]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Kill the broken and deadlockable cpuset_lock/cpuset_cpus_allowed_locked code
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
7c941438 236#ifdef CONFIG_CGROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
68318b8e 246 struct cgroup_subsys_state css;
6c415b92 247
052f1dc7 248#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
052f1dc7
PZ
254#endif
255
256#ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
d0b27fa7 260 struct rt_bandwidth rt_bandwidth;
052f1dc7 261#endif
6b2d7700 262
ae8393e5 263 struct rcu_head rcu;
6f505b16 264 struct list_head list;
f473aa5e
PZ
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
29f59db3
SV
269};
270
eff766a6 271#define root_task_group init_task_group
6f505b16 272
8ed36996 273/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
274 * a task group's cpu shares.
275 */
8ed36996 276static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 277
e9036b36
CG
278#ifdef CONFIG_FAIR_GROUP_SCHED
279
57310a98
PZ
280#ifdef CONFIG_SMP
281static int root_task_group_empty(void)
282{
283 return list_empty(&root_task_group.children);
284}
285#endif
286
052f1dc7 287# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 288
cb4ad1ff 289/*
2e084786
LJ
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
cb4ad1ff
MX
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
18d95a28 297#define MIN_SHARES 2
2e084786 298#define MAX_SHARES (1UL << 18)
18d95a28 299
052f1dc7
PZ
300static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301#endif
302
29f59db3 303/* Default task group.
3a252015 304 * Every task in system belong to this group at bootup.
29f59db3 305 */
434d53b0 306struct task_group init_task_group;
29f59db3
SV
307
308/* return group to which a task belongs */
4cf86d77 309static inline struct task_group *task_group(struct task_struct *p)
29f59db3 310{
4cf86d77 311 struct task_group *tg;
9b5b7751 312
7c941438 313#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
24e377a8 316#else
41a2d6cf 317 tg = &init_task_group;
24e377a8 318#endif
9b5b7751 319 return tg;
29f59db3
SV
320}
321
322/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 323static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 324{
052f1dc7 325#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
052f1dc7 328#endif
6f505b16 329
052f1dc7 330#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 333#endif
29f59db3
SV
334}
335
336#else
337
6f505b16 338static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
339static inline struct task_group *task_group(struct task_struct *p)
340{
341 return NULL;
342}
29f59db3 343
7c941438 344#endif /* CONFIG_CGROUP_SCHED */
29f59db3 345
6aa645ea
IM
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
6aa645ea 351 u64 exec_clock;
e9acbff6 352 u64 min_vruntime;
6aa645ea
IM
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
4a55bd5e
PZ
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
4793241b 364 struct sched_entity *curr, *next, *last;
ddc97297 365
5ac5c4d6 366 unsigned int nr_spread_over;
ddc97297 367
62160e3f 368#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
41a2d6cf
IM
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
41a2d6cf
IM
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
381
382#ifdef CONFIG_SMP
c09595f6 383 /*
c8cba857 384 * the part of load.weight contributed by tasks
c09595f6 385 */
c8cba857 386 unsigned long task_weight;
c09595f6 387
c8cba857
PZ
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
c09595f6 395
c8cba857
PZ
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
f1d239f7
PZ
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
c09595f6 405#endif
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
414 struct {
415 int curr; /* highest queued rt task prio */
398a153b 416#ifdef CONFIG_SMP
e864c499 417 int next; /* next highest */
398a153b 418#endif
e864c499 419 } highest_prio;
6f505b16 420#endif
fa85ae24 421#ifdef CONFIG_SMP
73fe6aae 422 unsigned long rt_nr_migratory;
a1ba4d8b 423 unsigned long rt_nr_total;
a22d7fc1 424 int overloaded;
917b627d 425 struct plist_head pushable_tasks;
fa85ae24 426#endif
6f505b16 427 int rt_throttled;
fa85ae24 428 u64 rt_time;
ac086bc2 429 u64 rt_runtime;
ea736ed5 430 /* Nests inside the rq lock: */
0986b11b 431 raw_spinlock_t rt_runtime_lock;
6f505b16 432
052f1dc7 433#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
434 unsigned long rt_nr_boosted;
435
6f505b16
PZ
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
6f505b16 439#endif
6aa645ea
IM
440};
441
57d885fe
GH
442#ifdef CONFIG_SMP
443
444/*
445 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
57d885fe
GH
451 */
452struct root_domain {
453 atomic_t refcount;
c6c4927b
RR
454 cpumask_var_t span;
455 cpumask_var_t online;
637f5085 456
0eab9146 457 /*
637f5085
GH
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
c6c4927b 461 cpumask_var_t rto_mask;
0eab9146 462 atomic_t rto_count;
6e0534f2
GH
463#ifdef CONFIG_SMP
464 struct cpupri cpupri;
465#endif
57d885fe
GH
466};
467
dc938520
GH
468/*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
57d885fe
GH
472static struct root_domain def_root_domain;
473
474#endif
475
1da177e4
LT
476/*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
70b97a7f 483struct rq {
d8016491 484 /* runqueue lock: */
05fa785c 485 raw_spinlock_t lock;
1da177e4
LT
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
6aa645ea
IM
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 494#ifdef CONFIG_NO_HZ
39c0cbe2 495 u64 nohz_stamp;
46cb4b7c
SS
496 unsigned char in_nohz_recently;
497#endif
a64692a3
MG
498 unsigned int skip_clock_update;
499
d8016491
IM
500 /* capture load from *all* tasks on this cpu: */
501 struct load_weight load;
6aa645ea
IM
502 unsigned long nr_load_updates;
503 u64 nr_switches;
504
505 struct cfs_rq cfs;
6f505b16 506 struct rt_rq rt;
6f505b16 507
6aa645ea 508#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
509 /* list of leaf cfs_rq on this cpu: */
510 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
511#endif
512#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 513 struct list_head leaf_rt_rq_list;
1da177e4 514#endif
1da177e4
LT
515
516 /*
517 * This is part of a global counter where only the total sum
518 * over all CPUs matters. A task can increase this counter on
519 * one CPU and if it got migrated afterwards it may decrease
520 * it on another CPU. Always updated under the runqueue lock:
521 */
522 unsigned long nr_uninterruptible;
523
36c8b586 524 struct task_struct *curr, *idle;
c9819f45 525 unsigned long next_balance;
1da177e4 526 struct mm_struct *prev_mm;
6aa645ea 527
3e51f33f 528 u64 clock;
6aa645ea 529
1da177e4
LT
530 atomic_t nr_iowait;
531
532#ifdef CONFIG_SMP
0eab9146 533 struct root_domain *rd;
1da177e4
LT
534 struct sched_domain *sd;
535
a0a522ce 536 unsigned char idle_at_tick;
1da177e4 537 /* For active balancing */
3f029d3c 538 int post_schedule;
1da177e4
LT
539 int active_balance;
540 int push_cpu;
d8016491
IM
541 /* cpu of this runqueue: */
542 int cpu;
1f11eb6a 543 int online;
1da177e4 544
a8a51d5e 545 unsigned long avg_load_per_task;
1da177e4 546
36c8b586 547 struct task_struct *migration_thread;
1da177e4 548 struct list_head migration_queue;
e9e9250b
PZ
549
550 u64 rt_avg;
551 u64 age_stamp;
1b9508f6
MG
552 u64 idle_stamp;
553 u64 avg_idle;
1da177e4
LT
554#endif
555
dce48a84
TG
556 /* calc_load related fields */
557 unsigned long calc_load_update;
558 long calc_load_active;
559
8f4d37ec 560#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
561#ifdef CONFIG_SMP
562 int hrtick_csd_pending;
563 struct call_single_data hrtick_csd;
564#endif
8f4d37ec
PZ
565 struct hrtimer hrtick_timer;
566#endif
567
1da177e4
LT
568#ifdef CONFIG_SCHEDSTATS
569 /* latency stats */
570 struct sched_info rq_sched_info;
9c2c4802
KC
571 unsigned long long rq_cpu_time;
572 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
573
574 /* sys_sched_yield() stats */
480b9434 575 unsigned int yld_count;
1da177e4
LT
576
577 /* schedule() stats */
480b9434
KC
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
1da177e4
LT
581
582 /* try_to_wake_up() stats */
480b9434
KC
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
b8efb561
IM
585
586 /* BKL stats */
480b9434 587 unsigned int bkl_count;
1da177e4
LT
588#endif
589};
590
f34e3b61 591static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 592
7d478721
PZ
593static inline
594void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 595{
7d478721 596 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
597
598 /*
599 * A queue event has occurred, and we're going to schedule. In
600 * this case, we can save a useless back to back clock update.
601 */
602 if (test_tsk_need_resched(p))
603 rq->skip_clock_update = 1;
dd41f596
IM
604}
605
0a2966b4
CL
606static inline int cpu_of(struct rq *rq)
607{
608#ifdef CONFIG_SMP
609 return rq->cpu;
610#else
611 return 0;
612#endif
613}
614
497f0ab3 615#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
616 rcu_dereference_check((p), \
617 rcu_read_lock_sched_held() || \
618 lockdep_is_held(&sched_domains_mutex))
619
674311d5
NP
620/*
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 622 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
623 *
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
626 */
48f24c4d 627#define for_each_domain(cpu, __sd) \
497f0ab3 628 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
629
630#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631#define this_rq() (&__get_cpu_var(runqueues))
632#define task_rq(p) cpu_rq(task_cpu(p))
633#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 634#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 635
aa9c4c0f 636inline void update_rq_clock(struct rq *rq)
3e51f33f 637{
a64692a3
MG
638 if (!rq->skip_clock_update)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
640}
641
bf5c91ba
IM
642/*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645#ifdef CONFIG_SCHED_DEBUG
646# define const_debug __read_mostly
647#else
648# define const_debug static const
649#endif
650
017730c1
IM
651/**
652 * runqueue_is_locked
e17b38bf 653 * @cpu: the processor in question.
017730c1
IM
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
89f19f04 659int runqueue_is_locked(int cpu)
017730c1 660{
05fa785c 661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
662}
663
bf5c91ba
IM
664/*
665 * Debugging: various feature bits
666 */
f00b45c1
PZ
667
668#define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
670
bf5c91ba 671enum {
f00b45c1 672#include "sched_features.h"
bf5c91ba
IM
673};
674
f00b45c1
PZ
675#undef SCHED_FEAT
676
677#define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
679
bf5c91ba 680const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
681#include "sched_features.h"
682 0;
683
684#undef SCHED_FEAT
685
686#ifdef CONFIG_SCHED_DEBUG
687#define SCHED_FEAT(name, enabled) \
688 #name ,
689
983ed7a6 690static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
691#include "sched_features.h"
692 NULL
693};
694
695#undef SCHED_FEAT
696
34f3a814 697static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 698{
f00b45c1
PZ
699 int i;
700
701 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 705 }
34f3a814 706 seq_puts(m, "\n");
f00b45c1 707
34f3a814 708 return 0;
f00b45c1
PZ
709}
710
711static ssize_t
712sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
c24b7c52 728 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
42994724 748 *ppos += cnt;
f00b45c1
PZ
749
750 return cnt;
751}
752
34f3a814
LZ
753static int sched_feat_open(struct inode *inode, struct file *filp)
754{
755 return single_open(filp, sched_feat_show, NULL);
756}
757
828c0950 758static const struct file_operations sched_feat_fops = {
34f3a814
LZ
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
f00b45c1
PZ
764};
765
766static __init int sched_init_debug(void)
767{
f00b45c1
PZ
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772}
773late_initcall(sched_init_debug);
774
775#endif
776
777#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 778
b82d9fdd
PZ
779/*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
2398f2c6
PZ
785/*
786 * ratelimit for updating the group shares.
55cd5340 787 * default: 0.25ms
2398f2c6 788 */
55cd5340 789unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 790unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 791
ffda12a1
PZ
792/*
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
796 */
797unsigned int sysctl_sched_shares_thresh = 4;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299
PZ
916/*
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
919 *
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
923 */
924static inline int task_is_waking(struct task_struct *p)
925{
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
927}
928
b29739f9
IM
929/*
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
932 */
70b97a7f 933static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
934 __acquires(rq->lock)
935{
0970d299
PZ
936 struct rq *rq;
937
3a5c359a 938 for (;;) {
0970d299
PZ
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p);
05fa785c 942 raw_spin_lock(&rq->lock);
0970d299 943 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 944 return rq;
05fa785c 945 raw_spin_unlock(&rq->lock);
b29739f9 946 }
b29739f9
IM
947}
948
1da177e4
LT
949/*
950 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 951 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
952 * explicitly disabling preemption.
953 */
70b97a7f 954static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
955 __acquires(rq->lock)
956{
70b97a7f 957 struct rq *rq;
1da177e4 958
3a5c359a 959 for (;;) {
0970d299
PZ
960 while (task_is_waking(p))
961 cpu_relax();
3a5c359a
AK
962 local_irq_save(*flags);
963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
0970d299 965 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 966 return rq;
05fa785c 967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 968 }
1da177e4
LT
969}
970
ad474cac
ON
971void task_rq_unlock_wait(struct task_struct *p)
972{
973 struct rq *rq = task_rq(p);
974
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 976 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
977}
978
a9957449 979static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock(&rq->lock);
b29739f9
IM
983}
984
70b97a7f 985static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
986 __releases(rq->lock)
987{
05fa785c 988 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
989}
990
1da177e4 991/*
cc2a73b5 992 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 993 */
a9957449 994static struct rq *this_rq_lock(void)
1da177e4
LT
995 __acquires(rq->lock)
996{
70b97a7f 997 struct rq *rq;
1da177e4
LT
998
999 local_irq_disable();
1000 rq = this_rq();
05fa785c 1001 raw_spin_lock(&rq->lock);
1da177e4
LT
1002
1003 return rq;
1004}
1005
8f4d37ec
PZ
1006#ifdef CONFIG_SCHED_HRTICK
1007/*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
8f4d37ec
PZ
1017
1018/*
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1022 */
1023static inline int hrtick_enabled(struct rq *rq)
1024{
1025 if (!sched_feat(HRTICK))
1026 return 0;
ba42059f 1027 if (!cpu_active(cpu_of(rq)))
b328ca18 1028 return 0;
8f4d37ec
PZ
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032static void hrtick_clear(struct rq *rq)
1033{
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1036}
1037
8f4d37ec
PZ
1038/*
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1041 */
1042static enum hrtimer_restart hrtick(struct hrtimer *timer)
1043{
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
05fa785c 1048 raw_spin_lock(&rq->lock);
3e51f33f 1049 update_rq_clock(rq);
8f4d37ec 1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1051 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1052
1053 return HRTIMER_NORESTART;
1054}
1055
95e904c7 1056#ifdef CONFIG_SMP
31656519
PZ
1057/*
1058 * called from hardirq (IPI) context
1059 */
1060static void __hrtick_start(void *arg)
b328ca18 1061{
31656519 1062 struct rq *rq = arg;
b328ca18 1063
05fa785c 1064 raw_spin_lock(&rq->lock);
31656519
PZ
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
05fa785c 1067 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1068}
1069
31656519
PZ
1070/*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1076{
31656519
PZ
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1079
cc584b21 1080 hrtimer_set_expires(timer, time);
31656519
PZ
1081
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
6e275637 1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1086 rq->hrtick_csd_pending = 1;
1087 }
b328ca18
PZ
1088}
1089
1090static int
1091hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1092{
1093 int cpu = (int)(long)hcpu;
1094
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
31656519 1102 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1103 return NOTIFY_OK;
1104 }
1105
1106 return NOTIFY_DONE;
1107}
1108
fa748203 1109static __init void init_hrtick(void)
b328ca18
PZ
1110{
1111 hotcpu_notifier(hotplug_hrtick, 0);
1112}
31656519
PZ
1113#else
1114/*
1115 * Called to set the hrtick timer state.
1116 *
1117 * called with rq->lock held and irqs disabled
1118 */
1119static void hrtick_start(struct rq *rq, u64 delay)
1120{
7f1e2ca9 1121 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1122 HRTIMER_MODE_REL_PINNED, 0);
31656519 1123}
b328ca18 1124
006c75f1 1125static inline void init_hrtick(void)
8f4d37ec 1126{
8f4d37ec 1127}
31656519 1128#endif /* CONFIG_SMP */
8f4d37ec 1129
31656519 1130static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1131{
31656519
PZ
1132#ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
8f4d37ec 1134
31656519
PZ
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138#endif
8f4d37ec 1139
31656519
PZ
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
8f4d37ec 1142}
006c75f1 1143#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1144static inline void hrtick_clear(struct rq *rq)
1145{
1146}
1147
8f4d37ec
PZ
1148static inline void init_rq_hrtick(struct rq *rq)
1149{
1150}
1151
b328ca18
PZ
1152static inline void init_hrtick(void)
1153{
1154}
006c75f1 1155#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1156
c24d20db
IM
1157/*
1158 * resched_task - mark a task 'to be rescheduled now'.
1159 *
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1162 * the target CPU.
1163 */
1164#ifdef CONFIG_SMP
1165
1166#ifndef tsk_is_polling
1167#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168#endif
1169
31656519 1170static void resched_task(struct task_struct *p)
c24d20db
IM
1171{
1172 int cpu;
1173
05fa785c 1174 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1175
5ed0cec0 1176 if (test_tsk_need_resched(p))
c24d20db
IM
1177 return;
1178
5ed0cec0 1179 set_tsk_need_resched(p);
c24d20db
IM
1180
1181 cpu = task_cpu(p);
1182 if (cpu == smp_processor_id())
1183 return;
1184
1185 /* NEED_RESCHED must be visible before we test polling */
1186 smp_mb();
1187 if (!tsk_is_polling(p))
1188 smp_send_reschedule(cpu);
1189}
1190
1191static void resched_cpu(int cpu)
1192{
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long flags;
1195
05fa785c 1196 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1197 return;
1198 resched_task(cpu_curr(cpu));
05fa785c 1199 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1200}
06d8308c
TG
1201
1202#ifdef CONFIG_NO_HZ
1203/*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213void wake_up_idle_cpu(int cpu)
1214{
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
5ed0cec0 1235 set_tsk_need_resched(rq->idle);
06d8308c
TG
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241}
39c0cbe2
MG
1242
1243int nohz_ratelimit(int cpu)
1244{
1245 struct rq *rq = cpu_rq(cpu);
1246 u64 diff = rq->clock - rq->nohz_stamp;
1247
1248 rq->nohz_stamp = rq->clock;
1249
1250 return diff < (NSEC_PER_SEC / HZ) >> 1;
1251}
1252
6d6bc0ad 1253#endif /* CONFIG_NO_HZ */
06d8308c 1254
e9e9250b
PZ
1255static u64 sched_avg_period(void)
1256{
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258}
1259
1260static void sched_avg_update(struct rq *rq)
1261{
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
1265 rq->age_stamp += period;
1266 rq->rt_avg /= 2;
1267 }
1268}
1269
1270static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271{
1272 rq->rt_avg += rt_delta;
1273 sched_avg_update(rq);
1274}
1275
6d6bc0ad 1276#else /* !CONFIG_SMP */
31656519 1277static void resched_task(struct task_struct *p)
c24d20db 1278{
05fa785c 1279 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1280 set_tsk_need_resched(p);
c24d20db 1281}
e9e9250b
PZ
1282
1283static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284{
1285}
6d6bc0ad 1286#endif /* CONFIG_SMP */
c24d20db 1287
45bf76df
IM
1288#if BITS_PER_LONG == 32
1289# define WMULT_CONST (~0UL)
1290#else
1291# define WMULT_CONST (1UL << 32)
1292#endif
1293
1294#define WMULT_SHIFT 32
1295
194081eb
IM
1296/*
1297 * Shift right and round:
1298 */
cf2ab469 1299#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1300
a7be37ac
PZ
1301/*
1302 * delta *= weight / lw
1303 */
cb1c4fc9 1304static unsigned long
45bf76df
IM
1305calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307{
1308 u64 tmp;
1309
7a232e03
LJ
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
45bf76df
IM
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
194081eb 1322 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1324 WMULT_SHIFT/2);
1325 else
cf2ab469 1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1327
ecf691da 1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1332{
1333 lw->weight += inc;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1338{
1339 lw->weight -= dec;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
2dd73a4f
PW
1343/*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
cce7ade8
PZ
1352#define WEIGHT_IDLEPRIO 3
1353#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1354
1355/*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
dd41f596
IM
1366 */
1367static const int prio_to_weight[40] = {
254753dc
IM
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1376};
1377
5714d2de
IM
1378/*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
dd41f596 1385static const u32 prio_to_wmult[40] = {
254753dc
IM
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1394};
2dd73a4f 1395
ef12fefa
BR
1396/* Time spent by the tasks of the cpu accounting group executing in ... */
1397enum cpuacct_stat_index {
1398 CPUACCT_STAT_USER, /* ... user mode */
1399 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1400
1401 CPUACCT_STAT_NSTATS,
1402};
1403
d842de87
SV
1404#ifdef CONFIG_CGROUP_CPUACCT
1405static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1406static void cpuacct_update_stats(struct task_struct *tsk,
1407 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1408#else
1409static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1410static inline void cpuacct_update_stats(struct task_struct *tsk,
1411 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1412#endif
1413
18d95a28
PZ
1414static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1415{
1416 update_load_add(&rq->load, load);
1417}
1418
1419static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_sub(&rq->load, load);
1422}
1423
7940ca36 1424#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1425typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1426
1427/*
1428 * Iterate the full tree, calling @down when first entering a node and @up when
1429 * leaving it for the final time.
1430 */
eb755805 1431static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1432{
1433 struct task_group *parent, *child;
eb755805 1434 int ret;
c09595f6
PZ
1435
1436 rcu_read_lock();
1437 parent = &root_task_group;
1438down:
eb755805
PZ
1439 ret = (*down)(parent, data);
1440 if (ret)
1441 goto out_unlock;
c09595f6
PZ
1442 list_for_each_entry_rcu(child, &parent->children, siblings) {
1443 parent = child;
1444 goto down;
1445
1446up:
1447 continue;
1448 }
eb755805
PZ
1449 ret = (*up)(parent, data);
1450 if (ret)
1451 goto out_unlock;
c09595f6
PZ
1452
1453 child = parent;
1454 parent = parent->parent;
1455 if (parent)
1456 goto up;
eb755805 1457out_unlock:
c09595f6 1458 rcu_read_unlock();
eb755805
PZ
1459
1460 return ret;
c09595f6
PZ
1461}
1462
eb755805
PZ
1463static int tg_nop(struct task_group *tg, void *data)
1464{
1465 return 0;
c09595f6 1466}
eb755805
PZ
1467#endif
1468
1469#ifdef CONFIG_SMP
f5f08f39
PZ
1470/* Used instead of source_load when we know the type == 0 */
1471static unsigned long weighted_cpuload(const int cpu)
1472{
1473 return cpu_rq(cpu)->load.weight;
1474}
1475
1476/*
1477 * Return a low guess at the load of a migration-source cpu weighted
1478 * according to the scheduling class and "nice" value.
1479 *
1480 * We want to under-estimate the load of migration sources, to
1481 * balance conservatively.
1482 */
1483static unsigned long source_load(int cpu, int type)
1484{
1485 struct rq *rq = cpu_rq(cpu);
1486 unsigned long total = weighted_cpuload(cpu);
1487
1488 if (type == 0 || !sched_feat(LB_BIAS))
1489 return total;
1490
1491 return min(rq->cpu_load[type-1], total);
1492}
1493
1494/*
1495 * Return a high guess at the load of a migration-target cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 */
1498static unsigned long target_load(int cpu, int type)
1499{
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1502
1503 if (type == 0 || !sched_feat(LB_BIAS))
1504 return total;
1505
1506 return max(rq->cpu_load[type-1], total);
1507}
1508
ae154be1
PZ
1509static struct sched_group *group_of(int cpu)
1510{
d11c563d 1511 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1512
1513 if (!sd)
1514 return NULL;
1515
1516 return sd->groups;
1517}
1518
1519static unsigned long power_of(int cpu)
1520{
1521 struct sched_group *group = group_of(cpu);
1522
1523 if (!group)
1524 return SCHED_LOAD_SCALE;
1525
1526 return group->cpu_power;
1527}
1528
eb755805
PZ
1529static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1530
1531static unsigned long cpu_avg_load_per_task(int cpu)
1532{
1533 struct rq *rq = cpu_rq(cpu);
af6d596f 1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1535
4cd42620
SR
1536 if (nr_running)
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1538 else
1539 rq->avg_load_per_task = 0;
eb755805
PZ
1540
1541 return rq->avg_load_per_task;
1542}
1543
1544#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1545
43cf38eb 1546static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1547
c09595f6
PZ
1548static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1549
1550/*
1551 * Calculate and set the cpu's group shares.
1552 */
34d76c41
PZ
1553static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
4a6cc4bd 1556 unsigned long *usd_rq_weight)
18d95a28 1557{
34d76c41 1558 unsigned long shares, rq_weight;
a5004278 1559 int boost = 0;
c09595f6 1560
4a6cc4bd 1561 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1562 if (!rq_weight) {
1563 boost = 1;
1564 rq_weight = NICE_0_LOAD;
1565 }
c8cba857 1566
c09595f6 1567 /*
a8af7246
PZ
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
c09595f6 1571 */
ec4e0e2f 1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1574
ffda12a1
PZ
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
c09595f6 1579
05fa785c 1580 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1583 __set_se_shares(tg->se[cpu], shares);
05fa785c 1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1585 }
18d95a28 1586}
c09595f6
PZ
1587
1588/*
c8cba857
PZ
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
c09595f6 1592 */
eb755805 1593static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1594{
cd8ad40d 1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1596 unsigned long *usd_rq_weight;
eb755805 1597 struct sched_domain *sd = data;
34d76c41 1598 unsigned long flags;
c8cba857 1599 int i;
c09595f6 1600
34d76c41
PZ
1601 if (!tg->se[0])
1602 return 0;
1603
1604 local_irq_save(flags);
4a6cc4bd 1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1606
758b2cdc 1607 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1608 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1609 usd_rq_weight[i] = weight;
34d76c41 1610
cd8ad40d 1611 rq_weight += weight;
ec4e0e2f
KC
1612 /*
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1616 */
ec4e0e2f
KC
1617 if (!weight)
1618 weight = NICE_0_LOAD;
1619
cd8ad40d 1620 sum_weight += weight;
c8cba857 1621 shares += tg->cfs_rq[i]->shares;
c09595f6 1622 }
c09595f6 1623
cd8ad40d
PZ
1624 if (!rq_weight)
1625 rq_weight = sum_weight;
1626
c8cba857
PZ
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1629
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
c09595f6 1632
758b2cdc 1633 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1635
1636 local_irq_restore(flags);
eb755805
PZ
1637
1638 return 0;
c09595f6
PZ
1639}
1640
1641/*
c8cba857
PZ
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
c09595f6 1645 */
eb755805 1646static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1647{
c8cba857 1648 unsigned long load;
eb755805 1649 long cpu = (long)data;
c09595f6 1650
c8cba857
PZ
1651 if (!tg->parent) {
1652 load = cpu_rq(cpu)->load.weight;
1653 } else {
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1657 }
c09595f6 1658
c8cba857 1659 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1660
eb755805 1661 return 0;
c09595f6
PZ
1662}
1663
c8cba857 1664static void update_shares(struct sched_domain *sd)
4d8d595d 1665{
e7097159
PZ
1666 s64 elapsed;
1667 u64 now;
1668
1669 if (root_task_group_empty())
1670 return;
1671
1672 now = cpu_clock(raw_smp_processor_id());
1673 elapsed = now - sd->last_update;
2398f2c6
PZ
1674
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
eb755805 1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1678 }
4d8d595d
PZ
1679}
1680
eb755805 1681static void update_h_load(long cpu)
c09595f6 1682{
e7097159
PZ
1683 if (root_task_group_empty())
1684 return;
1685
eb755805 1686 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1687}
1688
c09595f6
PZ
1689#else
1690
c8cba857 1691static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1692{
1693}
1694
18d95a28
PZ
1695#endif
1696
8f45e2b5
GH
1697#ifdef CONFIG_PREEMPT
1698
b78bb868
PZ
1699static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1700
70574a99 1701/*
8f45e2b5
GH
1702 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1703 * way at the expense of forcing extra atomic operations in all
1704 * invocations. This assures that the double_lock is acquired using the
1705 * same underlying policy as the spinlock_t on this architecture, which
1706 * reduces latency compared to the unfair variant below. However, it
1707 * also adds more overhead and therefore may reduce throughput.
70574a99 1708 */
8f45e2b5
GH
1709static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1710 __releases(this_rq->lock)
1711 __acquires(busiest->lock)
1712 __acquires(this_rq->lock)
1713{
05fa785c 1714 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1715 double_rq_lock(this_rq, busiest);
1716
1717 return 1;
1718}
1719
1720#else
1721/*
1722 * Unfair double_lock_balance: Optimizes throughput at the expense of
1723 * latency by eliminating extra atomic operations when the locks are
1724 * already in proper order on entry. This favors lower cpu-ids and will
1725 * grant the double lock to lower cpus over higher ids under contention,
1726 * regardless of entry order into the function.
1727 */
1728static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1729 __releases(this_rq->lock)
1730 __acquires(busiest->lock)
1731 __acquires(this_rq->lock)
1732{
1733 int ret = 0;
1734
05fa785c 1735 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1736 if (busiest < this_rq) {
05fa785c
TG
1737 raw_spin_unlock(&this_rq->lock);
1738 raw_spin_lock(&busiest->lock);
1739 raw_spin_lock_nested(&this_rq->lock,
1740 SINGLE_DEPTH_NESTING);
70574a99
AD
1741 ret = 1;
1742 } else
05fa785c
TG
1743 raw_spin_lock_nested(&busiest->lock,
1744 SINGLE_DEPTH_NESTING);
70574a99
AD
1745 }
1746 return ret;
1747}
1748
8f45e2b5
GH
1749#endif /* CONFIG_PREEMPT */
1750
1751/*
1752 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1753 */
1754static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1755{
1756 if (unlikely(!irqs_disabled())) {
1757 /* printk() doesn't work good under rq->lock */
05fa785c 1758 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1759 BUG_ON(1);
1760 }
1761
1762 return _double_lock_balance(this_rq, busiest);
1763}
1764
70574a99
AD
1765static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(busiest->lock)
1767{
05fa785c 1768 raw_spin_unlock(&busiest->lock);
70574a99
AD
1769 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1770}
1e3c88bd
PZ
1771
1772/*
1773 * double_rq_lock - safely lock two runqueues
1774 *
1775 * Note this does not disable interrupts like task_rq_lock,
1776 * you need to do so manually before calling.
1777 */
1778static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1779 __acquires(rq1->lock)
1780 __acquires(rq2->lock)
1781{
1782 BUG_ON(!irqs_disabled());
1783 if (rq1 == rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 __acquire(rq2->lock); /* Fake it out ;) */
1786 } else {
1787 if (rq1 < rq2) {
1788 raw_spin_lock(&rq1->lock);
1789 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1790 } else {
1791 raw_spin_lock(&rq2->lock);
1792 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1793 }
1794 }
1e3c88bd
PZ
1795}
1796
1797/*
1798 * double_rq_unlock - safely unlock two runqueues
1799 *
1800 * Note this does not restore interrupts like task_rq_unlock,
1801 * you need to do so manually after calling.
1802 */
1803static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1804 __releases(rq1->lock)
1805 __releases(rq2->lock)
1806{
1807 raw_spin_unlock(&rq1->lock);
1808 if (rq1 != rq2)
1809 raw_spin_unlock(&rq2->lock);
1810 else
1811 __release(rq2->lock);
1812}
1813
18d95a28
PZ
1814#endif
1815
30432094 1816#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1817static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1818{
30432094 1819#ifdef CONFIG_SMP
34e83e85
IM
1820 cfs_rq->shares = shares;
1821#endif
1822}
30432094 1823#endif
e7693a36 1824
dce48a84 1825static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1826static void update_sysctl(void);
acb4a848 1827static int get_update_sysctl_factor(void);
dce48a84 1828
cd29fe6f
PZ
1829static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1830{
1831 set_task_rq(p, cpu);
1832#ifdef CONFIG_SMP
1833 /*
1834 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1835 * successfuly executed on another CPU. We must ensure that updates of
1836 * per-task data have been completed by this moment.
1837 */
1838 smp_wmb();
1839 task_thread_info(p)->cpu = cpu;
1840#endif
1841}
dce48a84 1842
1e3c88bd 1843static const struct sched_class rt_sched_class;
dd41f596
IM
1844
1845#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1846#define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
dd41f596 1848
1e3c88bd
PZ
1849#include "sched_stats.h"
1850
c09595f6 1851static void inc_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running++;
9c217245
IM
1854}
1855
c09595f6 1856static void dec_nr_running(struct rq *rq)
9c217245
IM
1857{
1858 rq->nr_running--;
9c217245
IM
1859}
1860
45bf76df
IM
1861static void set_load_weight(struct task_struct *p)
1862{
1863 if (task_has_rt_policy(p)) {
dd41f596
IM
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
45bf76df 1868
dd41f596
IM
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
71f8bd46 1877
dd41f596
IM
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1880}
1881
2087a1ad
GH
1882static void update_avg(u64 *avg, u64 sample)
1883{
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886}
1887
ea87bb78
TG
1888static void
1889enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
71f8bd46 1890{
a64692a3 1891 update_rq_clock(rq);
dd41f596 1892 sched_info_queued(p);
ea87bb78 1893 p->sched_class->enqueue_task(rq, p, wakeup, head);
dd41f596 1894 p->se.on_rq = 1;
71f8bd46
IM
1895}
1896
69be72c1 1897static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1898{
a64692a3 1899 update_rq_clock(rq);
46ac22ba 1900 sched_info_dequeued(p);
f02231e5 1901 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1902 p->se.on_rq = 0;
71f8bd46
IM
1903}
1904
1e3c88bd
PZ
1905/*
1906 * activate_task - move a task to the runqueue.
1907 */
1908static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1909{
1910 if (task_contributes_to_load(p))
1911 rq->nr_uninterruptible--;
1912
ea87bb78 1913 enqueue_task(rq, p, wakeup, false);
1e3c88bd
PZ
1914 inc_nr_running(rq);
1915}
1916
1917/*
1918 * deactivate_task - remove a task from the runqueue.
1919 */
1920static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1921{
1922 if (task_contributes_to_load(p))
1923 rq->nr_uninterruptible++;
1924
1925 dequeue_task(rq, p, sleep);
1926 dec_nr_running(rq);
1927}
1928
1929#include "sched_idletask.c"
1930#include "sched_fair.c"
1931#include "sched_rt.c"
1932#ifdef CONFIG_SCHED_DEBUG
1933# include "sched_debug.c"
1934#endif
1935
14531189 1936/*
dd41f596 1937 * __normal_prio - return the priority that is based on the static prio
14531189 1938 */
14531189
IM
1939static inline int __normal_prio(struct task_struct *p)
1940{
dd41f596 1941 return p->static_prio;
14531189
IM
1942}
1943
b29739f9
IM
1944/*
1945 * Calculate the expected normal priority: i.e. priority
1946 * without taking RT-inheritance into account. Might be
1947 * boosted by interactivity modifiers. Changes upon fork,
1948 * setprio syscalls, and whenever the interactivity
1949 * estimator recalculates.
1950 */
36c8b586 1951static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1952{
1953 int prio;
1954
e05606d3 1955 if (task_has_rt_policy(p))
b29739f9
IM
1956 prio = MAX_RT_PRIO-1 - p->rt_priority;
1957 else
1958 prio = __normal_prio(p);
1959 return prio;
1960}
1961
1962/*
1963 * Calculate the current priority, i.e. the priority
1964 * taken into account by the scheduler. This value might
1965 * be boosted by RT tasks, or might be boosted by
1966 * interactivity modifiers. Will be RT if the task got
1967 * RT-boosted. If not then it returns p->normal_prio.
1968 */
36c8b586 1969static int effective_prio(struct task_struct *p)
b29739f9
IM
1970{
1971 p->normal_prio = normal_prio(p);
1972 /*
1973 * If we are RT tasks or we were boosted to RT priority,
1974 * keep the priority unchanged. Otherwise, update priority
1975 * to the normal priority:
1976 */
1977 if (!rt_prio(p->prio))
1978 return p->normal_prio;
1979 return p->prio;
1980}
1981
1da177e4
LT
1982/**
1983 * task_curr - is this task currently executing on a CPU?
1984 * @p: the task in question.
1985 */
36c8b586 1986inline int task_curr(const struct task_struct *p)
1da177e4
LT
1987{
1988 return cpu_curr(task_cpu(p)) == p;
1989}
1990
cb469845
SR
1991static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1994{
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2001}
2002
1da177e4 2003#ifdef CONFIG_SMP
cc367732
IM
2004/*
2005 * Is this task likely cache-hot:
2006 */
e7693a36 2007static int
cc367732
IM
2008task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2009{
2010 s64 delta;
2011
e6c8fba7
PZ
2012 if (p->sched_class != &fair_sched_class)
2013 return 0;
2014
f540a608
IM
2015 /*
2016 * Buddy candidates are cache hot:
2017 */
f685ceac 2018 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2019 (&p->se == cfs_rq_of(&p->se)->next ||
2020 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2021 return 1;
2022
6bc1665b
IM
2023 if (sysctl_sched_migration_cost == -1)
2024 return 1;
2025 if (sysctl_sched_migration_cost == 0)
2026 return 0;
2027
cc367732
IM
2028 delta = now - p->se.exec_start;
2029
2030 return delta < (s64)sysctl_sched_migration_cost;
2031}
2032
dd41f596 2033void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2034{
e2912009
PZ
2035#ifdef CONFIG_SCHED_DEBUG
2036 /*
2037 * We should never call set_task_cpu() on a blocked task,
2038 * ttwu() will sort out the placement.
2039 */
077614ee
PZ
2040 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2041 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2042#endif
2043
de1d7286 2044 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2045
0c69774e
PZ
2046 if (task_cpu(p) != new_cpu) {
2047 p->se.nr_migrations++;
2048 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2049 }
dd41f596
IM
2050
2051 __set_task_cpu(p, new_cpu);
c65cc870
IM
2052}
2053
70b97a7f 2054struct migration_req {
1da177e4 2055 struct list_head list;
1da177e4 2056
36c8b586 2057 struct task_struct *task;
1da177e4
LT
2058 int dest_cpu;
2059
1da177e4 2060 struct completion done;
70b97a7f 2061};
1da177e4
LT
2062
2063/*
2064 * The task's runqueue lock must be held.
2065 * Returns true if you have to wait for migration thread.
2066 */
36c8b586 2067static int
70b97a7f 2068migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2069{
70b97a7f 2070 struct rq *rq = task_rq(p);
1da177e4
LT
2071
2072 /*
2073 * If the task is not on a runqueue (and not running), then
e2912009 2074 * the next wake-up will properly place the task.
1da177e4 2075 */
e2912009 2076 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2077 return 0;
1da177e4
LT
2078
2079 init_completion(&req->done);
1da177e4
LT
2080 req->task = p;
2081 req->dest_cpu = dest_cpu;
2082 list_add(&req->list, &rq->migration_queue);
48f24c4d 2083
1da177e4
LT
2084 return 1;
2085}
2086
a26b89f0
MM
2087/*
2088 * wait_task_context_switch - wait for a thread to complete at least one
2089 * context switch.
2090 *
2091 * @p must not be current.
2092 */
2093void wait_task_context_switch(struct task_struct *p)
2094{
2095 unsigned long nvcsw, nivcsw, flags;
2096 int running;
2097 struct rq *rq;
2098
2099 nvcsw = p->nvcsw;
2100 nivcsw = p->nivcsw;
2101 for (;;) {
2102 /*
2103 * The runqueue is assigned before the actual context
2104 * switch. We need to take the runqueue lock.
2105 *
2106 * We could check initially without the lock but it is
2107 * very likely that we need to take the lock in every
2108 * iteration.
2109 */
2110 rq = task_rq_lock(p, &flags);
2111 running = task_running(rq, p);
2112 task_rq_unlock(rq, &flags);
2113
2114 if (likely(!running))
2115 break;
2116 /*
2117 * The switch count is incremented before the actual
2118 * context switch. We thus wait for two switches to be
2119 * sure at least one completed.
2120 */
2121 if ((p->nvcsw - nvcsw) > 1)
2122 break;
2123 if ((p->nivcsw - nivcsw) > 1)
2124 break;
2125
2126 cpu_relax();
2127 }
2128}
2129
1da177e4
LT
2130/*
2131 * wait_task_inactive - wait for a thread to unschedule.
2132 *
85ba2d86
RM
2133 * If @match_state is nonzero, it's the @p->state value just checked and
2134 * not expected to change. If it changes, i.e. @p might have woken up,
2135 * then return zero. When we succeed in waiting for @p to be off its CPU,
2136 * we return a positive number (its total switch count). If a second call
2137 * a short while later returns the same number, the caller can be sure that
2138 * @p has remained unscheduled the whole time.
2139 *
1da177e4
LT
2140 * The caller must ensure that the task *will* unschedule sometime soon,
2141 * else this function might spin for a *long* time. This function can't
2142 * be called with interrupts off, or it may introduce deadlock with
2143 * smp_call_function() if an IPI is sent by the same process we are
2144 * waiting to become inactive.
2145 */
85ba2d86 2146unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2147{
2148 unsigned long flags;
dd41f596 2149 int running, on_rq;
85ba2d86 2150 unsigned long ncsw;
70b97a7f 2151 struct rq *rq;
1da177e4 2152
3a5c359a
AK
2153 for (;;) {
2154 /*
2155 * We do the initial early heuristics without holding
2156 * any task-queue locks at all. We'll only try to get
2157 * the runqueue lock when things look like they will
2158 * work out!
2159 */
2160 rq = task_rq(p);
fa490cfd 2161
3a5c359a
AK
2162 /*
2163 * If the task is actively running on another CPU
2164 * still, just relax and busy-wait without holding
2165 * any locks.
2166 *
2167 * NOTE! Since we don't hold any locks, it's not
2168 * even sure that "rq" stays as the right runqueue!
2169 * But we don't care, since "task_running()" will
2170 * return false if the runqueue has changed and p
2171 * is actually now running somewhere else!
2172 */
85ba2d86
RM
2173 while (task_running(rq, p)) {
2174 if (match_state && unlikely(p->state != match_state))
2175 return 0;
3a5c359a 2176 cpu_relax();
85ba2d86 2177 }
fa490cfd 2178
3a5c359a
AK
2179 /*
2180 * Ok, time to look more closely! We need the rq
2181 * lock now, to be *sure*. If we're wrong, we'll
2182 * just go back and repeat.
2183 */
2184 rq = task_rq_lock(p, &flags);
0a16b607 2185 trace_sched_wait_task(rq, p);
3a5c359a
AK
2186 running = task_running(rq, p);
2187 on_rq = p->se.on_rq;
85ba2d86 2188 ncsw = 0;
f31e11d8 2189 if (!match_state || p->state == match_state)
93dcf55f 2190 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2191 task_rq_unlock(rq, &flags);
fa490cfd 2192
85ba2d86
RM
2193 /*
2194 * If it changed from the expected state, bail out now.
2195 */
2196 if (unlikely(!ncsw))
2197 break;
2198
3a5c359a
AK
2199 /*
2200 * Was it really running after all now that we
2201 * checked with the proper locks actually held?
2202 *
2203 * Oops. Go back and try again..
2204 */
2205 if (unlikely(running)) {
2206 cpu_relax();
2207 continue;
2208 }
fa490cfd 2209
3a5c359a
AK
2210 /*
2211 * It's not enough that it's not actively running,
2212 * it must be off the runqueue _entirely_, and not
2213 * preempted!
2214 *
80dd99b3 2215 * So if it was still runnable (but just not actively
3a5c359a
AK
2216 * running right now), it's preempted, and we should
2217 * yield - it could be a while.
2218 */
2219 if (unlikely(on_rq)) {
2220 schedule_timeout_uninterruptible(1);
2221 continue;
2222 }
fa490cfd 2223
3a5c359a
AK
2224 /*
2225 * Ahh, all good. It wasn't running, and it wasn't
2226 * runnable, which means that it will never become
2227 * running in the future either. We're all done!
2228 */
2229 break;
2230 }
85ba2d86
RM
2231
2232 return ncsw;
1da177e4
LT
2233}
2234
2235/***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesnt have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
36c8b586 2248void kick_process(struct task_struct *p)
1da177e4
LT
2249{
2250 int cpu;
2251
2252 preempt_disable();
2253 cpu = task_cpu(p);
2254 if ((cpu != smp_processor_id()) && task_curr(p))
2255 smp_send_reschedule(cpu);
2256 preempt_enable();
2257}
b43e3521 2258EXPORT_SYMBOL_GPL(kick_process);
476d139c 2259#endif /* CONFIG_SMP */
1da177e4 2260
0793a61d
TG
2261/**
2262 * task_oncpu_function_call - call a function on the cpu on which a task runs
2263 * @p: the task to evaluate
2264 * @func: the function to be called
2265 * @info: the function call argument
2266 *
2267 * Calls the function @func when the task is currently running. This might
2268 * be on the current CPU, which just calls the function directly
2269 */
2270void task_oncpu_function_call(struct task_struct *p,
2271 void (*func) (void *info), void *info)
2272{
2273 int cpu;
2274
2275 preempt_disable();
2276 cpu = task_cpu(p);
2277 if (task_curr(p))
2278 smp_call_function_single(cpu, func, info, 1);
2279 preempt_enable();
2280}
2281
970b13ba 2282#ifdef CONFIG_SMP
5da9a0fb
PZ
2283static int select_fallback_rq(int cpu, struct task_struct *p)
2284{
2285 int dest_cpu;
2286 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2287
2288 /* Look for allowed, online CPU in same node. */
2289 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2290 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2291 return dest_cpu;
2292
2293 /* Any allowed, online CPU? */
2294 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2295 if (dest_cpu < nr_cpu_ids)
2296 return dest_cpu;
2297
2298 /* No more Mr. Nice Guy. */
897f0b3c
ON
2299 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2300 cpumask_copy(&p->cpus_allowed, cpu_possible_mask);
2301 dest_cpu = cpumask_any(cpu_active_mask);
5da9a0fb
PZ
2302
2303 /*
2304 * Don't tell them about moving exiting tasks or
2305 * kernel threads (both mm NULL), since they never
2306 * leave kernel.
2307 */
2308 if (p->mm && printk_ratelimit()) {
2309 printk(KERN_INFO "process %d (%s) no "
2310 "longer affine to cpu%d\n",
2311 task_pid_nr(p), p->comm, cpu);
2312 }
2313 }
2314
2315 return dest_cpu;
2316}
2317
e2912009 2318/*
fabf318e
PZ
2319 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2320 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2321 * by:
e2912009 2322 *
fabf318e
PZ
2323 * exec: is unstable, retry loop
2324 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
e2912009 2325 */
970b13ba
PZ
2326static inline
2327int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2328{
e2912009
PZ
2329 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2330
2331 /*
2332 * In order not to call set_task_cpu() on a blocking task we need
2333 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2334 * cpu.
2335 *
2336 * Since this is common to all placement strategies, this lives here.
2337 *
2338 * [ this allows ->select_task() to simply return task_cpu(p) and
2339 * not worry about this generic constraint ]
2340 */
2341 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2342 !cpu_online(cpu)))
5da9a0fb 2343 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2344
2345 return cpu;
970b13ba
PZ
2346}
2347#endif
2348
1da177e4
LT
2349/***
2350 * try_to_wake_up - wake up a thread
2351 * @p: the to-be-woken-up thread
2352 * @state: the mask of task states that can be woken
2353 * @sync: do a synchronous wakeup?
2354 *
2355 * Put it on the run-queue if it's not already there. The "current"
2356 * thread is always on the run-queue (except when the actual
2357 * re-schedule is in progress), and as such you're allowed to do
2358 * the simpler "current->state = TASK_RUNNING" to mark yourself
2359 * runnable without the overhead of this.
2360 *
2361 * returns failure only if the task is already active.
2362 */
7d478721
PZ
2363static int try_to_wake_up(struct task_struct *p, unsigned int state,
2364 int wake_flags)
1da177e4 2365{
cc367732 2366 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2367 unsigned long flags;
ab3b3aa5 2368 struct rq *rq;
1da177e4 2369
e9c84311 2370 this_cpu = get_cpu();
2398f2c6 2371
04e2f174 2372 smp_wmb();
ab3b3aa5 2373 rq = task_rq_lock(p, &flags);
e9c84311 2374 if (!(p->state & state))
1da177e4
LT
2375 goto out;
2376
dd41f596 2377 if (p->se.on_rq)
1da177e4
LT
2378 goto out_running;
2379
2380 cpu = task_cpu(p);
cc367732 2381 orig_cpu = cpu;
1da177e4
LT
2382
2383#ifdef CONFIG_SMP
2384 if (unlikely(task_running(rq, p)))
2385 goto out_activate;
2386
e9c84311
PZ
2387 /*
2388 * In order to handle concurrent wakeups and release the rq->lock
2389 * we put the task in TASK_WAKING state.
eb24073b
IM
2390 *
2391 * First fix up the nr_uninterruptible count:
e9c84311 2392 */
eb24073b
IM
2393 if (task_contributes_to_load(p))
2394 rq->nr_uninterruptible--;
e9c84311 2395 p->state = TASK_WAKING;
efbbd05a
PZ
2396
2397 if (p->sched_class->task_waking)
2398 p->sched_class->task_waking(rq, p);
2399
ab19cb23 2400 __task_rq_unlock(rq);
e9c84311 2401
970b13ba 2402 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0970d299
PZ
2403 if (cpu != orig_cpu) {
2404 /*
2405 * Since we migrate the task without holding any rq->lock,
2406 * we need to be careful with task_rq_lock(), since that
2407 * might end up locking an invalid rq.
2408 */
5d2f5a61 2409 set_task_cpu(p, cpu);
0970d299 2410 }
ab19cb23 2411
0970d299
PZ
2412 rq = cpu_rq(cpu);
2413 raw_spin_lock(&rq->lock);
f5dc3753 2414
0970d299
PZ
2415 /*
2416 * We migrated the task without holding either rq->lock, however
2417 * since the task is not on the task list itself, nobody else
2418 * will try and migrate the task, hence the rq should match the
2419 * cpu we just moved it to.
2420 */
2421 WARN_ON(task_cpu(p) != cpu);
e9c84311 2422 WARN_ON(p->state != TASK_WAKING);
1da177e4 2423
e7693a36
GH
2424#ifdef CONFIG_SCHEDSTATS
2425 schedstat_inc(rq, ttwu_count);
2426 if (cpu == this_cpu)
2427 schedstat_inc(rq, ttwu_local);
2428 else {
2429 struct sched_domain *sd;
2430 for_each_domain(this_cpu, sd) {
758b2cdc 2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2432 schedstat_inc(sd, ttwu_wake_remote);
2433 break;
2434 }
2435 }
2436 }
6d6bc0ad 2437#endif /* CONFIG_SCHEDSTATS */
e7693a36 2438
1da177e4
LT
2439out_activate:
2440#endif /* CONFIG_SMP */
41acab88 2441 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2442 if (wake_flags & WF_SYNC)
41acab88 2443 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2444 if (orig_cpu != cpu)
41acab88 2445 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2446 if (cpu == this_cpu)
41acab88 2447 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2448 else
41acab88 2449 schedstat_inc(p, se.statistics.nr_wakeups_remote);
dd41f596 2450 activate_task(rq, p, 1);
1da177e4
LT
2451 success = 1;
2452
2453out_running:
468a15bb 2454 trace_sched_wakeup(rq, p, success);
7d478721 2455 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2456
1da177e4 2457 p->state = TASK_RUNNING;
9a897c5a 2458#ifdef CONFIG_SMP
efbbd05a
PZ
2459 if (p->sched_class->task_woken)
2460 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2461
2462 if (unlikely(rq->idle_stamp)) {
2463 u64 delta = rq->clock - rq->idle_stamp;
2464 u64 max = 2*sysctl_sched_migration_cost;
2465
2466 if (delta > max)
2467 rq->avg_idle = max;
2468 else
2469 update_avg(&rq->avg_idle, delta);
2470 rq->idle_stamp = 0;
2471 }
9a897c5a 2472#endif
1da177e4
LT
2473out:
2474 task_rq_unlock(rq, &flags);
e9c84311 2475 put_cpu();
1da177e4
LT
2476
2477 return success;
2478}
2479
50fa610a
DH
2480/**
2481 * wake_up_process - Wake up a specific process
2482 * @p: The process to be woken up.
2483 *
2484 * Attempt to wake up the nominated process and move it to the set of runnable
2485 * processes. Returns 1 if the process was woken up, 0 if it was already
2486 * running.
2487 *
2488 * It may be assumed that this function implies a write memory barrier before
2489 * changing the task state if and only if any tasks are woken up.
2490 */
7ad5b3a5 2491int wake_up_process(struct task_struct *p)
1da177e4 2492{
d9514f6c 2493 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2494}
1da177e4
LT
2495EXPORT_SYMBOL(wake_up_process);
2496
7ad5b3a5 2497int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2498{
2499 return try_to_wake_up(p, state, 0);
2500}
2501
1da177e4
LT
2502/*
2503 * Perform scheduler related setup for a newly forked process p.
2504 * p is forked by current.
dd41f596
IM
2505 *
2506 * __sched_fork() is basic setup used by init_idle() too:
2507 */
2508static void __sched_fork(struct task_struct *p)
2509{
dd41f596
IM
2510 p->se.exec_start = 0;
2511 p->se.sum_exec_runtime = 0;
f6cf891c 2512 p->se.prev_sum_exec_runtime = 0;
6c594c21 2513 p->se.nr_migrations = 0;
6cfb0d5d
IM
2514
2515#ifdef CONFIG_SCHEDSTATS
41acab88 2516 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2517#endif
476d139c 2518
fa717060 2519 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2520 p->se.on_rq = 0;
4a55bd5e 2521 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2522
e107be36
AK
2523#ifdef CONFIG_PREEMPT_NOTIFIERS
2524 INIT_HLIST_HEAD(&p->preempt_notifiers);
2525#endif
dd41f596
IM
2526}
2527
2528/*
2529 * fork()/clone()-time setup:
2530 */
2531void sched_fork(struct task_struct *p, int clone_flags)
2532{
2533 int cpu = get_cpu();
2534
2535 __sched_fork(p);
06b83b5f
PZ
2536 /*
2537 * We mark the process as waking here. This guarantees that
2538 * nobody will actually run it, and a signal or other external
2539 * event cannot wake it up and insert it on the runqueue either.
2540 */
2541 p->state = TASK_WAKING;
dd41f596 2542
b9dc29e7
MG
2543 /*
2544 * Revert to default priority/policy on fork if requested.
2545 */
2546 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2547 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2548 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2549 p->normal_prio = p->static_prio;
2550 }
b9dc29e7 2551
6c697bdf
MG
2552 if (PRIO_TO_NICE(p->static_prio) < 0) {
2553 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2554 p->normal_prio = p->static_prio;
6c697bdf
MG
2555 set_load_weight(p);
2556 }
2557
b9dc29e7
MG
2558 /*
2559 * We don't need the reset flag anymore after the fork. It has
2560 * fulfilled its duty:
2561 */
2562 p->sched_reset_on_fork = 0;
2563 }
ca94c442 2564
f83f9ac2
PW
2565 /*
2566 * Make sure we do not leak PI boosting priority to the child.
2567 */
2568 p->prio = current->normal_prio;
2569
2ddbf952
HS
2570 if (!rt_prio(p->prio))
2571 p->sched_class = &fair_sched_class;
b29739f9 2572
cd29fe6f
PZ
2573 if (p->sched_class->task_fork)
2574 p->sched_class->task_fork(p);
2575
5f3edc1b
PZ
2576 set_task_cpu(p, cpu);
2577
52f17b6c 2578#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2579 if (likely(sched_info_on()))
52f17b6c 2580 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2581#endif
d6077cb8 2582#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2583 p->oncpu = 0;
2584#endif
1da177e4 2585#ifdef CONFIG_PREEMPT
4866cde0 2586 /* Want to start with kernel preemption disabled. */
a1261f54 2587 task_thread_info(p)->preempt_count = 1;
1da177e4 2588#endif
917b627d
GH
2589 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2590
476d139c 2591 put_cpu();
1da177e4
LT
2592}
2593
2594/*
2595 * wake_up_new_task - wake up a newly created task for the first time.
2596 *
2597 * This function will do some initial scheduler statistics housekeeping
2598 * that must be done for every newly created context, then puts the task
2599 * on the runqueue and wakes it.
2600 */
7ad5b3a5 2601void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2602{
2603 unsigned long flags;
dd41f596 2604 struct rq *rq;
c890692b 2605 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2606
2607#ifdef CONFIG_SMP
2608 /*
2609 * Fork balancing, do it here and not earlier because:
2610 * - cpus_allowed can change in the fork path
2611 * - any previously selected cpu might disappear through hotplug
2612 *
2613 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2614 * ->cpus_allowed is stable, we have preemption disabled, meaning
2615 * cpu_online_mask is stable.
2616 */
2617 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2618 set_task_cpu(p, cpu);
2619#endif
1da177e4 2620
0970d299
PZ
2621 /*
2622 * Since the task is not on the rq and we still have TASK_WAKING set
2623 * nobody else will migrate this task.
2624 */
2625 rq = cpu_rq(cpu);
2626 raw_spin_lock_irqsave(&rq->lock, flags);
2627
06b83b5f
PZ
2628 BUG_ON(p->state != TASK_WAKING);
2629 p->state = TASK_RUNNING;
cd29fe6f 2630 activate_task(rq, p, 0);
c71dd42d 2631 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2632 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2633#ifdef CONFIG_SMP
efbbd05a
PZ
2634 if (p->sched_class->task_woken)
2635 p->sched_class->task_woken(rq, p);
9a897c5a 2636#endif
dd41f596 2637 task_rq_unlock(rq, &flags);
fabf318e 2638 put_cpu();
1da177e4
LT
2639}
2640
e107be36
AK
2641#ifdef CONFIG_PREEMPT_NOTIFIERS
2642
2643/**
80dd99b3 2644 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2645 * @notifier: notifier struct to register
e107be36
AK
2646 */
2647void preempt_notifier_register(struct preempt_notifier *notifier)
2648{
2649 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2650}
2651EXPORT_SYMBOL_GPL(preempt_notifier_register);
2652
2653/**
2654 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2655 * @notifier: notifier struct to unregister
e107be36
AK
2656 *
2657 * This is safe to call from within a preemption notifier.
2658 */
2659void preempt_notifier_unregister(struct preempt_notifier *notifier)
2660{
2661 hlist_del(&notifier->link);
2662}
2663EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2664
2665static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2666{
2667 struct preempt_notifier *notifier;
2668 struct hlist_node *node;
2669
2670 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2671 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2672}
2673
2674static void
2675fire_sched_out_preempt_notifiers(struct task_struct *curr,
2676 struct task_struct *next)
2677{
2678 struct preempt_notifier *notifier;
2679 struct hlist_node *node;
2680
2681 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2682 notifier->ops->sched_out(notifier, next);
2683}
2684
6d6bc0ad 2685#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2686
2687static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2688{
2689}
2690
2691static void
2692fire_sched_out_preempt_notifiers(struct task_struct *curr,
2693 struct task_struct *next)
2694{
2695}
2696
6d6bc0ad 2697#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2698
4866cde0
NP
2699/**
2700 * prepare_task_switch - prepare to switch tasks
2701 * @rq: the runqueue preparing to switch
421cee29 2702 * @prev: the current task that is being switched out
4866cde0
NP
2703 * @next: the task we are going to switch to.
2704 *
2705 * This is called with the rq lock held and interrupts off. It must
2706 * be paired with a subsequent finish_task_switch after the context
2707 * switch.
2708 *
2709 * prepare_task_switch sets up locking and calls architecture specific
2710 * hooks.
2711 */
e107be36
AK
2712static inline void
2713prepare_task_switch(struct rq *rq, struct task_struct *prev,
2714 struct task_struct *next)
4866cde0 2715{
e107be36 2716 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2717 prepare_lock_switch(rq, next);
2718 prepare_arch_switch(next);
2719}
2720
1da177e4
LT
2721/**
2722 * finish_task_switch - clean up after a task-switch
344babaa 2723 * @rq: runqueue associated with task-switch
1da177e4
LT
2724 * @prev: the thread we just switched away from.
2725 *
4866cde0
NP
2726 * finish_task_switch must be called after the context switch, paired
2727 * with a prepare_task_switch call before the context switch.
2728 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2729 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2730 *
2731 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2732 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2733 * with the lock held can cause deadlocks; see schedule() for
2734 * details.)
2735 */
a9957449 2736static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2737 __releases(rq->lock)
2738{
1da177e4 2739 struct mm_struct *mm = rq->prev_mm;
55a101f8 2740 long prev_state;
1da177e4
LT
2741
2742 rq->prev_mm = NULL;
2743
2744 /*
2745 * A task struct has one reference for the use as "current".
c394cc9f 2746 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2747 * schedule one last time. The schedule call will never return, and
2748 * the scheduled task must drop that reference.
c394cc9f 2749 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2750 * still held, otherwise prev could be scheduled on another cpu, die
2751 * there before we look at prev->state, and then the reference would
2752 * be dropped twice.
2753 * Manfred Spraul <manfred@colorfullife.com>
2754 */
55a101f8 2755 prev_state = prev->state;
4866cde0 2756 finish_arch_switch(prev);
8381f65d
JI
2757#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2758 local_irq_disable();
2759#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2760 perf_event_task_sched_in(current);
8381f65d
JI
2761#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2762 local_irq_enable();
2763#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2764 finish_lock_switch(rq, prev);
e8fa1362 2765
e107be36 2766 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2767 if (mm)
2768 mmdrop(mm);
c394cc9f 2769 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2770 /*
2771 * Remove function-return probe instances associated with this
2772 * task and put them back on the free list.
9761eea8 2773 */
c6fd91f0 2774 kprobe_flush_task(prev);
1da177e4 2775 put_task_struct(prev);
c6fd91f0 2776 }
1da177e4
LT
2777}
2778
3f029d3c
GH
2779#ifdef CONFIG_SMP
2780
2781/* assumes rq->lock is held */
2782static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2783{
2784 if (prev->sched_class->pre_schedule)
2785 prev->sched_class->pre_schedule(rq, prev);
2786}
2787
2788/* rq->lock is NOT held, but preemption is disabled */
2789static inline void post_schedule(struct rq *rq)
2790{
2791 if (rq->post_schedule) {
2792 unsigned long flags;
2793
05fa785c 2794 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2795 if (rq->curr->sched_class->post_schedule)
2796 rq->curr->sched_class->post_schedule(rq);
05fa785c 2797 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2798
2799 rq->post_schedule = 0;
2800 }
2801}
2802
2803#else
da19ab51 2804
3f029d3c
GH
2805static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2806{
2807}
2808
2809static inline void post_schedule(struct rq *rq)
2810{
1da177e4
LT
2811}
2812
3f029d3c
GH
2813#endif
2814
1da177e4
LT
2815/**
2816 * schedule_tail - first thing a freshly forked thread must call.
2817 * @prev: the thread we just switched away from.
2818 */
36c8b586 2819asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2820 __releases(rq->lock)
2821{
70b97a7f
IM
2822 struct rq *rq = this_rq();
2823
4866cde0 2824 finish_task_switch(rq, prev);
da19ab51 2825
3f029d3c
GH
2826 /*
2827 * FIXME: do we need to worry about rq being invalidated by the
2828 * task_switch?
2829 */
2830 post_schedule(rq);
70b97a7f 2831
4866cde0
NP
2832#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2833 /* In this case, finish_task_switch does not reenable preemption */
2834 preempt_enable();
2835#endif
1da177e4 2836 if (current->set_child_tid)
b488893a 2837 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2838}
2839
2840/*
2841 * context_switch - switch to the new MM and the new
2842 * thread's register state.
2843 */
dd41f596 2844static inline void
70b97a7f 2845context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2846 struct task_struct *next)
1da177e4 2847{
dd41f596 2848 struct mm_struct *mm, *oldmm;
1da177e4 2849
e107be36 2850 prepare_task_switch(rq, prev, next);
0a16b607 2851 trace_sched_switch(rq, prev, next);
dd41f596
IM
2852 mm = next->mm;
2853 oldmm = prev->active_mm;
9226d125
ZA
2854 /*
2855 * For paravirt, this is coupled with an exit in switch_to to
2856 * combine the page table reload and the switch backend into
2857 * one hypercall.
2858 */
224101ed 2859 arch_start_context_switch(prev);
9226d125 2860
710390d9 2861 if (likely(!mm)) {
1da177e4
LT
2862 next->active_mm = oldmm;
2863 atomic_inc(&oldmm->mm_count);
2864 enter_lazy_tlb(oldmm, next);
2865 } else
2866 switch_mm(oldmm, mm, next);
2867
710390d9 2868 if (likely(!prev->mm)) {
1da177e4 2869 prev->active_mm = NULL;
1da177e4
LT
2870 rq->prev_mm = oldmm;
2871 }
3a5f5e48
IM
2872 /*
2873 * Since the runqueue lock will be released by the next
2874 * task (which is an invalid locking op but in the case
2875 * of the scheduler it's an obvious special-case), so we
2876 * do an early lockdep release here:
2877 */
2878#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2879 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2880#endif
1da177e4
LT
2881
2882 /* Here we just switch the register state and the stack. */
2883 switch_to(prev, next, prev);
2884
dd41f596
IM
2885 barrier();
2886 /*
2887 * this_rq must be evaluated again because prev may have moved
2888 * CPUs since it called schedule(), thus the 'rq' on its stack
2889 * frame will be invalid.
2890 */
2891 finish_task_switch(this_rq(), prev);
1da177e4
LT
2892}
2893
2894/*
2895 * nr_running, nr_uninterruptible and nr_context_switches:
2896 *
2897 * externally visible scheduler statistics: current number of runnable
2898 * threads, current number of uninterruptible-sleeping threads, total
2899 * number of context switches performed since bootup.
2900 */
2901unsigned long nr_running(void)
2902{
2903 unsigned long i, sum = 0;
2904
2905 for_each_online_cpu(i)
2906 sum += cpu_rq(i)->nr_running;
2907
2908 return sum;
f711f609 2909}
1da177e4
LT
2910
2911unsigned long nr_uninterruptible(void)
f711f609 2912{
1da177e4 2913 unsigned long i, sum = 0;
f711f609 2914
0a945022 2915 for_each_possible_cpu(i)
1da177e4 2916 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2917
2918 /*
1da177e4
LT
2919 * Since we read the counters lockless, it might be slightly
2920 * inaccurate. Do not allow it to go below zero though:
f711f609 2921 */
1da177e4
LT
2922 if (unlikely((long)sum < 0))
2923 sum = 0;
f711f609 2924
1da177e4 2925 return sum;
f711f609 2926}
f711f609 2927
1da177e4 2928unsigned long long nr_context_switches(void)
46cb4b7c 2929{
cc94abfc
SR
2930 int i;
2931 unsigned long long sum = 0;
46cb4b7c 2932
0a945022 2933 for_each_possible_cpu(i)
1da177e4 2934 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2935
1da177e4
LT
2936 return sum;
2937}
483b4ee6 2938
1da177e4
LT
2939unsigned long nr_iowait(void)
2940{
2941 unsigned long i, sum = 0;
483b4ee6 2942
0a945022 2943 for_each_possible_cpu(i)
1da177e4 2944 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2945
1da177e4
LT
2946 return sum;
2947}
483b4ee6 2948
69d25870
AV
2949unsigned long nr_iowait_cpu(void)
2950{
2951 struct rq *this = this_rq();
2952 return atomic_read(&this->nr_iowait);
2953}
46cb4b7c 2954
69d25870
AV
2955unsigned long this_cpu_load(void)
2956{
2957 struct rq *this = this_rq();
2958 return this->cpu_load[0];
2959}
e790fb0b 2960
46cb4b7c 2961
dce48a84
TG
2962/* Variables and functions for calc_load */
2963static atomic_long_t calc_load_tasks;
2964static unsigned long calc_load_update;
2965unsigned long avenrun[3];
2966EXPORT_SYMBOL(avenrun);
46cb4b7c 2967
2d02494f
TG
2968/**
2969 * get_avenrun - get the load average array
2970 * @loads: pointer to dest load array
2971 * @offset: offset to add
2972 * @shift: shift count to shift the result left
2973 *
2974 * These values are estimates at best, so no need for locking.
2975 */
2976void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2977{
2978 loads[0] = (avenrun[0] + offset) << shift;
2979 loads[1] = (avenrun[1] + offset) << shift;
2980 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2981}
46cb4b7c 2982
dce48a84
TG
2983static unsigned long
2984calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2985{
dce48a84
TG
2986 load *= exp;
2987 load += active * (FIXED_1 - exp);
2988 return load >> FSHIFT;
2989}
46cb4b7c
SS
2990
2991/*
dce48a84
TG
2992 * calc_load - update the avenrun load estimates 10 ticks after the
2993 * CPUs have updated calc_load_tasks.
7835b98b 2994 */
dce48a84 2995void calc_global_load(void)
7835b98b 2996{
dce48a84
TG
2997 unsigned long upd = calc_load_update + 10;
2998 long active;
1da177e4 2999
dce48a84
TG
3000 if (time_before(jiffies, upd))
3001 return;
1da177e4 3002
dce48a84
TG
3003 active = atomic_long_read(&calc_load_tasks);
3004 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3005
dce48a84
TG
3006 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3007 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3008 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3009
dce48a84
TG
3010 calc_load_update += LOAD_FREQ;
3011}
1da177e4 3012
dce48a84
TG
3013/*
3014 * Either called from update_cpu_load() or from a cpu going idle
3015 */
3016static void calc_load_account_active(struct rq *this_rq)
3017{
3018 long nr_active, delta;
08c183f3 3019
dce48a84
TG
3020 nr_active = this_rq->nr_running;
3021 nr_active += (long) this_rq->nr_uninterruptible;
783609c6 3022
dce48a84
TG
3023 if (nr_active != this_rq->calc_load_active) {
3024 delta = nr_active - this_rq->calc_load_active;
3025 this_rq->calc_load_active = nr_active;
3026 atomic_long_add(delta, &calc_load_tasks);
1da177e4 3027 }
46cb4b7c
SS
3028}
3029
3030/*
dd41f596
IM
3031 * Update rq->cpu_load[] statistics. This function is usually called every
3032 * scheduler tick (TICK_NSEC).
46cb4b7c 3033 */
dd41f596 3034static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3035{
495eca49 3036 unsigned long this_load = this_rq->load.weight;
dd41f596 3037 int i, scale;
46cb4b7c 3038
dd41f596 3039 this_rq->nr_load_updates++;
46cb4b7c 3040
dd41f596
IM
3041 /* Update our load: */
3042 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3043 unsigned long old_load, new_load;
7d1e6a9b 3044
dd41f596 3045 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3046
dd41f596
IM
3047 old_load = this_rq->cpu_load[i];
3048 new_load = this_load;
a25707f3
IM
3049 /*
3050 * Round up the averaging division if load is increasing. This
3051 * prevents us from getting stuck on 9 if the load is 10, for
3052 * example.
3053 */
3054 if (new_load > old_load)
3055 new_load += scale-1;
dd41f596
IM
3056 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3057 }
46cb4b7c 3058
dce48a84
TG
3059 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3060 this_rq->calc_load_update += LOAD_FREQ;
3061 calc_load_account_active(this_rq);
46cb4b7c 3062 }
46cb4b7c
SS
3063}
3064
dd41f596 3065#ifdef CONFIG_SMP
8a0be9ef 3066
46cb4b7c 3067/*
38022906
PZ
3068 * sched_exec - execve() is a valuable balancing opportunity, because at
3069 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3070 */
38022906 3071void sched_exec(void)
46cb4b7c 3072{
38022906 3073 struct task_struct *p = current;
70b97a7f 3074 struct migration_req req;
38022906 3075 int dest_cpu, this_cpu;
1da177e4 3076 unsigned long flags;
70b97a7f 3077 struct rq *rq;
46cb4b7c 3078
38022906
PZ
3079again:
3080 this_cpu = get_cpu();
3081 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3082 if (dest_cpu == this_cpu) {
3083 put_cpu();
3084 return;
46cb4b7c
SS
3085 }
3086
1da177e4 3087 rq = task_rq_lock(p, &flags);
38022906
PZ
3088 put_cpu();
3089
46cb4b7c 3090 /*
38022906 3091 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3092 */
96f874e2 3093 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3094 || unlikely(!cpu_active(dest_cpu))) {
3095 task_rq_unlock(rq, &flags);
3096 goto again;
46cb4b7c
SS
3097 }
3098
1da177e4
LT
3099 /* force the process onto the specified CPU */
3100 if (migrate_task(p, dest_cpu, &req)) {
3101 /* Need to wait for migration thread (might exit: take ref). */
3102 struct task_struct *mt = rq->migration_thread;
dd41f596 3103
1da177e4
LT
3104 get_task_struct(mt);
3105 task_rq_unlock(rq, &flags);
3106 wake_up_process(mt);
3107 put_task_struct(mt);
3108 wait_for_completion(&req.done);
dd41f596 3109
1da177e4
LT
3110 return;
3111 }
1da177e4 3112 task_rq_unlock(rq, &flags);
1da177e4 3113}
dd41f596 3114
1da177e4
LT
3115#endif
3116
1da177e4
LT
3117DEFINE_PER_CPU(struct kernel_stat, kstat);
3118
3119EXPORT_PER_CPU_SYMBOL(kstat);
3120
3121/*
c5f8d995 3122 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3123 * @p in case that task is currently running.
c5f8d995
HS
3124 *
3125 * Called with task_rq_lock() held on @rq.
1da177e4 3126 */
c5f8d995
HS
3127static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3128{
3129 u64 ns = 0;
3130
3131 if (task_current(rq, p)) {
3132 update_rq_clock(rq);
3133 ns = rq->clock - p->se.exec_start;
3134 if ((s64)ns < 0)
3135 ns = 0;
3136 }
3137
3138 return ns;
3139}
3140
bb34d92f 3141unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3142{
1da177e4 3143 unsigned long flags;
41b86e9c 3144 struct rq *rq;
bb34d92f 3145 u64 ns = 0;
48f24c4d 3146
41b86e9c 3147 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3148 ns = do_task_delta_exec(p, rq);
3149 task_rq_unlock(rq, &flags);
1508487e 3150
c5f8d995
HS
3151 return ns;
3152}
f06febc9 3153
c5f8d995
HS
3154/*
3155 * Return accounted runtime for the task.
3156 * In case the task is currently running, return the runtime plus current's
3157 * pending runtime that have not been accounted yet.
3158 */
3159unsigned long long task_sched_runtime(struct task_struct *p)
3160{
3161 unsigned long flags;
3162 struct rq *rq;
3163 u64 ns = 0;
3164
3165 rq = task_rq_lock(p, &flags);
3166 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3167 task_rq_unlock(rq, &flags);
3168
3169 return ns;
3170}
48f24c4d 3171
c5f8d995
HS
3172/*
3173 * Return sum_exec_runtime for the thread group.
3174 * In case the task is currently running, return the sum plus current's
3175 * pending runtime that have not been accounted yet.
3176 *
3177 * Note that the thread group might have other running tasks as well,
3178 * so the return value not includes other pending runtime that other
3179 * running tasks might have.
3180 */
3181unsigned long long thread_group_sched_runtime(struct task_struct *p)
3182{
3183 struct task_cputime totals;
3184 unsigned long flags;
3185 struct rq *rq;
3186 u64 ns;
3187
3188 rq = task_rq_lock(p, &flags);
3189 thread_group_cputime(p, &totals);
3190 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3191 task_rq_unlock(rq, &flags);
48f24c4d 3192
1da177e4
LT
3193 return ns;
3194}
3195
1da177e4
LT
3196/*
3197 * Account user cpu time to a process.
3198 * @p: the process that the cpu time gets accounted to
1da177e4 3199 * @cputime: the cpu time spent in user space since the last update
457533a7 3200 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3201 */
457533a7
MS
3202void account_user_time(struct task_struct *p, cputime_t cputime,
3203 cputime_t cputime_scaled)
1da177e4
LT
3204{
3205 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3206 cputime64_t tmp;
3207
457533a7 3208 /* Add user time to process. */
1da177e4 3209 p->utime = cputime_add(p->utime, cputime);
457533a7 3210 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3211 account_group_user_time(p, cputime);
1da177e4
LT
3212
3213 /* Add user time to cpustat. */
3214 tmp = cputime_to_cputime64(cputime);
3215 if (TASK_NICE(p) > 0)
3216 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3217 else
3218 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3219
3220 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3221 /* Account for user time used */
3222 acct_update_integrals(p);
1da177e4
LT
3223}
3224
94886b84
LV
3225/*
3226 * Account guest cpu time to a process.
3227 * @p: the process that the cpu time gets accounted to
3228 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3229 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3230 */
457533a7
MS
3231static void account_guest_time(struct task_struct *p, cputime_t cputime,
3232 cputime_t cputime_scaled)
94886b84
LV
3233{
3234 cputime64_t tmp;
3235 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3236
3237 tmp = cputime_to_cputime64(cputime);
3238
457533a7 3239 /* Add guest time to process. */
94886b84 3240 p->utime = cputime_add(p->utime, cputime);
457533a7 3241 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3242 account_group_user_time(p, cputime);
94886b84
LV
3243 p->gtime = cputime_add(p->gtime, cputime);
3244
457533a7 3245 /* Add guest time to cpustat. */
ce0e7b28
RO
3246 if (TASK_NICE(p) > 0) {
3247 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3248 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3249 } else {
3250 cpustat->user = cputime64_add(cpustat->user, tmp);
3251 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3252 }
94886b84
LV
3253}
3254
1da177e4
LT
3255/*
3256 * Account system cpu time to a process.
3257 * @p: the process that the cpu time gets accounted to
3258 * @hardirq_offset: the offset to subtract from hardirq_count()
3259 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3260 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3261 */
3262void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3263 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3264{
3265 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3266 cputime64_t tmp;
3267
983ed7a6 3268 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3269 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3270 return;
3271 }
94886b84 3272
457533a7 3273 /* Add system time to process. */
1da177e4 3274 p->stime = cputime_add(p->stime, cputime);
457533a7 3275 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3276 account_group_system_time(p, cputime);
1da177e4
LT
3277
3278 /* Add system time to cpustat. */
3279 tmp = cputime_to_cputime64(cputime);
3280 if (hardirq_count() - hardirq_offset)
3281 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3282 else if (softirq_count())
3283 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3284 else
79741dd3
MS
3285 cpustat->system = cputime64_add(cpustat->system, tmp);
3286
ef12fefa
BR
3287 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3288
1da177e4
LT
3289 /* Account for system time used */
3290 acct_update_integrals(p);
1da177e4
LT
3291}
3292
c66f08be 3293/*
1da177e4 3294 * Account for involuntary wait time.
1da177e4 3295 * @steal: the cpu time spent in involuntary wait
c66f08be 3296 */
79741dd3 3297void account_steal_time(cputime_t cputime)
c66f08be 3298{
79741dd3
MS
3299 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3300 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3301
3302 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3303}
3304
1da177e4 3305/*
79741dd3
MS
3306 * Account for idle time.
3307 * @cputime: the cpu time spent in idle wait
1da177e4 3308 */
79741dd3 3309void account_idle_time(cputime_t cputime)
1da177e4
LT
3310{
3311 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3312 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3313 struct rq *rq = this_rq();
1da177e4 3314
79741dd3
MS
3315 if (atomic_read(&rq->nr_iowait) > 0)
3316 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3317 else
3318 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3319}
3320
79741dd3
MS
3321#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3322
3323/*
3324 * Account a single tick of cpu time.
3325 * @p: the process that the cpu time gets accounted to
3326 * @user_tick: indicates if the tick is a user or a system tick
3327 */
3328void account_process_tick(struct task_struct *p, int user_tick)
3329{
a42548a1 3330 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3331 struct rq *rq = this_rq();
3332
3333 if (user_tick)
a42548a1 3334 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3335 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3336 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3337 one_jiffy_scaled);
3338 else
a42548a1 3339 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3340}
3341
3342/*
3343 * Account multiple ticks of steal time.
3344 * @p: the process from which the cpu time has been stolen
3345 * @ticks: number of stolen ticks
3346 */
3347void account_steal_ticks(unsigned long ticks)
3348{
3349 account_steal_time(jiffies_to_cputime(ticks));
3350}
3351
3352/*
3353 * Account multiple ticks of idle time.
3354 * @ticks: number of stolen ticks
3355 */
3356void account_idle_ticks(unsigned long ticks)
3357{
3358 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3359}
3360
79741dd3
MS
3361#endif
3362
49048622
BS
3363/*
3364 * Use precise platform statistics if available:
3365 */
3366#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3367void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3368{
d99ca3b9
HS
3369 *ut = p->utime;
3370 *st = p->stime;
49048622
BS
3371}
3372
0cf55e1e 3373void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3374{
0cf55e1e
HS
3375 struct task_cputime cputime;
3376
3377 thread_group_cputime(p, &cputime);
3378
3379 *ut = cputime.utime;
3380 *st = cputime.stime;
49048622
BS
3381}
3382#else
761b1d26
HS
3383
3384#ifndef nsecs_to_cputime
b7b20df9 3385# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3386#endif
3387
d180c5bc 3388void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3389{
d99ca3b9 3390 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3391
3392 /*
3393 * Use CFS's precise accounting:
3394 */
d180c5bc 3395 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3396
3397 if (total) {
d180c5bc
HS
3398 u64 temp;
3399
3400 temp = (u64)(rtime * utime);
49048622 3401 do_div(temp, total);
d180c5bc
HS
3402 utime = (cputime_t)temp;
3403 } else
3404 utime = rtime;
49048622 3405
d180c5bc
HS
3406 /*
3407 * Compare with previous values, to keep monotonicity:
3408 */
761b1d26 3409 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3410 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3411
d99ca3b9
HS
3412 *ut = p->prev_utime;
3413 *st = p->prev_stime;
49048622
BS
3414}
3415
0cf55e1e
HS
3416/*
3417 * Must be called with siglock held.
3418 */
3419void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3420{
0cf55e1e
HS
3421 struct signal_struct *sig = p->signal;
3422 struct task_cputime cputime;
3423 cputime_t rtime, utime, total;
49048622 3424
0cf55e1e 3425 thread_group_cputime(p, &cputime);
49048622 3426
0cf55e1e
HS
3427 total = cputime_add(cputime.utime, cputime.stime);
3428 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3429
0cf55e1e
HS
3430 if (total) {
3431 u64 temp;
49048622 3432
0cf55e1e
HS
3433 temp = (u64)(rtime * cputime.utime);
3434 do_div(temp, total);
3435 utime = (cputime_t)temp;
3436 } else
3437 utime = rtime;
3438
3439 sig->prev_utime = max(sig->prev_utime, utime);
3440 sig->prev_stime = max(sig->prev_stime,
3441 cputime_sub(rtime, sig->prev_utime));
3442
3443 *ut = sig->prev_utime;
3444 *st = sig->prev_stime;
49048622 3445}
49048622 3446#endif
49048622 3447
7835b98b
CL
3448/*
3449 * This function gets called by the timer code, with HZ frequency.
3450 * We call it with interrupts disabled.
3451 *
3452 * It also gets called by the fork code, when changing the parent's
3453 * timeslices.
3454 */
3455void scheduler_tick(void)
3456{
7835b98b
CL
3457 int cpu = smp_processor_id();
3458 struct rq *rq = cpu_rq(cpu);
dd41f596 3459 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3460
3461 sched_clock_tick();
dd41f596 3462
05fa785c 3463 raw_spin_lock(&rq->lock);
3e51f33f 3464 update_rq_clock(rq);
f1a438d8 3465 update_cpu_load(rq);
fa85ae24 3466 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3467 raw_spin_unlock(&rq->lock);
7835b98b 3468
49f47433 3469 perf_event_task_tick(curr);
e220d2dc 3470
e418e1c2 3471#ifdef CONFIG_SMP
dd41f596
IM
3472 rq->idle_at_tick = idle_cpu(cpu);
3473 trigger_load_balance(rq, cpu);
e418e1c2 3474#endif
1da177e4
LT
3475}
3476
132380a0 3477notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3478{
3479 if (in_lock_functions(addr)) {
3480 addr = CALLER_ADDR2;
3481 if (in_lock_functions(addr))
3482 addr = CALLER_ADDR3;
3483 }
3484 return addr;
3485}
1da177e4 3486
7e49fcce
SR
3487#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3488 defined(CONFIG_PREEMPT_TRACER))
3489
43627582 3490void __kprobes add_preempt_count(int val)
1da177e4 3491{
6cd8a4bb 3492#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3493 /*
3494 * Underflow?
3495 */
9a11b49a
IM
3496 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3497 return;
6cd8a4bb 3498#endif
1da177e4 3499 preempt_count() += val;
6cd8a4bb 3500#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3501 /*
3502 * Spinlock count overflowing soon?
3503 */
33859f7f
MOS
3504 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3505 PREEMPT_MASK - 10);
6cd8a4bb
SR
3506#endif
3507 if (preempt_count() == val)
3508 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3509}
3510EXPORT_SYMBOL(add_preempt_count);
3511
43627582 3512void __kprobes sub_preempt_count(int val)
1da177e4 3513{
6cd8a4bb 3514#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3515 /*
3516 * Underflow?
3517 */
01e3eb82 3518 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3519 return;
1da177e4
LT
3520 /*
3521 * Is the spinlock portion underflowing?
3522 */
9a11b49a
IM
3523 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3524 !(preempt_count() & PREEMPT_MASK)))
3525 return;
6cd8a4bb 3526#endif
9a11b49a 3527
6cd8a4bb
SR
3528 if (preempt_count() == val)
3529 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3530 preempt_count() -= val;
3531}
3532EXPORT_SYMBOL(sub_preempt_count);
3533
3534#endif
3535
3536/*
dd41f596 3537 * Print scheduling while atomic bug:
1da177e4 3538 */
dd41f596 3539static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3540{
838225b4
SS
3541 struct pt_regs *regs = get_irq_regs();
3542
3df0fc5b
PZ
3543 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3544 prev->comm, prev->pid, preempt_count());
838225b4 3545
dd41f596 3546 debug_show_held_locks(prev);
e21f5b15 3547 print_modules();
dd41f596
IM
3548 if (irqs_disabled())
3549 print_irqtrace_events(prev);
838225b4
SS
3550
3551 if (regs)
3552 show_regs(regs);
3553 else
3554 dump_stack();
dd41f596 3555}
1da177e4 3556
dd41f596
IM
3557/*
3558 * Various schedule()-time debugging checks and statistics:
3559 */
3560static inline void schedule_debug(struct task_struct *prev)
3561{
1da177e4 3562 /*
41a2d6cf 3563 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3564 * schedule() atomically, we ignore that path for now.
3565 * Otherwise, whine if we are scheduling when we should not be.
3566 */
3f33a7ce 3567 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3568 __schedule_bug(prev);
3569
1da177e4
LT
3570 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3571
2d72376b 3572 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3573#ifdef CONFIG_SCHEDSTATS
3574 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3575 schedstat_inc(this_rq(), bkl_count);
3576 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3577 }
3578#endif
dd41f596
IM
3579}
3580
6cecd084 3581static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3582{
a64692a3
MG
3583 if (prev->se.on_rq)
3584 update_rq_clock(rq);
3585 rq->skip_clock_update = 0;
6cecd084 3586 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3587}
3588
dd41f596
IM
3589/*
3590 * Pick up the highest-prio task:
3591 */
3592static inline struct task_struct *
b67802ea 3593pick_next_task(struct rq *rq)
dd41f596 3594{
5522d5d5 3595 const struct sched_class *class;
dd41f596 3596 struct task_struct *p;
1da177e4
LT
3597
3598 /*
dd41f596
IM
3599 * Optimization: we know that if all tasks are in
3600 * the fair class we can call that function directly:
1da177e4 3601 */
dd41f596 3602 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3603 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3604 if (likely(p))
3605 return p;
1da177e4
LT
3606 }
3607
dd41f596
IM
3608 class = sched_class_highest;
3609 for ( ; ; ) {
fb8d4724 3610 p = class->pick_next_task(rq);
dd41f596
IM
3611 if (p)
3612 return p;
3613 /*
3614 * Will never be NULL as the idle class always
3615 * returns a non-NULL p:
3616 */
3617 class = class->next;
3618 }
3619}
1da177e4 3620
dd41f596
IM
3621/*
3622 * schedule() is the main scheduler function.
3623 */
ff743345 3624asmlinkage void __sched schedule(void)
dd41f596
IM
3625{
3626 struct task_struct *prev, *next;
67ca7bde 3627 unsigned long *switch_count;
dd41f596 3628 struct rq *rq;
31656519 3629 int cpu;
dd41f596 3630
ff743345
PZ
3631need_resched:
3632 preempt_disable();
dd41f596
IM
3633 cpu = smp_processor_id();
3634 rq = cpu_rq(cpu);
d6714c22 3635 rcu_sched_qs(cpu);
dd41f596
IM
3636 prev = rq->curr;
3637 switch_count = &prev->nivcsw;
3638
3639 release_kernel_lock(prev);
3640need_resched_nonpreemptible:
3641
3642 schedule_debug(prev);
1da177e4 3643
31656519 3644 if (sched_feat(HRTICK))
f333fdc9 3645 hrtick_clear(rq);
8f4d37ec 3646
05fa785c 3647 raw_spin_lock_irq(&rq->lock);
1e819950 3648 clear_tsk_need_resched(prev);
1da177e4 3649
1da177e4 3650 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3651 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3652 prev->state = TASK_RUNNING;
16882c1e 3653 else
2e1cb74a 3654 deactivate_task(rq, prev, 1);
dd41f596 3655 switch_count = &prev->nvcsw;
1da177e4
LT
3656 }
3657
3f029d3c 3658 pre_schedule(rq, prev);
f65eda4f 3659
dd41f596 3660 if (unlikely(!rq->nr_running))
1da177e4 3661 idle_balance(cpu, rq);
1da177e4 3662
df1c99d4 3663 put_prev_task(rq, prev);
b67802ea 3664 next = pick_next_task(rq);
1da177e4 3665
1da177e4 3666 if (likely(prev != next)) {
673a90a1 3667 sched_info_switch(prev, next);
49f47433 3668 perf_event_task_sched_out(prev, next);
673a90a1 3669
1da177e4
LT
3670 rq->nr_switches++;
3671 rq->curr = next;
3672 ++*switch_count;
3673
dd41f596 3674 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3675 /*
3676 * the context switch might have flipped the stack from under
3677 * us, hence refresh the local variables.
3678 */
3679 cpu = smp_processor_id();
3680 rq = cpu_rq(cpu);
1da177e4 3681 } else
05fa785c 3682 raw_spin_unlock_irq(&rq->lock);
1da177e4 3683
3f029d3c 3684 post_schedule(rq);
1da177e4 3685
6d558c3a
YZ
3686 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3687 prev = rq->curr;
3688 switch_count = &prev->nivcsw;
1da177e4 3689 goto need_resched_nonpreemptible;
6d558c3a 3690 }
8f4d37ec 3691
1da177e4 3692 preempt_enable_no_resched();
ff743345 3693 if (need_resched())
1da177e4
LT
3694 goto need_resched;
3695}
1da177e4
LT
3696EXPORT_SYMBOL(schedule);
3697
c08f7829 3698#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3699/*
3700 * Look out! "owner" is an entirely speculative pointer
3701 * access and not reliable.
3702 */
3703int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3704{
3705 unsigned int cpu;
3706 struct rq *rq;
3707
3708 if (!sched_feat(OWNER_SPIN))
3709 return 0;
3710
3711#ifdef CONFIG_DEBUG_PAGEALLOC
3712 /*
3713 * Need to access the cpu field knowing that
3714 * DEBUG_PAGEALLOC could have unmapped it if
3715 * the mutex owner just released it and exited.
3716 */
3717 if (probe_kernel_address(&owner->cpu, cpu))
3718 goto out;
3719#else
3720 cpu = owner->cpu;
3721#endif
3722
3723 /*
3724 * Even if the access succeeded (likely case),
3725 * the cpu field may no longer be valid.
3726 */
3727 if (cpu >= nr_cpumask_bits)
3728 goto out;
3729
3730 /*
3731 * We need to validate that we can do a
3732 * get_cpu() and that we have the percpu area.
3733 */
3734 if (!cpu_online(cpu))
3735 goto out;
3736
3737 rq = cpu_rq(cpu);
3738
3739 for (;;) {
3740 /*
3741 * Owner changed, break to re-assess state.
3742 */
3743 if (lock->owner != owner)
3744 break;
3745
3746 /*
3747 * Is that owner really running on that cpu?
3748 */
3749 if (task_thread_info(rq->curr) != owner || need_resched())
3750 return 0;
3751
3752 cpu_relax();
3753 }
3754out:
3755 return 1;
3756}
3757#endif
3758
1da177e4
LT
3759#ifdef CONFIG_PREEMPT
3760/*
2ed6e34f 3761 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3762 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3763 * occur there and call schedule directly.
3764 */
3765asmlinkage void __sched preempt_schedule(void)
3766{
3767 struct thread_info *ti = current_thread_info();
6478d880 3768
1da177e4
LT
3769 /*
3770 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3771 * we do not want to preempt the current task. Just return..
1da177e4 3772 */
beed33a8 3773 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3774 return;
3775
3a5c359a
AK
3776 do {
3777 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3778 schedule();
3a5c359a 3779 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3780
3a5c359a
AK
3781 /*
3782 * Check again in case we missed a preemption opportunity
3783 * between schedule and now.
3784 */
3785 barrier();
5ed0cec0 3786 } while (need_resched());
1da177e4 3787}
1da177e4
LT
3788EXPORT_SYMBOL(preempt_schedule);
3789
3790/*
2ed6e34f 3791 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3792 * off of irq context.
3793 * Note, that this is called and return with irqs disabled. This will
3794 * protect us against recursive calling from irq.
3795 */
3796asmlinkage void __sched preempt_schedule_irq(void)
3797{
3798 struct thread_info *ti = current_thread_info();
6478d880 3799
2ed6e34f 3800 /* Catch callers which need to be fixed */
1da177e4
LT
3801 BUG_ON(ti->preempt_count || !irqs_disabled());
3802
3a5c359a
AK
3803 do {
3804 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3805 local_irq_enable();
3806 schedule();
3807 local_irq_disable();
3a5c359a 3808 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3809
3a5c359a
AK
3810 /*
3811 * Check again in case we missed a preemption opportunity
3812 * between schedule and now.
3813 */
3814 barrier();
5ed0cec0 3815 } while (need_resched());
1da177e4
LT
3816}
3817
3818#endif /* CONFIG_PREEMPT */
3819
63859d4f 3820int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3821 void *key)
1da177e4 3822{
63859d4f 3823 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3824}
1da177e4
LT
3825EXPORT_SYMBOL(default_wake_function);
3826
3827/*
41a2d6cf
IM
3828 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3829 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3830 * number) then we wake all the non-exclusive tasks and one exclusive task.
3831 *
3832 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3833 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3834 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3835 */
78ddb08f 3836static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3837 int nr_exclusive, int wake_flags, void *key)
1da177e4 3838{
2e45874c 3839 wait_queue_t *curr, *next;
1da177e4 3840
2e45874c 3841 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3842 unsigned flags = curr->flags;
3843
63859d4f 3844 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3845 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3846 break;
3847 }
3848}
3849
3850/**
3851 * __wake_up - wake up threads blocked on a waitqueue.
3852 * @q: the waitqueue
3853 * @mode: which threads
3854 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3855 * @key: is directly passed to the wakeup function
50fa610a
DH
3856 *
3857 * It may be assumed that this function implies a write memory barrier before
3858 * changing the task state if and only if any tasks are woken up.
1da177e4 3859 */
7ad5b3a5 3860void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3861 int nr_exclusive, void *key)
1da177e4
LT
3862{
3863 unsigned long flags;
3864
3865 spin_lock_irqsave(&q->lock, flags);
3866 __wake_up_common(q, mode, nr_exclusive, 0, key);
3867 spin_unlock_irqrestore(&q->lock, flags);
3868}
1da177e4
LT
3869EXPORT_SYMBOL(__wake_up);
3870
3871/*
3872 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3873 */
7ad5b3a5 3874void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3875{
3876 __wake_up_common(q, mode, 1, 0, NULL);
3877}
3878
4ede816a
DL
3879void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3880{
3881 __wake_up_common(q, mode, 1, 0, key);
3882}
3883
1da177e4 3884/**
4ede816a 3885 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3886 * @q: the waitqueue
3887 * @mode: which threads
3888 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3889 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3890 *
3891 * The sync wakeup differs that the waker knows that it will schedule
3892 * away soon, so while the target thread will be woken up, it will not
3893 * be migrated to another CPU - ie. the two threads are 'synchronized'
3894 * with each other. This can prevent needless bouncing between CPUs.
3895 *
3896 * On UP it can prevent extra preemption.
50fa610a
DH
3897 *
3898 * It may be assumed that this function implies a write memory barrier before
3899 * changing the task state if and only if any tasks are woken up.
1da177e4 3900 */
4ede816a
DL
3901void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3902 int nr_exclusive, void *key)
1da177e4
LT
3903{
3904 unsigned long flags;
7d478721 3905 int wake_flags = WF_SYNC;
1da177e4
LT
3906
3907 if (unlikely(!q))
3908 return;
3909
3910 if (unlikely(!nr_exclusive))
7d478721 3911 wake_flags = 0;
1da177e4
LT
3912
3913 spin_lock_irqsave(&q->lock, flags);
7d478721 3914 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3915 spin_unlock_irqrestore(&q->lock, flags);
3916}
4ede816a
DL
3917EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3918
3919/*
3920 * __wake_up_sync - see __wake_up_sync_key()
3921 */
3922void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3923{
3924 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3925}
1da177e4
LT
3926EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3927
65eb3dc6
KD
3928/**
3929 * complete: - signals a single thread waiting on this completion
3930 * @x: holds the state of this particular completion
3931 *
3932 * This will wake up a single thread waiting on this completion. Threads will be
3933 * awakened in the same order in which they were queued.
3934 *
3935 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3936 *
3937 * It may be assumed that this function implies a write memory barrier before
3938 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3939 */
b15136e9 3940void complete(struct completion *x)
1da177e4
LT
3941{
3942 unsigned long flags;
3943
3944 spin_lock_irqsave(&x->wait.lock, flags);
3945 x->done++;
d9514f6c 3946 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3947 spin_unlock_irqrestore(&x->wait.lock, flags);
3948}
3949EXPORT_SYMBOL(complete);
3950
65eb3dc6
KD
3951/**
3952 * complete_all: - signals all threads waiting on this completion
3953 * @x: holds the state of this particular completion
3954 *
3955 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3956 *
3957 * It may be assumed that this function implies a write memory barrier before
3958 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3959 */
b15136e9 3960void complete_all(struct completion *x)
1da177e4
LT
3961{
3962 unsigned long flags;
3963
3964 spin_lock_irqsave(&x->wait.lock, flags);
3965 x->done += UINT_MAX/2;
d9514f6c 3966 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3967 spin_unlock_irqrestore(&x->wait.lock, flags);
3968}
3969EXPORT_SYMBOL(complete_all);
3970
8cbbe86d
AK
3971static inline long __sched
3972do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3973{
1da177e4
LT
3974 if (!x->done) {
3975 DECLARE_WAITQUEUE(wait, current);
3976
3977 wait.flags |= WQ_FLAG_EXCLUSIVE;
3978 __add_wait_queue_tail(&x->wait, &wait);
3979 do {
94d3d824 3980 if (signal_pending_state(state, current)) {
ea71a546
ON
3981 timeout = -ERESTARTSYS;
3982 break;
8cbbe86d
AK
3983 }
3984 __set_current_state(state);
1da177e4
LT
3985 spin_unlock_irq(&x->wait.lock);
3986 timeout = schedule_timeout(timeout);
3987 spin_lock_irq(&x->wait.lock);
ea71a546 3988 } while (!x->done && timeout);
1da177e4 3989 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3990 if (!x->done)
3991 return timeout;
1da177e4
LT
3992 }
3993 x->done--;
ea71a546 3994 return timeout ?: 1;
1da177e4 3995}
1da177e4 3996
8cbbe86d
AK
3997static long __sched
3998wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3999{
1da177e4
LT
4000 might_sleep();
4001
4002 spin_lock_irq(&x->wait.lock);
8cbbe86d 4003 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4004 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4005 return timeout;
4006}
1da177e4 4007
65eb3dc6
KD
4008/**
4009 * wait_for_completion: - waits for completion of a task
4010 * @x: holds the state of this particular completion
4011 *
4012 * This waits to be signaled for completion of a specific task. It is NOT
4013 * interruptible and there is no timeout.
4014 *
4015 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4016 * and interrupt capability. Also see complete().
4017 */
b15136e9 4018void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4019{
4020 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4021}
8cbbe86d 4022EXPORT_SYMBOL(wait_for_completion);
1da177e4 4023
65eb3dc6
KD
4024/**
4025 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4026 * @x: holds the state of this particular completion
4027 * @timeout: timeout value in jiffies
4028 *
4029 * This waits for either a completion of a specific task to be signaled or for a
4030 * specified timeout to expire. The timeout is in jiffies. It is not
4031 * interruptible.
4032 */
b15136e9 4033unsigned long __sched
8cbbe86d 4034wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4035{
8cbbe86d 4036 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4037}
8cbbe86d 4038EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4039
65eb3dc6
KD
4040/**
4041 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4042 * @x: holds the state of this particular completion
4043 *
4044 * This waits for completion of a specific task to be signaled. It is
4045 * interruptible.
4046 */
8cbbe86d 4047int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4048{
51e97990
AK
4049 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4050 if (t == -ERESTARTSYS)
4051 return t;
4052 return 0;
0fec171c 4053}
8cbbe86d 4054EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4055
65eb3dc6
KD
4056/**
4057 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4058 * @x: holds the state of this particular completion
4059 * @timeout: timeout value in jiffies
4060 *
4061 * This waits for either a completion of a specific task to be signaled or for a
4062 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4063 */
b15136e9 4064unsigned long __sched
8cbbe86d
AK
4065wait_for_completion_interruptible_timeout(struct completion *x,
4066 unsigned long timeout)
0fec171c 4067{
8cbbe86d 4068 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4069}
8cbbe86d 4070EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4071
65eb3dc6
KD
4072/**
4073 * wait_for_completion_killable: - waits for completion of a task (killable)
4074 * @x: holds the state of this particular completion
4075 *
4076 * This waits to be signaled for completion of a specific task. It can be
4077 * interrupted by a kill signal.
4078 */
009e577e
MW
4079int __sched wait_for_completion_killable(struct completion *x)
4080{
4081 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4082 if (t == -ERESTARTSYS)
4083 return t;
4084 return 0;
4085}
4086EXPORT_SYMBOL(wait_for_completion_killable);
4087
be4de352
DC
4088/**
4089 * try_wait_for_completion - try to decrement a completion without blocking
4090 * @x: completion structure
4091 *
4092 * Returns: 0 if a decrement cannot be done without blocking
4093 * 1 if a decrement succeeded.
4094 *
4095 * If a completion is being used as a counting completion,
4096 * attempt to decrement the counter without blocking. This
4097 * enables us to avoid waiting if the resource the completion
4098 * is protecting is not available.
4099 */
4100bool try_wait_for_completion(struct completion *x)
4101{
7539a3b3 4102 unsigned long flags;
be4de352
DC
4103 int ret = 1;
4104
7539a3b3 4105 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4106 if (!x->done)
4107 ret = 0;
4108 else
4109 x->done--;
7539a3b3 4110 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4111 return ret;
4112}
4113EXPORT_SYMBOL(try_wait_for_completion);
4114
4115/**
4116 * completion_done - Test to see if a completion has any waiters
4117 * @x: completion structure
4118 *
4119 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4120 * 1 if there are no waiters.
4121 *
4122 */
4123bool completion_done(struct completion *x)
4124{
7539a3b3 4125 unsigned long flags;
be4de352
DC
4126 int ret = 1;
4127
7539a3b3 4128 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4129 if (!x->done)
4130 ret = 0;
7539a3b3 4131 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4132 return ret;
4133}
4134EXPORT_SYMBOL(completion_done);
4135
8cbbe86d
AK
4136static long __sched
4137sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4138{
0fec171c
IM
4139 unsigned long flags;
4140 wait_queue_t wait;
4141
4142 init_waitqueue_entry(&wait, current);
1da177e4 4143
8cbbe86d 4144 __set_current_state(state);
1da177e4 4145
8cbbe86d
AK
4146 spin_lock_irqsave(&q->lock, flags);
4147 __add_wait_queue(q, &wait);
4148 spin_unlock(&q->lock);
4149 timeout = schedule_timeout(timeout);
4150 spin_lock_irq(&q->lock);
4151 __remove_wait_queue(q, &wait);
4152 spin_unlock_irqrestore(&q->lock, flags);
4153
4154 return timeout;
4155}
4156
4157void __sched interruptible_sleep_on(wait_queue_head_t *q)
4158{
4159 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4160}
1da177e4
LT
4161EXPORT_SYMBOL(interruptible_sleep_on);
4162
0fec171c 4163long __sched
95cdf3b7 4164interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4165{
8cbbe86d 4166 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4167}
1da177e4
LT
4168EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4169
0fec171c 4170void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4171{
8cbbe86d 4172 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4173}
1da177e4
LT
4174EXPORT_SYMBOL(sleep_on);
4175
0fec171c 4176long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4177{
8cbbe86d 4178 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4179}
1da177e4
LT
4180EXPORT_SYMBOL(sleep_on_timeout);
4181
b29739f9
IM
4182#ifdef CONFIG_RT_MUTEXES
4183
4184/*
4185 * rt_mutex_setprio - set the current priority of a task
4186 * @p: task
4187 * @prio: prio value (kernel-internal form)
4188 *
4189 * This function changes the 'effective' priority of a task. It does
4190 * not touch ->normal_prio like __setscheduler().
4191 *
4192 * Used by the rt_mutex code to implement priority inheritance logic.
4193 */
36c8b586 4194void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4195{
4196 unsigned long flags;
83b699ed 4197 int oldprio, on_rq, running;
70b97a7f 4198 struct rq *rq;
83ab0aa0 4199 const struct sched_class *prev_class;
b29739f9
IM
4200
4201 BUG_ON(prio < 0 || prio > MAX_PRIO);
4202
4203 rq = task_rq_lock(p, &flags);
4204
d5f9f942 4205 oldprio = p->prio;
83ab0aa0 4206 prev_class = p->sched_class;
dd41f596 4207 on_rq = p->se.on_rq;
051a1d1a 4208 running = task_current(rq, p);
0e1f3483 4209 if (on_rq)
69be72c1 4210 dequeue_task(rq, p, 0);
0e1f3483
HS
4211 if (running)
4212 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4213
4214 if (rt_prio(prio))
4215 p->sched_class = &rt_sched_class;
4216 else
4217 p->sched_class = &fair_sched_class;
4218
b29739f9
IM
4219 p->prio = prio;
4220
0e1f3483
HS
4221 if (running)
4222 p->sched_class->set_curr_task(rq);
dd41f596 4223 if (on_rq) {
60db48ca 4224 enqueue_task(rq, p, 0, oldprio < prio);
cb469845
SR
4225
4226 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4227 }
4228 task_rq_unlock(rq, &flags);
4229}
4230
4231#endif
4232
36c8b586 4233void set_user_nice(struct task_struct *p, long nice)
1da177e4 4234{
dd41f596 4235 int old_prio, delta, on_rq;
1da177e4 4236 unsigned long flags;
70b97a7f 4237 struct rq *rq;
1da177e4
LT
4238
4239 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4240 return;
4241 /*
4242 * We have to be careful, if called from sys_setpriority(),
4243 * the task might be in the middle of scheduling on another CPU.
4244 */
4245 rq = task_rq_lock(p, &flags);
4246 /*
4247 * The RT priorities are set via sched_setscheduler(), but we still
4248 * allow the 'normal' nice value to be set - but as expected
4249 * it wont have any effect on scheduling until the task is
dd41f596 4250 * SCHED_FIFO/SCHED_RR:
1da177e4 4251 */
e05606d3 4252 if (task_has_rt_policy(p)) {
1da177e4
LT
4253 p->static_prio = NICE_TO_PRIO(nice);
4254 goto out_unlock;
4255 }
dd41f596 4256 on_rq = p->se.on_rq;
c09595f6 4257 if (on_rq)
69be72c1 4258 dequeue_task(rq, p, 0);
1da177e4 4259
1da177e4 4260 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4261 set_load_weight(p);
b29739f9
IM
4262 old_prio = p->prio;
4263 p->prio = effective_prio(p);
4264 delta = p->prio - old_prio;
1da177e4 4265
dd41f596 4266 if (on_rq) {
ea87bb78 4267 enqueue_task(rq, p, 0, false);
1da177e4 4268 /*
d5f9f942
AM
4269 * If the task increased its priority or is running and
4270 * lowered its priority, then reschedule its CPU:
1da177e4 4271 */
d5f9f942 4272 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4273 resched_task(rq->curr);
4274 }
4275out_unlock:
4276 task_rq_unlock(rq, &flags);
4277}
1da177e4
LT
4278EXPORT_SYMBOL(set_user_nice);
4279
e43379f1
MM
4280/*
4281 * can_nice - check if a task can reduce its nice value
4282 * @p: task
4283 * @nice: nice value
4284 */
36c8b586 4285int can_nice(const struct task_struct *p, const int nice)
e43379f1 4286{
024f4747
MM
4287 /* convert nice value [19,-20] to rlimit style value [1,40] */
4288 int nice_rlim = 20 - nice;
48f24c4d 4289
78d7d407 4290 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4291 capable(CAP_SYS_NICE));
4292}
4293
1da177e4
LT
4294#ifdef __ARCH_WANT_SYS_NICE
4295
4296/*
4297 * sys_nice - change the priority of the current process.
4298 * @increment: priority increment
4299 *
4300 * sys_setpriority is a more generic, but much slower function that
4301 * does similar things.
4302 */
5add95d4 4303SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4304{
48f24c4d 4305 long nice, retval;
1da177e4
LT
4306
4307 /*
4308 * Setpriority might change our priority at the same moment.
4309 * We don't have to worry. Conceptually one call occurs first
4310 * and we have a single winner.
4311 */
e43379f1
MM
4312 if (increment < -40)
4313 increment = -40;
1da177e4
LT
4314 if (increment > 40)
4315 increment = 40;
4316
2b8f836f 4317 nice = TASK_NICE(current) + increment;
1da177e4
LT
4318 if (nice < -20)
4319 nice = -20;
4320 if (nice > 19)
4321 nice = 19;
4322
e43379f1
MM
4323 if (increment < 0 && !can_nice(current, nice))
4324 return -EPERM;
4325
1da177e4
LT
4326 retval = security_task_setnice(current, nice);
4327 if (retval)
4328 return retval;
4329
4330 set_user_nice(current, nice);
4331 return 0;
4332}
4333
4334#endif
4335
4336/**
4337 * task_prio - return the priority value of a given task.
4338 * @p: the task in question.
4339 *
4340 * This is the priority value as seen by users in /proc.
4341 * RT tasks are offset by -200. Normal tasks are centered
4342 * around 0, value goes from -16 to +15.
4343 */
36c8b586 4344int task_prio(const struct task_struct *p)
1da177e4
LT
4345{
4346 return p->prio - MAX_RT_PRIO;
4347}
4348
4349/**
4350 * task_nice - return the nice value of a given task.
4351 * @p: the task in question.
4352 */
36c8b586 4353int task_nice(const struct task_struct *p)
1da177e4
LT
4354{
4355 return TASK_NICE(p);
4356}
150d8bed 4357EXPORT_SYMBOL(task_nice);
1da177e4
LT
4358
4359/**
4360 * idle_cpu - is a given cpu idle currently?
4361 * @cpu: the processor in question.
4362 */
4363int idle_cpu(int cpu)
4364{
4365 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4366}
4367
1da177e4
LT
4368/**
4369 * idle_task - return the idle task for a given cpu.
4370 * @cpu: the processor in question.
4371 */
36c8b586 4372struct task_struct *idle_task(int cpu)
1da177e4
LT
4373{
4374 return cpu_rq(cpu)->idle;
4375}
4376
4377/**
4378 * find_process_by_pid - find a process with a matching PID value.
4379 * @pid: the pid in question.
4380 */
a9957449 4381static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4382{
228ebcbe 4383 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4384}
4385
4386/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4387static void
4388__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4389{
dd41f596 4390 BUG_ON(p->se.on_rq);
48f24c4d 4391
1da177e4
LT
4392 p->policy = policy;
4393 p->rt_priority = prio;
b29739f9
IM
4394 p->normal_prio = normal_prio(p);
4395 /* we are holding p->pi_lock already */
4396 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4397 if (rt_prio(p->prio))
4398 p->sched_class = &rt_sched_class;
4399 else
4400 p->sched_class = &fair_sched_class;
2dd73a4f 4401 set_load_weight(p);
1da177e4
LT
4402}
4403
c69e8d9c
DH
4404/*
4405 * check the target process has a UID that matches the current process's
4406 */
4407static bool check_same_owner(struct task_struct *p)
4408{
4409 const struct cred *cred = current_cred(), *pcred;
4410 bool match;
4411
4412 rcu_read_lock();
4413 pcred = __task_cred(p);
4414 match = (cred->euid == pcred->euid ||
4415 cred->euid == pcred->uid);
4416 rcu_read_unlock();
4417 return match;
4418}
4419
961ccddd
RR
4420static int __sched_setscheduler(struct task_struct *p, int policy,
4421 struct sched_param *param, bool user)
1da177e4 4422{
83b699ed 4423 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4424 unsigned long flags;
83ab0aa0 4425 const struct sched_class *prev_class;
70b97a7f 4426 struct rq *rq;
ca94c442 4427 int reset_on_fork;
1da177e4 4428
66e5393a
SR
4429 /* may grab non-irq protected spin_locks */
4430 BUG_ON(in_interrupt());
1da177e4
LT
4431recheck:
4432 /* double check policy once rq lock held */
ca94c442
LP
4433 if (policy < 0) {
4434 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4435 policy = oldpolicy = p->policy;
ca94c442
LP
4436 } else {
4437 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4438 policy &= ~SCHED_RESET_ON_FORK;
4439
4440 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4441 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4442 policy != SCHED_IDLE)
4443 return -EINVAL;
4444 }
4445
1da177e4
LT
4446 /*
4447 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4448 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4449 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4450 */
4451 if (param->sched_priority < 0 ||
95cdf3b7 4452 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4453 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4454 return -EINVAL;
e05606d3 4455 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4456 return -EINVAL;
4457
37e4ab3f
OC
4458 /*
4459 * Allow unprivileged RT tasks to decrease priority:
4460 */
961ccddd 4461 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4462 if (rt_policy(policy)) {
8dc3e909 4463 unsigned long rlim_rtprio;
8dc3e909
ON
4464
4465 if (!lock_task_sighand(p, &flags))
4466 return -ESRCH;
78d7d407 4467 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4468 unlock_task_sighand(p, &flags);
4469
4470 /* can't set/change the rt policy */
4471 if (policy != p->policy && !rlim_rtprio)
4472 return -EPERM;
4473
4474 /* can't increase priority */
4475 if (param->sched_priority > p->rt_priority &&
4476 param->sched_priority > rlim_rtprio)
4477 return -EPERM;
4478 }
dd41f596
IM
4479 /*
4480 * Like positive nice levels, dont allow tasks to
4481 * move out of SCHED_IDLE either:
4482 */
4483 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4484 return -EPERM;
5fe1d75f 4485
37e4ab3f 4486 /* can't change other user's priorities */
c69e8d9c 4487 if (!check_same_owner(p))
37e4ab3f 4488 return -EPERM;
ca94c442
LP
4489
4490 /* Normal users shall not reset the sched_reset_on_fork flag */
4491 if (p->sched_reset_on_fork && !reset_on_fork)
4492 return -EPERM;
37e4ab3f 4493 }
1da177e4 4494
725aad24 4495 if (user) {
b68aa230 4496#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4497 /*
4498 * Do not allow realtime tasks into groups that have no runtime
4499 * assigned.
4500 */
9a7e0b18
PZ
4501 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4502 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4503 return -EPERM;
b68aa230
PZ
4504#endif
4505
725aad24
JF
4506 retval = security_task_setscheduler(p, policy, param);
4507 if (retval)
4508 return retval;
4509 }
4510
b29739f9
IM
4511 /*
4512 * make sure no PI-waiters arrive (or leave) while we are
4513 * changing the priority of the task:
4514 */
1d615482 4515 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4516 /*
4517 * To be able to change p->policy safely, the apropriate
4518 * runqueue lock must be held.
4519 */
b29739f9 4520 rq = __task_rq_lock(p);
1da177e4
LT
4521 /* recheck policy now with rq lock held */
4522 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4523 policy = oldpolicy = -1;
b29739f9 4524 __task_rq_unlock(rq);
1d615482 4525 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4526 goto recheck;
4527 }
dd41f596 4528 on_rq = p->se.on_rq;
051a1d1a 4529 running = task_current(rq, p);
0e1f3483 4530 if (on_rq)
2e1cb74a 4531 deactivate_task(rq, p, 0);
0e1f3483
HS
4532 if (running)
4533 p->sched_class->put_prev_task(rq, p);
f6b53205 4534
ca94c442
LP
4535 p->sched_reset_on_fork = reset_on_fork;
4536
1da177e4 4537 oldprio = p->prio;
83ab0aa0 4538 prev_class = p->sched_class;
dd41f596 4539 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4540
0e1f3483
HS
4541 if (running)
4542 p->sched_class->set_curr_task(rq);
dd41f596
IM
4543 if (on_rq) {
4544 activate_task(rq, p, 0);
cb469845
SR
4545
4546 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4547 }
b29739f9 4548 __task_rq_unlock(rq);
1d615482 4549 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4550
95e02ca9
TG
4551 rt_mutex_adjust_pi(p);
4552
1da177e4
LT
4553 return 0;
4554}
961ccddd
RR
4555
4556/**
4557 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4558 * @p: the task in question.
4559 * @policy: new policy.
4560 * @param: structure containing the new RT priority.
4561 *
4562 * NOTE that the task may be already dead.
4563 */
4564int sched_setscheduler(struct task_struct *p, int policy,
4565 struct sched_param *param)
4566{
4567 return __sched_setscheduler(p, policy, param, true);
4568}
1da177e4
LT
4569EXPORT_SYMBOL_GPL(sched_setscheduler);
4570
961ccddd
RR
4571/**
4572 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4573 * @p: the task in question.
4574 * @policy: new policy.
4575 * @param: structure containing the new RT priority.
4576 *
4577 * Just like sched_setscheduler, only don't bother checking if the
4578 * current context has permission. For example, this is needed in
4579 * stop_machine(): we create temporary high priority worker threads,
4580 * but our caller might not have that capability.
4581 */
4582int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4583 struct sched_param *param)
4584{
4585 return __sched_setscheduler(p, policy, param, false);
4586}
4587
95cdf3b7
IM
4588static int
4589do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4590{
1da177e4
LT
4591 struct sched_param lparam;
4592 struct task_struct *p;
36c8b586 4593 int retval;
1da177e4
LT
4594
4595 if (!param || pid < 0)
4596 return -EINVAL;
4597 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4598 return -EFAULT;
5fe1d75f
ON
4599
4600 rcu_read_lock();
4601 retval = -ESRCH;
1da177e4 4602 p = find_process_by_pid(pid);
5fe1d75f
ON
4603 if (p != NULL)
4604 retval = sched_setscheduler(p, policy, &lparam);
4605 rcu_read_unlock();
36c8b586 4606
1da177e4
LT
4607 return retval;
4608}
4609
4610/**
4611 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4612 * @pid: the pid in question.
4613 * @policy: new policy.
4614 * @param: structure containing the new RT priority.
4615 */
5add95d4
HC
4616SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4617 struct sched_param __user *, param)
1da177e4 4618{
c21761f1
JB
4619 /* negative values for policy are not valid */
4620 if (policy < 0)
4621 return -EINVAL;
4622
1da177e4
LT
4623 return do_sched_setscheduler(pid, policy, param);
4624}
4625
4626/**
4627 * sys_sched_setparam - set/change the RT priority of a thread
4628 * @pid: the pid in question.
4629 * @param: structure containing the new RT priority.
4630 */
5add95d4 4631SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4632{
4633 return do_sched_setscheduler(pid, -1, param);
4634}
4635
4636/**
4637 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4638 * @pid: the pid in question.
4639 */
5add95d4 4640SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4641{
36c8b586 4642 struct task_struct *p;
3a5c359a 4643 int retval;
1da177e4
LT
4644
4645 if (pid < 0)
3a5c359a 4646 return -EINVAL;
1da177e4
LT
4647
4648 retval = -ESRCH;
5fe85be0 4649 rcu_read_lock();
1da177e4
LT
4650 p = find_process_by_pid(pid);
4651 if (p) {
4652 retval = security_task_getscheduler(p);
4653 if (!retval)
ca94c442
LP
4654 retval = p->policy
4655 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4656 }
5fe85be0 4657 rcu_read_unlock();
1da177e4
LT
4658 return retval;
4659}
4660
4661/**
ca94c442 4662 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4663 * @pid: the pid in question.
4664 * @param: structure containing the RT priority.
4665 */
5add95d4 4666SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4667{
4668 struct sched_param lp;
36c8b586 4669 struct task_struct *p;
3a5c359a 4670 int retval;
1da177e4
LT
4671
4672 if (!param || pid < 0)
3a5c359a 4673 return -EINVAL;
1da177e4 4674
5fe85be0 4675 rcu_read_lock();
1da177e4
LT
4676 p = find_process_by_pid(pid);
4677 retval = -ESRCH;
4678 if (!p)
4679 goto out_unlock;
4680
4681 retval = security_task_getscheduler(p);
4682 if (retval)
4683 goto out_unlock;
4684
4685 lp.sched_priority = p->rt_priority;
5fe85be0 4686 rcu_read_unlock();
1da177e4
LT
4687
4688 /*
4689 * This one might sleep, we cannot do it with a spinlock held ...
4690 */
4691 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4692
1da177e4
LT
4693 return retval;
4694
4695out_unlock:
5fe85be0 4696 rcu_read_unlock();
1da177e4
LT
4697 return retval;
4698}
4699
96f874e2 4700long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4701{
5a16f3d3 4702 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4703 struct task_struct *p;
4704 int retval;
1da177e4 4705
95402b38 4706 get_online_cpus();
23f5d142 4707 rcu_read_lock();
1da177e4
LT
4708
4709 p = find_process_by_pid(pid);
4710 if (!p) {
23f5d142 4711 rcu_read_unlock();
95402b38 4712 put_online_cpus();
1da177e4
LT
4713 return -ESRCH;
4714 }
4715
23f5d142 4716 /* Prevent p going away */
1da177e4 4717 get_task_struct(p);
23f5d142 4718 rcu_read_unlock();
1da177e4 4719
5a16f3d3
RR
4720 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4721 retval = -ENOMEM;
4722 goto out_put_task;
4723 }
4724 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4725 retval = -ENOMEM;
4726 goto out_free_cpus_allowed;
4727 }
1da177e4 4728 retval = -EPERM;
c69e8d9c 4729 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4730 goto out_unlock;
4731
e7834f8f
DQ
4732 retval = security_task_setscheduler(p, 0, NULL);
4733 if (retval)
4734 goto out_unlock;
4735
5a16f3d3
RR
4736 cpuset_cpus_allowed(p, cpus_allowed);
4737 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4738 again:
5a16f3d3 4739 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4740
8707d8b8 4741 if (!retval) {
5a16f3d3
RR
4742 cpuset_cpus_allowed(p, cpus_allowed);
4743 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4744 /*
4745 * We must have raced with a concurrent cpuset
4746 * update. Just reset the cpus_allowed to the
4747 * cpuset's cpus_allowed
4748 */
5a16f3d3 4749 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4750 goto again;
4751 }
4752 }
1da177e4 4753out_unlock:
5a16f3d3
RR
4754 free_cpumask_var(new_mask);
4755out_free_cpus_allowed:
4756 free_cpumask_var(cpus_allowed);
4757out_put_task:
1da177e4 4758 put_task_struct(p);
95402b38 4759 put_online_cpus();
1da177e4
LT
4760 return retval;
4761}
4762
4763static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4764 struct cpumask *new_mask)
1da177e4 4765{
96f874e2
RR
4766 if (len < cpumask_size())
4767 cpumask_clear(new_mask);
4768 else if (len > cpumask_size())
4769 len = cpumask_size();
4770
1da177e4
LT
4771 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4772}
4773
4774/**
4775 * sys_sched_setaffinity - set the cpu affinity of a process
4776 * @pid: pid of the process
4777 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4778 * @user_mask_ptr: user-space pointer to the new cpu mask
4779 */
5add95d4
HC
4780SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4781 unsigned long __user *, user_mask_ptr)
1da177e4 4782{
5a16f3d3 4783 cpumask_var_t new_mask;
1da177e4
LT
4784 int retval;
4785
5a16f3d3
RR
4786 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4787 return -ENOMEM;
1da177e4 4788
5a16f3d3
RR
4789 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4790 if (retval == 0)
4791 retval = sched_setaffinity(pid, new_mask);
4792 free_cpumask_var(new_mask);
4793 return retval;
1da177e4
LT
4794}
4795
96f874e2 4796long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4797{
36c8b586 4798 struct task_struct *p;
31605683
TG
4799 unsigned long flags;
4800 struct rq *rq;
1da177e4 4801 int retval;
1da177e4 4802
95402b38 4803 get_online_cpus();
23f5d142 4804 rcu_read_lock();
1da177e4
LT
4805
4806 retval = -ESRCH;
4807 p = find_process_by_pid(pid);
4808 if (!p)
4809 goto out_unlock;
4810
e7834f8f
DQ
4811 retval = security_task_getscheduler(p);
4812 if (retval)
4813 goto out_unlock;
4814
31605683 4815 rq = task_rq_lock(p, &flags);
96f874e2 4816 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4817 task_rq_unlock(rq, &flags);
1da177e4
LT
4818
4819out_unlock:
23f5d142 4820 rcu_read_unlock();
95402b38 4821 put_online_cpus();
1da177e4 4822
9531b62f 4823 return retval;
1da177e4
LT
4824}
4825
4826/**
4827 * sys_sched_getaffinity - get the cpu affinity of a process
4828 * @pid: pid of the process
4829 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4830 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4831 */
5add95d4
HC
4832SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4833 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4834{
4835 int ret;
f17c8607 4836 cpumask_var_t mask;
1da177e4 4837
cd3d8031
KM
4838 if (len < nr_cpu_ids)
4839 return -EINVAL;
4840 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4841 return -EINVAL;
4842
f17c8607
RR
4843 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4844 return -ENOMEM;
1da177e4 4845
f17c8607
RR
4846 ret = sched_getaffinity(pid, mask);
4847 if (ret == 0) {
8bc037fb 4848 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4849
4850 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4851 ret = -EFAULT;
4852 else
cd3d8031 4853 ret = retlen;
f17c8607
RR
4854 }
4855 free_cpumask_var(mask);
1da177e4 4856
f17c8607 4857 return ret;
1da177e4
LT
4858}
4859
4860/**
4861 * sys_sched_yield - yield the current processor to other threads.
4862 *
dd41f596
IM
4863 * This function yields the current CPU to other tasks. If there are no
4864 * other threads running on this CPU then this function will return.
1da177e4 4865 */
5add95d4 4866SYSCALL_DEFINE0(sched_yield)
1da177e4 4867{
70b97a7f 4868 struct rq *rq = this_rq_lock();
1da177e4 4869
2d72376b 4870 schedstat_inc(rq, yld_count);
4530d7ab 4871 current->sched_class->yield_task(rq);
1da177e4
LT
4872
4873 /*
4874 * Since we are going to call schedule() anyway, there's
4875 * no need to preempt or enable interrupts:
4876 */
4877 __release(rq->lock);
8a25d5de 4878 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4879 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4880 preempt_enable_no_resched();
4881
4882 schedule();
4883
4884 return 0;
4885}
4886
d86ee480
PZ
4887static inline int should_resched(void)
4888{
4889 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4890}
4891
e7b38404 4892static void __cond_resched(void)
1da177e4 4893{
e7aaaa69
FW
4894 add_preempt_count(PREEMPT_ACTIVE);
4895 schedule();
4896 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4897}
4898
02b67cc3 4899int __sched _cond_resched(void)
1da177e4 4900{
d86ee480 4901 if (should_resched()) {
1da177e4
LT
4902 __cond_resched();
4903 return 1;
4904 }
4905 return 0;
4906}
02b67cc3 4907EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4908
4909/*
613afbf8 4910 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4911 * call schedule, and on return reacquire the lock.
4912 *
41a2d6cf 4913 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4914 * operations here to prevent schedule() from being called twice (once via
4915 * spin_unlock(), once by hand).
4916 */
613afbf8 4917int __cond_resched_lock(spinlock_t *lock)
1da177e4 4918{
d86ee480 4919 int resched = should_resched();
6df3cecb
JK
4920 int ret = 0;
4921
f607c668
PZ
4922 lockdep_assert_held(lock);
4923
95c354fe 4924 if (spin_needbreak(lock) || resched) {
1da177e4 4925 spin_unlock(lock);
d86ee480 4926 if (resched)
95c354fe
NP
4927 __cond_resched();
4928 else
4929 cpu_relax();
6df3cecb 4930 ret = 1;
1da177e4 4931 spin_lock(lock);
1da177e4 4932 }
6df3cecb 4933 return ret;
1da177e4 4934}
613afbf8 4935EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4936
613afbf8 4937int __sched __cond_resched_softirq(void)
1da177e4
LT
4938{
4939 BUG_ON(!in_softirq());
4940
d86ee480 4941 if (should_resched()) {
98d82567 4942 local_bh_enable();
1da177e4
LT
4943 __cond_resched();
4944 local_bh_disable();
4945 return 1;
4946 }
4947 return 0;
4948}
613afbf8 4949EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4950
1da177e4
LT
4951/**
4952 * yield - yield the current processor to other threads.
4953 *
72fd4a35 4954 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4955 * thread runnable and calls sys_sched_yield().
4956 */
4957void __sched yield(void)
4958{
4959 set_current_state(TASK_RUNNING);
4960 sys_sched_yield();
4961}
1da177e4
LT
4962EXPORT_SYMBOL(yield);
4963
4964/*
41a2d6cf 4965 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4966 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4967 */
4968void __sched io_schedule(void)
4969{
54d35f29 4970 struct rq *rq = raw_rq();
1da177e4 4971
0ff92245 4972 delayacct_blkio_start();
1da177e4 4973 atomic_inc(&rq->nr_iowait);
8f0dfc34 4974 current->in_iowait = 1;
1da177e4 4975 schedule();
8f0dfc34 4976 current->in_iowait = 0;
1da177e4 4977 atomic_dec(&rq->nr_iowait);
0ff92245 4978 delayacct_blkio_end();
1da177e4 4979}
1da177e4
LT
4980EXPORT_SYMBOL(io_schedule);
4981
4982long __sched io_schedule_timeout(long timeout)
4983{
54d35f29 4984 struct rq *rq = raw_rq();
1da177e4
LT
4985 long ret;
4986
0ff92245 4987 delayacct_blkio_start();
1da177e4 4988 atomic_inc(&rq->nr_iowait);
8f0dfc34 4989 current->in_iowait = 1;
1da177e4 4990 ret = schedule_timeout(timeout);
8f0dfc34 4991 current->in_iowait = 0;
1da177e4 4992 atomic_dec(&rq->nr_iowait);
0ff92245 4993 delayacct_blkio_end();
1da177e4
LT
4994 return ret;
4995}
4996
4997/**
4998 * sys_sched_get_priority_max - return maximum RT priority.
4999 * @policy: scheduling class.
5000 *
5001 * this syscall returns the maximum rt_priority that can be used
5002 * by a given scheduling class.
5003 */
5add95d4 5004SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5005{
5006 int ret = -EINVAL;
5007
5008 switch (policy) {
5009 case SCHED_FIFO:
5010 case SCHED_RR:
5011 ret = MAX_USER_RT_PRIO-1;
5012 break;
5013 case SCHED_NORMAL:
b0a9499c 5014 case SCHED_BATCH:
dd41f596 5015 case SCHED_IDLE:
1da177e4
LT
5016 ret = 0;
5017 break;
5018 }
5019 return ret;
5020}
5021
5022/**
5023 * sys_sched_get_priority_min - return minimum RT priority.
5024 * @policy: scheduling class.
5025 *
5026 * this syscall returns the minimum rt_priority that can be used
5027 * by a given scheduling class.
5028 */
5add95d4 5029SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5030{
5031 int ret = -EINVAL;
5032
5033 switch (policy) {
5034 case SCHED_FIFO:
5035 case SCHED_RR:
5036 ret = 1;
5037 break;
5038 case SCHED_NORMAL:
b0a9499c 5039 case SCHED_BATCH:
dd41f596 5040 case SCHED_IDLE:
1da177e4
LT
5041 ret = 0;
5042 }
5043 return ret;
5044}
5045
5046/**
5047 * sys_sched_rr_get_interval - return the default timeslice of a process.
5048 * @pid: pid of the process.
5049 * @interval: userspace pointer to the timeslice value.
5050 *
5051 * this syscall writes the default timeslice value of a given process
5052 * into the user-space timespec buffer. A value of '0' means infinity.
5053 */
17da2bd9 5054SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5055 struct timespec __user *, interval)
1da177e4 5056{
36c8b586 5057 struct task_struct *p;
a4ec24b4 5058 unsigned int time_slice;
dba091b9
TG
5059 unsigned long flags;
5060 struct rq *rq;
3a5c359a 5061 int retval;
1da177e4 5062 struct timespec t;
1da177e4
LT
5063
5064 if (pid < 0)
3a5c359a 5065 return -EINVAL;
1da177e4
LT
5066
5067 retval = -ESRCH;
1a551ae7 5068 rcu_read_lock();
1da177e4
LT
5069 p = find_process_by_pid(pid);
5070 if (!p)
5071 goto out_unlock;
5072
5073 retval = security_task_getscheduler(p);
5074 if (retval)
5075 goto out_unlock;
5076
dba091b9
TG
5077 rq = task_rq_lock(p, &flags);
5078 time_slice = p->sched_class->get_rr_interval(rq, p);
5079 task_rq_unlock(rq, &flags);
a4ec24b4 5080
1a551ae7 5081 rcu_read_unlock();
a4ec24b4 5082 jiffies_to_timespec(time_slice, &t);
1da177e4 5083 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5084 return retval;
3a5c359a 5085
1da177e4 5086out_unlock:
1a551ae7 5087 rcu_read_unlock();
1da177e4
LT
5088 return retval;
5089}
5090
7c731e0a 5091static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5092
82a1fcb9 5093void sched_show_task(struct task_struct *p)
1da177e4 5094{
1da177e4 5095 unsigned long free = 0;
36c8b586 5096 unsigned state;
1da177e4 5097
1da177e4 5098 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5099 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5100 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5101#if BITS_PER_LONG == 32
1da177e4 5102 if (state == TASK_RUNNING)
3df0fc5b 5103 printk(KERN_CONT " running ");
1da177e4 5104 else
3df0fc5b 5105 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5106#else
5107 if (state == TASK_RUNNING)
3df0fc5b 5108 printk(KERN_CONT " running task ");
1da177e4 5109 else
3df0fc5b 5110 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5111#endif
5112#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5113 free = stack_not_used(p);
1da177e4 5114#endif
3df0fc5b 5115 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5116 task_pid_nr(p), task_pid_nr(p->real_parent),
5117 (unsigned long)task_thread_info(p)->flags);
1da177e4 5118
5fb5e6de 5119 show_stack(p, NULL);
1da177e4
LT
5120}
5121
e59e2ae2 5122void show_state_filter(unsigned long state_filter)
1da177e4 5123{
36c8b586 5124 struct task_struct *g, *p;
1da177e4 5125
4bd77321 5126#if BITS_PER_LONG == 32
3df0fc5b
PZ
5127 printk(KERN_INFO
5128 " task PC stack pid father\n");
1da177e4 5129#else
3df0fc5b
PZ
5130 printk(KERN_INFO
5131 " task PC stack pid father\n");
1da177e4
LT
5132#endif
5133 read_lock(&tasklist_lock);
5134 do_each_thread(g, p) {
5135 /*
5136 * reset the NMI-timeout, listing all files on a slow
5137 * console might take alot of time:
5138 */
5139 touch_nmi_watchdog();
39bc89fd 5140 if (!state_filter || (p->state & state_filter))
82a1fcb9 5141 sched_show_task(p);
1da177e4
LT
5142 } while_each_thread(g, p);
5143
04c9167f
JF
5144 touch_all_softlockup_watchdogs();
5145
dd41f596
IM
5146#ifdef CONFIG_SCHED_DEBUG
5147 sysrq_sched_debug_show();
5148#endif
1da177e4 5149 read_unlock(&tasklist_lock);
e59e2ae2
IM
5150 /*
5151 * Only show locks if all tasks are dumped:
5152 */
93335a21 5153 if (!state_filter)
e59e2ae2 5154 debug_show_all_locks();
1da177e4
LT
5155}
5156
1df21055
IM
5157void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5158{
dd41f596 5159 idle->sched_class = &idle_sched_class;
1df21055
IM
5160}
5161
f340c0d1
IM
5162/**
5163 * init_idle - set up an idle thread for a given CPU
5164 * @idle: task in question
5165 * @cpu: cpu the idle task belongs to
5166 *
5167 * NOTE: this function does not set the idle thread's NEED_RESCHED
5168 * flag, to make booting more robust.
5169 */
5c1e1767 5170void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5171{
70b97a7f 5172 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5173 unsigned long flags;
5174
05fa785c 5175 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5176
dd41f596 5177 __sched_fork(idle);
06b83b5f 5178 idle->state = TASK_RUNNING;
dd41f596
IM
5179 idle->se.exec_start = sched_clock();
5180
96f874e2 5181 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5182 __set_task_cpu(idle, cpu);
1da177e4 5183
1da177e4 5184 rq->curr = rq->idle = idle;
4866cde0
NP
5185#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5186 idle->oncpu = 1;
5187#endif
05fa785c 5188 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5189
5190 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5191#if defined(CONFIG_PREEMPT)
5192 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5193#else
a1261f54 5194 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5195#endif
dd41f596
IM
5196 /*
5197 * The idle tasks have their own, simple scheduling class:
5198 */
5199 idle->sched_class = &idle_sched_class;
fb52607a 5200 ftrace_graph_init_task(idle);
1da177e4
LT
5201}
5202
5203/*
5204 * In a system that switches off the HZ timer nohz_cpu_mask
5205 * indicates which cpus entered this state. This is used
5206 * in the rcu update to wait only for active cpus. For system
5207 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5208 * always be CPU_BITS_NONE.
1da177e4 5209 */
6a7b3dc3 5210cpumask_var_t nohz_cpu_mask;
1da177e4 5211
19978ca6
IM
5212/*
5213 * Increase the granularity value when there are more CPUs,
5214 * because with more CPUs the 'effective latency' as visible
5215 * to users decreases. But the relationship is not linear,
5216 * so pick a second-best guess by going with the log2 of the
5217 * number of CPUs.
5218 *
5219 * This idea comes from the SD scheduler of Con Kolivas:
5220 */
acb4a848 5221static int get_update_sysctl_factor(void)
19978ca6 5222{
4ca3ef71 5223 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5224 unsigned int factor;
5225
5226 switch (sysctl_sched_tunable_scaling) {
5227 case SCHED_TUNABLESCALING_NONE:
5228 factor = 1;
5229 break;
5230 case SCHED_TUNABLESCALING_LINEAR:
5231 factor = cpus;
5232 break;
5233 case SCHED_TUNABLESCALING_LOG:
5234 default:
5235 factor = 1 + ilog2(cpus);
5236 break;
5237 }
19978ca6 5238
acb4a848
CE
5239 return factor;
5240}
19978ca6 5241
acb4a848
CE
5242static void update_sysctl(void)
5243{
5244 unsigned int factor = get_update_sysctl_factor();
19978ca6 5245
0bcdcf28
CE
5246#define SET_SYSCTL(name) \
5247 (sysctl_##name = (factor) * normalized_sysctl_##name)
5248 SET_SYSCTL(sched_min_granularity);
5249 SET_SYSCTL(sched_latency);
5250 SET_SYSCTL(sched_wakeup_granularity);
5251 SET_SYSCTL(sched_shares_ratelimit);
5252#undef SET_SYSCTL
5253}
55cd5340 5254
0bcdcf28
CE
5255static inline void sched_init_granularity(void)
5256{
5257 update_sysctl();
19978ca6
IM
5258}
5259
1da177e4
LT
5260#ifdef CONFIG_SMP
5261/*
5262 * This is how migration works:
5263 *
70b97a7f 5264 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5265 * runqueue and wake up that CPU's migration thread.
5266 * 2) we down() the locked semaphore => thread blocks.
5267 * 3) migration thread wakes up (implicitly it forces the migrated
5268 * thread off the CPU)
5269 * 4) it gets the migration request and checks whether the migrated
5270 * task is still in the wrong runqueue.
5271 * 5) if it's in the wrong runqueue then the migration thread removes
5272 * it and puts it into the right queue.
5273 * 6) migration thread up()s the semaphore.
5274 * 7) we wake up and the migration is done.
5275 */
5276
5277/*
5278 * Change a given task's CPU affinity. Migrate the thread to a
5279 * proper CPU and schedule it away if the CPU it's executing on
5280 * is removed from the allowed bitmask.
5281 *
5282 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5283 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5284 * call is not atomic; no spinlocks may be held.
5285 */
96f874e2 5286int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5287{
70b97a7f 5288 struct migration_req req;
1da177e4 5289 unsigned long flags;
70b97a7f 5290 struct rq *rq;
48f24c4d 5291 int ret = 0;
1da177e4
LT
5292
5293 rq = task_rq_lock(p, &flags);
e2912009 5294
6ad4c188 5295 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5296 ret = -EINVAL;
5297 goto out;
5298 }
5299
9985b0ba 5300 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5301 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5302 ret = -EINVAL;
5303 goto out;
5304 }
5305
73fe6aae 5306 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5307 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5308 else {
96f874e2
RR
5309 cpumask_copy(&p->cpus_allowed, new_mask);
5310 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5311 }
5312
1da177e4 5313 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5314 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5315 goto out;
5316
6ad4c188 5317 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5318 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5319 struct task_struct *mt = rq->migration_thread;
5320
5321 get_task_struct(mt);
1da177e4
LT
5322 task_rq_unlock(rq, &flags);
5323 wake_up_process(rq->migration_thread);
693525e3 5324 put_task_struct(mt);
1da177e4
LT
5325 wait_for_completion(&req.done);
5326 tlb_migrate_finish(p->mm);
5327 return 0;
5328 }
5329out:
5330 task_rq_unlock(rq, &flags);
48f24c4d 5331
1da177e4
LT
5332 return ret;
5333}
cd8ba7cd 5334EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5335
5336/*
41a2d6cf 5337 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5338 * this because either it can't run here any more (set_cpus_allowed()
5339 * away from this CPU, or CPU going down), or because we're
5340 * attempting to rebalance this task on exec (sched_exec).
5341 *
5342 * So we race with normal scheduler movements, but that's OK, as long
5343 * as the task is no longer on this CPU.
efc30814
KK
5344 *
5345 * Returns non-zero if task was successfully migrated.
1da177e4 5346 */
efc30814 5347static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5348{
70b97a7f 5349 struct rq *rq_dest, *rq_src;
e2912009 5350 int ret = 0;
1da177e4 5351
e761b772 5352 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5353 return ret;
1da177e4
LT
5354
5355 rq_src = cpu_rq(src_cpu);
5356 rq_dest = cpu_rq(dest_cpu);
5357
5358 double_rq_lock(rq_src, rq_dest);
5359 /* Already moved. */
5360 if (task_cpu(p) != src_cpu)
b1e38734 5361 goto done;
1da177e4 5362 /* Affinity changed (again). */
96f874e2 5363 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5364 goto fail;
1da177e4 5365
e2912009
PZ
5366 /*
5367 * If we're not on a rq, the next wake-up will ensure we're
5368 * placed properly.
5369 */
5370 if (p->se.on_rq) {
2e1cb74a 5371 deactivate_task(rq_src, p, 0);
e2912009 5372 set_task_cpu(p, dest_cpu);
dd41f596 5373 activate_task(rq_dest, p, 0);
15afe09b 5374 check_preempt_curr(rq_dest, p, 0);
1da177e4 5375 }
b1e38734 5376done:
efc30814 5377 ret = 1;
b1e38734 5378fail:
1da177e4 5379 double_rq_unlock(rq_src, rq_dest);
efc30814 5380 return ret;
1da177e4
LT
5381}
5382
03b042bf
PM
5383#define RCU_MIGRATION_IDLE 0
5384#define RCU_MIGRATION_NEED_QS 1
5385#define RCU_MIGRATION_GOT_QS 2
5386#define RCU_MIGRATION_MUST_SYNC 3
5387
1da177e4
LT
5388/*
5389 * migration_thread - this is a highprio system thread that performs
5390 * thread migration by bumping thread off CPU then 'pushing' onto
5391 * another runqueue.
5392 */
95cdf3b7 5393static int migration_thread(void *data)
1da177e4 5394{
03b042bf 5395 int badcpu;
1da177e4 5396 int cpu = (long)data;
70b97a7f 5397 struct rq *rq;
1da177e4
LT
5398
5399 rq = cpu_rq(cpu);
5400 BUG_ON(rq->migration_thread != current);
5401
5402 set_current_state(TASK_INTERRUPTIBLE);
5403 while (!kthread_should_stop()) {
70b97a7f 5404 struct migration_req *req;
1da177e4 5405 struct list_head *head;
1da177e4 5406
05fa785c 5407 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5408
5409 if (cpu_is_offline(cpu)) {
05fa785c 5410 raw_spin_unlock_irq(&rq->lock);
371cbb38 5411 break;
1da177e4
LT
5412 }
5413
5414 if (rq->active_balance) {
5415 active_load_balance(rq, cpu);
5416 rq->active_balance = 0;
5417 }
5418
5419 head = &rq->migration_queue;
5420
5421 if (list_empty(head)) {
05fa785c 5422 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5423 schedule();
5424 set_current_state(TASK_INTERRUPTIBLE);
5425 continue;
5426 }
70b97a7f 5427 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5428 list_del_init(head->next);
5429
03b042bf 5430 if (req->task != NULL) {
05fa785c 5431 raw_spin_unlock(&rq->lock);
03b042bf
PM
5432 __migrate_task(req->task, cpu, req->dest_cpu);
5433 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5434 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5435 raw_spin_unlock(&rq->lock);
03b042bf
PM
5436 } else {
5437 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5438 raw_spin_unlock(&rq->lock);
03b042bf
PM
5439 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5440 }
674311d5 5441 local_irq_enable();
1da177e4
LT
5442
5443 complete(&req->done);
5444 }
5445 __set_current_state(TASK_RUNNING);
1da177e4 5446
1da177e4
LT
5447 return 0;
5448}
5449
5450#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5451
5452static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5453{
5454 int ret;
5455
5456 local_irq_disable();
5457 ret = __migrate_task(p, src_cpu, dest_cpu);
5458 local_irq_enable();
5459 return ret;
5460}
5461
054b9108 5462/*
3a4fa0a2 5463 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5464 */
48f24c4d 5465static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5466{
70b97a7f 5467 int dest_cpu;
e76bd8d9
RR
5468
5469again:
5da9a0fb 5470 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 5471
e76bd8d9
RR
5472 /* It can have affinity changed while we were choosing. */
5473 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5474 goto again;
1da177e4
LT
5475}
5476
5477/*
5478 * While a dead CPU has no uninterruptible tasks queued at this point,
5479 * it might still have a nonzero ->nr_uninterruptible counter, because
5480 * for performance reasons the counter is not stricly tracking tasks to
5481 * their home CPUs. So we just add the counter to another CPU's counter,
5482 * to keep the global sum constant after CPU-down:
5483 */
70b97a7f 5484static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5485{
6ad4c188 5486 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5487 unsigned long flags;
5488
5489 local_irq_save(flags);
5490 double_rq_lock(rq_src, rq_dest);
5491 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5492 rq_src->nr_uninterruptible = 0;
5493 double_rq_unlock(rq_src, rq_dest);
5494 local_irq_restore(flags);
5495}
5496
5497/* Run through task list and migrate tasks from the dead cpu. */
5498static void migrate_live_tasks(int src_cpu)
5499{
48f24c4d 5500 struct task_struct *p, *t;
1da177e4 5501
f7b4cddc 5502 read_lock(&tasklist_lock);
1da177e4 5503
48f24c4d
IM
5504 do_each_thread(t, p) {
5505 if (p == current)
1da177e4
LT
5506 continue;
5507
48f24c4d
IM
5508 if (task_cpu(p) == src_cpu)
5509 move_task_off_dead_cpu(src_cpu, p);
5510 } while_each_thread(t, p);
1da177e4 5511
f7b4cddc 5512 read_unlock(&tasklist_lock);
1da177e4
LT
5513}
5514
dd41f596
IM
5515/*
5516 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5517 * It does so by boosting its priority to highest possible.
5518 * Used by CPU offline code.
1da177e4
LT
5519 */
5520void sched_idle_next(void)
5521{
48f24c4d 5522 int this_cpu = smp_processor_id();
70b97a7f 5523 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5524 struct task_struct *p = rq->idle;
5525 unsigned long flags;
5526
5527 /* cpu has to be offline */
48f24c4d 5528 BUG_ON(cpu_online(this_cpu));
1da177e4 5529
48f24c4d
IM
5530 /*
5531 * Strictly not necessary since rest of the CPUs are stopped by now
5532 * and interrupts disabled on the current cpu.
1da177e4 5533 */
05fa785c 5534 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5535
dd41f596 5536 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5537
94bc9a7b 5538 activate_task(rq, p, 0);
1da177e4 5539
05fa785c 5540 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5541}
5542
48f24c4d
IM
5543/*
5544 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5545 * offline.
5546 */
5547void idle_task_exit(void)
5548{
5549 struct mm_struct *mm = current->active_mm;
5550
5551 BUG_ON(cpu_online(smp_processor_id()));
5552
5553 if (mm != &init_mm)
5554 switch_mm(mm, &init_mm, current);
5555 mmdrop(mm);
5556}
5557
054b9108 5558/* called under rq->lock with disabled interrupts */
36c8b586 5559static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5560{
70b97a7f 5561 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5562
5563 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5564 BUG_ON(!p->exit_state);
1da177e4
LT
5565
5566 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5567 BUG_ON(p->state == TASK_DEAD);
1da177e4 5568
48f24c4d 5569 get_task_struct(p);
1da177e4
LT
5570
5571 /*
5572 * Drop lock around migration; if someone else moves it,
41a2d6cf 5573 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5574 * fine.
5575 */
05fa785c 5576 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5577 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5578 raw_spin_lock_irq(&rq->lock);
1da177e4 5579
48f24c4d 5580 put_task_struct(p);
1da177e4
LT
5581}
5582
5583/* release_task() removes task from tasklist, so we won't find dead tasks. */
5584static void migrate_dead_tasks(unsigned int dead_cpu)
5585{
70b97a7f 5586 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5587 struct task_struct *next;
48f24c4d 5588
dd41f596
IM
5589 for ( ; ; ) {
5590 if (!rq->nr_running)
5591 break;
b67802ea 5592 next = pick_next_task(rq);
dd41f596
IM
5593 if (!next)
5594 break;
79c53799 5595 next->sched_class->put_prev_task(rq, next);
dd41f596 5596 migrate_dead(dead_cpu, next);
e692ab53 5597
1da177e4
LT
5598 }
5599}
dce48a84
TG
5600
5601/*
5602 * remove the tasks which were accounted by rq from calc_load_tasks.
5603 */
5604static void calc_global_load_remove(struct rq *rq)
5605{
5606 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5607 rq->calc_load_active = 0;
dce48a84 5608}
1da177e4
LT
5609#endif /* CONFIG_HOTPLUG_CPU */
5610
e692ab53
NP
5611#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5612
5613static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5614 {
5615 .procname = "sched_domain",
c57baf1e 5616 .mode = 0555,
e0361851 5617 },
56992309 5618 {}
e692ab53
NP
5619};
5620
5621static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5622 {
5623 .procname = "kernel",
c57baf1e 5624 .mode = 0555,
e0361851
AD
5625 .child = sd_ctl_dir,
5626 },
56992309 5627 {}
e692ab53
NP
5628};
5629
5630static struct ctl_table *sd_alloc_ctl_entry(int n)
5631{
5632 struct ctl_table *entry =
5cf9f062 5633 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5634
e692ab53
NP
5635 return entry;
5636}
5637
6382bc90
MM
5638static void sd_free_ctl_entry(struct ctl_table **tablep)
5639{
cd790076 5640 struct ctl_table *entry;
6382bc90 5641
cd790076
MM
5642 /*
5643 * In the intermediate directories, both the child directory and
5644 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5645 * will always be set. In the lowest directory the names are
cd790076
MM
5646 * static strings and all have proc handlers.
5647 */
5648 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5649 if (entry->child)
5650 sd_free_ctl_entry(&entry->child);
cd790076
MM
5651 if (entry->proc_handler == NULL)
5652 kfree(entry->procname);
5653 }
6382bc90
MM
5654
5655 kfree(*tablep);
5656 *tablep = NULL;
5657}
5658
e692ab53 5659static void
e0361851 5660set_table_entry(struct ctl_table *entry,
e692ab53
NP
5661 const char *procname, void *data, int maxlen,
5662 mode_t mode, proc_handler *proc_handler)
5663{
e692ab53
NP
5664 entry->procname = procname;
5665 entry->data = data;
5666 entry->maxlen = maxlen;
5667 entry->mode = mode;
5668 entry->proc_handler = proc_handler;
5669}
5670
5671static struct ctl_table *
5672sd_alloc_ctl_domain_table(struct sched_domain *sd)
5673{
a5d8c348 5674 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5675
ad1cdc1d
MM
5676 if (table == NULL)
5677 return NULL;
5678
e0361851 5679 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5680 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5681 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5682 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5683 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5684 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5685 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5686 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5687 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5688 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5689 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5690 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5691 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5692 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5693 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5694 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5695 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5696 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5697 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5698 &sd->cache_nice_tries,
5699 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5700 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5701 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5702 set_table_entry(&table[11], "name", sd->name,
5703 CORENAME_MAX_SIZE, 0444, proc_dostring);
5704 /* &table[12] is terminator */
e692ab53
NP
5705
5706 return table;
5707}
5708
9a4e7159 5709static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5710{
5711 struct ctl_table *entry, *table;
5712 struct sched_domain *sd;
5713 int domain_num = 0, i;
5714 char buf[32];
5715
5716 for_each_domain(cpu, sd)
5717 domain_num++;
5718 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5719 if (table == NULL)
5720 return NULL;
e692ab53
NP
5721
5722 i = 0;
5723 for_each_domain(cpu, sd) {
5724 snprintf(buf, 32, "domain%d", i);
e692ab53 5725 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5726 entry->mode = 0555;
e692ab53
NP
5727 entry->child = sd_alloc_ctl_domain_table(sd);
5728 entry++;
5729 i++;
5730 }
5731 return table;
5732}
5733
5734static struct ctl_table_header *sd_sysctl_header;
6382bc90 5735static void register_sched_domain_sysctl(void)
e692ab53 5736{
6ad4c188 5737 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5738 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5739 char buf[32];
5740
7378547f
MM
5741 WARN_ON(sd_ctl_dir[0].child);
5742 sd_ctl_dir[0].child = entry;
5743
ad1cdc1d
MM
5744 if (entry == NULL)
5745 return;
5746
6ad4c188 5747 for_each_possible_cpu(i) {
e692ab53 5748 snprintf(buf, 32, "cpu%d", i);
e692ab53 5749 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5750 entry->mode = 0555;
e692ab53 5751 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5752 entry++;
e692ab53 5753 }
7378547f
MM
5754
5755 WARN_ON(sd_sysctl_header);
e692ab53
NP
5756 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5757}
6382bc90 5758
7378547f 5759/* may be called multiple times per register */
6382bc90
MM
5760static void unregister_sched_domain_sysctl(void)
5761{
7378547f
MM
5762 if (sd_sysctl_header)
5763 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5764 sd_sysctl_header = NULL;
7378547f
MM
5765 if (sd_ctl_dir[0].child)
5766 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5767}
e692ab53 5768#else
6382bc90
MM
5769static void register_sched_domain_sysctl(void)
5770{
5771}
5772static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5773{
5774}
5775#endif
5776
1f11eb6a
GH
5777static void set_rq_online(struct rq *rq)
5778{
5779 if (!rq->online) {
5780 const struct sched_class *class;
5781
c6c4927b 5782 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5783 rq->online = 1;
5784
5785 for_each_class(class) {
5786 if (class->rq_online)
5787 class->rq_online(rq);
5788 }
5789 }
5790}
5791
5792static void set_rq_offline(struct rq *rq)
5793{
5794 if (rq->online) {
5795 const struct sched_class *class;
5796
5797 for_each_class(class) {
5798 if (class->rq_offline)
5799 class->rq_offline(rq);
5800 }
5801
c6c4927b 5802 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5803 rq->online = 0;
5804 }
5805}
5806
1da177e4
LT
5807/*
5808 * migration_call - callback that gets triggered when a CPU is added.
5809 * Here we can start up the necessary migration thread for the new CPU.
5810 */
48f24c4d
IM
5811static int __cpuinit
5812migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5813{
1da177e4 5814 struct task_struct *p;
48f24c4d 5815 int cpu = (long)hcpu;
1da177e4 5816 unsigned long flags;
70b97a7f 5817 struct rq *rq;
1da177e4
LT
5818
5819 switch (action) {
5be9361c 5820
1da177e4 5821 case CPU_UP_PREPARE:
8bb78442 5822 case CPU_UP_PREPARE_FROZEN:
dd41f596 5823 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5824 if (IS_ERR(p))
5825 return NOTIFY_BAD;
1da177e4
LT
5826 kthread_bind(p, cpu);
5827 /* Must be high prio: stop_machine expects to yield to it. */
5828 rq = task_rq_lock(p, &flags);
dd41f596 5829 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5830 task_rq_unlock(rq, &flags);
371cbb38 5831 get_task_struct(p);
1da177e4 5832 cpu_rq(cpu)->migration_thread = p;
a468d389 5833 rq->calc_load_update = calc_load_update;
1da177e4 5834 break;
48f24c4d 5835
1da177e4 5836 case CPU_ONLINE:
8bb78442 5837 case CPU_ONLINE_FROZEN:
3a4fa0a2 5838 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5839 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5840
5841 /* Update our root-domain */
5842 rq = cpu_rq(cpu);
05fa785c 5843 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5844 if (rq->rd) {
c6c4927b 5845 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5846
5847 set_rq_online(rq);
1f94ef59 5848 }
05fa785c 5849 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5850 break;
48f24c4d 5851
1da177e4
LT
5852#ifdef CONFIG_HOTPLUG_CPU
5853 case CPU_UP_CANCELED:
8bb78442 5854 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5855 if (!cpu_rq(cpu)->migration_thread)
5856 break;
41a2d6cf 5857 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5858 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5859 cpumask_any(cpu_online_mask));
1da177e4 5860 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5861 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5862 cpu_rq(cpu)->migration_thread = NULL;
5863 break;
48f24c4d 5864
1da177e4 5865 case CPU_DEAD:
8bb78442 5866 case CPU_DEAD_FROZEN:
1da177e4
LT
5867 migrate_live_tasks(cpu);
5868 rq = cpu_rq(cpu);
5869 kthread_stop(rq->migration_thread);
371cbb38 5870 put_task_struct(rq->migration_thread);
1da177e4
LT
5871 rq->migration_thread = NULL;
5872 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5873 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5874 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5875 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5876 rq->idle->sched_class = &idle_sched_class;
1da177e4 5877 migrate_dead_tasks(cpu);
05fa785c 5878 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5879 migrate_nr_uninterruptible(rq);
5880 BUG_ON(rq->nr_running != 0);
dce48a84 5881 calc_global_load_remove(rq);
41a2d6cf
IM
5882 /*
5883 * No need to migrate the tasks: it was best-effort if
5884 * they didn't take sched_hotcpu_mutex. Just wake up
5885 * the requestors.
5886 */
05fa785c 5887 raw_spin_lock_irq(&rq->lock);
1da177e4 5888 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5889 struct migration_req *req;
5890
1da177e4 5891 req = list_entry(rq->migration_queue.next,
70b97a7f 5892 struct migration_req, list);
1da177e4 5893 list_del_init(&req->list);
05fa785c 5894 raw_spin_unlock_irq(&rq->lock);
1da177e4 5895 complete(&req->done);
05fa785c 5896 raw_spin_lock_irq(&rq->lock);
1da177e4 5897 }
05fa785c 5898 raw_spin_unlock_irq(&rq->lock);
1da177e4 5899 break;
57d885fe 5900
08f503b0
GH
5901 case CPU_DYING:
5902 case CPU_DYING_FROZEN:
57d885fe
GH
5903 /* Update our root-domain */
5904 rq = cpu_rq(cpu);
05fa785c 5905 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5906 if (rq->rd) {
c6c4927b 5907 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5908 set_rq_offline(rq);
57d885fe 5909 }
05fa785c 5910 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5911 break;
1da177e4
LT
5912#endif
5913 }
5914 return NOTIFY_OK;
5915}
5916
f38b0820
PM
5917/*
5918 * Register at high priority so that task migration (migrate_all_tasks)
5919 * happens before everything else. This has to be lower priority than
cdd6c482 5920 * the notifier in the perf_event subsystem, though.
1da177e4 5921 */
26c2143b 5922static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5923 .notifier_call = migration_call,
5924 .priority = 10
5925};
5926
7babe8db 5927static int __init migration_init(void)
1da177e4
LT
5928{
5929 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5930 int err;
48f24c4d
IM
5931
5932 /* Start one for the boot CPU: */
07dccf33
AM
5933 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5934 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5935 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5936 register_cpu_notifier(&migration_notifier);
7babe8db 5937
a004cd42 5938 return 0;
1da177e4 5939}
7babe8db 5940early_initcall(migration_init);
1da177e4
LT
5941#endif
5942
5943#ifdef CONFIG_SMP
476f3534 5944
3e9830dc 5945#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5946
f6630114
MT
5947static __read_mostly int sched_domain_debug_enabled;
5948
5949static int __init sched_domain_debug_setup(char *str)
5950{
5951 sched_domain_debug_enabled = 1;
5952
5953 return 0;
5954}
5955early_param("sched_debug", sched_domain_debug_setup);
5956
7c16ec58 5957static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5958 struct cpumask *groupmask)
1da177e4 5959{
4dcf6aff 5960 struct sched_group *group = sd->groups;
434d53b0 5961 char str[256];
1da177e4 5962
968ea6d8 5963 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5964 cpumask_clear(groupmask);
4dcf6aff
IM
5965
5966 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5967
5968 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5969 printk("does not load-balance\n");
4dcf6aff 5970 if (sd->parent)
3df0fc5b
PZ
5971 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5972 " has parent");
4dcf6aff 5973 return -1;
41c7ce9a
NP
5974 }
5975
3df0fc5b 5976 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5977
758b2cdc 5978 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5979 printk(KERN_ERR "ERROR: domain->span does not contain "
5980 "CPU%d\n", cpu);
4dcf6aff 5981 }
758b2cdc 5982 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5983 printk(KERN_ERR "ERROR: domain->groups does not contain"
5984 " CPU%d\n", cpu);
4dcf6aff 5985 }
1da177e4 5986
4dcf6aff 5987 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5988 do {
4dcf6aff 5989 if (!group) {
3df0fc5b
PZ
5990 printk("\n");
5991 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5992 break;
5993 }
5994
18a3885f 5995 if (!group->cpu_power) {
3df0fc5b
PZ
5996 printk(KERN_CONT "\n");
5997 printk(KERN_ERR "ERROR: domain->cpu_power not "
5998 "set\n");
4dcf6aff
IM
5999 break;
6000 }
1da177e4 6001
758b2cdc 6002 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6003 printk(KERN_CONT "\n");
6004 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6005 break;
6006 }
1da177e4 6007
758b2cdc 6008 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6009 printk(KERN_CONT "\n");
6010 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6011 break;
6012 }
1da177e4 6013
758b2cdc 6014 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6015
968ea6d8 6016 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6017
3df0fc5b 6018 printk(KERN_CONT " %s", str);
18a3885f 6019 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6020 printk(KERN_CONT " (cpu_power = %d)",
6021 group->cpu_power);
381512cf 6022 }
1da177e4 6023
4dcf6aff
IM
6024 group = group->next;
6025 } while (group != sd->groups);
3df0fc5b 6026 printk(KERN_CONT "\n");
1da177e4 6027
758b2cdc 6028 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6029 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6030
758b2cdc
RR
6031 if (sd->parent &&
6032 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6033 printk(KERN_ERR "ERROR: parent span is not a superset "
6034 "of domain->span\n");
4dcf6aff
IM
6035 return 0;
6036}
1da177e4 6037
4dcf6aff
IM
6038static void sched_domain_debug(struct sched_domain *sd, int cpu)
6039{
d5dd3db1 6040 cpumask_var_t groupmask;
4dcf6aff 6041 int level = 0;
1da177e4 6042
f6630114
MT
6043 if (!sched_domain_debug_enabled)
6044 return;
6045
4dcf6aff
IM
6046 if (!sd) {
6047 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6048 return;
6049 }
1da177e4 6050
4dcf6aff
IM
6051 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6052
d5dd3db1 6053 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6054 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6055 return;
6056 }
6057
4dcf6aff 6058 for (;;) {
7c16ec58 6059 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6060 break;
1da177e4
LT
6061 level++;
6062 sd = sd->parent;
33859f7f 6063 if (!sd)
4dcf6aff
IM
6064 break;
6065 }
d5dd3db1 6066 free_cpumask_var(groupmask);
1da177e4 6067}
6d6bc0ad 6068#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6069# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6070#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6071
1a20ff27 6072static int sd_degenerate(struct sched_domain *sd)
245af2c7 6073{
758b2cdc 6074 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6075 return 1;
6076
6077 /* Following flags need at least 2 groups */
6078 if (sd->flags & (SD_LOAD_BALANCE |
6079 SD_BALANCE_NEWIDLE |
6080 SD_BALANCE_FORK |
89c4710e
SS
6081 SD_BALANCE_EXEC |
6082 SD_SHARE_CPUPOWER |
6083 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6084 if (sd->groups != sd->groups->next)
6085 return 0;
6086 }
6087
6088 /* Following flags don't use groups */
c88d5910 6089 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6090 return 0;
6091
6092 return 1;
6093}
6094
48f24c4d
IM
6095static int
6096sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6097{
6098 unsigned long cflags = sd->flags, pflags = parent->flags;
6099
6100 if (sd_degenerate(parent))
6101 return 1;
6102
758b2cdc 6103 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6104 return 0;
6105
245af2c7
SS
6106 /* Flags needing groups don't count if only 1 group in parent */
6107 if (parent->groups == parent->groups->next) {
6108 pflags &= ~(SD_LOAD_BALANCE |
6109 SD_BALANCE_NEWIDLE |
6110 SD_BALANCE_FORK |
89c4710e
SS
6111 SD_BALANCE_EXEC |
6112 SD_SHARE_CPUPOWER |
6113 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6114 if (nr_node_ids == 1)
6115 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6116 }
6117 if (~cflags & pflags)
6118 return 0;
6119
6120 return 1;
6121}
6122
c6c4927b
RR
6123static void free_rootdomain(struct root_domain *rd)
6124{
047106ad
PZ
6125 synchronize_sched();
6126
68e74568
RR
6127 cpupri_cleanup(&rd->cpupri);
6128
c6c4927b
RR
6129 free_cpumask_var(rd->rto_mask);
6130 free_cpumask_var(rd->online);
6131 free_cpumask_var(rd->span);
6132 kfree(rd);
6133}
6134
57d885fe
GH
6135static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6136{
a0490fa3 6137 struct root_domain *old_rd = NULL;
57d885fe 6138 unsigned long flags;
57d885fe 6139
05fa785c 6140 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6141
6142 if (rq->rd) {
a0490fa3 6143 old_rd = rq->rd;
57d885fe 6144
c6c4927b 6145 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6146 set_rq_offline(rq);
57d885fe 6147
c6c4927b 6148 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6149
a0490fa3
IM
6150 /*
6151 * If we dont want to free the old_rt yet then
6152 * set old_rd to NULL to skip the freeing later
6153 * in this function:
6154 */
6155 if (!atomic_dec_and_test(&old_rd->refcount))
6156 old_rd = NULL;
57d885fe
GH
6157 }
6158
6159 atomic_inc(&rd->refcount);
6160 rq->rd = rd;
6161
c6c4927b 6162 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6163 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6164 set_rq_online(rq);
57d885fe 6165
05fa785c 6166 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6167
6168 if (old_rd)
6169 free_rootdomain(old_rd);
57d885fe
GH
6170}
6171
fd5e1b5d 6172static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6173{
36b7b6d4
PE
6174 gfp_t gfp = GFP_KERNEL;
6175
57d885fe
GH
6176 memset(rd, 0, sizeof(*rd));
6177
36b7b6d4
PE
6178 if (bootmem)
6179 gfp = GFP_NOWAIT;
c6c4927b 6180
36b7b6d4 6181 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6182 goto out;
36b7b6d4 6183 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6184 goto free_span;
36b7b6d4 6185 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6186 goto free_online;
6e0534f2 6187
0fb53029 6188 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6189 goto free_rto_mask;
c6c4927b 6190 return 0;
6e0534f2 6191
68e74568
RR
6192free_rto_mask:
6193 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6194free_online:
6195 free_cpumask_var(rd->online);
6196free_span:
6197 free_cpumask_var(rd->span);
0c910d28 6198out:
c6c4927b 6199 return -ENOMEM;
57d885fe
GH
6200}
6201
6202static void init_defrootdomain(void)
6203{
c6c4927b
RR
6204 init_rootdomain(&def_root_domain, true);
6205
57d885fe
GH
6206 atomic_set(&def_root_domain.refcount, 1);
6207}
6208
dc938520 6209static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6210{
6211 struct root_domain *rd;
6212
6213 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6214 if (!rd)
6215 return NULL;
6216
c6c4927b
RR
6217 if (init_rootdomain(rd, false) != 0) {
6218 kfree(rd);
6219 return NULL;
6220 }
57d885fe
GH
6221
6222 return rd;
6223}
6224
1da177e4 6225/*
0eab9146 6226 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6227 * hold the hotplug lock.
6228 */
0eab9146
IM
6229static void
6230cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6231{
70b97a7f 6232 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6233 struct sched_domain *tmp;
6234
6235 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6236 for (tmp = sd; tmp; ) {
245af2c7
SS
6237 struct sched_domain *parent = tmp->parent;
6238 if (!parent)
6239 break;
f29c9b1c 6240
1a848870 6241 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6242 tmp->parent = parent->parent;
1a848870
SS
6243 if (parent->parent)
6244 parent->parent->child = tmp;
f29c9b1c
LZ
6245 } else
6246 tmp = tmp->parent;
245af2c7
SS
6247 }
6248
1a848870 6249 if (sd && sd_degenerate(sd)) {
245af2c7 6250 sd = sd->parent;
1a848870
SS
6251 if (sd)
6252 sd->child = NULL;
6253 }
1da177e4
LT
6254
6255 sched_domain_debug(sd, cpu);
6256
57d885fe 6257 rq_attach_root(rq, rd);
674311d5 6258 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6259}
6260
6261/* cpus with isolated domains */
dcc30a35 6262static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6263
6264/* Setup the mask of cpus configured for isolated domains */
6265static int __init isolated_cpu_setup(char *str)
6266{
bdddd296 6267 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6268 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6269 return 1;
6270}
6271
8927f494 6272__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6273
6274/*
6711cab4
SS
6275 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6276 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6277 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6278 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6279 *
6280 * init_sched_build_groups will build a circular linked list of the groups
6281 * covered by the given span, and will set each group's ->cpumask correctly,
6282 * and ->cpu_power to 0.
6283 */
a616058b 6284static void
96f874e2
RR
6285init_sched_build_groups(const struct cpumask *span,
6286 const struct cpumask *cpu_map,
6287 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6288 struct sched_group **sg,
96f874e2
RR
6289 struct cpumask *tmpmask),
6290 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6291{
6292 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6293 int i;
6294
96f874e2 6295 cpumask_clear(covered);
7c16ec58 6296
abcd083a 6297 for_each_cpu(i, span) {
6711cab4 6298 struct sched_group *sg;
7c16ec58 6299 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6300 int j;
6301
758b2cdc 6302 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6303 continue;
6304
758b2cdc 6305 cpumask_clear(sched_group_cpus(sg));
18a3885f 6306 sg->cpu_power = 0;
1da177e4 6307
abcd083a 6308 for_each_cpu(j, span) {
7c16ec58 6309 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6310 continue;
6311
96f874e2 6312 cpumask_set_cpu(j, covered);
758b2cdc 6313 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6314 }
6315 if (!first)
6316 first = sg;
6317 if (last)
6318 last->next = sg;
6319 last = sg;
6320 }
6321 last->next = first;
6322}
6323
9c1cfda2 6324#define SD_NODES_PER_DOMAIN 16
1da177e4 6325
9c1cfda2 6326#ifdef CONFIG_NUMA
198e2f18 6327
9c1cfda2
JH
6328/**
6329 * find_next_best_node - find the next node to include in a sched_domain
6330 * @node: node whose sched_domain we're building
6331 * @used_nodes: nodes already in the sched_domain
6332 *
41a2d6cf 6333 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6334 * finds the closest node not already in the @used_nodes map.
6335 *
6336 * Should use nodemask_t.
6337 */
c5f59f08 6338static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6339{
6340 int i, n, val, min_val, best_node = 0;
6341
6342 min_val = INT_MAX;
6343
076ac2af 6344 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6345 /* Start at @node */
076ac2af 6346 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6347
6348 if (!nr_cpus_node(n))
6349 continue;
6350
6351 /* Skip already used nodes */
c5f59f08 6352 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6353 continue;
6354
6355 /* Simple min distance search */
6356 val = node_distance(node, n);
6357
6358 if (val < min_val) {
6359 min_val = val;
6360 best_node = n;
6361 }
6362 }
6363
c5f59f08 6364 node_set(best_node, *used_nodes);
9c1cfda2
JH
6365 return best_node;
6366}
6367
6368/**
6369 * sched_domain_node_span - get a cpumask for a node's sched_domain
6370 * @node: node whose cpumask we're constructing
73486722 6371 * @span: resulting cpumask
9c1cfda2 6372 *
41a2d6cf 6373 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6374 * should be one that prevents unnecessary balancing, but also spreads tasks
6375 * out optimally.
6376 */
96f874e2 6377static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6378{
c5f59f08 6379 nodemask_t used_nodes;
48f24c4d 6380 int i;
9c1cfda2 6381
6ca09dfc 6382 cpumask_clear(span);
c5f59f08 6383 nodes_clear(used_nodes);
9c1cfda2 6384
6ca09dfc 6385 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6386 node_set(node, used_nodes);
9c1cfda2
JH
6387
6388 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6389 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6390
6ca09dfc 6391 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6392 }
9c1cfda2 6393}
6d6bc0ad 6394#endif /* CONFIG_NUMA */
9c1cfda2 6395
5c45bf27 6396int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6397
6c99e9ad
RR
6398/*
6399 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6400 *
6401 * ( See the the comments in include/linux/sched.h:struct sched_group
6402 * and struct sched_domain. )
6c99e9ad
RR
6403 */
6404struct static_sched_group {
6405 struct sched_group sg;
6406 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6407};
6408
6409struct static_sched_domain {
6410 struct sched_domain sd;
6411 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6412};
6413
49a02c51
AH
6414struct s_data {
6415#ifdef CONFIG_NUMA
6416 int sd_allnodes;
6417 cpumask_var_t domainspan;
6418 cpumask_var_t covered;
6419 cpumask_var_t notcovered;
6420#endif
6421 cpumask_var_t nodemask;
6422 cpumask_var_t this_sibling_map;
6423 cpumask_var_t this_core_map;
6424 cpumask_var_t send_covered;
6425 cpumask_var_t tmpmask;
6426 struct sched_group **sched_group_nodes;
6427 struct root_domain *rd;
6428};
6429
2109b99e
AH
6430enum s_alloc {
6431 sa_sched_groups = 0,
6432 sa_rootdomain,
6433 sa_tmpmask,
6434 sa_send_covered,
6435 sa_this_core_map,
6436 sa_this_sibling_map,
6437 sa_nodemask,
6438 sa_sched_group_nodes,
6439#ifdef CONFIG_NUMA
6440 sa_notcovered,
6441 sa_covered,
6442 sa_domainspan,
6443#endif
6444 sa_none,
6445};
6446
9c1cfda2 6447/*
48f24c4d 6448 * SMT sched-domains:
9c1cfda2 6449 */
1da177e4 6450#ifdef CONFIG_SCHED_SMT
6c99e9ad 6451static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6452static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6453
41a2d6cf 6454static int
96f874e2
RR
6455cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6456 struct sched_group **sg, struct cpumask *unused)
1da177e4 6457{
6711cab4 6458 if (sg)
1871e52c 6459 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6460 return cpu;
6461}
6d6bc0ad 6462#endif /* CONFIG_SCHED_SMT */
1da177e4 6463
48f24c4d
IM
6464/*
6465 * multi-core sched-domains:
6466 */
1e9f28fa 6467#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6468static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6469static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6470#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6471
6472#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6473static int
96f874e2
RR
6474cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6475 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6476{
6711cab4 6477 int group;
7c16ec58 6478
c69fc56d 6479 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6480 group = cpumask_first(mask);
6711cab4 6481 if (sg)
6c99e9ad 6482 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6483 return group;
1e9f28fa
SS
6484}
6485#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6486static int
96f874e2
RR
6487cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6488 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6489{
6711cab4 6490 if (sg)
6c99e9ad 6491 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6492 return cpu;
6493}
6494#endif
6495
6c99e9ad
RR
6496static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6497static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6498
41a2d6cf 6499static int
96f874e2
RR
6500cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6501 struct sched_group **sg, struct cpumask *mask)
1da177e4 6502{
6711cab4 6503 int group;
48f24c4d 6504#ifdef CONFIG_SCHED_MC
6ca09dfc 6505 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6506 group = cpumask_first(mask);
1e9f28fa 6507#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6508 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6509 group = cpumask_first(mask);
1da177e4 6510#else
6711cab4 6511 group = cpu;
1da177e4 6512#endif
6711cab4 6513 if (sg)
6c99e9ad 6514 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6515 return group;
1da177e4
LT
6516}
6517
6518#ifdef CONFIG_NUMA
1da177e4 6519/*
9c1cfda2
JH
6520 * The init_sched_build_groups can't handle what we want to do with node
6521 * groups, so roll our own. Now each node has its own list of groups which
6522 * gets dynamically allocated.
1da177e4 6523 */
62ea9ceb 6524static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6525static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6526
62ea9ceb 6527static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6528static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6529
96f874e2
RR
6530static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6531 struct sched_group **sg,
6532 struct cpumask *nodemask)
9c1cfda2 6533{
6711cab4
SS
6534 int group;
6535
6ca09dfc 6536 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6537 group = cpumask_first(nodemask);
6711cab4
SS
6538
6539 if (sg)
6c99e9ad 6540 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6541 return group;
1da177e4 6542}
6711cab4 6543
08069033
SS
6544static void init_numa_sched_groups_power(struct sched_group *group_head)
6545{
6546 struct sched_group *sg = group_head;
6547 int j;
6548
6549 if (!sg)
6550 return;
3a5c359a 6551 do {
758b2cdc 6552 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6553 struct sched_domain *sd;
08069033 6554
6c99e9ad 6555 sd = &per_cpu(phys_domains, j).sd;
13318a71 6556 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6557 /*
6558 * Only add "power" once for each
6559 * physical package.
6560 */
6561 continue;
6562 }
08069033 6563
18a3885f 6564 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6565 }
6566 sg = sg->next;
6567 } while (sg != group_head);
08069033 6568}
0601a88d
AH
6569
6570static int build_numa_sched_groups(struct s_data *d,
6571 const struct cpumask *cpu_map, int num)
6572{
6573 struct sched_domain *sd;
6574 struct sched_group *sg, *prev;
6575 int n, j;
6576
6577 cpumask_clear(d->covered);
6578 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6579 if (cpumask_empty(d->nodemask)) {
6580 d->sched_group_nodes[num] = NULL;
6581 goto out;
6582 }
6583
6584 sched_domain_node_span(num, d->domainspan);
6585 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6586
6587 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6588 GFP_KERNEL, num);
6589 if (!sg) {
3df0fc5b
PZ
6590 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6591 num);
0601a88d
AH
6592 return -ENOMEM;
6593 }
6594 d->sched_group_nodes[num] = sg;
6595
6596 for_each_cpu(j, d->nodemask) {
6597 sd = &per_cpu(node_domains, j).sd;
6598 sd->groups = sg;
6599 }
6600
18a3885f 6601 sg->cpu_power = 0;
0601a88d
AH
6602 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6603 sg->next = sg;
6604 cpumask_or(d->covered, d->covered, d->nodemask);
6605
6606 prev = sg;
6607 for (j = 0; j < nr_node_ids; j++) {
6608 n = (num + j) % nr_node_ids;
6609 cpumask_complement(d->notcovered, d->covered);
6610 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6611 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6612 if (cpumask_empty(d->tmpmask))
6613 break;
6614 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6615 if (cpumask_empty(d->tmpmask))
6616 continue;
6617 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6618 GFP_KERNEL, num);
6619 if (!sg) {
3df0fc5b
PZ
6620 printk(KERN_WARNING
6621 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6622 return -ENOMEM;
6623 }
18a3885f 6624 sg->cpu_power = 0;
0601a88d
AH
6625 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6626 sg->next = prev->next;
6627 cpumask_or(d->covered, d->covered, d->tmpmask);
6628 prev->next = sg;
6629 prev = sg;
6630 }
6631out:
6632 return 0;
6633}
6d6bc0ad 6634#endif /* CONFIG_NUMA */
1da177e4 6635
a616058b 6636#ifdef CONFIG_NUMA
51888ca2 6637/* Free memory allocated for various sched_group structures */
96f874e2
RR
6638static void free_sched_groups(const struct cpumask *cpu_map,
6639 struct cpumask *nodemask)
51888ca2 6640{
a616058b 6641 int cpu, i;
51888ca2 6642
abcd083a 6643 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6644 struct sched_group **sched_group_nodes
6645 = sched_group_nodes_bycpu[cpu];
6646
51888ca2
SV
6647 if (!sched_group_nodes)
6648 continue;
6649
076ac2af 6650 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6651 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6652
6ca09dfc 6653 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6654 if (cpumask_empty(nodemask))
51888ca2
SV
6655 continue;
6656
6657 if (sg == NULL)
6658 continue;
6659 sg = sg->next;
6660next_sg:
6661 oldsg = sg;
6662 sg = sg->next;
6663 kfree(oldsg);
6664 if (oldsg != sched_group_nodes[i])
6665 goto next_sg;
6666 }
6667 kfree(sched_group_nodes);
6668 sched_group_nodes_bycpu[cpu] = NULL;
6669 }
51888ca2 6670}
6d6bc0ad 6671#else /* !CONFIG_NUMA */
96f874e2
RR
6672static void free_sched_groups(const struct cpumask *cpu_map,
6673 struct cpumask *nodemask)
a616058b
SS
6674{
6675}
6d6bc0ad 6676#endif /* CONFIG_NUMA */
51888ca2 6677
89c4710e
SS
6678/*
6679 * Initialize sched groups cpu_power.
6680 *
6681 * cpu_power indicates the capacity of sched group, which is used while
6682 * distributing the load between different sched groups in a sched domain.
6683 * Typically cpu_power for all the groups in a sched domain will be same unless
6684 * there are asymmetries in the topology. If there are asymmetries, group
6685 * having more cpu_power will pickup more load compared to the group having
6686 * less cpu_power.
89c4710e
SS
6687 */
6688static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6689{
6690 struct sched_domain *child;
6691 struct sched_group *group;
f93e65c1
PZ
6692 long power;
6693 int weight;
89c4710e
SS
6694
6695 WARN_ON(!sd || !sd->groups);
6696
13318a71 6697 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6698 return;
6699
6700 child = sd->child;
6701
18a3885f 6702 sd->groups->cpu_power = 0;
5517d86b 6703
f93e65c1
PZ
6704 if (!child) {
6705 power = SCHED_LOAD_SCALE;
6706 weight = cpumask_weight(sched_domain_span(sd));
6707 /*
6708 * SMT siblings share the power of a single core.
a52bfd73
PZ
6709 * Usually multiple threads get a better yield out of
6710 * that one core than a single thread would have,
6711 * reflect that in sd->smt_gain.
f93e65c1 6712 */
a52bfd73
PZ
6713 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6714 power *= sd->smt_gain;
f93e65c1 6715 power /= weight;
a52bfd73
PZ
6716 power >>= SCHED_LOAD_SHIFT;
6717 }
18a3885f 6718 sd->groups->cpu_power += power;
89c4710e
SS
6719 return;
6720 }
6721
89c4710e 6722 /*
f93e65c1 6723 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6724 */
6725 group = child->groups;
6726 do {
18a3885f 6727 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6728 group = group->next;
6729 } while (group != child->groups);
6730}
6731
7c16ec58
MT
6732/*
6733 * Initializers for schedule domains
6734 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6735 */
6736
a5d8c348
IM
6737#ifdef CONFIG_SCHED_DEBUG
6738# define SD_INIT_NAME(sd, type) sd->name = #type
6739#else
6740# define SD_INIT_NAME(sd, type) do { } while (0)
6741#endif
6742
7c16ec58 6743#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6744
7c16ec58
MT
6745#define SD_INIT_FUNC(type) \
6746static noinline void sd_init_##type(struct sched_domain *sd) \
6747{ \
6748 memset(sd, 0, sizeof(*sd)); \
6749 *sd = SD_##type##_INIT; \
1d3504fc 6750 sd->level = SD_LV_##type; \
a5d8c348 6751 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6752}
6753
6754SD_INIT_FUNC(CPU)
6755#ifdef CONFIG_NUMA
6756 SD_INIT_FUNC(ALLNODES)
6757 SD_INIT_FUNC(NODE)
6758#endif
6759#ifdef CONFIG_SCHED_SMT
6760 SD_INIT_FUNC(SIBLING)
6761#endif
6762#ifdef CONFIG_SCHED_MC
6763 SD_INIT_FUNC(MC)
6764#endif
6765
1d3504fc
HS
6766static int default_relax_domain_level = -1;
6767
6768static int __init setup_relax_domain_level(char *str)
6769{
30e0e178
LZ
6770 unsigned long val;
6771
6772 val = simple_strtoul(str, NULL, 0);
6773 if (val < SD_LV_MAX)
6774 default_relax_domain_level = val;
6775
1d3504fc
HS
6776 return 1;
6777}
6778__setup("relax_domain_level=", setup_relax_domain_level);
6779
6780static void set_domain_attribute(struct sched_domain *sd,
6781 struct sched_domain_attr *attr)
6782{
6783 int request;
6784
6785 if (!attr || attr->relax_domain_level < 0) {
6786 if (default_relax_domain_level < 0)
6787 return;
6788 else
6789 request = default_relax_domain_level;
6790 } else
6791 request = attr->relax_domain_level;
6792 if (request < sd->level) {
6793 /* turn off idle balance on this domain */
c88d5910 6794 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6795 } else {
6796 /* turn on idle balance on this domain */
c88d5910 6797 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6798 }
6799}
6800
2109b99e
AH
6801static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6802 const struct cpumask *cpu_map)
6803{
6804 switch (what) {
6805 case sa_sched_groups:
6806 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6807 d->sched_group_nodes = NULL;
6808 case sa_rootdomain:
6809 free_rootdomain(d->rd); /* fall through */
6810 case sa_tmpmask:
6811 free_cpumask_var(d->tmpmask); /* fall through */
6812 case sa_send_covered:
6813 free_cpumask_var(d->send_covered); /* fall through */
6814 case sa_this_core_map:
6815 free_cpumask_var(d->this_core_map); /* fall through */
6816 case sa_this_sibling_map:
6817 free_cpumask_var(d->this_sibling_map); /* fall through */
6818 case sa_nodemask:
6819 free_cpumask_var(d->nodemask); /* fall through */
6820 case sa_sched_group_nodes:
d1b55138 6821#ifdef CONFIG_NUMA
2109b99e
AH
6822 kfree(d->sched_group_nodes); /* fall through */
6823 case sa_notcovered:
6824 free_cpumask_var(d->notcovered); /* fall through */
6825 case sa_covered:
6826 free_cpumask_var(d->covered); /* fall through */
6827 case sa_domainspan:
6828 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6829#endif
2109b99e
AH
6830 case sa_none:
6831 break;
6832 }
6833}
3404c8d9 6834
2109b99e
AH
6835static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6836 const struct cpumask *cpu_map)
6837{
3404c8d9 6838#ifdef CONFIG_NUMA
2109b99e
AH
6839 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6840 return sa_none;
6841 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6842 return sa_domainspan;
6843 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6844 return sa_covered;
6845 /* Allocate the per-node list of sched groups */
6846 d->sched_group_nodes = kcalloc(nr_node_ids,
6847 sizeof(struct sched_group *), GFP_KERNEL);
6848 if (!d->sched_group_nodes) {
3df0fc5b 6849 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6850 return sa_notcovered;
d1b55138 6851 }
2109b99e 6852 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6853#endif
2109b99e
AH
6854 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6855 return sa_sched_group_nodes;
6856 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6857 return sa_nodemask;
6858 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6859 return sa_this_sibling_map;
6860 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6861 return sa_this_core_map;
6862 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6863 return sa_send_covered;
6864 d->rd = alloc_rootdomain();
6865 if (!d->rd) {
3df0fc5b 6866 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6867 return sa_tmpmask;
57d885fe 6868 }
2109b99e
AH
6869 return sa_rootdomain;
6870}
57d885fe 6871
7f4588f3
AH
6872static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6873 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6874{
6875 struct sched_domain *sd = NULL;
7c16ec58 6876#ifdef CONFIG_NUMA
7f4588f3 6877 struct sched_domain *parent;
1da177e4 6878
7f4588f3
AH
6879 d->sd_allnodes = 0;
6880 if (cpumask_weight(cpu_map) >
6881 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6882 sd = &per_cpu(allnodes_domains, i).sd;
6883 SD_INIT(sd, ALLNODES);
1d3504fc 6884 set_domain_attribute(sd, attr);
7f4588f3
AH
6885 cpumask_copy(sched_domain_span(sd), cpu_map);
6886 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6887 d->sd_allnodes = 1;
6888 }
6889 parent = sd;
6890
6891 sd = &per_cpu(node_domains, i).sd;
6892 SD_INIT(sd, NODE);
6893 set_domain_attribute(sd, attr);
6894 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6895 sd->parent = parent;
6896 if (parent)
6897 parent->child = sd;
6898 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6899#endif
7f4588f3
AH
6900 return sd;
6901}
1da177e4 6902
87cce662
AH
6903static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6904 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6905 struct sched_domain *parent, int i)
6906{
6907 struct sched_domain *sd;
6908 sd = &per_cpu(phys_domains, i).sd;
6909 SD_INIT(sd, CPU);
6910 set_domain_attribute(sd, attr);
6911 cpumask_copy(sched_domain_span(sd), d->nodemask);
6912 sd->parent = parent;
6913 if (parent)
6914 parent->child = sd;
6915 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6916 return sd;
6917}
1da177e4 6918
410c4081
AH
6919static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6920 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6921 struct sched_domain *parent, int i)
6922{
6923 struct sched_domain *sd = parent;
1e9f28fa 6924#ifdef CONFIG_SCHED_MC
410c4081
AH
6925 sd = &per_cpu(core_domains, i).sd;
6926 SD_INIT(sd, MC);
6927 set_domain_attribute(sd, attr);
6928 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6929 sd->parent = parent;
6930 parent->child = sd;
6931 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6932#endif
410c4081
AH
6933 return sd;
6934}
1e9f28fa 6935
d8173535
AH
6936static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6937 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6938 struct sched_domain *parent, int i)
6939{
6940 struct sched_domain *sd = parent;
1da177e4 6941#ifdef CONFIG_SCHED_SMT
d8173535
AH
6942 sd = &per_cpu(cpu_domains, i).sd;
6943 SD_INIT(sd, SIBLING);
6944 set_domain_attribute(sd, attr);
6945 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6946 sd->parent = parent;
6947 parent->child = sd;
6948 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6949#endif
d8173535
AH
6950 return sd;
6951}
1da177e4 6952
0e8e85c9
AH
6953static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6954 const struct cpumask *cpu_map, int cpu)
6955{
6956 switch (l) {
1da177e4 6957#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6958 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6959 cpumask_and(d->this_sibling_map, cpu_map,
6960 topology_thread_cpumask(cpu));
6961 if (cpu == cpumask_first(d->this_sibling_map))
6962 init_sched_build_groups(d->this_sibling_map, cpu_map,
6963 &cpu_to_cpu_group,
6964 d->send_covered, d->tmpmask);
6965 break;
1da177e4 6966#endif
1e9f28fa 6967#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6968 case SD_LV_MC: /* set up multi-core groups */
6969 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6970 if (cpu == cpumask_first(d->this_core_map))
6971 init_sched_build_groups(d->this_core_map, cpu_map,
6972 &cpu_to_core_group,
6973 d->send_covered, d->tmpmask);
6974 break;
1e9f28fa 6975#endif
86548096
AH
6976 case SD_LV_CPU: /* set up physical groups */
6977 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6978 if (!cpumask_empty(d->nodemask))
6979 init_sched_build_groups(d->nodemask, cpu_map,
6980 &cpu_to_phys_group,
6981 d->send_covered, d->tmpmask);
6982 break;
1da177e4 6983#ifdef CONFIG_NUMA
de616e36
AH
6984 case SD_LV_ALLNODES:
6985 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6986 d->send_covered, d->tmpmask);
6987 break;
6988#endif
0e8e85c9
AH
6989 default:
6990 break;
7c16ec58 6991 }
0e8e85c9 6992}
9c1cfda2 6993
2109b99e
AH
6994/*
6995 * Build sched domains for a given set of cpus and attach the sched domains
6996 * to the individual cpus
6997 */
6998static int __build_sched_domains(const struct cpumask *cpu_map,
6999 struct sched_domain_attr *attr)
7000{
7001 enum s_alloc alloc_state = sa_none;
7002 struct s_data d;
294b0c96 7003 struct sched_domain *sd;
2109b99e 7004 int i;
7c16ec58 7005#ifdef CONFIG_NUMA
2109b99e 7006 d.sd_allnodes = 0;
7c16ec58 7007#endif
9c1cfda2 7008
2109b99e
AH
7009 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7010 if (alloc_state != sa_rootdomain)
7011 goto error;
7012 alloc_state = sa_sched_groups;
9c1cfda2 7013
1da177e4 7014 /*
1a20ff27 7015 * Set up domains for cpus specified by the cpu_map.
1da177e4 7016 */
abcd083a 7017 for_each_cpu(i, cpu_map) {
49a02c51
AH
7018 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7019 cpu_map);
9761eea8 7020
7f4588f3 7021 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7022 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7023 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7024 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7025 }
9c1cfda2 7026
abcd083a 7027 for_each_cpu(i, cpu_map) {
0e8e85c9 7028 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7029 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7030 }
9c1cfda2 7031
1da177e4 7032 /* Set up physical groups */
86548096
AH
7033 for (i = 0; i < nr_node_ids; i++)
7034 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7035
1da177e4
LT
7036#ifdef CONFIG_NUMA
7037 /* Set up node groups */
de616e36
AH
7038 if (d.sd_allnodes)
7039 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7040
0601a88d
AH
7041 for (i = 0; i < nr_node_ids; i++)
7042 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7043 goto error;
1da177e4
LT
7044#endif
7045
7046 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7047#ifdef CONFIG_SCHED_SMT
abcd083a 7048 for_each_cpu(i, cpu_map) {
294b0c96 7049 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7050 init_sched_groups_power(i, sd);
5c45bf27 7051 }
1da177e4 7052#endif
1e9f28fa 7053#ifdef CONFIG_SCHED_MC
abcd083a 7054 for_each_cpu(i, cpu_map) {
294b0c96 7055 sd = &per_cpu(core_domains, i).sd;
89c4710e 7056 init_sched_groups_power(i, sd);
5c45bf27
SS
7057 }
7058#endif
1e9f28fa 7059
abcd083a 7060 for_each_cpu(i, cpu_map) {
294b0c96 7061 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7062 init_sched_groups_power(i, sd);
1da177e4
LT
7063 }
7064
9c1cfda2 7065#ifdef CONFIG_NUMA
076ac2af 7066 for (i = 0; i < nr_node_ids; i++)
49a02c51 7067 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7068
49a02c51 7069 if (d.sd_allnodes) {
6711cab4 7070 struct sched_group *sg;
f712c0c7 7071
96f874e2 7072 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7073 d.tmpmask);
f712c0c7
SS
7074 init_numa_sched_groups_power(sg);
7075 }
9c1cfda2
JH
7076#endif
7077
1da177e4 7078 /* Attach the domains */
abcd083a 7079 for_each_cpu(i, cpu_map) {
1da177e4 7080#ifdef CONFIG_SCHED_SMT
6c99e9ad 7081 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7082#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7083 sd = &per_cpu(core_domains, i).sd;
1da177e4 7084#else
6c99e9ad 7085 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7086#endif
49a02c51 7087 cpu_attach_domain(sd, d.rd, i);
1da177e4 7088 }
51888ca2 7089
2109b99e
AH
7090 d.sched_group_nodes = NULL; /* don't free this we still need it */
7091 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7092 return 0;
51888ca2 7093
51888ca2 7094error:
2109b99e
AH
7095 __free_domain_allocs(&d, alloc_state, cpu_map);
7096 return -ENOMEM;
1da177e4 7097}
029190c5 7098
96f874e2 7099static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7100{
7101 return __build_sched_domains(cpu_map, NULL);
7102}
7103
acc3f5d7 7104static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7105static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7106static struct sched_domain_attr *dattr_cur;
7107 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7108
7109/*
7110 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7111 * cpumask) fails, then fallback to a single sched domain,
7112 * as determined by the single cpumask fallback_doms.
029190c5 7113 */
4212823f 7114static cpumask_var_t fallback_doms;
029190c5 7115
ee79d1bd
HC
7116/*
7117 * arch_update_cpu_topology lets virtualized architectures update the
7118 * cpu core maps. It is supposed to return 1 if the topology changed
7119 * or 0 if it stayed the same.
7120 */
7121int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7122{
ee79d1bd 7123 return 0;
22e52b07
HC
7124}
7125
acc3f5d7
RR
7126cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7127{
7128 int i;
7129 cpumask_var_t *doms;
7130
7131 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7132 if (!doms)
7133 return NULL;
7134 for (i = 0; i < ndoms; i++) {
7135 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7136 free_sched_domains(doms, i);
7137 return NULL;
7138 }
7139 }
7140 return doms;
7141}
7142
7143void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7144{
7145 unsigned int i;
7146 for (i = 0; i < ndoms; i++)
7147 free_cpumask_var(doms[i]);
7148 kfree(doms);
7149}
7150
1a20ff27 7151/*
41a2d6cf 7152 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7153 * For now this just excludes isolated cpus, but could be used to
7154 * exclude other special cases in the future.
1a20ff27 7155 */
96f874e2 7156static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7157{
7378547f
MM
7158 int err;
7159
22e52b07 7160 arch_update_cpu_topology();
029190c5 7161 ndoms_cur = 1;
acc3f5d7 7162 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7163 if (!doms_cur)
acc3f5d7
RR
7164 doms_cur = &fallback_doms;
7165 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7166 dattr_cur = NULL;
acc3f5d7 7167 err = build_sched_domains(doms_cur[0]);
6382bc90 7168 register_sched_domain_sysctl();
7378547f
MM
7169
7170 return err;
1a20ff27
DG
7171}
7172
96f874e2
RR
7173static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7174 struct cpumask *tmpmask)
1da177e4 7175{
7c16ec58 7176 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7177}
1da177e4 7178
1a20ff27
DG
7179/*
7180 * Detach sched domains from a group of cpus specified in cpu_map
7181 * These cpus will now be attached to the NULL domain
7182 */
96f874e2 7183static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7184{
96f874e2
RR
7185 /* Save because hotplug lock held. */
7186 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7187 int i;
7188
abcd083a 7189 for_each_cpu(i, cpu_map)
57d885fe 7190 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7191 synchronize_sched();
96f874e2 7192 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7193}
7194
1d3504fc
HS
7195/* handle null as "default" */
7196static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7197 struct sched_domain_attr *new, int idx_new)
7198{
7199 struct sched_domain_attr tmp;
7200
7201 /* fast path */
7202 if (!new && !cur)
7203 return 1;
7204
7205 tmp = SD_ATTR_INIT;
7206 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7207 new ? (new + idx_new) : &tmp,
7208 sizeof(struct sched_domain_attr));
7209}
7210
029190c5
PJ
7211/*
7212 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7213 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7214 * doms_new[] to the current sched domain partitioning, doms_cur[].
7215 * It destroys each deleted domain and builds each new domain.
7216 *
acc3f5d7 7217 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7218 * The masks don't intersect (don't overlap.) We should setup one
7219 * sched domain for each mask. CPUs not in any of the cpumasks will
7220 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7221 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7222 * it as it is.
7223 *
acc3f5d7
RR
7224 * The passed in 'doms_new' should be allocated using
7225 * alloc_sched_domains. This routine takes ownership of it and will
7226 * free_sched_domains it when done with it. If the caller failed the
7227 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7228 * and partition_sched_domains() will fallback to the single partition
7229 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7230 *
96f874e2 7231 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7232 * ndoms_new == 0 is a special case for destroying existing domains,
7233 * and it will not create the default domain.
dfb512ec 7234 *
029190c5
PJ
7235 * Call with hotplug lock held
7236 */
acc3f5d7 7237void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7238 struct sched_domain_attr *dattr_new)
029190c5 7239{
dfb512ec 7240 int i, j, n;
d65bd5ec 7241 int new_topology;
029190c5 7242
712555ee 7243 mutex_lock(&sched_domains_mutex);
a1835615 7244
7378547f
MM
7245 /* always unregister in case we don't destroy any domains */
7246 unregister_sched_domain_sysctl();
7247
d65bd5ec
HC
7248 /* Let architecture update cpu core mappings. */
7249 new_topology = arch_update_cpu_topology();
7250
dfb512ec 7251 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7252
7253 /* Destroy deleted domains */
7254 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7255 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7256 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7257 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7258 goto match1;
7259 }
7260 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7261 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7262match1:
7263 ;
7264 }
7265
e761b772
MK
7266 if (doms_new == NULL) {
7267 ndoms_cur = 0;
acc3f5d7 7268 doms_new = &fallback_doms;
6ad4c188 7269 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7270 WARN_ON_ONCE(dattr_new);
e761b772
MK
7271 }
7272
029190c5
PJ
7273 /* Build new domains */
7274 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7275 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7276 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7277 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7278 goto match2;
7279 }
7280 /* no match - add a new doms_new */
acc3f5d7 7281 __build_sched_domains(doms_new[i],
1d3504fc 7282 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7283match2:
7284 ;
7285 }
7286
7287 /* Remember the new sched domains */
acc3f5d7
RR
7288 if (doms_cur != &fallback_doms)
7289 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7290 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7291 doms_cur = doms_new;
1d3504fc 7292 dattr_cur = dattr_new;
029190c5 7293 ndoms_cur = ndoms_new;
7378547f
MM
7294
7295 register_sched_domain_sysctl();
a1835615 7296
712555ee 7297 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7298}
7299
5c45bf27 7300#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7301static void arch_reinit_sched_domains(void)
5c45bf27 7302{
95402b38 7303 get_online_cpus();
dfb512ec
MK
7304
7305 /* Destroy domains first to force the rebuild */
7306 partition_sched_domains(0, NULL, NULL);
7307
e761b772 7308 rebuild_sched_domains();
95402b38 7309 put_online_cpus();
5c45bf27
SS
7310}
7311
7312static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7313{
afb8a9b7 7314 unsigned int level = 0;
5c45bf27 7315
afb8a9b7
GS
7316 if (sscanf(buf, "%u", &level) != 1)
7317 return -EINVAL;
7318
7319 /*
7320 * level is always be positive so don't check for
7321 * level < POWERSAVINGS_BALANCE_NONE which is 0
7322 * What happens on 0 or 1 byte write,
7323 * need to check for count as well?
7324 */
7325
7326 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7327 return -EINVAL;
7328
7329 if (smt)
afb8a9b7 7330 sched_smt_power_savings = level;
5c45bf27 7331 else
afb8a9b7 7332 sched_mc_power_savings = level;
5c45bf27 7333
c70f22d2 7334 arch_reinit_sched_domains();
5c45bf27 7335
c70f22d2 7336 return count;
5c45bf27
SS
7337}
7338
5c45bf27 7339#ifdef CONFIG_SCHED_MC
f718cd4a 7340static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7341 struct sysdev_class_attribute *attr,
f718cd4a 7342 char *page)
5c45bf27
SS
7343{
7344 return sprintf(page, "%u\n", sched_mc_power_savings);
7345}
f718cd4a 7346static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7347 struct sysdev_class_attribute *attr,
48f24c4d 7348 const char *buf, size_t count)
5c45bf27
SS
7349{
7350 return sched_power_savings_store(buf, count, 0);
7351}
f718cd4a
AK
7352static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7353 sched_mc_power_savings_show,
7354 sched_mc_power_savings_store);
5c45bf27
SS
7355#endif
7356
7357#ifdef CONFIG_SCHED_SMT
f718cd4a 7358static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7359 struct sysdev_class_attribute *attr,
f718cd4a 7360 char *page)
5c45bf27
SS
7361{
7362 return sprintf(page, "%u\n", sched_smt_power_savings);
7363}
f718cd4a 7364static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7365 struct sysdev_class_attribute *attr,
48f24c4d 7366 const char *buf, size_t count)
5c45bf27
SS
7367{
7368 return sched_power_savings_store(buf, count, 1);
7369}
f718cd4a
AK
7370static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7371 sched_smt_power_savings_show,
6707de00
AB
7372 sched_smt_power_savings_store);
7373#endif
7374
39aac648 7375int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7376{
7377 int err = 0;
7378
7379#ifdef CONFIG_SCHED_SMT
7380 if (smt_capable())
7381 err = sysfs_create_file(&cls->kset.kobj,
7382 &attr_sched_smt_power_savings.attr);
7383#endif
7384#ifdef CONFIG_SCHED_MC
7385 if (!err && mc_capable())
7386 err = sysfs_create_file(&cls->kset.kobj,
7387 &attr_sched_mc_power_savings.attr);
7388#endif
7389 return err;
7390}
6d6bc0ad 7391#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7392
e761b772 7393#ifndef CONFIG_CPUSETS
1da177e4 7394/*
e761b772
MK
7395 * Add online and remove offline CPUs from the scheduler domains.
7396 * When cpusets are enabled they take over this function.
1da177e4
LT
7397 */
7398static int update_sched_domains(struct notifier_block *nfb,
7399 unsigned long action, void *hcpu)
e761b772
MK
7400{
7401 switch (action) {
7402 case CPU_ONLINE:
7403 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7404 case CPU_DOWN_PREPARE:
7405 case CPU_DOWN_PREPARE_FROZEN:
7406 case CPU_DOWN_FAILED:
7407 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7408 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7409 return NOTIFY_OK;
7410
7411 default:
7412 return NOTIFY_DONE;
7413 }
7414}
7415#endif
7416
7417static int update_runtime(struct notifier_block *nfb,
7418 unsigned long action, void *hcpu)
1da177e4 7419{
7def2be1
PZ
7420 int cpu = (int)(long)hcpu;
7421
1da177e4 7422 switch (action) {
1da177e4 7423 case CPU_DOWN_PREPARE:
8bb78442 7424 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7425 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7426 return NOTIFY_OK;
7427
1da177e4 7428 case CPU_DOWN_FAILED:
8bb78442 7429 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7430 case CPU_ONLINE:
8bb78442 7431 case CPU_ONLINE_FROZEN:
7def2be1 7432 enable_runtime(cpu_rq(cpu));
e761b772
MK
7433 return NOTIFY_OK;
7434
1da177e4
LT
7435 default:
7436 return NOTIFY_DONE;
7437 }
1da177e4 7438}
1da177e4
LT
7439
7440void __init sched_init_smp(void)
7441{
dcc30a35
RR
7442 cpumask_var_t non_isolated_cpus;
7443
7444 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7445 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7446
434d53b0
MT
7447#if defined(CONFIG_NUMA)
7448 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7449 GFP_KERNEL);
7450 BUG_ON(sched_group_nodes_bycpu == NULL);
7451#endif
95402b38 7452 get_online_cpus();
712555ee 7453 mutex_lock(&sched_domains_mutex);
6ad4c188 7454 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7455 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7456 if (cpumask_empty(non_isolated_cpus))
7457 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7458 mutex_unlock(&sched_domains_mutex);
95402b38 7459 put_online_cpus();
e761b772
MK
7460
7461#ifndef CONFIG_CPUSETS
1da177e4
LT
7462 /* XXX: Theoretical race here - CPU may be hotplugged now */
7463 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7464#endif
7465
7466 /* RT runtime code needs to handle some hotplug events */
7467 hotcpu_notifier(update_runtime, 0);
7468
b328ca18 7469 init_hrtick();
5c1e1767
NP
7470
7471 /* Move init over to a non-isolated CPU */
dcc30a35 7472 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7473 BUG();
19978ca6 7474 sched_init_granularity();
dcc30a35 7475 free_cpumask_var(non_isolated_cpus);
4212823f 7476
0e3900e6 7477 init_sched_rt_class();
1da177e4
LT
7478}
7479#else
7480void __init sched_init_smp(void)
7481{
19978ca6 7482 sched_init_granularity();
1da177e4
LT
7483}
7484#endif /* CONFIG_SMP */
7485
cd1bb94b
AB
7486const_debug unsigned int sysctl_timer_migration = 1;
7487
1da177e4
LT
7488int in_sched_functions(unsigned long addr)
7489{
1da177e4
LT
7490 return in_lock_functions(addr) ||
7491 (addr >= (unsigned long)__sched_text_start
7492 && addr < (unsigned long)__sched_text_end);
7493}
7494
a9957449 7495static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7496{
7497 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7498 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7499#ifdef CONFIG_FAIR_GROUP_SCHED
7500 cfs_rq->rq = rq;
7501#endif
67e9fb2a 7502 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7503}
7504
fa85ae24
PZ
7505static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7506{
7507 struct rt_prio_array *array;
7508 int i;
7509
7510 array = &rt_rq->active;
7511 for (i = 0; i < MAX_RT_PRIO; i++) {
7512 INIT_LIST_HEAD(array->queue + i);
7513 __clear_bit(i, array->bitmap);
7514 }
7515 /* delimiter for bitsearch: */
7516 __set_bit(MAX_RT_PRIO, array->bitmap);
7517
052f1dc7 7518#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7519 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7520#ifdef CONFIG_SMP
e864c499 7521 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7522#endif
48d5e258 7523#endif
fa85ae24
PZ
7524#ifdef CONFIG_SMP
7525 rt_rq->rt_nr_migratory = 0;
fa85ae24 7526 rt_rq->overloaded = 0;
05fa785c 7527 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7528#endif
7529
7530 rt_rq->rt_time = 0;
7531 rt_rq->rt_throttled = 0;
ac086bc2 7532 rt_rq->rt_runtime = 0;
0986b11b 7533 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7534
052f1dc7 7535#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7536 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7537 rt_rq->rq = rq;
7538#endif
fa85ae24
PZ
7539}
7540
6f505b16 7541#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7542static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7543 struct sched_entity *se, int cpu, int add,
7544 struct sched_entity *parent)
6f505b16 7545{
ec7dc8ac 7546 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7547 tg->cfs_rq[cpu] = cfs_rq;
7548 init_cfs_rq(cfs_rq, rq);
7549 cfs_rq->tg = tg;
7550 if (add)
7551 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7552
7553 tg->se[cpu] = se;
354d60c2
DG
7554 /* se could be NULL for init_task_group */
7555 if (!se)
7556 return;
7557
ec7dc8ac
DG
7558 if (!parent)
7559 se->cfs_rq = &rq->cfs;
7560 else
7561 se->cfs_rq = parent->my_q;
7562
6f505b16
PZ
7563 se->my_q = cfs_rq;
7564 se->load.weight = tg->shares;
e05510d0 7565 se->load.inv_weight = 0;
ec7dc8ac 7566 se->parent = parent;
6f505b16 7567}
052f1dc7 7568#endif
6f505b16 7569
052f1dc7 7570#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7571static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7572 struct sched_rt_entity *rt_se, int cpu, int add,
7573 struct sched_rt_entity *parent)
6f505b16 7574{
ec7dc8ac
DG
7575 struct rq *rq = cpu_rq(cpu);
7576
6f505b16
PZ
7577 tg->rt_rq[cpu] = rt_rq;
7578 init_rt_rq(rt_rq, rq);
7579 rt_rq->tg = tg;
ac086bc2 7580 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7581 if (add)
7582 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7583
7584 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7585 if (!rt_se)
7586 return;
7587
ec7dc8ac
DG
7588 if (!parent)
7589 rt_se->rt_rq = &rq->rt;
7590 else
7591 rt_se->rt_rq = parent->my_q;
7592
6f505b16 7593 rt_se->my_q = rt_rq;
ec7dc8ac 7594 rt_se->parent = parent;
6f505b16
PZ
7595 INIT_LIST_HEAD(&rt_se->run_list);
7596}
7597#endif
7598
1da177e4
LT
7599void __init sched_init(void)
7600{
dd41f596 7601 int i, j;
434d53b0
MT
7602 unsigned long alloc_size = 0, ptr;
7603
7604#ifdef CONFIG_FAIR_GROUP_SCHED
7605 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7606#endif
7607#ifdef CONFIG_RT_GROUP_SCHED
7608 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7609#endif
df7c8e84 7610#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7611 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7612#endif
434d53b0 7613 if (alloc_size) {
36b7b6d4 7614 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7615
7616#ifdef CONFIG_FAIR_GROUP_SCHED
7617 init_task_group.se = (struct sched_entity **)ptr;
7618 ptr += nr_cpu_ids * sizeof(void **);
7619
7620 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7621 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7622
6d6bc0ad 7623#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7624#ifdef CONFIG_RT_GROUP_SCHED
7625 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7626 ptr += nr_cpu_ids * sizeof(void **);
7627
7628 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7629 ptr += nr_cpu_ids * sizeof(void **);
7630
6d6bc0ad 7631#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7632#ifdef CONFIG_CPUMASK_OFFSTACK
7633 for_each_possible_cpu(i) {
7634 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7635 ptr += cpumask_size();
7636 }
7637#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7638 }
dd41f596 7639
57d885fe
GH
7640#ifdef CONFIG_SMP
7641 init_defrootdomain();
7642#endif
7643
d0b27fa7
PZ
7644 init_rt_bandwidth(&def_rt_bandwidth,
7645 global_rt_period(), global_rt_runtime());
7646
7647#ifdef CONFIG_RT_GROUP_SCHED
7648 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7649 global_rt_period(), global_rt_runtime());
6d6bc0ad 7650#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7651
7c941438 7652#ifdef CONFIG_CGROUP_SCHED
6f505b16 7653 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7654 INIT_LIST_HEAD(&init_task_group.children);
7655
7c941438 7656#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7657
4a6cc4bd
JK
7658#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7659 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7660 __alignof__(unsigned long));
7661#endif
0a945022 7662 for_each_possible_cpu(i) {
70b97a7f 7663 struct rq *rq;
1da177e4
LT
7664
7665 rq = cpu_rq(i);
05fa785c 7666 raw_spin_lock_init(&rq->lock);
7897986b 7667 rq->nr_running = 0;
dce48a84
TG
7668 rq->calc_load_active = 0;
7669 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7670 init_cfs_rq(&rq->cfs, rq);
6f505b16 7671 init_rt_rq(&rq->rt, rq);
dd41f596 7672#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7673 init_task_group.shares = init_task_group_load;
6f505b16 7674 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7675#ifdef CONFIG_CGROUP_SCHED
7676 /*
7677 * How much cpu bandwidth does init_task_group get?
7678 *
7679 * In case of task-groups formed thr' the cgroup filesystem, it
7680 * gets 100% of the cpu resources in the system. This overall
7681 * system cpu resource is divided among the tasks of
7682 * init_task_group and its child task-groups in a fair manner,
7683 * based on each entity's (task or task-group's) weight
7684 * (se->load.weight).
7685 *
7686 * In other words, if init_task_group has 10 tasks of weight
7687 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7688 * then A0's share of the cpu resource is:
7689 *
0d905bca 7690 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7691 *
7692 * We achieve this by letting init_task_group's tasks sit
7693 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7694 */
ec7dc8ac 7695 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7696#endif
354d60c2
DG
7697#endif /* CONFIG_FAIR_GROUP_SCHED */
7698
7699 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7700#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7701 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7702#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7703 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7704#endif
dd41f596 7705#endif
1da177e4 7706
dd41f596
IM
7707 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7708 rq->cpu_load[j] = 0;
1da177e4 7709#ifdef CONFIG_SMP
41c7ce9a 7710 rq->sd = NULL;
57d885fe 7711 rq->rd = NULL;
3f029d3c 7712 rq->post_schedule = 0;
1da177e4 7713 rq->active_balance = 0;
dd41f596 7714 rq->next_balance = jiffies;
1da177e4 7715 rq->push_cpu = 0;
0a2966b4 7716 rq->cpu = i;
1f11eb6a 7717 rq->online = 0;
1da177e4 7718 rq->migration_thread = NULL;
eae0c9df
MG
7719 rq->idle_stamp = 0;
7720 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7721 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7722 rq_attach_root(rq, &def_root_domain);
1da177e4 7723#endif
8f4d37ec 7724 init_rq_hrtick(rq);
1da177e4 7725 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7726 }
7727
2dd73a4f 7728 set_load_weight(&init_task);
b50f60ce 7729
e107be36
AK
7730#ifdef CONFIG_PREEMPT_NOTIFIERS
7731 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7732#endif
7733
c9819f45 7734#ifdef CONFIG_SMP
962cf36c 7735 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7736#endif
7737
b50f60ce 7738#ifdef CONFIG_RT_MUTEXES
1d615482 7739 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7740#endif
7741
1da177e4
LT
7742 /*
7743 * The boot idle thread does lazy MMU switching as well:
7744 */
7745 atomic_inc(&init_mm.mm_count);
7746 enter_lazy_tlb(&init_mm, current);
7747
7748 /*
7749 * Make us the idle thread. Technically, schedule() should not be
7750 * called from this thread, however somewhere below it might be,
7751 * but because we are the idle thread, we just pick up running again
7752 * when this runqueue becomes "idle".
7753 */
7754 init_idle(current, smp_processor_id());
dce48a84
TG
7755
7756 calc_load_update = jiffies + LOAD_FREQ;
7757
dd41f596
IM
7758 /*
7759 * During early bootup we pretend to be a normal task:
7760 */
7761 current->sched_class = &fair_sched_class;
6892b75e 7762
6a7b3dc3 7763 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7764 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7765#ifdef CONFIG_SMP
7d1e6a9b 7766#ifdef CONFIG_NO_HZ
49557e62 7767 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7768 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7769#endif
bdddd296
RR
7770 /* May be allocated at isolcpus cmdline parse time */
7771 if (cpu_isolated_map == NULL)
7772 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7773#endif /* SMP */
6a7b3dc3 7774
cdd6c482 7775 perf_event_init();
0d905bca 7776
6892b75e 7777 scheduler_running = 1;
1da177e4
LT
7778}
7779
7780#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7781static inline int preempt_count_equals(int preempt_offset)
7782{
234da7bc 7783 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7784
7785 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7786}
7787
d894837f 7788void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7789{
48f24c4d 7790#ifdef in_atomic
1da177e4
LT
7791 static unsigned long prev_jiffy; /* ratelimiting */
7792
e4aafea2
FW
7793 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7794 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7795 return;
7796 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7797 return;
7798 prev_jiffy = jiffies;
7799
3df0fc5b
PZ
7800 printk(KERN_ERR
7801 "BUG: sleeping function called from invalid context at %s:%d\n",
7802 file, line);
7803 printk(KERN_ERR
7804 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7805 in_atomic(), irqs_disabled(),
7806 current->pid, current->comm);
aef745fc
IM
7807
7808 debug_show_held_locks(current);
7809 if (irqs_disabled())
7810 print_irqtrace_events(current);
7811 dump_stack();
1da177e4
LT
7812#endif
7813}
7814EXPORT_SYMBOL(__might_sleep);
7815#endif
7816
7817#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7818static void normalize_task(struct rq *rq, struct task_struct *p)
7819{
7820 int on_rq;
3e51f33f 7821
3a5e4dc1
AK
7822 on_rq = p->se.on_rq;
7823 if (on_rq)
7824 deactivate_task(rq, p, 0);
7825 __setscheduler(rq, p, SCHED_NORMAL, 0);
7826 if (on_rq) {
7827 activate_task(rq, p, 0);
7828 resched_task(rq->curr);
7829 }
7830}
7831
1da177e4
LT
7832void normalize_rt_tasks(void)
7833{
a0f98a1c 7834 struct task_struct *g, *p;
1da177e4 7835 unsigned long flags;
70b97a7f 7836 struct rq *rq;
1da177e4 7837
4cf5d77a 7838 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7839 do_each_thread(g, p) {
178be793
IM
7840 /*
7841 * Only normalize user tasks:
7842 */
7843 if (!p->mm)
7844 continue;
7845
6cfb0d5d 7846 p->se.exec_start = 0;
6cfb0d5d 7847#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7848 p->se.statistics.wait_start = 0;
7849 p->se.statistics.sleep_start = 0;
7850 p->se.statistics.block_start = 0;
6cfb0d5d 7851#endif
dd41f596
IM
7852
7853 if (!rt_task(p)) {
7854 /*
7855 * Renice negative nice level userspace
7856 * tasks back to 0:
7857 */
7858 if (TASK_NICE(p) < 0 && p->mm)
7859 set_user_nice(p, 0);
1da177e4 7860 continue;
dd41f596 7861 }
1da177e4 7862
1d615482 7863 raw_spin_lock(&p->pi_lock);
b29739f9 7864 rq = __task_rq_lock(p);
1da177e4 7865
178be793 7866 normalize_task(rq, p);
3a5e4dc1 7867
b29739f9 7868 __task_rq_unlock(rq);
1d615482 7869 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7870 } while_each_thread(g, p);
7871
4cf5d77a 7872 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7873}
7874
7875#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7876
7877#ifdef CONFIG_IA64
7878/*
7879 * These functions are only useful for the IA64 MCA handling.
7880 *
7881 * They can only be called when the whole system has been
7882 * stopped - every CPU needs to be quiescent, and no scheduling
7883 * activity can take place. Using them for anything else would
7884 * be a serious bug, and as a result, they aren't even visible
7885 * under any other configuration.
7886 */
7887
7888/**
7889 * curr_task - return the current task for a given cpu.
7890 * @cpu: the processor in question.
7891 *
7892 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7893 */
36c8b586 7894struct task_struct *curr_task(int cpu)
1df5c10a
LT
7895{
7896 return cpu_curr(cpu);
7897}
7898
7899/**
7900 * set_curr_task - set the current task for a given cpu.
7901 * @cpu: the processor in question.
7902 * @p: the task pointer to set.
7903 *
7904 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7905 * are serviced on a separate stack. It allows the architecture to switch the
7906 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7907 * must be called with all CPU's synchronized, and interrupts disabled, the
7908 * and caller must save the original value of the current task (see
7909 * curr_task() above) and restore that value before reenabling interrupts and
7910 * re-starting the system.
7911 *
7912 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7913 */
36c8b586 7914void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7915{
7916 cpu_curr(cpu) = p;
7917}
7918
7919#endif
29f59db3 7920
bccbe08a
PZ
7921#ifdef CONFIG_FAIR_GROUP_SCHED
7922static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7923{
7924 int i;
7925
7926 for_each_possible_cpu(i) {
7927 if (tg->cfs_rq)
7928 kfree(tg->cfs_rq[i]);
7929 if (tg->se)
7930 kfree(tg->se[i]);
6f505b16
PZ
7931 }
7932
7933 kfree(tg->cfs_rq);
7934 kfree(tg->se);
6f505b16
PZ
7935}
7936
ec7dc8ac
DG
7937static
7938int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7939{
29f59db3 7940 struct cfs_rq *cfs_rq;
eab17229 7941 struct sched_entity *se;
9b5b7751 7942 struct rq *rq;
29f59db3
SV
7943 int i;
7944
434d53b0 7945 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7946 if (!tg->cfs_rq)
7947 goto err;
434d53b0 7948 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7949 if (!tg->se)
7950 goto err;
052f1dc7
PZ
7951
7952 tg->shares = NICE_0_LOAD;
29f59db3
SV
7953
7954 for_each_possible_cpu(i) {
9b5b7751 7955 rq = cpu_rq(i);
29f59db3 7956
eab17229
LZ
7957 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7958 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7959 if (!cfs_rq)
7960 goto err;
7961
eab17229
LZ
7962 se = kzalloc_node(sizeof(struct sched_entity),
7963 GFP_KERNEL, cpu_to_node(i));
29f59db3 7964 if (!se)
dfc12eb2 7965 goto err_free_rq;
29f59db3 7966
eab17229 7967 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7968 }
7969
7970 return 1;
7971
dfc12eb2
PC
7972 err_free_rq:
7973 kfree(cfs_rq);
bccbe08a
PZ
7974 err:
7975 return 0;
7976}
7977
7978static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7979{
7980 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7981 &cpu_rq(cpu)->leaf_cfs_rq_list);
7982}
7983
7984static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7985{
7986 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7987}
6d6bc0ad 7988#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7989static inline void free_fair_sched_group(struct task_group *tg)
7990{
7991}
7992
ec7dc8ac
DG
7993static inline
7994int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7995{
7996 return 1;
7997}
7998
7999static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8000{
8001}
8002
8003static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8004{
8005}
6d6bc0ad 8006#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8007
8008#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8009static void free_rt_sched_group(struct task_group *tg)
8010{
8011 int i;
8012
d0b27fa7
PZ
8013 destroy_rt_bandwidth(&tg->rt_bandwidth);
8014
bccbe08a
PZ
8015 for_each_possible_cpu(i) {
8016 if (tg->rt_rq)
8017 kfree(tg->rt_rq[i]);
8018 if (tg->rt_se)
8019 kfree(tg->rt_se[i]);
8020 }
8021
8022 kfree(tg->rt_rq);
8023 kfree(tg->rt_se);
8024}
8025
ec7dc8ac
DG
8026static
8027int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8028{
8029 struct rt_rq *rt_rq;
eab17229 8030 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8031 struct rq *rq;
8032 int i;
8033
434d53b0 8034 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8035 if (!tg->rt_rq)
8036 goto err;
434d53b0 8037 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8038 if (!tg->rt_se)
8039 goto err;
8040
d0b27fa7
PZ
8041 init_rt_bandwidth(&tg->rt_bandwidth,
8042 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8043
8044 for_each_possible_cpu(i) {
8045 rq = cpu_rq(i);
8046
eab17229
LZ
8047 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8048 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8049 if (!rt_rq)
8050 goto err;
29f59db3 8051
eab17229
LZ
8052 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8053 GFP_KERNEL, cpu_to_node(i));
6f505b16 8054 if (!rt_se)
dfc12eb2 8055 goto err_free_rq;
29f59db3 8056
eab17229 8057 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8058 }
8059
bccbe08a
PZ
8060 return 1;
8061
dfc12eb2
PC
8062 err_free_rq:
8063 kfree(rt_rq);
bccbe08a
PZ
8064 err:
8065 return 0;
8066}
8067
8068static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8069{
8070 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8071 &cpu_rq(cpu)->leaf_rt_rq_list);
8072}
8073
8074static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8075{
8076 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8077}
6d6bc0ad 8078#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8079static inline void free_rt_sched_group(struct task_group *tg)
8080{
8081}
8082
ec7dc8ac
DG
8083static inline
8084int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8085{
8086 return 1;
8087}
8088
8089static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8090{
8091}
8092
8093static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8094{
8095}
6d6bc0ad 8096#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8097
7c941438 8098#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8099static void free_sched_group(struct task_group *tg)
8100{
8101 free_fair_sched_group(tg);
8102 free_rt_sched_group(tg);
8103 kfree(tg);
8104}
8105
8106/* allocate runqueue etc for a new task group */
ec7dc8ac 8107struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8108{
8109 struct task_group *tg;
8110 unsigned long flags;
8111 int i;
8112
8113 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8114 if (!tg)
8115 return ERR_PTR(-ENOMEM);
8116
ec7dc8ac 8117 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8118 goto err;
8119
ec7dc8ac 8120 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8121 goto err;
8122
8ed36996 8123 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8124 for_each_possible_cpu(i) {
bccbe08a
PZ
8125 register_fair_sched_group(tg, i);
8126 register_rt_sched_group(tg, i);
9b5b7751 8127 }
6f505b16 8128 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8129
8130 WARN_ON(!parent); /* root should already exist */
8131
8132 tg->parent = parent;
f473aa5e 8133 INIT_LIST_HEAD(&tg->children);
09f2724a 8134 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8135 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8136
9b5b7751 8137 return tg;
29f59db3
SV
8138
8139err:
6f505b16 8140 free_sched_group(tg);
29f59db3
SV
8141 return ERR_PTR(-ENOMEM);
8142}
8143
9b5b7751 8144/* rcu callback to free various structures associated with a task group */
6f505b16 8145static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8146{
29f59db3 8147 /* now it should be safe to free those cfs_rqs */
6f505b16 8148 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8149}
8150
9b5b7751 8151/* Destroy runqueue etc associated with a task group */
4cf86d77 8152void sched_destroy_group(struct task_group *tg)
29f59db3 8153{
8ed36996 8154 unsigned long flags;
9b5b7751 8155 int i;
29f59db3 8156
8ed36996 8157 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8158 for_each_possible_cpu(i) {
bccbe08a
PZ
8159 unregister_fair_sched_group(tg, i);
8160 unregister_rt_sched_group(tg, i);
9b5b7751 8161 }
6f505b16 8162 list_del_rcu(&tg->list);
f473aa5e 8163 list_del_rcu(&tg->siblings);
8ed36996 8164 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8165
9b5b7751 8166 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8167 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8168}
8169
9b5b7751 8170/* change task's runqueue when it moves between groups.
3a252015
IM
8171 * The caller of this function should have put the task in its new group
8172 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8173 * reflect its new group.
9b5b7751
SV
8174 */
8175void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8176{
8177 int on_rq, running;
8178 unsigned long flags;
8179 struct rq *rq;
8180
8181 rq = task_rq_lock(tsk, &flags);
8182
051a1d1a 8183 running = task_current(rq, tsk);
29f59db3
SV
8184 on_rq = tsk->se.on_rq;
8185
0e1f3483 8186 if (on_rq)
29f59db3 8187 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8188 if (unlikely(running))
8189 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8190
6f505b16 8191 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8192
810b3817
PZ
8193#ifdef CONFIG_FAIR_GROUP_SCHED
8194 if (tsk->sched_class->moved_group)
88ec22d3 8195 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8196#endif
8197
0e1f3483
HS
8198 if (unlikely(running))
8199 tsk->sched_class->set_curr_task(rq);
8200 if (on_rq)
ea87bb78 8201 enqueue_task(rq, tsk, 0, false);
29f59db3 8202
29f59db3
SV
8203 task_rq_unlock(rq, &flags);
8204}
7c941438 8205#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8206
052f1dc7 8207#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8208static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8209{
8210 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8211 int on_rq;
8212
29f59db3 8213 on_rq = se->on_rq;
62fb1851 8214 if (on_rq)
29f59db3
SV
8215 dequeue_entity(cfs_rq, se, 0);
8216
8217 se->load.weight = shares;
e05510d0 8218 se->load.inv_weight = 0;
29f59db3 8219
62fb1851 8220 if (on_rq)
29f59db3 8221 enqueue_entity(cfs_rq, se, 0);
c09595f6 8222}
62fb1851 8223
c09595f6
PZ
8224static void set_se_shares(struct sched_entity *se, unsigned long shares)
8225{
8226 struct cfs_rq *cfs_rq = se->cfs_rq;
8227 struct rq *rq = cfs_rq->rq;
8228 unsigned long flags;
8229
05fa785c 8230 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8231 __set_se_shares(se, shares);
05fa785c 8232 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8233}
8234
8ed36996
PZ
8235static DEFINE_MUTEX(shares_mutex);
8236
4cf86d77 8237int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8238{
8239 int i;
8ed36996 8240 unsigned long flags;
c61935fd 8241
ec7dc8ac
DG
8242 /*
8243 * We can't change the weight of the root cgroup.
8244 */
8245 if (!tg->se[0])
8246 return -EINVAL;
8247
18d95a28
PZ
8248 if (shares < MIN_SHARES)
8249 shares = MIN_SHARES;
cb4ad1ff
MX
8250 else if (shares > MAX_SHARES)
8251 shares = MAX_SHARES;
62fb1851 8252
8ed36996 8253 mutex_lock(&shares_mutex);
9b5b7751 8254 if (tg->shares == shares)
5cb350ba 8255 goto done;
29f59db3 8256
8ed36996 8257 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8258 for_each_possible_cpu(i)
8259 unregister_fair_sched_group(tg, i);
f473aa5e 8260 list_del_rcu(&tg->siblings);
8ed36996 8261 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8262
8263 /* wait for any ongoing reference to this group to finish */
8264 synchronize_sched();
8265
8266 /*
8267 * Now we are free to modify the group's share on each cpu
8268 * w/o tripping rebalance_share or load_balance_fair.
8269 */
9b5b7751 8270 tg->shares = shares;
c09595f6
PZ
8271 for_each_possible_cpu(i) {
8272 /*
8273 * force a rebalance
8274 */
8275 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8276 set_se_shares(tg->se[i], shares);
c09595f6 8277 }
29f59db3 8278
6b2d7700
SV
8279 /*
8280 * Enable load balance activity on this group, by inserting it back on
8281 * each cpu's rq->leaf_cfs_rq_list.
8282 */
8ed36996 8283 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8284 for_each_possible_cpu(i)
8285 register_fair_sched_group(tg, i);
f473aa5e 8286 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8287 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8288done:
8ed36996 8289 mutex_unlock(&shares_mutex);
9b5b7751 8290 return 0;
29f59db3
SV
8291}
8292
5cb350ba
DG
8293unsigned long sched_group_shares(struct task_group *tg)
8294{
8295 return tg->shares;
8296}
052f1dc7 8297#endif
5cb350ba 8298
052f1dc7 8299#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8300/*
9f0c1e56 8301 * Ensure that the real time constraints are schedulable.
6f505b16 8302 */
9f0c1e56
PZ
8303static DEFINE_MUTEX(rt_constraints_mutex);
8304
8305static unsigned long to_ratio(u64 period, u64 runtime)
8306{
8307 if (runtime == RUNTIME_INF)
9a7e0b18 8308 return 1ULL << 20;
9f0c1e56 8309
9a7e0b18 8310 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8311}
8312
9a7e0b18
PZ
8313/* Must be called with tasklist_lock held */
8314static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8315{
9a7e0b18 8316 struct task_struct *g, *p;
b40b2e8e 8317
9a7e0b18
PZ
8318 do_each_thread(g, p) {
8319 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8320 return 1;
8321 } while_each_thread(g, p);
b40b2e8e 8322
9a7e0b18
PZ
8323 return 0;
8324}
b40b2e8e 8325
9a7e0b18
PZ
8326struct rt_schedulable_data {
8327 struct task_group *tg;
8328 u64 rt_period;
8329 u64 rt_runtime;
8330};
b40b2e8e 8331
9a7e0b18
PZ
8332static int tg_schedulable(struct task_group *tg, void *data)
8333{
8334 struct rt_schedulable_data *d = data;
8335 struct task_group *child;
8336 unsigned long total, sum = 0;
8337 u64 period, runtime;
b40b2e8e 8338
9a7e0b18
PZ
8339 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8340 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8341
9a7e0b18
PZ
8342 if (tg == d->tg) {
8343 period = d->rt_period;
8344 runtime = d->rt_runtime;
b40b2e8e 8345 }
b40b2e8e 8346
4653f803
PZ
8347 /*
8348 * Cannot have more runtime than the period.
8349 */
8350 if (runtime > period && runtime != RUNTIME_INF)
8351 return -EINVAL;
6f505b16 8352
4653f803
PZ
8353 /*
8354 * Ensure we don't starve existing RT tasks.
8355 */
9a7e0b18
PZ
8356 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8357 return -EBUSY;
6f505b16 8358
9a7e0b18 8359 total = to_ratio(period, runtime);
6f505b16 8360
4653f803
PZ
8361 /*
8362 * Nobody can have more than the global setting allows.
8363 */
8364 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8365 return -EINVAL;
6f505b16 8366
4653f803
PZ
8367 /*
8368 * The sum of our children's runtime should not exceed our own.
8369 */
9a7e0b18
PZ
8370 list_for_each_entry_rcu(child, &tg->children, siblings) {
8371 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8372 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8373
9a7e0b18
PZ
8374 if (child == d->tg) {
8375 period = d->rt_period;
8376 runtime = d->rt_runtime;
8377 }
6f505b16 8378
9a7e0b18 8379 sum += to_ratio(period, runtime);
9f0c1e56 8380 }
6f505b16 8381
9a7e0b18
PZ
8382 if (sum > total)
8383 return -EINVAL;
8384
8385 return 0;
6f505b16
PZ
8386}
8387
9a7e0b18 8388static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8389{
9a7e0b18
PZ
8390 struct rt_schedulable_data data = {
8391 .tg = tg,
8392 .rt_period = period,
8393 .rt_runtime = runtime,
8394 };
8395
8396 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8397}
8398
d0b27fa7
PZ
8399static int tg_set_bandwidth(struct task_group *tg,
8400 u64 rt_period, u64 rt_runtime)
6f505b16 8401{
ac086bc2 8402 int i, err = 0;
9f0c1e56 8403
9f0c1e56 8404 mutex_lock(&rt_constraints_mutex);
521f1a24 8405 read_lock(&tasklist_lock);
9a7e0b18
PZ
8406 err = __rt_schedulable(tg, rt_period, rt_runtime);
8407 if (err)
9f0c1e56 8408 goto unlock;
ac086bc2 8409
0986b11b 8410 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8411 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8412 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8413
8414 for_each_possible_cpu(i) {
8415 struct rt_rq *rt_rq = tg->rt_rq[i];
8416
0986b11b 8417 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8418 rt_rq->rt_runtime = rt_runtime;
0986b11b 8419 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8420 }
0986b11b 8421 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8422 unlock:
521f1a24 8423 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8424 mutex_unlock(&rt_constraints_mutex);
8425
8426 return err;
6f505b16
PZ
8427}
8428
d0b27fa7
PZ
8429int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8430{
8431 u64 rt_runtime, rt_period;
8432
8433 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8434 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8435 if (rt_runtime_us < 0)
8436 rt_runtime = RUNTIME_INF;
8437
8438 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8439}
8440
9f0c1e56
PZ
8441long sched_group_rt_runtime(struct task_group *tg)
8442{
8443 u64 rt_runtime_us;
8444
d0b27fa7 8445 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8446 return -1;
8447
d0b27fa7 8448 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8449 do_div(rt_runtime_us, NSEC_PER_USEC);
8450 return rt_runtime_us;
8451}
d0b27fa7
PZ
8452
8453int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8454{
8455 u64 rt_runtime, rt_period;
8456
8457 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8458 rt_runtime = tg->rt_bandwidth.rt_runtime;
8459
619b0488
R
8460 if (rt_period == 0)
8461 return -EINVAL;
8462
d0b27fa7
PZ
8463 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8464}
8465
8466long sched_group_rt_period(struct task_group *tg)
8467{
8468 u64 rt_period_us;
8469
8470 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8471 do_div(rt_period_us, NSEC_PER_USEC);
8472 return rt_period_us;
8473}
8474
8475static int sched_rt_global_constraints(void)
8476{
4653f803 8477 u64 runtime, period;
d0b27fa7
PZ
8478 int ret = 0;
8479
ec5d4989
HS
8480 if (sysctl_sched_rt_period <= 0)
8481 return -EINVAL;
8482
4653f803
PZ
8483 runtime = global_rt_runtime();
8484 period = global_rt_period();
8485
8486 /*
8487 * Sanity check on the sysctl variables.
8488 */
8489 if (runtime > period && runtime != RUNTIME_INF)
8490 return -EINVAL;
10b612f4 8491
d0b27fa7 8492 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8493 read_lock(&tasklist_lock);
4653f803 8494 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8495 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8496 mutex_unlock(&rt_constraints_mutex);
8497
8498 return ret;
8499}
54e99124
DG
8500
8501int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8502{
8503 /* Don't accept realtime tasks when there is no way for them to run */
8504 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8505 return 0;
8506
8507 return 1;
8508}
8509
6d6bc0ad 8510#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8511static int sched_rt_global_constraints(void)
8512{
ac086bc2
PZ
8513 unsigned long flags;
8514 int i;
8515
ec5d4989
HS
8516 if (sysctl_sched_rt_period <= 0)
8517 return -EINVAL;
8518
60aa605d
PZ
8519 /*
8520 * There's always some RT tasks in the root group
8521 * -- migration, kstopmachine etc..
8522 */
8523 if (sysctl_sched_rt_runtime == 0)
8524 return -EBUSY;
8525
0986b11b 8526 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8527 for_each_possible_cpu(i) {
8528 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8529
0986b11b 8530 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8531 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8532 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8533 }
0986b11b 8534 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8535
d0b27fa7
PZ
8536 return 0;
8537}
6d6bc0ad 8538#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8539
8540int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8541 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8542 loff_t *ppos)
8543{
8544 int ret;
8545 int old_period, old_runtime;
8546 static DEFINE_MUTEX(mutex);
8547
8548 mutex_lock(&mutex);
8549 old_period = sysctl_sched_rt_period;
8550 old_runtime = sysctl_sched_rt_runtime;
8551
8d65af78 8552 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8553
8554 if (!ret && write) {
8555 ret = sched_rt_global_constraints();
8556 if (ret) {
8557 sysctl_sched_rt_period = old_period;
8558 sysctl_sched_rt_runtime = old_runtime;
8559 } else {
8560 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8561 def_rt_bandwidth.rt_period =
8562 ns_to_ktime(global_rt_period());
8563 }
8564 }
8565 mutex_unlock(&mutex);
8566
8567 return ret;
8568}
68318b8e 8569
052f1dc7 8570#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8571
8572/* return corresponding task_group object of a cgroup */
2b01dfe3 8573static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8574{
2b01dfe3
PM
8575 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8576 struct task_group, css);
68318b8e
SV
8577}
8578
8579static struct cgroup_subsys_state *
2b01dfe3 8580cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8581{
ec7dc8ac 8582 struct task_group *tg, *parent;
68318b8e 8583
2b01dfe3 8584 if (!cgrp->parent) {
68318b8e 8585 /* This is early initialization for the top cgroup */
68318b8e
SV
8586 return &init_task_group.css;
8587 }
8588
ec7dc8ac
DG
8589 parent = cgroup_tg(cgrp->parent);
8590 tg = sched_create_group(parent);
68318b8e
SV
8591 if (IS_ERR(tg))
8592 return ERR_PTR(-ENOMEM);
8593
68318b8e
SV
8594 return &tg->css;
8595}
8596
41a2d6cf
IM
8597static void
8598cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8599{
2b01dfe3 8600 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8601
8602 sched_destroy_group(tg);
8603}
8604
41a2d6cf 8605static int
be367d09 8606cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8607{
b68aa230 8608#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8609 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8610 return -EINVAL;
8611#else
68318b8e
SV
8612 /* We don't support RT-tasks being in separate groups */
8613 if (tsk->sched_class != &fair_sched_class)
8614 return -EINVAL;
b68aa230 8615#endif
be367d09
BB
8616 return 0;
8617}
68318b8e 8618
be367d09
BB
8619static int
8620cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8621 struct task_struct *tsk, bool threadgroup)
8622{
8623 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8624 if (retval)
8625 return retval;
8626 if (threadgroup) {
8627 struct task_struct *c;
8628 rcu_read_lock();
8629 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8630 retval = cpu_cgroup_can_attach_task(cgrp, c);
8631 if (retval) {
8632 rcu_read_unlock();
8633 return retval;
8634 }
8635 }
8636 rcu_read_unlock();
8637 }
68318b8e
SV
8638 return 0;
8639}
8640
8641static void
2b01dfe3 8642cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8643 struct cgroup *old_cont, struct task_struct *tsk,
8644 bool threadgroup)
68318b8e
SV
8645{
8646 sched_move_task(tsk);
be367d09
BB
8647 if (threadgroup) {
8648 struct task_struct *c;
8649 rcu_read_lock();
8650 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8651 sched_move_task(c);
8652 }
8653 rcu_read_unlock();
8654 }
68318b8e
SV
8655}
8656
052f1dc7 8657#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8658static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8659 u64 shareval)
68318b8e 8660{
2b01dfe3 8661 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8662}
8663
f4c753b7 8664static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8665{
2b01dfe3 8666 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8667
8668 return (u64) tg->shares;
8669}
6d6bc0ad 8670#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8671
052f1dc7 8672#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8673static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8674 s64 val)
6f505b16 8675{
06ecb27c 8676 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8677}
8678
06ecb27c 8679static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8680{
06ecb27c 8681 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8682}
d0b27fa7
PZ
8683
8684static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8685 u64 rt_period_us)
8686{
8687 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8688}
8689
8690static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8691{
8692 return sched_group_rt_period(cgroup_tg(cgrp));
8693}
6d6bc0ad 8694#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8695
fe5c7cc2 8696static struct cftype cpu_files[] = {
052f1dc7 8697#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8698 {
8699 .name = "shares",
f4c753b7
PM
8700 .read_u64 = cpu_shares_read_u64,
8701 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8702 },
052f1dc7
PZ
8703#endif
8704#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8705 {
9f0c1e56 8706 .name = "rt_runtime_us",
06ecb27c
PM
8707 .read_s64 = cpu_rt_runtime_read,
8708 .write_s64 = cpu_rt_runtime_write,
6f505b16 8709 },
d0b27fa7
PZ
8710 {
8711 .name = "rt_period_us",
f4c753b7
PM
8712 .read_u64 = cpu_rt_period_read_uint,
8713 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8714 },
052f1dc7 8715#endif
68318b8e
SV
8716};
8717
8718static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8719{
fe5c7cc2 8720 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8721}
8722
8723struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8724 .name = "cpu",
8725 .create = cpu_cgroup_create,
8726 .destroy = cpu_cgroup_destroy,
8727 .can_attach = cpu_cgroup_can_attach,
8728 .attach = cpu_cgroup_attach,
8729 .populate = cpu_cgroup_populate,
8730 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8731 .early_init = 1,
8732};
8733
052f1dc7 8734#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8735
8736#ifdef CONFIG_CGROUP_CPUACCT
8737
8738/*
8739 * CPU accounting code for task groups.
8740 *
8741 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8742 * (balbir@in.ibm.com).
8743 */
8744
934352f2 8745/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8746struct cpuacct {
8747 struct cgroup_subsys_state css;
8748 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8749 u64 __percpu *cpuusage;
ef12fefa 8750 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8751 struct cpuacct *parent;
d842de87
SV
8752};
8753
8754struct cgroup_subsys cpuacct_subsys;
8755
8756/* return cpu accounting group corresponding to this container */
32cd756a 8757static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8758{
32cd756a 8759 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8760 struct cpuacct, css);
8761}
8762
8763/* return cpu accounting group to which this task belongs */
8764static inline struct cpuacct *task_ca(struct task_struct *tsk)
8765{
8766 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8767 struct cpuacct, css);
8768}
8769
8770/* create a new cpu accounting group */
8771static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8772 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8773{
8774 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8775 int i;
d842de87
SV
8776
8777 if (!ca)
ef12fefa 8778 goto out;
d842de87
SV
8779
8780 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8781 if (!ca->cpuusage)
8782 goto out_free_ca;
8783
8784 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8785 if (percpu_counter_init(&ca->cpustat[i], 0))
8786 goto out_free_counters;
d842de87 8787
934352f2
BR
8788 if (cgrp->parent)
8789 ca->parent = cgroup_ca(cgrp->parent);
8790
d842de87 8791 return &ca->css;
ef12fefa
BR
8792
8793out_free_counters:
8794 while (--i >= 0)
8795 percpu_counter_destroy(&ca->cpustat[i]);
8796 free_percpu(ca->cpuusage);
8797out_free_ca:
8798 kfree(ca);
8799out:
8800 return ERR_PTR(-ENOMEM);
d842de87
SV
8801}
8802
8803/* destroy an existing cpu accounting group */
41a2d6cf 8804static void
32cd756a 8805cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8806{
32cd756a 8807 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8808 int i;
d842de87 8809
ef12fefa
BR
8810 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8811 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8812 free_percpu(ca->cpuusage);
8813 kfree(ca);
8814}
8815
720f5498
KC
8816static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8817{
b36128c8 8818 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8819 u64 data;
8820
8821#ifndef CONFIG_64BIT
8822 /*
8823 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8824 */
05fa785c 8825 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8826 data = *cpuusage;
05fa785c 8827 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8828#else
8829 data = *cpuusage;
8830#endif
8831
8832 return data;
8833}
8834
8835static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8836{
b36128c8 8837 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8838
8839#ifndef CONFIG_64BIT
8840 /*
8841 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8842 */
05fa785c 8843 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8844 *cpuusage = val;
05fa785c 8845 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8846#else
8847 *cpuusage = val;
8848#endif
8849}
8850
d842de87 8851/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8852static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8853{
32cd756a 8854 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8855 u64 totalcpuusage = 0;
8856 int i;
8857
720f5498
KC
8858 for_each_present_cpu(i)
8859 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8860
8861 return totalcpuusage;
8862}
8863
0297b803
DG
8864static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8865 u64 reset)
8866{
8867 struct cpuacct *ca = cgroup_ca(cgrp);
8868 int err = 0;
8869 int i;
8870
8871 if (reset) {
8872 err = -EINVAL;
8873 goto out;
8874 }
8875
720f5498
KC
8876 for_each_present_cpu(i)
8877 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8878
0297b803
DG
8879out:
8880 return err;
8881}
8882
e9515c3c
KC
8883static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8884 struct seq_file *m)
8885{
8886 struct cpuacct *ca = cgroup_ca(cgroup);
8887 u64 percpu;
8888 int i;
8889
8890 for_each_present_cpu(i) {
8891 percpu = cpuacct_cpuusage_read(ca, i);
8892 seq_printf(m, "%llu ", (unsigned long long) percpu);
8893 }
8894 seq_printf(m, "\n");
8895 return 0;
8896}
8897
ef12fefa
BR
8898static const char *cpuacct_stat_desc[] = {
8899 [CPUACCT_STAT_USER] = "user",
8900 [CPUACCT_STAT_SYSTEM] = "system",
8901};
8902
8903static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8904 struct cgroup_map_cb *cb)
8905{
8906 struct cpuacct *ca = cgroup_ca(cgrp);
8907 int i;
8908
8909 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8910 s64 val = percpu_counter_read(&ca->cpustat[i]);
8911 val = cputime64_to_clock_t(val);
8912 cb->fill(cb, cpuacct_stat_desc[i], val);
8913 }
8914 return 0;
8915}
8916
d842de87
SV
8917static struct cftype files[] = {
8918 {
8919 .name = "usage",
f4c753b7
PM
8920 .read_u64 = cpuusage_read,
8921 .write_u64 = cpuusage_write,
d842de87 8922 },
e9515c3c
KC
8923 {
8924 .name = "usage_percpu",
8925 .read_seq_string = cpuacct_percpu_seq_read,
8926 },
ef12fefa
BR
8927 {
8928 .name = "stat",
8929 .read_map = cpuacct_stats_show,
8930 },
d842de87
SV
8931};
8932
32cd756a 8933static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8934{
32cd756a 8935 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8936}
8937
8938/*
8939 * charge this task's execution time to its accounting group.
8940 *
8941 * called with rq->lock held.
8942 */
8943static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8944{
8945 struct cpuacct *ca;
934352f2 8946 int cpu;
d842de87 8947
c40c6f85 8948 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8949 return;
8950
934352f2 8951 cpu = task_cpu(tsk);
a18b83b7
BR
8952
8953 rcu_read_lock();
8954
d842de87 8955 ca = task_ca(tsk);
d842de87 8956
934352f2 8957 for (; ca; ca = ca->parent) {
b36128c8 8958 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8959 *cpuusage += cputime;
8960 }
a18b83b7
BR
8961
8962 rcu_read_unlock();
d842de87
SV
8963}
8964
fa535a77
AB
8965/*
8966 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8967 * in cputime_t units. As a result, cpuacct_update_stats calls
8968 * percpu_counter_add with values large enough to always overflow the
8969 * per cpu batch limit causing bad SMP scalability.
8970 *
8971 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8972 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8973 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8974 */
8975#ifdef CONFIG_SMP
8976#define CPUACCT_BATCH \
8977 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8978#else
8979#define CPUACCT_BATCH 0
8980#endif
8981
ef12fefa
BR
8982/*
8983 * Charge the system/user time to the task's accounting group.
8984 */
8985static void cpuacct_update_stats(struct task_struct *tsk,
8986 enum cpuacct_stat_index idx, cputime_t val)
8987{
8988 struct cpuacct *ca;
fa535a77 8989 int batch = CPUACCT_BATCH;
ef12fefa
BR
8990
8991 if (unlikely(!cpuacct_subsys.active))
8992 return;
8993
8994 rcu_read_lock();
8995 ca = task_ca(tsk);
8996
8997 do {
fa535a77 8998 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8999 ca = ca->parent;
9000 } while (ca);
9001 rcu_read_unlock();
9002}
9003
d842de87
SV
9004struct cgroup_subsys cpuacct_subsys = {
9005 .name = "cpuacct",
9006 .create = cpuacct_create,
9007 .destroy = cpuacct_destroy,
9008 .populate = cpuacct_populate,
9009 .subsys_id = cpuacct_subsys_id,
9010};
9011#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9012
9013#ifndef CONFIG_SMP
9014
9015int rcu_expedited_torture_stats(char *page)
9016{
9017 return 0;
9018}
9019EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9020
9021void synchronize_sched_expedited(void)
9022{
9023}
9024EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9025
9026#else /* #ifndef CONFIG_SMP */
9027
9028static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9029static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9030
9031#define RCU_EXPEDITED_STATE_POST -2
9032#define RCU_EXPEDITED_STATE_IDLE -1
9033
9034static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9035
9036int rcu_expedited_torture_stats(char *page)
9037{
9038 int cnt = 0;
9039 int cpu;
9040
9041 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9042 for_each_online_cpu(cpu) {
9043 cnt += sprintf(&page[cnt], " %d:%d",
9044 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9045 }
9046 cnt += sprintf(&page[cnt], "\n");
9047 return cnt;
9048}
9049EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9050
9051static long synchronize_sched_expedited_count;
9052
9053/*
9054 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9055 * approach to force grace period to end quickly. This consumes
9056 * significant time on all CPUs, and is thus not recommended for
9057 * any sort of common-case code.
9058 *
9059 * Note that it is illegal to call this function while holding any
9060 * lock that is acquired by a CPU-hotplug notifier. Failing to
9061 * observe this restriction will result in deadlock.
9062 */
9063void synchronize_sched_expedited(void)
9064{
9065 int cpu;
9066 unsigned long flags;
9067 bool need_full_sync = 0;
9068 struct rq *rq;
9069 struct migration_req *req;
9070 long snap;
9071 int trycount = 0;
9072
9073 smp_mb(); /* ensure prior mod happens before capturing snap. */
9074 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9075 get_online_cpus();
9076 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9077 put_online_cpus();
9078 if (trycount++ < 10)
9079 udelay(trycount * num_online_cpus());
9080 else {
9081 synchronize_sched();
9082 return;
9083 }
9084 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9085 smp_mb(); /* ensure test happens before caller kfree */
9086 return;
9087 }
9088 get_online_cpus();
9089 }
9090 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9091 for_each_online_cpu(cpu) {
9092 rq = cpu_rq(cpu);
9093 req = &per_cpu(rcu_migration_req, cpu);
9094 init_completion(&req->done);
9095 req->task = NULL;
9096 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9097 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9098 list_add(&req->list, &rq->migration_queue);
05fa785c 9099 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9100 wake_up_process(rq->migration_thread);
9101 }
9102 for_each_online_cpu(cpu) {
9103 rcu_expedited_state = cpu;
9104 req = &per_cpu(rcu_migration_req, cpu);
9105 rq = cpu_rq(cpu);
9106 wait_for_completion(&req->done);
05fa785c 9107 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9108 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9109 need_full_sync = 1;
9110 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9111 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9112 }
9113 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9114 synchronize_sched_expedited_count++;
03b042bf
PM
9115 mutex_unlock(&rcu_sched_expedited_mutex);
9116 put_online_cpus();
9117 if (need_full_sync)
9118 synchronize_sched();
9119}
9120EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9121
9122#endif /* #else #ifndef CONFIG_SMP */