]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
tg3: Update version to 3.114
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2
GH
429#ifdef CONFIG_SMP
430 struct cpupri cpupri;
431#endif
57d885fe
GH
432};
433
dc938520
GH
434/*
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
437 */
57d885fe
GH
438static struct root_domain def_root_domain;
439
440#endif
441
1da177e4
LT
442/*
443 * This is the main, per-CPU runqueue data structure.
444 *
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
448 */
70b97a7f 449struct rq {
d8016491 450 /* runqueue lock: */
05fa785c 451 raw_spinlock_t lock;
1da177e4
LT
452
453 /*
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
456 */
457 unsigned long nr_running;
6aa645ea
IM
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 460 unsigned long last_load_update_tick;
46cb4b7c 461#ifdef CONFIG_NO_HZ
39c0cbe2 462 u64 nohz_stamp;
83cd4fe2 463 unsigned char nohz_balance_kick;
46cb4b7c 464#endif
a64692a3
MG
465 unsigned int skip_clock_update;
466
d8016491
IM
467 /* capture load from *all* tasks on this cpu: */
468 struct load_weight load;
6aa645ea
IM
469 unsigned long nr_load_updates;
470 u64 nr_switches;
471
472 struct cfs_rq cfs;
6f505b16 473 struct rt_rq rt;
6f505b16 474
6aa645ea 475#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
476 /* list of leaf cfs_rq on this cpu: */
477 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
478#endif
479#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 480 struct list_head leaf_rt_rq_list;
1da177e4 481#endif
1da177e4
LT
482
483 /*
484 * This is part of a global counter where only the total sum
485 * over all CPUs matters. A task can increase this counter on
486 * one CPU and if it got migrated afterwards it may decrease
487 * it on another CPU. Always updated under the runqueue lock:
488 */
489 unsigned long nr_uninterruptible;
490
36c8b586 491 struct task_struct *curr, *idle;
c9819f45 492 unsigned long next_balance;
1da177e4 493 struct mm_struct *prev_mm;
6aa645ea 494
3e51f33f 495 u64 clock;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
dce48a84
TG
523 /* calc_load related fields */
524 unsigned long calc_load_update;
525 long calc_load_active;
526
8f4d37ec 527#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
528#ifdef CONFIG_SMP
529 int hrtick_csd_pending;
530 struct call_single_data hrtick_csd;
531#endif
8f4d37ec
PZ
532 struct hrtimer hrtick_timer;
533#endif
534
1da177e4
LT
535#ifdef CONFIG_SCHEDSTATS
536 /* latency stats */
537 struct sched_info rq_sched_info;
9c2c4802
KC
538 unsigned long long rq_cpu_time;
539 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
540
541 /* sys_sched_yield() stats */
480b9434 542 unsigned int yld_count;
1da177e4
LT
543
544 /* schedule() stats */
480b9434
KC
545 unsigned int sched_switch;
546 unsigned int sched_count;
547 unsigned int sched_goidle;
1da177e4
LT
548
549 /* try_to_wake_up() stats */
480b9434
KC
550 unsigned int ttwu_count;
551 unsigned int ttwu_local;
b8efb561
IM
552
553 /* BKL stats */
480b9434 554 unsigned int bkl_count;
1da177e4
LT
555#endif
556};
557
f34e3b61 558static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 559
7d478721
PZ
560static inline
561void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 562{
7d478721 563 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
564
565 /*
566 * A queue event has occurred, and we're going to schedule. In
567 * this case, we can save a useless back to back clock update.
568 */
569 if (test_tsk_need_resched(p))
570 rq->skip_clock_update = 1;
dd41f596
IM
571}
572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
583 rcu_dereference_check((p), \
584 rcu_read_lock_sched_held() || \
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
615 struct cgroup_subsys_state *css;
616
617 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
618 lockdep_is_held(&task_rq(p)->lock));
619 return container_of(css, struct task_group, css);
620}
621
622/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
623static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
624{
625#ifdef CONFIG_FAIR_GROUP_SCHED
626 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
627 p->se.parent = task_group(p)->se[cpu];
628#endif
629
630#ifdef CONFIG_RT_GROUP_SCHED
631 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
632 p->rt.parent = task_group(p)->rt_se[cpu];
633#endif
634}
635
636#else /* CONFIG_CGROUP_SCHED */
637
638static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
639static inline struct task_group *task_group(struct task_struct *p)
640{
641 return NULL;
642}
643
644#endif /* CONFIG_CGROUP_SCHED */
645
aa9c4c0f 646inline void update_rq_clock(struct rq *rq)
3e51f33f 647{
a64692a3
MG
648 if (!rq->skip_clock_update)
649 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
650}
651
bf5c91ba
IM
652/*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655#ifdef CONFIG_SCHED_DEBUG
656# define const_debug __read_mostly
657#else
658# define const_debug static const
659#endif
660
017730c1
IM
661/**
662 * runqueue_is_locked
e17b38bf 663 * @cpu: the processor in question.
017730c1
IM
664 *
665 * Returns true if the current cpu runqueue is locked.
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
89f19f04 669int runqueue_is_locked(int cpu)
017730c1 670{
05fa785c 671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
672}
673
bf5c91ba
IM
674/*
675 * Debugging: various feature bits
676 */
f00b45c1
PZ
677
678#define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
bf5c91ba 681enum {
f00b45c1 682#include "sched_features.h"
bf5c91ba
IM
683};
684
f00b45c1
PZ
685#undef SCHED_FEAT
686
687#define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
bf5c91ba 690const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
691#include "sched_features.h"
692 0;
693
694#undef SCHED_FEAT
695
696#ifdef CONFIG_SCHED_DEBUG
697#define SCHED_FEAT(name, enabled) \
698 #name ,
699
983ed7a6 700static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
701#include "sched_features.h"
702 NULL
703};
704
705#undef SCHED_FEAT
706
34f3a814 707static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 708{
f00b45c1
PZ
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 715 }
34f3a814 716 seq_puts(m, "\n");
f00b45c1 717
34f3a814 718 return 0;
f00b45c1
PZ
719}
720
721static ssize_t
722sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724{
725 char buf[64];
726 char *cmp = buf;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737
c24b7c52 738 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
739 neg = 1;
740 cmp += 3;
741 }
742
743 for (i = 0; sched_feat_names[i]; i++) {
744 int len = strlen(sched_feat_names[i]);
745
746 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
747 if (neg)
748 sysctl_sched_features &= ~(1UL << i);
749 else
750 sysctl_sched_features |= (1UL << i);
751 break;
752 }
753 }
754
755 if (!sched_feat_names[i])
756 return -EINVAL;
757
42994724 758 *ppos += cnt;
f00b45c1
PZ
759
760 return cnt;
761}
762
34f3a814
LZ
763static int sched_feat_open(struct inode *inode, struct file *filp)
764{
765 return single_open(filp, sched_feat_show, NULL);
766}
767
828c0950 768static const struct file_operations sched_feat_fops = {
34f3a814
LZ
769 .open = sched_feat_open,
770 .write = sched_feat_write,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = single_release,
f00b45c1
PZ
774};
775
776static __init int sched_init_debug(void)
777{
f00b45c1
PZ
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
780
781 return 0;
782}
783late_initcall(sched_init_debug);
784
785#endif
786
787#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 788
b82d9fdd
PZ
789/*
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
792 */
793const_debug unsigned int sysctl_sched_nr_migrate = 32;
794
2398f2c6
PZ
795/*
796 * ratelimit for updating the group shares.
55cd5340 797 * default: 0.25ms
2398f2c6 798 */
55cd5340 799unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 800unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 801
ffda12a1
PZ
802/*
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
805 * default: 4
806 */
807unsigned int sysctl_sched_shares_thresh = 4;
808
e9e9250b
PZ
809/*
810 * period over which we average the RT time consumption, measured
811 * in ms.
812 *
813 * default: 1s
814 */
815const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
816
fa85ae24 817/*
9f0c1e56 818 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
819 * default: 1s
820 */
9f0c1e56 821unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 822
6892b75e
IM
823static __read_mostly int scheduler_running;
824
9f0c1e56
PZ
825/*
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
828 */
829int sysctl_sched_rt_runtime = 950000;
fa85ae24 830
d0b27fa7
PZ
831static inline u64 global_rt_period(void)
832{
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834}
835
836static inline u64 global_rt_runtime(void)
837{
e26873bb 838 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
839 return RUNTIME_INF;
840
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842}
fa85ae24 843
1da177e4 844#ifndef prepare_arch_switch
4866cde0
NP
845# define prepare_arch_switch(next) do { } while (0)
846#endif
847#ifndef finish_arch_switch
848# define finish_arch_switch(prev) do { } while (0)
849#endif
850
051a1d1a
DA
851static inline int task_current(struct rq *rq, struct task_struct *p)
852{
853 return rq->curr == p;
854}
855
4866cde0 856#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 857static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 858{
051a1d1a 859 return task_current(rq, p);
4866cde0
NP
860}
861
70b97a7f 862static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
863{
864}
865
70b97a7f 866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 867{
da04c035
IM
868#ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq->lock.owner = current;
871#endif
8a25d5de
IM
872 /*
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
875 * prev into current:
876 */
877 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878
05fa785c 879 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
880}
881
882#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 883static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
884{
885#ifdef CONFIG_SMP
886 return p->oncpu;
887#else
051a1d1a 888 return task_current(rq, p);
4866cde0
NP
889#endif
890}
891
70b97a7f 892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
900 next->oncpu = 1;
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 903 raw_spin_unlock_irq(&rq->lock);
4866cde0 904#else
05fa785c 905 raw_spin_unlock(&rq->lock);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
918 prev->oncpu = 0;
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
1da177e4 922#endif
4866cde0
NP
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 925
0970d299 926/*
65cc8e48
PZ
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
928 * against ttwu().
0970d299
PZ
929 */
930static inline int task_is_waking(struct task_struct *p)
931{
0017d735 932 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
933}
934
b29739f9
IM
935/*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
70b97a7f 939static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
940 __acquires(rq->lock)
941{
0970d299
PZ
942 struct rq *rq;
943
3a5c359a 944 for (;;) {
0970d299 945 rq = task_rq(p);
05fa785c 946 raw_spin_lock(&rq->lock);
65cc8e48 947 if (likely(rq == task_rq(p)))
3a5c359a 948 return rq;
05fa785c 949 raw_spin_unlock(&rq->lock);
b29739f9 950 }
b29739f9
IM
951}
952
1da177e4
LT
953/*
954 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 955 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
956 * explicitly disabling preemption.
957 */
70b97a7f 958static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
959 __acquires(rq->lock)
960{
70b97a7f 961 struct rq *rq;
1da177e4 962
3a5c359a
AK
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
05fa785c 966 raw_spin_lock(&rq->lock);
65cc8e48 967 if (likely(rq == task_rq(p)))
3a5c359a 968 return rq;
05fa785c 969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 970 }
1da177e4
LT
971}
972
a9957449 973static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
974 __releases(rq->lock)
975{
05fa785c 976 raw_spin_unlock(&rq->lock);
b29739f9
IM
977}
978
70b97a7f 979static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
983}
984
1da177e4 985/*
cc2a73b5 986 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 987 */
a9957449 988static struct rq *this_rq_lock(void)
1da177e4
LT
989 __acquires(rq->lock)
990{
70b97a7f 991 struct rq *rq;
1da177e4
LT
992
993 local_irq_disable();
994 rq = this_rq();
05fa785c 995 raw_spin_lock(&rq->lock);
1da177e4
LT
996
997 return rq;
998}
999
8f4d37ec
PZ
1000#ifdef CONFIG_SCHED_HRTICK
1001/*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
8f4d37ec
PZ
1011
1012/*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017static inline int hrtick_enabled(struct rq *rq)
1018{
1019 if (!sched_feat(HRTICK))
1020 return 0;
ba42059f 1021 if (!cpu_active(cpu_of(rq)))
b328ca18 1022 return 0;
8f4d37ec
PZ
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026static void hrtick_clear(struct rq *rq)
1027{
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032/*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037{
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
05fa785c 1042 raw_spin_lock(&rq->lock);
3e51f33f 1043 update_rq_clock(rq);
8f4d37ec 1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1045 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1046
1047 return HRTIMER_NORESTART;
1048}
1049
95e904c7 1050#ifdef CONFIG_SMP
31656519
PZ
1051/*
1052 * called from hardirq (IPI) context
1053 */
1054static void __hrtick_start(void *arg)
b328ca18 1055{
31656519 1056 struct rq *rq = arg;
b328ca18 1057
05fa785c 1058 raw_spin_lock(&rq->lock);
31656519
PZ
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
05fa785c 1061 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1062}
1063
31656519
PZ
1064/*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1070{
31656519
PZ
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1073
cc584b21 1074 hrtimer_set_expires(timer, time);
31656519
PZ
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
6e275637 1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1080 rq->hrtick_csd_pending = 1;
1081 }
b328ca18
PZ
1082}
1083
1084static int
1085hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086{
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
31656519 1096 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101}
1102
fa748203 1103static __init void init_hrtick(void)
b328ca18
PZ
1104{
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106}
31656519
PZ
1107#else
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
1114{
7f1e2ca9 1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1116 HRTIMER_MODE_REL_PINNED, 0);
31656519 1117}
b328ca18 1118
006c75f1 1119static inline void init_hrtick(void)
8f4d37ec 1120{
8f4d37ec 1121}
31656519 1122#endif /* CONFIG_SMP */
8f4d37ec 1123
31656519 1124static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1125{
31656519
PZ
1126#ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
8f4d37ec 1128
31656519
PZ
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132#endif
8f4d37ec 1133
31656519
PZ
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
8f4d37ec 1136}
006c75f1 1137#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1138static inline void hrtick_clear(struct rq *rq)
1139{
1140}
1141
8f4d37ec
PZ
1142static inline void init_rq_hrtick(struct rq *rq)
1143{
1144}
1145
b328ca18
PZ
1146static inline void init_hrtick(void)
1147{
1148}
006c75f1 1149#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1150
c24d20db
IM
1151/*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158#ifdef CONFIG_SMP
1159
1160#ifndef tsk_is_polling
1161#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162#endif
1163
31656519 1164static void resched_task(struct task_struct *p)
c24d20db
IM
1165{
1166 int cpu;
1167
05fa785c 1168 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1169
5ed0cec0 1170 if (test_tsk_need_resched(p))
c24d20db
IM
1171 return;
1172
5ed0cec0 1173 set_tsk_need_resched(p);
c24d20db
IM
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183}
1184
1185static void resched_cpu(int cpu)
1186{
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
05fa785c 1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1191 return;
1192 resched_task(cpu_curr(cpu));
05fa785c 1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1194}
06d8308c
TG
1195
1196#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1197/*
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1200 *
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 */
1205int get_nohz_timer_target(void)
1206{
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1210
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1213 if (!idle_cpu(i))
1214 return i;
1215 }
1216 return cpu;
1217}
06d8308c
TG
1218/*
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1227 */
1228void wake_up_idle_cpu(int cpu)
1229{
1230 struct rq *rq = cpu_rq(cpu);
1231
1232 if (cpu == smp_processor_id())
1233 return;
1234
1235 /*
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1241 */
1242 if (rq->curr != rq->idle)
1243 return;
1244
1245 /*
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1249 */
5ed0cec0 1250 set_tsk_need_resched(rq->idle);
06d8308c
TG
1251
1252 /* NEED_RESCHED must be visible before we test polling */
1253 smp_mb();
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1256}
39c0cbe2 1257
6d6bc0ad 1258#endif /* CONFIG_NO_HZ */
06d8308c 1259
e9e9250b
PZ
1260static u64 sched_avg_period(void)
1261{
1262 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1263}
1264
1265static void sched_avg_update(struct rq *rq)
1266{
1267 s64 period = sched_avg_period();
1268
1269 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1270 /*
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1274 */
1275 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1276 rq->age_stamp += period;
1277 rq->rt_avg /= 2;
1278 }
1279}
1280
1281static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282{
1283 rq->rt_avg += rt_delta;
1284 sched_avg_update(rq);
1285}
1286
6d6bc0ad 1287#else /* !CONFIG_SMP */
31656519 1288static void resched_task(struct task_struct *p)
c24d20db 1289{
05fa785c 1290 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1291 set_tsk_need_resched(p);
c24d20db 1292}
e9e9250b
PZ
1293
1294static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1295{
1296}
6d6bc0ad 1297#endif /* CONFIG_SMP */
c24d20db 1298
45bf76df
IM
1299#if BITS_PER_LONG == 32
1300# define WMULT_CONST (~0UL)
1301#else
1302# define WMULT_CONST (1UL << 32)
1303#endif
1304
1305#define WMULT_SHIFT 32
1306
194081eb
IM
1307/*
1308 * Shift right and round:
1309 */
cf2ab469 1310#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1311
a7be37ac
PZ
1312/*
1313 * delta *= weight / lw
1314 */
cb1c4fc9 1315static unsigned long
45bf76df
IM
1316calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1317 struct load_weight *lw)
1318{
1319 u64 tmp;
1320
7a232e03
LJ
1321 if (!lw->inv_weight) {
1322 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1323 lw->inv_weight = 1;
1324 else
1325 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1326 / (lw->weight+1);
1327 }
45bf76df
IM
1328
1329 tmp = (u64)delta_exec * weight;
1330 /*
1331 * Check whether we'd overflow the 64-bit multiplication:
1332 */
194081eb 1333 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1334 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1335 WMULT_SHIFT/2);
1336 else
cf2ab469 1337 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1338
ecf691da 1339 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1340}
1341
1091985b 1342static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1343{
1344 lw->weight += inc;
e89996ae 1345 lw->inv_weight = 0;
45bf76df
IM
1346}
1347
1091985b 1348static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1349{
1350 lw->weight -= dec;
e89996ae 1351 lw->inv_weight = 0;
45bf76df
IM
1352}
1353
2dd73a4f
PW
1354/*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
cce7ade8
PZ
1363#define WEIGHT_IDLEPRIO 3
1364#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1365
1366/*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
dd41f596
IM
1377 */
1378static const int prio_to_weight[40] = {
254753dc
IM
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1387};
1388
5714d2de
IM
1389/*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
dd41f596 1396static const u32 prio_to_wmult[40] = {
254753dc
IM
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1405};
2dd73a4f 1406
ef12fefa
BR
1407/* Time spent by the tasks of the cpu accounting group executing in ... */
1408enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413};
1414
d842de87
SV
1415#ifdef CONFIG_CGROUP_CPUACCT
1416static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1417static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1419#else
1420static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1421static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1423#endif
1424
18d95a28
PZ
1425static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426{
1427 update_load_add(&rq->load, load);
1428}
1429
1430static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_sub(&rq->load, load);
1433}
1434
7940ca36 1435#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1436typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1437
1438/*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
eb755805 1442static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
eb755805 1445 int ret;
c09595f6
PZ
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449down:
eb755805
PZ
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
c09595f6
PZ
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457up:
1458 continue;
1459 }
eb755805
PZ
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
eb755805 1468out_unlock:
c09595f6 1469 rcu_read_unlock();
eb755805
PZ
1470
1471 return ret;
c09595f6
PZ
1472}
1473
eb755805
PZ
1474static int tg_nop(struct task_group *tg, void *data)
1475{
1476 return 0;
c09595f6 1477}
eb755805
PZ
1478#endif
1479
1480#ifdef CONFIG_SMP
f5f08f39
PZ
1481/* Used instead of source_load when we know the type == 0 */
1482static unsigned long weighted_cpuload(const int cpu)
1483{
1484 return cpu_rq(cpu)->load.weight;
1485}
1486
1487/*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494static unsigned long source_load(int cpu, int type)
1495{
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503}
1504
1505/*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509static unsigned long target_load(int cpu, int type)
1510{
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518}
1519
ae154be1
PZ
1520static unsigned long power_of(int cpu)
1521{
e51fd5e2 1522 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1523}
1524
eb755805
PZ
1525static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527static unsigned long cpu_avg_load_per_task(int cpu)
1528{
1529 struct rq *rq = cpu_rq(cpu);
af6d596f 1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1531
4cd42620
SR
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1534 else
1535 rq->avg_load_per_task = 0;
eb755805
PZ
1536
1537 return rq->avg_load_per_task;
1538}
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1541
43cf38eb 1542static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1543
c09595f6
PZ
1544static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1545
1546/*
1547 * Calculate and set the cpu's group shares.
1548 */
34d76c41
PZ
1549static void update_group_shares_cpu(struct task_group *tg, int cpu,
1550 unsigned long sd_shares,
1551 unsigned long sd_rq_weight,
4a6cc4bd 1552 unsigned long *usd_rq_weight)
18d95a28 1553{
34d76c41 1554 unsigned long shares, rq_weight;
a5004278 1555 int boost = 0;
c09595f6 1556
4a6cc4bd 1557 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1558 if (!rq_weight) {
1559 boost = 1;
1560 rq_weight = NICE_0_LOAD;
1561 }
c8cba857 1562
c09595f6 1563 /*
a8af7246
PZ
1564 * \Sum_j shares_j * rq_weight_i
1565 * shares_i = -----------------------------
1566 * \Sum_j rq_weight_j
c09595f6 1567 */
ec4e0e2f 1568 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1569 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1570
ffda12a1
PZ
1571 if (abs(shares - tg->se[cpu]->load.weight) >
1572 sysctl_sched_shares_thresh) {
1573 struct rq *rq = cpu_rq(cpu);
1574 unsigned long flags;
c09595f6 1575
05fa785c 1576 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1577 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1578 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1579 __set_se_shares(tg->se[cpu], shares);
05fa785c 1580 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1581 }
18d95a28 1582}
c09595f6
PZ
1583
1584/*
c8cba857
PZ
1585 * Re-compute the task group their per cpu shares over the given domain.
1586 * This needs to be done in a bottom-up fashion because the rq weight of a
1587 * parent group depends on the shares of its child groups.
c09595f6 1588 */
eb755805 1589static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1590{
cd8ad40d 1591 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1592 unsigned long *usd_rq_weight;
eb755805 1593 struct sched_domain *sd = data;
34d76c41 1594 unsigned long flags;
c8cba857 1595 int i;
c09595f6 1596
34d76c41
PZ
1597 if (!tg->se[0])
1598 return 0;
1599
1600 local_irq_save(flags);
4a6cc4bd 1601 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1602
758b2cdc 1603 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1604 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1605 usd_rq_weight[i] = weight;
34d76c41 1606
cd8ad40d 1607 rq_weight += weight;
ec4e0e2f
KC
1608 /*
1609 * If there are currently no tasks on the cpu pretend there
1610 * is one of average load so that when a new task gets to
1611 * run here it will not get delayed by group starvation.
1612 */
ec4e0e2f
KC
1613 if (!weight)
1614 weight = NICE_0_LOAD;
1615
cd8ad40d 1616 sum_weight += weight;
c8cba857 1617 shares += tg->cfs_rq[i]->shares;
c09595f6 1618 }
c09595f6 1619
cd8ad40d
PZ
1620 if (!rq_weight)
1621 rq_weight = sum_weight;
1622
c8cba857
PZ
1623 if ((!shares && rq_weight) || shares > tg->shares)
1624 shares = tg->shares;
1625
1626 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1627 shares = tg->shares;
c09595f6 1628
758b2cdc 1629 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1630 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1631
1632 local_irq_restore(flags);
eb755805
PZ
1633
1634 return 0;
c09595f6
PZ
1635}
1636
1637/*
c8cba857
PZ
1638 * Compute the cpu's hierarchical load factor for each task group.
1639 * This needs to be done in a top-down fashion because the load of a child
1640 * group is a fraction of its parents load.
c09595f6 1641 */
eb755805 1642static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1643{
c8cba857 1644 unsigned long load;
eb755805 1645 long cpu = (long)data;
c09595f6 1646
c8cba857
PZ
1647 if (!tg->parent) {
1648 load = cpu_rq(cpu)->load.weight;
1649 } else {
1650 load = tg->parent->cfs_rq[cpu]->h_load;
1651 load *= tg->cfs_rq[cpu]->shares;
1652 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1653 }
c09595f6 1654
c8cba857 1655 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1656
eb755805 1657 return 0;
c09595f6
PZ
1658}
1659
c8cba857 1660static void update_shares(struct sched_domain *sd)
4d8d595d 1661{
e7097159
PZ
1662 s64 elapsed;
1663 u64 now;
1664
1665 if (root_task_group_empty())
1666 return;
1667
c676329a 1668 now = local_clock();
e7097159 1669 elapsed = now - sd->last_update;
2398f2c6
PZ
1670
1671 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1672 sd->last_update = now;
eb755805 1673 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1674 }
4d8d595d
PZ
1675}
1676
eb755805 1677static void update_h_load(long cpu)
c09595f6 1678{
eb755805 1679 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1680}
1681
c09595f6
PZ
1682#else
1683
c8cba857 1684static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1685{
1686}
1687
18d95a28
PZ
1688#endif
1689
8f45e2b5
GH
1690#ifdef CONFIG_PREEMPT
1691
b78bb868
PZ
1692static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1693
70574a99 1694/*
8f45e2b5
GH
1695 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1696 * way at the expense of forcing extra atomic operations in all
1697 * invocations. This assures that the double_lock is acquired using the
1698 * same underlying policy as the spinlock_t on this architecture, which
1699 * reduces latency compared to the unfair variant below. However, it
1700 * also adds more overhead and therefore may reduce throughput.
70574a99 1701 */
8f45e2b5
GH
1702static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1703 __releases(this_rq->lock)
1704 __acquires(busiest->lock)
1705 __acquires(this_rq->lock)
1706{
05fa785c 1707 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1708 double_rq_lock(this_rq, busiest);
1709
1710 return 1;
1711}
1712
1713#else
1714/*
1715 * Unfair double_lock_balance: Optimizes throughput at the expense of
1716 * latency by eliminating extra atomic operations when the locks are
1717 * already in proper order on entry. This favors lower cpu-ids and will
1718 * grant the double lock to lower cpus over higher ids under contention,
1719 * regardless of entry order into the function.
1720 */
1721static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1722 __releases(this_rq->lock)
1723 __acquires(busiest->lock)
1724 __acquires(this_rq->lock)
1725{
1726 int ret = 0;
1727
05fa785c 1728 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1729 if (busiest < this_rq) {
05fa785c
TG
1730 raw_spin_unlock(&this_rq->lock);
1731 raw_spin_lock(&busiest->lock);
1732 raw_spin_lock_nested(&this_rq->lock,
1733 SINGLE_DEPTH_NESTING);
70574a99
AD
1734 ret = 1;
1735 } else
05fa785c
TG
1736 raw_spin_lock_nested(&busiest->lock,
1737 SINGLE_DEPTH_NESTING);
70574a99
AD
1738 }
1739 return ret;
1740}
1741
8f45e2b5
GH
1742#endif /* CONFIG_PREEMPT */
1743
1744/*
1745 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1746 */
1747static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748{
1749 if (unlikely(!irqs_disabled())) {
1750 /* printk() doesn't work good under rq->lock */
05fa785c 1751 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1752 BUG_ON(1);
1753 }
1754
1755 return _double_lock_balance(this_rq, busiest);
1756}
1757
70574a99
AD
1758static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1759 __releases(busiest->lock)
1760{
05fa785c 1761 raw_spin_unlock(&busiest->lock);
70574a99
AD
1762 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1763}
1e3c88bd
PZ
1764
1765/*
1766 * double_rq_lock - safely lock two runqueues
1767 *
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1770 */
1771static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1772 __acquires(rq1->lock)
1773 __acquires(rq2->lock)
1774{
1775 BUG_ON(!irqs_disabled());
1776 if (rq1 == rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 __acquire(rq2->lock); /* Fake it out ;) */
1779 } else {
1780 if (rq1 < rq2) {
1781 raw_spin_lock(&rq1->lock);
1782 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1783 } else {
1784 raw_spin_lock(&rq2->lock);
1785 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1786 }
1787 }
1e3c88bd
PZ
1788}
1789
1790/*
1791 * double_rq_unlock - safely unlock two runqueues
1792 *
1793 * Note this does not restore interrupts like task_rq_unlock,
1794 * you need to do so manually after calling.
1795 */
1796static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1797 __releases(rq1->lock)
1798 __releases(rq2->lock)
1799{
1800 raw_spin_unlock(&rq1->lock);
1801 if (rq1 != rq2)
1802 raw_spin_unlock(&rq2->lock);
1803 else
1804 __release(rq2->lock);
1805}
1806
18d95a28
PZ
1807#endif
1808
30432094 1809#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1810static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1811{
30432094 1812#ifdef CONFIG_SMP
34e83e85
IM
1813 cfs_rq->shares = shares;
1814#endif
1815}
30432094 1816#endif
e7693a36 1817
74f5187a 1818static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1819static void update_sysctl(void);
acb4a848 1820static int get_update_sysctl_factor(void);
fdf3e95d 1821static void update_cpu_load(struct rq *this_rq);
dce48a84 1822
cd29fe6f
PZ
1823static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824{
1825 set_task_rq(p, cpu);
1826#ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834#endif
1835}
dce48a84 1836
1e3c88bd 1837static const struct sched_class rt_sched_class;
dd41f596
IM
1838
1839#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1840#define for_each_class(class) \
1841 for (class = sched_class_highest; class; class = class->next)
dd41f596 1842
1e3c88bd
PZ
1843#include "sched_stats.h"
1844
c09595f6 1845static void inc_nr_running(struct rq *rq)
9c217245
IM
1846{
1847 rq->nr_running++;
9c217245
IM
1848}
1849
c09595f6 1850static void dec_nr_running(struct rq *rq)
9c217245
IM
1851{
1852 rq->nr_running--;
9c217245
IM
1853}
1854
45bf76df
IM
1855static void set_load_weight(struct task_struct *p)
1856{
1857 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1858 p->se.load.weight = 0;
1859 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1860 return;
1861 }
45bf76df 1862
dd41f596
IM
1863 /*
1864 * SCHED_IDLE tasks get minimal weight:
1865 */
1866 if (p->policy == SCHED_IDLE) {
1867 p->se.load.weight = WEIGHT_IDLEPRIO;
1868 p->se.load.inv_weight = WMULT_IDLEPRIO;
1869 return;
1870 }
71f8bd46 1871
dd41f596
IM
1872 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1873 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1874}
1875
371fd7e7 1876static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1877{
a64692a3 1878 update_rq_clock(rq);
dd41f596 1879 sched_info_queued(p);
371fd7e7 1880 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1881 p->se.on_rq = 1;
71f8bd46
IM
1882}
1883
371fd7e7 1884static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1885{
a64692a3 1886 update_rq_clock(rq);
46ac22ba 1887 sched_info_dequeued(p);
371fd7e7 1888 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1889 p->se.on_rq = 0;
71f8bd46
IM
1890}
1891
1e3c88bd
PZ
1892/*
1893 * activate_task - move a task to the runqueue.
1894 */
371fd7e7 1895static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1896{
1897 if (task_contributes_to_load(p))
1898 rq->nr_uninterruptible--;
1899
371fd7e7 1900 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1901 inc_nr_running(rq);
1902}
1903
1904/*
1905 * deactivate_task - remove a task from the runqueue.
1906 */
371fd7e7 1907static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1908{
1909 if (task_contributes_to_load(p))
1910 rq->nr_uninterruptible++;
1911
371fd7e7 1912 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1913 dec_nr_running(rq);
1914}
1915
1916#include "sched_idletask.c"
1917#include "sched_fair.c"
1918#include "sched_rt.c"
1919#ifdef CONFIG_SCHED_DEBUG
1920# include "sched_debug.c"
1921#endif
1922
14531189 1923/*
dd41f596 1924 * __normal_prio - return the priority that is based on the static prio
14531189 1925 */
14531189
IM
1926static inline int __normal_prio(struct task_struct *p)
1927{
dd41f596 1928 return p->static_prio;
14531189
IM
1929}
1930
b29739f9
IM
1931/*
1932 * Calculate the expected normal priority: i.e. priority
1933 * without taking RT-inheritance into account. Might be
1934 * boosted by interactivity modifiers. Changes upon fork,
1935 * setprio syscalls, and whenever the interactivity
1936 * estimator recalculates.
1937 */
36c8b586 1938static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1939{
1940 int prio;
1941
e05606d3 1942 if (task_has_rt_policy(p))
b29739f9
IM
1943 prio = MAX_RT_PRIO-1 - p->rt_priority;
1944 else
1945 prio = __normal_prio(p);
1946 return prio;
1947}
1948
1949/*
1950 * Calculate the current priority, i.e. the priority
1951 * taken into account by the scheduler. This value might
1952 * be boosted by RT tasks, or might be boosted by
1953 * interactivity modifiers. Will be RT if the task got
1954 * RT-boosted. If not then it returns p->normal_prio.
1955 */
36c8b586 1956static int effective_prio(struct task_struct *p)
b29739f9
IM
1957{
1958 p->normal_prio = normal_prio(p);
1959 /*
1960 * If we are RT tasks or we were boosted to RT priority,
1961 * keep the priority unchanged. Otherwise, update priority
1962 * to the normal priority:
1963 */
1964 if (!rt_prio(p->prio))
1965 return p->normal_prio;
1966 return p->prio;
1967}
1968
1da177e4
LT
1969/**
1970 * task_curr - is this task currently executing on a CPU?
1971 * @p: the task in question.
1972 */
36c8b586 1973inline int task_curr(const struct task_struct *p)
1da177e4
LT
1974{
1975 return cpu_curr(task_cpu(p)) == p;
1976}
1977
cb469845
SR
1978static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1979 const struct sched_class *prev_class,
1980 int oldprio, int running)
1981{
1982 if (prev_class != p->sched_class) {
1983 if (prev_class->switched_from)
1984 prev_class->switched_from(rq, p, running);
1985 p->sched_class->switched_to(rq, p, running);
1986 } else
1987 p->sched_class->prio_changed(rq, p, oldprio, running);
1988}
1989
1da177e4 1990#ifdef CONFIG_SMP
cc367732
IM
1991/*
1992 * Is this task likely cache-hot:
1993 */
e7693a36 1994static int
cc367732
IM
1995task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1996{
1997 s64 delta;
1998
e6c8fba7
PZ
1999 if (p->sched_class != &fair_sched_class)
2000 return 0;
2001
f540a608
IM
2002 /*
2003 * Buddy candidates are cache hot:
2004 */
f685ceac 2005 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2006 (&p->se == cfs_rq_of(&p->se)->next ||
2007 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2008 return 1;
2009
6bc1665b
IM
2010 if (sysctl_sched_migration_cost == -1)
2011 return 1;
2012 if (sysctl_sched_migration_cost == 0)
2013 return 0;
2014
cc367732
IM
2015 delta = now - p->se.exec_start;
2016
2017 return delta < (s64)sysctl_sched_migration_cost;
2018}
2019
dd41f596 2020void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2021{
e2912009
PZ
2022#ifdef CONFIG_SCHED_DEBUG
2023 /*
2024 * We should never call set_task_cpu() on a blocked task,
2025 * ttwu() will sort out the placement.
2026 */
077614ee
PZ
2027 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2028 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2029#endif
2030
de1d7286 2031 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2032
0c69774e
PZ
2033 if (task_cpu(p) != new_cpu) {
2034 p->se.nr_migrations++;
2035 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2036 }
dd41f596
IM
2037
2038 __set_task_cpu(p, new_cpu);
c65cc870
IM
2039}
2040
969c7921 2041struct migration_arg {
36c8b586 2042 struct task_struct *task;
1da177e4 2043 int dest_cpu;
70b97a7f 2044};
1da177e4 2045
969c7921
TH
2046static int migration_cpu_stop(void *data);
2047
1da177e4
LT
2048/*
2049 * The task's runqueue lock must be held.
2050 * Returns true if you have to wait for migration thread.
2051 */
969c7921 2052static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2053{
70b97a7f 2054 struct rq *rq = task_rq(p);
1da177e4
LT
2055
2056 /*
2057 * If the task is not on a runqueue (and not running), then
e2912009 2058 * the next wake-up will properly place the task.
1da177e4 2059 */
969c7921 2060 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2061}
2062
2063/*
2064 * wait_task_inactive - wait for a thread to unschedule.
2065 *
85ba2d86
RM
2066 * If @match_state is nonzero, it's the @p->state value just checked and
2067 * not expected to change. If it changes, i.e. @p might have woken up,
2068 * then return zero. When we succeed in waiting for @p to be off its CPU,
2069 * we return a positive number (its total switch count). If a second call
2070 * a short while later returns the same number, the caller can be sure that
2071 * @p has remained unscheduled the whole time.
2072 *
1da177e4
LT
2073 * The caller must ensure that the task *will* unschedule sometime soon,
2074 * else this function might spin for a *long* time. This function can't
2075 * be called with interrupts off, or it may introduce deadlock with
2076 * smp_call_function() if an IPI is sent by the same process we are
2077 * waiting to become inactive.
2078 */
85ba2d86 2079unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2080{
2081 unsigned long flags;
dd41f596 2082 int running, on_rq;
85ba2d86 2083 unsigned long ncsw;
70b97a7f 2084 struct rq *rq;
1da177e4 2085
3a5c359a
AK
2086 for (;;) {
2087 /*
2088 * We do the initial early heuristics without holding
2089 * any task-queue locks at all. We'll only try to get
2090 * the runqueue lock when things look like they will
2091 * work out!
2092 */
2093 rq = task_rq(p);
fa490cfd 2094
3a5c359a
AK
2095 /*
2096 * If the task is actively running on another CPU
2097 * still, just relax and busy-wait without holding
2098 * any locks.
2099 *
2100 * NOTE! Since we don't hold any locks, it's not
2101 * even sure that "rq" stays as the right runqueue!
2102 * But we don't care, since "task_running()" will
2103 * return false if the runqueue has changed and p
2104 * is actually now running somewhere else!
2105 */
85ba2d86
RM
2106 while (task_running(rq, p)) {
2107 if (match_state && unlikely(p->state != match_state))
2108 return 0;
3a5c359a 2109 cpu_relax();
85ba2d86 2110 }
fa490cfd 2111
3a5c359a
AK
2112 /*
2113 * Ok, time to look more closely! We need the rq
2114 * lock now, to be *sure*. If we're wrong, we'll
2115 * just go back and repeat.
2116 */
2117 rq = task_rq_lock(p, &flags);
27a9da65 2118 trace_sched_wait_task(p);
3a5c359a
AK
2119 running = task_running(rq, p);
2120 on_rq = p->se.on_rq;
85ba2d86 2121 ncsw = 0;
f31e11d8 2122 if (!match_state || p->state == match_state)
93dcf55f 2123 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2124 task_rq_unlock(rq, &flags);
fa490cfd 2125
85ba2d86
RM
2126 /*
2127 * If it changed from the expected state, bail out now.
2128 */
2129 if (unlikely(!ncsw))
2130 break;
2131
3a5c359a
AK
2132 /*
2133 * Was it really running after all now that we
2134 * checked with the proper locks actually held?
2135 *
2136 * Oops. Go back and try again..
2137 */
2138 if (unlikely(running)) {
2139 cpu_relax();
2140 continue;
2141 }
fa490cfd 2142
3a5c359a
AK
2143 /*
2144 * It's not enough that it's not actively running,
2145 * it must be off the runqueue _entirely_, and not
2146 * preempted!
2147 *
80dd99b3 2148 * So if it was still runnable (but just not actively
3a5c359a
AK
2149 * running right now), it's preempted, and we should
2150 * yield - it could be a while.
2151 */
2152 if (unlikely(on_rq)) {
2153 schedule_timeout_uninterruptible(1);
2154 continue;
2155 }
fa490cfd 2156
3a5c359a
AK
2157 /*
2158 * Ahh, all good. It wasn't running, and it wasn't
2159 * runnable, which means that it will never become
2160 * running in the future either. We're all done!
2161 */
2162 break;
2163 }
85ba2d86
RM
2164
2165 return ncsw;
1da177e4
LT
2166}
2167
2168/***
2169 * kick_process - kick a running thread to enter/exit the kernel
2170 * @p: the to-be-kicked thread
2171 *
2172 * Cause a process which is running on another CPU to enter
2173 * kernel-mode, without any delay. (to get signals handled.)
2174 *
2175 * NOTE: this function doesnt have to take the runqueue lock,
2176 * because all it wants to ensure is that the remote task enters
2177 * the kernel. If the IPI races and the task has been migrated
2178 * to another CPU then no harm is done and the purpose has been
2179 * achieved as well.
2180 */
36c8b586 2181void kick_process(struct task_struct *p)
1da177e4
LT
2182{
2183 int cpu;
2184
2185 preempt_disable();
2186 cpu = task_cpu(p);
2187 if ((cpu != smp_processor_id()) && task_curr(p))
2188 smp_send_reschedule(cpu);
2189 preempt_enable();
2190}
b43e3521 2191EXPORT_SYMBOL_GPL(kick_process);
476d139c 2192#endif /* CONFIG_SMP */
1da177e4 2193
0793a61d
TG
2194/**
2195 * task_oncpu_function_call - call a function on the cpu on which a task runs
2196 * @p: the task to evaluate
2197 * @func: the function to be called
2198 * @info: the function call argument
2199 *
2200 * Calls the function @func when the task is currently running. This might
2201 * be on the current CPU, which just calls the function directly
2202 */
2203void task_oncpu_function_call(struct task_struct *p,
2204 void (*func) (void *info), void *info)
2205{
2206 int cpu;
2207
2208 preempt_disable();
2209 cpu = task_cpu(p);
2210 if (task_curr(p))
2211 smp_call_function_single(cpu, func, info, 1);
2212 preempt_enable();
2213}
2214
970b13ba 2215#ifdef CONFIG_SMP
30da688e
ON
2216/*
2217 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2218 */
5da9a0fb
PZ
2219static int select_fallback_rq(int cpu, struct task_struct *p)
2220{
2221 int dest_cpu;
2222 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2223
2224 /* Look for allowed, online CPU in same node. */
2225 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2226 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2227 return dest_cpu;
2228
2229 /* Any allowed, online CPU? */
2230 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2231 if (dest_cpu < nr_cpu_ids)
2232 return dest_cpu;
2233
2234 /* No more Mr. Nice Guy. */
897f0b3c 2235 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2236 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2237 /*
2238 * Don't tell them about moving exiting tasks or
2239 * kernel threads (both mm NULL), since they never
2240 * leave kernel.
2241 */
2242 if (p->mm && printk_ratelimit()) {
2243 printk(KERN_INFO "process %d (%s) no "
2244 "longer affine to cpu%d\n",
2245 task_pid_nr(p), p->comm, cpu);
2246 }
2247 }
2248
2249 return dest_cpu;
2250}
2251
e2912009 2252/*
30da688e 2253 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2254 */
970b13ba 2255static inline
0017d735 2256int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2257{
0017d735 2258 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2259
2260 /*
2261 * In order not to call set_task_cpu() on a blocking task we need
2262 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2263 * cpu.
2264 *
2265 * Since this is common to all placement strategies, this lives here.
2266 *
2267 * [ this allows ->select_task() to simply return task_cpu(p) and
2268 * not worry about this generic constraint ]
2269 */
2270 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2271 !cpu_online(cpu)))
5da9a0fb 2272 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2273
2274 return cpu;
970b13ba 2275}
09a40af5
MG
2276
2277static void update_avg(u64 *avg, u64 sample)
2278{
2279 s64 diff = sample - *avg;
2280 *avg += diff >> 3;
2281}
970b13ba
PZ
2282#endif
2283
9ed3811a
TH
2284static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2285 bool is_sync, bool is_migrate, bool is_local,
2286 unsigned long en_flags)
2287{
2288 schedstat_inc(p, se.statistics.nr_wakeups);
2289 if (is_sync)
2290 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2291 if (is_migrate)
2292 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2293 if (is_local)
2294 schedstat_inc(p, se.statistics.nr_wakeups_local);
2295 else
2296 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2297
2298 activate_task(rq, p, en_flags);
2299}
2300
2301static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2302 int wake_flags, bool success)
2303{
2304 trace_sched_wakeup(p, success);
2305 check_preempt_curr(rq, p, wake_flags);
2306
2307 p->state = TASK_RUNNING;
2308#ifdef CONFIG_SMP
2309 if (p->sched_class->task_woken)
2310 p->sched_class->task_woken(rq, p);
2311
2312 if (unlikely(rq->idle_stamp)) {
2313 u64 delta = rq->clock - rq->idle_stamp;
2314 u64 max = 2*sysctl_sched_migration_cost;
2315
2316 if (delta > max)
2317 rq->avg_idle = max;
2318 else
2319 update_avg(&rq->avg_idle, delta);
2320 rq->idle_stamp = 0;
2321 }
2322#endif
21aa9af0
TH
2323 /* if a worker is waking up, notify workqueue */
2324 if ((p->flags & PF_WQ_WORKER) && success)
2325 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2326}
2327
2328/**
1da177e4 2329 * try_to_wake_up - wake up a thread
9ed3811a 2330 * @p: the thread to be awakened
1da177e4 2331 * @state: the mask of task states that can be woken
9ed3811a 2332 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2333 *
2334 * Put it on the run-queue if it's not already there. The "current"
2335 * thread is always on the run-queue (except when the actual
2336 * re-schedule is in progress), and as such you're allowed to do
2337 * the simpler "current->state = TASK_RUNNING" to mark yourself
2338 * runnable without the overhead of this.
2339 *
9ed3811a
TH
2340 * Returns %true if @p was woken up, %false if it was already running
2341 * or @state didn't match @p's state.
1da177e4 2342 */
7d478721
PZ
2343static int try_to_wake_up(struct task_struct *p, unsigned int state,
2344 int wake_flags)
1da177e4 2345{
cc367732 2346 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2347 unsigned long flags;
371fd7e7 2348 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2349 struct rq *rq;
1da177e4 2350
e9c84311 2351 this_cpu = get_cpu();
2398f2c6 2352
04e2f174 2353 smp_wmb();
ab3b3aa5 2354 rq = task_rq_lock(p, &flags);
e9c84311 2355 if (!(p->state & state))
1da177e4
LT
2356 goto out;
2357
dd41f596 2358 if (p->se.on_rq)
1da177e4
LT
2359 goto out_running;
2360
2361 cpu = task_cpu(p);
cc367732 2362 orig_cpu = cpu;
1da177e4
LT
2363
2364#ifdef CONFIG_SMP
2365 if (unlikely(task_running(rq, p)))
2366 goto out_activate;
2367
e9c84311
PZ
2368 /*
2369 * In order to handle concurrent wakeups and release the rq->lock
2370 * we put the task in TASK_WAKING state.
eb24073b
IM
2371 *
2372 * First fix up the nr_uninterruptible count:
e9c84311 2373 */
cc87f76a
PZ
2374 if (task_contributes_to_load(p)) {
2375 if (likely(cpu_online(orig_cpu)))
2376 rq->nr_uninterruptible--;
2377 else
2378 this_rq()->nr_uninterruptible--;
2379 }
e9c84311 2380 p->state = TASK_WAKING;
efbbd05a 2381
371fd7e7 2382 if (p->sched_class->task_waking) {
efbbd05a 2383 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2384 en_flags |= ENQUEUE_WAKING;
2385 }
efbbd05a 2386
0017d735
PZ
2387 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2388 if (cpu != orig_cpu)
5d2f5a61 2389 set_task_cpu(p, cpu);
0017d735 2390 __task_rq_unlock(rq);
ab19cb23 2391
0970d299
PZ
2392 rq = cpu_rq(cpu);
2393 raw_spin_lock(&rq->lock);
f5dc3753 2394
0970d299
PZ
2395 /*
2396 * We migrated the task without holding either rq->lock, however
2397 * since the task is not on the task list itself, nobody else
2398 * will try and migrate the task, hence the rq should match the
2399 * cpu we just moved it to.
2400 */
2401 WARN_ON(task_cpu(p) != cpu);
e9c84311 2402 WARN_ON(p->state != TASK_WAKING);
1da177e4 2403
e7693a36
GH
2404#ifdef CONFIG_SCHEDSTATS
2405 schedstat_inc(rq, ttwu_count);
2406 if (cpu == this_cpu)
2407 schedstat_inc(rq, ttwu_local);
2408 else {
2409 struct sched_domain *sd;
2410 for_each_domain(this_cpu, sd) {
758b2cdc 2411 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2412 schedstat_inc(sd, ttwu_wake_remote);
2413 break;
2414 }
2415 }
2416 }
6d6bc0ad 2417#endif /* CONFIG_SCHEDSTATS */
e7693a36 2418
1da177e4
LT
2419out_activate:
2420#endif /* CONFIG_SMP */
9ed3811a
TH
2421 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2422 cpu == this_cpu, en_flags);
1da177e4 2423 success = 1;
1da177e4 2424out_running:
9ed3811a 2425 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2426out:
2427 task_rq_unlock(rq, &flags);
e9c84311 2428 put_cpu();
1da177e4
LT
2429
2430 return success;
2431}
2432
21aa9af0
TH
2433/**
2434 * try_to_wake_up_local - try to wake up a local task with rq lock held
2435 * @p: the thread to be awakened
2436 *
2437 * Put @p on the run-queue if it's not alredy there. The caller must
2438 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2439 * the current task. this_rq() stays locked over invocation.
2440 */
2441static void try_to_wake_up_local(struct task_struct *p)
2442{
2443 struct rq *rq = task_rq(p);
2444 bool success = false;
2445
2446 BUG_ON(rq != this_rq());
2447 BUG_ON(p == current);
2448 lockdep_assert_held(&rq->lock);
2449
2450 if (!(p->state & TASK_NORMAL))
2451 return;
2452
2453 if (!p->se.on_rq) {
2454 if (likely(!task_running(rq, p))) {
2455 schedstat_inc(rq, ttwu_count);
2456 schedstat_inc(rq, ttwu_local);
2457 }
2458 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2459 success = true;
2460 }
2461 ttwu_post_activation(p, rq, 0, success);
2462}
2463
50fa610a
DH
2464/**
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2467 *
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * running.
2471 *
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2474 */
7ad5b3a5 2475int wake_up_process(struct task_struct *p)
1da177e4 2476{
d9514f6c 2477 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2478}
1da177e4
LT
2479EXPORT_SYMBOL(wake_up_process);
2480
7ad5b3a5 2481int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2482{
2483 return try_to_wake_up(p, state, 0);
2484}
2485
1da177e4
LT
2486/*
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
dd41f596
IM
2489 *
2490 * __sched_fork() is basic setup used by init_idle() too:
2491 */
2492static void __sched_fork(struct task_struct *p)
2493{
dd41f596
IM
2494 p->se.exec_start = 0;
2495 p->se.sum_exec_runtime = 0;
f6cf891c 2496 p->se.prev_sum_exec_runtime = 0;
6c594c21 2497 p->se.nr_migrations = 0;
6cfb0d5d
IM
2498
2499#ifdef CONFIG_SCHEDSTATS
41acab88 2500 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2501#endif
476d139c 2502
fa717060 2503 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2504 p->se.on_rq = 0;
4a55bd5e 2505 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2506
e107be36
AK
2507#ifdef CONFIG_PREEMPT_NOTIFIERS
2508 INIT_HLIST_HEAD(&p->preempt_notifiers);
2509#endif
dd41f596
IM
2510}
2511
2512/*
2513 * fork()/clone()-time setup:
2514 */
2515void sched_fork(struct task_struct *p, int clone_flags)
2516{
2517 int cpu = get_cpu();
2518
2519 __sched_fork(p);
06b83b5f 2520 /*
0017d735 2521 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2522 * nobody will actually run it, and a signal or other external
2523 * event cannot wake it up and insert it on the runqueue either.
2524 */
0017d735 2525 p->state = TASK_RUNNING;
dd41f596 2526
b9dc29e7
MG
2527 /*
2528 * Revert to default priority/policy on fork if requested.
2529 */
2530 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2531 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2532 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2533 p->normal_prio = p->static_prio;
2534 }
b9dc29e7 2535
6c697bdf
MG
2536 if (PRIO_TO_NICE(p->static_prio) < 0) {
2537 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2538 p->normal_prio = p->static_prio;
6c697bdf
MG
2539 set_load_weight(p);
2540 }
2541
b9dc29e7
MG
2542 /*
2543 * We don't need the reset flag anymore after the fork. It has
2544 * fulfilled its duty:
2545 */
2546 p->sched_reset_on_fork = 0;
2547 }
ca94c442 2548
f83f9ac2
PW
2549 /*
2550 * Make sure we do not leak PI boosting priority to the child.
2551 */
2552 p->prio = current->normal_prio;
2553
2ddbf952
HS
2554 if (!rt_prio(p->prio))
2555 p->sched_class = &fair_sched_class;
b29739f9 2556
cd29fe6f
PZ
2557 if (p->sched_class->task_fork)
2558 p->sched_class->task_fork(p);
2559
86951599
PZ
2560 /*
2561 * The child is not yet in the pid-hash so no cgroup attach races,
2562 * and the cgroup is pinned to this child due to cgroup_fork()
2563 * is ran before sched_fork().
2564 *
2565 * Silence PROVE_RCU.
2566 */
2567 rcu_read_lock();
5f3edc1b 2568 set_task_cpu(p, cpu);
86951599 2569 rcu_read_unlock();
5f3edc1b 2570
52f17b6c 2571#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2572 if (likely(sched_info_on()))
52f17b6c 2573 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2574#endif
d6077cb8 2575#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2576 p->oncpu = 0;
2577#endif
1da177e4 2578#ifdef CONFIG_PREEMPT
4866cde0 2579 /* Want to start with kernel preemption disabled. */
a1261f54 2580 task_thread_info(p)->preempt_count = 1;
1da177e4 2581#endif
917b627d
GH
2582 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2583
476d139c 2584 put_cpu();
1da177e4
LT
2585}
2586
2587/*
2588 * wake_up_new_task - wake up a newly created task for the first time.
2589 *
2590 * This function will do some initial scheduler statistics housekeeping
2591 * that must be done for every newly created context, then puts the task
2592 * on the runqueue and wakes it.
2593 */
7ad5b3a5 2594void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2595{
2596 unsigned long flags;
dd41f596 2597 struct rq *rq;
c890692b 2598 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2599
2600#ifdef CONFIG_SMP
0017d735
PZ
2601 rq = task_rq_lock(p, &flags);
2602 p->state = TASK_WAKING;
2603
fabf318e
PZ
2604 /*
2605 * Fork balancing, do it here and not earlier because:
2606 * - cpus_allowed can change in the fork path
2607 * - any previously selected cpu might disappear through hotplug
2608 *
0017d735
PZ
2609 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2610 * without people poking at ->cpus_allowed.
fabf318e 2611 */
0017d735 2612 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2613 set_task_cpu(p, cpu);
1da177e4 2614
06b83b5f 2615 p->state = TASK_RUNNING;
0017d735
PZ
2616 task_rq_unlock(rq, &flags);
2617#endif
2618
2619 rq = task_rq_lock(p, &flags);
cd29fe6f 2620 activate_task(rq, p, 0);
27a9da65 2621 trace_sched_wakeup_new(p, 1);
a7558e01 2622 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2623#ifdef CONFIG_SMP
efbbd05a
PZ
2624 if (p->sched_class->task_woken)
2625 p->sched_class->task_woken(rq, p);
9a897c5a 2626#endif
dd41f596 2627 task_rq_unlock(rq, &flags);
fabf318e 2628 put_cpu();
1da177e4
LT
2629}
2630
e107be36
AK
2631#ifdef CONFIG_PREEMPT_NOTIFIERS
2632
2633/**
80dd99b3 2634 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2635 * @notifier: notifier struct to register
e107be36
AK
2636 */
2637void preempt_notifier_register(struct preempt_notifier *notifier)
2638{
2639 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2640}
2641EXPORT_SYMBOL_GPL(preempt_notifier_register);
2642
2643/**
2644 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2645 * @notifier: notifier struct to unregister
e107be36
AK
2646 *
2647 * This is safe to call from within a preemption notifier.
2648 */
2649void preempt_notifier_unregister(struct preempt_notifier *notifier)
2650{
2651 hlist_del(&notifier->link);
2652}
2653EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2654
2655static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2656{
2657 struct preempt_notifier *notifier;
2658 struct hlist_node *node;
2659
2660 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2661 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2662}
2663
2664static void
2665fire_sched_out_preempt_notifiers(struct task_struct *curr,
2666 struct task_struct *next)
2667{
2668 struct preempt_notifier *notifier;
2669 struct hlist_node *node;
2670
2671 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2672 notifier->ops->sched_out(notifier, next);
2673}
2674
6d6bc0ad 2675#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2676
2677static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2678{
2679}
2680
2681static void
2682fire_sched_out_preempt_notifiers(struct task_struct *curr,
2683 struct task_struct *next)
2684{
2685}
2686
6d6bc0ad 2687#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2688
4866cde0
NP
2689/**
2690 * prepare_task_switch - prepare to switch tasks
2691 * @rq: the runqueue preparing to switch
421cee29 2692 * @prev: the current task that is being switched out
4866cde0
NP
2693 * @next: the task we are going to switch to.
2694 *
2695 * This is called with the rq lock held and interrupts off. It must
2696 * be paired with a subsequent finish_task_switch after the context
2697 * switch.
2698 *
2699 * prepare_task_switch sets up locking and calls architecture specific
2700 * hooks.
2701 */
e107be36
AK
2702static inline void
2703prepare_task_switch(struct rq *rq, struct task_struct *prev,
2704 struct task_struct *next)
4866cde0 2705{
e107be36 2706 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2707 prepare_lock_switch(rq, next);
2708 prepare_arch_switch(next);
2709}
2710
1da177e4
LT
2711/**
2712 * finish_task_switch - clean up after a task-switch
344babaa 2713 * @rq: runqueue associated with task-switch
1da177e4
LT
2714 * @prev: the thread we just switched away from.
2715 *
4866cde0
NP
2716 * finish_task_switch must be called after the context switch, paired
2717 * with a prepare_task_switch call before the context switch.
2718 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2719 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2720 *
2721 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2722 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2723 * with the lock held can cause deadlocks; see schedule() for
2724 * details.)
2725 */
a9957449 2726static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2727 __releases(rq->lock)
2728{
1da177e4 2729 struct mm_struct *mm = rq->prev_mm;
55a101f8 2730 long prev_state;
1da177e4
LT
2731
2732 rq->prev_mm = NULL;
2733
2734 /*
2735 * A task struct has one reference for the use as "current".
c394cc9f 2736 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2737 * schedule one last time. The schedule call will never return, and
2738 * the scheduled task must drop that reference.
c394cc9f 2739 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2740 * still held, otherwise prev could be scheduled on another cpu, die
2741 * there before we look at prev->state, and then the reference would
2742 * be dropped twice.
2743 * Manfred Spraul <manfred@colorfullife.com>
2744 */
55a101f8 2745 prev_state = prev->state;
4866cde0 2746 finish_arch_switch(prev);
8381f65d
JI
2747#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2748 local_irq_disable();
2749#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2750 perf_event_task_sched_in(current);
8381f65d
JI
2751#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2752 local_irq_enable();
2753#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2754 finish_lock_switch(rq, prev);
e8fa1362 2755
e107be36 2756 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2757 if (mm)
2758 mmdrop(mm);
c394cc9f 2759 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2760 /*
2761 * Remove function-return probe instances associated with this
2762 * task and put them back on the free list.
9761eea8 2763 */
c6fd91f0 2764 kprobe_flush_task(prev);
1da177e4 2765 put_task_struct(prev);
c6fd91f0 2766 }
1da177e4
LT
2767}
2768
3f029d3c
GH
2769#ifdef CONFIG_SMP
2770
2771/* assumes rq->lock is held */
2772static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2773{
2774 if (prev->sched_class->pre_schedule)
2775 prev->sched_class->pre_schedule(rq, prev);
2776}
2777
2778/* rq->lock is NOT held, but preemption is disabled */
2779static inline void post_schedule(struct rq *rq)
2780{
2781 if (rq->post_schedule) {
2782 unsigned long flags;
2783
05fa785c 2784 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2785 if (rq->curr->sched_class->post_schedule)
2786 rq->curr->sched_class->post_schedule(rq);
05fa785c 2787 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2788
2789 rq->post_schedule = 0;
2790 }
2791}
2792
2793#else
da19ab51 2794
3f029d3c
GH
2795static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2796{
2797}
2798
2799static inline void post_schedule(struct rq *rq)
2800{
1da177e4
LT
2801}
2802
3f029d3c
GH
2803#endif
2804
1da177e4
LT
2805/**
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2808 */
36c8b586 2809asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2810 __releases(rq->lock)
2811{
70b97a7f
IM
2812 struct rq *rq = this_rq();
2813
4866cde0 2814 finish_task_switch(rq, prev);
da19ab51 2815
3f029d3c
GH
2816 /*
2817 * FIXME: do we need to worry about rq being invalidated by the
2818 * task_switch?
2819 */
2820 post_schedule(rq);
70b97a7f 2821
4866cde0
NP
2822#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2823 /* In this case, finish_task_switch does not reenable preemption */
2824 preempt_enable();
2825#endif
1da177e4 2826 if (current->set_child_tid)
b488893a 2827 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2828}
2829
2830/*
2831 * context_switch - switch to the new MM and the new
2832 * thread's register state.
2833 */
dd41f596 2834static inline void
70b97a7f 2835context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2836 struct task_struct *next)
1da177e4 2837{
dd41f596 2838 struct mm_struct *mm, *oldmm;
1da177e4 2839
e107be36 2840 prepare_task_switch(rq, prev, next);
27a9da65 2841 trace_sched_switch(prev, next);
dd41f596
IM
2842 mm = next->mm;
2843 oldmm = prev->active_mm;
9226d125
ZA
2844 /*
2845 * For paravirt, this is coupled with an exit in switch_to to
2846 * combine the page table reload and the switch backend into
2847 * one hypercall.
2848 */
224101ed 2849 arch_start_context_switch(prev);
9226d125 2850
710390d9 2851 if (likely(!mm)) {
1da177e4
LT
2852 next->active_mm = oldmm;
2853 atomic_inc(&oldmm->mm_count);
2854 enter_lazy_tlb(oldmm, next);
2855 } else
2856 switch_mm(oldmm, mm, next);
2857
710390d9 2858 if (likely(!prev->mm)) {
1da177e4 2859 prev->active_mm = NULL;
1da177e4
LT
2860 rq->prev_mm = oldmm;
2861 }
3a5f5e48
IM
2862 /*
2863 * Since the runqueue lock will be released by the next
2864 * task (which is an invalid locking op but in the case
2865 * of the scheduler it's an obvious special-case), so we
2866 * do an early lockdep release here:
2867 */
2868#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2869 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2870#endif
1da177e4
LT
2871
2872 /* Here we just switch the register state and the stack. */
2873 switch_to(prev, next, prev);
2874
dd41f596
IM
2875 barrier();
2876 /*
2877 * this_rq must be evaluated again because prev may have moved
2878 * CPUs since it called schedule(), thus the 'rq' on its stack
2879 * frame will be invalid.
2880 */
2881 finish_task_switch(this_rq(), prev);
1da177e4
LT
2882}
2883
2884/*
2885 * nr_running, nr_uninterruptible and nr_context_switches:
2886 *
2887 * externally visible scheduler statistics: current number of runnable
2888 * threads, current number of uninterruptible-sleeping threads, total
2889 * number of context switches performed since bootup.
2890 */
2891unsigned long nr_running(void)
2892{
2893 unsigned long i, sum = 0;
2894
2895 for_each_online_cpu(i)
2896 sum += cpu_rq(i)->nr_running;
2897
2898 return sum;
f711f609 2899}
1da177e4
LT
2900
2901unsigned long nr_uninterruptible(void)
f711f609 2902{
1da177e4 2903 unsigned long i, sum = 0;
f711f609 2904
0a945022 2905 for_each_possible_cpu(i)
1da177e4 2906 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2907
2908 /*
1da177e4
LT
2909 * Since we read the counters lockless, it might be slightly
2910 * inaccurate. Do not allow it to go below zero though:
f711f609 2911 */
1da177e4
LT
2912 if (unlikely((long)sum < 0))
2913 sum = 0;
f711f609 2914
1da177e4 2915 return sum;
f711f609 2916}
f711f609 2917
1da177e4 2918unsigned long long nr_context_switches(void)
46cb4b7c 2919{
cc94abfc
SR
2920 int i;
2921 unsigned long long sum = 0;
46cb4b7c 2922
0a945022 2923 for_each_possible_cpu(i)
1da177e4 2924 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2925
1da177e4
LT
2926 return sum;
2927}
483b4ee6 2928
1da177e4
LT
2929unsigned long nr_iowait(void)
2930{
2931 unsigned long i, sum = 0;
483b4ee6 2932
0a945022 2933 for_each_possible_cpu(i)
1da177e4 2934 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2935
1da177e4
LT
2936 return sum;
2937}
483b4ee6 2938
8c215bd3 2939unsigned long nr_iowait_cpu(int cpu)
69d25870 2940{
8c215bd3 2941 struct rq *this = cpu_rq(cpu);
69d25870
AV
2942 return atomic_read(&this->nr_iowait);
2943}
46cb4b7c 2944
69d25870
AV
2945unsigned long this_cpu_load(void)
2946{
2947 struct rq *this = this_rq();
2948 return this->cpu_load[0];
2949}
e790fb0b 2950
46cb4b7c 2951
dce48a84
TG
2952/* Variables and functions for calc_load */
2953static atomic_long_t calc_load_tasks;
2954static unsigned long calc_load_update;
2955unsigned long avenrun[3];
2956EXPORT_SYMBOL(avenrun);
46cb4b7c 2957
74f5187a
PZ
2958static long calc_load_fold_active(struct rq *this_rq)
2959{
2960 long nr_active, delta = 0;
2961
2962 nr_active = this_rq->nr_running;
2963 nr_active += (long) this_rq->nr_uninterruptible;
2964
2965 if (nr_active != this_rq->calc_load_active) {
2966 delta = nr_active - this_rq->calc_load_active;
2967 this_rq->calc_load_active = nr_active;
2968 }
2969
2970 return delta;
2971}
2972
2973#ifdef CONFIG_NO_HZ
2974/*
2975 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2976 *
2977 * When making the ILB scale, we should try to pull this in as well.
2978 */
2979static atomic_long_t calc_load_tasks_idle;
2980
2981static void calc_load_account_idle(struct rq *this_rq)
2982{
2983 long delta;
2984
2985 delta = calc_load_fold_active(this_rq);
2986 if (delta)
2987 atomic_long_add(delta, &calc_load_tasks_idle);
2988}
2989
2990static long calc_load_fold_idle(void)
2991{
2992 long delta = 0;
2993
2994 /*
2995 * Its got a race, we don't care...
2996 */
2997 if (atomic_long_read(&calc_load_tasks_idle))
2998 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2999
3000 return delta;
3001}
3002#else
3003static void calc_load_account_idle(struct rq *this_rq)
3004{
3005}
3006
3007static inline long calc_load_fold_idle(void)
3008{
3009 return 0;
3010}
3011#endif
3012
2d02494f
TG
3013/**
3014 * get_avenrun - get the load average array
3015 * @loads: pointer to dest load array
3016 * @offset: offset to add
3017 * @shift: shift count to shift the result left
3018 *
3019 * These values are estimates at best, so no need for locking.
3020 */
3021void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3022{
3023 loads[0] = (avenrun[0] + offset) << shift;
3024 loads[1] = (avenrun[1] + offset) << shift;
3025 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3026}
46cb4b7c 3027
dce48a84
TG
3028static unsigned long
3029calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3030{
dce48a84
TG
3031 load *= exp;
3032 load += active * (FIXED_1 - exp);
3033 return load >> FSHIFT;
3034}
46cb4b7c
SS
3035
3036/*
dce48a84
TG
3037 * calc_load - update the avenrun load estimates 10 ticks after the
3038 * CPUs have updated calc_load_tasks.
7835b98b 3039 */
dce48a84 3040void calc_global_load(void)
7835b98b 3041{
dce48a84
TG
3042 unsigned long upd = calc_load_update + 10;
3043 long active;
1da177e4 3044
dce48a84
TG
3045 if (time_before(jiffies, upd))
3046 return;
1da177e4 3047
dce48a84
TG
3048 active = atomic_long_read(&calc_load_tasks);
3049 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3050
dce48a84
TG
3051 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3052 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3053 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3054
dce48a84
TG
3055 calc_load_update += LOAD_FREQ;
3056}
1da177e4 3057
dce48a84 3058/*
74f5187a
PZ
3059 * Called from update_cpu_load() to periodically update this CPU's
3060 * active count.
dce48a84
TG
3061 */
3062static void calc_load_account_active(struct rq *this_rq)
3063{
74f5187a 3064 long delta;
08c183f3 3065
74f5187a
PZ
3066 if (time_before(jiffies, this_rq->calc_load_update))
3067 return;
783609c6 3068
74f5187a
PZ
3069 delta = calc_load_fold_active(this_rq);
3070 delta += calc_load_fold_idle();
3071 if (delta)
dce48a84 3072 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3073
3074 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3075}
3076
fdf3e95d
VP
3077/*
3078 * The exact cpuload at various idx values, calculated at every tick would be
3079 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3080 *
3081 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3082 * on nth tick when cpu may be busy, then we have:
3083 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3084 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3085 *
3086 * decay_load_missed() below does efficient calculation of
3087 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3088 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3089 *
3090 * The calculation is approximated on a 128 point scale.
3091 * degrade_zero_ticks is the number of ticks after which load at any
3092 * particular idx is approximated to be zero.
3093 * degrade_factor is a precomputed table, a row for each load idx.
3094 * Each column corresponds to degradation factor for a power of two ticks,
3095 * based on 128 point scale.
3096 * Example:
3097 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3098 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3099 *
3100 * With this power of 2 load factors, we can degrade the load n times
3101 * by looking at 1 bits in n and doing as many mult/shift instead of
3102 * n mult/shifts needed by the exact degradation.
3103 */
3104#define DEGRADE_SHIFT 7
3105static const unsigned char
3106 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3107static const unsigned char
3108 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3109 {0, 0, 0, 0, 0, 0, 0, 0},
3110 {64, 32, 8, 0, 0, 0, 0, 0},
3111 {96, 72, 40, 12, 1, 0, 0},
3112 {112, 98, 75, 43, 15, 1, 0},
3113 {120, 112, 98, 76, 45, 16, 2} };
3114
3115/*
3116 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3117 * would be when CPU is idle and so we just decay the old load without
3118 * adding any new load.
3119 */
3120static unsigned long
3121decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3122{
3123 int j = 0;
3124
3125 if (!missed_updates)
3126 return load;
3127
3128 if (missed_updates >= degrade_zero_ticks[idx])
3129 return 0;
3130
3131 if (idx == 1)
3132 return load >> missed_updates;
3133
3134 while (missed_updates) {
3135 if (missed_updates % 2)
3136 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3137
3138 missed_updates >>= 1;
3139 j++;
3140 }
3141 return load;
3142}
3143
46cb4b7c 3144/*
dd41f596 3145 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3146 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3147 * every tick. We fix it up based on jiffies.
46cb4b7c 3148 */
dd41f596 3149static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3150{
495eca49 3151 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3152 unsigned long curr_jiffies = jiffies;
3153 unsigned long pending_updates;
dd41f596 3154 int i, scale;
46cb4b7c 3155
dd41f596 3156 this_rq->nr_load_updates++;
46cb4b7c 3157
fdf3e95d
VP
3158 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3159 if (curr_jiffies == this_rq->last_load_update_tick)
3160 return;
3161
3162 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3163 this_rq->last_load_update_tick = curr_jiffies;
3164
dd41f596 3165 /* Update our load: */
fdf3e95d
VP
3166 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3167 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3168 unsigned long old_load, new_load;
7d1e6a9b 3169
dd41f596 3170 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3171
dd41f596 3172 old_load = this_rq->cpu_load[i];
fdf3e95d 3173 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3174 new_load = this_load;
a25707f3
IM
3175 /*
3176 * Round up the averaging division if load is increasing. This
3177 * prevents us from getting stuck on 9 if the load is 10, for
3178 * example.
3179 */
3180 if (new_load > old_load)
fdf3e95d
VP
3181 new_load += scale - 1;
3182
3183 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3184 }
fdf3e95d
VP
3185}
3186
3187static void update_cpu_load_active(struct rq *this_rq)
3188{
3189 update_cpu_load(this_rq);
46cb4b7c 3190
74f5187a 3191 calc_load_account_active(this_rq);
46cb4b7c
SS
3192}
3193
dd41f596 3194#ifdef CONFIG_SMP
8a0be9ef 3195
46cb4b7c 3196/*
38022906
PZ
3197 * sched_exec - execve() is a valuable balancing opportunity, because at
3198 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3199 */
38022906 3200void sched_exec(void)
46cb4b7c 3201{
38022906 3202 struct task_struct *p = current;
1da177e4 3203 unsigned long flags;
70b97a7f 3204 struct rq *rq;
0017d735 3205 int dest_cpu;
46cb4b7c 3206
1da177e4 3207 rq = task_rq_lock(p, &flags);
0017d735
PZ
3208 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3209 if (dest_cpu == smp_processor_id())
3210 goto unlock;
38022906 3211
46cb4b7c 3212 /*
38022906 3213 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3214 */
30da688e 3215 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3216 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3217 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3218
1da177e4 3219 task_rq_unlock(rq, &flags);
969c7921 3220 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3221 return;
3222 }
0017d735 3223unlock:
1da177e4 3224 task_rq_unlock(rq, &flags);
1da177e4 3225}
dd41f596 3226
1da177e4
LT
3227#endif
3228
1da177e4
LT
3229DEFINE_PER_CPU(struct kernel_stat, kstat);
3230
3231EXPORT_PER_CPU_SYMBOL(kstat);
3232
3233/*
c5f8d995 3234 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3235 * @p in case that task is currently running.
c5f8d995
HS
3236 *
3237 * Called with task_rq_lock() held on @rq.
1da177e4 3238 */
c5f8d995
HS
3239static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3240{
3241 u64 ns = 0;
3242
3243 if (task_current(rq, p)) {
3244 update_rq_clock(rq);
3245 ns = rq->clock - p->se.exec_start;
3246 if ((s64)ns < 0)
3247 ns = 0;
3248 }
3249
3250 return ns;
3251}
3252
bb34d92f 3253unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3254{
1da177e4 3255 unsigned long flags;
41b86e9c 3256 struct rq *rq;
bb34d92f 3257 u64 ns = 0;
48f24c4d 3258
41b86e9c 3259 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3260 ns = do_task_delta_exec(p, rq);
3261 task_rq_unlock(rq, &flags);
1508487e 3262
c5f8d995
HS
3263 return ns;
3264}
f06febc9 3265
c5f8d995
HS
3266/*
3267 * Return accounted runtime for the task.
3268 * In case the task is currently running, return the runtime plus current's
3269 * pending runtime that have not been accounted yet.
3270 */
3271unsigned long long task_sched_runtime(struct task_struct *p)
3272{
3273 unsigned long flags;
3274 struct rq *rq;
3275 u64 ns = 0;
3276
3277 rq = task_rq_lock(p, &flags);
3278 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3279 task_rq_unlock(rq, &flags);
3280
3281 return ns;
3282}
48f24c4d 3283
c5f8d995
HS
3284/*
3285 * Return sum_exec_runtime for the thread group.
3286 * In case the task is currently running, return the sum plus current's
3287 * pending runtime that have not been accounted yet.
3288 *
3289 * Note that the thread group might have other running tasks as well,
3290 * so the return value not includes other pending runtime that other
3291 * running tasks might have.
3292 */
3293unsigned long long thread_group_sched_runtime(struct task_struct *p)
3294{
3295 struct task_cputime totals;
3296 unsigned long flags;
3297 struct rq *rq;
3298 u64 ns;
3299
3300 rq = task_rq_lock(p, &flags);
3301 thread_group_cputime(p, &totals);
3302 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3303 task_rq_unlock(rq, &flags);
48f24c4d 3304
1da177e4
LT
3305 return ns;
3306}
3307
1da177e4
LT
3308/*
3309 * Account user cpu time to a process.
3310 * @p: the process that the cpu time gets accounted to
1da177e4 3311 * @cputime: the cpu time spent in user space since the last update
457533a7 3312 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3313 */
457533a7
MS
3314void account_user_time(struct task_struct *p, cputime_t cputime,
3315 cputime_t cputime_scaled)
1da177e4
LT
3316{
3317 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3318 cputime64_t tmp;
3319
457533a7 3320 /* Add user time to process. */
1da177e4 3321 p->utime = cputime_add(p->utime, cputime);
457533a7 3322 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3323 account_group_user_time(p, cputime);
1da177e4
LT
3324
3325 /* Add user time to cpustat. */
3326 tmp = cputime_to_cputime64(cputime);
3327 if (TASK_NICE(p) > 0)
3328 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3329 else
3330 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3331
3332 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3333 /* Account for user time used */
3334 acct_update_integrals(p);
1da177e4
LT
3335}
3336
94886b84
LV
3337/*
3338 * Account guest cpu time to a process.
3339 * @p: the process that the cpu time gets accounted to
3340 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3341 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3342 */
457533a7
MS
3343static void account_guest_time(struct task_struct *p, cputime_t cputime,
3344 cputime_t cputime_scaled)
94886b84
LV
3345{
3346 cputime64_t tmp;
3347 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3348
3349 tmp = cputime_to_cputime64(cputime);
3350
457533a7 3351 /* Add guest time to process. */
94886b84 3352 p->utime = cputime_add(p->utime, cputime);
457533a7 3353 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3354 account_group_user_time(p, cputime);
94886b84
LV
3355 p->gtime = cputime_add(p->gtime, cputime);
3356
457533a7 3357 /* Add guest time to cpustat. */
ce0e7b28
RO
3358 if (TASK_NICE(p) > 0) {
3359 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3360 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3361 } else {
3362 cpustat->user = cputime64_add(cpustat->user, tmp);
3363 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3364 }
94886b84
LV
3365}
3366
1da177e4
LT
3367/*
3368 * Account system cpu time to a process.
3369 * @p: the process that the cpu time gets accounted to
3370 * @hardirq_offset: the offset to subtract from hardirq_count()
3371 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3372 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3373 */
3374void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3375 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3376{
3377 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3378 cputime64_t tmp;
3379
983ed7a6 3380 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3381 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3382 return;
3383 }
94886b84 3384
457533a7 3385 /* Add system time to process. */
1da177e4 3386 p->stime = cputime_add(p->stime, cputime);
457533a7 3387 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3388 account_group_system_time(p, cputime);
1da177e4
LT
3389
3390 /* Add system time to cpustat. */
3391 tmp = cputime_to_cputime64(cputime);
3392 if (hardirq_count() - hardirq_offset)
3393 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3394 else if (softirq_count())
3395 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3396 else
79741dd3
MS
3397 cpustat->system = cputime64_add(cpustat->system, tmp);
3398
ef12fefa
BR
3399 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3400
1da177e4
LT
3401 /* Account for system time used */
3402 acct_update_integrals(p);
1da177e4
LT
3403}
3404
c66f08be 3405/*
1da177e4 3406 * Account for involuntary wait time.
1da177e4 3407 * @steal: the cpu time spent in involuntary wait
c66f08be 3408 */
79741dd3 3409void account_steal_time(cputime_t cputime)
c66f08be 3410{
79741dd3
MS
3411 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3412 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3413
3414 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3415}
3416
1da177e4 3417/*
79741dd3
MS
3418 * Account for idle time.
3419 * @cputime: the cpu time spent in idle wait
1da177e4 3420 */
79741dd3 3421void account_idle_time(cputime_t cputime)
1da177e4
LT
3422{
3423 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3424 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3425 struct rq *rq = this_rq();
1da177e4 3426
79741dd3
MS
3427 if (atomic_read(&rq->nr_iowait) > 0)
3428 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3429 else
3430 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3431}
3432
79741dd3
MS
3433#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3434
3435/*
3436 * Account a single tick of cpu time.
3437 * @p: the process that the cpu time gets accounted to
3438 * @user_tick: indicates if the tick is a user or a system tick
3439 */
3440void account_process_tick(struct task_struct *p, int user_tick)
3441{
a42548a1 3442 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3443 struct rq *rq = this_rq();
3444
3445 if (user_tick)
a42548a1 3446 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3447 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3448 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3449 one_jiffy_scaled);
3450 else
a42548a1 3451 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3452}
3453
3454/*
3455 * Account multiple ticks of steal time.
3456 * @p: the process from which the cpu time has been stolen
3457 * @ticks: number of stolen ticks
3458 */
3459void account_steal_ticks(unsigned long ticks)
3460{
3461 account_steal_time(jiffies_to_cputime(ticks));
3462}
3463
3464/*
3465 * Account multiple ticks of idle time.
3466 * @ticks: number of stolen ticks
3467 */
3468void account_idle_ticks(unsigned long ticks)
3469{
3470 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3471}
3472
79741dd3
MS
3473#endif
3474
49048622
BS
3475/*
3476 * Use precise platform statistics if available:
3477 */
3478#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3479void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3480{
d99ca3b9
HS
3481 *ut = p->utime;
3482 *st = p->stime;
49048622
BS
3483}
3484
0cf55e1e 3485void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3486{
0cf55e1e
HS
3487 struct task_cputime cputime;
3488
3489 thread_group_cputime(p, &cputime);
3490
3491 *ut = cputime.utime;
3492 *st = cputime.stime;
49048622
BS
3493}
3494#else
761b1d26
HS
3495
3496#ifndef nsecs_to_cputime
b7b20df9 3497# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3498#endif
3499
d180c5bc 3500void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3501{
d99ca3b9 3502 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3503
3504 /*
3505 * Use CFS's precise accounting:
3506 */
d180c5bc 3507 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3508
3509 if (total) {
d180c5bc
HS
3510 u64 temp;
3511
3512 temp = (u64)(rtime * utime);
49048622 3513 do_div(temp, total);
d180c5bc
HS
3514 utime = (cputime_t)temp;
3515 } else
3516 utime = rtime;
49048622 3517
d180c5bc
HS
3518 /*
3519 * Compare with previous values, to keep monotonicity:
3520 */
761b1d26 3521 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3522 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3523
d99ca3b9
HS
3524 *ut = p->prev_utime;
3525 *st = p->prev_stime;
49048622
BS
3526}
3527
0cf55e1e
HS
3528/*
3529 * Must be called with siglock held.
3530 */
3531void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3532{
0cf55e1e
HS
3533 struct signal_struct *sig = p->signal;
3534 struct task_cputime cputime;
3535 cputime_t rtime, utime, total;
49048622 3536
0cf55e1e 3537 thread_group_cputime(p, &cputime);
49048622 3538
0cf55e1e
HS
3539 total = cputime_add(cputime.utime, cputime.stime);
3540 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3541
0cf55e1e
HS
3542 if (total) {
3543 u64 temp;
49048622 3544
0cf55e1e
HS
3545 temp = (u64)(rtime * cputime.utime);
3546 do_div(temp, total);
3547 utime = (cputime_t)temp;
3548 } else
3549 utime = rtime;
3550
3551 sig->prev_utime = max(sig->prev_utime, utime);
3552 sig->prev_stime = max(sig->prev_stime,
3553 cputime_sub(rtime, sig->prev_utime));
3554
3555 *ut = sig->prev_utime;
3556 *st = sig->prev_stime;
49048622 3557}
49048622 3558#endif
49048622 3559
7835b98b
CL
3560/*
3561 * This function gets called by the timer code, with HZ frequency.
3562 * We call it with interrupts disabled.
3563 *
3564 * It also gets called by the fork code, when changing the parent's
3565 * timeslices.
3566 */
3567void scheduler_tick(void)
3568{
7835b98b
CL
3569 int cpu = smp_processor_id();
3570 struct rq *rq = cpu_rq(cpu);
dd41f596 3571 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3572
3573 sched_clock_tick();
dd41f596 3574
05fa785c 3575 raw_spin_lock(&rq->lock);
3e51f33f 3576 update_rq_clock(rq);
fdf3e95d 3577 update_cpu_load_active(rq);
fa85ae24 3578 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3579 raw_spin_unlock(&rq->lock);
7835b98b 3580
49f47433 3581 perf_event_task_tick(curr);
e220d2dc 3582
e418e1c2 3583#ifdef CONFIG_SMP
dd41f596
IM
3584 rq->idle_at_tick = idle_cpu(cpu);
3585 trigger_load_balance(rq, cpu);
e418e1c2 3586#endif
1da177e4
LT
3587}
3588
132380a0 3589notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3590{
3591 if (in_lock_functions(addr)) {
3592 addr = CALLER_ADDR2;
3593 if (in_lock_functions(addr))
3594 addr = CALLER_ADDR3;
3595 }
3596 return addr;
3597}
1da177e4 3598
7e49fcce
SR
3599#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3600 defined(CONFIG_PREEMPT_TRACER))
3601
43627582 3602void __kprobes add_preempt_count(int val)
1da177e4 3603{
6cd8a4bb 3604#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3605 /*
3606 * Underflow?
3607 */
9a11b49a
IM
3608 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3609 return;
6cd8a4bb 3610#endif
1da177e4 3611 preempt_count() += val;
6cd8a4bb 3612#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3613 /*
3614 * Spinlock count overflowing soon?
3615 */
33859f7f
MOS
3616 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3617 PREEMPT_MASK - 10);
6cd8a4bb
SR
3618#endif
3619 if (preempt_count() == val)
3620 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3621}
3622EXPORT_SYMBOL(add_preempt_count);
3623
43627582 3624void __kprobes sub_preempt_count(int val)
1da177e4 3625{
6cd8a4bb 3626#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3627 /*
3628 * Underflow?
3629 */
01e3eb82 3630 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3631 return;
1da177e4
LT
3632 /*
3633 * Is the spinlock portion underflowing?
3634 */
9a11b49a
IM
3635 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3636 !(preempt_count() & PREEMPT_MASK)))
3637 return;
6cd8a4bb 3638#endif
9a11b49a 3639
6cd8a4bb
SR
3640 if (preempt_count() == val)
3641 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3642 preempt_count() -= val;
3643}
3644EXPORT_SYMBOL(sub_preempt_count);
3645
3646#endif
3647
3648/*
dd41f596 3649 * Print scheduling while atomic bug:
1da177e4 3650 */
dd41f596 3651static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3652{
838225b4
SS
3653 struct pt_regs *regs = get_irq_regs();
3654
3df0fc5b
PZ
3655 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3656 prev->comm, prev->pid, preempt_count());
838225b4 3657
dd41f596 3658 debug_show_held_locks(prev);
e21f5b15 3659 print_modules();
dd41f596
IM
3660 if (irqs_disabled())
3661 print_irqtrace_events(prev);
838225b4
SS
3662
3663 if (regs)
3664 show_regs(regs);
3665 else
3666 dump_stack();
dd41f596 3667}
1da177e4 3668
dd41f596
IM
3669/*
3670 * Various schedule()-time debugging checks and statistics:
3671 */
3672static inline void schedule_debug(struct task_struct *prev)
3673{
1da177e4 3674 /*
41a2d6cf 3675 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3676 * schedule() atomically, we ignore that path for now.
3677 * Otherwise, whine if we are scheduling when we should not be.
3678 */
3f33a7ce 3679 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3680 __schedule_bug(prev);
3681
1da177e4
LT
3682 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3683
2d72376b 3684 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3685#ifdef CONFIG_SCHEDSTATS
3686 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3687 schedstat_inc(this_rq(), bkl_count);
3688 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3689 }
3690#endif
dd41f596
IM
3691}
3692
6cecd084 3693static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3694{
a64692a3
MG
3695 if (prev->se.on_rq)
3696 update_rq_clock(rq);
3697 rq->skip_clock_update = 0;
6cecd084 3698 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3699}
3700
dd41f596
IM
3701/*
3702 * Pick up the highest-prio task:
3703 */
3704static inline struct task_struct *
b67802ea 3705pick_next_task(struct rq *rq)
dd41f596 3706{
5522d5d5 3707 const struct sched_class *class;
dd41f596 3708 struct task_struct *p;
1da177e4
LT
3709
3710 /*
dd41f596
IM
3711 * Optimization: we know that if all tasks are in
3712 * the fair class we can call that function directly:
1da177e4 3713 */
dd41f596 3714 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3715 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3716 if (likely(p))
3717 return p;
1da177e4
LT
3718 }
3719
dd41f596
IM
3720 class = sched_class_highest;
3721 for ( ; ; ) {
fb8d4724 3722 p = class->pick_next_task(rq);
dd41f596
IM
3723 if (p)
3724 return p;
3725 /*
3726 * Will never be NULL as the idle class always
3727 * returns a non-NULL p:
3728 */
3729 class = class->next;
3730 }
3731}
1da177e4 3732
dd41f596
IM
3733/*
3734 * schedule() is the main scheduler function.
3735 */
ff743345 3736asmlinkage void __sched schedule(void)
dd41f596
IM
3737{
3738 struct task_struct *prev, *next;
67ca7bde 3739 unsigned long *switch_count;
dd41f596 3740 struct rq *rq;
31656519 3741 int cpu;
dd41f596 3742
ff743345
PZ
3743need_resched:
3744 preempt_disable();
dd41f596
IM
3745 cpu = smp_processor_id();
3746 rq = cpu_rq(cpu);
25502a6c 3747 rcu_note_context_switch(cpu);
dd41f596 3748 prev = rq->curr;
dd41f596
IM
3749
3750 release_kernel_lock(prev);
3751need_resched_nonpreemptible:
3752
3753 schedule_debug(prev);
1da177e4 3754
31656519 3755 if (sched_feat(HRTICK))
f333fdc9 3756 hrtick_clear(rq);
8f4d37ec 3757
05fa785c 3758 raw_spin_lock_irq(&rq->lock);
1e819950 3759 clear_tsk_need_resched(prev);
1da177e4 3760
246d86b5 3761 switch_count = &prev->nivcsw;
1da177e4 3762 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3763 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3764 prev->state = TASK_RUNNING;
21aa9af0
TH
3765 } else {
3766 /*
3767 * If a worker is going to sleep, notify and
3768 * ask workqueue whether it wants to wake up a
3769 * task to maintain concurrency. If so, wake
3770 * up the task.
3771 */
3772 if (prev->flags & PF_WQ_WORKER) {
3773 struct task_struct *to_wakeup;
3774
3775 to_wakeup = wq_worker_sleeping(prev, cpu);
3776 if (to_wakeup)
3777 try_to_wake_up_local(to_wakeup);
3778 }
371fd7e7 3779 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3780 }
dd41f596 3781 switch_count = &prev->nvcsw;
1da177e4
LT
3782 }
3783
3f029d3c 3784 pre_schedule(rq, prev);
f65eda4f 3785
dd41f596 3786 if (unlikely(!rq->nr_running))
1da177e4 3787 idle_balance(cpu, rq);
1da177e4 3788
df1c99d4 3789 put_prev_task(rq, prev);
b67802ea 3790 next = pick_next_task(rq);
1da177e4 3791
1da177e4 3792 if (likely(prev != next)) {
673a90a1 3793 sched_info_switch(prev, next);
49f47433 3794 perf_event_task_sched_out(prev, next);
673a90a1 3795
1da177e4
LT
3796 rq->nr_switches++;
3797 rq->curr = next;
3798 ++*switch_count;
3799
dd41f596 3800 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3801 /*
246d86b5
ON
3802 * The context switch have flipped the stack from under us
3803 * and restored the local variables which were saved when
3804 * this task called schedule() in the past. prev == current
3805 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3806 */
3807 cpu = smp_processor_id();
3808 rq = cpu_rq(cpu);
1da177e4 3809 } else
05fa785c 3810 raw_spin_unlock_irq(&rq->lock);
1da177e4 3811
3f029d3c 3812 post_schedule(rq);
1da177e4 3813
246d86b5 3814 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3815 goto need_resched_nonpreemptible;
8f4d37ec 3816
1da177e4 3817 preempt_enable_no_resched();
ff743345 3818 if (need_resched())
1da177e4
LT
3819 goto need_resched;
3820}
1da177e4
LT
3821EXPORT_SYMBOL(schedule);
3822
c08f7829 3823#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3824/*
3825 * Look out! "owner" is an entirely speculative pointer
3826 * access and not reliable.
3827 */
3828int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3829{
3830 unsigned int cpu;
3831 struct rq *rq;
3832
3833 if (!sched_feat(OWNER_SPIN))
3834 return 0;
3835
3836#ifdef CONFIG_DEBUG_PAGEALLOC
3837 /*
3838 * Need to access the cpu field knowing that
3839 * DEBUG_PAGEALLOC could have unmapped it if
3840 * the mutex owner just released it and exited.
3841 */
3842 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3843 return 0;
0d66bf6d
PZ
3844#else
3845 cpu = owner->cpu;
3846#endif
3847
3848 /*
3849 * Even if the access succeeded (likely case),
3850 * the cpu field may no longer be valid.
3851 */
3852 if (cpu >= nr_cpumask_bits)
4b402210 3853 return 0;
0d66bf6d
PZ
3854
3855 /*
3856 * We need to validate that we can do a
3857 * get_cpu() and that we have the percpu area.
3858 */
3859 if (!cpu_online(cpu))
4b402210 3860 return 0;
0d66bf6d
PZ
3861
3862 rq = cpu_rq(cpu);
3863
3864 for (;;) {
3865 /*
3866 * Owner changed, break to re-assess state.
3867 */
9d0f4dcc
TC
3868 if (lock->owner != owner) {
3869 /*
3870 * If the lock has switched to a different owner,
3871 * we likely have heavy contention. Return 0 to quit
3872 * optimistic spinning and not contend further:
3873 */
3874 if (lock->owner)
3875 return 0;
0d66bf6d 3876 break;
9d0f4dcc 3877 }
0d66bf6d
PZ
3878
3879 /*
3880 * Is that owner really running on that cpu?
3881 */
3882 if (task_thread_info(rq->curr) != owner || need_resched())
3883 return 0;
3884
3885 cpu_relax();
3886 }
4b402210 3887
0d66bf6d
PZ
3888 return 1;
3889}
3890#endif
3891
1da177e4
LT
3892#ifdef CONFIG_PREEMPT
3893/*
2ed6e34f 3894 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3895 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3896 * occur there and call schedule directly.
3897 */
d1f74e20 3898asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3899{
3900 struct thread_info *ti = current_thread_info();
6478d880 3901
1da177e4
LT
3902 /*
3903 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3904 * we do not want to preempt the current task. Just return..
1da177e4 3905 */
beed33a8 3906 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3907 return;
3908
3a5c359a 3909 do {
d1f74e20 3910 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 3911 schedule();
d1f74e20 3912 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3913
3a5c359a
AK
3914 /*
3915 * Check again in case we missed a preemption opportunity
3916 * between schedule and now.
3917 */
3918 barrier();
5ed0cec0 3919 } while (need_resched());
1da177e4 3920}
1da177e4
LT
3921EXPORT_SYMBOL(preempt_schedule);
3922
3923/*
2ed6e34f 3924 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3925 * off of irq context.
3926 * Note, that this is called and return with irqs disabled. This will
3927 * protect us against recursive calling from irq.
3928 */
3929asmlinkage void __sched preempt_schedule_irq(void)
3930{
3931 struct thread_info *ti = current_thread_info();
6478d880 3932
2ed6e34f 3933 /* Catch callers which need to be fixed */
1da177e4
LT
3934 BUG_ON(ti->preempt_count || !irqs_disabled());
3935
3a5c359a
AK
3936 do {
3937 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3938 local_irq_enable();
3939 schedule();
3940 local_irq_disable();
3a5c359a 3941 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3942
3a5c359a
AK
3943 /*
3944 * Check again in case we missed a preemption opportunity
3945 * between schedule and now.
3946 */
3947 barrier();
5ed0cec0 3948 } while (need_resched());
1da177e4
LT
3949}
3950
3951#endif /* CONFIG_PREEMPT */
3952
63859d4f 3953int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3954 void *key)
1da177e4 3955{
63859d4f 3956 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3957}
1da177e4
LT
3958EXPORT_SYMBOL(default_wake_function);
3959
3960/*
41a2d6cf
IM
3961 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3962 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3963 * number) then we wake all the non-exclusive tasks and one exclusive task.
3964 *
3965 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3966 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3967 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3968 */
78ddb08f 3969static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3970 int nr_exclusive, int wake_flags, void *key)
1da177e4 3971{
2e45874c 3972 wait_queue_t *curr, *next;
1da177e4 3973
2e45874c 3974 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3975 unsigned flags = curr->flags;
3976
63859d4f 3977 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3978 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3979 break;
3980 }
3981}
3982
3983/**
3984 * __wake_up - wake up threads blocked on a waitqueue.
3985 * @q: the waitqueue
3986 * @mode: which threads
3987 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3988 * @key: is directly passed to the wakeup function
50fa610a
DH
3989 *
3990 * It may be assumed that this function implies a write memory barrier before
3991 * changing the task state if and only if any tasks are woken up.
1da177e4 3992 */
7ad5b3a5 3993void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3994 int nr_exclusive, void *key)
1da177e4
LT
3995{
3996 unsigned long flags;
3997
3998 spin_lock_irqsave(&q->lock, flags);
3999 __wake_up_common(q, mode, nr_exclusive, 0, key);
4000 spin_unlock_irqrestore(&q->lock, flags);
4001}
1da177e4
LT
4002EXPORT_SYMBOL(__wake_up);
4003
4004/*
4005 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4006 */
7ad5b3a5 4007void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4008{
4009 __wake_up_common(q, mode, 1, 0, NULL);
4010}
22c43c81 4011EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4012
4ede816a
DL
4013void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4014{
4015 __wake_up_common(q, mode, 1, 0, key);
4016}
4017
1da177e4 4018/**
4ede816a 4019 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4020 * @q: the waitqueue
4021 * @mode: which threads
4022 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4023 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4024 *
4025 * The sync wakeup differs that the waker knows that it will schedule
4026 * away soon, so while the target thread will be woken up, it will not
4027 * be migrated to another CPU - ie. the two threads are 'synchronized'
4028 * with each other. This can prevent needless bouncing between CPUs.
4029 *
4030 * On UP it can prevent extra preemption.
50fa610a
DH
4031 *
4032 * It may be assumed that this function implies a write memory barrier before
4033 * changing the task state if and only if any tasks are woken up.
1da177e4 4034 */
4ede816a
DL
4035void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4036 int nr_exclusive, void *key)
1da177e4
LT
4037{
4038 unsigned long flags;
7d478721 4039 int wake_flags = WF_SYNC;
1da177e4
LT
4040
4041 if (unlikely(!q))
4042 return;
4043
4044 if (unlikely(!nr_exclusive))
7d478721 4045 wake_flags = 0;
1da177e4
LT
4046
4047 spin_lock_irqsave(&q->lock, flags);
7d478721 4048 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4049 spin_unlock_irqrestore(&q->lock, flags);
4050}
4ede816a
DL
4051EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4052
4053/*
4054 * __wake_up_sync - see __wake_up_sync_key()
4055 */
4056void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4057{
4058 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4059}
1da177e4
LT
4060EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4061
65eb3dc6
KD
4062/**
4063 * complete: - signals a single thread waiting on this completion
4064 * @x: holds the state of this particular completion
4065 *
4066 * This will wake up a single thread waiting on this completion. Threads will be
4067 * awakened in the same order in which they were queued.
4068 *
4069 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4070 *
4071 * It may be assumed that this function implies a write memory barrier before
4072 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4073 */
b15136e9 4074void complete(struct completion *x)
1da177e4
LT
4075{
4076 unsigned long flags;
4077
4078 spin_lock_irqsave(&x->wait.lock, flags);
4079 x->done++;
d9514f6c 4080 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4081 spin_unlock_irqrestore(&x->wait.lock, flags);
4082}
4083EXPORT_SYMBOL(complete);
4084
65eb3dc6
KD
4085/**
4086 * complete_all: - signals all threads waiting on this completion
4087 * @x: holds the state of this particular completion
4088 *
4089 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4090 *
4091 * It may be assumed that this function implies a write memory barrier before
4092 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4093 */
b15136e9 4094void complete_all(struct completion *x)
1da177e4
LT
4095{
4096 unsigned long flags;
4097
4098 spin_lock_irqsave(&x->wait.lock, flags);
4099 x->done += UINT_MAX/2;
d9514f6c 4100 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4101 spin_unlock_irqrestore(&x->wait.lock, flags);
4102}
4103EXPORT_SYMBOL(complete_all);
4104
8cbbe86d
AK
4105static inline long __sched
4106do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4107{
1da177e4
LT
4108 if (!x->done) {
4109 DECLARE_WAITQUEUE(wait, current);
4110
a93d2f17 4111 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4112 do {
94d3d824 4113 if (signal_pending_state(state, current)) {
ea71a546
ON
4114 timeout = -ERESTARTSYS;
4115 break;
8cbbe86d
AK
4116 }
4117 __set_current_state(state);
1da177e4
LT
4118 spin_unlock_irq(&x->wait.lock);
4119 timeout = schedule_timeout(timeout);
4120 spin_lock_irq(&x->wait.lock);
ea71a546 4121 } while (!x->done && timeout);
1da177e4 4122 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4123 if (!x->done)
4124 return timeout;
1da177e4
LT
4125 }
4126 x->done--;
ea71a546 4127 return timeout ?: 1;
1da177e4 4128}
1da177e4 4129
8cbbe86d
AK
4130static long __sched
4131wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4132{
1da177e4
LT
4133 might_sleep();
4134
4135 spin_lock_irq(&x->wait.lock);
8cbbe86d 4136 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4137 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4138 return timeout;
4139}
1da177e4 4140
65eb3dc6
KD
4141/**
4142 * wait_for_completion: - waits for completion of a task
4143 * @x: holds the state of this particular completion
4144 *
4145 * This waits to be signaled for completion of a specific task. It is NOT
4146 * interruptible and there is no timeout.
4147 *
4148 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4149 * and interrupt capability. Also see complete().
4150 */
b15136e9 4151void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4152{
4153 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4154}
8cbbe86d 4155EXPORT_SYMBOL(wait_for_completion);
1da177e4 4156
65eb3dc6
KD
4157/**
4158 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4159 * @x: holds the state of this particular completion
4160 * @timeout: timeout value in jiffies
4161 *
4162 * This waits for either a completion of a specific task to be signaled or for a
4163 * specified timeout to expire. The timeout is in jiffies. It is not
4164 * interruptible.
4165 */
b15136e9 4166unsigned long __sched
8cbbe86d 4167wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4168{
8cbbe86d 4169 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4170}
8cbbe86d 4171EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4172
65eb3dc6
KD
4173/**
4174 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4175 * @x: holds the state of this particular completion
4176 *
4177 * This waits for completion of a specific task to be signaled. It is
4178 * interruptible.
4179 */
8cbbe86d 4180int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4181{
51e97990
AK
4182 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4183 if (t == -ERESTARTSYS)
4184 return t;
4185 return 0;
0fec171c 4186}
8cbbe86d 4187EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4188
65eb3dc6
KD
4189/**
4190 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4191 * @x: holds the state of this particular completion
4192 * @timeout: timeout value in jiffies
4193 *
4194 * This waits for either a completion of a specific task to be signaled or for a
4195 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4196 */
b15136e9 4197unsigned long __sched
8cbbe86d
AK
4198wait_for_completion_interruptible_timeout(struct completion *x,
4199 unsigned long timeout)
0fec171c 4200{
8cbbe86d 4201 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4202}
8cbbe86d 4203EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4204
65eb3dc6
KD
4205/**
4206 * wait_for_completion_killable: - waits for completion of a task (killable)
4207 * @x: holds the state of this particular completion
4208 *
4209 * This waits to be signaled for completion of a specific task. It can be
4210 * interrupted by a kill signal.
4211 */
009e577e
MW
4212int __sched wait_for_completion_killable(struct completion *x)
4213{
4214 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4215 if (t == -ERESTARTSYS)
4216 return t;
4217 return 0;
4218}
4219EXPORT_SYMBOL(wait_for_completion_killable);
4220
0aa12fb4
SW
4221/**
4222 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4223 * @x: holds the state of this particular completion
4224 * @timeout: timeout value in jiffies
4225 *
4226 * This waits for either a completion of a specific task to be
4227 * signaled or for a specified timeout to expire. It can be
4228 * interrupted by a kill signal. The timeout is in jiffies.
4229 */
4230unsigned long __sched
4231wait_for_completion_killable_timeout(struct completion *x,
4232 unsigned long timeout)
4233{
4234 return wait_for_common(x, timeout, TASK_KILLABLE);
4235}
4236EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4237
be4de352
DC
4238/**
4239 * try_wait_for_completion - try to decrement a completion without blocking
4240 * @x: completion structure
4241 *
4242 * Returns: 0 if a decrement cannot be done without blocking
4243 * 1 if a decrement succeeded.
4244 *
4245 * If a completion is being used as a counting completion,
4246 * attempt to decrement the counter without blocking. This
4247 * enables us to avoid waiting if the resource the completion
4248 * is protecting is not available.
4249 */
4250bool try_wait_for_completion(struct completion *x)
4251{
7539a3b3 4252 unsigned long flags;
be4de352
DC
4253 int ret = 1;
4254
7539a3b3 4255 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4256 if (!x->done)
4257 ret = 0;
4258 else
4259 x->done--;
7539a3b3 4260 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4261 return ret;
4262}
4263EXPORT_SYMBOL(try_wait_for_completion);
4264
4265/**
4266 * completion_done - Test to see if a completion has any waiters
4267 * @x: completion structure
4268 *
4269 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4270 * 1 if there are no waiters.
4271 *
4272 */
4273bool completion_done(struct completion *x)
4274{
7539a3b3 4275 unsigned long flags;
be4de352
DC
4276 int ret = 1;
4277
7539a3b3 4278 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4279 if (!x->done)
4280 ret = 0;
7539a3b3 4281 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4282 return ret;
4283}
4284EXPORT_SYMBOL(completion_done);
4285
8cbbe86d
AK
4286static long __sched
4287sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4288{
0fec171c
IM
4289 unsigned long flags;
4290 wait_queue_t wait;
4291
4292 init_waitqueue_entry(&wait, current);
1da177e4 4293
8cbbe86d 4294 __set_current_state(state);
1da177e4 4295
8cbbe86d
AK
4296 spin_lock_irqsave(&q->lock, flags);
4297 __add_wait_queue(q, &wait);
4298 spin_unlock(&q->lock);
4299 timeout = schedule_timeout(timeout);
4300 spin_lock_irq(&q->lock);
4301 __remove_wait_queue(q, &wait);
4302 spin_unlock_irqrestore(&q->lock, flags);
4303
4304 return timeout;
4305}
4306
4307void __sched interruptible_sleep_on(wait_queue_head_t *q)
4308{
4309 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4310}
1da177e4
LT
4311EXPORT_SYMBOL(interruptible_sleep_on);
4312
0fec171c 4313long __sched
95cdf3b7 4314interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4315{
8cbbe86d 4316 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4317}
1da177e4
LT
4318EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4319
0fec171c 4320void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4321{
8cbbe86d 4322 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4323}
1da177e4
LT
4324EXPORT_SYMBOL(sleep_on);
4325
0fec171c 4326long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4327{
8cbbe86d 4328 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4329}
1da177e4
LT
4330EXPORT_SYMBOL(sleep_on_timeout);
4331
b29739f9
IM
4332#ifdef CONFIG_RT_MUTEXES
4333
4334/*
4335 * rt_mutex_setprio - set the current priority of a task
4336 * @p: task
4337 * @prio: prio value (kernel-internal form)
4338 *
4339 * This function changes the 'effective' priority of a task. It does
4340 * not touch ->normal_prio like __setscheduler().
4341 *
4342 * Used by the rt_mutex code to implement priority inheritance logic.
4343 */
36c8b586 4344void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4345{
4346 unsigned long flags;
83b699ed 4347 int oldprio, on_rq, running;
70b97a7f 4348 struct rq *rq;
83ab0aa0 4349 const struct sched_class *prev_class;
b29739f9
IM
4350
4351 BUG_ON(prio < 0 || prio > MAX_PRIO);
4352
4353 rq = task_rq_lock(p, &flags);
4354
d5f9f942 4355 oldprio = p->prio;
83ab0aa0 4356 prev_class = p->sched_class;
dd41f596 4357 on_rq = p->se.on_rq;
051a1d1a 4358 running = task_current(rq, p);
0e1f3483 4359 if (on_rq)
69be72c1 4360 dequeue_task(rq, p, 0);
0e1f3483
HS
4361 if (running)
4362 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4363
4364 if (rt_prio(prio))
4365 p->sched_class = &rt_sched_class;
4366 else
4367 p->sched_class = &fair_sched_class;
4368
b29739f9
IM
4369 p->prio = prio;
4370
0e1f3483
HS
4371 if (running)
4372 p->sched_class->set_curr_task(rq);
dd41f596 4373 if (on_rq) {
371fd7e7 4374 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4375
4376 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4377 }
4378 task_rq_unlock(rq, &flags);
4379}
4380
4381#endif
4382
36c8b586 4383void set_user_nice(struct task_struct *p, long nice)
1da177e4 4384{
dd41f596 4385 int old_prio, delta, on_rq;
1da177e4 4386 unsigned long flags;
70b97a7f 4387 struct rq *rq;
1da177e4
LT
4388
4389 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4390 return;
4391 /*
4392 * We have to be careful, if called from sys_setpriority(),
4393 * the task might be in the middle of scheduling on another CPU.
4394 */
4395 rq = task_rq_lock(p, &flags);
4396 /*
4397 * The RT priorities are set via sched_setscheduler(), but we still
4398 * allow the 'normal' nice value to be set - but as expected
4399 * it wont have any effect on scheduling until the task is
dd41f596 4400 * SCHED_FIFO/SCHED_RR:
1da177e4 4401 */
e05606d3 4402 if (task_has_rt_policy(p)) {
1da177e4
LT
4403 p->static_prio = NICE_TO_PRIO(nice);
4404 goto out_unlock;
4405 }
dd41f596 4406 on_rq = p->se.on_rq;
c09595f6 4407 if (on_rq)
69be72c1 4408 dequeue_task(rq, p, 0);
1da177e4 4409
1da177e4 4410 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4411 set_load_weight(p);
b29739f9
IM
4412 old_prio = p->prio;
4413 p->prio = effective_prio(p);
4414 delta = p->prio - old_prio;
1da177e4 4415
dd41f596 4416 if (on_rq) {
371fd7e7 4417 enqueue_task(rq, p, 0);
1da177e4 4418 /*
d5f9f942
AM
4419 * If the task increased its priority or is running and
4420 * lowered its priority, then reschedule its CPU:
1da177e4 4421 */
d5f9f942 4422 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4423 resched_task(rq->curr);
4424 }
4425out_unlock:
4426 task_rq_unlock(rq, &flags);
4427}
1da177e4
LT
4428EXPORT_SYMBOL(set_user_nice);
4429
e43379f1
MM
4430/*
4431 * can_nice - check if a task can reduce its nice value
4432 * @p: task
4433 * @nice: nice value
4434 */
36c8b586 4435int can_nice(const struct task_struct *p, const int nice)
e43379f1 4436{
024f4747
MM
4437 /* convert nice value [19,-20] to rlimit style value [1,40] */
4438 int nice_rlim = 20 - nice;
48f24c4d 4439
78d7d407 4440 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4441 capable(CAP_SYS_NICE));
4442}
4443
1da177e4
LT
4444#ifdef __ARCH_WANT_SYS_NICE
4445
4446/*
4447 * sys_nice - change the priority of the current process.
4448 * @increment: priority increment
4449 *
4450 * sys_setpriority is a more generic, but much slower function that
4451 * does similar things.
4452 */
5add95d4 4453SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4454{
48f24c4d 4455 long nice, retval;
1da177e4
LT
4456
4457 /*
4458 * Setpriority might change our priority at the same moment.
4459 * We don't have to worry. Conceptually one call occurs first
4460 * and we have a single winner.
4461 */
e43379f1
MM
4462 if (increment < -40)
4463 increment = -40;
1da177e4
LT
4464 if (increment > 40)
4465 increment = 40;
4466
2b8f836f 4467 nice = TASK_NICE(current) + increment;
1da177e4
LT
4468 if (nice < -20)
4469 nice = -20;
4470 if (nice > 19)
4471 nice = 19;
4472
e43379f1
MM
4473 if (increment < 0 && !can_nice(current, nice))
4474 return -EPERM;
4475
1da177e4
LT
4476 retval = security_task_setnice(current, nice);
4477 if (retval)
4478 return retval;
4479
4480 set_user_nice(current, nice);
4481 return 0;
4482}
4483
4484#endif
4485
4486/**
4487 * task_prio - return the priority value of a given task.
4488 * @p: the task in question.
4489 *
4490 * This is the priority value as seen by users in /proc.
4491 * RT tasks are offset by -200. Normal tasks are centered
4492 * around 0, value goes from -16 to +15.
4493 */
36c8b586 4494int task_prio(const struct task_struct *p)
1da177e4
LT
4495{
4496 return p->prio - MAX_RT_PRIO;
4497}
4498
4499/**
4500 * task_nice - return the nice value of a given task.
4501 * @p: the task in question.
4502 */
36c8b586 4503int task_nice(const struct task_struct *p)
1da177e4
LT
4504{
4505 return TASK_NICE(p);
4506}
150d8bed 4507EXPORT_SYMBOL(task_nice);
1da177e4
LT
4508
4509/**
4510 * idle_cpu - is a given cpu idle currently?
4511 * @cpu: the processor in question.
4512 */
4513int idle_cpu(int cpu)
4514{
4515 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4516}
4517
1da177e4
LT
4518/**
4519 * idle_task - return the idle task for a given cpu.
4520 * @cpu: the processor in question.
4521 */
36c8b586 4522struct task_struct *idle_task(int cpu)
1da177e4
LT
4523{
4524 return cpu_rq(cpu)->idle;
4525}
4526
4527/**
4528 * find_process_by_pid - find a process with a matching PID value.
4529 * @pid: the pid in question.
4530 */
a9957449 4531static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4532{
228ebcbe 4533 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4534}
4535
4536/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4537static void
4538__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4539{
dd41f596 4540 BUG_ON(p->se.on_rq);
48f24c4d 4541
1da177e4
LT
4542 p->policy = policy;
4543 p->rt_priority = prio;
b29739f9
IM
4544 p->normal_prio = normal_prio(p);
4545 /* we are holding p->pi_lock already */
4546 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4547 if (rt_prio(p->prio))
4548 p->sched_class = &rt_sched_class;
4549 else
4550 p->sched_class = &fair_sched_class;
2dd73a4f 4551 set_load_weight(p);
1da177e4
LT
4552}
4553
c69e8d9c
DH
4554/*
4555 * check the target process has a UID that matches the current process's
4556 */
4557static bool check_same_owner(struct task_struct *p)
4558{
4559 const struct cred *cred = current_cred(), *pcred;
4560 bool match;
4561
4562 rcu_read_lock();
4563 pcred = __task_cred(p);
4564 match = (cred->euid == pcred->euid ||
4565 cred->euid == pcred->uid);
4566 rcu_read_unlock();
4567 return match;
4568}
4569
961ccddd
RR
4570static int __sched_setscheduler(struct task_struct *p, int policy,
4571 struct sched_param *param, bool user)
1da177e4 4572{
83b699ed 4573 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4574 unsigned long flags;
83ab0aa0 4575 const struct sched_class *prev_class;
70b97a7f 4576 struct rq *rq;
ca94c442 4577 int reset_on_fork;
1da177e4 4578
66e5393a
SR
4579 /* may grab non-irq protected spin_locks */
4580 BUG_ON(in_interrupt());
1da177e4
LT
4581recheck:
4582 /* double check policy once rq lock held */
ca94c442
LP
4583 if (policy < 0) {
4584 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4585 policy = oldpolicy = p->policy;
ca94c442
LP
4586 } else {
4587 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4588 policy &= ~SCHED_RESET_ON_FORK;
4589
4590 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4591 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4592 policy != SCHED_IDLE)
4593 return -EINVAL;
4594 }
4595
1da177e4
LT
4596 /*
4597 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4598 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4599 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4600 */
4601 if (param->sched_priority < 0 ||
95cdf3b7 4602 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4603 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4604 return -EINVAL;
e05606d3 4605 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4606 return -EINVAL;
4607
37e4ab3f
OC
4608 /*
4609 * Allow unprivileged RT tasks to decrease priority:
4610 */
961ccddd 4611 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4612 if (rt_policy(policy)) {
a44702e8
ON
4613 unsigned long rlim_rtprio =
4614 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4615
4616 /* can't set/change the rt policy */
4617 if (policy != p->policy && !rlim_rtprio)
4618 return -EPERM;
4619
4620 /* can't increase priority */
4621 if (param->sched_priority > p->rt_priority &&
4622 param->sched_priority > rlim_rtprio)
4623 return -EPERM;
4624 }
dd41f596
IM
4625 /*
4626 * Like positive nice levels, dont allow tasks to
4627 * move out of SCHED_IDLE either:
4628 */
4629 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4630 return -EPERM;
5fe1d75f 4631
37e4ab3f 4632 /* can't change other user's priorities */
c69e8d9c 4633 if (!check_same_owner(p))
37e4ab3f 4634 return -EPERM;
ca94c442
LP
4635
4636 /* Normal users shall not reset the sched_reset_on_fork flag */
4637 if (p->sched_reset_on_fork && !reset_on_fork)
4638 return -EPERM;
37e4ab3f 4639 }
1da177e4 4640
725aad24 4641 if (user) {
725aad24
JF
4642 retval = security_task_setscheduler(p, policy, param);
4643 if (retval)
4644 return retval;
4645 }
4646
b29739f9
IM
4647 /*
4648 * make sure no PI-waiters arrive (or leave) while we are
4649 * changing the priority of the task:
4650 */
1d615482 4651 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4652 /*
4653 * To be able to change p->policy safely, the apropriate
4654 * runqueue lock must be held.
4655 */
b29739f9 4656 rq = __task_rq_lock(p);
dc61b1d6
PZ
4657
4658#ifdef CONFIG_RT_GROUP_SCHED
4659 if (user) {
4660 /*
4661 * Do not allow realtime tasks into groups that have no runtime
4662 * assigned.
4663 */
4664 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4665 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4666 __task_rq_unlock(rq);
4667 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4668 return -EPERM;
4669 }
4670 }
4671#endif
4672
1da177e4
LT
4673 /* recheck policy now with rq lock held */
4674 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4675 policy = oldpolicy = -1;
b29739f9 4676 __task_rq_unlock(rq);
1d615482 4677 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4678 goto recheck;
4679 }
dd41f596 4680 on_rq = p->se.on_rq;
051a1d1a 4681 running = task_current(rq, p);
0e1f3483 4682 if (on_rq)
2e1cb74a 4683 deactivate_task(rq, p, 0);
0e1f3483
HS
4684 if (running)
4685 p->sched_class->put_prev_task(rq, p);
f6b53205 4686
ca94c442
LP
4687 p->sched_reset_on_fork = reset_on_fork;
4688
1da177e4 4689 oldprio = p->prio;
83ab0aa0 4690 prev_class = p->sched_class;
dd41f596 4691 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4692
0e1f3483
HS
4693 if (running)
4694 p->sched_class->set_curr_task(rq);
dd41f596
IM
4695 if (on_rq) {
4696 activate_task(rq, p, 0);
cb469845
SR
4697
4698 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4699 }
b29739f9 4700 __task_rq_unlock(rq);
1d615482 4701 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4702
95e02ca9
TG
4703 rt_mutex_adjust_pi(p);
4704
1da177e4
LT
4705 return 0;
4706}
961ccddd
RR
4707
4708/**
4709 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4710 * @p: the task in question.
4711 * @policy: new policy.
4712 * @param: structure containing the new RT priority.
4713 *
4714 * NOTE that the task may be already dead.
4715 */
4716int sched_setscheduler(struct task_struct *p, int policy,
4717 struct sched_param *param)
4718{
4719 return __sched_setscheduler(p, policy, param, true);
4720}
1da177e4
LT
4721EXPORT_SYMBOL_GPL(sched_setscheduler);
4722
961ccddd
RR
4723/**
4724 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4725 * @p: the task in question.
4726 * @policy: new policy.
4727 * @param: structure containing the new RT priority.
4728 *
4729 * Just like sched_setscheduler, only don't bother checking if the
4730 * current context has permission. For example, this is needed in
4731 * stop_machine(): we create temporary high priority worker threads,
4732 * but our caller might not have that capability.
4733 */
4734int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4735 struct sched_param *param)
4736{
4737 return __sched_setscheduler(p, policy, param, false);
4738}
4739
95cdf3b7
IM
4740static int
4741do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4742{
1da177e4
LT
4743 struct sched_param lparam;
4744 struct task_struct *p;
36c8b586 4745 int retval;
1da177e4
LT
4746
4747 if (!param || pid < 0)
4748 return -EINVAL;
4749 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4750 return -EFAULT;
5fe1d75f
ON
4751
4752 rcu_read_lock();
4753 retval = -ESRCH;
1da177e4 4754 p = find_process_by_pid(pid);
5fe1d75f
ON
4755 if (p != NULL)
4756 retval = sched_setscheduler(p, policy, &lparam);
4757 rcu_read_unlock();
36c8b586 4758
1da177e4
LT
4759 return retval;
4760}
4761
4762/**
4763 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4764 * @pid: the pid in question.
4765 * @policy: new policy.
4766 * @param: structure containing the new RT priority.
4767 */
5add95d4
HC
4768SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4769 struct sched_param __user *, param)
1da177e4 4770{
c21761f1
JB
4771 /* negative values for policy are not valid */
4772 if (policy < 0)
4773 return -EINVAL;
4774
1da177e4
LT
4775 return do_sched_setscheduler(pid, policy, param);
4776}
4777
4778/**
4779 * sys_sched_setparam - set/change the RT priority of a thread
4780 * @pid: the pid in question.
4781 * @param: structure containing the new RT priority.
4782 */
5add95d4 4783SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4784{
4785 return do_sched_setscheduler(pid, -1, param);
4786}
4787
4788/**
4789 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4790 * @pid: the pid in question.
4791 */
5add95d4 4792SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4793{
36c8b586 4794 struct task_struct *p;
3a5c359a 4795 int retval;
1da177e4
LT
4796
4797 if (pid < 0)
3a5c359a 4798 return -EINVAL;
1da177e4
LT
4799
4800 retval = -ESRCH;
5fe85be0 4801 rcu_read_lock();
1da177e4
LT
4802 p = find_process_by_pid(pid);
4803 if (p) {
4804 retval = security_task_getscheduler(p);
4805 if (!retval)
ca94c442
LP
4806 retval = p->policy
4807 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4808 }
5fe85be0 4809 rcu_read_unlock();
1da177e4
LT
4810 return retval;
4811}
4812
4813/**
ca94c442 4814 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4815 * @pid: the pid in question.
4816 * @param: structure containing the RT priority.
4817 */
5add95d4 4818SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4819{
4820 struct sched_param lp;
36c8b586 4821 struct task_struct *p;
3a5c359a 4822 int retval;
1da177e4
LT
4823
4824 if (!param || pid < 0)
3a5c359a 4825 return -EINVAL;
1da177e4 4826
5fe85be0 4827 rcu_read_lock();
1da177e4
LT
4828 p = find_process_by_pid(pid);
4829 retval = -ESRCH;
4830 if (!p)
4831 goto out_unlock;
4832
4833 retval = security_task_getscheduler(p);
4834 if (retval)
4835 goto out_unlock;
4836
4837 lp.sched_priority = p->rt_priority;
5fe85be0 4838 rcu_read_unlock();
1da177e4
LT
4839
4840 /*
4841 * This one might sleep, we cannot do it with a spinlock held ...
4842 */
4843 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4844
1da177e4
LT
4845 return retval;
4846
4847out_unlock:
5fe85be0 4848 rcu_read_unlock();
1da177e4
LT
4849 return retval;
4850}
4851
96f874e2 4852long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4853{
5a16f3d3 4854 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4855 struct task_struct *p;
4856 int retval;
1da177e4 4857
95402b38 4858 get_online_cpus();
23f5d142 4859 rcu_read_lock();
1da177e4
LT
4860
4861 p = find_process_by_pid(pid);
4862 if (!p) {
23f5d142 4863 rcu_read_unlock();
95402b38 4864 put_online_cpus();
1da177e4
LT
4865 return -ESRCH;
4866 }
4867
23f5d142 4868 /* Prevent p going away */
1da177e4 4869 get_task_struct(p);
23f5d142 4870 rcu_read_unlock();
1da177e4 4871
5a16f3d3
RR
4872 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4873 retval = -ENOMEM;
4874 goto out_put_task;
4875 }
4876 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4877 retval = -ENOMEM;
4878 goto out_free_cpus_allowed;
4879 }
1da177e4 4880 retval = -EPERM;
c69e8d9c 4881 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4882 goto out_unlock;
4883
e7834f8f
DQ
4884 retval = security_task_setscheduler(p, 0, NULL);
4885 if (retval)
4886 goto out_unlock;
4887
5a16f3d3
RR
4888 cpuset_cpus_allowed(p, cpus_allowed);
4889 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4890 again:
5a16f3d3 4891 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4892
8707d8b8 4893 if (!retval) {
5a16f3d3
RR
4894 cpuset_cpus_allowed(p, cpus_allowed);
4895 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4896 /*
4897 * We must have raced with a concurrent cpuset
4898 * update. Just reset the cpus_allowed to the
4899 * cpuset's cpus_allowed
4900 */
5a16f3d3 4901 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4902 goto again;
4903 }
4904 }
1da177e4 4905out_unlock:
5a16f3d3
RR
4906 free_cpumask_var(new_mask);
4907out_free_cpus_allowed:
4908 free_cpumask_var(cpus_allowed);
4909out_put_task:
1da177e4 4910 put_task_struct(p);
95402b38 4911 put_online_cpus();
1da177e4
LT
4912 return retval;
4913}
4914
4915static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4916 struct cpumask *new_mask)
1da177e4 4917{
96f874e2
RR
4918 if (len < cpumask_size())
4919 cpumask_clear(new_mask);
4920 else if (len > cpumask_size())
4921 len = cpumask_size();
4922
1da177e4
LT
4923 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4924}
4925
4926/**
4927 * sys_sched_setaffinity - set the cpu affinity of a process
4928 * @pid: pid of the process
4929 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4930 * @user_mask_ptr: user-space pointer to the new cpu mask
4931 */
5add95d4
HC
4932SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4933 unsigned long __user *, user_mask_ptr)
1da177e4 4934{
5a16f3d3 4935 cpumask_var_t new_mask;
1da177e4
LT
4936 int retval;
4937
5a16f3d3
RR
4938 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4939 return -ENOMEM;
1da177e4 4940
5a16f3d3
RR
4941 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4942 if (retval == 0)
4943 retval = sched_setaffinity(pid, new_mask);
4944 free_cpumask_var(new_mask);
4945 return retval;
1da177e4
LT
4946}
4947
96f874e2 4948long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4949{
36c8b586 4950 struct task_struct *p;
31605683
TG
4951 unsigned long flags;
4952 struct rq *rq;
1da177e4 4953 int retval;
1da177e4 4954
95402b38 4955 get_online_cpus();
23f5d142 4956 rcu_read_lock();
1da177e4
LT
4957
4958 retval = -ESRCH;
4959 p = find_process_by_pid(pid);
4960 if (!p)
4961 goto out_unlock;
4962
e7834f8f
DQ
4963 retval = security_task_getscheduler(p);
4964 if (retval)
4965 goto out_unlock;
4966
31605683 4967 rq = task_rq_lock(p, &flags);
96f874e2 4968 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4969 task_rq_unlock(rq, &flags);
1da177e4
LT
4970
4971out_unlock:
23f5d142 4972 rcu_read_unlock();
95402b38 4973 put_online_cpus();
1da177e4 4974
9531b62f 4975 return retval;
1da177e4
LT
4976}
4977
4978/**
4979 * sys_sched_getaffinity - get the cpu affinity of a process
4980 * @pid: pid of the process
4981 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4982 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4983 */
5add95d4
HC
4984SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4985 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4986{
4987 int ret;
f17c8607 4988 cpumask_var_t mask;
1da177e4 4989
84fba5ec 4990 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4991 return -EINVAL;
4992 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4993 return -EINVAL;
4994
f17c8607
RR
4995 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4996 return -ENOMEM;
1da177e4 4997
f17c8607
RR
4998 ret = sched_getaffinity(pid, mask);
4999 if (ret == 0) {
8bc037fb 5000 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5001
5002 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5003 ret = -EFAULT;
5004 else
cd3d8031 5005 ret = retlen;
f17c8607
RR
5006 }
5007 free_cpumask_var(mask);
1da177e4 5008
f17c8607 5009 return ret;
1da177e4
LT
5010}
5011
5012/**
5013 * sys_sched_yield - yield the current processor to other threads.
5014 *
dd41f596
IM
5015 * This function yields the current CPU to other tasks. If there are no
5016 * other threads running on this CPU then this function will return.
1da177e4 5017 */
5add95d4 5018SYSCALL_DEFINE0(sched_yield)
1da177e4 5019{
70b97a7f 5020 struct rq *rq = this_rq_lock();
1da177e4 5021
2d72376b 5022 schedstat_inc(rq, yld_count);
4530d7ab 5023 current->sched_class->yield_task(rq);
1da177e4
LT
5024
5025 /*
5026 * Since we are going to call schedule() anyway, there's
5027 * no need to preempt or enable interrupts:
5028 */
5029 __release(rq->lock);
8a25d5de 5030 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5031 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5032 preempt_enable_no_resched();
5033
5034 schedule();
5035
5036 return 0;
5037}
5038
d86ee480
PZ
5039static inline int should_resched(void)
5040{
5041 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5042}
5043
e7b38404 5044static void __cond_resched(void)
1da177e4 5045{
e7aaaa69
FW
5046 add_preempt_count(PREEMPT_ACTIVE);
5047 schedule();
5048 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5049}
5050
02b67cc3 5051int __sched _cond_resched(void)
1da177e4 5052{
d86ee480 5053 if (should_resched()) {
1da177e4
LT
5054 __cond_resched();
5055 return 1;
5056 }
5057 return 0;
5058}
02b67cc3 5059EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5060
5061/*
613afbf8 5062 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5063 * call schedule, and on return reacquire the lock.
5064 *
41a2d6cf 5065 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5066 * operations here to prevent schedule() from being called twice (once via
5067 * spin_unlock(), once by hand).
5068 */
613afbf8 5069int __cond_resched_lock(spinlock_t *lock)
1da177e4 5070{
d86ee480 5071 int resched = should_resched();
6df3cecb
JK
5072 int ret = 0;
5073
f607c668
PZ
5074 lockdep_assert_held(lock);
5075
95c354fe 5076 if (spin_needbreak(lock) || resched) {
1da177e4 5077 spin_unlock(lock);
d86ee480 5078 if (resched)
95c354fe
NP
5079 __cond_resched();
5080 else
5081 cpu_relax();
6df3cecb 5082 ret = 1;
1da177e4 5083 spin_lock(lock);
1da177e4 5084 }
6df3cecb 5085 return ret;
1da177e4 5086}
613afbf8 5087EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5088
613afbf8 5089int __sched __cond_resched_softirq(void)
1da177e4
LT
5090{
5091 BUG_ON(!in_softirq());
5092
d86ee480 5093 if (should_resched()) {
98d82567 5094 local_bh_enable();
1da177e4
LT
5095 __cond_resched();
5096 local_bh_disable();
5097 return 1;
5098 }
5099 return 0;
5100}
613afbf8 5101EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5102
1da177e4
LT
5103/**
5104 * yield - yield the current processor to other threads.
5105 *
72fd4a35 5106 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5107 * thread runnable and calls sys_sched_yield().
5108 */
5109void __sched yield(void)
5110{
5111 set_current_state(TASK_RUNNING);
5112 sys_sched_yield();
5113}
1da177e4
LT
5114EXPORT_SYMBOL(yield);
5115
5116/*
41a2d6cf 5117 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5118 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5119 */
5120void __sched io_schedule(void)
5121{
54d35f29 5122 struct rq *rq = raw_rq();
1da177e4 5123
0ff92245 5124 delayacct_blkio_start();
1da177e4 5125 atomic_inc(&rq->nr_iowait);
8f0dfc34 5126 current->in_iowait = 1;
1da177e4 5127 schedule();
8f0dfc34 5128 current->in_iowait = 0;
1da177e4 5129 atomic_dec(&rq->nr_iowait);
0ff92245 5130 delayacct_blkio_end();
1da177e4 5131}
1da177e4
LT
5132EXPORT_SYMBOL(io_schedule);
5133
5134long __sched io_schedule_timeout(long timeout)
5135{
54d35f29 5136 struct rq *rq = raw_rq();
1da177e4
LT
5137 long ret;
5138
0ff92245 5139 delayacct_blkio_start();
1da177e4 5140 atomic_inc(&rq->nr_iowait);
8f0dfc34 5141 current->in_iowait = 1;
1da177e4 5142 ret = schedule_timeout(timeout);
8f0dfc34 5143 current->in_iowait = 0;
1da177e4 5144 atomic_dec(&rq->nr_iowait);
0ff92245 5145 delayacct_blkio_end();
1da177e4
LT
5146 return ret;
5147}
5148
5149/**
5150 * sys_sched_get_priority_max - return maximum RT priority.
5151 * @policy: scheduling class.
5152 *
5153 * this syscall returns the maximum rt_priority that can be used
5154 * by a given scheduling class.
5155 */
5add95d4 5156SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5157{
5158 int ret = -EINVAL;
5159
5160 switch (policy) {
5161 case SCHED_FIFO:
5162 case SCHED_RR:
5163 ret = MAX_USER_RT_PRIO-1;
5164 break;
5165 case SCHED_NORMAL:
b0a9499c 5166 case SCHED_BATCH:
dd41f596 5167 case SCHED_IDLE:
1da177e4
LT
5168 ret = 0;
5169 break;
5170 }
5171 return ret;
5172}
5173
5174/**
5175 * sys_sched_get_priority_min - return minimum RT priority.
5176 * @policy: scheduling class.
5177 *
5178 * this syscall returns the minimum rt_priority that can be used
5179 * by a given scheduling class.
5180 */
5add95d4 5181SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5182{
5183 int ret = -EINVAL;
5184
5185 switch (policy) {
5186 case SCHED_FIFO:
5187 case SCHED_RR:
5188 ret = 1;
5189 break;
5190 case SCHED_NORMAL:
b0a9499c 5191 case SCHED_BATCH:
dd41f596 5192 case SCHED_IDLE:
1da177e4
LT
5193 ret = 0;
5194 }
5195 return ret;
5196}
5197
5198/**
5199 * sys_sched_rr_get_interval - return the default timeslice of a process.
5200 * @pid: pid of the process.
5201 * @interval: userspace pointer to the timeslice value.
5202 *
5203 * this syscall writes the default timeslice value of a given process
5204 * into the user-space timespec buffer. A value of '0' means infinity.
5205 */
17da2bd9 5206SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5207 struct timespec __user *, interval)
1da177e4 5208{
36c8b586 5209 struct task_struct *p;
a4ec24b4 5210 unsigned int time_slice;
dba091b9
TG
5211 unsigned long flags;
5212 struct rq *rq;
3a5c359a 5213 int retval;
1da177e4 5214 struct timespec t;
1da177e4
LT
5215
5216 if (pid < 0)
3a5c359a 5217 return -EINVAL;
1da177e4
LT
5218
5219 retval = -ESRCH;
1a551ae7 5220 rcu_read_lock();
1da177e4
LT
5221 p = find_process_by_pid(pid);
5222 if (!p)
5223 goto out_unlock;
5224
5225 retval = security_task_getscheduler(p);
5226 if (retval)
5227 goto out_unlock;
5228
dba091b9
TG
5229 rq = task_rq_lock(p, &flags);
5230 time_slice = p->sched_class->get_rr_interval(rq, p);
5231 task_rq_unlock(rq, &flags);
a4ec24b4 5232
1a551ae7 5233 rcu_read_unlock();
a4ec24b4 5234 jiffies_to_timespec(time_slice, &t);
1da177e4 5235 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5236 return retval;
3a5c359a 5237
1da177e4 5238out_unlock:
1a551ae7 5239 rcu_read_unlock();
1da177e4
LT
5240 return retval;
5241}
5242
7c731e0a 5243static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5244
82a1fcb9 5245void sched_show_task(struct task_struct *p)
1da177e4 5246{
1da177e4 5247 unsigned long free = 0;
36c8b586 5248 unsigned state;
1da177e4 5249
1da177e4 5250 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5251 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5252 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5253#if BITS_PER_LONG == 32
1da177e4 5254 if (state == TASK_RUNNING)
3df0fc5b 5255 printk(KERN_CONT " running ");
1da177e4 5256 else
3df0fc5b 5257 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5258#else
5259 if (state == TASK_RUNNING)
3df0fc5b 5260 printk(KERN_CONT " running task ");
1da177e4 5261 else
3df0fc5b 5262 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5263#endif
5264#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5265 free = stack_not_used(p);
1da177e4 5266#endif
3df0fc5b 5267 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5268 task_pid_nr(p), task_pid_nr(p->real_parent),
5269 (unsigned long)task_thread_info(p)->flags);
1da177e4 5270
5fb5e6de 5271 show_stack(p, NULL);
1da177e4
LT
5272}
5273
e59e2ae2 5274void show_state_filter(unsigned long state_filter)
1da177e4 5275{
36c8b586 5276 struct task_struct *g, *p;
1da177e4 5277
4bd77321 5278#if BITS_PER_LONG == 32
3df0fc5b
PZ
5279 printk(KERN_INFO
5280 " task PC stack pid father\n");
1da177e4 5281#else
3df0fc5b
PZ
5282 printk(KERN_INFO
5283 " task PC stack pid father\n");
1da177e4
LT
5284#endif
5285 read_lock(&tasklist_lock);
5286 do_each_thread(g, p) {
5287 /*
5288 * reset the NMI-timeout, listing all files on a slow
5289 * console might take alot of time:
5290 */
5291 touch_nmi_watchdog();
39bc89fd 5292 if (!state_filter || (p->state & state_filter))
82a1fcb9 5293 sched_show_task(p);
1da177e4
LT
5294 } while_each_thread(g, p);
5295
04c9167f
JF
5296 touch_all_softlockup_watchdogs();
5297
dd41f596
IM
5298#ifdef CONFIG_SCHED_DEBUG
5299 sysrq_sched_debug_show();
5300#endif
1da177e4 5301 read_unlock(&tasklist_lock);
e59e2ae2
IM
5302 /*
5303 * Only show locks if all tasks are dumped:
5304 */
93335a21 5305 if (!state_filter)
e59e2ae2 5306 debug_show_all_locks();
1da177e4
LT
5307}
5308
1df21055
IM
5309void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5310{
dd41f596 5311 idle->sched_class = &idle_sched_class;
1df21055
IM
5312}
5313
f340c0d1
IM
5314/**
5315 * init_idle - set up an idle thread for a given CPU
5316 * @idle: task in question
5317 * @cpu: cpu the idle task belongs to
5318 *
5319 * NOTE: this function does not set the idle thread's NEED_RESCHED
5320 * flag, to make booting more robust.
5321 */
5c1e1767 5322void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5323{
70b97a7f 5324 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5325 unsigned long flags;
5326
05fa785c 5327 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5328
dd41f596 5329 __sched_fork(idle);
06b83b5f 5330 idle->state = TASK_RUNNING;
dd41f596
IM
5331 idle->se.exec_start = sched_clock();
5332
96f874e2 5333 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5334 __set_task_cpu(idle, cpu);
1da177e4 5335
1da177e4 5336 rq->curr = rq->idle = idle;
4866cde0
NP
5337#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5338 idle->oncpu = 1;
5339#endif
05fa785c 5340 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5341
5342 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5343#if defined(CONFIG_PREEMPT)
5344 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5345#else
a1261f54 5346 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5347#endif
dd41f596
IM
5348 /*
5349 * The idle tasks have their own, simple scheduling class:
5350 */
5351 idle->sched_class = &idle_sched_class;
fb52607a 5352 ftrace_graph_init_task(idle);
1da177e4
LT
5353}
5354
5355/*
5356 * In a system that switches off the HZ timer nohz_cpu_mask
5357 * indicates which cpus entered this state. This is used
5358 * in the rcu update to wait only for active cpus. For system
5359 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5360 * always be CPU_BITS_NONE.
1da177e4 5361 */
6a7b3dc3 5362cpumask_var_t nohz_cpu_mask;
1da177e4 5363
19978ca6
IM
5364/*
5365 * Increase the granularity value when there are more CPUs,
5366 * because with more CPUs the 'effective latency' as visible
5367 * to users decreases. But the relationship is not linear,
5368 * so pick a second-best guess by going with the log2 of the
5369 * number of CPUs.
5370 *
5371 * This idea comes from the SD scheduler of Con Kolivas:
5372 */
acb4a848 5373static int get_update_sysctl_factor(void)
19978ca6 5374{
4ca3ef71 5375 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5376 unsigned int factor;
5377
5378 switch (sysctl_sched_tunable_scaling) {
5379 case SCHED_TUNABLESCALING_NONE:
5380 factor = 1;
5381 break;
5382 case SCHED_TUNABLESCALING_LINEAR:
5383 factor = cpus;
5384 break;
5385 case SCHED_TUNABLESCALING_LOG:
5386 default:
5387 factor = 1 + ilog2(cpus);
5388 break;
5389 }
19978ca6 5390
acb4a848
CE
5391 return factor;
5392}
19978ca6 5393
acb4a848
CE
5394static void update_sysctl(void)
5395{
5396 unsigned int factor = get_update_sysctl_factor();
19978ca6 5397
0bcdcf28
CE
5398#define SET_SYSCTL(name) \
5399 (sysctl_##name = (factor) * normalized_sysctl_##name)
5400 SET_SYSCTL(sched_min_granularity);
5401 SET_SYSCTL(sched_latency);
5402 SET_SYSCTL(sched_wakeup_granularity);
5403 SET_SYSCTL(sched_shares_ratelimit);
5404#undef SET_SYSCTL
5405}
55cd5340 5406
0bcdcf28
CE
5407static inline void sched_init_granularity(void)
5408{
5409 update_sysctl();
19978ca6
IM
5410}
5411
1da177e4
LT
5412#ifdef CONFIG_SMP
5413/*
5414 * This is how migration works:
5415 *
969c7921
TH
5416 * 1) we invoke migration_cpu_stop() on the target CPU using
5417 * stop_one_cpu().
5418 * 2) stopper starts to run (implicitly forcing the migrated thread
5419 * off the CPU)
5420 * 3) it checks whether the migrated task is still in the wrong runqueue.
5421 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5422 * it and puts it into the right queue.
969c7921
TH
5423 * 5) stopper completes and stop_one_cpu() returns and the migration
5424 * is done.
1da177e4
LT
5425 */
5426
5427/*
5428 * Change a given task's CPU affinity. Migrate the thread to a
5429 * proper CPU and schedule it away if the CPU it's executing on
5430 * is removed from the allowed bitmask.
5431 *
5432 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5433 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5434 * call is not atomic; no spinlocks may be held.
5435 */
96f874e2 5436int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5437{
5438 unsigned long flags;
70b97a7f 5439 struct rq *rq;
969c7921 5440 unsigned int dest_cpu;
48f24c4d 5441 int ret = 0;
1da177e4 5442
65cc8e48
PZ
5443 /*
5444 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5445 * drop the rq->lock and still rely on ->cpus_allowed.
5446 */
5447again:
5448 while (task_is_waking(p))
5449 cpu_relax();
1da177e4 5450 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5451 if (task_is_waking(p)) {
5452 task_rq_unlock(rq, &flags);
5453 goto again;
5454 }
e2912009 5455
6ad4c188 5456 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5457 ret = -EINVAL;
5458 goto out;
5459 }
5460
9985b0ba 5461 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5462 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5463 ret = -EINVAL;
5464 goto out;
5465 }
5466
73fe6aae 5467 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5468 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5469 else {
96f874e2
RR
5470 cpumask_copy(&p->cpus_allowed, new_mask);
5471 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5472 }
5473
1da177e4 5474 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5475 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5476 goto out;
5477
969c7921
TH
5478 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5479 if (migrate_task(p, dest_cpu)) {
5480 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5481 /* Need help from migration thread: drop lock and wait. */
5482 task_rq_unlock(rq, &flags);
969c7921 5483 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5484 tlb_migrate_finish(p->mm);
5485 return 0;
5486 }
5487out:
5488 task_rq_unlock(rq, &flags);
48f24c4d 5489
1da177e4
LT
5490 return ret;
5491}
cd8ba7cd 5492EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5493
5494/*
41a2d6cf 5495 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5496 * this because either it can't run here any more (set_cpus_allowed()
5497 * away from this CPU, or CPU going down), or because we're
5498 * attempting to rebalance this task on exec (sched_exec).
5499 *
5500 * So we race with normal scheduler movements, but that's OK, as long
5501 * as the task is no longer on this CPU.
efc30814
KK
5502 *
5503 * Returns non-zero if task was successfully migrated.
1da177e4 5504 */
efc30814 5505static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5506{
70b97a7f 5507 struct rq *rq_dest, *rq_src;
e2912009 5508 int ret = 0;
1da177e4 5509
e761b772 5510 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5511 return ret;
1da177e4
LT
5512
5513 rq_src = cpu_rq(src_cpu);
5514 rq_dest = cpu_rq(dest_cpu);
5515
5516 double_rq_lock(rq_src, rq_dest);
5517 /* Already moved. */
5518 if (task_cpu(p) != src_cpu)
b1e38734 5519 goto done;
1da177e4 5520 /* Affinity changed (again). */
96f874e2 5521 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5522 goto fail;
1da177e4 5523
e2912009
PZ
5524 /*
5525 * If we're not on a rq, the next wake-up will ensure we're
5526 * placed properly.
5527 */
5528 if (p->se.on_rq) {
2e1cb74a 5529 deactivate_task(rq_src, p, 0);
e2912009 5530 set_task_cpu(p, dest_cpu);
dd41f596 5531 activate_task(rq_dest, p, 0);
15afe09b 5532 check_preempt_curr(rq_dest, p, 0);
1da177e4 5533 }
b1e38734 5534done:
efc30814 5535 ret = 1;
b1e38734 5536fail:
1da177e4 5537 double_rq_unlock(rq_src, rq_dest);
efc30814 5538 return ret;
1da177e4
LT
5539}
5540
5541/*
969c7921
TH
5542 * migration_cpu_stop - this will be executed by a highprio stopper thread
5543 * and performs thread migration by bumping thread off CPU then
5544 * 'pushing' onto another runqueue.
1da177e4 5545 */
969c7921 5546static int migration_cpu_stop(void *data)
1da177e4 5547{
969c7921 5548 struct migration_arg *arg = data;
f7b4cddc 5549
969c7921
TH
5550 /*
5551 * The original target cpu might have gone down and we might
5552 * be on another cpu but it doesn't matter.
5553 */
f7b4cddc 5554 local_irq_disable();
969c7921 5555 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5556 local_irq_enable();
1da177e4 5557 return 0;
f7b4cddc
ON
5558}
5559
1da177e4 5560#ifdef CONFIG_HOTPLUG_CPU
054b9108 5561/*
3a4fa0a2 5562 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5563 */
6a1bdc1b 5564void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5565{
1445c08d
ON
5566 struct rq *rq = cpu_rq(dead_cpu);
5567 int needs_cpu, uninitialized_var(dest_cpu);
5568 unsigned long flags;
e76bd8d9 5569
1445c08d 5570 local_irq_save(flags);
e76bd8d9 5571
1445c08d
ON
5572 raw_spin_lock(&rq->lock);
5573 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5574 if (needs_cpu)
5575 dest_cpu = select_fallback_rq(dead_cpu, p);
5576 raw_spin_unlock(&rq->lock);
c1804d54
ON
5577 /*
5578 * It can only fail if we race with set_cpus_allowed(),
5579 * in the racer should migrate the task anyway.
5580 */
1445c08d 5581 if (needs_cpu)
c1804d54 5582 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5583 local_irq_restore(flags);
1da177e4
LT
5584}
5585
5586/*
5587 * While a dead CPU has no uninterruptible tasks queued at this point,
5588 * it might still have a nonzero ->nr_uninterruptible counter, because
5589 * for performance reasons the counter is not stricly tracking tasks to
5590 * their home CPUs. So we just add the counter to another CPU's counter,
5591 * to keep the global sum constant after CPU-down:
5592 */
70b97a7f 5593static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5594{
6ad4c188 5595 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5596 unsigned long flags;
5597
5598 local_irq_save(flags);
5599 double_rq_lock(rq_src, rq_dest);
5600 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5601 rq_src->nr_uninterruptible = 0;
5602 double_rq_unlock(rq_src, rq_dest);
5603 local_irq_restore(flags);
5604}
5605
5606/* Run through task list and migrate tasks from the dead cpu. */
5607static void migrate_live_tasks(int src_cpu)
5608{
48f24c4d 5609 struct task_struct *p, *t;
1da177e4 5610
f7b4cddc 5611 read_lock(&tasklist_lock);
1da177e4 5612
48f24c4d
IM
5613 do_each_thread(t, p) {
5614 if (p == current)
1da177e4
LT
5615 continue;
5616
48f24c4d
IM
5617 if (task_cpu(p) == src_cpu)
5618 move_task_off_dead_cpu(src_cpu, p);
5619 } while_each_thread(t, p);
1da177e4 5620
f7b4cddc 5621 read_unlock(&tasklist_lock);
1da177e4
LT
5622}
5623
dd41f596
IM
5624/*
5625 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5626 * It does so by boosting its priority to highest possible.
5627 * Used by CPU offline code.
1da177e4
LT
5628 */
5629void sched_idle_next(void)
5630{
48f24c4d 5631 int this_cpu = smp_processor_id();
70b97a7f 5632 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5633 struct task_struct *p = rq->idle;
5634 unsigned long flags;
5635
5636 /* cpu has to be offline */
48f24c4d 5637 BUG_ON(cpu_online(this_cpu));
1da177e4 5638
48f24c4d
IM
5639 /*
5640 * Strictly not necessary since rest of the CPUs are stopped by now
5641 * and interrupts disabled on the current cpu.
1da177e4 5642 */
05fa785c 5643 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5644
dd41f596 5645 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5646
94bc9a7b 5647 activate_task(rq, p, 0);
1da177e4 5648
05fa785c 5649 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5650}
5651
48f24c4d
IM
5652/*
5653 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5654 * offline.
5655 */
5656void idle_task_exit(void)
5657{
5658 struct mm_struct *mm = current->active_mm;
5659
5660 BUG_ON(cpu_online(smp_processor_id()));
5661
5662 if (mm != &init_mm)
5663 switch_mm(mm, &init_mm, current);
5664 mmdrop(mm);
5665}
5666
054b9108 5667/* called under rq->lock with disabled interrupts */
36c8b586 5668static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5669{
70b97a7f 5670 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5671
5672 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5673 BUG_ON(!p->exit_state);
1da177e4
LT
5674
5675 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5676 BUG_ON(p->state == TASK_DEAD);
1da177e4 5677
48f24c4d 5678 get_task_struct(p);
1da177e4
LT
5679
5680 /*
5681 * Drop lock around migration; if someone else moves it,
41a2d6cf 5682 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5683 * fine.
5684 */
05fa785c 5685 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5686 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5687 raw_spin_lock_irq(&rq->lock);
1da177e4 5688
48f24c4d 5689 put_task_struct(p);
1da177e4
LT
5690}
5691
5692/* release_task() removes task from tasklist, so we won't find dead tasks. */
5693static void migrate_dead_tasks(unsigned int dead_cpu)
5694{
70b97a7f 5695 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5696 struct task_struct *next;
48f24c4d 5697
dd41f596
IM
5698 for ( ; ; ) {
5699 if (!rq->nr_running)
5700 break;
b67802ea 5701 next = pick_next_task(rq);
dd41f596
IM
5702 if (!next)
5703 break;
79c53799 5704 next->sched_class->put_prev_task(rq, next);
dd41f596 5705 migrate_dead(dead_cpu, next);
e692ab53 5706
1da177e4
LT
5707 }
5708}
dce48a84
TG
5709
5710/*
5711 * remove the tasks which were accounted by rq from calc_load_tasks.
5712 */
5713static void calc_global_load_remove(struct rq *rq)
5714{
5715 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5716 rq->calc_load_active = 0;
dce48a84 5717}
1da177e4
LT
5718#endif /* CONFIG_HOTPLUG_CPU */
5719
e692ab53
NP
5720#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5721
5722static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5723 {
5724 .procname = "sched_domain",
c57baf1e 5725 .mode = 0555,
e0361851 5726 },
56992309 5727 {}
e692ab53
NP
5728};
5729
5730static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5731 {
5732 .procname = "kernel",
c57baf1e 5733 .mode = 0555,
e0361851
AD
5734 .child = sd_ctl_dir,
5735 },
56992309 5736 {}
e692ab53
NP
5737};
5738
5739static struct ctl_table *sd_alloc_ctl_entry(int n)
5740{
5741 struct ctl_table *entry =
5cf9f062 5742 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5743
e692ab53
NP
5744 return entry;
5745}
5746
6382bc90
MM
5747static void sd_free_ctl_entry(struct ctl_table **tablep)
5748{
cd790076 5749 struct ctl_table *entry;
6382bc90 5750
cd790076
MM
5751 /*
5752 * In the intermediate directories, both the child directory and
5753 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5754 * will always be set. In the lowest directory the names are
cd790076
MM
5755 * static strings and all have proc handlers.
5756 */
5757 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5758 if (entry->child)
5759 sd_free_ctl_entry(&entry->child);
cd790076
MM
5760 if (entry->proc_handler == NULL)
5761 kfree(entry->procname);
5762 }
6382bc90
MM
5763
5764 kfree(*tablep);
5765 *tablep = NULL;
5766}
5767
e692ab53 5768static void
e0361851 5769set_table_entry(struct ctl_table *entry,
e692ab53
NP
5770 const char *procname, void *data, int maxlen,
5771 mode_t mode, proc_handler *proc_handler)
5772{
e692ab53
NP
5773 entry->procname = procname;
5774 entry->data = data;
5775 entry->maxlen = maxlen;
5776 entry->mode = mode;
5777 entry->proc_handler = proc_handler;
5778}
5779
5780static struct ctl_table *
5781sd_alloc_ctl_domain_table(struct sched_domain *sd)
5782{
a5d8c348 5783 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5784
ad1cdc1d
MM
5785 if (table == NULL)
5786 return NULL;
5787
e0361851 5788 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5789 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5790 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5791 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5792 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5793 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5794 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5795 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5796 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5797 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5798 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5799 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5800 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5801 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5802 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5803 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5804 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5805 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5806 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5807 &sd->cache_nice_tries,
5808 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5809 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5810 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5811 set_table_entry(&table[11], "name", sd->name,
5812 CORENAME_MAX_SIZE, 0444, proc_dostring);
5813 /* &table[12] is terminator */
e692ab53
NP
5814
5815 return table;
5816}
5817
9a4e7159 5818static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5819{
5820 struct ctl_table *entry, *table;
5821 struct sched_domain *sd;
5822 int domain_num = 0, i;
5823 char buf[32];
5824
5825 for_each_domain(cpu, sd)
5826 domain_num++;
5827 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5828 if (table == NULL)
5829 return NULL;
e692ab53
NP
5830
5831 i = 0;
5832 for_each_domain(cpu, sd) {
5833 snprintf(buf, 32, "domain%d", i);
e692ab53 5834 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5835 entry->mode = 0555;
e692ab53
NP
5836 entry->child = sd_alloc_ctl_domain_table(sd);
5837 entry++;
5838 i++;
5839 }
5840 return table;
5841}
5842
5843static struct ctl_table_header *sd_sysctl_header;
6382bc90 5844static void register_sched_domain_sysctl(void)
e692ab53 5845{
6ad4c188 5846 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5847 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5848 char buf[32];
5849
7378547f
MM
5850 WARN_ON(sd_ctl_dir[0].child);
5851 sd_ctl_dir[0].child = entry;
5852
ad1cdc1d
MM
5853 if (entry == NULL)
5854 return;
5855
6ad4c188 5856 for_each_possible_cpu(i) {
e692ab53 5857 snprintf(buf, 32, "cpu%d", i);
e692ab53 5858 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5859 entry->mode = 0555;
e692ab53 5860 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5861 entry++;
e692ab53 5862 }
7378547f
MM
5863
5864 WARN_ON(sd_sysctl_header);
e692ab53
NP
5865 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5866}
6382bc90 5867
7378547f 5868/* may be called multiple times per register */
6382bc90
MM
5869static void unregister_sched_domain_sysctl(void)
5870{
7378547f
MM
5871 if (sd_sysctl_header)
5872 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5873 sd_sysctl_header = NULL;
7378547f
MM
5874 if (sd_ctl_dir[0].child)
5875 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5876}
e692ab53 5877#else
6382bc90
MM
5878static void register_sched_domain_sysctl(void)
5879{
5880}
5881static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5882{
5883}
5884#endif
5885
1f11eb6a
GH
5886static void set_rq_online(struct rq *rq)
5887{
5888 if (!rq->online) {
5889 const struct sched_class *class;
5890
c6c4927b 5891 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5892 rq->online = 1;
5893
5894 for_each_class(class) {
5895 if (class->rq_online)
5896 class->rq_online(rq);
5897 }
5898 }
5899}
5900
5901static void set_rq_offline(struct rq *rq)
5902{
5903 if (rq->online) {
5904 const struct sched_class *class;
5905
5906 for_each_class(class) {
5907 if (class->rq_offline)
5908 class->rq_offline(rq);
5909 }
5910
c6c4927b 5911 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5912 rq->online = 0;
5913 }
5914}
5915
1da177e4
LT
5916/*
5917 * migration_call - callback that gets triggered when a CPU is added.
5918 * Here we can start up the necessary migration thread for the new CPU.
5919 */
48f24c4d
IM
5920static int __cpuinit
5921migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5922{
48f24c4d 5923 int cpu = (long)hcpu;
1da177e4 5924 unsigned long flags;
969c7921 5925 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5926
5927 switch (action) {
5be9361c 5928
1da177e4 5929 case CPU_UP_PREPARE:
8bb78442 5930 case CPU_UP_PREPARE_FROZEN:
a468d389 5931 rq->calc_load_update = calc_load_update;
1da177e4 5932 break;
48f24c4d 5933
1da177e4 5934 case CPU_ONLINE:
8bb78442 5935 case CPU_ONLINE_FROZEN:
1f94ef59 5936 /* Update our root-domain */
05fa785c 5937 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5938 if (rq->rd) {
c6c4927b 5939 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5940
5941 set_rq_online(rq);
1f94ef59 5942 }
05fa785c 5943 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5944 break;
48f24c4d 5945
1da177e4 5946#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5947 case CPU_DEAD:
8bb78442 5948 case CPU_DEAD_FROZEN:
1da177e4 5949 migrate_live_tasks(cpu);
1da177e4 5950 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5951 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5952 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5953 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5954 rq->idle->sched_class = &idle_sched_class;
1da177e4 5955 migrate_dead_tasks(cpu);
05fa785c 5956 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5957 migrate_nr_uninterruptible(rq);
5958 BUG_ON(rq->nr_running != 0);
dce48a84 5959 calc_global_load_remove(rq);
1da177e4 5960 break;
57d885fe 5961
08f503b0
GH
5962 case CPU_DYING:
5963 case CPU_DYING_FROZEN:
57d885fe 5964 /* Update our root-domain */
05fa785c 5965 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5966 if (rq->rd) {
c6c4927b 5967 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5968 set_rq_offline(rq);
57d885fe 5969 }
05fa785c 5970 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5971 break;
1da177e4
LT
5972#endif
5973 }
5974 return NOTIFY_OK;
5975}
5976
f38b0820
PM
5977/*
5978 * Register at high priority so that task migration (migrate_all_tasks)
5979 * happens before everything else. This has to be lower priority than
cdd6c482 5980 * the notifier in the perf_event subsystem, though.
1da177e4 5981 */
26c2143b 5982static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5983 .notifier_call = migration_call,
50a323b7 5984 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5985};
5986
3a101d05
TH
5987static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5988 unsigned long action, void *hcpu)
5989{
5990 switch (action & ~CPU_TASKS_FROZEN) {
5991 case CPU_ONLINE:
5992 case CPU_DOWN_FAILED:
5993 set_cpu_active((long)hcpu, true);
5994 return NOTIFY_OK;
5995 default:
5996 return NOTIFY_DONE;
5997 }
5998}
5999
6000static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6001 unsigned long action, void *hcpu)
6002{
6003 switch (action & ~CPU_TASKS_FROZEN) {
6004 case CPU_DOWN_PREPARE:
6005 set_cpu_active((long)hcpu, false);
6006 return NOTIFY_OK;
6007 default:
6008 return NOTIFY_DONE;
6009 }
6010}
6011
7babe8db 6012static int __init migration_init(void)
1da177e4
LT
6013{
6014 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6015 int err;
48f24c4d 6016
3a101d05 6017 /* Initialize migration for the boot CPU */
07dccf33
AM
6018 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6019 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6020 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6021 register_cpu_notifier(&migration_notifier);
7babe8db 6022
3a101d05
TH
6023 /* Register cpu active notifiers */
6024 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6025 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6026
a004cd42 6027 return 0;
1da177e4 6028}
7babe8db 6029early_initcall(migration_init);
1da177e4
LT
6030#endif
6031
6032#ifdef CONFIG_SMP
476f3534 6033
3e9830dc 6034#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6035
f6630114
MT
6036static __read_mostly int sched_domain_debug_enabled;
6037
6038static int __init sched_domain_debug_setup(char *str)
6039{
6040 sched_domain_debug_enabled = 1;
6041
6042 return 0;
6043}
6044early_param("sched_debug", sched_domain_debug_setup);
6045
7c16ec58 6046static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6047 struct cpumask *groupmask)
1da177e4 6048{
4dcf6aff 6049 struct sched_group *group = sd->groups;
434d53b0 6050 char str[256];
1da177e4 6051
968ea6d8 6052 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6053 cpumask_clear(groupmask);
4dcf6aff
IM
6054
6055 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6056
6057 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6058 printk("does not load-balance\n");
4dcf6aff 6059 if (sd->parent)
3df0fc5b
PZ
6060 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6061 " has parent");
4dcf6aff 6062 return -1;
41c7ce9a
NP
6063 }
6064
3df0fc5b 6065 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6066
758b2cdc 6067 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6068 printk(KERN_ERR "ERROR: domain->span does not contain "
6069 "CPU%d\n", cpu);
4dcf6aff 6070 }
758b2cdc 6071 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6072 printk(KERN_ERR "ERROR: domain->groups does not contain"
6073 " CPU%d\n", cpu);
4dcf6aff 6074 }
1da177e4 6075
4dcf6aff 6076 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6077 do {
4dcf6aff 6078 if (!group) {
3df0fc5b
PZ
6079 printk("\n");
6080 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6081 break;
6082 }
6083
18a3885f 6084 if (!group->cpu_power) {
3df0fc5b
PZ
6085 printk(KERN_CONT "\n");
6086 printk(KERN_ERR "ERROR: domain->cpu_power not "
6087 "set\n");
4dcf6aff
IM
6088 break;
6089 }
1da177e4 6090
758b2cdc 6091 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6092 printk(KERN_CONT "\n");
6093 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6094 break;
6095 }
1da177e4 6096
758b2cdc 6097 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6098 printk(KERN_CONT "\n");
6099 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6100 break;
6101 }
1da177e4 6102
758b2cdc 6103 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6104
968ea6d8 6105 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6106
3df0fc5b 6107 printk(KERN_CONT " %s", str);
18a3885f 6108 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6109 printk(KERN_CONT " (cpu_power = %d)",
6110 group->cpu_power);
381512cf 6111 }
1da177e4 6112
4dcf6aff
IM
6113 group = group->next;
6114 } while (group != sd->groups);
3df0fc5b 6115 printk(KERN_CONT "\n");
1da177e4 6116
758b2cdc 6117 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6118 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6119
758b2cdc
RR
6120 if (sd->parent &&
6121 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6122 printk(KERN_ERR "ERROR: parent span is not a superset "
6123 "of domain->span\n");
4dcf6aff
IM
6124 return 0;
6125}
1da177e4 6126
4dcf6aff
IM
6127static void sched_domain_debug(struct sched_domain *sd, int cpu)
6128{
d5dd3db1 6129 cpumask_var_t groupmask;
4dcf6aff 6130 int level = 0;
1da177e4 6131
f6630114
MT
6132 if (!sched_domain_debug_enabled)
6133 return;
6134
4dcf6aff
IM
6135 if (!sd) {
6136 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6137 return;
6138 }
1da177e4 6139
4dcf6aff
IM
6140 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6141
d5dd3db1 6142 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6143 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6144 return;
6145 }
6146
4dcf6aff 6147 for (;;) {
7c16ec58 6148 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6149 break;
1da177e4
LT
6150 level++;
6151 sd = sd->parent;
33859f7f 6152 if (!sd)
4dcf6aff
IM
6153 break;
6154 }
d5dd3db1 6155 free_cpumask_var(groupmask);
1da177e4 6156}
6d6bc0ad 6157#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6158# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6159#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6160
1a20ff27 6161static int sd_degenerate(struct sched_domain *sd)
245af2c7 6162{
758b2cdc 6163 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6164 return 1;
6165
6166 /* Following flags need at least 2 groups */
6167 if (sd->flags & (SD_LOAD_BALANCE |
6168 SD_BALANCE_NEWIDLE |
6169 SD_BALANCE_FORK |
89c4710e
SS
6170 SD_BALANCE_EXEC |
6171 SD_SHARE_CPUPOWER |
6172 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6173 if (sd->groups != sd->groups->next)
6174 return 0;
6175 }
6176
6177 /* Following flags don't use groups */
c88d5910 6178 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6179 return 0;
6180
6181 return 1;
6182}
6183
48f24c4d
IM
6184static int
6185sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6186{
6187 unsigned long cflags = sd->flags, pflags = parent->flags;
6188
6189 if (sd_degenerate(parent))
6190 return 1;
6191
758b2cdc 6192 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6193 return 0;
6194
245af2c7
SS
6195 /* Flags needing groups don't count if only 1 group in parent */
6196 if (parent->groups == parent->groups->next) {
6197 pflags &= ~(SD_LOAD_BALANCE |
6198 SD_BALANCE_NEWIDLE |
6199 SD_BALANCE_FORK |
89c4710e
SS
6200 SD_BALANCE_EXEC |
6201 SD_SHARE_CPUPOWER |
6202 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6203 if (nr_node_ids == 1)
6204 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6205 }
6206 if (~cflags & pflags)
6207 return 0;
6208
6209 return 1;
6210}
6211
c6c4927b
RR
6212static void free_rootdomain(struct root_domain *rd)
6213{
047106ad
PZ
6214 synchronize_sched();
6215
68e74568
RR
6216 cpupri_cleanup(&rd->cpupri);
6217
c6c4927b
RR
6218 free_cpumask_var(rd->rto_mask);
6219 free_cpumask_var(rd->online);
6220 free_cpumask_var(rd->span);
6221 kfree(rd);
6222}
6223
57d885fe
GH
6224static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6225{
a0490fa3 6226 struct root_domain *old_rd = NULL;
57d885fe 6227 unsigned long flags;
57d885fe 6228
05fa785c 6229 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6230
6231 if (rq->rd) {
a0490fa3 6232 old_rd = rq->rd;
57d885fe 6233
c6c4927b 6234 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6235 set_rq_offline(rq);
57d885fe 6236
c6c4927b 6237 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6238
a0490fa3
IM
6239 /*
6240 * If we dont want to free the old_rt yet then
6241 * set old_rd to NULL to skip the freeing later
6242 * in this function:
6243 */
6244 if (!atomic_dec_and_test(&old_rd->refcount))
6245 old_rd = NULL;
57d885fe
GH
6246 }
6247
6248 atomic_inc(&rd->refcount);
6249 rq->rd = rd;
6250
c6c4927b 6251 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6252 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6253 set_rq_online(rq);
57d885fe 6254
05fa785c 6255 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6256
6257 if (old_rd)
6258 free_rootdomain(old_rd);
57d885fe
GH
6259}
6260
68c38fc3 6261static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6262{
6263 memset(rd, 0, sizeof(*rd));
6264
68c38fc3 6265 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6266 goto out;
68c38fc3 6267 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6268 goto free_span;
68c38fc3 6269 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6270 goto free_online;
6e0534f2 6271
68c38fc3 6272 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6273 goto free_rto_mask;
c6c4927b 6274 return 0;
6e0534f2 6275
68e74568
RR
6276free_rto_mask:
6277 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6278free_online:
6279 free_cpumask_var(rd->online);
6280free_span:
6281 free_cpumask_var(rd->span);
0c910d28 6282out:
c6c4927b 6283 return -ENOMEM;
57d885fe
GH
6284}
6285
6286static void init_defrootdomain(void)
6287{
68c38fc3 6288 init_rootdomain(&def_root_domain);
c6c4927b 6289
57d885fe
GH
6290 atomic_set(&def_root_domain.refcount, 1);
6291}
6292
dc938520 6293static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6294{
6295 struct root_domain *rd;
6296
6297 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6298 if (!rd)
6299 return NULL;
6300
68c38fc3 6301 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6302 kfree(rd);
6303 return NULL;
6304 }
57d885fe
GH
6305
6306 return rd;
6307}
6308
1da177e4 6309/*
0eab9146 6310 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6311 * hold the hotplug lock.
6312 */
0eab9146
IM
6313static void
6314cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6315{
70b97a7f 6316 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6317 struct sched_domain *tmp;
6318
669c55e9
PZ
6319 for (tmp = sd; tmp; tmp = tmp->parent)
6320 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6321
245af2c7 6322 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6323 for (tmp = sd; tmp; ) {
245af2c7
SS
6324 struct sched_domain *parent = tmp->parent;
6325 if (!parent)
6326 break;
f29c9b1c 6327
1a848870 6328 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6329 tmp->parent = parent->parent;
1a848870
SS
6330 if (parent->parent)
6331 parent->parent->child = tmp;
f29c9b1c
LZ
6332 } else
6333 tmp = tmp->parent;
245af2c7
SS
6334 }
6335
1a848870 6336 if (sd && sd_degenerate(sd)) {
245af2c7 6337 sd = sd->parent;
1a848870
SS
6338 if (sd)
6339 sd->child = NULL;
6340 }
1da177e4
LT
6341
6342 sched_domain_debug(sd, cpu);
6343
57d885fe 6344 rq_attach_root(rq, rd);
674311d5 6345 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6346}
6347
6348/* cpus with isolated domains */
dcc30a35 6349static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6350
6351/* Setup the mask of cpus configured for isolated domains */
6352static int __init isolated_cpu_setup(char *str)
6353{
bdddd296 6354 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6355 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6356 return 1;
6357}
6358
8927f494 6359__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6360
6361/*
6711cab4
SS
6362 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6363 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6364 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6365 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6366 *
6367 * init_sched_build_groups will build a circular linked list of the groups
6368 * covered by the given span, and will set each group's ->cpumask correctly,
6369 * and ->cpu_power to 0.
6370 */
a616058b 6371static void
96f874e2
RR
6372init_sched_build_groups(const struct cpumask *span,
6373 const struct cpumask *cpu_map,
6374 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6375 struct sched_group **sg,
96f874e2
RR
6376 struct cpumask *tmpmask),
6377 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6378{
6379 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6380 int i;
6381
96f874e2 6382 cpumask_clear(covered);
7c16ec58 6383
abcd083a 6384 for_each_cpu(i, span) {
6711cab4 6385 struct sched_group *sg;
7c16ec58 6386 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6387 int j;
6388
758b2cdc 6389 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6390 continue;
6391
758b2cdc 6392 cpumask_clear(sched_group_cpus(sg));
18a3885f 6393 sg->cpu_power = 0;
1da177e4 6394
abcd083a 6395 for_each_cpu(j, span) {
7c16ec58 6396 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6397 continue;
6398
96f874e2 6399 cpumask_set_cpu(j, covered);
758b2cdc 6400 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6401 }
6402 if (!first)
6403 first = sg;
6404 if (last)
6405 last->next = sg;
6406 last = sg;
6407 }
6408 last->next = first;
6409}
6410
9c1cfda2 6411#define SD_NODES_PER_DOMAIN 16
1da177e4 6412
9c1cfda2 6413#ifdef CONFIG_NUMA
198e2f18 6414
9c1cfda2
JH
6415/**
6416 * find_next_best_node - find the next node to include in a sched_domain
6417 * @node: node whose sched_domain we're building
6418 * @used_nodes: nodes already in the sched_domain
6419 *
41a2d6cf 6420 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6421 * finds the closest node not already in the @used_nodes map.
6422 *
6423 * Should use nodemask_t.
6424 */
c5f59f08 6425static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6426{
6427 int i, n, val, min_val, best_node = 0;
6428
6429 min_val = INT_MAX;
6430
076ac2af 6431 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6432 /* Start at @node */
076ac2af 6433 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6434
6435 if (!nr_cpus_node(n))
6436 continue;
6437
6438 /* Skip already used nodes */
c5f59f08 6439 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6440 continue;
6441
6442 /* Simple min distance search */
6443 val = node_distance(node, n);
6444
6445 if (val < min_val) {
6446 min_val = val;
6447 best_node = n;
6448 }
6449 }
6450
c5f59f08 6451 node_set(best_node, *used_nodes);
9c1cfda2
JH
6452 return best_node;
6453}
6454
6455/**
6456 * sched_domain_node_span - get a cpumask for a node's sched_domain
6457 * @node: node whose cpumask we're constructing
73486722 6458 * @span: resulting cpumask
9c1cfda2 6459 *
41a2d6cf 6460 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6461 * should be one that prevents unnecessary balancing, but also spreads tasks
6462 * out optimally.
6463 */
96f874e2 6464static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6465{
c5f59f08 6466 nodemask_t used_nodes;
48f24c4d 6467 int i;
9c1cfda2 6468
6ca09dfc 6469 cpumask_clear(span);
c5f59f08 6470 nodes_clear(used_nodes);
9c1cfda2 6471
6ca09dfc 6472 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6473 node_set(node, used_nodes);
9c1cfda2
JH
6474
6475 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6476 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6477
6ca09dfc 6478 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6479 }
9c1cfda2 6480}
6d6bc0ad 6481#endif /* CONFIG_NUMA */
9c1cfda2 6482
5c45bf27 6483int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6484
6c99e9ad
RR
6485/*
6486 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6487 *
6488 * ( See the the comments in include/linux/sched.h:struct sched_group
6489 * and struct sched_domain. )
6c99e9ad
RR
6490 */
6491struct static_sched_group {
6492 struct sched_group sg;
6493 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6494};
6495
6496struct static_sched_domain {
6497 struct sched_domain sd;
6498 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6499};
6500
49a02c51
AH
6501struct s_data {
6502#ifdef CONFIG_NUMA
6503 int sd_allnodes;
6504 cpumask_var_t domainspan;
6505 cpumask_var_t covered;
6506 cpumask_var_t notcovered;
6507#endif
6508 cpumask_var_t nodemask;
6509 cpumask_var_t this_sibling_map;
6510 cpumask_var_t this_core_map;
6511 cpumask_var_t send_covered;
6512 cpumask_var_t tmpmask;
6513 struct sched_group **sched_group_nodes;
6514 struct root_domain *rd;
6515};
6516
2109b99e
AH
6517enum s_alloc {
6518 sa_sched_groups = 0,
6519 sa_rootdomain,
6520 sa_tmpmask,
6521 sa_send_covered,
6522 sa_this_core_map,
6523 sa_this_sibling_map,
6524 sa_nodemask,
6525 sa_sched_group_nodes,
6526#ifdef CONFIG_NUMA
6527 sa_notcovered,
6528 sa_covered,
6529 sa_domainspan,
6530#endif
6531 sa_none,
6532};
6533
9c1cfda2 6534/*
48f24c4d 6535 * SMT sched-domains:
9c1cfda2 6536 */
1da177e4 6537#ifdef CONFIG_SCHED_SMT
6c99e9ad 6538static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6539static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6540
41a2d6cf 6541static int
96f874e2
RR
6542cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6543 struct sched_group **sg, struct cpumask *unused)
1da177e4 6544{
6711cab4 6545 if (sg)
1871e52c 6546 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6547 return cpu;
6548}
6d6bc0ad 6549#endif /* CONFIG_SCHED_SMT */
1da177e4 6550
48f24c4d
IM
6551/*
6552 * multi-core sched-domains:
6553 */
1e9f28fa 6554#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6555static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6556static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6557#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6558
6559#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6560static int
96f874e2
RR
6561cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6562 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6563{
6711cab4 6564 int group;
7c16ec58 6565
c69fc56d 6566 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6567 group = cpumask_first(mask);
6711cab4 6568 if (sg)
6c99e9ad 6569 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6570 return group;
1e9f28fa
SS
6571}
6572#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6573static int
96f874e2
RR
6574cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6575 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6576{
6711cab4 6577 if (sg)
6c99e9ad 6578 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6579 return cpu;
6580}
6581#endif
6582
6c99e9ad
RR
6583static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6584static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6585
41a2d6cf 6586static int
96f874e2
RR
6587cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6588 struct sched_group **sg, struct cpumask *mask)
1da177e4 6589{
6711cab4 6590 int group;
48f24c4d 6591#ifdef CONFIG_SCHED_MC
6ca09dfc 6592 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6593 group = cpumask_first(mask);
1e9f28fa 6594#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6595 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6596 group = cpumask_first(mask);
1da177e4 6597#else
6711cab4 6598 group = cpu;
1da177e4 6599#endif
6711cab4 6600 if (sg)
6c99e9ad 6601 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6602 return group;
1da177e4
LT
6603}
6604
6605#ifdef CONFIG_NUMA
1da177e4 6606/*
9c1cfda2
JH
6607 * The init_sched_build_groups can't handle what we want to do with node
6608 * groups, so roll our own. Now each node has its own list of groups which
6609 * gets dynamically allocated.
1da177e4 6610 */
62ea9ceb 6611static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6612static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6613
62ea9ceb 6614static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6615static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6616
96f874e2
RR
6617static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6618 struct sched_group **sg,
6619 struct cpumask *nodemask)
9c1cfda2 6620{
6711cab4
SS
6621 int group;
6622
6ca09dfc 6623 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6624 group = cpumask_first(nodemask);
6711cab4
SS
6625
6626 if (sg)
6c99e9ad 6627 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6628 return group;
1da177e4 6629}
6711cab4 6630
08069033
SS
6631static void init_numa_sched_groups_power(struct sched_group *group_head)
6632{
6633 struct sched_group *sg = group_head;
6634 int j;
6635
6636 if (!sg)
6637 return;
3a5c359a 6638 do {
758b2cdc 6639 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6640 struct sched_domain *sd;
08069033 6641
6c99e9ad 6642 sd = &per_cpu(phys_domains, j).sd;
13318a71 6643 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6644 /*
6645 * Only add "power" once for each
6646 * physical package.
6647 */
6648 continue;
6649 }
08069033 6650
18a3885f 6651 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6652 }
6653 sg = sg->next;
6654 } while (sg != group_head);
08069033 6655}
0601a88d
AH
6656
6657static int build_numa_sched_groups(struct s_data *d,
6658 const struct cpumask *cpu_map, int num)
6659{
6660 struct sched_domain *sd;
6661 struct sched_group *sg, *prev;
6662 int n, j;
6663
6664 cpumask_clear(d->covered);
6665 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6666 if (cpumask_empty(d->nodemask)) {
6667 d->sched_group_nodes[num] = NULL;
6668 goto out;
6669 }
6670
6671 sched_domain_node_span(num, d->domainspan);
6672 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6673
6674 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6675 GFP_KERNEL, num);
6676 if (!sg) {
3df0fc5b
PZ
6677 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6678 num);
0601a88d
AH
6679 return -ENOMEM;
6680 }
6681 d->sched_group_nodes[num] = sg;
6682
6683 for_each_cpu(j, d->nodemask) {
6684 sd = &per_cpu(node_domains, j).sd;
6685 sd->groups = sg;
6686 }
6687
18a3885f 6688 sg->cpu_power = 0;
0601a88d
AH
6689 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6690 sg->next = sg;
6691 cpumask_or(d->covered, d->covered, d->nodemask);
6692
6693 prev = sg;
6694 for (j = 0; j < nr_node_ids; j++) {
6695 n = (num + j) % nr_node_ids;
6696 cpumask_complement(d->notcovered, d->covered);
6697 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6698 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6699 if (cpumask_empty(d->tmpmask))
6700 break;
6701 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6702 if (cpumask_empty(d->tmpmask))
6703 continue;
6704 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6705 GFP_KERNEL, num);
6706 if (!sg) {
3df0fc5b
PZ
6707 printk(KERN_WARNING
6708 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6709 return -ENOMEM;
6710 }
18a3885f 6711 sg->cpu_power = 0;
0601a88d
AH
6712 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6713 sg->next = prev->next;
6714 cpumask_or(d->covered, d->covered, d->tmpmask);
6715 prev->next = sg;
6716 prev = sg;
6717 }
6718out:
6719 return 0;
6720}
6d6bc0ad 6721#endif /* CONFIG_NUMA */
1da177e4 6722
a616058b 6723#ifdef CONFIG_NUMA
51888ca2 6724/* Free memory allocated for various sched_group structures */
96f874e2
RR
6725static void free_sched_groups(const struct cpumask *cpu_map,
6726 struct cpumask *nodemask)
51888ca2 6727{
a616058b 6728 int cpu, i;
51888ca2 6729
abcd083a 6730 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6731 struct sched_group **sched_group_nodes
6732 = sched_group_nodes_bycpu[cpu];
6733
51888ca2
SV
6734 if (!sched_group_nodes)
6735 continue;
6736
076ac2af 6737 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6738 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6739
6ca09dfc 6740 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6741 if (cpumask_empty(nodemask))
51888ca2
SV
6742 continue;
6743
6744 if (sg == NULL)
6745 continue;
6746 sg = sg->next;
6747next_sg:
6748 oldsg = sg;
6749 sg = sg->next;
6750 kfree(oldsg);
6751 if (oldsg != sched_group_nodes[i])
6752 goto next_sg;
6753 }
6754 kfree(sched_group_nodes);
6755 sched_group_nodes_bycpu[cpu] = NULL;
6756 }
51888ca2 6757}
6d6bc0ad 6758#else /* !CONFIG_NUMA */
96f874e2
RR
6759static void free_sched_groups(const struct cpumask *cpu_map,
6760 struct cpumask *nodemask)
a616058b
SS
6761{
6762}
6d6bc0ad 6763#endif /* CONFIG_NUMA */
51888ca2 6764
89c4710e
SS
6765/*
6766 * Initialize sched groups cpu_power.
6767 *
6768 * cpu_power indicates the capacity of sched group, which is used while
6769 * distributing the load between different sched groups in a sched domain.
6770 * Typically cpu_power for all the groups in a sched domain will be same unless
6771 * there are asymmetries in the topology. If there are asymmetries, group
6772 * having more cpu_power will pickup more load compared to the group having
6773 * less cpu_power.
89c4710e
SS
6774 */
6775static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6776{
6777 struct sched_domain *child;
6778 struct sched_group *group;
f93e65c1
PZ
6779 long power;
6780 int weight;
89c4710e
SS
6781
6782 WARN_ON(!sd || !sd->groups);
6783
13318a71 6784 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6785 return;
6786
6787 child = sd->child;
6788
18a3885f 6789 sd->groups->cpu_power = 0;
5517d86b 6790
f93e65c1
PZ
6791 if (!child) {
6792 power = SCHED_LOAD_SCALE;
6793 weight = cpumask_weight(sched_domain_span(sd));
6794 /*
6795 * SMT siblings share the power of a single core.
a52bfd73
PZ
6796 * Usually multiple threads get a better yield out of
6797 * that one core than a single thread would have,
6798 * reflect that in sd->smt_gain.
f93e65c1 6799 */
a52bfd73
PZ
6800 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6801 power *= sd->smt_gain;
f93e65c1 6802 power /= weight;
a52bfd73
PZ
6803 power >>= SCHED_LOAD_SHIFT;
6804 }
18a3885f 6805 sd->groups->cpu_power += power;
89c4710e
SS
6806 return;
6807 }
6808
89c4710e 6809 /*
f93e65c1 6810 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6811 */
6812 group = child->groups;
6813 do {
18a3885f 6814 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6815 group = group->next;
6816 } while (group != child->groups);
6817}
6818
7c16ec58
MT
6819/*
6820 * Initializers for schedule domains
6821 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6822 */
6823
a5d8c348
IM
6824#ifdef CONFIG_SCHED_DEBUG
6825# define SD_INIT_NAME(sd, type) sd->name = #type
6826#else
6827# define SD_INIT_NAME(sd, type) do { } while (0)
6828#endif
6829
7c16ec58 6830#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6831
7c16ec58
MT
6832#define SD_INIT_FUNC(type) \
6833static noinline void sd_init_##type(struct sched_domain *sd) \
6834{ \
6835 memset(sd, 0, sizeof(*sd)); \
6836 *sd = SD_##type##_INIT; \
1d3504fc 6837 sd->level = SD_LV_##type; \
a5d8c348 6838 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6839}
6840
6841SD_INIT_FUNC(CPU)
6842#ifdef CONFIG_NUMA
6843 SD_INIT_FUNC(ALLNODES)
6844 SD_INIT_FUNC(NODE)
6845#endif
6846#ifdef CONFIG_SCHED_SMT
6847 SD_INIT_FUNC(SIBLING)
6848#endif
6849#ifdef CONFIG_SCHED_MC
6850 SD_INIT_FUNC(MC)
6851#endif
6852
1d3504fc
HS
6853static int default_relax_domain_level = -1;
6854
6855static int __init setup_relax_domain_level(char *str)
6856{
30e0e178
LZ
6857 unsigned long val;
6858
6859 val = simple_strtoul(str, NULL, 0);
6860 if (val < SD_LV_MAX)
6861 default_relax_domain_level = val;
6862
1d3504fc
HS
6863 return 1;
6864}
6865__setup("relax_domain_level=", setup_relax_domain_level);
6866
6867static void set_domain_attribute(struct sched_domain *sd,
6868 struct sched_domain_attr *attr)
6869{
6870 int request;
6871
6872 if (!attr || attr->relax_domain_level < 0) {
6873 if (default_relax_domain_level < 0)
6874 return;
6875 else
6876 request = default_relax_domain_level;
6877 } else
6878 request = attr->relax_domain_level;
6879 if (request < sd->level) {
6880 /* turn off idle balance on this domain */
c88d5910 6881 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6882 } else {
6883 /* turn on idle balance on this domain */
c88d5910 6884 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6885 }
6886}
6887
2109b99e
AH
6888static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6889 const struct cpumask *cpu_map)
6890{
6891 switch (what) {
6892 case sa_sched_groups:
6893 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6894 d->sched_group_nodes = NULL;
6895 case sa_rootdomain:
6896 free_rootdomain(d->rd); /* fall through */
6897 case sa_tmpmask:
6898 free_cpumask_var(d->tmpmask); /* fall through */
6899 case sa_send_covered:
6900 free_cpumask_var(d->send_covered); /* fall through */
6901 case sa_this_core_map:
6902 free_cpumask_var(d->this_core_map); /* fall through */
6903 case sa_this_sibling_map:
6904 free_cpumask_var(d->this_sibling_map); /* fall through */
6905 case sa_nodemask:
6906 free_cpumask_var(d->nodemask); /* fall through */
6907 case sa_sched_group_nodes:
d1b55138 6908#ifdef CONFIG_NUMA
2109b99e
AH
6909 kfree(d->sched_group_nodes); /* fall through */
6910 case sa_notcovered:
6911 free_cpumask_var(d->notcovered); /* fall through */
6912 case sa_covered:
6913 free_cpumask_var(d->covered); /* fall through */
6914 case sa_domainspan:
6915 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6916#endif
2109b99e
AH
6917 case sa_none:
6918 break;
6919 }
6920}
3404c8d9 6921
2109b99e
AH
6922static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6923 const struct cpumask *cpu_map)
6924{
3404c8d9 6925#ifdef CONFIG_NUMA
2109b99e
AH
6926 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6927 return sa_none;
6928 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6929 return sa_domainspan;
6930 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6931 return sa_covered;
6932 /* Allocate the per-node list of sched groups */
6933 d->sched_group_nodes = kcalloc(nr_node_ids,
6934 sizeof(struct sched_group *), GFP_KERNEL);
6935 if (!d->sched_group_nodes) {
3df0fc5b 6936 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6937 return sa_notcovered;
d1b55138 6938 }
2109b99e 6939 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6940#endif
2109b99e
AH
6941 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6942 return sa_sched_group_nodes;
6943 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6944 return sa_nodemask;
6945 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6946 return sa_this_sibling_map;
6947 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6948 return sa_this_core_map;
6949 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6950 return sa_send_covered;
6951 d->rd = alloc_rootdomain();
6952 if (!d->rd) {
3df0fc5b 6953 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6954 return sa_tmpmask;
57d885fe 6955 }
2109b99e
AH
6956 return sa_rootdomain;
6957}
57d885fe 6958
7f4588f3
AH
6959static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6960 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6961{
6962 struct sched_domain *sd = NULL;
7c16ec58 6963#ifdef CONFIG_NUMA
7f4588f3 6964 struct sched_domain *parent;
1da177e4 6965
7f4588f3
AH
6966 d->sd_allnodes = 0;
6967 if (cpumask_weight(cpu_map) >
6968 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6969 sd = &per_cpu(allnodes_domains, i).sd;
6970 SD_INIT(sd, ALLNODES);
1d3504fc 6971 set_domain_attribute(sd, attr);
7f4588f3
AH
6972 cpumask_copy(sched_domain_span(sd), cpu_map);
6973 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6974 d->sd_allnodes = 1;
6975 }
6976 parent = sd;
6977
6978 sd = &per_cpu(node_domains, i).sd;
6979 SD_INIT(sd, NODE);
6980 set_domain_attribute(sd, attr);
6981 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6982 sd->parent = parent;
6983 if (parent)
6984 parent->child = sd;
6985 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6986#endif
7f4588f3
AH
6987 return sd;
6988}
1da177e4 6989
87cce662
AH
6990static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6991 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6992 struct sched_domain *parent, int i)
6993{
6994 struct sched_domain *sd;
6995 sd = &per_cpu(phys_domains, i).sd;
6996 SD_INIT(sd, CPU);
6997 set_domain_attribute(sd, attr);
6998 cpumask_copy(sched_domain_span(sd), d->nodemask);
6999 sd->parent = parent;
7000 if (parent)
7001 parent->child = sd;
7002 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7003 return sd;
7004}
1da177e4 7005
410c4081
AH
7006static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7007 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7008 struct sched_domain *parent, int i)
7009{
7010 struct sched_domain *sd = parent;
1e9f28fa 7011#ifdef CONFIG_SCHED_MC
410c4081
AH
7012 sd = &per_cpu(core_domains, i).sd;
7013 SD_INIT(sd, MC);
7014 set_domain_attribute(sd, attr);
7015 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7016 sd->parent = parent;
7017 parent->child = sd;
7018 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7019#endif
410c4081
AH
7020 return sd;
7021}
1e9f28fa 7022
d8173535
AH
7023static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7024 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7025 struct sched_domain *parent, int i)
7026{
7027 struct sched_domain *sd = parent;
1da177e4 7028#ifdef CONFIG_SCHED_SMT
d8173535
AH
7029 sd = &per_cpu(cpu_domains, i).sd;
7030 SD_INIT(sd, SIBLING);
7031 set_domain_attribute(sd, attr);
7032 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7033 sd->parent = parent;
7034 parent->child = sd;
7035 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7036#endif
d8173535
AH
7037 return sd;
7038}
1da177e4 7039
0e8e85c9
AH
7040static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7041 const struct cpumask *cpu_map, int cpu)
7042{
7043 switch (l) {
1da177e4 7044#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7045 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7046 cpumask_and(d->this_sibling_map, cpu_map,
7047 topology_thread_cpumask(cpu));
7048 if (cpu == cpumask_first(d->this_sibling_map))
7049 init_sched_build_groups(d->this_sibling_map, cpu_map,
7050 &cpu_to_cpu_group,
7051 d->send_covered, d->tmpmask);
7052 break;
1da177e4 7053#endif
1e9f28fa 7054#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7055 case SD_LV_MC: /* set up multi-core groups */
7056 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7057 if (cpu == cpumask_first(d->this_core_map))
7058 init_sched_build_groups(d->this_core_map, cpu_map,
7059 &cpu_to_core_group,
7060 d->send_covered, d->tmpmask);
7061 break;
1e9f28fa 7062#endif
86548096
AH
7063 case SD_LV_CPU: /* set up physical groups */
7064 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7065 if (!cpumask_empty(d->nodemask))
7066 init_sched_build_groups(d->nodemask, cpu_map,
7067 &cpu_to_phys_group,
7068 d->send_covered, d->tmpmask);
7069 break;
1da177e4 7070#ifdef CONFIG_NUMA
de616e36
AH
7071 case SD_LV_ALLNODES:
7072 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7073 d->send_covered, d->tmpmask);
7074 break;
7075#endif
0e8e85c9
AH
7076 default:
7077 break;
7c16ec58 7078 }
0e8e85c9 7079}
9c1cfda2 7080
2109b99e
AH
7081/*
7082 * Build sched domains for a given set of cpus and attach the sched domains
7083 * to the individual cpus
7084 */
7085static int __build_sched_domains(const struct cpumask *cpu_map,
7086 struct sched_domain_attr *attr)
7087{
7088 enum s_alloc alloc_state = sa_none;
7089 struct s_data d;
294b0c96 7090 struct sched_domain *sd;
2109b99e 7091 int i;
7c16ec58 7092#ifdef CONFIG_NUMA
2109b99e 7093 d.sd_allnodes = 0;
7c16ec58 7094#endif
9c1cfda2 7095
2109b99e
AH
7096 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7097 if (alloc_state != sa_rootdomain)
7098 goto error;
7099 alloc_state = sa_sched_groups;
9c1cfda2 7100
1da177e4 7101 /*
1a20ff27 7102 * Set up domains for cpus specified by the cpu_map.
1da177e4 7103 */
abcd083a 7104 for_each_cpu(i, cpu_map) {
49a02c51
AH
7105 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7106 cpu_map);
9761eea8 7107
7f4588f3 7108 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7109 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7110 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7111 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7112 }
9c1cfda2 7113
abcd083a 7114 for_each_cpu(i, cpu_map) {
0e8e85c9 7115 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7116 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7117 }
9c1cfda2 7118
1da177e4 7119 /* Set up physical groups */
86548096
AH
7120 for (i = 0; i < nr_node_ids; i++)
7121 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7122
1da177e4
LT
7123#ifdef CONFIG_NUMA
7124 /* Set up node groups */
de616e36
AH
7125 if (d.sd_allnodes)
7126 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7127
0601a88d
AH
7128 for (i = 0; i < nr_node_ids; i++)
7129 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7130 goto error;
1da177e4
LT
7131#endif
7132
7133 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7134#ifdef CONFIG_SCHED_SMT
abcd083a 7135 for_each_cpu(i, cpu_map) {
294b0c96 7136 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7137 init_sched_groups_power(i, sd);
5c45bf27 7138 }
1da177e4 7139#endif
1e9f28fa 7140#ifdef CONFIG_SCHED_MC
abcd083a 7141 for_each_cpu(i, cpu_map) {
294b0c96 7142 sd = &per_cpu(core_domains, i).sd;
89c4710e 7143 init_sched_groups_power(i, sd);
5c45bf27
SS
7144 }
7145#endif
1e9f28fa 7146
abcd083a 7147 for_each_cpu(i, cpu_map) {
294b0c96 7148 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7149 init_sched_groups_power(i, sd);
1da177e4
LT
7150 }
7151
9c1cfda2 7152#ifdef CONFIG_NUMA
076ac2af 7153 for (i = 0; i < nr_node_ids; i++)
49a02c51 7154 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7155
49a02c51 7156 if (d.sd_allnodes) {
6711cab4 7157 struct sched_group *sg;
f712c0c7 7158
96f874e2 7159 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7160 d.tmpmask);
f712c0c7
SS
7161 init_numa_sched_groups_power(sg);
7162 }
9c1cfda2
JH
7163#endif
7164
1da177e4 7165 /* Attach the domains */
abcd083a 7166 for_each_cpu(i, cpu_map) {
1da177e4 7167#ifdef CONFIG_SCHED_SMT
6c99e9ad 7168 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7169#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7170 sd = &per_cpu(core_domains, i).sd;
1da177e4 7171#else
6c99e9ad 7172 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7173#endif
49a02c51 7174 cpu_attach_domain(sd, d.rd, i);
1da177e4 7175 }
51888ca2 7176
2109b99e
AH
7177 d.sched_group_nodes = NULL; /* don't free this we still need it */
7178 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7179 return 0;
51888ca2 7180
51888ca2 7181error:
2109b99e
AH
7182 __free_domain_allocs(&d, alloc_state, cpu_map);
7183 return -ENOMEM;
1da177e4 7184}
029190c5 7185
96f874e2 7186static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7187{
7188 return __build_sched_domains(cpu_map, NULL);
7189}
7190
acc3f5d7 7191static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7192static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7193static struct sched_domain_attr *dattr_cur;
7194 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7195
7196/*
7197 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7198 * cpumask) fails, then fallback to a single sched domain,
7199 * as determined by the single cpumask fallback_doms.
029190c5 7200 */
4212823f 7201static cpumask_var_t fallback_doms;
029190c5 7202
ee79d1bd
HC
7203/*
7204 * arch_update_cpu_topology lets virtualized architectures update the
7205 * cpu core maps. It is supposed to return 1 if the topology changed
7206 * or 0 if it stayed the same.
7207 */
7208int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7209{
ee79d1bd 7210 return 0;
22e52b07
HC
7211}
7212
acc3f5d7
RR
7213cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7214{
7215 int i;
7216 cpumask_var_t *doms;
7217
7218 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7219 if (!doms)
7220 return NULL;
7221 for (i = 0; i < ndoms; i++) {
7222 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7223 free_sched_domains(doms, i);
7224 return NULL;
7225 }
7226 }
7227 return doms;
7228}
7229
7230void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7231{
7232 unsigned int i;
7233 for (i = 0; i < ndoms; i++)
7234 free_cpumask_var(doms[i]);
7235 kfree(doms);
7236}
7237
1a20ff27 7238/*
41a2d6cf 7239 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7240 * For now this just excludes isolated cpus, but could be used to
7241 * exclude other special cases in the future.
1a20ff27 7242 */
96f874e2 7243static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7244{
7378547f
MM
7245 int err;
7246
22e52b07 7247 arch_update_cpu_topology();
029190c5 7248 ndoms_cur = 1;
acc3f5d7 7249 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7250 if (!doms_cur)
acc3f5d7
RR
7251 doms_cur = &fallback_doms;
7252 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7253 dattr_cur = NULL;
acc3f5d7 7254 err = build_sched_domains(doms_cur[0]);
6382bc90 7255 register_sched_domain_sysctl();
7378547f
MM
7256
7257 return err;
1a20ff27
DG
7258}
7259
96f874e2
RR
7260static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7261 struct cpumask *tmpmask)
1da177e4 7262{
7c16ec58 7263 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7264}
1da177e4 7265
1a20ff27
DG
7266/*
7267 * Detach sched domains from a group of cpus specified in cpu_map
7268 * These cpus will now be attached to the NULL domain
7269 */
96f874e2 7270static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7271{
96f874e2
RR
7272 /* Save because hotplug lock held. */
7273 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7274 int i;
7275
abcd083a 7276 for_each_cpu(i, cpu_map)
57d885fe 7277 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7278 synchronize_sched();
96f874e2 7279 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7280}
7281
1d3504fc
HS
7282/* handle null as "default" */
7283static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7284 struct sched_domain_attr *new, int idx_new)
7285{
7286 struct sched_domain_attr tmp;
7287
7288 /* fast path */
7289 if (!new && !cur)
7290 return 1;
7291
7292 tmp = SD_ATTR_INIT;
7293 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7294 new ? (new + idx_new) : &tmp,
7295 sizeof(struct sched_domain_attr));
7296}
7297
029190c5
PJ
7298/*
7299 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7300 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7301 * doms_new[] to the current sched domain partitioning, doms_cur[].
7302 * It destroys each deleted domain and builds each new domain.
7303 *
acc3f5d7 7304 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7305 * The masks don't intersect (don't overlap.) We should setup one
7306 * sched domain for each mask. CPUs not in any of the cpumasks will
7307 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7308 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7309 * it as it is.
7310 *
acc3f5d7
RR
7311 * The passed in 'doms_new' should be allocated using
7312 * alloc_sched_domains. This routine takes ownership of it and will
7313 * free_sched_domains it when done with it. If the caller failed the
7314 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7315 * and partition_sched_domains() will fallback to the single partition
7316 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7317 *
96f874e2 7318 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7319 * ndoms_new == 0 is a special case for destroying existing domains,
7320 * and it will not create the default domain.
dfb512ec 7321 *
029190c5
PJ
7322 * Call with hotplug lock held
7323 */
acc3f5d7 7324void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7325 struct sched_domain_attr *dattr_new)
029190c5 7326{
dfb512ec 7327 int i, j, n;
d65bd5ec 7328 int new_topology;
029190c5 7329
712555ee 7330 mutex_lock(&sched_domains_mutex);
a1835615 7331
7378547f
MM
7332 /* always unregister in case we don't destroy any domains */
7333 unregister_sched_domain_sysctl();
7334
d65bd5ec
HC
7335 /* Let architecture update cpu core mappings. */
7336 new_topology = arch_update_cpu_topology();
7337
dfb512ec 7338 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7339
7340 /* Destroy deleted domains */
7341 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7342 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7343 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7344 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7345 goto match1;
7346 }
7347 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7348 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7349match1:
7350 ;
7351 }
7352
e761b772
MK
7353 if (doms_new == NULL) {
7354 ndoms_cur = 0;
acc3f5d7 7355 doms_new = &fallback_doms;
6ad4c188 7356 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7357 WARN_ON_ONCE(dattr_new);
e761b772
MK
7358 }
7359
029190c5
PJ
7360 /* Build new domains */
7361 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7362 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7363 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7364 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7365 goto match2;
7366 }
7367 /* no match - add a new doms_new */
acc3f5d7 7368 __build_sched_domains(doms_new[i],
1d3504fc 7369 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7370match2:
7371 ;
7372 }
7373
7374 /* Remember the new sched domains */
acc3f5d7
RR
7375 if (doms_cur != &fallback_doms)
7376 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7377 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7378 doms_cur = doms_new;
1d3504fc 7379 dattr_cur = dattr_new;
029190c5 7380 ndoms_cur = ndoms_new;
7378547f
MM
7381
7382 register_sched_domain_sysctl();
a1835615 7383
712555ee 7384 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7385}
7386
5c45bf27 7387#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7388static void arch_reinit_sched_domains(void)
5c45bf27 7389{
95402b38 7390 get_online_cpus();
dfb512ec
MK
7391
7392 /* Destroy domains first to force the rebuild */
7393 partition_sched_domains(0, NULL, NULL);
7394
e761b772 7395 rebuild_sched_domains();
95402b38 7396 put_online_cpus();
5c45bf27
SS
7397}
7398
7399static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7400{
afb8a9b7 7401 unsigned int level = 0;
5c45bf27 7402
afb8a9b7
GS
7403 if (sscanf(buf, "%u", &level) != 1)
7404 return -EINVAL;
7405
7406 /*
7407 * level is always be positive so don't check for
7408 * level < POWERSAVINGS_BALANCE_NONE which is 0
7409 * What happens on 0 or 1 byte write,
7410 * need to check for count as well?
7411 */
7412
7413 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7414 return -EINVAL;
7415
7416 if (smt)
afb8a9b7 7417 sched_smt_power_savings = level;
5c45bf27 7418 else
afb8a9b7 7419 sched_mc_power_savings = level;
5c45bf27 7420
c70f22d2 7421 arch_reinit_sched_domains();
5c45bf27 7422
c70f22d2 7423 return count;
5c45bf27
SS
7424}
7425
5c45bf27 7426#ifdef CONFIG_SCHED_MC
f718cd4a 7427static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7428 struct sysdev_class_attribute *attr,
f718cd4a 7429 char *page)
5c45bf27
SS
7430{
7431 return sprintf(page, "%u\n", sched_mc_power_savings);
7432}
f718cd4a 7433static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7434 struct sysdev_class_attribute *attr,
48f24c4d 7435 const char *buf, size_t count)
5c45bf27
SS
7436{
7437 return sched_power_savings_store(buf, count, 0);
7438}
f718cd4a
AK
7439static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7440 sched_mc_power_savings_show,
7441 sched_mc_power_savings_store);
5c45bf27
SS
7442#endif
7443
7444#ifdef CONFIG_SCHED_SMT
f718cd4a 7445static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7446 struct sysdev_class_attribute *attr,
f718cd4a 7447 char *page)
5c45bf27
SS
7448{
7449 return sprintf(page, "%u\n", sched_smt_power_savings);
7450}
f718cd4a 7451static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7452 struct sysdev_class_attribute *attr,
48f24c4d 7453 const char *buf, size_t count)
5c45bf27
SS
7454{
7455 return sched_power_savings_store(buf, count, 1);
7456}
f718cd4a
AK
7457static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7458 sched_smt_power_savings_show,
6707de00
AB
7459 sched_smt_power_savings_store);
7460#endif
7461
39aac648 7462int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7463{
7464 int err = 0;
7465
7466#ifdef CONFIG_SCHED_SMT
7467 if (smt_capable())
7468 err = sysfs_create_file(&cls->kset.kobj,
7469 &attr_sched_smt_power_savings.attr);
7470#endif
7471#ifdef CONFIG_SCHED_MC
7472 if (!err && mc_capable())
7473 err = sysfs_create_file(&cls->kset.kobj,
7474 &attr_sched_mc_power_savings.attr);
7475#endif
7476 return err;
7477}
6d6bc0ad 7478#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7479
1da177e4 7480/*
3a101d05
TH
7481 * Update cpusets according to cpu_active mask. If cpusets are
7482 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7483 * around partition_sched_domains().
1da177e4 7484 */
0b2e918a
TH
7485static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7486 void *hcpu)
e761b772 7487{
3a101d05 7488 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7489 case CPU_ONLINE:
6ad4c188 7490 case CPU_DOWN_FAILED:
3a101d05 7491 cpuset_update_active_cpus();
e761b772 7492 return NOTIFY_OK;
3a101d05
TH
7493 default:
7494 return NOTIFY_DONE;
7495 }
7496}
e761b772 7497
0b2e918a
TH
7498static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7499 void *hcpu)
3a101d05
TH
7500{
7501 switch (action & ~CPU_TASKS_FROZEN) {
7502 case CPU_DOWN_PREPARE:
7503 cpuset_update_active_cpus();
7504 return NOTIFY_OK;
e761b772
MK
7505 default:
7506 return NOTIFY_DONE;
7507 }
7508}
e761b772
MK
7509
7510static int update_runtime(struct notifier_block *nfb,
7511 unsigned long action, void *hcpu)
1da177e4 7512{
7def2be1
PZ
7513 int cpu = (int)(long)hcpu;
7514
1da177e4 7515 switch (action) {
1da177e4 7516 case CPU_DOWN_PREPARE:
8bb78442 7517 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7518 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7519 return NOTIFY_OK;
7520
1da177e4 7521 case CPU_DOWN_FAILED:
8bb78442 7522 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7523 case CPU_ONLINE:
8bb78442 7524 case CPU_ONLINE_FROZEN:
7def2be1 7525 enable_runtime(cpu_rq(cpu));
e761b772
MK
7526 return NOTIFY_OK;
7527
1da177e4
LT
7528 default:
7529 return NOTIFY_DONE;
7530 }
1da177e4 7531}
1da177e4
LT
7532
7533void __init sched_init_smp(void)
7534{
dcc30a35
RR
7535 cpumask_var_t non_isolated_cpus;
7536
7537 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7538 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7539
434d53b0
MT
7540#if defined(CONFIG_NUMA)
7541 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7542 GFP_KERNEL);
7543 BUG_ON(sched_group_nodes_bycpu == NULL);
7544#endif
95402b38 7545 get_online_cpus();
712555ee 7546 mutex_lock(&sched_domains_mutex);
6ad4c188 7547 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7548 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7549 if (cpumask_empty(non_isolated_cpus))
7550 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7551 mutex_unlock(&sched_domains_mutex);
95402b38 7552 put_online_cpus();
e761b772 7553
3a101d05
TH
7554 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7555 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7556
7557 /* RT runtime code needs to handle some hotplug events */
7558 hotcpu_notifier(update_runtime, 0);
7559
b328ca18 7560 init_hrtick();
5c1e1767
NP
7561
7562 /* Move init over to a non-isolated CPU */
dcc30a35 7563 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7564 BUG();
19978ca6 7565 sched_init_granularity();
dcc30a35 7566 free_cpumask_var(non_isolated_cpus);
4212823f 7567
0e3900e6 7568 init_sched_rt_class();
1da177e4
LT
7569}
7570#else
7571void __init sched_init_smp(void)
7572{
19978ca6 7573 sched_init_granularity();
1da177e4
LT
7574}
7575#endif /* CONFIG_SMP */
7576
cd1bb94b
AB
7577const_debug unsigned int sysctl_timer_migration = 1;
7578
1da177e4
LT
7579int in_sched_functions(unsigned long addr)
7580{
1da177e4
LT
7581 return in_lock_functions(addr) ||
7582 (addr >= (unsigned long)__sched_text_start
7583 && addr < (unsigned long)__sched_text_end);
7584}
7585
a9957449 7586static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7587{
7588 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7589 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7590#ifdef CONFIG_FAIR_GROUP_SCHED
7591 cfs_rq->rq = rq;
7592#endif
67e9fb2a 7593 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7594}
7595
fa85ae24
PZ
7596static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7597{
7598 struct rt_prio_array *array;
7599 int i;
7600
7601 array = &rt_rq->active;
7602 for (i = 0; i < MAX_RT_PRIO; i++) {
7603 INIT_LIST_HEAD(array->queue + i);
7604 __clear_bit(i, array->bitmap);
7605 }
7606 /* delimiter for bitsearch: */
7607 __set_bit(MAX_RT_PRIO, array->bitmap);
7608
052f1dc7 7609#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7610 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7611#ifdef CONFIG_SMP
e864c499 7612 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7613#endif
48d5e258 7614#endif
fa85ae24
PZ
7615#ifdef CONFIG_SMP
7616 rt_rq->rt_nr_migratory = 0;
fa85ae24 7617 rt_rq->overloaded = 0;
05fa785c 7618 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7619#endif
7620
7621 rt_rq->rt_time = 0;
7622 rt_rq->rt_throttled = 0;
ac086bc2 7623 rt_rq->rt_runtime = 0;
0986b11b 7624 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7625
052f1dc7 7626#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7627 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7628 rt_rq->rq = rq;
7629#endif
fa85ae24
PZ
7630}
7631
6f505b16 7632#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7633static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7634 struct sched_entity *se, int cpu, int add,
7635 struct sched_entity *parent)
6f505b16 7636{
ec7dc8ac 7637 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7638 tg->cfs_rq[cpu] = cfs_rq;
7639 init_cfs_rq(cfs_rq, rq);
7640 cfs_rq->tg = tg;
7641 if (add)
7642 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7643
7644 tg->se[cpu] = se;
354d60c2
DG
7645 /* se could be NULL for init_task_group */
7646 if (!se)
7647 return;
7648
ec7dc8ac
DG
7649 if (!parent)
7650 se->cfs_rq = &rq->cfs;
7651 else
7652 se->cfs_rq = parent->my_q;
7653
6f505b16
PZ
7654 se->my_q = cfs_rq;
7655 se->load.weight = tg->shares;
e05510d0 7656 se->load.inv_weight = 0;
ec7dc8ac 7657 se->parent = parent;
6f505b16 7658}
052f1dc7 7659#endif
6f505b16 7660
052f1dc7 7661#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7662static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7663 struct sched_rt_entity *rt_se, int cpu, int add,
7664 struct sched_rt_entity *parent)
6f505b16 7665{
ec7dc8ac
DG
7666 struct rq *rq = cpu_rq(cpu);
7667
6f505b16
PZ
7668 tg->rt_rq[cpu] = rt_rq;
7669 init_rt_rq(rt_rq, rq);
7670 rt_rq->tg = tg;
ac086bc2 7671 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7672 if (add)
7673 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7674
7675 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7676 if (!rt_se)
7677 return;
7678
ec7dc8ac
DG
7679 if (!parent)
7680 rt_se->rt_rq = &rq->rt;
7681 else
7682 rt_se->rt_rq = parent->my_q;
7683
6f505b16 7684 rt_se->my_q = rt_rq;
ec7dc8ac 7685 rt_se->parent = parent;
6f505b16
PZ
7686 INIT_LIST_HEAD(&rt_se->run_list);
7687}
7688#endif
7689
1da177e4
LT
7690void __init sched_init(void)
7691{
dd41f596 7692 int i, j;
434d53b0
MT
7693 unsigned long alloc_size = 0, ptr;
7694
7695#ifdef CONFIG_FAIR_GROUP_SCHED
7696 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7697#endif
7698#ifdef CONFIG_RT_GROUP_SCHED
7699 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7700#endif
df7c8e84 7701#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7702 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7703#endif
434d53b0 7704 if (alloc_size) {
36b7b6d4 7705 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7706
7707#ifdef CONFIG_FAIR_GROUP_SCHED
7708 init_task_group.se = (struct sched_entity **)ptr;
7709 ptr += nr_cpu_ids * sizeof(void **);
7710
7711 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7712 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7713
6d6bc0ad 7714#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7715#ifdef CONFIG_RT_GROUP_SCHED
7716 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7717 ptr += nr_cpu_ids * sizeof(void **);
7718
7719 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7720 ptr += nr_cpu_ids * sizeof(void **);
7721
6d6bc0ad 7722#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7723#ifdef CONFIG_CPUMASK_OFFSTACK
7724 for_each_possible_cpu(i) {
7725 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7726 ptr += cpumask_size();
7727 }
7728#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7729 }
dd41f596 7730
57d885fe
GH
7731#ifdef CONFIG_SMP
7732 init_defrootdomain();
7733#endif
7734
d0b27fa7
PZ
7735 init_rt_bandwidth(&def_rt_bandwidth,
7736 global_rt_period(), global_rt_runtime());
7737
7738#ifdef CONFIG_RT_GROUP_SCHED
7739 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7740 global_rt_period(), global_rt_runtime());
6d6bc0ad 7741#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7742
7c941438 7743#ifdef CONFIG_CGROUP_SCHED
6f505b16 7744 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7745 INIT_LIST_HEAD(&init_task_group.children);
7746
7c941438 7747#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7748
4a6cc4bd
JK
7749#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7750 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7751 __alignof__(unsigned long));
7752#endif
0a945022 7753 for_each_possible_cpu(i) {
70b97a7f 7754 struct rq *rq;
1da177e4
LT
7755
7756 rq = cpu_rq(i);
05fa785c 7757 raw_spin_lock_init(&rq->lock);
7897986b 7758 rq->nr_running = 0;
dce48a84
TG
7759 rq->calc_load_active = 0;
7760 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7761 init_cfs_rq(&rq->cfs, rq);
6f505b16 7762 init_rt_rq(&rq->rt, rq);
dd41f596 7763#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7764 init_task_group.shares = init_task_group_load;
6f505b16 7765 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7766#ifdef CONFIG_CGROUP_SCHED
7767 /*
7768 * How much cpu bandwidth does init_task_group get?
7769 *
7770 * In case of task-groups formed thr' the cgroup filesystem, it
7771 * gets 100% of the cpu resources in the system. This overall
7772 * system cpu resource is divided among the tasks of
7773 * init_task_group and its child task-groups in a fair manner,
7774 * based on each entity's (task or task-group's) weight
7775 * (se->load.weight).
7776 *
7777 * In other words, if init_task_group has 10 tasks of weight
7778 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7779 * then A0's share of the cpu resource is:
7780 *
0d905bca 7781 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7782 *
7783 * We achieve this by letting init_task_group's tasks sit
7784 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7785 */
ec7dc8ac 7786 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7787#endif
354d60c2
DG
7788#endif /* CONFIG_FAIR_GROUP_SCHED */
7789
7790 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7791#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7792 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7793#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7794 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7795#endif
dd41f596 7796#endif
1da177e4 7797
dd41f596
IM
7798 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7799 rq->cpu_load[j] = 0;
fdf3e95d
VP
7800
7801 rq->last_load_update_tick = jiffies;
7802
1da177e4 7803#ifdef CONFIG_SMP
41c7ce9a 7804 rq->sd = NULL;
57d885fe 7805 rq->rd = NULL;
e51fd5e2 7806 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7807 rq->post_schedule = 0;
1da177e4 7808 rq->active_balance = 0;
dd41f596 7809 rq->next_balance = jiffies;
1da177e4 7810 rq->push_cpu = 0;
0a2966b4 7811 rq->cpu = i;
1f11eb6a 7812 rq->online = 0;
eae0c9df
MG
7813 rq->idle_stamp = 0;
7814 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7815 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7816#ifdef CONFIG_NO_HZ
7817 rq->nohz_balance_kick = 0;
7818 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7819#endif
1da177e4 7820#endif
8f4d37ec 7821 init_rq_hrtick(rq);
1da177e4 7822 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7823 }
7824
2dd73a4f 7825 set_load_weight(&init_task);
b50f60ce 7826
e107be36
AK
7827#ifdef CONFIG_PREEMPT_NOTIFIERS
7828 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7829#endif
7830
c9819f45 7831#ifdef CONFIG_SMP
962cf36c 7832 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7833#endif
7834
b50f60ce 7835#ifdef CONFIG_RT_MUTEXES
1d615482 7836 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7837#endif
7838
1da177e4
LT
7839 /*
7840 * The boot idle thread does lazy MMU switching as well:
7841 */
7842 atomic_inc(&init_mm.mm_count);
7843 enter_lazy_tlb(&init_mm, current);
7844
7845 /*
7846 * Make us the idle thread. Technically, schedule() should not be
7847 * called from this thread, however somewhere below it might be,
7848 * but because we are the idle thread, we just pick up running again
7849 * when this runqueue becomes "idle".
7850 */
7851 init_idle(current, smp_processor_id());
dce48a84
TG
7852
7853 calc_load_update = jiffies + LOAD_FREQ;
7854
dd41f596
IM
7855 /*
7856 * During early bootup we pretend to be a normal task:
7857 */
7858 current->sched_class = &fair_sched_class;
6892b75e 7859
6a7b3dc3 7860 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7861 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7862#ifdef CONFIG_SMP
7d1e6a9b 7863#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7864 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7865 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7866 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7867 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7868 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7869#endif
bdddd296
RR
7870 /* May be allocated at isolcpus cmdline parse time */
7871 if (cpu_isolated_map == NULL)
7872 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7873#endif /* SMP */
6a7b3dc3 7874
cdd6c482 7875 perf_event_init();
0d905bca 7876
6892b75e 7877 scheduler_running = 1;
1da177e4
LT
7878}
7879
7880#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7881static inline int preempt_count_equals(int preempt_offset)
7882{
234da7bc 7883 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7884
7885 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7886}
7887
d894837f 7888void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7889{
48f24c4d 7890#ifdef in_atomic
1da177e4
LT
7891 static unsigned long prev_jiffy; /* ratelimiting */
7892
e4aafea2
FW
7893 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7894 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7895 return;
7896 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7897 return;
7898 prev_jiffy = jiffies;
7899
3df0fc5b
PZ
7900 printk(KERN_ERR
7901 "BUG: sleeping function called from invalid context at %s:%d\n",
7902 file, line);
7903 printk(KERN_ERR
7904 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7905 in_atomic(), irqs_disabled(),
7906 current->pid, current->comm);
aef745fc
IM
7907
7908 debug_show_held_locks(current);
7909 if (irqs_disabled())
7910 print_irqtrace_events(current);
7911 dump_stack();
1da177e4
LT
7912#endif
7913}
7914EXPORT_SYMBOL(__might_sleep);
7915#endif
7916
7917#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7918static void normalize_task(struct rq *rq, struct task_struct *p)
7919{
7920 int on_rq;
3e51f33f 7921
3a5e4dc1
AK
7922 on_rq = p->se.on_rq;
7923 if (on_rq)
7924 deactivate_task(rq, p, 0);
7925 __setscheduler(rq, p, SCHED_NORMAL, 0);
7926 if (on_rq) {
7927 activate_task(rq, p, 0);
7928 resched_task(rq->curr);
7929 }
7930}
7931
1da177e4
LT
7932void normalize_rt_tasks(void)
7933{
a0f98a1c 7934 struct task_struct *g, *p;
1da177e4 7935 unsigned long flags;
70b97a7f 7936 struct rq *rq;
1da177e4 7937
4cf5d77a 7938 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7939 do_each_thread(g, p) {
178be793
IM
7940 /*
7941 * Only normalize user tasks:
7942 */
7943 if (!p->mm)
7944 continue;
7945
6cfb0d5d 7946 p->se.exec_start = 0;
6cfb0d5d 7947#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7948 p->se.statistics.wait_start = 0;
7949 p->se.statistics.sleep_start = 0;
7950 p->se.statistics.block_start = 0;
6cfb0d5d 7951#endif
dd41f596
IM
7952
7953 if (!rt_task(p)) {
7954 /*
7955 * Renice negative nice level userspace
7956 * tasks back to 0:
7957 */
7958 if (TASK_NICE(p) < 0 && p->mm)
7959 set_user_nice(p, 0);
1da177e4 7960 continue;
dd41f596 7961 }
1da177e4 7962
1d615482 7963 raw_spin_lock(&p->pi_lock);
b29739f9 7964 rq = __task_rq_lock(p);
1da177e4 7965
178be793 7966 normalize_task(rq, p);
3a5e4dc1 7967
b29739f9 7968 __task_rq_unlock(rq);
1d615482 7969 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7970 } while_each_thread(g, p);
7971
4cf5d77a 7972 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7973}
7974
7975#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7976
67fc4e0c 7977#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7978/*
67fc4e0c 7979 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7980 *
7981 * They can only be called when the whole system has been
7982 * stopped - every CPU needs to be quiescent, and no scheduling
7983 * activity can take place. Using them for anything else would
7984 * be a serious bug, and as a result, they aren't even visible
7985 * under any other configuration.
7986 */
7987
7988/**
7989 * curr_task - return the current task for a given cpu.
7990 * @cpu: the processor in question.
7991 *
7992 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7993 */
36c8b586 7994struct task_struct *curr_task(int cpu)
1df5c10a
LT
7995{
7996 return cpu_curr(cpu);
7997}
7998
67fc4e0c
JW
7999#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8000
8001#ifdef CONFIG_IA64
1df5c10a
LT
8002/**
8003 * set_curr_task - set the current task for a given cpu.
8004 * @cpu: the processor in question.
8005 * @p: the task pointer to set.
8006 *
8007 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8008 * are serviced on a separate stack. It allows the architecture to switch the
8009 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8010 * must be called with all CPU's synchronized, and interrupts disabled, the
8011 * and caller must save the original value of the current task (see
8012 * curr_task() above) and restore that value before reenabling interrupts and
8013 * re-starting the system.
8014 *
8015 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8016 */
36c8b586 8017void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8018{
8019 cpu_curr(cpu) = p;
8020}
8021
8022#endif
29f59db3 8023
bccbe08a
PZ
8024#ifdef CONFIG_FAIR_GROUP_SCHED
8025static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8026{
8027 int i;
8028
8029 for_each_possible_cpu(i) {
8030 if (tg->cfs_rq)
8031 kfree(tg->cfs_rq[i]);
8032 if (tg->se)
8033 kfree(tg->se[i]);
6f505b16
PZ
8034 }
8035
8036 kfree(tg->cfs_rq);
8037 kfree(tg->se);
6f505b16
PZ
8038}
8039
ec7dc8ac
DG
8040static
8041int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8042{
29f59db3 8043 struct cfs_rq *cfs_rq;
eab17229 8044 struct sched_entity *se;
9b5b7751 8045 struct rq *rq;
29f59db3
SV
8046 int i;
8047
434d53b0 8048 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8049 if (!tg->cfs_rq)
8050 goto err;
434d53b0 8051 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8052 if (!tg->se)
8053 goto err;
052f1dc7
PZ
8054
8055 tg->shares = NICE_0_LOAD;
29f59db3
SV
8056
8057 for_each_possible_cpu(i) {
9b5b7751 8058 rq = cpu_rq(i);
29f59db3 8059
eab17229
LZ
8060 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8061 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8062 if (!cfs_rq)
8063 goto err;
8064
eab17229
LZ
8065 se = kzalloc_node(sizeof(struct sched_entity),
8066 GFP_KERNEL, cpu_to_node(i));
29f59db3 8067 if (!se)
dfc12eb2 8068 goto err_free_rq;
29f59db3 8069
eab17229 8070 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8071 }
8072
8073 return 1;
8074
dfc12eb2
PC
8075 err_free_rq:
8076 kfree(cfs_rq);
bccbe08a
PZ
8077 err:
8078 return 0;
8079}
8080
8081static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8082{
8083 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8084 &cpu_rq(cpu)->leaf_cfs_rq_list);
8085}
8086
8087static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8088{
8089 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8090}
6d6bc0ad 8091#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8092static inline void free_fair_sched_group(struct task_group *tg)
8093{
8094}
8095
ec7dc8ac
DG
8096static inline
8097int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8098{
8099 return 1;
8100}
8101
8102static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8103{
8104}
8105
8106static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8107{
8108}
6d6bc0ad 8109#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8110
8111#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8112static void free_rt_sched_group(struct task_group *tg)
8113{
8114 int i;
8115
d0b27fa7
PZ
8116 destroy_rt_bandwidth(&tg->rt_bandwidth);
8117
bccbe08a
PZ
8118 for_each_possible_cpu(i) {
8119 if (tg->rt_rq)
8120 kfree(tg->rt_rq[i]);
8121 if (tg->rt_se)
8122 kfree(tg->rt_se[i]);
8123 }
8124
8125 kfree(tg->rt_rq);
8126 kfree(tg->rt_se);
8127}
8128
ec7dc8ac
DG
8129static
8130int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8131{
8132 struct rt_rq *rt_rq;
eab17229 8133 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8134 struct rq *rq;
8135 int i;
8136
434d53b0 8137 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8138 if (!tg->rt_rq)
8139 goto err;
434d53b0 8140 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8141 if (!tg->rt_se)
8142 goto err;
8143
d0b27fa7
PZ
8144 init_rt_bandwidth(&tg->rt_bandwidth,
8145 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8146
8147 for_each_possible_cpu(i) {
8148 rq = cpu_rq(i);
8149
eab17229
LZ
8150 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8151 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8152 if (!rt_rq)
8153 goto err;
29f59db3 8154
eab17229
LZ
8155 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8156 GFP_KERNEL, cpu_to_node(i));
6f505b16 8157 if (!rt_se)
dfc12eb2 8158 goto err_free_rq;
29f59db3 8159
eab17229 8160 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8161 }
8162
bccbe08a
PZ
8163 return 1;
8164
dfc12eb2
PC
8165 err_free_rq:
8166 kfree(rt_rq);
bccbe08a
PZ
8167 err:
8168 return 0;
8169}
8170
8171static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8172{
8173 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8174 &cpu_rq(cpu)->leaf_rt_rq_list);
8175}
8176
8177static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8178{
8179 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8180}
6d6bc0ad 8181#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8182static inline void free_rt_sched_group(struct task_group *tg)
8183{
8184}
8185
ec7dc8ac
DG
8186static inline
8187int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8188{
8189 return 1;
8190}
8191
8192static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8193{
8194}
8195
8196static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8197{
8198}
6d6bc0ad 8199#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8200
7c941438 8201#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8202static void free_sched_group(struct task_group *tg)
8203{
8204 free_fair_sched_group(tg);
8205 free_rt_sched_group(tg);
8206 kfree(tg);
8207}
8208
8209/* allocate runqueue etc for a new task group */
ec7dc8ac 8210struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8211{
8212 struct task_group *tg;
8213 unsigned long flags;
8214 int i;
8215
8216 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8217 if (!tg)
8218 return ERR_PTR(-ENOMEM);
8219
ec7dc8ac 8220 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8221 goto err;
8222
ec7dc8ac 8223 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8224 goto err;
8225
8ed36996 8226 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8227 for_each_possible_cpu(i) {
bccbe08a
PZ
8228 register_fair_sched_group(tg, i);
8229 register_rt_sched_group(tg, i);
9b5b7751 8230 }
6f505b16 8231 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8232
8233 WARN_ON(!parent); /* root should already exist */
8234
8235 tg->parent = parent;
f473aa5e 8236 INIT_LIST_HEAD(&tg->children);
09f2724a 8237 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8238 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8239
9b5b7751 8240 return tg;
29f59db3
SV
8241
8242err:
6f505b16 8243 free_sched_group(tg);
29f59db3
SV
8244 return ERR_PTR(-ENOMEM);
8245}
8246
9b5b7751 8247/* rcu callback to free various structures associated with a task group */
6f505b16 8248static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8249{
29f59db3 8250 /* now it should be safe to free those cfs_rqs */
6f505b16 8251 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8252}
8253
9b5b7751 8254/* Destroy runqueue etc associated with a task group */
4cf86d77 8255void sched_destroy_group(struct task_group *tg)
29f59db3 8256{
8ed36996 8257 unsigned long flags;
9b5b7751 8258 int i;
29f59db3 8259
8ed36996 8260 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8261 for_each_possible_cpu(i) {
bccbe08a
PZ
8262 unregister_fair_sched_group(tg, i);
8263 unregister_rt_sched_group(tg, i);
9b5b7751 8264 }
6f505b16 8265 list_del_rcu(&tg->list);
f473aa5e 8266 list_del_rcu(&tg->siblings);
8ed36996 8267 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8268
9b5b7751 8269 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8270 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8271}
8272
9b5b7751 8273/* change task's runqueue when it moves between groups.
3a252015
IM
8274 * The caller of this function should have put the task in its new group
8275 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8276 * reflect its new group.
9b5b7751
SV
8277 */
8278void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8279{
8280 int on_rq, running;
8281 unsigned long flags;
8282 struct rq *rq;
8283
8284 rq = task_rq_lock(tsk, &flags);
8285
051a1d1a 8286 running = task_current(rq, tsk);
29f59db3
SV
8287 on_rq = tsk->se.on_rq;
8288
0e1f3483 8289 if (on_rq)
29f59db3 8290 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8291 if (unlikely(running))
8292 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8293
6f505b16 8294 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8295
810b3817
PZ
8296#ifdef CONFIG_FAIR_GROUP_SCHED
8297 if (tsk->sched_class->moved_group)
88ec22d3 8298 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8299#endif
8300
0e1f3483
HS
8301 if (unlikely(running))
8302 tsk->sched_class->set_curr_task(rq);
8303 if (on_rq)
371fd7e7 8304 enqueue_task(rq, tsk, 0);
29f59db3 8305
29f59db3
SV
8306 task_rq_unlock(rq, &flags);
8307}
7c941438 8308#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8309
052f1dc7 8310#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8311static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8312{
8313 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8314 int on_rq;
8315
29f59db3 8316 on_rq = se->on_rq;
62fb1851 8317 if (on_rq)
29f59db3
SV
8318 dequeue_entity(cfs_rq, se, 0);
8319
8320 se->load.weight = shares;
e05510d0 8321 se->load.inv_weight = 0;
29f59db3 8322
62fb1851 8323 if (on_rq)
29f59db3 8324 enqueue_entity(cfs_rq, se, 0);
c09595f6 8325}
62fb1851 8326
c09595f6
PZ
8327static void set_se_shares(struct sched_entity *se, unsigned long shares)
8328{
8329 struct cfs_rq *cfs_rq = se->cfs_rq;
8330 struct rq *rq = cfs_rq->rq;
8331 unsigned long flags;
8332
05fa785c 8333 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8334 __set_se_shares(se, shares);
05fa785c 8335 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8336}
8337
8ed36996
PZ
8338static DEFINE_MUTEX(shares_mutex);
8339
4cf86d77 8340int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8341{
8342 int i;
8ed36996 8343 unsigned long flags;
c61935fd 8344
ec7dc8ac
DG
8345 /*
8346 * We can't change the weight of the root cgroup.
8347 */
8348 if (!tg->se[0])
8349 return -EINVAL;
8350
18d95a28
PZ
8351 if (shares < MIN_SHARES)
8352 shares = MIN_SHARES;
cb4ad1ff
MX
8353 else if (shares > MAX_SHARES)
8354 shares = MAX_SHARES;
62fb1851 8355
8ed36996 8356 mutex_lock(&shares_mutex);
9b5b7751 8357 if (tg->shares == shares)
5cb350ba 8358 goto done;
29f59db3 8359
8ed36996 8360 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8361 for_each_possible_cpu(i)
8362 unregister_fair_sched_group(tg, i);
f473aa5e 8363 list_del_rcu(&tg->siblings);
8ed36996 8364 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8365
8366 /* wait for any ongoing reference to this group to finish */
8367 synchronize_sched();
8368
8369 /*
8370 * Now we are free to modify the group's share on each cpu
8371 * w/o tripping rebalance_share or load_balance_fair.
8372 */
9b5b7751 8373 tg->shares = shares;
c09595f6
PZ
8374 for_each_possible_cpu(i) {
8375 /*
8376 * force a rebalance
8377 */
8378 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8379 set_se_shares(tg->se[i], shares);
c09595f6 8380 }
29f59db3 8381
6b2d7700
SV
8382 /*
8383 * Enable load balance activity on this group, by inserting it back on
8384 * each cpu's rq->leaf_cfs_rq_list.
8385 */
8ed36996 8386 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8387 for_each_possible_cpu(i)
8388 register_fair_sched_group(tg, i);
f473aa5e 8389 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8390 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8391done:
8ed36996 8392 mutex_unlock(&shares_mutex);
9b5b7751 8393 return 0;
29f59db3
SV
8394}
8395
5cb350ba
DG
8396unsigned long sched_group_shares(struct task_group *tg)
8397{
8398 return tg->shares;
8399}
052f1dc7 8400#endif
5cb350ba 8401
052f1dc7 8402#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8403/*
9f0c1e56 8404 * Ensure that the real time constraints are schedulable.
6f505b16 8405 */
9f0c1e56
PZ
8406static DEFINE_MUTEX(rt_constraints_mutex);
8407
8408static unsigned long to_ratio(u64 period, u64 runtime)
8409{
8410 if (runtime == RUNTIME_INF)
9a7e0b18 8411 return 1ULL << 20;
9f0c1e56 8412
9a7e0b18 8413 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8414}
8415
9a7e0b18
PZ
8416/* Must be called with tasklist_lock held */
8417static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8418{
9a7e0b18 8419 struct task_struct *g, *p;
b40b2e8e 8420
9a7e0b18
PZ
8421 do_each_thread(g, p) {
8422 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8423 return 1;
8424 } while_each_thread(g, p);
b40b2e8e 8425
9a7e0b18
PZ
8426 return 0;
8427}
b40b2e8e 8428
9a7e0b18
PZ
8429struct rt_schedulable_data {
8430 struct task_group *tg;
8431 u64 rt_period;
8432 u64 rt_runtime;
8433};
b40b2e8e 8434
9a7e0b18
PZ
8435static int tg_schedulable(struct task_group *tg, void *data)
8436{
8437 struct rt_schedulable_data *d = data;
8438 struct task_group *child;
8439 unsigned long total, sum = 0;
8440 u64 period, runtime;
b40b2e8e 8441
9a7e0b18
PZ
8442 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8443 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8444
9a7e0b18
PZ
8445 if (tg == d->tg) {
8446 period = d->rt_period;
8447 runtime = d->rt_runtime;
b40b2e8e 8448 }
b40b2e8e 8449
4653f803
PZ
8450 /*
8451 * Cannot have more runtime than the period.
8452 */
8453 if (runtime > period && runtime != RUNTIME_INF)
8454 return -EINVAL;
6f505b16 8455
4653f803
PZ
8456 /*
8457 * Ensure we don't starve existing RT tasks.
8458 */
9a7e0b18
PZ
8459 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8460 return -EBUSY;
6f505b16 8461
9a7e0b18 8462 total = to_ratio(period, runtime);
6f505b16 8463
4653f803
PZ
8464 /*
8465 * Nobody can have more than the global setting allows.
8466 */
8467 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8468 return -EINVAL;
6f505b16 8469
4653f803
PZ
8470 /*
8471 * The sum of our children's runtime should not exceed our own.
8472 */
9a7e0b18
PZ
8473 list_for_each_entry_rcu(child, &tg->children, siblings) {
8474 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8475 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8476
9a7e0b18
PZ
8477 if (child == d->tg) {
8478 period = d->rt_period;
8479 runtime = d->rt_runtime;
8480 }
6f505b16 8481
9a7e0b18 8482 sum += to_ratio(period, runtime);
9f0c1e56 8483 }
6f505b16 8484
9a7e0b18
PZ
8485 if (sum > total)
8486 return -EINVAL;
8487
8488 return 0;
6f505b16
PZ
8489}
8490
9a7e0b18 8491static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8492{
9a7e0b18
PZ
8493 struct rt_schedulable_data data = {
8494 .tg = tg,
8495 .rt_period = period,
8496 .rt_runtime = runtime,
8497 };
8498
8499 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8500}
8501
d0b27fa7
PZ
8502static int tg_set_bandwidth(struct task_group *tg,
8503 u64 rt_period, u64 rt_runtime)
6f505b16 8504{
ac086bc2 8505 int i, err = 0;
9f0c1e56 8506
9f0c1e56 8507 mutex_lock(&rt_constraints_mutex);
521f1a24 8508 read_lock(&tasklist_lock);
9a7e0b18
PZ
8509 err = __rt_schedulable(tg, rt_period, rt_runtime);
8510 if (err)
9f0c1e56 8511 goto unlock;
ac086bc2 8512
0986b11b 8513 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8514 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8515 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8516
8517 for_each_possible_cpu(i) {
8518 struct rt_rq *rt_rq = tg->rt_rq[i];
8519
0986b11b 8520 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8521 rt_rq->rt_runtime = rt_runtime;
0986b11b 8522 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8523 }
0986b11b 8524 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8525 unlock:
521f1a24 8526 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8527 mutex_unlock(&rt_constraints_mutex);
8528
8529 return err;
6f505b16
PZ
8530}
8531
d0b27fa7
PZ
8532int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8533{
8534 u64 rt_runtime, rt_period;
8535
8536 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8537 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8538 if (rt_runtime_us < 0)
8539 rt_runtime = RUNTIME_INF;
8540
8541 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8542}
8543
9f0c1e56
PZ
8544long sched_group_rt_runtime(struct task_group *tg)
8545{
8546 u64 rt_runtime_us;
8547
d0b27fa7 8548 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8549 return -1;
8550
d0b27fa7 8551 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8552 do_div(rt_runtime_us, NSEC_PER_USEC);
8553 return rt_runtime_us;
8554}
d0b27fa7
PZ
8555
8556int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8557{
8558 u64 rt_runtime, rt_period;
8559
8560 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8561 rt_runtime = tg->rt_bandwidth.rt_runtime;
8562
619b0488
R
8563 if (rt_period == 0)
8564 return -EINVAL;
8565
d0b27fa7
PZ
8566 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8567}
8568
8569long sched_group_rt_period(struct task_group *tg)
8570{
8571 u64 rt_period_us;
8572
8573 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8574 do_div(rt_period_us, NSEC_PER_USEC);
8575 return rt_period_us;
8576}
8577
8578static int sched_rt_global_constraints(void)
8579{
4653f803 8580 u64 runtime, period;
d0b27fa7
PZ
8581 int ret = 0;
8582
ec5d4989
HS
8583 if (sysctl_sched_rt_period <= 0)
8584 return -EINVAL;
8585
4653f803
PZ
8586 runtime = global_rt_runtime();
8587 period = global_rt_period();
8588
8589 /*
8590 * Sanity check on the sysctl variables.
8591 */
8592 if (runtime > period && runtime != RUNTIME_INF)
8593 return -EINVAL;
10b612f4 8594
d0b27fa7 8595 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8596 read_lock(&tasklist_lock);
4653f803 8597 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8598 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8599 mutex_unlock(&rt_constraints_mutex);
8600
8601 return ret;
8602}
54e99124
DG
8603
8604int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8605{
8606 /* Don't accept realtime tasks when there is no way for them to run */
8607 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8608 return 0;
8609
8610 return 1;
8611}
8612
6d6bc0ad 8613#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8614static int sched_rt_global_constraints(void)
8615{
ac086bc2
PZ
8616 unsigned long flags;
8617 int i;
8618
ec5d4989
HS
8619 if (sysctl_sched_rt_period <= 0)
8620 return -EINVAL;
8621
60aa605d
PZ
8622 /*
8623 * There's always some RT tasks in the root group
8624 * -- migration, kstopmachine etc..
8625 */
8626 if (sysctl_sched_rt_runtime == 0)
8627 return -EBUSY;
8628
0986b11b 8629 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8630 for_each_possible_cpu(i) {
8631 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8632
0986b11b 8633 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8634 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8635 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8636 }
0986b11b 8637 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8638
d0b27fa7
PZ
8639 return 0;
8640}
6d6bc0ad 8641#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8642
8643int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8644 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8645 loff_t *ppos)
8646{
8647 int ret;
8648 int old_period, old_runtime;
8649 static DEFINE_MUTEX(mutex);
8650
8651 mutex_lock(&mutex);
8652 old_period = sysctl_sched_rt_period;
8653 old_runtime = sysctl_sched_rt_runtime;
8654
8d65af78 8655 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8656
8657 if (!ret && write) {
8658 ret = sched_rt_global_constraints();
8659 if (ret) {
8660 sysctl_sched_rt_period = old_period;
8661 sysctl_sched_rt_runtime = old_runtime;
8662 } else {
8663 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8664 def_rt_bandwidth.rt_period =
8665 ns_to_ktime(global_rt_period());
8666 }
8667 }
8668 mutex_unlock(&mutex);
8669
8670 return ret;
8671}
68318b8e 8672
052f1dc7 8673#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8674
8675/* return corresponding task_group object of a cgroup */
2b01dfe3 8676static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8677{
2b01dfe3
PM
8678 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8679 struct task_group, css);
68318b8e
SV
8680}
8681
8682static struct cgroup_subsys_state *
2b01dfe3 8683cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8684{
ec7dc8ac 8685 struct task_group *tg, *parent;
68318b8e 8686
2b01dfe3 8687 if (!cgrp->parent) {
68318b8e 8688 /* This is early initialization for the top cgroup */
68318b8e
SV
8689 return &init_task_group.css;
8690 }
8691
ec7dc8ac
DG
8692 parent = cgroup_tg(cgrp->parent);
8693 tg = sched_create_group(parent);
68318b8e
SV
8694 if (IS_ERR(tg))
8695 return ERR_PTR(-ENOMEM);
8696
68318b8e
SV
8697 return &tg->css;
8698}
8699
41a2d6cf
IM
8700static void
8701cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8702{
2b01dfe3 8703 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8704
8705 sched_destroy_group(tg);
8706}
8707
41a2d6cf 8708static int
be367d09 8709cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8710{
b68aa230 8711#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8712 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8713 return -EINVAL;
8714#else
68318b8e
SV
8715 /* We don't support RT-tasks being in separate groups */
8716 if (tsk->sched_class != &fair_sched_class)
8717 return -EINVAL;
b68aa230 8718#endif
be367d09
BB
8719 return 0;
8720}
68318b8e 8721
be367d09
BB
8722static int
8723cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8724 struct task_struct *tsk, bool threadgroup)
8725{
8726 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8727 if (retval)
8728 return retval;
8729 if (threadgroup) {
8730 struct task_struct *c;
8731 rcu_read_lock();
8732 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8733 retval = cpu_cgroup_can_attach_task(cgrp, c);
8734 if (retval) {
8735 rcu_read_unlock();
8736 return retval;
8737 }
8738 }
8739 rcu_read_unlock();
8740 }
68318b8e
SV
8741 return 0;
8742}
8743
8744static void
2b01dfe3 8745cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8746 struct cgroup *old_cont, struct task_struct *tsk,
8747 bool threadgroup)
68318b8e
SV
8748{
8749 sched_move_task(tsk);
be367d09
BB
8750 if (threadgroup) {
8751 struct task_struct *c;
8752 rcu_read_lock();
8753 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8754 sched_move_task(c);
8755 }
8756 rcu_read_unlock();
8757 }
68318b8e
SV
8758}
8759
052f1dc7 8760#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8761static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8762 u64 shareval)
68318b8e 8763{
2b01dfe3 8764 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8765}
8766
f4c753b7 8767static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8768{
2b01dfe3 8769 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8770
8771 return (u64) tg->shares;
8772}
6d6bc0ad 8773#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8774
052f1dc7 8775#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8776static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8777 s64 val)
6f505b16 8778{
06ecb27c 8779 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8780}
8781
06ecb27c 8782static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8783{
06ecb27c 8784 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8785}
d0b27fa7
PZ
8786
8787static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8788 u64 rt_period_us)
8789{
8790 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8791}
8792
8793static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8794{
8795 return sched_group_rt_period(cgroup_tg(cgrp));
8796}
6d6bc0ad 8797#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8798
fe5c7cc2 8799static struct cftype cpu_files[] = {
052f1dc7 8800#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8801 {
8802 .name = "shares",
f4c753b7
PM
8803 .read_u64 = cpu_shares_read_u64,
8804 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8805 },
052f1dc7
PZ
8806#endif
8807#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8808 {
9f0c1e56 8809 .name = "rt_runtime_us",
06ecb27c
PM
8810 .read_s64 = cpu_rt_runtime_read,
8811 .write_s64 = cpu_rt_runtime_write,
6f505b16 8812 },
d0b27fa7
PZ
8813 {
8814 .name = "rt_period_us",
f4c753b7
PM
8815 .read_u64 = cpu_rt_period_read_uint,
8816 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8817 },
052f1dc7 8818#endif
68318b8e
SV
8819};
8820
8821static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8822{
fe5c7cc2 8823 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8824}
8825
8826struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8827 .name = "cpu",
8828 .create = cpu_cgroup_create,
8829 .destroy = cpu_cgroup_destroy,
8830 .can_attach = cpu_cgroup_can_attach,
8831 .attach = cpu_cgroup_attach,
8832 .populate = cpu_cgroup_populate,
8833 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8834 .early_init = 1,
8835};
8836
052f1dc7 8837#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8838
8839#ifdef CONFIG_CGROUP_CPUACCT
8840
8841/*
8842 * CPU accounting code for task groups.
8843 *
8844 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8845 * (balbir@in.ibm.com).
8846 */
8847
934352f2 8848/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8849struct cpuacct {
8850 struct cgroup_subsys_state css;
8851 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8852 u64 __percpu *cpuusage;
ef12fefa 8853 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8854 struct cpuacct *parent;
d842de87
SV
8855};
8856
8857struct cgroup_subsys cpuacct_subsys;
8858
8859/* return cpu accounting group corresponding to this container */
32cd756a 8860static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8861{
32cd756a 8862 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8863 struct cpuacct, css);
8864}
8865
8866/* return cpu accounting group to which this task belongs */
8867static inline struct cpuacct *task_ca(struct task_struct *tsk)
8868{
8869 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8870 struct cpuacct, css);
8871}
8872
8873/* create a new cpu accounting group */
8874static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8875 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8876{
8877 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8878 int i;
d842de87
SV
8879
8880 if (!ca)
ef12fefa 8881 goto out;
d842de87
SV
8882
8883 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8884 if (!ca->cpuusage)
8885 goto out_free_ca;
8886
8887 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8888 if (percpu_counter_init(&ca->cpustat[i], 0))
8889 goto out_free_counters;
d842de87 8890
934352f2
BR
8891 if (cgrp->parent)
8892 ca->parent = cgroup_ca(cgrp->parent);
8893
d842de87 8894 return &ca->css;
ef12fefa
BR
8895
8896out_free_counters:
8897 while (--i >= 0)
8898 percpu_counter_destroy(&ca->cpustat[i]);
8899 free_percpu(ca->cpuusage);
8900out_free_ca:
8901 kfree(ca);
8902out:
8903 return ERR_PTR(-ENOMEM);
d842de87
SV
8904}
8905
8906/* destroy an existing cpu accounting group */
41a2d6cf 8907static void
32cd756a 8908cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8909{
32cd756a 8910 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8911 int i;
d842de87 8912
ef12fefa
BR
8913 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8914 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8915 free_percpu(ca->cpuusage);
8916 kfree(ca);
8917}
8918
720f5498
KC
8919static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8920{
b36128c8 8921 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8922 u64 data;
8923
8924#ifndef CONFIG_64BIT
8925 /*
8926 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8927 */
05fa785c 8928 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8929 data = *cpuusage;
05fa785c 8930 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8931#else
8932 data = *cpuusage;
8933#endif
8934
8935 return data;
8936}
8937
8938static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8939{
b36128c8 8940 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8941
8942#ifndef CONFIG_64BIT
8943 /*
8944 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8945 */
05fa785c 8946 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8947 *cpuusage = val;
05fa785c 8948 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8949#else
8950 *cpuusage = val;
8951#endif
8952}
8953
d842de87 8954/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8955static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8956{
32cd756a 8957 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8958 u64 totalcpuusage = 0;
8959 int i;
8960
720f5498
KC
8961 for_each_present_cpu(i)
8962 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8963
8964 return totalcpuusage;
8965}
8966
0297b803
DG
8967static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8968 u64 reset)
8969{
8970 struct cpuacct *ca = cgroup_ca(cgrp);
8971 int err = 0;
8972 int i;
8973
8974 if (reset) {
8975 err = -EINVAL;
8976 goto out;
8977 }
8978
720f5498
KC
8979 for_each_present_cpu(i)
8980 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8981
0297b803
DG
8982out:
8983 return err;
8984}
8985
e9515c3c
KC
8986static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8987 struct seq_file *m)
8988{
8989 struct cpuacct *ca = cgroup_ca(cgroup);
8990 u64 percpu;
8991 int i;
8992
8993 for_each_present_cpu(i) {
8994 percpu = cpuacct_cpuusage_read(ca, i);
8995 seq_printf(m, "%llu ", (unsigned long long) percpu);
8996 }
8997 seq_printf(m, "\n");
8998 return 0;
8999}
9000
ef12fefa
BR
9001static const char *cpuacct_stat_desc[] = {
9002 [CPUACCT_STAT_USER] = "user",
9003 [CPUACCT_STAT_SYSTEM] = "system",
9004};
9005
9006static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9007 struct cgroup_map_cb *cb)
9008{
9009 struct cpuacct *ca = cgroup_ca(cgrp);
9010 int i;
9011
9012 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9013 s64 val = percpu_counter_read(&ca->cpustat[i]);
9014 val = cputime64_to_clock_t(val);
9015 cb->fill(cb, cpuacct_stat_desc[i], val);
9016 }
9017 return 0;
9018}
9019
d842de87
SV
9020static struct cftype files[] = {
9021 {
9022 .name = "usage",
f4c753b7
PM
9023 .read_u64 = cpuusage_read,
9024 .write_u64 = cpuusage_write,
d842de87 9025 },
e9515c3c
KC
9026 {
9027 .name = "usage_percpu",
9028 .read_seq_string = cpuacct_percpu_seq_read,
9029 },
ef12fefa
BR
9030 {
9031 .name = "stat",
9032 .read_map = cpuacct_stats_show,
9033 },
d842de87
SV
9034};
9035
32cd756a 9036static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9037{
32cd756a 9038 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9039}
9040
9041/*
9042 * charge this task's execution time to its accounting group.
9043 *
9044 * called with rq->lock held.
9045 */
9046static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9047{
9048 struct cpuacct *ca;
934352f2 9049 int cpu;
d842de87 9050
c40c6f85 9051 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9052 return;
9053
934352f2 9054 cpu = task_cpu(tsk);
a18b83b7
BR
9055
9056 rcu_read_lock();
9057
d842de87 9058 ca = task_ca(tsk);
d842de87 9059
934352f2 9060 for (; ca; ca = ca->parent) {
b36128c8 9061 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9062 *cpuusage += cputime;
9063 }
a18b83b7
BR
9064
9065 rcu_read_unlock();
d842de87
SV
9066}
9067
fa535a77
AB
9068/*
9069 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9070 * in cputime_t units. As a result, cpuacct_update_stats calls
9071 * percpu_counter_add with values large enough to always overflow the
9072 * per cpu batch limit causing bad SMP scalability.
9073 *
9074 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9075 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9076 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9077 */
9078#ifdef CONFIG_SMP
9079#define CPUACCT_BATCH \
9080 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9081#else
9082#define CPUACCT_BATCH 0
9083#endif
9084
ef12fefa
BR
9085/*
9086 * Charge the system/user time to the task's accounting group.
9087 */
9088static void cpuacct_update_stats(struct task_struct *tsk,
9089 enum cpuacct_stat_index idx, cputime_t val)
9090{
9091 struct cpuacct *ca;
fa535a77 9092 int batch = CPUACCT_BATCH;
ef12fefa
BR
9093
9094 if (unlikely(!cpuacct_subsys.active))
9095 return;
9096
9097 rcu_read_lock();
9098 ca = task_ca(tsk);
9099
9100 do {
fa535a77 9101 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9102 ca = ca->parent;
9103 } while (ca);
9104 rcu_read_unlock();
9105}
9106
d842de87
SV
9107struct cgroup_subsys cpuacct_subsys = {
9108 .name = "cpuacct",
9109 .create = cpuacct_create,
9110 .destroy = cpuacct_destroy,
9111 .populate = cpuacct_populate,
9112 .subsys_id = cpuacct_subsys_id,
9113};
9114#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9115
9116#ifndef CONFIG_SMP
9117
03b042bf
PM
9118void synchronize_sched_expedited(void)
9119{
fc390cde 9120 barrier();
03b042bf
PM
9121}
9122EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9123
9124#else /* #ifndef CONFIG_SMP */
9125
cc631fb7 9126static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9127
cc631fb7 9128static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9129{
969c7921
TH
9130 /*
9131 * There must be a full memory barrier on each affected CPU
9132 * between the time that try_stop_cpus() is called and the
9133 * time that it returns.
9134 *
9135 * In the current initial implementation of cpu_stop, the
9136 * above condition is already met when the control reaches
9137 * this point and the following smp_mb() is not strictly
9138 * necessary. Do smp_mb() anyway for documentation and
9139 * robustness against future implementation changes.
9140 */
cc631fb7 9141 smp_mb(); /* See above comment block. */
969c7921 9142 return 0;
03b042bf 9143}
03b042bf
PM
9144
9145/*
9146 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9147 * approach to force grace period to end quickly. This consumes
9148 * significant time on all CPUs, and is thus not recommended for
9149 * any sort of common-case code.
9150 *
9151 * Note that it is illegal to call this function while holding any
9152 * lock that is acquired by a CPU-hotplug notifier. Failing to
9153 * observe this restriction will result in deadlock.
9154 */
9155void synchronize_sched_expedited(void)
9156{
969c7921 9157 int snap, trycount = 0;
03b042bf
PM
9158
9159 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9160 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9161 get_online_cpus();
969c7921
TH
9162 while (try_stop_cpus(cpu_online_mask,
9163 synchronize_sched_expedited_cpu_stop,
94458d5e 9164 NULL) == -EAGAIN) {
03b042bf
PM
9165 put_online_cpus();
9166 if (trycount++ < 10)
9167 udelay(trycount * num_online_cpus());
9168 else {
9169 synchronize_sched();
9170 return;
9171 }
969c7921 9172 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9173 smp_mb(); /* ensure test happens before caller kfree */
9174 return;
9175 }
9176 get_online_cpus();
9177 }
969c7921 9178 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9179 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9180 put_online_cpus();
03b042bf
PM
9181}
9182EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9183
9184#endif /* #else #ifndef CONFIG_SMP */