saved when
3802 * this task called schedule() in the past. prev == current
3803 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3804 */
3805 cpu = smp_processor_id();
3806 rq = cpu_rq(cpu);
1da177e4 3807 } else
05fa785c 3808 raw_spin_unlock_irq(&rq->lock);
1da177e4 3809
3f029d3c 3810 post_schedule(rq);
1da177e4 3811
246d86b5 3812 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3813 goto need_resched_nonpreemptible;
8f4d37ec 3814
1da177e4 3815 preempt_enable_no_resched();
ff743345 3816 if (need_resched())
1da177e4
LT
3817 goto need_resched;
3818}
1da177e4
LT
3819EXPORT_SYMBOL(schedule);
3820
c08f7829 3821#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3822/*
3823 * Look out! "owner" is an entirely speculative pointer
3824 * access and not reliable.
3825 */
3826int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3827{
3828 unsigned int cpu;
3829 struct rq *rq;
3830
3831 if (!sched_feat(OWNER_SPIN))
3832 return 0;
3833
3834#ifdef CONFIG_DEBUG_PAGEALLOC
3835 /*
3836 * Need to access the cpu field knowing that
3837 * DEBUG_PAGEALLOC could have unmapped it if
3838 * the mutex owner just released it and exited.
3839 */
3840 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3841 return 0;
0d66bf6d
PZ
3842#else
3843 cpu = owner->cpu;
3844#endif
3845
3846 /*
3847 * Even if the access succeeded (likely case),
3848 * the cpu field may no longer be valid.
3849 */
3850 if (cpu >= nr_cpumask_bits)
4b402210 3851 return 0;
0d66bf6d
PZ
3852
3853 /*
3854 * We need to validate that we can do a
3855 * get_cpu() and that we have the percpu area.
3856 */
3857 if (!cpu_online(cpu))
4b402210 3858 return 0;
0d66bf6d
PZ
3859
3860 rq = cpu_rq(cpu);
3861
3862 for (;;) {
3863 /*
3864 * Owner changed, break to re-assess state.
3865 */
3866 if (lock->owner != owner)
3867 break;
3868
3869 /*
3870 * Is that owner really running on that cpu?
3871 */
3872 if (task_thread_info(rq->curr) != owner || need_resched())
3873 return 0;
3874
3875 cpu_relax();
3876 }
4b402210 3877
0d66bf6d
PZ
3878 return 1;
3879}
3880#endif
3881
1da177e4
LT
3882#ifdef CONFIG_PREEMPT
3883/*
2ed6e34f 3884 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3885 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3886 * occur there and call schedule directly.
3887 */
3888asmlinkage void __sched preempt_schedule(void)
3889{
3890 struct thread_info *ti = current_thread_info();
6478d880 3891
1da177e4
LT
3892 /*
3893 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3894 * we do not want to preempt the current task. Just return..
1da177e4 3895 */
beed33a8 3896 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3897 return;
3898
3a5c359a
AK
3899 do {
3900 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3901 schedule();
3a5c359a 3902 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3903
3a5c359a
AK
3904 /*
3905 * Check again in case we missed a preemption opportunity
3906 * between schedule and now.
3907 */
3908 barrier();
5ed0cec0 3909 } while (need_resched());
1da177e4 3910}
1da177e4
LT
3911EXPORT_SYMBOL(preempt_schedule);
3912
3913/*
2ed6e34f 3914 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3915 * off of irq context.
3916 * Note, that this is called and return with irqs disabled. This will
3917 * protect us against recursive calling from irq.
3918 */
3919asmlinkage void __sched preempt_schedule_irq(void)
3920{
3921 struct thread_info *ti = current_thread_info();
6478d880 3922
2ed6e34f 3923 /* Catch callers which need to be fixed */
1da177e4
LT
3924 BUG_ON(ti->preempt_count || !irqs_disabled());
3925
3a5c359a
AK
3926 do {
3927 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3928 local_irq_enable();
3929 schedule();
3930 local_irq_disable();
3a5c359a 3931 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3932
3a5c359a
AK
3933 /*
3934 * Check again in case we missed a preemption opportunity
3935 * between schedule and now.
3936 */
3937 barrier();
5ed0cec0 3938 } while (need_resched());
1da177e4
LT
3939}
3940
3941#endif /* CONFIG_PREEMPT */
3942
63859d4f 3943int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3944 void *key)
1da177e4 3945{
63859d4f 3946 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3947}
1da177e4
LT
3948EXPORT_SYMBOL(default_wake_function);
3949
3950/*
41a2d6cf
IM
3951 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3952 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3953 * number) then we wake all the non-exclusive tasks and one exclusive task.
3954 *
3955 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3956 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3957 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3958 */
78ddb08f 3959static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3960 int nr_exclusive, int wake_flags, void *key)
1da177e4 3961{
2e45874c 3962 wait_queue_t *curr, *next;
1da177e4 3963
2e45874c 3964 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3965 unsigned flags = curr->flags;
3966
63859d4f 3967 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3968 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3969 break;
3970 }
3971}
3972
3973/**
3974 * __wake_up - wake up threads blocked on a waitqueue.
3975 * @q: the waitqueue
3976 * @mode: which threads
3977 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3978 * @key: is directly passed to the wakeup function
50fa610a
DH
3979 *
3980 * It may be assumed that this function implies a write memory barrier before
3981 * changing the task state if and only if any tasks are woken up.
1da177e4 3982 */
7ad5b3a5 3983void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3984 int nr_exclusive, void *key)
1da177e4
LT
3985{
3986 unsigned long flags;
3987
3988 spin_lock_irqsave(&q->lock, flags);
3989 __wake_up_common(q, mode, nr_exclusive, 0, key);
3990 spin_unlock_irqrestore(&q->lock, flags);
3991}
1da177e4
LT
3992EXPORT_SYMBOL(__wake_up);
3993
3994/*
3995 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3996 */
7ad5b3a5 3997void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3998{
3999 __wake_up_common(q, mode, 1, 0, NULL);
4000}
22c43c81 4001EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4002
4ede816a
DL
4003void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4004{
4005 __wake_up_common(q, mode, 1, 0, key);
4006}
4007
1da177e4 4008/**
4ede816a 4009 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4010 * @q: the waitqueue
4011 * @mode: which threads
4012 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4013 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4014 *
4015 * The sync wakeup differs that the waker knows that it will schedule
4016 * away soon, so while the target thread will be woken up, it will not
4017 * be migrated to another CPU - ie. the two threads are 'synchronized'
4018 * with each other. This can prevent needless bouncing between CPUs.
4019 *
4020 * On UP it can prevent extra preemption.
50fa610a
DH
4021 *
4022 * It may be assumed that this function implies a write memory barrier before
4023 * changing the task state if and only if any tasks are woken up.
1da177e4 4024 */
4ede816a
DL
4025void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4026 int nr_exclusive, void *key)
1da177e4
LT
4027{
4028 unsigned long flags;
7d478721 4029 int wake_flags = WF_SYNC;
1da177e4
LT
4030
4031 if (unlikely(!q))
4032 return;
4033
4034 if (unlikely(!nr_exclusive))
7d478721 4035 wake_flags = 0;
1da177e4
LT
4036
4037 spin_lock_irqsave(&q->lock, flags);
7d478721 4038 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4039 spin_unlock_irqrestore(&q->lock, flags);
4040}
4ede816a
DL
4041EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4042
4043/*
4044 * __wake_up_sync - see __wake_up_sync_key()
4045 */
4046void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4047{
4048 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4049}
1da177e4
LT
4050EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4051
65eb3dc6
KD
4052/**
4053 * complete: - signals a single thread waiting on this completion
4054 * @x: holds the state of this particular completion
4055 *
4056 * This will wake up a single thread waiting on this completion. Threads will be
4057 * awakened in the same order in which they were queued.
4058 *
4059 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4060 *
4061 * It may be assumed that this function implies a write memory barrier before
4062 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4063 */
b15136e9 4064void complete(struct completion *x)
1da177e4
LT
4065{
4066 unsigned long flags;
4067
4068 spin_lock_irqsave(&x->wait.lock, flags);
4069 x->done++;
d9514f6c 4070 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4071 spin_unlock_irqrestore(&x->wait.lock, flags);
4072}
4073EXPORT_SYMBOL(complete);
4074
65eb3dc6
KD
4075/**
4076 * complete_all: - signals all threads waiting on this completion
4077 * @x: holds the state of this particular completion
4078 *
4079 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4080 *
4081 * It may be assumed that this function implies a write memory barrier before
4082 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4083 */
b15136e9 4084void complete_all(struct completion *x)
1da177e4
LT
4085{
4086 unsigned long flags;
4087
4088 spin_lock_irqsave(&x->wait.lock, flags);
4089 x->done += UINT_MAX/2;
d9514f6c 4090 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4091 spin_unlock_irqrestore(&x->wait.lock, flags);
4092}
4093EXPORT_SYMBOL(complete_all);
4094
8cbbe86d
AK
4095static inline long __sched
4096do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4097{
1da177e4
LT
4098 if (!x->done) {
4099 DECLARE_WAITQUEUE(wait, current);
4100
a93d2f17 4101 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4102 do {
94d3d824 4103 if (signal_pending_state(state, current)) {
ea71a546
ON
4104 timeout = -ERESTARTSYS;
4105 break;
8cbbe86d
AK
4106 }
4107 __set_current_state(state);
1da177e4
LT
4108 spin_unlock_irq(&x->wait.lock);
4109 timeout = schedule_timeout(timeout);
4110 spin_lock_irq(&x->wait.lock);
ea71a546 4111 } while (!x->done && timeout);
1da177e4 4112 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4113 if (!x->done)
4114 return timeout;
1da177e4
LT
4115 }
4116 x->done--;
ea71a546 4117 return timeout ?: 1;
1da177e4 4118}
1da177e4 4119
8cbbe86d
AK
4120static long __sched
4121wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4122{
1da177e4
LT
4123 might_sleep();
4124
4125 spin_lock_irq(&x->wait.lock);
8cbbe86d 4126 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4127 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4128 return timeout;
4129}
1da177e4 4130
65eb3dc6
KD
4131/**
4132 * wait_for_completion: - waits for completion of a task
4133 * @x: holds the state of this particular completion
4134 *
4135 * This waits to be signaled for completion of a specific task. It is NOT
4136 * interruptible and there is no timeout.
4137 *
4138 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4139 * and interrupt capability. Also see complete().
4140 */
b15136e9 4141void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4142{
4143 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4144}
8cbbe86d 4145EXPORT_SYMBOL(wait_for_completion);
1da177e4 4146
65eb3dc6
KD
4147/**
4148 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4149 * @x: holds the state of this particular completion
4150 * @timeout: timeout value in jiffies
4151 *
4152 * This waits for either a completion of a specific task to be signaled or for a
4153 * specified timeout to expire. The timeout is in jiffies. It is not
4154 * interruptible.
4155 */
b15136e9 4156unsigned long __sched
8cbbe86d 4157wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4158{
8cbbe86d 4159 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4160}
8cbbe86d 4161EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4162
65eb3dc6
KD
4163/**
4164 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4165 * @x: holds the state of this particular completion
4166 *
4167 * This waits for completion of a specific task to be signaled. It is
4168 * interruptible.
4169 */
8cbbe86d 4170int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4171{
51e97990
AK
4172 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4173 if (t == -ERESTARTSYS)
4174 return t;
4175 return 0;
0fec171c 4176}
8cbbe86d 4177EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4178
65eb3dc6
KD
4179/**
4180 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4181 * @x: holds the state of this particular completion
4182 * @timeout: timeout value in jiffies
4183 *
4184 * This waits for either a completion of a specific task to be signaled or for a
4185 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4186 */
b15136e9 4187unsigned long __sched
8cbbe86d
AK
4188wait_for_completion_interruptible_timeout(struct completion *x,
4189 unsigned long timeout)
0fec171c 4190{
8cbbe86d 4191 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4192}
8cbbe86d 4193EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4194
65eb3dc6
KD
4195/**
4196 * wait_for_completion_killable: - waits for completion of a task (killable)
4197 * @x: holds the state of this particular completion
4198 *
4199 * This waits to be signaled for completion of a specific task. It can be
4200 * interrupted by a kill signal.
4201 */
009e577e
MW
4202int __sched wait_for_completion_killable(struct completion *x)
4203{
4204 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4205 if (t == -ERESTARTSYS)
4206 return t;
4207 return 0;
4208}
4209EXPORT_SYMBOL(wait_for_completion_killable);
4210
0aa12fb4
SW
4211/**
4212 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4213 * @x: holds the state of this particular completion
4214 * @timeout: timeout value in jiffies
4215 *
4216 * This waits for either a completion of a specific task to be
4217 * signaled or for a specified timeout to expire. It can be
4218 * interrupted by a kill signal. The timeout is in jiffies.
4219 */
4220unsigned long __sched
4221wait_for_completion_killable_timeout(struct completion *x,
4222 unsigned long timeout)
4223{
4224 return wait_for_common(x, timeout, TASK_KILLABLE);
4225}
4226EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4227
be4de352
DC
4228/**
4229 * try_wait_for_completion - try to decrement a completion without blocking
4230 * @x: completion structure
4231 *
4232 * Returns: 0 if a decrement cannot be done without blocking
4233 * 1 if a decrement succeeded.
4234 *
4235 * If a completion is being used as a counting completion,
4236 * attempt to decrement the counter without blocking. This
4237 * enables us to avoid waiting if the resource the completion
4238 * is protecting is not available.
4239 */
4240bool try_wait_for_completion(struct completion *x)
4241{
7539a3b3 4242 unsigned long flags;
be4de352
DC
4243 int ret = 1;
4244
7539a3b3 4245 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4246 if (!x->done)
4247 ret = 0;
4248 else
4249 x->done--;
7539a3b3 4250 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4251 return ret;
4252}
4253EXPORT_SYMBOL(try_wait_for_completion);
4254
4255/**
4256 * completion_done - Test to see if a completion has any waiters
4257 * @x: completion structure
4258 *
4259 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4260 * 1 if there are no waiters.
4261 *
4262 */
4263bool completion_done(struct completion *x)
4264{
7539a3b3 4265 unsigned long flags;
be4de352
DC
4266 int ret = 1;
4267
7539a3b3 4268 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4269 if (!x->done)
4270 ret = 0;
7539a3b3 4271 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4272 return ret;
4273}
4274EXPORT_SYMBOL(completion_done);
4275
8cbbe86d
AK
4276static long __sched
4277sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4278{
0fec171c
IM
4279 unsigned long flags;
4280 wait_queue_t wait;
4281
4282 init_waitqueue_entry(&wait, current);
1da177e4 4283
8cbbe86d 4284 __set_current_state(state);
1da177e4 4285
8cbbe86d
AK
4286 spin_lock_irqsave(&q->lock, flags);
4287 __add_wait_queue(q, &wait);
4288 spin_unlock(&q->lock);
4289 timeout = schedule_timeout(timeout);
4290 spin_lock_irq(&q->lock);
4291 __remove_wait_queue(q, &wait);
4292 spin_unlock_irqrestore(&q->lock, flags);
4293
4294 return timeout;
4295}
4296
4297void __sched interruptible_sleep_on(wait_queue_head_t *q)
4298{
4299 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4300}
1da177e4
LT
4301EXPORT_SYMBOL(interruptible_sleep_on);
4302
0fec171c 4303long __sched
95cdf3b7 4304interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4305{
8cbbe86d 4306 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4307}
1da177e4
LT
4308EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4309
0fec171c 4310void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4311{
8cbbe86d 4312 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4313}
1da177e4
LT
4314EXPORT_SYMBOL(sleep_on);
4315
0fec171c 4316long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4317{
8cbbe86d 4318 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4319}
1da177e4
LT
4320EXPORT_SYMBOL(sleep_on_timeout);
4321
b29739f9
IM
4322#ifdef CONFIG_RT_MUTEXES
4323
4324/*
4325 * rt_mutex_setprio - set the current priority of a task
4326 * @p: task
4327 * @prio: prio value (kernel-internal form)
4328 *
4329 * This function changes the 'effective' priority of a task. It does
4330 * not touch ->normal_prio like __setscheduler().
4331 *
4332 * Used by the rt_mutex code to implement priority inheritance logic.
4333 */
36c8b586 4334void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4335{
4336 unsigned long flags;
83b699ed 4337 int oldprio, on_rq, running;
70b97a7f 4338 struct rq *rq;
83ab0aa0 4339 const struct sched_class *prev_class;
b29739f9
IM
4340
4341 BUG_ON(prio < 0 || prio > MAX_PRIO);
4342
4343 rq = task_rq_lock(p, &flags);
4344
d5f9f942 4345 oldprio = p->prio;
83ab0aa0 4346 prev_class = p->sched_class;
dd41f596 4347 on_rq = p->se.on_rq;
051a1d1a 4348 running = task_current(rq, p);
0e1f3483 4349 if (on_rq)
69be72c1 4350 dequeue_task(rq, p, 0);
0e1f3483
HS
4351 if (running)
4352 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4353
4354 if (rt_prio(prio))
4355 p->sched_class = &rt_sched_class;
4356 else
4357 p->sched_class = &fair_sched_class;
4358
b29739f9
IM
4359 p->prio = prio;
4360
0e1f3483
HS
4361 if (running)
4362 p->sched_class->set_curr_task(rq);
dd41f596 4363 if (on_rq) {
371fd7e7 4364 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4365
4366 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4367 }
4368 task_rq_unlock(rq, &flags);
4369}
4370
4371#endif
4372
36c8b586 4373void set_user_nice(struct task_struct *p, long nice)
1da177e4 4374{
dd41f596 4375 int old_prio, delta, on_rq;
1da177e4 4376 unsigned long flags;
70b97a7f 4377 struct rq *rq;
1da177e4
LT
4378
4379 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4380 return;
4381 /*
4382 * We have to be careful, if called from sys_setpriority(),
4383 * the task might be in the middle of scheduling on another CPU.
4384 */
4385 rq = task_rq_lock(p, &flags);
4386 /*
4387 * The RT priorities are set via sched_setscheduler(), but we still
4388 * allow the 'normal' nice value to be set - but as expected
4389 * it wont have any effect on scheduling until the task is
dd41f596 4390 * SCHED_FIFO/SCHED_RR:
1da177e4 4391 */
e05606d3 4392 if (task_has_rt_policy(p)) {
1da177e4
LT
4393 p->static_prio = NICE_TO_PRIO(nice);
4394 goto out_unlock;
4395 }
dd41f596 4396 on_rq = p->se.on_rq;
c09595f6 4397 if (on_rq)
69be72c1 4398 dequeue_task(rq, p, 0);
1da177e4 4399
1da177e4 4400 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4401 set_load_weight(p);
b29739f9
IM
4402 old_prio = p->prio;
4403 p->prio = effective_prio(p);
4404 delta = p->prio - old_prio;
1da177e4 4405
dd41f596 4406 if (on_rq) {
371fd7e7 4407 enqueue_task(rq, p, 0);
1da177e4 4408 /*
d5f9f942
AM
4409 * If the task increased its priority or is running and
4410 * lowered its priority, then reschedule its CPU:
1da177e4 4411 */
d5f9f942 4412 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4413 resched_task(rq->curr);
4414 }
4415out_unlock:
4416 task_rq_unlock(rq, &flags);
4417}
1da177e4
LT
4418EXPORT_SYMBOL(set_user_nice);
4419
e43379f1
MM
4420/*
4421 * can_nice - check if a task can reduce its nice value
4422 * @p: task
4423 * @nice: nice value
4424 */
36c8b586 4425int can_nice(const struct task_struct *p, const int nice)
e43379f1 4426{
024f4747
MM
4427 /* convert nice value [19,-20] to rlimit style value [1,40] */
4428 int nice_rlim = 20 - nice;
48f24c4d 4429
78d7d407 4430 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4431 capable(CAP_SYS_NICE));
4432}
4433
1da177e4
LT
4434#ifdef __ARCH_WANT_SYS_NICE
4435
4436/*
4437 * sys_nice - change the priority of the current process.
4438 * @increment: priority increment
4439 *
4440 * sys_setpriority is a more generic, but much slower function that
4441 * does similar things.
4442 */
5add95d4 4443SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4444{
48f24c4d 4445 long nice, retval;
1da177e4
LT
4446
4447 /*
4448 * Setpriority might change our priority at the same moment.
4449 * We don't have to worry. Conceptually one call occurs first
4450 * and we have a single winner.
4451 */
e43379f1
MM
4452 if (increment < -40)
4453 increment = -40;
1da177e4
LT
4454 if (increment > 40)
4455 increment = 40;
4456
2b8f836f 4457 nice = TASK_NICE(current) + increment;
1da177e4
LT
4458 if (nice < -20)
4459 nice = -20;
4460 if (nice > 19)
4461 nice = 19;
4462
e43379f1
MM
4463 if (increment < 0 && !can_nice(current, nice))
4464 return -EPERM;
4465
1da177e4
LT
4466 retval = security_task_setnice(current, nice);
4467 if (retval)
4468 return retval;
4469
4470 set_user_nice(current, nice);
4471 return 0;
4472}
4473
4474#endif
4475
4476/**
4477 * task_prio - return the priority value of a given task.
4478 * @p: the task in question.
4479 *
4480 * This is the priority value as seen by users in /proc.
4481 * RT tasks are offset by -200. Normal tasks are centered
4482 * around 0, value goes from -16 to +15.
4483 */
36c8b586 4484int task_prio(const struct task_struct *p)
1da177e4
LT
4485{
4486 return p->prio - MAX_RT_PRIO;
4487}
4488
4489/**
4490 * task_nice - return the nice value of a given task.
4491 * @p: the task in question.
4492 */
36c8b586 4493int task_nice(const struct task_struct *p)
1da177e4
LT
4494{
4495 return TASK_NICE(p);
4496}
150d8bed 4497EXPORT_SYMBOL(task_nice);
1da177e4
LT
4498
4499/**
4500 * idle_cpu - is a given cpu idle currently?
4501 * @cpu: the processor in question.
4502 */
4503int idle_cpu(int cpu)
4504{
4505 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4506}
4507
1da177e4
LT
4508/**
4509 * idle_task - return the idle task for a given cpu.
4510 * @cpu: the processor in question.
4511 */
36c8b586 4512struct task_struct *idle_task(int cpu)
1da177e4
LT
4513{
4514 return cpu_rq(cpu)->idle;
4515}
4516
4517/**
4518 * find_process_by_pid - find a process with a matching PID value.
4519 * @pid: the pid in question.
4520 */
a9957449 4521static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4522{
228ebcbe 4523 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4524}
4525
4526/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4527static void
4528__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4529{
dd41f596 4530 BUG_ON(p->se.on_rq);
48f24c4d 4531
1da177e4
LT
4532 p->policy = policy;
4533 p->rt_priority = prio;
b29739f9
IM
4534 p->normal_prio = normal_prio(p);
4535 /* we are holding p->pi_lock already */
4536 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4537 if (rt_prio(p->prio))
4538 p->sched_class = &rt_sched_class;
4539 else
4540 p->sched_class = &fair_sched_class;
2dd73a4f 4541 set_load_weight(p);
1da177e4
LT
4542}
4543
c69e8d9c
DH
4544/*
4545 * check the target process has a UID that matches the current process's
4546 */
4547static bool check_same_owner(struct task_struct *p)
4548{
4549 const struct cred *cred = current_cred(), *pcred;
4550 bool match;
4551
4552 rcu_read_lock();
4553 pcred = __task_cred(p);
4554 match = (cred->euid == pcred->euid ||
4555 cred->euid == pcred->uid);
4556 rcu_read_unlock();
4557 return match;
4558}
4559
961ccddd
RR
4560static int __sched_setscheduler(struct task_struct *p, int policy,
4561 struct sched_param *param, bool user)
1da177e4 4562{
83b699ed 4563 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4564 unsigned long flags;
83ab0aa0 4565 const struct sched_class *prev_class;
70b97a7f 4566 struct rq *rq;
ca94c442 4567 int reset_on_fork;
1da177e4 4568
66e5393a
SR
4569 /* may grab non-irq protected spin_locks */
4570 BUG_ON(in_interrupt());
1da177e4
LT
4571recheck:
4572 /* double check policy once rq lock held */
ca94c442
LP
4573 if (policy < 0) {
4574 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4575 policy = oldpolicy = p->policy;
ca94c442
LP
4576 } else {
4577 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4578 policy &= ~SCHED_RESET_ON_FORK;
4579
4580 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4581 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4582 policy != SCHED_IDLE)
4583 return -EINVAL;
4584 }
4585
1da177e4
LT
4586 /*
4587 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4588 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4589 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4590 */
4591 if (param->sched_priority < 0 ||
95cdf3b7 4592 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4593 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4594 return -EINVAL;
e05606d3 4595 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4596 return -EINVAL;
4597
37e4ab3f
OC
4598 /*
4599 * Allow unprivileged RT tasks to decrease priority:
4600 */
961ccddd 4601 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4602 if (rt_policy(policy)) {
8dc3e909 4603 unsigned long rlim_rtprio;
8dc3e909
ON
4604
4605 if (!lock_task_sighand(p, &flags))
4606 return -ESRCH;
78d7d407 4607 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4608 unlock_task_sighand(p, &flags);
4609
4610 /* can't set/change the rt policy */
4611 if (policy != p->policy && !rlim_rtprio)
4612 return -EPERM;
4613
4614 /* can't increase priority */
4615 if (param->sched_priority > p->rt_priority &&
4616 param->sched_priority > rlim_rtprio)
4617 return -EPERM;
4618 }
dd41f596
IM
4619 /*
4620 * Like positive nice levels, dont allow tasks to
4621 * move out of SCHED_IDLE either:
4622 */
4623 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4624 return -EPERM;
5fe1d75f 4625
37e4ab3f 4626 /* can't change other user's priorities */
c69e8d9c 4627 if (!check_same_owner(p))
37e4ab3f 4628 return -EPERM;
ca94c442
LP
4629
4630 /* Normal users shall not reset the sched_reset_on_fork flag */
4631 if (p->sched_reset_on_fork && !reset_on_fork)
4632 return -EPERM;
37e4ab3f 4633 }
1da177e4 4634
725aad24 4635 if (user) {
725aad24
JF
4636 retval = security_task_setscheduler(p, policy, param);
4637 if (retval)
4638 return retval;
4639 }
4640
b29739f9
IM
4641 /*
4642 * make sure no PI-waiters arrive (or leave) while we are
4643 * changing the priority of the task:
4644 */
1d615482 4645 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4646 /*
4647 * To be able to change p->policy safely, the apropriate
4648 * runqueue lock must be held.
4649 */
b29739f9 4650 rq = __task_rq_lock(p);
dc61b1d6
PZ
4651
4652#ifdef CONFIG_RT_GROUP_SCHED
4653 if (user) {
4654 /*
4655 * Do not allow realtime tasks into groups that have no runtime
4656 * assigned.
4657 */
4658 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4659 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4660 __task_rq_unlock(rq);
4661 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4662 return -EPERM;
4663 }
4664 }
4665#endif
4666
1da177e4
LT
4667 /* recheck policy now with rq lock held */
4668 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4669 policy = oldpolicy = -1;
b29739f9 4670 __task_rq_unlock(rq);
1d615482 4671 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4672 goto recheck;
4673 }
dd41f596 4674 on_rq = p->se.on_rq;
051a1d1a 4675 running = task_current(rq, p);
0e1f3483 4676 if (on_rq)
2e1cb74a 4677 deactivate_task(rq, p, 0);
0e1f3483
HS
4678 if (running)
4679 p->sched_class->put_prev_task(rq, p);
f6b53205 4680
ca94c442
LP
4681 p->sched_reset_on_fork = reset_on_fork;
4682
1da177e4 4683 oldprio = p->prio;
83ab0aa0 4684 prev_class = p->sched_class;
dd41f596 4685 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4686
0e1f3483
HS
4687 if (running)
4688 p->sched_class->set_curr_task(rq);
dd41f596
IM
4689 if (on_rq) {
4690 activate_task(rq, p, 0);
cb469845
SR
4691
4692 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4693 }
b29739f9 4694 __task_rq_unlock(rq);
1d615482 4695 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4696
95e02ca9
TG
4697 rt_mutex_adjust_pi(p);
4698
1da177e4
LT
4699 return 0;
4700}
961ccddd
RR
4701
4702/**
4703 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4704 * @p: the task in question.
4705 * @policy: new policy.
4706 * @param: structure containing the new RT priority.
4707 *
4708 * NOTE that the task may be already dead.
4709 */
4710int sched_setscheduler(struct task_struct *p, int policy,
4711 struct sched_param *param)
4712{
4713 return __sched_setscheduler(p, policy, param, true);
4714}
1da177e4
LT
4715EXPORT_SYMBOL_GPL(sched_setscheduler);
4716
961ccddd
RR
4717/**
4718 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4719 * @p: the task in question.
4720 * @policy: new policy.
4721 * @param: structure containing the new RT priority.
4722 *
4723 * Just like sched_setscheduler, only don't bother checking if the
4724 * current context has permission. For example, this is needed in
4725 * stop_machine(): we create temporary high priority worker threads,
4726 * but our caller might not have that capability.
4727 */
4728int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4729 struct sched_param *param)
4730{
4731 return __sched_setscheduler(p, policy, param, false);
4732}
4733
95cdf3b7
IM
4734static int
4735do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4736{
1da177e4
LT
4737 struct sched_param lparam;
4738 struct task_struct *p;
36c8b586 4739 int retval;
1da177e4
LT
4740
4741 if (!param || pid < 0)
4742 return -EINVAL;
4743 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4744 return -EFAULT;
5fe1d75f
ON
4745
4746 rcu_read_lock();
4747 retval = -ESRCH;
1da177e4 4748 p = find_process_by_pid(pid);
5fe1d75f
ON
4749 if (p != NULL)
4750 retval = sched_setscheduler(p, policy, &lparam);
4751 rcu_read_unlock();
36c8b586 4752
1da177e4
LT
4753 return retval;
4754}
4755
4756/**
4757 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4758 * @pid: the pid in question.
4759 * @policy: new policy.
4760 * @param: structure containing the new RT priority.
4761 */
5add95d4
HC
4762SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4763 struct sched_param __user *, param)
1da177e4 4764{
c21761f1
JB
4765 /* negative values for policy are not valid */
4766 if (policy < 0)
4767 return -EINVAL;
4768
1da177e4
LT
4769 return do_sched_setscheduler(pid, policy, param);
4770}
4771
4772/**
4773 * sys_sched_setparam - set/change the RT priority of a thread
4774 * @pid: the pid in question.
4775 * @param: structure containing the new RT priority.
4776 */
5add95d4 4777SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4778{
4779 return do_sched_setscheduler(pid, -1, param);
4780}
4781
4782/**
4783 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4784 * @pid: the pid in question.
4785 */
5add95d4 4786SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4787{
36c8b586 4788 struct task_struct *p;
3a5c359a 4789 int retval;
1da177e4
LT
4790
4791 if (pid < 0)
3a5c359a 4792 return -EINVAL;
1da177e4
LT
4793
4794 retval = -ESRCH;
5fe85be0 4795 rcu_read_lock();
1da177e4
LT
4796 p = find_process_by_pid(pid);
4797 if (p) {
4798 retval = security_task_getscheduler(p);
4799 if (!retval)
ca94c442
LP
4800 retval = p->policy
4801 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4802 }
5fe85be0 4803 rcu_read_unlock();
1da177e4
LT
4804 return retval;
4805}
4806
4807/**
ca94c442 4808 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4809 * @pid: the pid in question.
4810 * @param: structure containing the RT priority.
4811 */
5add95d4 4812SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4813{
4814 struct sched_param lp;
36c8b586 4815 struct task_struct *p;
3a5c359a 4816 int retval;
1da177e4
LT
4817
4818 if (!param || pid < 0)
3a5c359a 4819 return -EINVAL;
1da177e4 4820
5fe85be0 4821 rcu_read_lock();
1da177e4
LT
4822 p = find_process_by_pid(pid);
4823 retval = -ESRCH;
4824 if (!p)
4825 goto out_unlock;
4826
4827 retval = security_task_getscheduler(p);
4828 if (retval)
4829 goto out_unlock;
4830
4831 lp.sched_priority = p->rt_priority;
5fe85be0 4832 rcu_read_unlock();
1da177e4
LT
4833
4834 /*
4835 * This one might sleep, we cannot do it with a spinlock held ...
4836 */
4837 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4838
1da177e4
LT
4839 return retval;
4840
4841out_unlock:
5fe85be0 4842 rcu_read_unlock();
1da177e4
LT
4843 return retval;
4844}
4845
96f874e2 4846long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4847{
5a16f3d3 4848 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4849 struct task_struct *p;
4850 int retval;
1da177e4 4851
95402b38 4852 get_online_cpus();
23f5d142 4853 rcu_read_lock();
1da177e4
LT
4854
4855 p = find_process_by_pid(pid);
4856 if (!p) {
23f5d142 4857 rcu_read_unlock();
95402b38 4858 put_online_cpus();
1da177e4
LT
4859 return -ESRCH;
4860 }
4861
23f5d142 4862 /* Prevent p going away */
1da177e4 4863 get_task_struct(p);
23f5d142 4864 rcu_read_unlock();
1da177e4 4865
5a16f3d3
RR
4866 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4867 retval = -ENOMEM;
4868 goto out_put_task;
4869 }
4870 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4871 retval = -ENOMEM;
4872 goto out_free_cpus_allowed;
4873 }
1da177e4 4874 retval = -EPERM;
c69e8d9c 4875 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4876 goto out_unlock;
4877
e7834f8f
DQ
4878 retval = security_task_setscheduler(p, 0, NULL);
4879 if (retval)
4880 goto out_unlock;
4881
5a16f3d3
RR
4882 cpuset_cpus_allowed(p, cpus_allowed);
4883 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4884 again:
5a16f3d3 4885 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4886
8707d8b8 4887 if (!retval) {
5a16f3d3
RR
4888 cpuset_cpus_allowed(p, cpus_allowed);
4889 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4890 /*
4891 * We must have raced with a concurrent cpuset
4892 * update. Just reset the cpus_allowed to the
4893 * cpuset's cpus_allowed
4894 */
5a16f3d3 4895 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4896 goto again;
4897 }
4898 }
1da177e4 4899out_unlock:
5a16f3d3
RR
4900 free_cpumask_var(new_mask);
4901out_free_cpus_allowed:
4902 free_cpumask_var(cpus_allowed);
4903out_put_task:
1da177e4 4904 put_task_struct(p);
95402b38 4905 put_online_cpus();
1da177e4
LT
4906 return retval;
4907}
4908
4909static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4910 struct cpumask *new_mask)
1da177e4 4911{
96f874e2
RR
4912 if (len < cpumask_size())
4913 cpumask_clear(new_mask);
4914 else if (len > cpumask_size())
4915 len = cpumask_size();
4916
1da177e4
LT
4917 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4918}
4919
4920/**
4921 * sys_sched_setaffinity - set the cpu affinity of a process
4922 * @pid: pid of the process
4923 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4924 * @user_mask_ptr: user-space pointer to the new cpu mask
4925 */
5add95d4
HC
4926SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4927 unsigned long __user *, user_mask_ptr)
1da177e4 4928{
5a16f3d3 4929 cpumask_var_t new_mask;
1da177e4
LT
4930 int retval;
4931
5a16f3d3
RR
4932 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4933 return -ENOMEM;
1da177e4 4934
5a16f3d3
RR
4935 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4936 if (retval == 0)
4937 retval = sched_setaffinity(pid, new_mask);
4938 free_cpumask_var(new_mask);
4939 return retval;
1da177e4
LT
4940}
4941
96f874e2 4942long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4943{
36c8b586 4944 struct task_struct *p;
31605683
TG
4945 unsigned long flags;
4946 struct rq *rq;
1da177e4 4947 int retval;
1da177e4 4948
95402b38 4949 get_online_cpus();
23f5d142 4950 rcu_read_lock();
1da177e4
LT
4951
4952 retval = -ESRCH;
4953 p = find_process_by_pid(pid);
4954 if (!p)
4955 goto out_unlock;
4956
e7834f8f
DQ
4957 retval = security_task_getscheduler(p);
4958 if (retval)
4959 goto out_unlock;
4960
31605683 4961 rq = task_rq_lock(p, &flags);
96f874e2 4962 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4963 task_rq_unlock(rq, &flags);
1da177e4
LT
4964
4965out_unlock:
23f5d142 4966 rcu_read_unlock();
95402b38 4967 put_online_cpus();
1da177e4 4968
9531b62f 4969 return retval;
1da177e4
LT
4970}
4971
4972/**
4973 * sys_sched_getaffinity - get the cpu affinity of a process
4974 * @pid: pid of the process
4975 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4976 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4977 */
5add95d4
HC
4978SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4979 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4980{
4981 int ret;
f17c8607 4982 cpumask_var_t mask;
1da177e4 4983
84fba5ec 4984 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4985 return -EINVAL;
4986 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4987 return -EINVAL;
4988
f17c8607
RR
4989 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4990 return -ENOMEM;
1da177e4 4991
f17c8607
RR
4992 ret = sched_getaffinity(pid, mask);
4993 if (ret == 0) {
8bc037fb 4994 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4995
4996 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4997 ret = -EFAULT;
4998 else
cd3d8031 4999 ret = retlen;
f17c8607
RR
5000 }
5001 free_cpumask_var(mask);
1da177e4 5002
f17c8607 5003 return ret;
1da177e4
LT
5004}
5005
5006/**
5007 * sys_sched_yield - yield the current processor to other threads.
5008 *
dd41f596
IM
5009 * This function yields the current CPU to other tasks. If there are no
5010 * other threads running on this CPU then this function will return.
1da177e4 5011 */
5add95d4 5012SYSCALL_DEFINE0(sched_yield)
1da177e4 5013{
70b97a7f 5014 struct rq *rq = this_rq_lock();
1da177e4 5015
2d72376b 5016 schedstat_inc(rq, yld_count);
4530d7ab 5017 current->sched_class->yield_task(rq);
1da177e4
LT
5018
5019 /*
5020 * Since we are going to call schedule() anyway, there's
5021 * no need to preempt or enable interrupts:
5022 */
5023 __release(rq->lock);
8a25d5de 5024 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5025 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5026 preempt_enable_no_resched();
5027
5028 schedule();
5029
5030 return 0;
5031}
5032
d86ee480
PZ
5033static inline int should_resched(void)
5034{
5035 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5036}
5037
e7b38404 5038static void __cond_resched(void)
1da177e4 5039{
e7aaaa69
FW
5040 add_preempt_count(PREEMPT_ACTIVE);
5041 schedule();
5042 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5043}
5044
02b67cc3 5045int __sched _cond_resched(void)
1da177e4 5046{
d86ee480 5047 if (should_resched()) {
1da177e4
LT
5048 __cond_resched();
5049 return 1;
5050 }
5051 return 0;
5052}
02b67cc3 5053EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5054
5055/*
613afbf8 5056 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5057 * call schedule, and on return reacquire the lock.
5058 *
41a2d6cf 5059 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5060 * operations here to prevent schedule() from being called twice (once via
5061 * spin_unlock(), once by hand).
5062 */
613afbf8 5063int __cond_resched_lock(spinlock_t *lock)
1da177e4 5064{
d86ee480 5065 int resched = should_resched();
6df3cecb
JK
5066 int ret = 0;
5067
f607c668
PZ
5068 lockdep_assert_held(lock);
5069
95c354fe 5070 if (spin_needbreak(lock) || resched) {
1da177e4 5071 spin_unlock(lock);
d86ee480 5072 if (resched)
95c354fe
NP
5073 __cond_resched();
5074 else
5075 cpu_relax();
6df3cecb 5076 ret = 1;
1da177e4 5077 spin_lock(lock);
1da177e4 5078 }
6df3cecb 5079 return ret;
1da177e4 5080}
613afbf8 5081EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5082
613afbf8 5083int __sched __cond_resched_softirq(void)
1da177e4
LT
5084{
5085 BUG_ON(!in_softirq());
5086
d86ee480 5087 if (should_resched()) {
98d82567 5088 local_bh_enable();
1da177e4
LT
5089 __cond_resched();
5090 local_bh_disable();
5091 return 1;
5092 }
5093 return 0;
5094}
613afbf8 5095EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5096
1da177e4
LT
5097/**
5098 * yield - yield the current processor to other threads.
5099 *
72fd4a35 5100 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5101 * thread runnable and calls sys_sched_yield().
5102 */
5103void __sched yield(void)
5104{
5105 set_current_state(TASK_RUNNING);
5106 sys_sched_yield();
5107}
1da177e4
LT
5108EXPORT_SYMBOL(yield);
5109
5110/*
41a2d6cf 5111 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5112 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5113 */
5114void __sched io_schedule(void)
5115{
54d35f29 5116 struct rq *rq = raw_rq();
1da177e4 5117
0ff92245 5118 delayacct_blkio_start();
1da177e4 5119 atomic_inc(&rq->nr_iowait);
8f0dfc34 5120 current->in_iowait = 1;
1da177e4 5121 schedule();
8f0dfc34 5122 current->in_iowait = 0;
1da177e4 5123 atomic_dec(&rq->nr_iowait);
0ff92245 5124 delayacct_blkio_end();
1da177e4 5125}
1da177e4
LT
5126EXPORT_SYMBOL(io_schedule);
5127
5128long __sched io_schedule_timeout(long timeout)
5129{
54d35f29 5130 struct rq *rq = raw_rq();
1da177e4
LT
5131 long ret;
5132
0ff92245 5133 delayacct_blkio_start();
1da177e4 5134 atomic_inc(&rq->nr_iowait);
8f0dfc34 5135 current->in_iowait = 1;
1da177e4 5136 ret = schedule_timeout(timeout);
8f0dfc34 5137 current->in_iowait = 0;
1da177e4 5138 atomic_dec(&rq->nr_iowait);
0ff92245 5139 delayacct_blkio_end();
1da177e4
LT
5140 return ret;
5141}
5142
5143/**
5144 * sys_sched_get_priority_max - return maximum RT priority.
5145 * @policy: scheduling class.
5146 *
5147 * this syscall returns the maximum rt_priority that can be used
5148 * by a given scheduling class.
5149 */
5add95d4 5150SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5151{
5152 int ret = -EINVAL;
5153
5154 switch (policy) {
5155 case SCHED_FIFO:
5156 case SCHED_RR:
5157 ret = MAX_USER_RT_PRIO-1;
5158 break;
5159 case SCHED_NORMAL:
b0a9499c 5160 case SCHED_BATCH:
dd41f596 5161 case SCHED_IDLE:
1da177e4
LT
5162 ret = 0;
5163 break;
5164 }
5165 return ret;
5166}
5167
5168/**
5169 * sys_sched_get_priority_min - return minimum RT priority.
5170 * @policy: scheduling class.
5171 *
5172 * this syscall returns the minimum rt_priority that can be used
5173 * by a given scheduling class.
5174 */
5add95d4 5175SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5176{
5177 int ret = -EINVAL;
5178
5179 switch (policy) {
5180 case SCHED_FIFO:
5181 case SCHED_RR:
5182 ret = 1;
5183 break;
5184 case SCHED_NORMAL:
b0a9499c 5185 case SCHED_BATCH:
dd41f596 5186 case SCHED_IDLE:
1da177e4
LT
5187 ret = 0;
5188 }
5189 return ret;
5190}
5191
5192/**
5193 * sys_sched_rr_get_interval - return the default timeslice of a process.
5194 * @pid: pid of the process.
5195 * @interval: userspace pointer to the timeslice value.
5196 *
5197 * this syscall writes the default timeslice value of a given process
5198 * into the user-space timespec buffer. A value of '0' means infinity.
5199 */
17da2bd9 5200SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5201 struct timespec __user *, interval)
1da177e4 5202{
36c8b586 5203 struct task_struct *p;
a4ec24b4 5204 unsigned int time_slice;
dba091b9
TG
5205 unsigned long flags;
5206 struct rq *rq;
3a5c359a 5207 int retval;
1da177e4 5208 struct timespec t;
1da177e4
LT
5209
5210 if (pid < 0)
3a5c359a 5211 return -EINVAL;
1da177e4
LT
5212
5213 retval = -ESRCH;
1a551ae7 5214 rcu_read_lock();
1da177e4
LT
5215 p = find_process_by_pid(pid);
5216 if (!p)
5217 goto out_unlock;
5218
5219 retval = security_task_getscheduler(p);
5220 if (retval)
5221 goto out_unlock;
5222
dba091b9
TG
5223 rq = task_rq_lock(p, &flags);
5224 time_slice = p->sched_class->get_rr_interval(rq, p);
5225 task_rq_unlock(rq, &flags);
a4ec24b4 5226
1a551ae7 5227 rcu_read_unlock();
a4ec24b4 5228 jiffies_to_timespec(time_slice, &t);
1da177e4 5229 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5230 return retval;
3a5c359a 5231
1da177e4 5232out_unlock:
1a551ae7 5233 rcu_read_unlock();
1da177e4
LT
5234 return retval;
5235}
5236
7c731e0a 5237static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5238
82a1fcb9 5239void sched_show_task(struct task_struct *p)
1da177e4 5240{
1da177e4 5241 unsigned long free = 0;
36c8b586 5242 unsigned state;
1da177e4 5243
1da177e4 5244 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5245 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5246 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5247#if BITS_PER_LONG == 32
1da177e4 5248 if (state == TASK_RUNNING)
3df0fc5b 5249 printk(KERN_CONT " running ");
1da177e4 5250 else
3df0fc5b 5251 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5252#else
5253 if (state == TASK_RUNNING)
3df0fc5b 5254 printk(KERN_CONT " running task ");
1da177e4 5255 else
3df0fc5b 5256 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5257#endif
5258#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5259 free = stack_not_used(p);
1da177e4 5260#endif
3df0fc5b 5261 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5262 task_pid_nr(p), task_pid_nr(p->real_parent),
5263 (unsigned long)task_thread_info(p)->flags);
1da177e4 5264
5fb5e6de 5265 show_stack(p, NULL);
1da177e4
LT
5266}
5267
e59e2ae2 5268void show_state_filter(unsigned long state_filter)
1da177e4 5269{
36c8b586 5270 struct task_struct *g, *p;
1da177e4 5271
4bd77321 5272#if BITS_PER_LONG == 32
3df0fc5b
PZ
5273 printk(KERN_INFO
5274 " task PC stack pid father\n");
1da177e4 5275#else
3df0fc5b
PZ
5276 printk(KERN_INFO
5277 " task PC stack pid father\n");
1da177e4
LT
5278#endif
5279 read_lock(&tasklist_lock);
5280 do_each_thread(g, p) {
5281 /*
5282 * reset the NMI-timeout, listing all files on a slow
5283 * console might take alot of time:
5284 */
5285 touch_nmi_watchdog();
39bc89fd 5286 if (!state_filter || (p->state & state_filter))
82a1fcb9 5287 sched_show_task(p);
1da177e4
LT
5288 } while_each_thread(g, p);
5289
04c9167f
JF
5290 touch_all_softlockup_watchdogs();
5291
dd41f596
IM
5292#ifdef CONFIG_SCHED_DEBUG
5293 sysrq_sched_debug_show();
5294#endif
1da177e4 5295 read_unlock(&tasklist_lock);
e59e2ae2
IM
5296 /*
5297 * Only show locks if all tasks are dumped:
5298 */
93335a21 5299 if (!state_filter)
e59e2ae2 5300 debug_show_all_locks();
1da177e4
LT
5301}
5302
1df21055
IM
5303void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5304{
dd41f596 5305 idle->sched_class = &idle_sched_class;
1df21055
IM
5306}
5307
f340c0d1
IM
5308/**
5309 * init_idle - set up an idle thread for a given CPU
5310 * @idle: task in question
5311 * @cpu: cpu the idle task belongs to
5312 *
5313 * NOTE: this function does not set the idle thread's NEED_RESCHED
5314 * flag, to make booting more robust.
5315 */
5c1e1767 5316void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5317{
70b97a7f 5318 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5319 unsigned long flags;
5320
05fa785c 5321 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5322
dd41f596 5323 __sched_fork(idle);
06b83b5f 5324 idle->state = TASK_RUNNING;
dd41f596
IM
5325 idle->se.exec_start = sched_clock();
5326
96f874e2 5327 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5328 __set_task_cpu(idle, cpu);
1da177e4 5329
1da177e4 5330 rq->curr = rq->idle = idle;
4866cde0
NP
5331#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5332 idle->oncpu = 1;
5333#endif
05fa785c 5334 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5335
5336 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5337#if defined(CONFIG_PREEMPT)
5338 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5339#else
a1261f54 5340 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5341#endif
dd41f596
IM
5342 /*
5343 * The idle tasks have their own, simple scheduling class:
5344 */
5345 idle->sched_class = &idle_sched_class;
fb52607a 5346 ftrace_graph_init_task(idle);
1da177e4
LT
5347}
5348
5349/*
5350 * In a system that switches off the HZ timer nohz_cpu_mask
5351 * indicates which cpus entered this state. This is used
5352 * in the rcu update to wait only for active cpus. For system
5353 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5354 * always be CPU_BITS_NONE.
1da177e4 5355 */
6a7b3dc3 5356cpumask_var_t nohz_cpu_mask;
1da177e4 5357
19978ca6
IM
5358/*
5359 * Increase the granularity value when there are more CPUs,
5360 * because with more CPUs the 'effective latency' as visible
5361 * to users decreases. But the relationship is not linear,
5362 * so pick a second-best guess by going with the log2 of the
5363 * number of CPUs.
5364 *
5365 * This idea comes from the SD scheduler of Con Kolivas:
5366 */
acb4a848 5367static int get_update_sysctl_factor(void)
19978ca6 5368{
4ca3ef71 5369 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5370 unsigned int factor;
5371
5372 switch (sysctl_sched_tunable_scaling) {
5373 case SCHED_TUNABLESCALING_NONE:
5374 factor = 1;
5375 break;
5376 case SCHED_TUNABLESCALING_LINEAR:
5377 factor = cpus;
5378 break;
5379 case SCHED_TUNABLESCALING_LOG:
5380 default:
5381 factor = 1 + ilog2(cpus);
5382 break;
5383 }
19978ca6 5384
acb4a848
CE
5385 return factor;
5386}
19978ca6 5387
acb4a848
CE
5388static void update_sysctl(void)
5389{
5390 unsigned int factor = get_update_sysctl_factor();
19978ca6 5391
0bcdcf28
CE
5392#define SET_SYSCTL(name) \
5393 (sysctl_##name = (factor) * normalized_sysctl_##name)
5394 SET_SYSCTL(sched_min_granularity);
5395 SET_SYSCTL(sched_latency);
5396 SET_SYSCTL(sched_wakeup_granularity);
5397 SET_SYSCTL(sched_shares_ratelimit);
5398#undef SET_SYSCTL
5399}
55cd5340 5400
0bcdcf28
CE
5401static inline void sched_init_granularity(void)
5402{
5403 update_sysctl();
19978ca6
IM
5404}
5405
1da177e4
LT
5406#ifdef CONFIG_SMP
5407/*
5408 * This is how migration works:
5409 *
969c7921
TH
5410 * 1) we invoke migration_cpu_stop() on the target CPU using
5411 * stop_one_cpu().
5412 * 2) stopper starts to run (implicitly forcing the migrated thread
5413 * off the CPU)
5414 * 3) it checks whether the migrated task is still in the wrong runqueue.
5415 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5416 * it and puts it into the right queue.
969c7921
TH
5417 * 5) stopper completes and stop_one_cpu() returns and the migration
5418 * is done.
1da177e4
LT
5419 */
5420
5421/*
5422 * Change a given task's CPU affinity. Migrate the thread to a
5423 * proper CPU and schedule it away if the CPU it's executing on
5424 * is removed from the allowed bitmask.
5425 *
5426 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5427 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5428 * call is not atomic; no spinlocks may be held.
5429 */
96f874e2 5430int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5431{
5432 unsigned long flags;
70b97a7f 5433 struct rq *rq;
969c7921 5434 unsigned int dest_cpu;
48f24c4d 5435 int ret = 0;
1da177e4 5436
65cc8e48
PZ
5437 /*
5438 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5439 * drop the rq->lock and still rely on ->cpus_allowed.
5440 */
5441again:
5442 while (task_is_waking(p))
5443 cpu_relax();
1da177e4 5444 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5445 if (task_is_waking(p)) {
5446 task_rq_unlock(rq, &flags);
5447 goto again;
5448 }
e2912009 5449
6ad4c188 5450 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5451 ret = -EINVAL;
5452 goto out;
5453 }
5454
9985b0ba 5455 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5456 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5457 ret = -EINVAL;
5458 goto out;
5459 }
5460
73fe6aae 5461 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5462 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5463 else {
96f874e2
RR
5464 cpumask_copy(&p->cpus_allowed, new_mask);
5465 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5466 }
5467
1da177e4 5468 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5469 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5470 goto out;
5471
969c7921
TH
5472 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5473 if (migrate_task(p, dest_cpu)) {
5474 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5475 /* Need help from migration thread: drop lock and wait. */
5476 task_rq_unlock(rq, &flags);
969c7921 5477 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5478 tlb_migrate_finish(p->mm);
5479 return 0;
5480 }
5481out:
5482 task_rq_unlock(rq, &flags);
48f24c4d 5483
1da177e4
LT
5484 return ret;
5485}
cd8ba7cd 5486EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5487
5488/*
41a2d6cf 5489 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5490 * this because either it can't run here any more (set_cpus_allowed()
5491 * away from this CPU, or CPU going down), or because we're
5492 * attempting to rebalance this task on exec (sched_exec).
5493 *
5494 * So we race with normal scheduler movements, but that's OK, as long
5495 * as the task is no longer on this CPU.
efc30814
KK
5496 *
5497 * Returns non-zero if task was successfully migrated.
1da177e4 5498 */
efc30814 5499static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5500{
70b97a7f 5501 struct rq *rq_dest, *rq_src;
e2912009 5502 int ret = 0;
1da177e4 5503
e761b772 5504 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5505 return ret;
1da177e4
LT
5506
5507 rq_src = cpu_rq(src_cpu);
5508 rq_dest = cpu_rq(dest_cpu);
5509
5510 double_rq_lock(rq_src, rq_dest);
5511 /* Already moved. */
5512 if (task_cpu(p) != src_cpu)
b1e38734 5513 goto done;
1da177e4 5514 /* Affinity changed (again). */
96f874e2 5515 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5516 goto fail;
1da177e4 5517
e2912009
PZ
5518 /*
5519 * If we're not on a rq, the next wake-up will ensure we're
5520 * placed properly.
5521 */
5522 if (p->se.on_rq) {
2e1cb74a 5523 deactivate_task(rq_src, p, 0);
e2912009 5524 set_task_cpu(p, dest_cpu);
dd41f596 5525 activate_task(rq_dest, p, 0);
15afe09b 5526 check_preempt_curr(rq_dest, p, 0);
1da177e4 5527 }
b1e38734 5528done:
efc30814 5529 ret = 1;
b1e38734 5530fail:
1da177e4 5531 double_rq_unlock(rq_src, rq_dest);
efc30814 5532 return ret;
1da177e4
LT
5533}
5534
5535/*
969c7921
TH
5536 * migration_cpu_stop - this will be executed by a highprio stopper thread
5537 * and performs thread migration by bumping thread off CPU then
5538 * 'pushing' onto another runqueue.
1da177e4 5539 */
969c7921 5540static int migration_cpu_stop(void *data)
1da177e4 5541{
969c7921 5542 struct migration_arg *arg = data;
f7b4cddc 5543
969c7921
TH
5544 /*
5545 * The original target cpu might have gone down and we might
5546 * be on another cpu but it doesn't matter.
5547 */
f7b4cddc 5548 local_irq_disable();
969c7921 5549 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5550 local_irq_enable();
1da177e4 5551 return 0;
f7b4cddc
ON
5552}
5553
1da177e4 5554#ifdef CONFIG_HOTPLUG_CPU
054b9108 5555/*
3a4fa0a2 5556 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5557 */
6a1bdc1b 5558void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5559{
1445c08d
ON
5560 struct rq *rq = cpu_rq(dead_cpu);
5561 int needs_cpu, uninitialized_var(dest_cpu);
5562 unsigned long flags;
e76bd8d9 5563
1445c08d 5564 local_irq_save(flags);
e76bd8d9 5565
1445c08d
ON
5566 raw_spin_lock(&rq->lock);
5567 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5568 if (needs_cpu)
5569 dest_cpu = select_fallback_rq(dead_cpu, p);
5570 raw_spin_unlock(&rq->lock);
c1804d54
ON
5571 /*
5572 * It can only fail if we race with set_cpus_allowed(),
5573 * in the racer should migrate the task anyway.
5574 */
1445c08d 5575 if (needs_cpu)
c1804d54 5576 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5577 local_irq_restore(flags);
1da177e4
LT
5578}
5579
5580/*
5581 * While a dead CPU has no uninterruptible tasks queued at this point,
5582 * it might still have a nonzero ->nr_uninterruptible counter, because
5583 * for performance reasons the counter is not stricly tracking tasks to
5584 * their home CPUs. So we just add the counter to another CPU's counter,
5585 * to keep the global sum constant after CPU-down:
5586 */
70b97a7f 5587static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5588{
6ad4c188 5589 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5590 unsigned long flags;
5591
5592 local_irq_save(flags);
5593 double_rq_lock(rq_src, rq_dest);
5594 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5595 rq_src->nr_uninterruptible = 0;
5596 double_rq_unlock(rq_src, rq_dest);
5597 local_irq_restore(flags);
5598}
5599
5600/* Run through task list and migrate tasks from the dead cpu. */
5601static void migrate_live_tasks(int src_cpu)
5602{
48f24c4d 5603 struct task_struct *p, *t;
1da177e4 5604
f7b4cddc 5605 read_lock(&tasklist_lock);
1da177e4 5606
48f24c4d
IM
5607 do_each_thread(t, p) {
5608 if (p == current)
1da177e4
LT
5609 continue;
5610
48f24c4d
IM
5611 if (task_cpu(p) == src_cpu)
5612 move_task_off_dead_cpu(src_cpu, p);
5613 } while_each_thread(t, p);
1da177e4 5614
f7b4cddc 5615 read_unlock(&tasklist_lock);
1da177e4
LT
5616}
5617
dd41f596
IM
5618/*
5619 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5620 * It does so by boosting its priority to highest possible.
5621 * Used by CPU offline code.
1da177e4
LT
5622 */
5623void sched_idle_next(void)
5624{
48f24c4d 5625 int this_cpu = smp_processor_id();
70b97a7f 5626 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5627 struct task_struct *p = rq->idle;
5628 unsigned long flags;
5629
5630 /* cpu has to be offline */
48f24c4d 5631 BUG_ON(cpu_online(this_cpu));
1da177e4 5632
48f24c4d
IM
5633 /*
5634 * Strictly not necessary since rest of the CPUs are stopped by now
5635 * and interrupts disabled on the current cpu.
1da177e4 5636 */
05fa785c 5637 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5638
dd41f596 5639 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5640
94bc9a7b 5641 activate_task(rq, p, 0);
1da177e4 5642
05fa785c 5643 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5644}
5645
48f24c4d
IM
5646/*
5647 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5648 * offline.
5649 */
5650void idle_task_exit(void)
5651{
5652 struct mm_struct *mm = current->active_mm;
5653
5654 BUG_ON(cpu_online(smp_processor_id()));
5655
5656 if (mm != &init_mm)
5657 switch_mm(mm, &init_mm, current);
5658 mmdrop(mm);
5659}
5660
054b9108 5661/* called under rq->lock with disabled interrupts */
36c8b586 5662static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5663{
70b97a7f 5664 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5665
5666 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5667 BUG_ON(!p->exit_state);
1da177e4
LT
5668
5669 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5670 BUG_ON(p->state == TASK_DEAD);
1da177e4 5671
48f24c4d 5672 get_task_struct(p);
1da177e4
LT
5673
5674 /*
5675 * Drop lock around migration; if someone else moves it,
41a2d6cf 5676 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5677 * fine.
5678 */
05fa785c 5679 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5680 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5681 raw_spin_lock_irq(&rq->lock);
1da177e4 5682
48f24c4d 5683 put_task_struct(p);
1da177e4
LT
5684}
5685
5686/* release_task() removes task from tasklist, so we won't find dead tasks. */
5687static void migrate_dead_tasks(unsigned int dead_cpu)
5688{
70b97a7f 5689 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5690 struct task_struct *next;
48f24c4d 5691
dd41f596
IM
5692 for ( ; ; ) {
5693 if (!rq->nr_running)
5694 break;
b67802ea 5695 next = pick_next_task(rq);
dd41f596
IM
5696 if (!next)
5697 break;
79c53799 5698 next->sched_class->put_prev_task(rq, next);
dd41f596 5699 migrate_dead(dead_cpu, next);
e692ab53 5700
1da177e4
LT
5701 }
5702}
dce48a84
TG
5703
5704/*
5705 * remove the tasks which were accounted by rq from calc_load_tasks.
5706 */
5707static void calc_global_load_remove(struct rq *rq)
5708{
5709 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5710 rq->calc_load_active = 0;
dce48a84 5711}
1da177e4
LT
5712#endif /* CONFIG_HOTPLUG_CPU */
5713
e692ab53
NP
5714#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5715
5716static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5717 {
5718 .procname = "sched_domain",
c57baf1e 5719 .mode = 0555,
e0361851 5720 },
56992309 5721 {}
e692ab53
NP
5722};
5723
5724static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5725 {
5726 .procname = "kernel",
c57baf1e 5727 .mode = 0555,
e0361851
AD
5728 .child = sd_ctl_dir,
5729 },
56992309 5730 {}
e692ab53
NP
5731};
5732
5733static struct ctl_table *sd_alloc_ctl_entry(int n)
5734{
5735 struct ctl_table *entry =
5cf9f062 5736 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5737
e692ab53
NP
5738 return entry;
5739}
5740
6382bc90
MM
5741static void sd_free_ctl_entry(struct ctl_table **tablep)
5742{
cd790076 5743 struct ctl_table *entry;
6382bc90 5744
cd790076
MM
5745 /*
5746 * In the intermediate directories, both the child directory and
5747 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5748 * will always be set. In the lowest directory the names are
cd790076
MM
5749 * static strings and all have proc handlers.
5750 */
5751 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5752 if (entry->child)
5753 sd_free_ctl_entry(&entry->child);
cd790076
MM
5754 if (entry->proc_handler == NULL)
5755 kfree(entry->procname);
5756 }
6382bc90
MM
5757
5758 kfree(*tablep);
5759 *tablep = NULL;
5760}
5761
e692ab53 5762static void
e0361851 5763set_table_entry(struct ctl_table *entry,
e692ab53
NP
5764 const char *procname, void *data, int maxlen,
5765 mode_t mode, proc_handler *proc_handler)
5766{
e692ab53
NP
5767 entry->procname = procname;
5768 entry->data = data;
5769 entry->maxlen = maxlen;
5770 entry->mode = mode;
5771 entry->proc_handler = proc_handler;
5772}
5773
5774static struct ctl_table *
5775sd_alloc_ctl_domain_table(struct sched_domain *sd)
5776{
a5d8c348 5777 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5778
ad1cdc1d
MM
5779 if (table == NULL)
5780 return NULL;
5781
e0361851 5782 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5783 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5784 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5785 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5786 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5787 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5788 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5789 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5790 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5791 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5792 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5793 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5794 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5795 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5796 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5797 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5798 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5799 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5800 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5801 &sd->cache_nice_tries,
5802 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5803 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5804 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5805 set_table_entry(&table[11], "name", sd->name,
5806 CORENAME_MAX_SIZE, 0444, proc_dostring);
5807 /* &table[12] is terminator */
e692ab53
NP
5808
5809 return table;
5810}
5811
9a4e7159 5812static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5813{
5814 struct ctl_table *entry, *table;
5815 struct sched_domain *sd;
5816 int domain_num = 0, i;
5817 char buf[32];
5818
5819 for_each_domain(cpu, sd)
5820 domain_num++;
5821 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5822 if (table == NULL)
5823 return NULL;
e692ab53
NP
5824
5825 i = 0;
5826 for_each_domain(cpu, sd) {
5827 snprintf(buf, 32, "domain%d", i);
e692ab53 5828 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5829 entry->mode = 0555;
e692ab53
NP
5830 entry->child = sd_alloc_ctl_domain_table(sd);
5831 entry++;
5832 i++;
5833 }
5834 return table;
5835}
5836
5837static struct ctl_table_header *sd_sysctl_header;
6382bc90 5838static void register_sched_domain_sysctl(void)
e692ab53 5839{
6ad4c188 5840 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5841 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5842 char buf[32];
5843
7378547f
MM
5844 WARN_ON(sd_ctl_dir[0].child);
5845 sd_ctl_dir[0].child = entry;
5846
ad1cdc1d
MM
5847 if (entry == NULL)
5848 return;
5849
6ad4c188 5850 for_each_possible_cpu(i) {
e692ab53 5851 snprintf(buf, 32, "cpu%d", i);
e692ab53 5852 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5853 entry->mode = 0555;
e692ab53 5854 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5855 entry++;
e692ab53 5856 }
7378547f
MM
5857
5858 WARN_ON(sd_sysctl_header);
e692ab53
NP
5859 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5860}
6382bc90 5861
7378547f 5862/* may be called multiple times per register */
6382bc90
MM
5863static void unregister_sched_domain_sysctl(void)
5864{
7378547f
MM
5865 if (sd_sysctl_header)
5866 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5867 sd_sysctl_header = NULL;
7378547f
MM
5868 if (sd_ctl_dir[0].child)
5869 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5870}
e692ab53 5871#else
6382bc90
MM
5872static void register_sched_domain_sysctl(void)
5873{
5874}
5875static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5876{
5877}
5878#endif
5879
1f11eb6a
GH
5880static void set_rq_online(struct rq *rq)
5881{
5882 if (!rq->online) {
5883 const struct sched_class *class;
5884
c6c4927b 5885 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5886 rq->online = 1;
5887
5888 for_each_class(class) {
5889 if (class->rq_online)
5890 class->rq_online(rq);
5891 }
5892 }
5893}
5894
5895static void set_rq_offline(struct rq *rq)
5896{
5897 if (rq->online) {
5898 const struct sched_class *class;
5899
5900 for_each_class(class) {
5901 if (class->rq_offline)
5902 class->rq_offline(rq);
5903 }
5904
c6c4927b 5905 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5906 rq->online = 0;
5907 }
5908}
5909
1da177e4
LT
5910/*
5911 * migration_call - callback that gets triggered when a CPU is added.
5912 * Here we can start up the necessary migration thread for the new CPU.
5913 */
48f24c4d
IM
5914static int __cpuinit
5915migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5916{
48f24c4d 5917 int cpu = (long)hcpu;
1da177e4 5918 unsigned long flags;
969c7921 5919 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5920
5921 switch (action) {
5be9361c 5922
1da177e4 5923 case CPU_UP_PREPARE:
8bb78442 5924 case CPU_UP_PREPARE_FROZEN:
a468d389 5925 rq->calc_load_update = calc_load_update;
1da177e4 5926 break;
48f24c4d 5927
1da177e4 5928 case CPU_ONLINE:
8bb78442 5929 case CPU_ONLINE_FROZEN:
1f94ef59 5930 /* Update our root-domain */
05fa785c 5931 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5932 if (rq->rd) {
c6c4927b 5933 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5934
5935 set_rq_online(rq);
1f94ef59 5936 }
05fa785c 5937 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5938 break;
48f24c4d 5939
1da177e4 5940#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5941 case CPU_DEAD:
8bb78442 5942 case CPU_DEAD_FROZEN:
1da177e4 5943 migrate_live_tasks(cpu);
1da177e4 5944 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5945 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5946 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5947 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5948 rq->idle->sched_class = &idle_sched_class;
1da177e4 5949 migrate_dead_tasks(cpu);
05fa785c 5950 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5951 migrate_nr_uninterruptible(rq);
5952 BUG_ON(rq->nr_running != 0);
dce48a84 5953 calc_global_load_remove(rq);
1da177e4 5954 break;
57d885fe 5955
08f503b0
GH
5956 case CPU_DYING:
5957 case CPU_DYING_FROZEN:
57d885fe 5958 /* Update our root-domain */
05fa785c 5959 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5960 if (rq->rd) {
c6c4927b 5961 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5962 set_rq_offline(rq);
57d885fe 5963 }
05fa785c 5964 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5965 break;
1da177e4
LT
5966#endif
5967 }
5968 return NOTIFY_OK;
5969}
5970
f38b0820
PM
5971/*
5972 * Register at high priority so that task migration (migrate_all_tasks)
5973 * happens before everything else. This has to be lower priority than
cdd6c482 5974 * the notifier in the perf_event subsystem, though.
1da177e4 5975 */
26c2143b 5976static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5977 .notifier_call = migration_call,
50a323b7 5978 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5979};
5980
3a101d05
TH
5981static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5982 unsigned long action, void *hcpu)
5983{
5984 switch (action & ~CPU_TASKS_FROZEN) {
5985 case CPU_ONLINE:
5986 case CPU_DOWN_FAILED:
5987 set_cpu_active((long)hcpu, true);
5988 return NOTIFY_OK;
5989 default:
5990 return NOTIFY_DONE;
5991 }
5992}
5993
5994static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5995 unsigned long action, void *hcpu)
5996{
5997 switch (action & ~CPU_TASKS_FROZEN) {
5998 case CPU_DOWN_PREPARE:
5999 set_cpu_active((long)hcpu, false);
6000 return NOTIFY_OK;
6001 default:
6002 return NOTIFY_DONE;
6003 }
6004}
6005
7babe8db 6006static int __init migration_init(void)
1da177e4
LT
6007{
6008 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6009 int err;
48f24c4d 6010
3a101d05 6011 /* Initialize migration for the boot CPU */
07dccf33
AM
6012 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6013 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6014 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6015 register_cpu_notifier(&migration_notifier);
7babe8db 6016
3a101d05
TH
6017 /* Register cpu active notifiers */
6018 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6019 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6020
a004cd42 6021 return 0;
1da177e4 6022}
7babe8db 6023early_initcall(migration_init);
1da177e4
LT
6024#endif
6025
6026#ifdef CONFIG_SMP
476f3534 6027
3e9830dc 6028#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6029
f6630114
MT
6030static __read_mostly int sched_domain_debug_enabled;
6031
6032static int __init sched_domain_debug_setup(char *str)
6033{
6034 sched_domain_debug_enabled = 1;
6035
6036 return 0;
6037}
6038early_param("sched_debug", sched_domain_debug_setup);
6039
7c16ec58 6040static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6041 struct cpumask *groupmask)
1da177e4 6042{
4dcf6aff 6043 struct sched_group *group = sd->groups;
434d53b0 6044 char str[256];
1da177e4 6045
968ea6d8 6046 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6047 cpumask_clear(groupmask);
4dcf6aff
IM
6048
6049 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6050
6051 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6052 printk("does not load-balance\n");
4dcf6aff 6053 if (sd->parent)
3df0fc5b
PZ
6054 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6055 " has parent");
4dcf6aff 6056 return -1;
41c7ce9a
NP
6057 }
6058
3df0fc5b 6059 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6060
758b2cdc 6061 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6062 printk(KERN_ERR "ERROR: domain->span does not contain "
6063 "CPU%d\n", cpu);
4dcf6aff 6064 }
758b2cdc 6065 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6066 printk(KERN_ERR "ERROR: domain->groups does not contain"
6067 " CPU%d\n", cpu);
4dcf6aff 6068 }
1da177e4 6069
4dcf6aff 6070 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6071 do {
4dcf6aff 6072 if (!group) {
3df0fc5b
PZ
6073 printk("\n");
6074 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6075 break;
6076 }
6077
18a3885f 6078 if (!group->cpu_power) {
3df0fc5b
PZ
6079 printk(KERN_CONT "\n");
6080 printk(KERN_ERR "ERROR: domain->cpu_power not "
6081 "set\n");
4dcf6aff
IM
6082 break;
6083 }
1da177e4 6084
758b2cdc 6085 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6086 printk(KERN_CONT "\n");
6087 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6088 break;
6089 }
1da177e4 6090
758b2cdc 6091 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6092 printk(KERN_CONT "\n");
6093 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6094 break;
6095 }
1da177e4 6096
758b2cdc 6097 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6098
968ea6d8 6099 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6100
3df0fc5b 6101 printk(KERN_CONT " %s", str);
18a3885f 6102 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6103 printk(KERN_CONT " (cpu_power = %d)",
6104 group->cpu_power);
381512cf 6105 }
1da177e4 6106
4dcf6aff
IM
6107 group = group->next;
6108 } while (group != sd->groups);
3df0fc5b 6109 printk(KERN_CONT "\n");
1da177e4 6110
758b2cdc 6111 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6112 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6113
758b2cdc
RR
6114 if (sd->parent &&
6115 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6116 printk(KERN_ERR "ERROR: parent span is not a superset "
6117 "of domain->span\n");
4dcf6aff
IM
6118 return 0;
6119}
1da177e4 6120
4dcf6aff
IM
6121static void sched_domain_debug(struct sched_domain *sd, int cpu)
6122{
d5dd3db1 6123 cpumask_var_t groupmask;
4dcf6aff 6124 int level = 0;
1da177e4 6125
f6630114
MT
6126 if (!sched_domain_debug_enabled)
6127 return;
6128
4dcf6aff
IM
6129 if (!sd) {
6130 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6131 return;
6132 }
1da177e4 6133
4dcf6aff
IM
6134 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6135
d5dd3db1 6136 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6137 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6138 return;
6139 }
6140
4dcf6aff 6141 for (;;) {
7c16ec58 6142 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6143 break;
1da177e4
LT
6144 level++;
6145 sd = sd->parent;
33859f7f 6146 if (!sd)
4dcf6aff
IM
6147 break;
6148 }
d5dd3db1 6149 free_cpumask_var(groupmask);
1da177e4 6150}
6d6bc0ad 6151#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6152# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6153#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6154
1a20ff27 6155static int sd_degenerate(struct sched_domain *sd)
245af2c7 6156{
758b2cdc 6157 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6158 return 1;
6159
6160 /* Following flags need at least 2 groups */
6161 if (sd->flags & (SD_LOAD_BALANCE |
6162 SD_BALANCE_NEWIDLE |
6163 SD_BALANCE_FORK |
89c4710e
SS
6164 SD_BALANCE_EXEC |
6165 SD_SHARE_CPUPOWER |
6166 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6167 if (sd->groups != sd->groups->next)
6168 return 0;
6169 }
6170
6171 /* Following flags don't use groups */
c88d5910 6172 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6173 return 0;
6174
6175 return 1;
6176}
6177
48f24c4d
IM
6178static int
6179sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6180{
6181 unsigned long cflags = sd->flags, pflags = parent->flags;
6182
6183 if (sd_degenerate(parent))
6184 return 1;
6185
758b2cdc 6186 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6187 return 0;
6188
245af2c7
SS
6189 /* Flags needing groups don't count if only 1 group in parent */
6190 if (parent->groups == parent->groups->next) {
6191 pflags &= ~(SD_LOAD_BALANCE |
6192 SD_BALANCE_NEWIDLE |
6193 SD_BALANCE_FORK |
89c4710e
SS
6194 SD_BALANCE_EXEC |
6195 SD_SHARE_CPUPOWER |
6196 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6197 if (nr_node_ids == 1)
6198 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6199 }
6200 if (~cflags & pflags)
6201 return 0;
6202
6203 return 1;
6204}
6205
c6c4927b
RR
6206static void free_rootdomain(struct root_domain *rd)
6207{
047106ad
PZ
6208 synchronize_sched();
6209
68e74568
RR
6210 cpupri_cleanup(&rd->cpupri);
6211
c6c4927b
RR
6212 free_cpumask_var(rd->rto_mask);
6213 free_cpumask_var(rd->online);
6214 free_cpumask_var(rd->span);
6215 kfree(rd);
6216}
6217
57d885fe
GH
6218static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6219{
a0490fa3 6220 struct root_domain *old_rd = NULL;
57d885fe 6221 unsigned long flags;
57d885fe 6222
05fa785c 6223 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6224
6225 if (rq->rd) {
a0490fa3 6226 old_rd = rq->rd;
57d885fe 6227
c6c4927b 6228 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6229 set_rq_offline(rq);
57d885fe 6230
c6c4927b 6231 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6232
a0490fa3
IM
6233 /*
6234 * If we dont want to free the old_rt yet then
6235 * set old_rd to NULL to skip the freeing later
6236 * in this function:
6237 */
6238 if (!atomic_dec_and_test(&old_rd->refcount))
6239 old_rd = NULL;
57d885fe
GH
6240 }
6241
6242 atomic_inc(&rd->refcount);
6243 rq->rd = rd;
6244
c6c4927b 6245 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6246 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6247 set_rq_online(rq);
57d885fe 6248
05fa785c 6249 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6250
6251 if (old_rd)
6252 free_rootdomain(old_rd);
57d885fe
GH
6253}
6254
fd5e1b5d 6255static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6256{
36b7b6d4
PE
6257 gfp_t gfp = GFP_KERNEL;
6258
57d885fe
GH
6259 memset(rd, 0, sizeof(*rd));
6260
36b7b6d4
PE
6261 if (bootmem)
6262 gfp = GFP_NOWAIT;
c6c4927b 6263
36b7b6d4 6264 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6265 goto out;
36b7b6d4 6266 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6267 goto free_span;
36b7b6d4 6268 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6269 goto free_online;
6e0534f2 6270
0fb53029 6271 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6272 goto free_rto_mask;
c6c4927b 6273 return 0;
6e0534f2 6274
68e74568
RR
6275free_rto_mask:
6276 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6277free_online:
6278 free_cpumask_var(rd->online);
6279free_span:
6280 free_cpumask_var(rd->span);
0c910d28 6281out:
c6c4927b 6282 return -ENOMEM;
57d885fe
GH
6283}
6284
6285static void init_defrootdomain(void)
6286{
c6c4927b
RR
6287 init_rootdomain(&def_root_domain, true);
6288
57d885fe
GH
6289 atomic_set(&def_root_domain.refcount, 1);
6290}
6291
dc938520 6292static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6293{
6294 struct root_domain *rd;
6295
6296 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6297 if (!rd)
6298 return NULL;
6299
c6c4927b
RR
6300 if (init_rootdomain(rd, false) != 0) {
6301 kfree(rd);
6302 return NULL;
6303 }
57d885fe
GH
6304
6305 return rd;
6306}
6307
1da177e4 6308/*
0eab9146 6309 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6310 * hold the hotplug lock.
6311 */
0eab9146
IM
6312static void
6313cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6314{
70b97a7f 6315 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6316 struct sched_domain *tmp;
6317
669c55e9
PZ
6318 for (tmp = sd; tmp; tmp = tmp->parent)
6319 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6320
245af2c7 6321 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6322 for (tmp = sd; tmp; ) {
245af2c7
SS
6323 struct sched_domain *parent = tmp->parent;
6324 if (!parent)
6325 break;
f29c9b1c 6326
1a848870 6327 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6328 tmp->parent = parent->parent;
1a848870
SS
6329 if (parent->parent)
6330 parent->parent->child = tmp;
f29c9b1c
LZ
6331 } else
6332 tmp = tmp->parent;
245af2c7
SS
6333 }
6334
1a848870 6335 if (sd && sd_degenerate(sd)) {
245af2c7 6336 sd = sd->parent;
1a848870
SS
6337 if (sd)
6338 sd->child = NULL;
6339 }
1da177e4
LT
6340
6341 sched_domain_debug(sd, cpu);
6342
57d885fe 6343 rq_attach_root(rq, rd);
674311d5 6344 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6345}
6346
6347/* cpus with isolated domains */
dcc30a35 6348static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6349
6350/* Setup the mask of cpus configured for isolated domains */
6351static int __init isolated_cpu_setup(char *str)
6352{
bdddd296 6353 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6354 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6355 return 1;
6356}
6357
8927f494 6358__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6359
6360/*
6711cab4
SS
6361 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6362 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6363 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6364 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6365 *
6366 * init_sched_build_groups will build a circular linked list of the groups
6367 * covered by the given span, and will set each group's ->cpumask correctly,
6368 * and ->cpu_power to 0.
6369 */
a616058b 6370static void
96f874e2
RR
6371init_sched_build_groups(const struct cpumask *span,
6372 const struct cpumask *cpu_map,
6373 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6374 struct sched_group **sg,
96f874e2
RR
6375 struct cpumask *tmpmask),
6376 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6377{
6378 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6379 int i;
6380
96f874e2 6381 cpumask_clear(covered);
7c16ec58 6382
abcd083a 6383 for_each_cpu(i, span) {
6711cab4 6384 struct sched_group *sg;
7c16ec58 6385 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6386 int j;
6387
758b2cdc 6388 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6389 continue;
6390
758b2cdc 6391 cpumask_clear(sched_group_cpus(sg));
18a3885f 6392 sg->cpu_power = 0;
1da177e4 6393
abcd083a 6394 for_each_cpu(j, span) {
7c16ec58 6395 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6396 continue;
6397
96f874e2 6398 cpumask_set_cpu(j, covered);
758b2cdc 6399 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6400 }
6401 if (!first)
6402 first = sg;
6403 if (last)
6404 last->next = sg;
6405 last = sg;
6406 }
6407 last->next = first;
6408}
6409
9c1cfda2 6410#define SD_NODES_PER_DOMAIN 16
1da177e4 6411
9c1cfda2 6412#ifdef CONFIG_NUMA
198e2f18 6413
9c1cfda2
JH
6414/**
6415 * find_next_best_node - find the next node to include in a sched_domain
6416 * @node: node whose sched_domain we're building
6417 * @used_nodes: nodes already in the sched_domain
6418 *
41a2d6cf 6419 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6420 * finds the closest node not already in the @used_nodes map.
6421 *
6422 * Should use nodemask_t.
6423 */
c5f59f08 6424static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6425{
6426 int i, n, val, min_val, best_node = 0;
6427
6428 min_val = INT_MAX;
6429
076ac2af 6430 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6431 /* Start at @node */
076ac2af 6432 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6433
6434 if (!nr_cpus_node(n))
6435 continue;
6436
6437 /* Skip already used nodes */
c5f59f08 6438 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6439 continue;
6440
6441 /* Simple min distance search */
6442 val = node_distance(node, n);
6443
6444 if (val < min_val) {
6445 min_val = val;
6446 best_node = n;
6447 }
6448 }
6449
c5f59f08 6450 node_set(best_node, *used_nodes);
9c1cfda2
JH
6451 return best_node;
6452}
6453
6454/**
6455 * sched_domain_node_span - get a cpumask for a node's sched_domain
6456 * @node: node whose cpumask we're constructing
73486722 6457 * @span: resulting cpumask
9c1cfda2 6458 *
41a2d6cf 6459 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6460 * should be one that prevents unnecessary balancing, but also spreads tasks
6461 * out optimally.
6462 */
96f874e2 6463static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6464{
c5f59f08 6465 nodemask_t used_nodes;
48f24c4d 6466 int i;
9c1cfda2 6467
6ca09dfc 6468 cpumask_clear(span);
c5f59f08 6469 nodes_clear(used_nodes);
9c1cfda2 6470
6ca09dfc 6471 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6472 node_set(node, used_nodes);
9c1cfda2
JH
6473
6474 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6475 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6476
6ca09dfc 6477 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6478 }
9c1cfda2 6479}
6d6bc0ad 6480#endif /* CONFIG_NUMA */
9c1cfda2 6481
5c45bf27 6482int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6483
6c99e9ad
RR
6484/*
6485 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6486 *
6487 * ( See the the comments in include/linux/sched.h:struct sched_group
6488 * and struct sched_domain. )
6c99e9ad
RR
6489 */
6490struct static_sched_group {
6491 struct sched_group sg;
6492 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6493};
6494
6495struct static_sched_domain {
6496 struct sched_domain sd;
6497 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6498};
6499
49a02c51
AH
6500struct s_data {
6501#ifdef CONFIG_NUMA
6502 int sd_allnodes;
6503 cpumask_var_t domainspan;
6504 cpumask_var_t covered;
6505 cpumask_var_t notcovered;
6506#endif
6507 cpumask_var_t nodemask;
6508 cpumask_var_t this_sibling_map;
6509 cpumask_var_t this_core_map;
6510 cpumask_var_t send_covered;
6511 cpumask_var_t tmpmask;
6512 struct sched_group **sched_group_nodes;
6513 struct root_domain *rd;
6514};
6515
2109b99e
AH
6516enum s_alloc {
6517 sa_sched_groups = 0,
6518 sa_rootdomain,
6519 sa_tmpmask,
6520 sa_send_covered,
6521 sa_this_core_map,
6522 sa_this_sibling_map,
6523 sa_nodemask,
6524 sa_sched_group_nodes,
6525#ifdef CONFIG_NUMA
6526 sa_notcovered,
6527 sa_covered,
6528 sa_domainspan,
6529#endif
6530 sa_none,
6531};
6532
9c1cfda2 6533/*
48f24c4d 6534 * SMT sched-domains:
9c1cfda2 6535 */
1da177e4 6536#ifdef CONFIG_SCHED_SMT
6c99e9ad 6537static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6538static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6539
41a2d6cf 6540static int
96f874e2
RR
6541cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6542 struct sched_group **sg, struct cpumask *unused)
1da177e4 6543{
6711cab4 6544 if (sg)
1871e52c 6545 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6546 return cpu;
6547}
6d6bc0ad 6548#endif /* CONFIG_SCHED_SMT */
1da177e4 6549
48f24c4d
IM
6550/*
6551 * multi-core sched-domains:
6552 */
1e9f28fa 6553#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6554static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6555static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6556#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6557
6558#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6559static int
96f874e2
RR
6560cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6561 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6562{
6711cab4 6563 int group;
7c16ec58 6564
c69fc56d 6565 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6566 group = cpumask_first(mask);
6711cab4 6567 if (sg)
6c99e9ad 6568 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6569 return group;
1e9f28fa
SS
6570}
6571#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6572static int
96f874e2
RR
6573cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6574 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6575{
6711cab4 6576 if (sg)
6c99e9ad 6577 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6578 return cpu;
6579}
6580#endif
6581
6c99e9ad
RR
6582static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6583static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6584
41a2d6cf 6585static int
96f874e2
RR
6586cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6587 struct sched_group **sg, struct cpumask *mask)
1da177e4 6588{
6711cab4 6589 int group;
48f24c4d 6590#ifdef CONFIG_SCHED_MC
6ca09dfc 6591 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6592 group = cpumask_first(mask);
1e9f28fa 6593#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6594 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6595 group = cpumask_first(mask);
1da177e4 6596#else
6711cab4 6597 group = cpu;
1da177e4 6598#endif
6711cab4 6599 if (sg)
6c99e9ad 6600 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6601 return group;
1da177e4
LT
6602}
6603
6604#ifdef CONFIG_NUMA
1da177e4 6605/*
9c1cfda2
JH
6606 * The init_sched_build_groups can't handle what we want to do with node
6607 * groups, so roll our own. Now each node has its own list of groups which
6608 * gets dynamically allocated.
1da177e4 6609 */
62ea9ceb 6610static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6611static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6612
62ea9ceb 6613static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6614static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6615
96f874e2
RR
6616static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6617 struct sched_group **sg,
6618 struct cpumask *nodemask)
9c1cfda2 6619{
6711cab4
SS
6620 int group;
6621
6ca09dfc 6622 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6623 group = cpumask_first(nodemask);
6711cab4
SS
6624
6625 if (sg)
6c99e9ad 6626 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6627 return group;
1da177e4 6628}
6711cab4 6629
08069033
SS
6630static void init_numa_sched_groups_power(struct sched_group *group_head)
6631{
6632 struct sched_group *sg = group_head;
6633 int j;
6634
6635 if (!sg)
6636 return;
3a5c359a 6637 do {
758b2cdc 6638 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6639 struct sched_domain *sd;
08069033 6640
6c99e9ad 6641 sd = &per_cpu(phys_domains, j).sd;
13318a71 6642 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6643 /*
6644 * Only add "power" once for each
6645 * physical package.
6646 */
6647 continue;
6648 }
08069033 6649
18a3885f 6650 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6651 }
6652 sg = sg->next;
6653 } while (sg != group_head);
08069033 6654}
0601a88d
AH
6655
6656static int build_numa_sched_groups(struct s_data *d,
6657 const struct cpumask *cpu_map, int num)
6658{
6659 struct sched_domain *sd;
6660 struct sched_group *sg, *prev;
6661 int n, j;
6662
6663 cpumask_clear(d->covered);
6664 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6665 if (cpumask_empty(d->nodemask)) {
6666 d->sched_group_nodes[num] = NULL;
6667 goto out;
6668 }
6669
6670 sched_domain_node_span(num, d->domainspan);
6671 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6672
6673 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6674 GFP_KERNEL, num);
6675 if (!sg) {
3df0fc5b
PZ
6676 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6677 num);
0601a88d
AH
6678 return -ENOMEM;
6679 }
6680 d->sched_group_nodes[num] = sg;
6681
6682 for_each_cpu(j, d->nodemask) {
6683 sd = &per_cpu(node_domains, j).sd;
6684 sd->groups = sg;
6685 }
6686
18a3885f 6687 sg->cpu_power = 0;
0601a88d
AH
6688 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6689 sg->next = sg;
6690 cpumask_or(d->covered, d->covered, d->nodemask);
6691
6692 prev = sg;
6693 for (j = 0; j < nr_node_ids; j++) {
6694 n = (num + j) % nr_node_ids;
6695 cpumask_complement(d->notcovered, d->covered);
6696 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6697 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6698 if (cpumask_empty(d->tmpmask))
6699 break;
6700 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6701 if (cpumask_empty(d->tmpmask))
6702 continue;
6703 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6704 GFP_KERNEL, num);
6705 if (!sg) {
3df0fc5b
PZ
6706 printk(KERN_WARNING
6707 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6708 return -ENOMEM;
6709 }
18a3885f 6710 sg->cpu_power = 0;
0601a88d
AH
6711 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6712 sg->next = prev->next;
6713 cpumask_or(d->covered, d->covered, d->tmpmask);
6714 prev->next = sg;
6715 prev = sg;
6716 }
6717out:
6718 return 0;
6719}
6d6bc0ad 6720#endif /* CONFIG_NUMA */
1da177e4 6721
a616058b 6722#ifdef CONFIG_NUMA
51888ca2 6723/* Free memory allocated for various sched_group structures */
96f874e2
RR
6724static void free_sched_groups(const struct cpumask *cpu_map,
6725 struct cpumask *nodemask)
51888ca2 6726{
a616058b 6727 int cpu, i;
51888ca2 6728
abcd083a 6729 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6730 struct sched_group **sched_group_nodes
6731 = sched_group_nodes_bycpu[cpu];
6732
51888ca2
SV
6733 if (!sched_group_nodes)
6734 continue;
6735
076ac2af 6736 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6737 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6738
6ca09dfc 6739 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6740 if (cpumask_empty(nodemask))
51888ca2
SV
6741 continue;
6742
6743 if (sg == NULL)
6744 continue;
6745 sg = sg->next;
6746next_sg:
6747 oldsg = sg;
6748 sg = sg->next;
6749 kfree(oldsg);
6750 if (oldsg != sched_group_nodes[i])
6751 goto next_sg;
6752 }
6753 kfree(sched_group_nodes);
6754 sched_group_nodes_bycpu[cpu] = NULL;
6755 }
51888ca2 6756}
6d6bc0ad 6757#else /* !CONFIG_NUMA */
96f874e2
RR
6758static void free_sched_groups(const struct cpumask *cpu_map,
6759 struct cpumask *nodemask)
a616058b
SS
6760{
6761}
6d6bc0ad 6762#endif /* CONFIG_NUMA */
51888ca2 6763
89c4710e
SS
6764/*
6765 * Initialize sched groups cpu_power.
6766 *
6767 * cpu_power indicates the capacity of sched group, which is used while
6768 * distributing the load between different sched groups in a sched domain.
6769 * Typically cpu_power for all the groups in a sched domain will be same unless
6770 * there are asymmetries in the topology. If there are asymmetries, group
6771 * having more cpu_power will pickup more load compared to the group having
6772 * less cpu_power.
89c4710e
SS
6773 */
6774static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6775{
6776 struct sched_domain *child;
6777 struct sched_group *group;
f93e65c1
PZ
6778 long power;
6779 int weight;
89c4710e
SS
6780
6781 WARN_ON(!sd || !sd->groups);
6782
13318a71 6783 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6784 return;
6785
6786 child = sd->child;
6787
18a3885f 6788 sd->groups->cpu_power = 0;
5517d86b 6789
f93e65c1
PZ
6790 if (!child) {
6791 power = SCHED_LOAD_SCALE;
6792 weight = cpumask_weight(sched_domain_span(sd));
6793 /*
6794 * SMT siblings share the power of a single core.
a52bfd73
PZ
6795 * Usually multiple threads get a better yield out of
6796 * that one core than a single thread would have,
6797 * reflect that in sd->smt_gain.
f93e65c1 6798 */
a52bfd73
PZ
6799 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6800 power *= sd->smt_gain;
f93e65c1 6801 power /= weight;
a52bfd73
PZ
6802 power >>= SCHED_LOAD_SHIFT;
6803 }
18a3885f 6804 sd->groups->cpu_power += power;
89c4710e
SS
6805 return;
6806 }
6807
89c4710e 6808 /*
f93e65c1 6809 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6810 */
6811 group = child->groups;
6812 do {
18a3885f 6813 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6814 group = group->next;
6815 } while (group != child->groups);
6816}
6817
7c16ec58
MT
6818/*
6819 * Initializers for schedule domains
6820 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6821 */
6822
a5d8c348
IM
6823#ifdef CONFIG_SCHED_DEBUG
6824# define SD_INIT_NAME(sd, type) sd->name = #type
6825#else
6826# define SD_INIT_NAME(sd, type) do { } while (0)
6827#endif
6828
7c16ec58 6829#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6830
7c16ec58
MT
6831#define SD_INIT_FUNC(type) \
6832static noinline void sd_init_##type(struct sched_domain *sd) \
6833{ \
6834 memset(sd, 0, sizeof(*sd)); \
6835 *sd = SD_##type##_INIT; \
1d3504fc 6836 sd->level = SD_LV_##type; \
a5d8c348 6837 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6838}
6839
6840SD_INIT_FUNC(CPU)
6841#ifdef CONFIG_NUMA
6842 SD_INIT_FUNC(ALLNODES)
6843 SD_INIT_FUNC(NODE)
6844#endif
6845#ifdef CONFIG_SCHED_SMT
6846 SD_INIT_FUNC(SIBLING)
6847#endif
6848#ifdef CONFIG_SCHED_MC
6849 SD_INIT_FUNC(MC)
6850#endif
6851
1d3504fc
HS
6852static int default_relax_domain_level = -1;
6853
6854static int __init setup_relax_domain_level(char *str)
6855{
30e0e178
LZ
6856 unsigned long val;
6857
6858 val = simple_strtoul(str, NULL, 0);
6859 if (val < SD_LV_MAX)
6860 default_relax_domain_level = val;
6861
1d3504fc
HS
6862 return 1;
6863}
6864__setup("relax_domain_level=", setup_relax_domain_level);
6865
6866static void set_domain_attribute(struct sched_domain *sd,
6867 struct sched_domain_attr *attr)
6868{
6869 int request;
6870
6871 if (!attr || attr->relax_domain_level < 0) {
6872 if (default_relax_domain_level < 0)
6873 return;
6874 else
6875 request = default_relax_domain_level;
6876 } else
6877 request = attr->relax_domain_level;
6878 if (request < sd->level) {
6879 /* turn off idle balance on this domain */
c88d5910 6880 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6881 } else {
6882 /* turn on idle balance on this domain */
c88d5910 6883 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6884 }
6885}
6886
2109b99e
AH
6887static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6888 const struct cpumask *cpu_map)
6889{
6890 switch (what) {
6891 case sa_sched_groups:
6892 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6893 d->sched_group_nodes = NULL;
6894 case sa_rootdomain:
6895 free_rootdomain(d->rd); /* fall through */
6896 case sa_tmpmask:
6897 free_cpumask_var(d->tmpmask); /* fall through */
6898 case sa_send_covered:
6899 free_cpumask_var(d->send_covered); /* fall through */
6900 case sa_this_core_map:
6901 free_cpumask_var(d->this_core_map); /* fall through */
6902 case sa_this_sibling_map:
6903 free_cpumask_var(d->this_sibling_map); /* fall through */
6904 case sa_nodemask:
6905 free_cpumask_var(d->nodemask); /* fall through */
6906 case sa_sched_group_nodes:
d1b55138 6907#ifdef CONFIG_NUMA
2109b99e
AH
6908 kfree(d->sched_group_nodes); /* fall through */
6909 case sa_notcovered:
6910 free_cpumask_var(d->notcovered); /* fall through */
6911 case sa_covered:
6912 free_cpumask_var(d->covered); /* fall through */
6913 case sa_domainspan:
6914 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6915#endif
2109b99e
AH
6916 case sa_none:
6917 break;
6918 }
6919}
3404c8d9 6920
2109b99e
AH
6921static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6922 const struct cpumask *cpu_map)
6923{
3404c8d9 6924#ifdef CONFIG_NUMA
2109b99e
AH
6925 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6926 return sa_none;
6927 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6928 return sa_domainspan;
6929 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6930 return sa_covered;
6931 /* Allocate the per-node list of sched groups */
6932 d->sched_group_nodes = kcalloc(nr_node_ids,
6933 sizeof(struct sched_group *), GFP_KERNEL);
6934 if (!d->sched_group_nodes) {
3df0fc5b 6935 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6936 return sa_notcovered;
d1b55138 6937 }
2109b99e 6938 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6939#endif
2109b99e
AH
6940 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6941 return sa_sched_group_nodes;
6942 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6943 return sa_nodemask;
6944 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6945 return sa_this_sibling_map;
6946 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6947 return sa_this_core_map;
6948 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6949 return sa_send_covered;
6950 d->rd = alloc_rootdomain();
6951 if (!d->rd) {
3df0fc5b 6952 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6953 return sa_tmpmask;
57d885fe 6954 }
2109b99e
AH
6955 return sa_rootdomain;
6956}
57d885fe 6957
7f4588f3
AH
6958static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6959 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6960{
6961 struct sched_domain *sd = NULL;
7c16ec58 6962#ifdef CONFIG_NUMA
7f4588f3 6963 struct sched_domain *parent;
1da177e4 6964
7f4588f3
AH
6965 d->sd_allnodes = 0;
6966 if (cpumask_weight(cpu_map) >
6967 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6968 sd = &per_cpu(allnodes_domains, i).sd;
6969 SD_INIT(sd, ALLNODES);
1d3504fc 6970 set_domain_attribute(sd, attr);
7f4588f3
AH
6971 cpumask_copy(sched_domain_span(sd), cpu_map);
6972 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6973 d->sd_allnodes = 1;
6974 }
6975 parent = sd;
6976
6977 sd = &per_cpu(node_domains, i).sd;
6978 SD_INIT(sd, NODE);
6979 set_domain_attribute(sd, attr);
6980 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6981 sd->parent = parent;
6982 if (parent)
6983 parent->child = sd;
6984 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6985#endif
7f4588f3
AH
6986 return sd;
6987}
1da177e4 6988
87cce662
AH
6989static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6990 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6991 struct sched_domain *parent, int i)
6992{
6993 struct sched_domain *sd;
6994 sd = &per_cpu(phys_domains, i).sd;
6995 SD_INIT(sd, CPU);
6996 set_domain_attribute(sd, attr);
6997 cpumask_copy(sched_domain_span(sd), d->nodemask);
6998 sd->parent = parent;
6999 if (parent)
7000 parent->child = sd;
7001 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7002 return sd;
7003}
1da177e4 7004
410c4081
AH
7005static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7006 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7007 struct sched_domain *parent, int i)
7008{
7009 struct sched_domain *sd = parent;
1e9f28fa 7010#ifdef CONFIG_SCHED_MC
410c4081
AH
7011 sd = &per_cpu(core_domains, i).sd;
7012 SD_INIT(sd, MC);
7013 set_domain_attribute(sd, attr);
7014 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7015 sd->parent = parent;
7016 parent->child = sd;
7017 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7018#endif
410c4081
AH
7019 return sd;
7020}
1e9f28fa 7021
d8173535
AH
7022static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7023 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7024 struct sched_domain *parent, int i)
7025{
7026 struct sched_domain *sd = parent;
1da177e4 7027#ifdef CONFIG_SCHED_SMT
d8173535
AH
7028 sd = &per_cpu(cpu_domains, i).sd;
7029 SD_INIT(sd, SIBLING);
7030 set_domain_attribute(sd, attr);
7031 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7032 sd->parent = parent;
7033 parent->child = sd;
7034 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7035#endif
d8173535
AH
7036 return sd;
7037}
1da177e4 7038
0e8e85c9
AH
7039static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7040 const struct cpumask *cpu_map, int cpu)
7041{
7042 switch (l) {
1da177e4 7043#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7044 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7045 cpumask_and(d->this_sibling_map, cpu_map,
7046 topology_thread_cpumask(cpu));
7047 if (cpu == cpumask_first(d->this_sibling_map))
7048 init_sched_build_groups(d->this_sibling_map, cpu_map,
7049 &cpu_to_cpu_group,
7050 d->send_covered, d->tmpmask);
7051 break;
1da177e4 7052#endif
1e9f28fa 7053#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7054 case SD_LV_MC: /* set up multi-core groups */
7055 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7056 if (cpu == cpumask_first(d->this_core_map))
7057 init_sched_build_groups(d->this_core_map, cpu_map,
7058 &cpu_to_core_group,
7059 d->send_covered, d->tmpmask);
7060 break;
1e9f28fa 7061#endif
86548096
AH
7062 case SD_LV_CPU: /* set up physical groups */
7063 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7064 if (!cpumask_empty(d->nodemask))
7065 init_sched_build_groups(d->nodemask, cpu_map,
7066 &cpu_to_phys_group,
7067 d->send_covered, d->tmpmask);
7068 break;
1da177e4 7069#ifdef CONFIG_NUMA
de616e36
AH
7070 case SD_LV_ALLNODES:
7071 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7072 d->send_covered, d->tmpmask);
7073 break;
7074#endif
0e8e85c9
AH
7075 default:
7076 break;
7c16ec58 7077 }
0e8e85c9 7078}
9c1cfda2 7079
2109b99e
AH
7080/*
7081 * Build sched domains for a given set of cpus and attach the sched domains
7082 * to the individual cpus
7083 */
7084static int __build_sched_domains(const struct cpumask *cpu_map,
7085 struct sched_domain_attr *attr)
7086{
7087 enum s_alloc alloc_state = sa_none;
7088 struct s_data d;
294b0c96 7089 struct sched_domain *sd;
2109b99e 7090 int i;
7c16ec58 7091#ifdef CONFIG_NUMA
2109b99e 7092 d.sd_allnodes = 0;
7c16ec58 7093#endif
9c1cfda2 7094
2109b99e
AH
7095 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7096 if (alloc_state != sa_rootdomain)
7097 goto error;
7098 alloc_state = sa_sched_groups;
9c1cfda2 7099
1da177e4 7100 /*
1a20ff27 7101 * Set up domains for cpus specified by the cpu_map.
1da177e4 7102 */
abcd083a 7103 for_each_cpu(i, cpu_map) {
49a02c51
AH
7104 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7105 cpu_map);
9761eea8 7106
7f4588f3 7107 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7108 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7109 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7110 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7111 }
9c1cfda2 7112
abcd083a 7113 for_each_cpu(i, cpu_map) {
0e8e85c9 7114 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7115 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7116 }
9c1cfda2 7117
1da177e4 7118 /* Set up physical groups */
86548096
AH
7119 for (i = 0; i < nr_node_ids; i++)
7120 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7121
1da177e4
LT
7122#ifdef CONFIG_NUMA
7123 /* Set up node groups */
de616e36
AH
7124 if (d.sd_allnodes)
7125 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7126
0601a88d
AH
7127 for (i = 0; i < nr_node_ids; i++)
7128 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7129 goto error;
1da177e4
LT
7130#endif
7131
7132 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7133#ifdef CONFIG_SCHED_SMT
abcd083a 7134 for_each_cpu(i, cpu_map) {
294b0c96 7135 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7136 init_sched_groups_power(i, sd);
5c45bf27 7137 }
1da177e4 7138#endif
1e9f28fa 7139#ifdef CONFIG_SCHED_MC
abcd083a 7140 for_each_cpu(i, cpu_map) {
294b0c96 7141 sd = &per_cpu(core_domains, i).sd;
89c4710e 7142 init_sched_groups_power(i, sd);
5c45bf27
SS
7143 }
7144#endif
1e9f28fa 7145
abcd083a 7146 for_each_cpu(i, cpu_map) {
294b0c96 7147 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7148 init_sched_groups_power(i, sd);
1da177e4
LT
7149 }
7150
9c1cfda2 7151#ifdef CONFIG_NUMA
076ac2af 7152 for (i = 0; i < nr_node_ids; i++)
49a02c51 7153 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7154
49a02c51 7155 if (d.sd_allnodes) {
6711cab4 7156 struct sched_group *sg;
f712c0c7 7157
96f874e2 7158 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7159 d.tmpmask);
f712c0c7
SS
7160 init_numa_sched_groups_power(sg);
7161 }
9c1cfda2
JH
7162#endif
7163
1da177e4 7164 /* Attach the domains */
abcd083a 7165 for_each_cpu(i, cpu_map) {
1da177e4 7166#ifdef CONFIG_SCHED_SMT
6c99e9ad 7167 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7168#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7169 sd = &per_cpu(core_domains, i).sd;
1da177e4 7170#else
6c99e9ad 7171 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7172#endif
49a02c51 7173 cpu_attach_domain(sd, d.rd, i);
1da177e4 7174 }
51888ca2 7175
2109b99e
AH
7176 d.sched_group_nodes = NULL; /* don't free this we still need it */
7177 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7178 return 0;
51888ca2 7179
51888ca2 7180error:
2109b99e
AH
7181 __free_domain_allocs(&d, alloc_state, cpu_map);
7182 return -ENOMEM;
1da177e4 7183}
029190c5 7184
96f874e2 7185static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7186{
7187 return __build_sched_domains(cpu_map, NULL);
7188}
7189
acc3f5d7 7190static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7191static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7192static struct sched_domain_attr *dattr_cur;
7193 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7194
7195/*
7196 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7197 * cpumask) fails, then fallback to a single sched domain,
7198 * as determined by the single cpumask fallback_doms.
029190c5 7199 */
4212823f 7200static cpumask_var_t fallback_doms;
029190c5 7201
ee79d1bd
HC
7202/*
7203 * arch_update_cpu_topology lets virtualized architectures update the
7204 * cpu core maps. It is supposed to return 1 if the topology changed
7205 * or 0 if it stayed the same.
7206 */
7207int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7208{
ee79d1bd 7209 return 0;
22e52b07
HC
7210}
7211
acc3f5d7
RR
7212cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7213{
7214 int i;
7215 cpumask_var_t *doms;
7216
7217 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7218 if (!doms)
7219 return NULL;
7220 for (i = 0; i < ndoms; i++) {
7221 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7222 free_sched_domains(doms, i);
7223 return NULL;
7224 }
7225 }
7226 return doms;
7227}
7228
7229void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7230{
7231 unsigned int i;
7232 for (i = 0; i < ndoms; i++)
7233 free_cpumask_var(doms[i]);
7234 kfree(doms);
7235}
7236
1a20ff27 7237/*
41a2d6cf 7238 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7239 * For now this just excludes isolated cpus, but could be used to
7240 * exclude other special cases in the future.
1a20ff27 7241 */
96f874e2 7242static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7243{
7378547f
MM
7244 int err;
7245
22e52b07 7246 arch_update_cpu_topology();
029190c5 7247 ndoms_cur = 1;
acc3f5d7 7248 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7249 if (!doms_cur)
acc3f5d7
RR
7250 doms_cur = &fallback_doms;
7251 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7252 dattr_cur = NULL;
acc3f5d7 7253 err = build_sched_domains(doms_cur[0]);
6382bc90 7254 register_sched_domain_sysctl();
7378547f
MM
7255
7256 return err;
1a20ff27
DG
7257}
7258
96f874e2
RR
7259static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7260 struct cpumask *tmpmask)
1da177e4 7261{
7c16ec58 7262 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7263}
1da177e4 7264
1a20ff27
DG
7265/*
7266 * Detach sched domains from a group of cpus specified in cpu_map
7267 * These cpus will now be attached to the NULL domain
7268 */
96f874e2 7269static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7270{
96f874e2
RR
7271 /* Save because hotplug lock held. */
7272 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7273 int i;
7274
abcd083a 7275 for_each_cpu(i, cpu_map)
57d885fe 7276 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7277 synchronize_sched();
96f874e2 7278 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7279}
7280
1d3504fc
HS
7281/* handle null as "default" */
7282static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7283 struct sched_domain_attr *new, int idx_new)
7284{
7285 struct sched_domain_attr tmp;
7286
7287 /* fast path */
7288 if (!new && !cur)
7289 return 1;
7290
7291 tmp = SD_ATTR_INIT;
7292 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7293 new ? (new + idx_new) : &tmp,
7294 sizeof(struct sched_domain_attr));
7295}
7296
029190c5
PJ
7297/*
7298 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7299 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7300 * doms_new[] to the current sched domain partitioning, doms_cur[].
7301 * It destroys each deleted domain and builds each new domain.
7302 *
acc3f5d7 7303 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7304 * The masks don't intersect (don't overlap.) We should setup one
7305 * sched domain for each mask. CPUs not in any of the cpumasks will
7306 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7307 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7308 * it as it is.
7309 *
acc3f5d7
RR
7310 * The passed in 'doms_new' should be allocated using
7311 * alloc_sched_domains. This routine takes ownership of it and will
7312 * free_sched_domains it when done with it. If the caller failed the
7313 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7314 * and partition_sched_domains() will fallback to the single partition
7315 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7316 *
96f874e2 7317 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7318 * ndoms_new == 0 is a special case for destroying existing domains,
7319 * and it will not create the default domain.
dfb512ec 7320 *
029190c5
PJ
7321 * Call with hotplug lock held
7322 */
acc3f5d7 7323void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7324 struct sched_domain_attr *dattr_new)
029190c5 7325{
dfb512ec 7326 int i, j, n;
d65bd5ec 7327 int new_topology;
029190c5 7328
712555ee 7329 mutex_lock(&sched_domains_mutex);
a1835615 7330
7378547f
MM
7331 /* always unregister in case we don't destroy any domains */
7332 unregister_sched_domain_sysctl();
7333
d65bd5ec
HC
7334 /* Let architecture update cpu core mappings. */
7335 new_topology = arch_update_cpu_topology();
7336
dfb512ec 7337 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7338
7339 /* Destroy deleted domains */
7340 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7341 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7342 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7343 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7344 goto match1;
7345 }
7346 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7347 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7348match1:
7349 ;
7350 }
7351
e761b772
MK
7352 if (doms_new == NULL) {
7353 ndoms_cur = 0;
acc3f5d7 7354 doms_new = &fallback_doms;
6ad4c188 7355 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7356 WARN_ON_ONCE(dattr_new);
e761b772
MK
7357 }
7358
029190c5
PJ
7359 /* Build new domains */
7360 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7361 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7362 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7363 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7364 goto match2;
7365 }
7366 /* no match - add a new doms_new */
acc3f5d7 7367 __build_sched_domains(doms_new[i],
1d3504fc 7368 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7369match2:
7370 ;
7371 }
7372
7373 /* Remember the new sched domains */
acc3f5d7
RR
7374 if (doms_cur != &fallback_doms)
7375 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7376 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7377 doms_cur = doms_new;
1d3504fc 7378 dattr_cur = dattr_new;
029190c5 7379 ndoms_cur = ndoms_new;
7378547f
MM
7380
7381 register_sched_domain_sysctl();
a1835615 7382
712555ee 7383 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7384}
7385
5c45bf27 7386#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7387static void arch_reinit_sched_domains(void)
5c45bf27 7388{
95402b38 7389 get_online_cpus();
dfb512ec
MK
7390
7391 /* Destroy domains first to force the rebuild */
7392 partition_sched_domains(0, NULL, NULL);
7393
e761b772 7394 rebuild_sched_domains();
95402b38 7395 put_online_cpus();
5c45bf27
SS
7396}
7397
7398static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7399{
afb8a9b7 7400 unsigned int level = 0;
5c45bf27 7401
afb8a9b7
GS
7402 if (sscanf(buf, "%u", &level) != 1)
7403 return -EINVAL;
7404
7405 /*
7406 * level is always be positive so don't check for
7407 * level < POWERSAVINGS_BALANCE_NONE which is 0
7408 * What happens on 0 or 1 byte write,
7409 * need to check for count as well?
7410 */
7411
7412 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7413 return -EINVAL;
7414
7415 if (smt)
afb8a9b7 7416 sched_smt_power_savings = level;
5c45bf27 7417 else
afb8a9b7 7418 sched_mc_power_savings = level;
5c45bf27 7419
c70f22d2 7420 arch_reinit_sched_domains();
5c45bf27 7421
c70f22d2 7422 return count;
5c45bf27
SS
7423}
7424
5c45bf27 7425#ifdef CONFIG_SCHED_MC
f718cd4a 7426static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7427 struct sysdev_class_attribute *attr,
f718cd4a 7428 char *page)
5c45bf27
SS
7429{
7430 return sprintf(page, "%u\n", sched_mc_power_savings);
7431}
f718cd4a 7432static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7433 struct sysdev_class_attribute *attr,
48f24c4d 7434 const char *buf, size_t count)
5c45bf27
SS
7435{
7436 return sched_power_savings_store(buf, count, 0);
7437}
f718cd4a
AK
7438static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7439 sched_mc_power_savings_show,
7440 sched_mc_power_savings_store);
5c45bf27
SS
7441#endif
7442
7443#ifdef CONFIG_SCHED_SMT
f718cd4a 7444static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7445 struct sysdev_class_attribute *attr,
f718cd4a 7446 char *page)
5c45bf27
SS
7447{
7448 return sprintf(page, "%u\n", sched_smt_power_savings);
7449}
f718cd4a 7450static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7451 struct sysdev_class_attribute *attr,
48f24c4d 7452 const char *buf, size_t count)
5c45bf27
SS
7453{
7454 return sched_power_savings_store(buf, count, 1);
7455}
f718cd4a
AK
7456static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7457 sched_smt_power_savings_show,
6707de00
AB
7458 sched_smt_power_savings_store);
7459#endif
7460
39aac648 7461int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7462{
7463 int err = 0;
7464
7465#ifdef CONFIG_SCHED_SMT
7466 if (smt_capable())
7467 err = sysfs_create_file(&cls->kset.kobj,
7468 &attr_sched_smt_power_savings.attr);
7469#endif
7470#ifdef CONFIG_SCHED_MC
7471 if (!err && mc_capable())
7472 err = sysfs_create_file(&cls->kset.kobj,
7473 &attr_sched_mc_power_savings.attr);
7474#endif
7475 return err;
7476}
6d6bc0ad 7477#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7478
1da177e4 7479/*
3a101d05
TH
7480 * Update cpusets according to cpu_active mask. If cpusets are
7481 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7482 * around partition_sched_domains().
1da177e4 7483 */
3a101d05
TH
7484static int __cpuexit cpuset_cpu_active(struct notifier_block *nfb,
7485 unsigned long action, void *hcpu)
e761b772 7486{
3a101d05 7487 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7488 case CPU_ONLINE:
6ad4c188 7489 case CPU_DOWN_FAILED:
3a101d05 7490 cpuset_update_active_cpus();
e761b772 7491 return NOTIFY_OK;
3a101d05
TH
7492 default:
7493 return NOTIFY_DONE;
7494 }
7495}
e761b772 7496
3a101d05
TH
7497static int __cpuexit cpuset_cpu_inactive(struct notifier_block *nfb,
7498 unsigned long action, void *hcpu)
7499{
7500 switch (action & ~CPU_TASKS_FROZEN) {
7501 case CPU_DOWN_PREPARE:
7502 cpuset_update_active_cpus();
7503 return NOTIFY_OK;
e761b772
MK
7504 default:
7505 return NOTIFY_DONE;
7506 }
7507}
e761b772
MK
7508
7509static int update_runtime(struct notifier_block *nfb,
7510 unsigned long action, void *hcpu)
1da177e4 7511{
7def2be1
PZ
7512 int cpu = (int)(long)hcpu;
7513
1da177e4 7514 switch (action) {
1da177e4 7515 case CPU_DOWN_PREPARE:
8bb78442 7516 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7517 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7518 return NOTIFY_OK;
7519
1da177e4 7520 case CPU_DOWN_FAILED:
8bb78442 7521 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7522 case CPU_ONLINE:
8bb78442 7523 case CPU_ONLINE_FROZEN:
7def2be1 7524 enable_runtime(cpu_rq(cpu));
e761b772
MK
7525 return NOTIFY_OK;
7526
1da177e4
LT
7527 default:
7528 return NOTIFY_DONE;
7529 }
1da177e4 7530}
1da177e4
LT
7531
7532void __init sched_init_smp(void)
7533{
dcc30a35
RR
7534 cpumask_var_t non_isolated_cpus;
7535
7536 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7537 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7538
434d53b0
MT
7539#if defined(CONFIG_NUMA)
7540 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7541 GFP_KERNEL);
7542 BUG_ON(sched_group_nodes_bycpu == NULL);
7543#endif
95402b38 7544 get_online_cpus();
712555ee 7545 mutex_lock(&sched_domains_mutex);
6ad4c188 7546 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7547 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7548 if (cpumask_empty(non_isolated_cpus))
7549 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7550 mutex_unlock(&sched_domains_mutex);
95402b38 7551 put_online_cpus();
e761b772 7552
3a101d05
TH
7553 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7554 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7555
7556 /* RT runtime code needs to handle some hotplug events */
7557 hotcpu_notifier(update_runtime, 0);
7558
b328ca18 7559 init_hrtick();
5c1e1767
NP
7560
7561 /* Move init over to a non-isolated CPU */
dcc30a35 7562 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7563 BUG();
19978ca6 7564 sched_init_granularity();
dcc30a35 7565 free_cpumask_var(non_isolated_cpus);
4212823f 7566
0e3900e6 7567 init_sched_rt_class();
1da177e4
LT
7568}
7569#else
7570void __init sched_init_smp(void)
7571{
19978ca6 7572 sched_init_granularity();
1da177e4
LT
7573}
7574#endif /* CONFIG_SMP */
7575
cd1bb94b
AB
7576const_debug unsigned int sysctl_timer_migration = 1;
7577
1da177e4
LT
7578int in_sched_functions(unsigned long addr)
7579{
1da177e4
LT
7580 return in_lock_functions(addr) ||
7581 (addr >= (unsigned long)__sched_text_start
7582 && addr < (unsigned long)__sched_text_end);
7583}
7584
a9957449 7585static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7586{
7587 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7588 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7589#ifdef CONFIG_FAIR_GROUP_SCHED
7590 cfs_rq->rq = rq;
7591#endif
67e9fb2a 7592 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7593}
7594
fa85ae24
PZ
7595static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7596{
7597 struct rt_prio_array *array;
7598 int i;
7599
7600 array = &rt_rq->active;
7601 for (i = 0; i < MAX_RT_PRIO; i++) {
7602 INIT_LIST_HEAD(array->queue + i);
7603 __clear_bit(i, array->bitmap);
7604 }
7605 /* delimiter for bitsearch: */
7606 __set_bit(MAX_RT_PRIO, array->bitmap);
7607
052f1dc7 7608#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7609 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7610#ifdef CONFIG_SMP
e864c499 7611 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7612#endif
48d5e258 7613#endif
fa85ae24
PZ
7614#ifdef CONFIG_SMP
7615 rt_rq->rt_nr_migratory = 0;
fa85ae24 7616 rt_rq->overloaded = 0;
05fa785c 7617 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7618#endif
7619
7620 rt_rq->rt_time = 0;
7621 rt_rq->rt_throttled = 0;
ac086bc2 7622 rt_rq->rt_runtime = 0;
0986b11b 7623 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7624
052f1dc7 7625#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7626 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7627 rt_rq->rq = rq;
7628#endif
fa85ae24
PZ
7629}
7630
6f505b16 7631#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7632static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7633 struct sched_entity *se, int cpu, int add,
7634 struct sched_entity *parent)
6f505b16 7635{
ec7dc8ac 7636 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7637 tg->cfs_rq[cpu] = cfs_rq;
7638 init_cfs_rq(cfs_rq, rq);
7639 cfs_rq->tg = tg;
7640 if (add)
7641 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7642
7643 tg->se[cpu] = se;
354d60c2
DG
7644 /* se could be NULL for init_task_group */
7645 if (!se)
7646 return;
7647
ec7dc8ac
DG
7648 if (!parent)
7649 se->cfs_rq = &rq->cfs;
7650 else
7651 se->cfs_rq = parent->my_q;
7652
6f505b16
PZ
7653 se->my_q = cfs_rq;
7654 se->load.weight = tg->shares;
e05510d0 7655 se->load.inv_weight = 0;
ec7dc8ac 7656 se->parent = parent;
6f505b16 7657}
052f1dc7 7658#endif
6f505b16 7659
052f1dc7 7660#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7661static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7662 struct sched_rt_entity *rt_se, int cpu, int add,
7663 struct sched_rt_entity *parent)
6f505b16 7664{
ec7dc8ac
DG
7665 struct rq *rq = cpu_rq(cpu);
7666
6f505b16
PZ
7667 tg->rt_rq[cpu] = rt_rq;
7668 init_rt_rq(rt_rq, rq);
7669 rt_rq->tg = tg;
ac086bc2 7670 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7671 if (add)
7672 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7673
7674 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7675 if (!rt_se)
7676 return;
7677
ec7dc8ac
DG
7678 if (!parent)
7679 rt_se->rt_rq = &rq->rt;
7680 else
7681 rt_se->rt_rq = parent->my_q;
7682
6f505b16 7683 rt_se->my_q = rt_rq;
ec7dc8ac 7684 rt_se->parent = parent;
6f505b16
PZ
7685 INIT_LIST_HEAD(&rt_se->run_list);
7686}
7687#endif
7688
1da177e4
LT
7689void __init sched_init(void)
7690{
dd41f596 7691 int i, j;
434d53b0
MT
7692 unsigned long alloc_size = 0, ptr;
7693
7694#ifdef CONFIG_FAIR_GROUP_SCHED
7695 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7696#endif
7697#ifdef CONFIG_RT_GROUP_SCHED
7698 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7699#endif
df7c8e84 7700#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7701 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7702#endif
434d53b0 7703 if (alloc_size) {
36b7b6d4 7704 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7705
7706#ifdef CONFIG_FAIR_GROUP_SCHED
7707 init_task_group.se = (struct sched_entity **)ptr;
7708 ptr += nr_cpu_ids * sizeof(void **);
7709
7710 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7711 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7712
6d6bc0ad 7713#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7714#ifdef CONFIG_RT_GROUP_SCHED
7715 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7716 ptr += nr_cpu_ids * sizeof(void **);
7717
7718 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7719 ptr += nr_cpu_ids * sizeof(void **);
7720
6d6bc0ad 7721#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7722#ifdef CONFIG_CPUMASK_OFFSTACK
7723 for_each_possible_cpu(i) {
7724 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7725 ptr += cpumask_size();
7726 }
7727#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7728 }
dd41f596 7729
57d885fe
GH
7730#ifdef CONFIG_SMP
7731 init_defrootdomain();
7732#endif
7733
d0b27fa7
PZ
7734 init_rt_bandwidth(&def_rt_bandwidth,
7735 global_rt_period(), global_rt_runtime());
7736
7737#ifdef CONFIG_RT_GROUP_SCHED
7738 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7739 global_rt_period(), global_rt_runtime());
6d6bc0ad 7740#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7741
7c941438 7742#ifdef CONFIG_CGROUP_SCHED
6f505b16 7743 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7744 INIT_LIST_HEAD(&init_task_group.children);
7745
7c941438 7746#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7747
4a6cc4bd
JK
7748#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7749 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7750 __alignof__(unsigned long));
7751#endif
0a945022 7752 for_each_possible_cpu(i) {
70b97a7f 7753 struct rq *rq;
1da177e4
LT
7754
7755 rq = cpu_rq(i);
05fa785c 7756 raw_spin_lock_init(&rq->lock);
7897986b 7757 rq->nr_running = 0;
dce48a84
TG
7758 rq->calc_load_active = 0;
7759 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7760 init_cfs_rq(&rq->cfs, rq);
6f505b16 7761 init_rt_rq(&rq->rt, rq);
dd41f596 7762#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7763 init_task_group.shares = init_task_group_load;
6f505b16 7764 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7765#ifdef CONFIG_CGROUP_SCHED
7766 /*
7767 * How much cpu bandwidth does init_task_group get?
7768 *
7769 * In case of task-groups formed thr' the cgroup filesystem, it
7770 * gets 100% of the cpu resources in the system. This overall
7771 * system cpu resource is divided among the tasks of
7772 * init_task_group and its child task-groups in a fair manner,
7773 * based on each entity's (task or task-group's) weight
7774 * (se->load.weight).
7775 *
7776 * In other words, if init_task_group has 10 tasks of weight
7777 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7778 * then A0's share of the cpu resource is:
7779 *
0d905bca 7780 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7781 *
7782 * We achieve this by letting init_task_group's tasks sit
7783 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7784 */
ec7dc8ac 7785 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7786#endif
354d60c2
DG
7787#endif /* CONFIG_FAIR_GROUP_SCHED */
7788
7789 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7790#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7791 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7792#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7793 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7794#endif
dd41f596 7795#endif
1da177e4 7796
dd41f596
IM
7797 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7798 rq->cpu_load[j] = 0;
fdf3e95d
VP
7799
7800 rq->last_load_update_tick = jiffies;
7801
1da177e4 7802#ifdef CONFIG_SMP
41c7ce9a 7803 rq->sd = NULL;
57d885fe 7804 rq->rd = NULL;
e51fd5e2 7805 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7806 rq->post_schedule = 0;
1da177e4 7807 rq->active_balance = 0;
dd41f596 7808 rq->next_balance = jiffies;
1da177e4 7809 rq->push_cpu = 0;
0a2966b4 7810 rq->cpu = i;
1f11eb6a 7811 rq->online = 0;
eae0c9df
MG
7812 rq->idle_stamp = 0;
7813 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7814 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7815#ifdef CONFIG_NO_HZ
7816 rq->nohz_balance_kick = 0;
7817 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7818#endif
1da177e4 7819#endif
8f4d37ec 7820 init_rq_hrtick(rq);
1da177e4 7821 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7822 }
7823
2dd73a4f 7824 set_load_weight(&init_task);
b50f60ce 7825
e107be36
AK
7826#ifdef CONFIG_PREEMPT_NOTIFIERS
7827 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7828#endif
7829
c9819f45 7830#ifdef CONFIG_SMP
962cf36c 7831 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7832#endif
7833
b50f60ce 7834#ifdef CONFIG_RT_MUTEXES
1d615482 7835 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7836#endif
7837
1da177e4
LT
7838 /*
7839 * The boot idle thread does lazy MMU switching as well:
7840 */
7841 atomic_inc(&init_mm.mm_count);
7842 enter_lazy_tlb(&init_mm, current);
7843
7844 /*
7845 * Make us the idle thread. Technically, schedule() should not be
7846 * called from this thread, however somewhere below it might be,
7847 * but because we are the idle thread, we just pick up running again
7848 * when this runqueue becomes "idle".
7849 */
7850 init_idle(current, smp_processor_id());
dce48a84
TG
7851
7852 calc_load_update = jiffies + LOAD_FREQ;
7853
dd41f596
IM
7854 /*
7855 * During early bootup we pretend to be a normal task:
7856 */
7857 current->sched_class = &fair_sched_class;
6892b75e 7858
6a7b3dc3 7859 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7860 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7861#ifdef CONFIG_SMP
7d1e6a9b 7862#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7863 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7864 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7865 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7866 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7867 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7868#endif
bdddd296
RR
7869 /* May be allocated at isolcpus cmdline parse time */
7870 if (cpu_isolated_map == NULL)
7871 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7872#endif /* SMP */
6a7b3dc3 7873
cdd6c482 7874 perf_event_init();
0d905bca 7875
6892b75e 7876 scheduler_running = 1;
1da177e4
LT
7877}
7878
7879#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7880static inline int preempt_count_equals(int preempt_offset)
7881{
234da7bc 7882 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7883
7884 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7885}
7886
d894837f 7887void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7888{
48f24c4d 7889#ifdef in_atomic
1da177e4
LT
7890 static unsigned long prev_jiffy; /* ratelimiting */
7891
e4aafea2
FW
7892 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7893 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7894 return;
7895 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7896 return;
7897 prev_jiffy = jiffies;
7898
3df0fc5b
PZ
7899 printk(KERN_ERR
7900 "BUG: sleeping function called from invalid context at %s:%d\n",
7901 file, line);
7902 printk(KERN_ERR
7903 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7904 in_atomic(), irqs_disabled(),
7905 current->pid, current->comm);
aef745fc
IM
7906
7907 debug_show_held_locks(current);
7908 if (irqs_disabled())
7909 print_irqtrace_events(current);
7910 dump_stack();
1da177e4
LT
7911#endif
7912}
7913EXPORT_SYMBOL(__might_sleep);
7914#endif
7915
7916#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7917static void normalize_task(struct rq *rq, struct task_struct *p)
7918{
7919 int on_rq;
3e51f33f 7920
3a5e4dc1
AK
7921 on_rq = p->se.on_rq;
7922 if (on_rq)
7923 deactivate_task(rq, p, 0);
7924 __setscheduler(rq, p, SCHED_NORMAL, 0);
7925 if (on_rq) {
7926 activate_task(rq, p, 0);
7927 resched_task(rq->curr);
7928 }
7929}
7930
1da177e4
LT
7931void normalize_rt_tasks(void)
7932{
a0f98a1c 7933 struct task_struct *g, *p;
1da177e4 7934 unsigned long flags;
70b97a7f 7935 struct rq *rq;
1da177e4 7936
4cf5d77a 7937 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7938 do_each_thread(g, p) {
178be793
IM
7939 /*
7940 * Only normalize user tasks:
7941 */
7942 if (!p->mm)
7943 continue;
7944
6cfb0d5d 7945 p->se.exec_start = 0;
6cfb0d5d 7946#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7947 p->se.statistics.wait_start = 0;
7948 p->se.statistics.sleep_start = 0;
7949 p->se.statistics.block_start = 0;
6cfb0d5d 7950#endif
dd41f596
IM
7951
7952 if (!rt_task(p)) {
7953 /*
7954 * Renice negative nice level userspace
7955 * tasks back to 0:
7956 */
7957 if (TASK_NICE(p) < 0 && p->mm)
7958 set_user_nice(p, 0);
1da177e4 7959 continue;
dd41f596 7960 }
1da177e4 7961
1d615482 7962 raw_spin_lock(&p->pi_lock);
b29739f9 7963 rq = __task_rq_lock(p);
1da177e4 7964
178be793 7965 normalize_task(rq, p);
3a5e4dc1 7966
b29739f9 7967 __task_rq_unlock(rq);
1d615482 7968 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7969 } while_each_thread(g, p);
7970
4cf5d77a 7971 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7972}
7973
7974#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7975
67fc4e0c 7976#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7977/*
67fc4e0c 7978 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7979 *
7980 * They can only be called when the whole system has been
7981 * stopped - every CPU needs to be quiescent, and no scheduling
7982 * activity can take place. Using them for anything else would
7983 * be a serious bug, and as a result, they aren't even visible
7984 * under any other configuration.
7985 */
7986
7987/**
7988 * curr_task - return the current task for a given cpu.
7989 * @cpu: the processor in question.
7990 *
7991 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7992 */
36c8b586 7993struct task_struct *curr_task(int cpu)
1df5c10a
LT
7994{
7995 return cpu_curr(cpu);
7996}
7997
67fc4e0c
JW
7998#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7999
8000#ifdef CONFIG_IA64
1df5c10a
LT
8001/**
8002 * set_curr_task - set the current task for a given cpu.
8003 * @cpu: the processor in question.
8004 * @p: the task pointer to set.
8005 *
8006 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8007 * are serviced on a separate stack. It allows the architecture to switch the
8008 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8009 * must be called with all CPU's synchronized, and interrupts disabled, the
8010 * and caller must save the original value of the current task (see
8011 * curr_task() above) and restore that value before reenabling interrupts and
8012 * re-starting the system.
8013 *
8014 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8015 */
36c8b586 8016void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8017{
8018 cpu_curr(cpu) = p;
8019}
8020
8021#endif
29f59db3 8022
bccbe08a
PZ
8023#ifdef CONFIG_FAIR_GROUP_SCHED
8024static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8025{
8026 int i;
8027
8028 for_each_possible_cpu(i) {
8029 if (tg->cfs_rq)
8030 kfree(tg->cfs_rq[i]);
8031 if (tg->se)
8032 kfree(tg->se[i]);
6f505b16
PZ
8033 }
8034
8035 kfree(tg->cfs_rq);
8036 kfree(tg->se);
6f505b16
PZ
8037}
8038
ec7dc8ac
DG
8039static
8040int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8041{
29f59db3 8042 struct cfs_rq *cfs_rq;
eab17229 8043 struct sched_entity *se;
9b5b7751 8044 struct rq *rq;
29f59db3
SV
8045 int i;
8046
434d53b0 8047 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8048 if (!tg->cfs_rq)
8049 goto err;
434d53b0 8050 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8051 if (!tg->se)
8052 goto err;
052f1dc7
PZ
8053
8054 tg->shares = NICE_0_LOAD;
29f59db3
SV
8055
8056 for_each_possible_cpu(i) {
9b5b7751 8057 rq = cpu_rq(i);
29f59db3 8058
eab17229
LZ
8059 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8060 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8061 if (!cfs_rq)
8062 goto err;
8063
eab17229
LZ
8064 se = kzalloc_node(sizeof(struct sched_entity),
8065 GFP_KERNEL, cpu_to_node(i));
29f59db3 8066 if (!se)
dfc12eb2 8067 goto err_free_rq;
29f59db3 8068
eab17229 8069 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8070 }
8071
8072 return 1;
8073
dfc12eb2
PC
8074 err_free_rq:
8075 kfree(cfs_rq);
bccbe08a
PZ
8076 err:
8077 return 0;
8078}
8079
8080static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8081{
8082 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8083 &cpu_rq(cpu)->leaf_cfs_rq_list);
8084}
8085
8086static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8087{
8088 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8089}
6d6bc0ad 8090#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8091static inline void free_fair_sched_group(struct task_group *tg)
8092{
8093}
8094
ec7dc8ac
DG
8095static inline
8096int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8097{
8098 return 1;
8099}
8100
8101static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8102{
8103}
8104
8105static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8106{
8107}
6d6bc0ad 8108#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8109
8110#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8111static void free_rt_sched_group(struct task_group *tg)
8112{
8113 int i;
8114
d0b27fa7
PZ
8115 destroy_rt_bandwidth(&tg->rt_bandwidth);
8116
bccbe08a
PZ
8117 for_each_possible_cpu(i) {
8118 if (tg->rt_rq)
8119 kfree(tg->rt_rq[i]);
8120 if (tg->rt_se)
8121 kfree(tg->rt_se[i]);
8122 }
8123
8124 kfree(tg->rt_rq);
8125 kfree(tg->rt_se);
8126}
8127
ec7dc8ac
DG
8128static
8129int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8130{
8131 struct rt_rq *rt_rq;
eab17229 8132 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8133 struct rq *rq;
8134 int i;
8135
434d53b0 8136 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8137 if (!tg->rt_rq)
8138 goto err;
434d53b0 8139 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8140 if (!tg->rt_se)
8141 goto err;
8142
d0b27fa7
PZ
8143 init_rt_bandwidth(&tg->rt_bandwidth,
8144 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8145
8146 for_each_possible_cpu(i) {
8147 rq = cpu_rq(i);
8148
eab17229
LZ
8149 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8150 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8151 if (!rt_rq)
8152 goto err;
29f59db3 8153
eab17229
LZ
8154 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8155 GFP_KERNEL, cpu_to_node(i));
6f505b16 8156 if (!rt_se)
dfc12eb2 8157 goto err_free_rq;
29f59db3 8158
eab17229 8159 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8160 }
8161
bccbe08a
PZ
8162 return 1;
8163
dfc12eb2
PC
8164 err_free_rq:
8165 kfree(rt_rq);
bccbe08a
PZ
8166 err:
8167 return 0;
8168}
8169
8170static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8171{
8172 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8173 &cpu_rq(cpu)->leaf_rt_rq_list);
8174}
8175
8176static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8177{
8178 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8179}
6d6bc0ad 8180#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8181static inline void free_rt_sched_group(struct task_group *tg)
8182{
8183}
8184
ec7dc8ac
DG
8185static inline
8186int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8187{
8188 return 1;
8189}
8190
8191static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8192{
8193}
8194
8195static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8196{
8197}
6d6bc0ad 8198#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8199
7c941438 8200#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8201static void free_sched_group(struct task_group *tg)
8202{
8203 free_fair_sched_group(tg);
8204 free_rt_sched_group(tg);
8205 kfree(tg);
8206}
8207
8208/* allocate runqueue etc for a new task group */
ec7dc8ac 8209struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8210{
8211 struct task_group *tg;
8212 unsigned long flags;
8213 int i;
8214
8215 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8216 if (!tg)
8217 return ERR_PTR(-ENOMEM);
8218
ec7dc8ac 8219 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8220 goto err;
8221
ec7dc8ac 8222 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8223 goto err;
8224
8ed36996 8225 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8226 for_each_possible_cpu(i) {
bccbe08a
PZ
8227 register_fair_sched_group(tg, i);
8228 register_rt_sched_group(tg, i);
9b5b7751 8229 }
6f505b16 8230 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8231
8232 WARN_ON(!parent); /* root should already exist */
8233
8234 tg->parent = parent;
f473aa5e 8235 INIT_LIST_HEAD(&tg->children);
09f2724a 8236 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8237 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8238
9b5b7751 8239 return tg;
29f59db3
SV
8240
8241err:
6f505b16 8242 free_sched_group(tg);
29f59db3
SV
8243 return ERR_PTR(-ENOMEM);
8244}
8245
9b5b7751 8246/* rcu callback to free various structures associated with a task group */
6f505b16 8247static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8248{
29f59db3 8249 /* now it should be safe to free those cfs_rqs */
6f505b16 8250 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8251}
8252
9b5b7751 8253/* Destroy runqueue etc associated with a task group */
4cf86d77 8254void sched_destroy_group(struct task_group *tg)
29f59db3 8255{
8ed36996 8256 unsigned long flags;
9b5b7751 8257 int i;
29f59db3 8258
8ed36996 8259 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8260 for_each_possible_cpu(i) {
bccbe08a
PZ
8261 unregister_fair_sched_group(tg, i);
8262 unregister_rt_sched_group(tg, i);
9b5b7751 8263 }
6f505b16 8264 list_del_rcu(&tg->list);
f473aa5e 8265 list_del_rcu(&tg->siblings);
8ed36996 8266 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8267
9b5b7751 8268 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8269 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8270}
8271
9b5b7751 8272/* change task's runqueue when it moves between groups.
3a252015
IM
8273 * The caller of this function should have put the task in its new group
8274 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8275 * reflect its new group.
9b5b7751
SV
8276 */
8277void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8278{
8279 int on_rq, running;
8280 unsigned long flags;
8281 struct rq *rq;
8282
8283 rq = task_rq_lock(tsk, &flags);
8284
051a1d1a 8285 running = task_current(rq, tsk);
29f59db3
SV
8286 on_rq = tsk->se.on_rq;
8287
0e1f3483 8288 if (on_rq)
29f59db3 8289 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8290 if (unlikely(running))
8291 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8292
6f505b16 8293 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8294
810b3817
PZ
8295#ifdef CONFIG_FAIR_GROUP_SCHED
8296 if (tsk->sched_class->moved_group)
88ec22d3 8297 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8298#endif
8299
0e1f3483
HS
8300 if (unlikely(running))
8301 tsk->sched_class->set_curr_task(rq);
8302 if (on_rq)
371fd7e7 8303 enqueue_task(rq, tsk, 0);
29f59db3 8304
29f59db3
SV
8305 task_rq_unlock(rq, &flags);
8306}
7c941438 8307#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8308
052f1dc7 8309#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8310static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8311{
8312 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8313 int on_rq;
8314
29f59db3 8315 on_rq = se->on_rq;
62fb1851 8316 if (on_rq)
29f59db3
SV
8317 dequeue_entity(cfs_rq, se, 0);
8318
8319 se->load.weight = shares;
e05510d0 8320 se->load.inv_weight = 0;
29f59db3 8321
62fb1851 8322 if (on_rq)
29f59db3 8323 enqueue_entity(cfs_rq, se, 0);
c09595f6 8324}
62fb1851 8325
c09595f6
PZ
8326static void set_se_shares(struct sched_entity *se, unsigned long shares)
8327{
8328 struct cfs_rq *cfs_rq = se->cfs_rq;
8329 struct rq *rq = cfs_rq->rq;
8330 unsigned long flags;
8331
05fa785c 8332 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8333 __set_se_shares(se, shares);
05fa785c 8334 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8335}
8336
8ed36996
PZ
8337static DEFINE_MUTEX(shares_mutex);
8338
4cf86d77 8339int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8340{
8341 int i;
8ed36996 8342 unsigned long flags;
c61935fd 8343
ec7dc8ac
DG
8344 /*
8345 * We can't change the weight of the root cgroup.
8346 */
8347 if (!tg->se[0])
8348 return -EINVAL;
8349
18d95a28
PZ
8350 if (shares < MIN_SHARES)
8351 shares = MIN_SHARES;
cb4ad1ff
MX
8352 else if (shares > MAX_SHARES)
8353 shares = MAX_SHARES;
62fb1851 8354
8ed36996 8355 mutex_lock(&shares_mutex);
9b5b7751 8356 if (tg->shares == shares)
5cb350ba 8357 goto done;
29f59db3 8358
8ed36996 8359 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8360 for_each_possible_cpu(i)
8361 unregister_fair_sched_group(tg, i);
f473aa5e 8362 list_del_rcu(&tg->siblings);
8ed36996 8363 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8364
8365 /* wait for any ongoing reference to this group to finish */
8366 synchronize_sched();
8367
8368 /*
8369 * Now we are free to modify the group's share on each cpu
8370 * w/o tripping rebalance_share or load_balance_fair.
8371 */
9b5b7751 8372 tg->shares = shares;
c09595f6
PZ
8373 for_each_possible_cpu(i) {
8374 /*
8375 * force a rebalance
8376 */
8377 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8378 set_se_shares(tg->se[i], shares);
c09595f6 8379 }
29f59db3 8380
6b2d7700
SV
8381 /*
8382 * Enable load balance activity on this group, by inserting it back on
8383 * each cpu's rq->leaf_cfs_rq_list.
8384 */
8ed36996 8385 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8386 for_each_possible_cpu(i)
8387 register_fair_sched_group(tg, i);
f473aa5e 8388 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8389 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8390done:
8ed36996 8391 mutex_unlock(&shares_mutex);
9b5b7751 8392 return 0;
29f59db3
SV
8393}
8394
5cb350ba
DG
8395unsigned long sched_group_shares(struct task_group *tg)
8396{
8397 return tg->shares;
8398}
052f1dc7 8399#endif
5cb350ba 8400
052f1dc7 8401#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8402/*
9f0c1e56 8403 * Ensure that the real time constraints are schedulable.
6f505b16 8404 */
9f0c1e56
PZ
8405static DEFINE_MUTEX(rt_constraints_mutex);
8406
8407static unsigned long to_ratio(u64 period, u64 runtime)
8408{
8409 if (runtime == RUNTIME_INF)
9a7e0b18 8410 return 1ULL << 20;
9f0c1e56 8411
9a7e0b18 8412 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8413}
8414
9a7e0b18
PZ
8415/* Must be called with tasklist_lock held */
8416static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8417{
9a7e0b18 8418 struct task_struct *g, *p;
b40b2e8e 8419
9a7e0b18
PZ
8420 do_each_thread(g, p) {
8421 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8422 return 1;
8423 } while_each_thread(g, p);
b40b2e8e 8424
9a7e0b18
PZ
8425 return 0;
8426}
b40b2e8e 8427
9a7e0b18
PZ
8428struct rt_schedulable_data {
8429 struct task_group *tg;
8430 u64 rt_period;
8431 u64 rt_runtime;
8432};
b40b2e8e 8433
9a7e0b18
PZ
8434static int tg_schedulable(struct task_group *tg, void *data)
8435{
8436 struct rt_schedulable_data *d = data;
8437 struct task_group *child;
8438 unsigned long total, sum = 0;
8439 u64 period, runtime;
b40b2e8e 8440
9a7e0b18
PZ
8441 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8442 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8443
9a7e0b18
PZ
8444 if (tg == d->tg) {
8445 period = d->rt_period;
8446 runtime = d->rt_runtime;
b40b2e8e 8447 }
b40b2e8e 8448
4653f803
PZ
8449 /*
8450 * Cannot have more runtime than the period.
8451 */
8452 if (runtime > period && runtime != RUNTIME_INF)
8453 return -EINVAL;
6f505b16 8454
4653f803
PZ
8455 /*
8456 * Ensure we don't starve existing RT tasks.
8457 */
9a7e0b18
PZ
8458 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8459 return -EBUSY;
6f505b16 8460
9a7e0b18 8461 total = to_ratio(period, runtime);
6f505b16 8462
4653f803
PZ
8463 /*
8464 * Nobody can have more than the global setting allows.
8465 */
8466 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8467 return -EINVAL;
6f505b16 8468
4653f803
PZ
8469 /*
8470 * The sum of our children's runtime should not exceed our own.
8471 */
9a7e0b18
PZ
8472 list_for_each_entry_rcu(child, &tg->children, siblings) {
8473 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8474 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8475
9a7e0b18
PZ
8476 if (child == d->tg) {
8477 period = d->rt_period;
8478 runtime = d->rt_runtime;
8479 }
6f505b16 8480
9a7e0b18 8481 sum += to_ratio(period, runtime);
9f0c1e56 8482 }
6f505b16 8483
9a7e0b18
PZ
8484 if (sum > total)
8485 return -EINVAL;
8486
8487 return 0;
6f505b16
PZ
8488}
8489
9a7e0b18 8490static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8491{
9a7e0b18
PZ
8492 struct rt_schedulable_data data = {
8493 .tg = tg,
8494 .rt_period = period,
8495 .rt_runtime = runtime,
8496 };
8497
8498 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8499}
8500
d0b27fa7
PZ
8501static int tg_set_bandwidth(struct task_group *tg,
8502 u64 rt_period, u64 rt_runtime)
6f505b16 8503{
ac086bc2 8504 int i, err = 0;
9f0c1e56 8505
9f0c1e56 8506 mutex_lock(&rt_constraints_mutex);
521f1a24 8507 read_lock(&tasklist_lock);
9a7e0b18
PZ
8508 err = __rt_schedulable(tg, rt_period, rt_runtime);
8509 if (err)
9f0c1e56 8510 goto unlock;
ac086bc2 8511
0986b11b 8512 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8513 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8514 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8515
8516 for_each_possible_cpu(i) {
8517 struct rt_rq *rt_rq = tg->rt_rq[i];
8518
0986b11b 8519 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8520 rt_rq->rt_runtime = rt_runtime;
0986b11b 8521 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8522 }
0986b11b 8523 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8524 unlock:
521f1a24 8525 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8526 mutex_unlock(&rt_constraints_mutex);
8527
8528 return err;
6f505b16
PZ
8529}
8530
d0b27fa7
PZ
8531int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8532{
8533 u64 rt_runtime, rt_period;
8534
8535 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8536 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8537 if (rt_runtime_us < 0)
8538 rt_runtime = RUNTIME_INF;
8539
8540 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8541}
8542
9f0c1e56
PZ
8543long sched_group_rt_runtime(struct task_group *tg)
8544{
8545 u64 rt_runtime_us;
8546
d0b27fa7 8547 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8548 return -1;
8549
d0b27fa7 8550 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8551 do_div(rt_runtime_us, NSEC_PER_USEC);
8552 return rt_runtime_us;
8553}
d0b27fa7
PZ
8554
8555int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8556{
8557 u64 rt_runtime, rt_period;
8558
8559 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8560 rt_runtime = tg->rt_bandwidth.rt_runtime;
8561
619b0488
R
8562 if (rt_period == 0)
8563 return -EINVAL;
8564
d0b27fa7
PZ
8565 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8566}
8567
8568long sched_group_rt_period(struct task_group *tg)
8569{
8570 u64 rt_period_us;
8571
8572 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8573 do_div(rt_period_us, NSEC_PER_USEC);
8574 return rt_period_us;
8575}
8576
8577static int sched_rt_global_constraints(void)
8578{
4653f803 8579 u64 runtime, period;
d0b27fa7
PZ
8580 int ret = 0;
8581
ec5d4989
HS
8582 if (sysctl_sched_rt_period <= 0)
8583 return -EINVAL;
8584
4653f803
PZ
8585 runtime = global_rt_runtime();
8586 period = global_rt_period();
8587
8588 /*
8589 * Sanity check on the sysctl variables.
8590 */
8591 if (runtime > period && runtime != RUNTIME_INF)
8592 return -EINVAL;
10b612f4 8593
d0b27fa7 8594 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8595 read_lock(&tasklist_lock);
4653f803 8596 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8597 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8598 mutex_unlock(&rt_constraints_mutex);
8599
8600 return ret;
8601}
54e99124
DG
8602
8603int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8604{
8605 /* Don't accept realtime tasks when there is no way for them to run */
8606 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8607 return 0;
8608
8609 return 1;
8610}
8611
6d6bc0ad 8612#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8613static int sched_rt_global_constraints(void)
8614{
ac086bc2
PZ
8615 unsigned long flags;
8616 int i;
8617
ec5d4989
HS
8618 if (sysctl_sched_rt_period <= 0)
8619 return -EINVAL;
8620
60aa605d
PZ
8621 /*
8622 * There's always some RT tasks in the root group
8623 * -- migration, kstopmachine etc..
8624 */
8625 if (sysctl_sched_rt_runtime == 0)
8626 return -EBUSY;
8627
0986b11b 8628 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8629 for_each_possible_cpu(i) {
8630 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8631
0986b11b 8632 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8633 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8634 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8635 }
0986b11b 8636 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8637
d0b27fa7
PZ
8638 return 0;
8639}
6d6bc0ad 8640#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8641
8642int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8643 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8644 loff_t *ppos)
8645{
8646 int ret;
8647 int old_period, old_runtime;
8648 static DEFINE_MUTEX(mutex);
8649
8650 mutex_lock(&mutex);
8651 old_period = sysctl_sched_rt_period;
8652 old_runtime = sysctl_sched_rt_runtime;
8653
8d65af78 8654 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8655
8656 if (!ret && write) {
8657 ret = sched_rt_global_constraints();
8658 if (ret) {
8659 sysctl_sched_rt_period = old_period;
8660 sysctl_sched_rt_runtime = old_runtime;
8661 } else {
8662 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8663 def_rt_bandwidth.rt_period =
8664 ns_to_ktime(global_rt_period());
8665 }
8666 }
8667 mutex_unlock(&mutex);
8668
8669 return ret;
8670}
68318b8e 8671
052f1dc7 8672#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8673
8674/* return corresponding task_group object of a cgroup */
2b01dfe3 8675static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8676{
2b01dfe3
PM
8677 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8678 struct task_group, css);
68318b8e
SV
8679}
8680
8681static struct cgroup_subsys_state *
2b01dfe3 8682cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8683{
ec7dc8ac 8684 struct task_group *tg, *parent;
68318b8e 8685
2b01dfe3 8686 if (!cgrp->parent) {
68318b8e 8687 /* This is early initialization for the top cgroup */
68318b8e
SV
8688 return &init_task_group.css;
8689 }
8690
ec7dc8ac
DG
8691 parent = cgroup_tg(cgrp->parent);
8692 tg = sched_create_group(parent);
68318b8e
SV
8693 if (IS_ERR(tg))
8694 return ERR_PTR(-ENOMEM);
8695
68318b8e
SV
8696 return &tg->css;
8697}
8698
41a2d6cf
IM
8699static void
8700cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8701{
2b01dfe3 8702 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8703
8704 sched_destroy_group(tg);
8705}
8706
41a2d6cf 8707static int
be367d09 8708cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8709{
b68aa230 8710#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8711 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8712 return -EINVAL;
8713#else
68318b8e
SV
8714 /* We don't support RT-tasks being in separate groups */
8715 if (tsk->sched_class != &fair_sched_class)
8716 return -EINVAL;
b68aa230 8717#endif
be367d09
BB
8718 return 0;
8719}
68318b8e 8720
be367d09
BB
8721static int
8722cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8723 struct task_struct *tsk, bool threadgroup)
8724{
8725 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8726 if (retval)
8727 return retval;
8728 if (threadgroup) {
8729 struct task_struct *c;
8730 rcu_read_lock();
8731 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8732 retval = cpu_cgroup_can_attach_task(cgrp, c);
8733 if (retval) {
8734 rcu_read_unlock();
8735 return retval;
8736 }
8737 }
8738 rcu_read_unlock();
8739 }
68318b8e
SV
8740 return 0;
8741}
8742
8743static void
2b01dfe3 8744cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8745 struct cgroup *old_cont, struct task_struct *tsk,
8746 bool threadgroup)
68318b8e
SV
8747{
8748 sched_move_task(tsk);
be367d09
BB
8749 if (threadgroup) {
8750 struct task_struct *c;
8751 rcu_read_lock();
8752 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8753 sched_move_task(c);
8754 }
8755 rcu_read_unlock();
8756 }
68318b8e
SV
8757}
8758
052f1dc7 8759#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8760static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8761 u64 shareval)
68318b8e 8762{
2b01dfe3 8763 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8764}
8765
f4c753b7 8766static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8767{
2b01dfe3 8768 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8769
8770 return (u64) tg->shares;
8771}
6d6bc0ad 8772#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8773
052f1dc7 8774#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8775static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8776 s64 val)
6f505b16 8777{
06ecb27c 8778 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8779}
8780
06ecb27c 8781static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8782{
06ecb27c 8783 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8784}
d0b27fa7
PZ
8785
8786static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8787 u64 rt_period_us)
8788{
8789 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8790}
8791
8792static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8793{
8794 return sched_group_rt_period(cgroup_tg(cgrp));
8795}
6d6bc0ad 8796#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8797
fe5c7cc2 8798static struct cftype cpu_files[] = {
052f1dc7 8799#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8800 {
8801 .name = "shares",
f4c753b7
PM
8802 .read_u64 = cpu_shares_read_u64,
8803 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8804 },
052f1dc7
PZ
8805#endif
8806#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8807 {
9f0c1e56 8808 .name = "rt_runtime_us",
06ecb27c
PM
8809 .read_s64 = cpu_rt_runtime_read,
8810 .write_s64 = cpu_rt_runtime_write,
6f505b16 8811 },
d0b27fa7
PZ
8812 {
8813 .name = "rt_period_us",
f4c753b7
PM
8814 .read_u64 = cpu_rt_period_read_uint,
8815 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8816 },
052f1dc7 8817#endif
68318b8e
SV
8818};
8819
8820static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8821{
fe5c7cc2 8822 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8823}
8824
8825struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8826 .name = "cpu",
8827 .create = cpu_cgroup_create,
8828 .destroy = cpu_cgroup_destroy,
8829 .can_attach = cpu_cgroup_can_attach,
8830 .attach = cpu_cgroup_attach,
8831 .populate = cpu_cgroup_populate,
8832 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8833 .early_init = 1,
8834};
8835
052f1dc7 8836#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8837
8838#ifdef CONFIG_CGROUP_CPUACCT
8839
8840/*
8841 * CPU accounting code for task groups.
8842 *
8843 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8844 * (balbir@in.ibm.com).
8845 */
8846
934352f2 8847/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8848struct cpuacct {
8849 struct cgroup_subsys_state css;
8850 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8851 u64 __percpu *cpuusage;
ef12fefa 8852 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8853 struct cpuacct *parent;
d842de87
SV
8854};
8855
8856struct cgroup_subsys cpuacct_subsys;
8857
8858/* return cpu accounting group corresponding to this container */
32cd756a 8859static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8860{
32cd756a 8861 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8862 struct cpuacct, css);
8863}
8864
8865/* return cpu accounting group to which this task belongs */
8866static inline struct cpuacct *task_ca(struct task_struct *tsk)
8867{
8868 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8869 struct cpuacct, css);
8870}
8871
8872/* create a new cpu accounting group */
8873static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8874 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8875{
8876 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8877 int i;
d842de87
SV
8878
8879 if (!ca)
ef12fefa 8880 goto out;
d842de87
SV
8881
8882 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8883 if (!ca->cpuusage)
8884 goto out_free_ca;
8885
8886 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8887 if (percpu_counter_init(&ca->cpustat[i], 0))
8888 goto out_free_counters;
d842de87 8889
934352f2
BR
8890 if (cgrp->parent)
8891 ca->parent = cgroup_ca(cgrp->parent);
8892
d842de87 8893 return &ca->css;
ef12fefa
BR
8894
8895out_free_counters:
8896 while (--i >= 0)
8897 percpu_counter_destroy(&ca->cpustat[i]);
8898 free_percpu(ca->cpuusage);
8899out_free_ca:
8900 kfree(ca);
8901out:
8902 return ERR_PTR(-ENOMEM);
d842de87
SV
8903}
8904
8905/* destroy an existing cpu accounting group */
41a2d6cf 8906static void
32cd756a 8907cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8908{
32cd756a 8909 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8910 int i;
d842de87 8911
ef12fefa
BR
8912 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8913 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8914 free_percpu(ca->cpuusage);
8915 kfree(ca);
8916}
8917
720f5498
KC
8918static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8919{
b36128c8 8920 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8921 u64 data;
8922
8923#ifndef CONFIG_64BIT
8924 /*
8925 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8926 */
05fa785c 8927 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8928 data = *cpuusage;
05fa785c 8929 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8930#else
8931 data = *cpuusage;
8932#endif
8933
8934 return data;
8935}
8936
8937static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8938{
b36128c8 8939 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8940
8941#ifndef CONFIG_64BIT
8942 /*
8943 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8944 */
05fa785c 8945 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8946 *cpuusage = val;
05fa785c 8947 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8948#else
8949 *cpuusage = val;
8950#endif
8951}
8952
d842de87 8953/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8954static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8955{
32cd756a 8956 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8957 u64 totalcpuusage = 0;
8958 int i;
8959
720f5498
KC
8960 for_each_present_cpu(i)
8961 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8962
8963 return totalcpuusage;
8964}
8965
0297b803
DG
8966static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8967 u64 reset)
8968{
8969 struct cpuacct *ca = cgroup_ca(cgrp);
8970 int err = 0;
8971 int i;
8972
8973 if (reset) {
8974 err = -EINVAL;
8975 goto out;
8976 }
8977
720f5498
KC
8978 for_each_present_cpu(i)
8979 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8980
0297b803
DG
8981out:
8982 return err;
8983}
8984
e9515c3c
KC
8985static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8986 struct seq_file *m)
8987{
8988 struct cpuacct *ca = cgroup_ca(cgroup);
8989 u64 percpu;
8990 int i;
8991
8992 for_each_present_cpu(i) {
8993 percpu = cpuacct_cpuusage_read(ca, i);
8994 seq_printf(m, "%llu ", (unsigned long long) percpu);
8995 }
8996 seq_printf(m, "\n");
8997 return 0;
8998}
8999
ef12fefa
BR
9000static const char *cpuacct_stat_desc[] = {
9001 [CPUACCT_STAT_USER] = "user",
9002 [CPUACCT_STAT_SYSTEM] = "system",
9003};
9004
9005static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9006 struct cgroup_map_cb *cb)
9007{
9008 struct cpuacct *ca = cgroup_ca(cgrp);
9009 int i;
9010
9011 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9012 s64 val = percpu_counter_read(&ca->cpustat[i]);
9013 val = cputime64_to_clock_t(val);
9014 cb->fill(cb, cpuacct_stat_desc[i], val);
9015 }
9016 return 0;
9017}
9018
d842de87
SV
9019static struct cftype files[] = {
9020 {
9021 .name = "usage",
f4c753b7
PM
9022 .read_u64 = cpuusage_read,
9023 .write_u64 = cpuusage_write,
d842de87 9024 },
e9515c3c
KC
9025 {
9026 .name = "usage_percpu",
9027 .read_seq_string = cpuacct_percpu_seq_read,
9028 },
ef12fefa
BR
9029 {
9030 .name = "stat",
9031 .read_map = cpuacct_stats_show,
9032 },
d842de87
SV
9033};
9034
32cd756a 9035static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9036{
32cd756a 9037 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9038}
9039
9040/*
9041 * charge this task's execution time to its accounting group.
9042 *
9043 * called with rq->lock held.
9044 */
9045static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9046{
9047 struct cpuacct *ca;
934352f2 9048 int cpu;
d842de87 9049
c40c6f85 9050 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9051 return;
9052
934352f2 9053 cpu = task_cpu(tsk);
a18b83b7
BR
9054
9055 rcu_read_lock();
9056
d842de87 9057 ca = task_ca(tsk);
d842de87 9058
934352f2 9059 for (; ca; ca = ca->parent) {
b36128c8 9060 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9061 *cpuusage += cputime;
9062 }
a18b83b7
BR
9063
9064 rcu_read_unlock();
d842de87
SV
9065}
9066
fa535a77
AB
9067/*
9068 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9069 * in cputime_t units. As a result, cpuacct_update_stats calls
9070 * percpu_counter_add with values large enough to always overflow the
9071 * per cpu batch limit causing bad SMP scalability.
9072 *
9073 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9074 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9075 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9076 */
9077#ifdef CONFIG_SMP
9078#define CPUACCT_BATCH \
9079 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9080#else
9081#define CPUACCT_BATCH 0
9082#endif
9083
ef12fefa
BR
9084/*
9085 * Charge the system/user time to the task's accounting group.
9086 */
9087static void cpuacct_update_stats(struct task_struct *tsk,
9088 enum cpuacct_stat_index idx, cputime_t val)
9089{
9090 struct cpuacct *ca;
fa535a77 9091 int batch = CPUACCT_BATCH;
ef12fefa
BR
9092
9093 if (unlikely(!cpuacct_subsys.active))
9094 return;
9095
9096 rcu_read_lock();
9097 ca = task_ca(tsk);
9098
9099 do {
fa535a77 9100 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9101 ca = ca->parent;
9102 } while (ca);
9103 rcu_read_unlock();
9104}
9105
d842de87
SV
9106struct cgroup_subsys cpuacct_subsys = {
9107 .name = "cpuacct",
9108 .create = cpuacct_create,
9109 .destroy = cpuacct_destroy,
9110 .populate = cpuacct_populate,
9111 .subsys_id = cpuacct_subsys_id,
9112};
9113#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9114
9115#ifndef CONFIG_SMP
9116
03b042bf
PM
9117void synchronize_sched_expedited(void)
9118{
fc390cde 9119 barrier();
03b042bf
PM
9120}
9121EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9122
9123#else /* #ifndef CONFIG_SMP */
9124
cc631fb7 9125static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9126
cc631fb7 9127static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9128{
969c7921
TH
9129 /*
9130 * There must be a full memory barrier on each affected CPU
9131 * between the time that try_stop_cpus() is called and the
9132 * time that it returns.
9133 *
9134 * In the current initial implementation of cpu_stop, the
9135 * above condition is already met when the control reaches
9136 * this point and the following smp_mb() is not strictly
9137 * necessary. Do smp_mb() anyway for documentation and
9138 * robustness against future implementation changes.
9139 */
cc631fb7 9140 smp_mb(); /* See above comment block. */
969c7921 9141 return 0;
03b042bf 9142}
03b042bf
PM
9143
9144/*
9145 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9146 * approach to force grace period to end quickly. This consumes
9147 * significant time on all CPUs, and is thus not recommended for
9148 * any sort of common-case code.
9149 *
9150 * Note that it is illegal to call this function while holding any
9151 * lock that is acquired by a CPU-hotplug notifier. Failing to
9152 * observe this restriction will result in deadlock.
9153 */
9154void synchronize_sched_expedited(void)
9155{
969c7921 9156 int snap, trycount = 0;
03b042bf
PM
9157
9158 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9159 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9160 get_online_cpus();
969c7921
TH
9161 while (try_stop_cpus(cpu_online_mask,
9162 synchronize_sched_expedited_cpu_stop,
94458d5e 9163 NULL) == -EAGAIN) {
03b042bf
PM
9164 put_online_cpus();
9165 if (trycount++ < 10)
9166 udelay(trycount * num_online_cpus());
9167 else {
9168 synchronize_sched();
9169 return;
9170 }
969c7921 9171 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9172 smp_mb(); /* ensure test happens before caller kfree */
9173 return;
9174 }
9175 get_online_cpus();
9176 }
969c7921 9177 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9178 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9179 put_online_cpus();
03b042bf
PM
9180}
9181EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9182
9183#endif /* #else #ifndef CONFIG_SMP */