]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Remove USER_SCHED from documentation
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
7c941438 236#ifdef CONFIG_CGROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
68318b8e 246 struct cgroup_subsys_state css;
6c415b92 247
052f1dc7 248#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
052f1dc7
PZ
254#endif
255
256#ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
d0b27fa7 260 struct rt_bandwidth rt_bandwidth;
052f1dc7 261#endif
6b2d7700 262
ae8393e5 263 struct rcu_head rcu;
6f505b16 264 struct list_head list;
f473aa5e
PZ
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
29f59db3
SV
269};
270
eff766a6 271#define root_task_group init_task_group
6f505b16 272
8ed36996 273/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
274 * a task group's cpu shares.
275 */
8ed36996 276static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 277
e9036b36
CG
278#ifdef CONFIG_FAIR_GROUP_SCHED
279
57310a98
PZ
280#ifdef CONFIG_SMP
281static int root_task_group_empty(void)
282{
283 return list_empty(&root_task_group.children);
284}
285#endif
286
052f1dc7 287# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 288
cb4ad1ff 289/*
2e084786
LJ
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
cb4ad1ff
MX
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
18d95a28 297#define MIN_SHARES 2
2e084786 298#define MAX_SHARES (1UL << 18)
18d95a28 299
052f1dc7
PZ
300static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301#endif
302
29f59db3 303/* Default task group.
3a252015 304 * Every task in system belong to this group at bootup.
29f59db3 305 */
434d53b0 306struct task_group init_task_group;
29f59db3
SV
307
308/* return group to which a task belongs */
4cf86d77 309static inline struct task_group *task_group(struct task_struct *p)
29f59db3 310{
4cf86d77 311 struct task_group *tg;
9b5b7751 312
7c941438 313#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
24e377a8 316#else
41a2d6cf 317 tg = &init_task_group;
24e377a8 318#endif
9b5b7751 319 return tg;
29f59db3
SV
320}
321
322/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 323static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 324{
052f1dc7 325#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
052f1dc7 328#endif
6f505b16 329
052f1dc7 330#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 333#endif
29f59db3
SV
334}
335
336#else
337
6f505b16 338static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
339static inline struct task_group *task_group(struct task_struct *p)
340{
341 return NULL;
342}
29f59db3 343
7c941438 344#endif /* CONFIG_CGROUP_SCHED */
29f59db3 345
6aa645ea
IM
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
6aa645ea 351 u64 exec_clock;
e9acbff6 352 u64 min_vruntime;
6aa645ea
IM
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
4a55bd5e
PZ
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
4793241b 364 struct sched_entity *curr, *next, *last;
ddc97297 365
5ac5c4d6 366 unsigned int nr_spread_over;
ddc97297 367
62160e3f 368#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
41a2d6cf
IM
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
41a2d6cf
IM
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
381
382#ifdef CONFIG_SMP
c09595f6 383 /*
c8cba857 384 * the part of load.weight contributed by tasks
c09595f6 385 */
c8cba857 386 unsigned long task_weight;
c09595f6 387
c8cba857
PZ
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
c09595f6 395
c8cba857
PZ
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
f1d239f7
PZ
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
c09595f6 405#endif
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
414 struct {
415 int curr; /* highest queued rt task prio */
398a153b 416#ifdef CONFIG_SMP
e864c499 417 int next; /* next highest */
398a153b 418#endif
e864c499 419 } highest_prio;
6f505b16 420#endif
fa85ae24 421#ifdef CONFIG_SMP
73fe6aae 422 unsigned long rt_nr_migratory;
a1ba4d8b 423 unsigned long rt_nr_total;
a22d7fc1 424 int overloaded;
917b627d 425 struct plist_head pushable_tasks;
fa85ae24 426#endif
6f505b16 427 int rt_throttled;
fa85ae24 428 u64 rt_time;
ac086bc2 429 u64 rt_runtime;
ea736ed5 430 /* Nests inside the rq lock: */
0986b11b 431 raw_spinlock_t rt_runtime_lock;
6f505b16 432
052f1dc7 433#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
434 unsigned long rt_nr_boosted;
435
6f505b16
PZ
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
6f505b16 439#endif
6aa645ea
IM
440};
441
57d885fe
GH
442#ifdef CONFIG_SMP
443
444/*
445 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
57d885fe
GH
451 */
452struct root_domain {
453 atomic_t refcount;
c6c4927b
RR
454 cpumask_var_t span;
455 cpumask_var_t online;
637f5085 456
0eab9146 457 /*
637f5085
GH
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
c6c4927b 461 cpumask_var_t rto_mask;
0eab9146 462 atomic_t rto_count;
6e0534f2
GH
463#ifdef CONFIG_SMP
464 struct cpupri cpupri;
465#endif
57d885fe
GH
466};
467
dc938520
GH
468/*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
57d885fe
GH
472static struct root_domain def_root_domain;
473
474#endif
475
1da177e4
LT
476/*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
70b97a7f 483struct rq {
d8016491 484 /* runqueue lock: */
05fa785c 485 raw_spinlock_t lock;
1da177e4
LT
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
6aa645ea
IM
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 494#ifdef CONFIG_NO_HZ
39c0cbe2 495 u64 nohz_stamp;
46cb4b7c
SS
496 unsigned char in_nohz_recently;
497#endif
a64692a3
MG
498 unsigned int skip_clock_update;
499
d8016491
IM
500 /* capture load from *all* tasks on this cpu: */
501 struct load_weight load;
6aa645ea
IM
502 unsigned long nr_load_updates;
503 u64 nr_switches;
504
505 struct cfs_rq cfs;
6f505b16 506 struct rt_rq rt;
6f505b16 507
6aa645ea 508#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
509 /* list of leaf cfs_rq on this cpu: */
510 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
511#endif
512#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 513 struct list_head leaf_rt_rq_list;
1da177e4 514#endif
1da177e4
LT
515
516 /*
517 * This is part of a global counter where only the total sum
518 * over all CPUs matters. A task can increase this counter on
519 * one CPU and if it got migrated afterwards it may decrease
520 * it on another CPU. Always updated under the runqueue lock:
521 */
522 unsigned long nr_uninterruptible;
523
36c8b586 524 struct task_struct *curr, *idle;
c9819f45 525 unsigned long next_balance;
1da177e4 526 struct mm_struct *prev_mm;
6aa645ea 527
3e51f33f 528 u64 clock;
6aa645ea 529
1da177e4
LT
530 atomic_t nr_iowait;
531
532#ifdef CONFIG_SMP
0eab9146 533 struct root_domain *rd;
1da177e4
LT
534 struct sched_domain *sd;
535
a0a522ce 536 unsigned char idle_at_tick;
1da177e4 537 /* For active balancing */
3f029d3c 538 int post_schedule;
1da177e4
LT
539 int active_balance;
540 int push_cpu;
d8016491
IM
541 /* cpu of this runqueue: */
542 int cpu;
1f11eb6a 543 int online;
1da177e4 544
a8a51d5e 545 unsigned long avg_load_per_task;
1da177e4 546
36c8b586 547 struct task_struct *migration_thread;
1da177e4 548 struct list_head migration_queue;
e9e9250b
PZ
549
550 u64 rt_avg;
551 u64 age_stamp;
1b9508f6
MG
552 u64 idle_stamp;
553 u64 avg_idle;
1da177e4
LT
554#endif
555
dce48a84
TG
556 /* calc_load related fields */
557 unsigned long calc_load_update;
558 long calc_load_active;
559
8f4d37ec 560#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
561#ifdef CONFIG_SMP
562 int hrtick_csd_pending;
563 struct call_single_data hrtick_csd;
564#endif
8f4d37ec
PZ
565 struct hrtimer hrtick_timer;
566#endif
567
1da177e4
LT
568#ifdef CONFIG_SCHEDSTATS
569 /* latency stats */
570 struct sched_info rq_sched_info;
9c2c4802
KC
571 unsigned long long rq_cpu_time;
572 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
573
574 /* sys_sched_yield() stats */
480b9434 575 unsigned int yld_count;
1da177e4
LT
576
577 /* schedule() stats */
480b9434
KC
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
1da177e4
LT
581
582 /* try_to_wake_up() stats */
480b9434
KC
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
b8efb561
IM
585
586 /* BKL stats */
480b9434 587 unsigned int bkl_count;
1da177e4
LT
588#endif
589};
590
f34e3b61 591static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 592
7d478721
PZ
593static inline
594void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 595{
7d478721 596 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
597
598 /*
599 * A queue event has occurred, and we're going to schedule. In
600 * this case, we can save a useless back to back clock update.
601 */
602 if (test_tsk_need_resched(p))
603 rq->skip_clock_update = 1;
dd41f596
IM
604}
605
0a2966b4
CL
606static inline int cpu_of(struct rq *rq)
607{
608#ifdef CONFIG_SMP
609 return rq->cpu;
610#else
611 return 0;
612#endif
613}
614
497f0ab3 615#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
616 rcu_dereference_check((p), \
617 rcu_read_lock_sched_held() || \
618 lockdep_is_held(&sched_domains_mutex))
619
674311d5
NP
620/*
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 622 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
623 *
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
626 */
48f24c4d 627#define for_each_domain(cpu, __sd) \
497f0ab3 628 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
629
630#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631#define this_rq() (&__get_cpu_var(runqueues))
632#define task_rq(p) cpu_rq(task_cpu(p))
633#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 634#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 635
aa9c4c0f 636inline void update_rq_clock(struct rq *rq)
3e51f33f 637{
a64692a3
MG
638 if (!rq->skip_clock_update)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
640}
641
bf5c91ba
IM
642/*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645#ifdef CONFIG_SCHED_DEBUG
646# define const_debug __read_mostly
647#else
648# define const_debug static const
649#endif
650
017730c1
IM
651/**
652 * runqueue_is_locked
e17b38bf 653 * @cpu: the processor in question.
017730c1
IM
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
89f19f04 659int runqueue_is_locked(int cpu)
017730c1 660{
05fa785c 661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
662}
663
bf5c91ba
IM
664/*
665 * Debugging: various feature bits
666 */
f00b45c1
PZ
667
668#define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
670
bf5c91ba 671enum {
f00b45c1 672#include "sched_features.h"
bf5c91ba
IM
673};
674
f00b45c1
PZ
675#undef SCHED_FEAT
676
677#define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
679
bf5c91ba 680const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
681#include "sched_features.h"
682 0;
683
684#undef SCHED_FEAT
685
686#ifdef CONFIG_SCHED_DEBUG
687#define SCHED_FEAT(name, enabled) \
688 #name ,
689
983ed7a6 690static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
691#include "sched_features.h"
692 NULL
693};
694
695#undef SCHED_FEAT
696
34f3a814 697static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 698{
f00b45c1
PZ
699 int i;
700
701 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 705 }
34f3a814 706 seq_puts(m, "\n");
f00b45c1 707
34f3a814 708 return 0;
f00b45c1
PZ
709}
710
711static ssize_t
712sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
c24b7c52 728 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
42994724 748 *ppos += cnt;
f00b45c1
PZ
749
750 return cnt;
751}
752
34f3a814
LZ
753static int sched_feat_open(struct inode *inode, struct file *filp)
754{
755 return single_open(filp, sched_feat_show, NULL);
756}
757
828c0950 758static const struct file_operations sched_feat_fops = {
34f3a814
LZ
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
f00b45c1
PZ
764};
765
766static __init int sched_init_debug(void)
767{
f00b45c1
PZ
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772}
773late_initcall(sched_init_debug);
774
775#endif
776
777#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 778
b82d9fdd
PZ
779/*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
2398f2c6
PZ
785/*
786 * ratelimit for updating the group shares.
55cd5340 787 * default: 0.25ms
2398f2c6 788 */
55cd5340 789unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 790unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 791
ffda12a1
PZ
792/*
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
796 */
797unsigned int sysctl_sched_shares_thresh = 4;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299
PZ
916/*
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
919 *
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
923 */
924static inline int task_is_waking(struct task_struct *p)
925{
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
927}
928
b29739f9
IM
929/*
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
932 */
70b97a7f 933static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
934 __acquires(rq->lock)
935{
0970d299
PZ
936 struct rq *rq;
937
3a5c359a 938 for (;;) {
0970d299
PZ
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p);
05fa785c 942 raw_spin_lock(&rq->lock);
0970d299 943 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 944 return rq;
05fa785c 945 raw_spin_unlock(&rq->lock);
b29739f9 946 }
b29739f9
IM
947}
948
1da177e4
LT
949/*
950 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 951 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
952 * explicitly disabling preemption.
953 */
70b97a7f 954static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
955 __acquires(rq->lock)
956{
70b97a7f 957 struct rq *rq;
1da177e4 958
3a5c359a 959 for (;;) {
0970d299
PZ
960 while (task_is_waking(p))
961 cpu_relax();
3a5c359a
AK
962 local_irq_save(*flags);
963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
0970d299 965 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 966 return rq;
05fa785c 967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 968 }
1da177e4
LT
969}
970
ad474cac
ON
971void task_rq_unlock_wait(struct task_struct *p)
972{
973 struct rq *rq = task_rq(p);
974
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 976 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
977}
978
a9957449 979static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock(&rq->lock);
b29739f9
IM
983}
984
70b97a7f 985static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
986 __releases(rq->lock)
987{
05fa785c 988 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
989}
990
1da177e4 991/*
cc2a73b5 992 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 993 */
a9957449 994static struct rq *this_rq_lock(void)
1da177e4
LT
995 __acquires(rq->lock)
996{
70b97a7f 997 struct rq *rq;
1da177e4
LT
998
999 local_irq_disable();
1000 rq = this_rq();
05fa785c 1001 raw_spin_lock(&rq->lock);
1da177e4
LT
1002
1003 return rq;
1004}
1005
8f4d37ec
PZ
1006#ifdef CONFIG_SCHED_HRTICK
1007/*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
8f4d37ec
PZ
1017
1018/*
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1022 */
1023static inline int hrtick_enabled(struct rq *rq)
1024{
1025 if (!sched_feat(HRTICK))
1026 return 0;
ba42059f 1027 if (!cpu_active(cpu_of(rq)))
b328ca18 1028 return 0;
8f4d37ec
PZ
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032static void hrtick_clear(struct rq *rq)
1033{
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1036}
1037
8f4d37ec
PZ
1038/*
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1041 */
1042static enum hrtimer_restart hrtick(struct hrtimer *timer)
1043{
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
05fa785c 1048 raw_spin_lock(&rq->lock);
3e51f33f 1049 update_rq_clock(rq);
8f4d37ec 1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1051 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1052
1053 return HRTIMER_NORESTART;
1054}
1055
95e904c7 1056#ifdef CONFIG_SMP
31656519
PZ
1057/*
1058 * called from hardirq (IPI) context
1059 */
1060static void __hrtick_start(void *arg)
b328ca18 1061{
31656519 1062 struct rq *rq = arg;
b328ca18 1063
05fa785c 1064 raw_spin_lock(&rq->lock);
31656519
PZ
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
05fa785c 1067 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1068}
1069
31656519
PZ
1070/*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1076{
31656519
PZ
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1079
cc584b21 1080 hrtimer_set_expires(timer, time);
31656519
PZ
1081
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
6e275637 1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1086 rq->hrtick_csd_pending = 1;
1087 }
b328ca18
PZ
1088}
1089
1090static int
1091hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1092{
1093 int cpu = (int)(long)hcpu;
1094
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
31656519 1102 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1103 return NOTIFY_OK;
1104 }
1105
1106 return NOTIFY_DONE;
1107}
1108
fa748203 1109static __init void init_hrtick(void)
b328ca18
PZ
1110{
1111 hotcpu_notifier(hotplug_hrtick, 0);
1112}
31656519
PZ
1113#else
1114/*
1115 * Called to set the hrtick timer state.
1116 *
1117 * called with rq->lock held and irqs disabled
1118 */
1119static void hrtick_start(struct rq *rq, u64 delay)
1120{
7f1e2ca9 1121 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1122 HRTIMER_MODE_REL_PINNED, 0);
31656519 1123}
b328ca18 1124
006c75f1 1125static inline void init_hrtick(void)
8f4d37ec 1126{
8f4d37ec 1127}
31656519 1128#endif /* CONFIG_SMP */
8f4d37ec 1129
31656519 1130static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1131{
31656519
PZ
1132#ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
8f4d37ec 1134
31656519
PZ
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138#endif
8f4d37ec 1139
31656519
PZ
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
8f4d37ec 1142}
006c75f1 1143#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1144static inline void hrtick_clear(struct rq *rq)
1145{
1146}
1147
8f4d37ec
PZ
1148static inline void init_rq_hrtick(struct rq *rq)
1149{
1150}
1151
b328ca18
PZ
1152static inline void init_hrtick(void)
1153{
1154}
006c75f1 1155#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1156
c24d20db
IM
1157/*
1158 * resched_task - mark a task 'to be rescheduled now'.
1159 *
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1162 * the target CPU.
1163 */
1164#ifdef CONFIG_SMP
1165
1166#ifndef tsk_is_polling
1167#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168#endif
1169
31656519 1170static void resched_task(struct task_struct *p)
c24d20db
IM
1171{
1172 int cpu;
1173
05fa785c 1174 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1175
5ed0cec0 1176 if (test_tsk_need_resched(p))
c24d20db
IM
1177 return;
1178
5ed0cec0 1179 set_tsk_need_resched(p);
c24d20db
IM
1180
1181 cpu = task_cpu(p);
1182 if (cpu == smp_processor_id())
1183 return;
1184
1185 /* NEED_RESCHED must be visible before we test polling */
1186 smp_mb();
1187 if (!tsk_is_polling(p))
1188 smp_send_reschedule(cpu);
1189}
1190
1191static void resched_cpu(int cpu)
1192{
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long flags;
1195
05fa785c 1196 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1197 return;
1198 resched_task(cpu_curr(cpu));
05fa785c 1199 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1200}
06d8308c
TG
1201
1202#ifdef CONFIG_NO_HZ
1203/*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213void wake_up_idle_cpu(int cpu)
1214{
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
5ed0cec0 1235 set_tsk_need_resched(rq->idle);
06d8308c
TG
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241}
39c0cbe2
MG
1242
1243int nohz_ratelimit(int cpu)
1244{
1245 struct rq *rq = cpu_rq(cpu);
1246 u64 diff = rq->clock - rq->nohz_stamp;
1247
1248 rq->nohz_stamp = rq->clock;
1249
1250 return diff < (NSEC_PER_SEC / HZ) >> 1;
1251}
1252
6d6bc0ad 1253#endif /* CONFIG_NO_HZ */
06d8308c 1254
e9e9250b
PZ
1255static u64 sched_avg_period(void)
1256{
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258}
1259
1260static void sched_avg_update(struct rq *rq)
1261{
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
1265 rq->age_stamp += period;
1266 rq->rt_avg /= 2;
1267 }
1268}
1269
1270static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271{
1272 rq->rt_avg += rt_delta;
1273 sched_avg_update(rq);
1274}
1275
6d6bc0ad 1276#else /* !CONFIG_SMP */
31656519 1277static void resched_task(struct task_struct *p)
c24d20db 1278{
05fa785c 1279 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1280 set_tsk_need_resched(p);
c24d20db 1281}
e9e9250b
PZ
1282
1283static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284{
1285}
6d6bc0ad 1286#endif /* CONFIG_SMP */
c24d20db 1287
45bf76df
IM
1288#if BITS_PER_LONG == 32
1289# define WMULT_CONST (~0UL)
1290#else
1291# define WMULT_CONST (1UL << 32)
1292#endif
1293
1294#define WMULT_SHIFT 32
1295
194081eb
IM
1296/*
1297 * Shift right and round:
1298 */
cf2ab469 1299#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1300
a7be37ac
PZ
1301/*
1302 * delta *= weight / lw
1303 */
cb1c4fc9 1304static unsigned long
45bf76df
IM
1305calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307{
1308 u64 tmp;
1309
7a232e03
LJ
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
45bf76df
IM
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
194081eb 1322 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1324 WMULT_SHIFT/2);
1325 else
cf2ab469 1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1327
ecf691da 1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1332{
1333 lw->weight += inc;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1338{
1339 lw->weight -= dec;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
2dd73a4f
PW
1343/*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
cce7ade8
PZ
1352#define WEIGHT_IDLEPRIO 3
1353#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1354
1355/*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
dd41f596
IM
1366 */
1367static const int prio_to_weight[40] = {
254753dc
IM
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1376};
1377
5714d2de
IM
1378/*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
dd41f596 1385static const u32 prio_to_wmult[40] = {
254753dc
IM
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1394};
2dd73a4f 1395
ef12fefa
BR
1396/* Time spent by the tasks of the cpu accounting group executing in ... */
1397enum cpuacct_stat_index {
1398 CPUACCT_STAT_USER, /* ... user mode */
1399 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1400
1401 CPUACCT_STAT_NSTATS,
1402};
1403
d842de87
SV
1404#ifdef CONFIG_CGROUP_CPUACCT
1405static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1406static void cpuacct_update_stats(struct task_struct *tsk,
1407 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1408#else
1409static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1410static inline void cpuacct_update_stats(struct task_struct *tsk,
1411 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1412#endif
1413
18d95a28
PZ
1414static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1415{
1416 update_load_add(&rq->load, load);
1417}
1418
1419static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_sub(&rq->load, load);
1422}
1423
7940ca36 1424#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1425typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1426
1427/*
1428 * Iterate the full tree, calling @down when first entering a node and @up when
1429 * leaving it for the final time.
1430 */
eb755805 1431static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1432{
1433 struct task_group *parent, *child;
eb755805 1434 int ret;
c09595f6
PZ
1435
1436 rcu_read_lock();
1437 parent = &root_task_group;
1438down:
eb755805
PZ
1439 ret = (*down)(parent, data);
1440 if (ret)
1441 goto out_unlock;
c09595f6
PZ
1442 list_for_each_entry_rcu(child, &parent->children, siblings) {
1443 parent = child;
1444 goto down;
1445
1446up:
1447 continue;
1448 }
eb755805
PZ
1449 ret = (*up)(parent, data);
1450 if (ret)
1451 goto out_unlock;
c09595f6
PZ
1452
1453 child = parent;
1454 parent = parent->parent;
1455 if (parent)
1456 goto up;
eb755805 1457out_unlock:
c09595f6 1458 rcu_read_unlock();
eb755805
PZ
1459
1460 return ret;
c09595f6
PZ
1461}
1462
eb755805
PZ
1463static int tg_nop(struct task_group *tg, void *data)
1464{
1465 return 0;
c09595f6 1466}
eb755805
PZ
1467#endif
1468
1469#ifdef CONFIG_SMP
f5f08f39
PZ
1470/* Used instead of source_load when we know the type == 0 */
1471static unsigned long weighted_cpuload(const int cpu)
1472{
1473 return cpu_rq(cpu)->load.weight;
1474}
1475
1476/*
1477 * Return a low guess at the load of a migration-source cpu weighted
1478 * according to the scheduling class and "nice" value.
1479 *
1480 * We want to under-estimate the load of migration sources, to
1481 * balance conservatively.
1482 */
1483static unsigned long source_load(int cpu, int type)
1484{
1485 struct rq *rq = cpu_rq(cpu);
1486 unsigned long total = weighted_cpuload(cpu);
1487
1488 if (type == 0 || !sched_feat(LB_BIAS))
1489 return total;
1490
1491 return min(rq->cpu_load[type-1], total);
1492}
1493
1494/*
1495 * Return a high guess at the load of a migration-target cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 */
1498static unsigned long target_load(int cpu, int type)
1499{
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1502
1503 if (type == 0 || !sched_feat(LB_BIAS))
1504 return total;
1505
1506 return max(rq->cpu_load[type-1], total);
1507}
1508
ae154be1
PZ
1509static struct sched_group *group_of(int cpu)
1510{
d11c563d 1511 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1512
1513 if (!sd)
1514 return NULL;
1515
1516 return sd->groups;
1517}
1518
1519static unsigned long power_of(int cpu)
1520{
1521 struct sched_group *group = group_of(cpu);
1522
1523 if (!group)
1524 return SCHED_LOAD_SCALE;
1525
1526 return group->cpu_power;
1527}
1528
eb755805
PZ
1529static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1530
1531static unsigned long cpu_avg_load_per_task(int cpu)
1532{
1533 struct rq *rq = cpu_rq(cpu);
af6d596f 1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1535
4cd42620
SR
1536 if (nr_running)
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1538 else
1539 rq->avg_load_per_task = 0;
eb755805
PZ
1540
1541 return rq->avg_load_per_task;
1542}
1543
1544#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1545
43cf38eb 1546static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1547
c09595f6
PZ
1548static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1549
1550/*
1551 * Calculate and set the cpu's group shares.
1552 */
34d76c41
PZ
1553static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
4a6cc4bd 1556 unsigned long *usd_rq_weight)
18d95a28 1557{
34d76c41 1558 unsigned long shares, rq_weight;
a5004278 1559 int boost = 0;
c09595f6 1560
4a6cc4bd 1561 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1562 if (!rq_weight) {
1563 boost = 1;
1564 rq_weight = NICE_0_LOAD;
1565 }
c8cba857 1566
c09595f6 1567 /*
a8af7246
PZ
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
c09595f6 1571 */
ec4e0e2f 1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1574
ffda12a1
PZ
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
c09595f6 1579
05fa785c 1580 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1583 __set_se_shares(tg->se[cpu], shares);
05fa785c 1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1585 }
18d95a28 1586}
c09595f6
PZ
1587
1588/*
c8cba857
PZ
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
c09595f6 1592 */
eb755805 1593static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1594{
cd8ad40d 1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1596 unsigned long *usd_rq_weight;
eb755805 1597 struct sched_domain *sd = data;
34d76c41 1598 unsigned long flags;
c8cba857 1599 int i;
c09595f6 1600
34d76c41
PZ
1601 if (!tg->se[0])
1602 return 0;
1603
1604 local_irq_save(flags);
4a6cc4bd 1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1606
758b2cdc 1607 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1608 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1609 usd_rq_weight[i] = weight;
34d76c41 1610
cd8ad40d 1611 rq_weight += weight;
ec4e0e2f
KC
1612 /*
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1616 */
ec4e0e2f
KC
1617 if (!weight)
1618 weight = NICE_0_LOAD;
1619
cd8ad40d 1620 sum_weight += weight;
c8cba857 1621 shares += tg->cfs_rq[i]->shares;
c09595f6 1622 }
c09595f6 1623
cd8ad40d
PZ
1624 if (!rq_weight)
1625 rq_weight = sum_weight;
1626
c8cba857
PZ
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1629
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
c09595f6 1632
758b2cdc 1633 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1635
1636 local_irq_restore(flags);
eb755805
PZ
1637
1638 return 0;
c09595f6
PZ
1639}
1640
1641/*
c8cba857
PZ
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
c09595f6 1645 */
eb755805 1646static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1647{
c8cba857 1648 unsigned long load;
eb755805 1649 long cpu = (long)data;
c09595f6 1650
c8cba857
PZ
1651 if (!tg->parent) {
1652 load = cpu_rq(cpu)->load.weight;
1653 } else {
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1657 }
c09595f6 1658
c8cba857 1659 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1660
eb755805 1661 return 0;
c09595f6
PZ
1662}
1663
c8cba857 1664static void update_shares(struct sched_domain *sd)
4d8d595d 1665{
e7097159
PZ
1666 s64 elapsed;
1667 u64 now;
1668
1669 if (root_task_group_empty())
1670 return;
1671
1672 now = cpu_clock(raw_smp_processor_id());
1673 elapsed = now - sd->last_update;
2398f2c6
PZ
1674
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
eb755805 1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1678 }
4d8d595d
PZ
1679}
1680
eb755805 1681static void update_h_load(long cpu)
c09595f6 1682{
e7097159
PZ
1683 if (root_task_group_empty())
1684 return;
1685
eb755805 1686 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1687}
1688
c09595f6
PZ
1689#else
1690
c8cba857 1691static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1692{
1693}
1694
18d95a28
PZ
1695#endif
1696
8f45e2b5
GH
1697#ifdef CONFIG_PREEMPT
1698
b78bb868
PZ
1699static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1700
70574a99 1701/*
8f45e2b5
GH
1702 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1703 * way at the expense of forcing extra atomic operations in all
1704 * invocations. This assures that the double_lock is acquired using the
1705 * same underlying policy as the spinlock_t on this architecture, which
1706 * reduces latency compared to the unfair variant below. However, it
1707 * also adds more overhead and therefore may reduce throughput.
70574a99 1708 */
8f45e2b5
GH
1709static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1710 __releases(this_rq->lock)
1711 __acquires(busiest->lock)
1712 __acquires(this_rq->lock)
1713{
05fa785c 1714 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1715 double_rq_lock(this_rq, busiest);
1716
1717 return 1;
1718}
1719
1720#else
1721/*
1722 * Unfair double_lock_balance: Optimizes throughput at the expense of
1723 * latency by eliminating extra atomic operations when the locks are
1724 * already in proper order on entry. This favors lower cpu-ids and will
1725 * grant the double lock to lower cpus over higher ids under contention,
1726 * regardless of entry order into the function.
1727 */
1728static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1729 __releases(this_rq->lock)
1730 __acquires(busiest->lock)
1731 __acquires(this_rq->lock)
1732{
1733 int ret = 0;
1734
05fa785c 1735 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1736 if (busiest < this_rq) {
05fa785c
TG
1737 raw_spin_unlock(&this_rq->lock);
1738 raw_spin_lock(&busiest->lock);
1739 raw_spin_lock_nested(&this_rq->lock,
1740 SINGLE_DEPTH_NESTING);
70574a99
AD
1741 ret = 1;
1742 } else
05fa785c
TG
1743 raw_spin_lock_nested(&busiest->lock,
1744 SINGLE_DEPTH_NESTING);
70574a99
AD
1745 }
1746 return ret;
1747}
1748
8f45e2b5
GH
1749#endif /* CONFIG_PREEMPT */
1750
1751/*
1752 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1753 */
1754static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1755{
1756 if (unlikely(!irqs_disabled())) {
1757 /* printk() doesn't work good under rq->lock */
05fa785c 1758 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1759 BUG_ON(1);
1760 }
1761
1762 return _double_lock_balance(this_rq, busiest);
1763}
1764
70574a99
AD
1765static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(busiest->lock)
1767{
05fa785c 1768 raw_spin_unlock(&busiest->lock);
70574a99
AD
1769 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1770}
1e3c88bd
PZ
1771
1772/*
1773 * double_rq_lock - safely lock two runqueues
1774 *
1775 * Note this does not disable interrupts like task_rq_lock,
1776 * you need to do so manually before calling.
1777 */
1778static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1779 __acquires(rq1->lock)
1780 __acquires(rq2->lock)
1781{
1782 BUG_ON(!irqs_disabled());
1783 if (rq1 == rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 __acquire(rq2->lock); /* Fake it out ;) */
1786 } else {
1787 if (rq1 < rq2) {
1788 raw_spin_lock(&rq1->lock);
1789 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1790 } else {
1791 raw_spin_lock(&rq2->lock);
1792 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1793 }
1794 }
1e3c88bd
PZ
1795}
1796
1797/*
1798 * double_rq_unlock - safely unlock two runqueues
1799 *
1800 * Note this does not restore interrupts like task_rq_unlock,
1801 * you need to do so manually after calling.
1802 */
1803static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1804 __releases(rq1->lock)
1805 __releases(rq2->lock)
1806{
1807 raw_spin_unlock(&rq1->lock);
1808 if (rq1 != rq2)
1809 raw_spin_unlock(&rq2->lock);
1810 else
1811 __release(rq2->lock);
1812}
1813
18d95a28
PZ
1814#endif
1815
30432094 1816#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1817static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1818{
30432094 1819#ifdef CONFIG_SMP
34e83e85
IM
1820 cfs_rq->shares = shares;
1821#endif
1822}
30432094 1823#endif
e7693a36 1824
dce48a84 1825static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1826static void update_sysctl(void);
acb4a848 1827static int get_update_sysctl_factor(void);
dce48a84 1828
cd29fe6f
PZ
1829static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1830{
1831 set_task_rq(p, cpu);
1832#ifdef CONFIG_SMP
1833 /*
1834 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1835 * successfuly executed on another CPU. We must ensure that updates of
1836 * per-task data have been completed by this moment.
1837 */
1838 smp_wmb();
1839 task_thread_info(p)->cpu = cpu;
1840#endif
1841}
dce48a84 1842
1e3c88bd 1843static const struct sched_class rt_sched_class;
dd41f596
IM
1844
1845#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1846#define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
dd41f596 1848
1e3c88bd
PZ
1849#include "sched_stats.h"
1850
c09595f6 1851static void inc_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running++;
9c217245
IM
1854}
1855
c09595f6 1856static void dec_nr_running(struct rq *rq)
9c217245
IM
1857{
1858 rq->nr_running--;
9c217245
IM
1859}
1860
45bf76df
IM
1861static void set_load_weight(struct task_struct *p)
1862{
1863 if (task_has_rt_policy(p)) {
dd41f596
IM
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
45bf76df 1868
dd41f596
IM
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
71f8bd46 1877
dd41f596
IM
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1880}
1881
2087a1ad
GH
1882static void update_avg(u64 *avg, u64 sample)
1883{
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886}
1887
ea87bb78
TG
1888static void
1889enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
71f8bd46 1890{
a64692a3 1891 update_rq_clock(rq);
dd41f596 1892 sched_info_queued(p);
ea87bb78 1893 p->sched_class->enqueue_task(rq, p, wakeup, head);
dd41f596 1894 p->se.on_rq = 1;
71f8bd46
IM
1895}
1896
69be72c1 1897static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1898{
a64692a3 1899 update_rq_clock(rq);
46ac22ba 1900 sched_info_dequeued(p);
f02231e5 1901 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1902 p->se.on_rq = 0;
71f8bd46
IM
1903}
1904
1e3c88bd
PZ
1905/*
1906 * activate_task - move a task to the runqueue.
1907 */
1908static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1909{
1910 if (task_contributes_to_load(p))
1911 rq->nr_uninterruptible--;
1912
ea87bb78 1913 enqueue_task(rq, p, wakeup, false);
1e3c88bd
PZ
1914 inc_nr_running(rq);
1915}
1916
1917/*
1918 * deactivate_task - remove a task from the runqueue.
1919 */
1920static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1921{
1922 if (task_contributes_to_load(p))
1923 rq->nr_uninterruptible++;
1924
1925 dequeue_task(rq, p, sleep);
1926 dec_nr_running(rq);
1927}
1928
1929#include "sched_idletask.c"
1930#include "sched_fair.c"
1931#include "sched_rt.c"
1932#ifdef CONFIG_SCHED_DEBUG
1933# include "sched_debug.c"
1934#endif
1935
14531189 1936/*
dd41f596 1937 * __normal_prio - return the priority that is based on the static prio
14531189 1938 */
14531189
IM
1939static inline int __normal_prio(struct task_struct *p)
1940{
dd41f596 1941 return p->static_prio;
14531189
IM
1942}
1943
b29739f9
IM
1944/*
1945 * Calculate the expected normal priority: i.e. priority
1946 * without taking RT-inheritance into account. Might be
1947 * boosted by interactivity modifiers. Changes upon fork,
1948 * setprio syscalls, and whenever the interactivity
1949 * estimator recalculates.
1950 */
36c8b586 1951static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1952{
1953 int prio;
1954
e05606d3 1955 if (task_has_rt_policy(p))
b29739f9
IM
1956 prio = MAX_RT_PRIO-1 - p->rt_priority;
1957 else
1958 prio = __normal_prio(p);
1959 return prio;
1960}
1961
1962/*
1963 * Calculate the current priority, i.e. the priority
1964 * taken into account by the scheduler. This value might
1965 * be boosted by RT tasks, or might be boosted by
1966 * interactivity modifiers. Will be RT if the task got
1967 * RT-boosted. If not then it returns p->normal_prio.
1968 */
36c8b586 1969static int effective_prio(struct task_struct *p)
b29739f9
IM
1970{
1971 p->normal_prio = normal_prio(p);
1972 /*
1973 * If we are RT tasks or we were boosted to RT priority,
1974 * keep the priority unchanged. Otherwise, update priority
1975 * to the normal priority:
1976 */
1977 if (!rt_prio(p->prio))
1978 return p->normal_prio;
1979 return p->prio;
1980}
1981
1da177e4
LT
1982/**
1983 * task_curr - is this task currently executing on a CPU?
1984 * @p: the task in question.
1985 */
36c8b586 1986inline int task_curr(const struct task_struct *p)
1da177e4
LT
1987{
1988 return cpu_curr(task_cpu(p)) == p;
1989}
1990
cb469845
SR
1991static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1994{
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2001}
2002
1da177e4 2003#ifdef CONFIG_SMP
cc367732
IM
2004/*
2005 * Is this task likely cache-hot:
2006 */
e7693a36 2007static int
cc367732
IM
2008task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2009{
2010 s64 delta;
2011
e6c8fba7
PZ
2012 if (p->sched_class != &fair_sched_class)
2013 return 0;
2014
f540a608
IM
2015 /*
2016 * Buddy candidates are cache hot:
2017 */
f685ceac 2018 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2019 (&p->se == cfs_rq_of(&p->se)->next ||
2020 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2021 return 1;
2022
6bc1665b
IM
2023 if (sysctl_sched_migration_cost == -1)
2024 return 1;
2025 if (sysctl_sched_migration_cost == 0)
2026 return 0;
2027
cc367732
IM
2028 delta = now - p->se.exec_start;
2029
2030 return delta < (s64)sysctl_sched_migration_cost;
2031}
2032
dd41f596 2033void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2034{
e2912009
PZ
2035#ifdef CONFIG_SCHED_DEBUG
2036 /*
2037 * We should never call set_task_cpu() on a blocked task,
2038 * ttwu() will sort out the placement.
2039 */
077614ee
PZ
2040 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2041 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2042#endif
2043
de1d7286 2044 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2045
0c69774e
PZ
2046 if (task_cpu(p) != new_cpu) {
2047 p->se.nr_migrations++;
2048 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2049 }
dd41f596
IM
2050
2051 __set_task_cpu(p, new_cpu);
c65cc870
IM
2052}
2053
70b97a7f 2054struct migration_req {
1da177e4 2055 struct list_head list;
1da177e4 2056
36c8b586 2057 struct task_struct *task;
1da177e4
LT
2058 int dest_cpu;
2059
1da177e4 2060 struct completion done;
70b97a7f 2061};
1da177e4
LT
2062
2063/*
2064 * The task's runqueue lock must be held.
2065 * Returns true if you have to wait for migration thread.
2066 */
36c8b586 2067static int
70b97a7f 2068migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2069{
70b97a7f 2070 struct rq *rq = task_rq(p);
1da177e4
LT
2071
2072 /*
2073 * If the task is not on a runqueue (and not running), then
e2912009 2074 * the next wake-up will properly place the task.
1da177e4 2075 */
e2912009 2076 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2077 return 0;
1da177e4
LT
2078
2079 init_completion(&req->done);
1da177e4
LT
2080 req->task = p;
2081 req->dest_cpu = dest_cpu;
2082 list_add(&req->list, &rq->migration_queue);
48f24c4d 2083
1da177e4
LT
2084 return 1;
2085}
2086
a26b89f0
MM
2087/*
2088 * wait_task_context_switch - wait for a thread to complete at least one
2089 * context switch.
2090 *
2091 * @p must not be current.
2092 */
2093void wait_task_context_switch(struct task_struct *p)
2094{
2095 unsigned long nvcsw, nivcsw, flags;
2096 int running;
2097 struct rq *rq;
2098
2099 nvcsw = p->nvcsw;
2100 nivcsw = p->nivcsw;
2101 for (;;) {
2102 /*
2103 * The runqueue is assigned before the actual context
2104 * switch. We need to take the runqueue lock.
2105 *
2106 * We could check initially without the lock but it is
2107 * very likely that we need to take the lock in every
2108 * iteration.
2109 */
2110 rq = task_rq_lock(p, &flags);
2111 running = task_running(rq, p);
2112 task_rq_unlock(rq, &flags);
2113
2114 if (likely(!running))
2115 break;
2116 /*
2117 * The switch count is incremented before the actual
2118 * context switch. We thus wait for two switches to be
2119 * sure at least one completed.
2120 */
2121 if ((p->nvcsw - nvcsw) > 1)
2122 break;
2123 if ((p->nivcsw - nivcsw) > 1)
2124 break;
2125
2126 cpu_relax();
2127 }
2128}
2129
1da177e4
LT
2130/*
2131 * wait_task_inactive - wait for a thread to unschedule.
2132 *
85ba2d86
RM
2133 * If @match_state is nonzero, it's the @p->state value just checked and
2134 * not expected to change. If it changes, i.e. @p might have woken up,
2135 * then return zero. When we succeed in waiting for @p to be off its CPU,
2136 * we return a positive number (its total switch count). If a second call
2137 * a short while later returns the same number, the caller can be sure that
2138 * @p has remained unscheduled the whole time.
2139 *
1da177e4
LT
2140 * The caller must ensure that the task *will* unschedule sometime soon,
2141 * else this function might spin for a *long* time. This function can't
2142 * be called with interrupts off, or it may introduce deadlock with
2143 * smp_call_function() if an IPI is sent by the same process we are
2144 * waiting to become inactive.
2145 */
85ba2d86 2146unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2147{
2148 unsigned long flags;
dd41f596 2149 int running, on_rq;
85ba2d86 2150 unsigned long ncsw;
70b97a7f 2151 struct rq *rq;
1da177e4 2152
3a5c359a
AK
2153 for (;;) {
2154 /*
2155 * We do the initial early heuristics without holding
2156 * any task-queue locks at all. We'll only try to get
2157 * the runqueue lock when things look like they will
2158 * work out!
2159 */
2160 rq = task_rq(p);
fa490cfd 2161
3a5c359a
AK
2162 /*
2163 * If the task is actively running on another CPU
2164 * still, just relax and busy-wait without holding
2165 * any locks.
2166 *
2167 * NOTE! Since we don't hold any locks, it's not
2168 * even sure that "rq" stays as the right runqueue!
2169 * But we don't care, since "task_running()" will
2170 * return false if the runqueue has changed and p
2171 * is actually now running somewhere else!
2172 */
85ba2d86
RM
2173 while (task_running(rq, p)) {
2174 if (match_state && unlikely(p->state != match_state))
2175 return 0;
3a5c359a 2176 cpu_relax();
85ba2d86 2177 }
fa490cfd 2178
3a5c359a
AK
2179 /*
2180 * Ok, time to look more closely! We need the rq
2181 * lock now, to be *sure*. If we're wrong, we'll
2182 * just go back and repeat.
2183 */
2184 rq = task_rq_lock(p, &flags);
0a16b607 2185 trace_sched_wait_task(rq, p);
3a5c359a
AK
2186 running = task_running(rq, p);
2187 on_rq = p->se.on_rq;
85ba2d86 2188 ncsw = 0;
f31e11d8 2189 if (!match_state || p->state == match_state)
93dcf55f 2190 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2191 task_rq_unlock(rq, &flags);
fa490cfd 2192
85ba2d86
RM
2193 /*
2194 * If it changed from the expected state, bail out now.
2195 */
2196 if (unlikely(!ncsw))
2197 break;
2198
3a5c359a
AK
2199 /*
2200 * Was it really running after all now that we
2201 * checked with the proper locks actually held?
2202 *
2203 * Oops. Go back and try again..
2204 */
2205 if (unlikely(running)) {
2206 cpu_relax();
2207 continue;
2208 }
fa490cfd 2209
3a5c359a
AK
2210 /*
2211 * It's not enough that it's not actively running,
2212 * it must be off the runqueue _entirely_, and not
2213 * preempted!
2214 *
80dd99b3 2215 * So if it was still runnable (but just not actively
3a5c359a
AK
2216 * running right now), it's preempted, and we should
2217 * yield - it could be a while.
2218 */
2219 if (unlikely(on_rq)) {
2220 schedule_timeout_uninterruptible(1);
2221 continue;
2222 }
fa490cfd 2223
3a5c359a
AK
2224 /*
2225 * Ahh, all good. It wasn't running, and it wasn't
2226 * runnable, which means that it will never become
2227 * running in the future either. We're all done!
2228 */
2229 break;
2230 }
85ba2d86
RM
2231
2232 return ncsw;
1da177e4
LT
2233}
2234
2235/***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesnt have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
36c8b586 2248void kick_process(struct task_struct *p)
1da177e4
LT
2249{
2250 int cpu;
2251
2252 preempt_disable();
2253 cpu = task_cpu(p);
2254 if ((cpu != smp_processor_id()) && task_curr(p))
2255 smp_send_reschedule(cpu);
2256 preempt_enable();
2257}
b43e3521 2258EXPORT_SYMBOL_GPL(kick_process);
476d139c 2259#endif /* CONFIG_SMP */
1da177e4 2260
0793a61d
TG
2261/**
2262 * task_oncpu_function_call - call a function on the cpu on which a task runs
2263 * @p: the task to evaluate
2264 * @func: the function to be called
2265 * @info: the function call argument
2266 *
2267 * Calls the function @func when the task is currently running. This might
2268 * be on the current CPU, which just calls the function directly
2269 */
2270void task_oncpu_function_call(struct task_struct *p,
2271 void (*func) (void *info), void *info)
2272{
2273 int cpu;
2274
2275 preempt_disable();
2276 cpu = task_cpu(p);
2277 if (task_curr(p))
2278 smp_call_function_single(cpu, func, info, 1);
2279 preempt_enable();
2280}
2281
970b13ba 2282#ifdef CONFIG_SMP
5da9a0fb
PZ
2283static int select_fallback_rq(int cpu, struct task_struct *p)
2284{
2285 int dest_cpu;
2286 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2287
2288 /* Look for allowed, online CPU in same node. */
2289 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2290 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2291 return dest_cpu;
2292
2293 /* Any allowed, online CPU? */
2294 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2295 if (dest_cpu < nr_cpu_ids)
2296 return dest_cpu;
2297
2298 /* No more Mr. Nice Guy. */
2299 if (dest_cpu >= nr_cpu_ids) {
2300 rcu_read_lock();
2301 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2302 rcu_read_unlock();
2303 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2304
2305 /*
2306 * Don't tell them about moving exiting tasks or
2307 * kernel threads (both mm NULL), since they never
2308 * leave kernel.
2309 */
2310 if (p->mm && printk_ratelimit()) {
2311 printk(KERN_INFO "process %d (%s) no "
2312 "longer affine to cpu%d\n",
2313 task_pid_nr(p), p->comm, cpu);
2314 }
2315 }
2316
2317 return dest_cpu;
2318}
2319
e2912009 2320/*
fabf318e
PZ
2321 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2322 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2323 * by:
e2912009 2324 *
fabf318e
PZ
2325 * exec: is unstable, retry loop
2326 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
e2912009 2327 */
970b13ba
PZ
2328static inline
2329int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2330{
e2912009
PZ
2331 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2332
2333 /*
2334 * In order not to call set_task_cpu() on a blocking task we need
2335 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2336 * cpu.
2337 *
2338 * Since this is common to all placement strategies, this lives here.
2339 *
2340 * [ this allows ->select_task() to simply return task_cpu(p) and
2341 * not worry about this generic constraint ]
2342 */
2343 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2344 !cpu_online(cpu)))
5da9a0fb 2345 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2346
2347 return cpu;
970b13ba
PZ
2348}
2349#endif
2350
1da177e4
LT
2351/***
2352 * try_to_wake_up - wake up a thread
2353 * @p: the to-be-woken-up thread
2354 * @state: the mask of task states that can be woken
2355 * @sync: do a synchronous wakeup?
2356 *
2357 * Put it on the run-queue if it's not already there. The "current"
2358 * thread is always on the run-queue (except when the actual
2359 * re-schedule is in progress), and as such you're allowed to do
2360 * the simpler "current->state = TASK_RUNNING" to mark yourself
2361 * runnable without the overhead of this.
2362 *
2363 * returns failure only if the task is already active.
2364 */
7d478721
PZ
2365static int try_to_wake_up(struct task_struct *p, unsigned int state,
2366 int wake_flags)
1da177e4 2367{
cc367732 2368 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2369 unsigned long flags;
ab3b3aa5 2370 struct rq *rq;
1da177e4 2371
e9c84311 2372 this_cpu = get_cpu();
2398f2c6 2373
04e2f174 2374 smp_wmb();
ab3b3aa5 2375 rq = task_rq_lock(p, &flags);
e9c84311 2376 if (!(p->state & state))
1da177e4
LT
2377 goto out;
2378
dd41f596 2379 if (p->se.on_rq)
1da177e4
LT
2380 goto out_running;
2381
2382 cpu = task_cpu(p);
cc367732 2383 orig_cpu = cpu;
1da177e4
LT
2384
2385#ifdef CONFIG_SMP
2386 if (unlikely(task_running(rq, p)))
2387 goto out_activate;
2388
e9c84311
PZ
2389 /*
2390 * In order to handle concurrent wakeups and release the rq->lock
2391 * we put the task in TASK_WAKING state.
eb24073b
IM
2392 *
2393 * First fix up the nr_uninterruptible count:
e9c84311 2394 */
eb24073b
IM
2395 if (task_contributes_to_load(p))
2396 rq->nr_uninterruptible--;
e9c84311 2397 p->state = TASK_WAKING;
efbbd05a
PZ
2398
2399 if (p->sched_class->task_waking)
2400 p->sched_class->task_waking(rq, p);
2401
ab19cb23 2402 __task_rq_unlock(rq);
e9c84311 2403
970b13ba 2404 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0970d299
PZ
2405 if (cpu != orig_cpu) {
2406 /*
2407 * Since we migrate the task without holding any rq->lock,
2408 * we need to be careful with task_rq_lock(), since that
2409 * might end up locking an invalid rq.
2410 */
5d2f5a61 2411 set_task_cpu(p, cpu);
0970d299 2412 }
ab19cb23 2413
0970d299
PZ
2414 rq = cpu_rq(cpu);
2415 raw_spin_lock(&rq->lock);
f5dc3753 2416
0970d299
PZ
2417 /*
2418 * We migrated the task without holding either rq->lock, however
2419 * since the task is not on the task list itself, nobody else
2420 * will try and migrate the task, hence the rq should match the
2421 * cpu we just moved it to.
2422 */
2423 WARN_ON(task_cpu(p) != cpu);
e9c84311 2424 WARN_ON(p->state != TASK_WAKING);
1da177e4 2425
e7693a36
GH
2426#ifdef CONFIG_SCHEDSTATS
2427 schedstat_inc(rq, ttwu_count);
2428 if (cpu == this_cpu)
2429 schedstat_inc(rq, ttwu_local);
2430 else {
2431 struct sched_domain *sd;
2432 for_each_domain(this_cpu, sd) {
758b2cdc 2433 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2434 schedstat_inc(sd, ttwu_wake_remote);
2435 break;
2436 }
2437 }
2438 }
6d6bc0ad 2439#endif /* CONFIG_SCHEDSTATS */
e7693a36 2440
1da177e4
LT
2441out_activate:
2442#endif /* CONFIG_SMP */
41acab88 2443 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2444 if (wake_flags & WF_SYNC)
41acab88 2445 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2446 if (orig_cpu != cpu)
41acab88 2447 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2448 if (cpu == this_cpu)
41acab88 2449 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2450 else
41acab88 2451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
dd41f596 2452 activate_task(rq, p, 1);
1da177e4
LT
2453 success = 1;
2454
2455out_running:
468a15bb 2456 trace_sched_wakeup(rq, p, success);
7d478721 2457 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2458
1da177e4 2459 p->state = TASK_RUNNING;
9a897c5a 2460#ifdef CONFIG_SMP
efbbd05a
PZ
2461 if (p->sched_class->task_woken)
2462 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2463
2464 if (unlikely(rq->idle_stamp)) {
2465 u64 delta = rq->clock - rq->idle_stamp;
2466 u64 max = 2*sysctl_sched_migration_cost;
2467
2468 if (delta > max)
2469 rq->avg_idle = max;
2470 else
2471 update_avg(&rq->avg_idle, delta);
2472 rq->idle_stamp = 0;
2473 }
9a897c5a 2474#endif
1da177e4
LT
2475out:
2476 task_rq_unlock(rq, &flags);
e9c84311 2477 put_cpu();
1da177e4
LT
2478
2479 return success;
2480}
2481
50fa610a
DH
2482/**
2483 * wake_up_process - Wake up a specific process
2484 * @p: The process to be woken up.
2485 *
2486 * Attempt to wake up the nominated process and move it to the set of runnable
2487 * processes. Returns 1 if the process was woken up, 0 if it was already
2488 * running.
2489 *
2490 * It may be assumed that this function implies a write memory barrier before
2491 * changing the task state if and only if any tasks are woken up.
2492 */
7ad5b3a5 2493int wake_up_process(struct task_struct *p)
1da177e4 2494{
d9514f6c 2495 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2496}
1da177e4
LT
2497EXPORT_SYMBOL(wake_up_process);
2498
7ad5b3a5 2499int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2500{
2501 return try_to_wake_up(p, state, 0);
2502}
2503
1da177e4
LT
2504/*
2505 * Perform scheduler related setup for a newly forked process p.
2506 * p is forked by current.
dd41f596
IM
2507 *
2508 * __sched_fork() is basic setup used by init_idle() too:
2509 */
2510static void __sched_fork(struct task_struct *p)
2511{
dd41f596
IM
2512 p->se.exec_start = 0;
2513 p->se.sum_exec_runtime = 0;
f6cf891c 2514 p->se.prev_sum_exec_runtime = 0;
6c594c21 2515 p->se.nr_migrations = 0;
6cfb0d5d
IM
2516
2517#ifdef CONFIG_SCHEDSTATS
41acab88 2518 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2519#endif
476d139c 2520
fa717060 2521 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2522 p->se.on_rq = 0;
4a55bd5e 2523 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2524
e107be36
AK
2525#ifdef CONFIG_PREEMPT_NOTIFIERS
2526 INIT_HLIST_HEAD(&p->preempt_notifiers);
2527#endif
dd41f596
IM
2528}
2529
2530/*
2531 * fork()/clone()-time setup:
2532 */
2533void sched_fork(struct task_struct *p, int clone_flags)
2534{
2535 int cpu = get_cpu();
2536
2537 __sched_fork(p);
06b83b5f
PZ
2538 /*
2539 * We mark the process as waking here. This guarantees that
2540 * nobody will actually run it, and a signal or other external
2541 * event cannot wake it up and insert it on the runqueue either.
2542 */
2543 p->state = TASK_WAKING;
dd41f596 2544
b9dc29e7
MG
2545 /*
2546 * Revert to default priority/policy on fork if requested.
2547 */
2548 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2549 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2550 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2551 p->normal_prio = p->static_prio;
2552 }
b9dc29e7 2553
6c697bdf
MG
2554 if (PRIO_TO_NICE(p->static_prio) < 0) {
2555 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2556 p->normal_prio = p->static_prio;
6c697bdf
MG
2557 set_load_weight(p);
2558 }
2559
b9dc29e7
MG
2560 /*
2561 * We don't need the reset flag anymore after the fork. It has
2562 * fulfilled its duty:
2563 */
2564 p->sched_reset_on_fork = 0;
2565 }
ca94c442 2566
f83f9ac2
PW
2567 /*
2568 * Make sure we do not leak PI boosting priority to the child.
2569 */
2570 p->prio = current->normal_prio;
2571
2ddbf952
HS
2572 if (!rt_prio(p->prio))
2573 p->sched_class = &fair_sched_class;
b29739f9 2574
cd29fe6f
PZ
2575 if (p->sched_class->task_fork)
2576 p->sched_class->task_fork(p);
2577
5f3edc1b
PZ
2578 set_task_cpu(p, cpu);
2579
52f17b6c 2580#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2581 if (likely(sched_info_on()))
52f17b6c 2582 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2583#endif
d6077cb8 2584#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2585 p->oncpu = 0;
2586#endif
1da177e4 2587#ifdef CONFIG_PREEMPT
4866cde0 2588 /* Want to start with kernel preemption disabled. */
a1261f54 2589 task_thread_info(p)->preempt_count = 1;
1da177e4 2590#endif
917b627d
GH
2591 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2592
476d139c 2593 put_cpu();
1da177e4
LT
2594}
2595
2596/*
2597 * wake_up_new_task - wake up a newly created task for the first time.
2598 *
2599 * This function will do some initial scheduler statistics housekeeping
2600 * that must be done for every newly created context, then puts the task
2601 * on the runqueue and wakes it.
2602 */
7ad5b3a5 2603void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2604{
2605 unsigned long flags;
dd41f596 2606 struct rq *rq;
c890692b 2607 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2608
2609#ifdef CONFIG_SMP
2610 /*
2611 * Fork balancing, do it here and not earlier because:
2612 * - cpus_allowed can change in the fork path
2613 * - any previously selected cpu might disappear through hotplug
2614 *
2615 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2616 * ->cpus_allowed is stable, we have preemption disabled, meaning
2617 * cpu_online_mask is stable.
2618 */
2619 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2620 set_task_cpu(p, cpu);
2621#endif
1da177e4 2622
0970d299
PZ
2623 /*
2624 * Since the task is not on the rq and we still have TASK_WAKING set
2625 * nobody else will migrate this task.
2626 */
2627 rq = cpu_rq(cpu);
2628 raw_spin_lock_irqsave(&rq->lock, flags);
2629
06b83b5f
PZ
2630 BUG_ON(p->state != TASK_WAKING);
2631 p->state = TASK_RUNNING;
cd29fe6f 2632 activate_task(rq, p, 0);
c71dd42d 2633 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2634 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2635#ifdef CONFIG_SMP
efbbd05a
PZ
2636 if (p->sched_class->task_woken)
2637 p->sched_class->task_woken(rq, p);
9a897c5a 2638#endif
dd41f596 2639 task_rq_unlock(rq, &flags);
fabf318e 2640 put_cpu();
1da177e4
LT
2641}
2642
e107be36
AK
2643#ifdef CONFIG_PREEMPT_NOTIFIERS
2644
2645/**
80dd99b3 2646 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2647 * @notifier: notifier struct to register
e107be36
AK
2648 */
2649void preempt_notifier_register(struct preempt_notifier *notifier)
2650{
2651 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2652}
2653EXPORT_SYMBOL_GPL(preempt_notifier_register);
2654
2655/**
2656 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2657 * @notifier: notifier struct to unregister
e107be36
AK
2658 *
2659 * This is safe to call from within a preemption notifier.
2660 */
2661void preempt_notifier_unregister(struct preempt_notifier *notifier)
2662{
2663 hlist_del(&notifier->link);
2664}
2665EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2666
2667static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2668{
2669 struct preempt_notifier *notifier;
2670 struct hlist_node *node;
2671
2672 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2673 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2674}
2675
2676static void
2677fire_sched_out_preempt_notifiers(struct task_struct *curr,
2678 struct task_struct *next)
2679{
2680 struct preempt_notifier *notifier;
2681 struct hlist_node *node;
2682
2683 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2684 notifier->ops->sched_out(notifier, next);
2685}
2686
6d6bc0ad 2687#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2688
2689static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2690{
2691}
2692
2693static void
2694fire_sched_out_preempt_notifiers(struct task_struct *curr,
2695 struct task_struct *next)
2696{
2697}
2698
6d6bc0ad 2699#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2700
4866cde0
NP
2701/**
2702 * prepare_task_switch - prepare to switch tasks
2703 * @rq: the runqueue preparing to switch
421cee29 2704 * @prev: the current task that is being switched out
4866cde0
NP
2705 * @next: the task we are going to switch to.
2706 *
2707 * This is called with the rq lock held and interrupts off. It must
2708 * be paired with a subsequent finish_task_switch after the context
2709 * switch.
2710 *
2711 * prepare_task_switch sets up locking and calls architecture specific
2712 * hooks.
2713 */
e107be36
AK
2714static inline void
2715prepare_task_switch(struct rq *rq, struct task_struct *prev,
2716 struct task_struct *next)
4866cde0 2717{
e107be36 2718 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2719 prepare_lock_switch(rq, next);
2720 prepare_arch_switch(next);
2721}
2722
1da177e4
LT
2723/**
2724 * finish_task_switch - clean up after a task-switch
344babaa 2725 * @rq: runqueue associated with task-switch
1da177e4
LT
2726 * @prev: the thread we just switched away from.
2727 *
4866cde0
NP
2728 * finish_task_switch must be called after the context switch, paired
2729 * with a prepare_task_switch call before the context switch.
2730 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2731 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2732 *
2733 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2734 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2735 * with the lock held can cause deadlocks; see schedule() for
2736 * details.)
2737 */
a9957449 2738static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2739 __releases(rq->lock)
2740{
1da177e4 2741 struct mm_struct *mm = rq->prev_mm;
55a101f8 2742 long prev_state;
1da177e4
LT
2743
2744 rq->prev_mm = NULL;
2745
2746 /*
2747 * A task struct has one reference for the use as "current".
c394cc9f 2748 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2749 * schedule one last time. The schedule call will never return, and
2750 * the scheduled task must drop that reference.
c394cc9f 2751 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2752 * still held, otherwise prev could be scheduled on another cpu, die
2753 * there before we look at prev->state, and then the reference would
2754 * be dropped twice.
2755 * Manfred Spraul <manfred@colorfullife.com>
2756 */
55a101f8 2757 prev_state = prev->state;
4866cde0 2758 finish_arch_switch(prev);
8381f65d
JI
2759#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2760 local_irq_disable();
2761#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2762 perf_event_task_sched_in(current);
8381f65d
JI
2763#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2764 local_irq_enable();
2765#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2766 finish_lock_switch(rq, prev);
e8fa1362 2767
e107be36 2768 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2769 if (mm)
2770 mmdrop(mm);
c394cc9f 2771 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2772 /*
2773 * Remove function-return probe instances associated with this
2774 * task and put them back on the free list.
9761eea8 2775 */
c6fd91f0 2776 kprobe_flush_task(prev);
1da177e4 2777 put_task_struct(prev);
c6fd91f0 2778 }
1da177e4
LT
2779}
2780
3f029d3c
GH
2781#ifdef CONFIG_SMP
2782
2783/* assumes rq->lock is held */
2784static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2785{
2786 if (prev->sched_class->pre_schedule)
2787 prev->sched_class->pre_schedule(rq, prev);
2788}
2789
2790/* rq->lock is NOT held, but preemption is disabled */
2791static inline void post_schedule(struct rq *rq)
2792{
2793 if (rq->post_schedule) {
2794 unsigned long flags;
2795
05fa785c 2796 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2797 if (rq->curr->sched_class->post_schedule)
2798 rq->curr->sched_class->post_schedule(rq);
05fa785c 2799 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2800
2801 rq->post_schedule = 0;
2802 }
2803}
2804
2805#else
da19ab51 2806
3f029d3c
GH
2807static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2808{
2809}
2810
2811static inline void post_schedule(struct rq *rq)
2812{
1da177e4
LT
2813}
2814
3f029d3c
GH
2815#endif
2816
1da177e4
LT
2817/**
2818 * schedule_tail - first thing a freshly forked thread must call.
2819 * @prev: the thread we just switched away from.
2820 */
36c8b586 2821asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2822 __releases(rq->lock)
2823{
70b97a7f
IM
2824 struct rq *rq = this_rq();
2825
4866cde0 2826 finish_task_switch(rq, prev);
da19ab51 2827
3f029d3c
GH
2828 /*
2829 * FIXME: do we need to worry about rq being invalidated by the
2830 * task_switch?
2831 */
2832 post_schedule(rq);
70b97a7f 2833
4866cde0
NP
2834#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2835 /* In this case, finish_task_switch does not reenable preemption */
2836 preempt_enable();
2837#endif
1da177e4 2838 if (current->set_child_tid)
b488893a 2839 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2840}
2841
2842/*
2843 * context_switch - switch to the new MM and the new
2844 * thread's register state.
2845 */
dd41f596 2846static inline void
70b97a7f 2847context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2848 struct task_struct *next)
1da177e4 2849{
dd41f596 2850 struct mm_struct *mm, *oldmm;
1da177e4 2851
e107be36 2852 prepare_task_switch(rq, prev, next);
0a16b607 2853 trace_sched_switch(rq, prev, next);
dd41f596
IM
2854 mm = next->mm;
2855 oldmm = prev->active_mm;
9226d125
ZA
2856 /*
2857 * For paravirt, this is coupled with an exit in switch_to to
2858 * combine the page table reload and the switch backend into
2859 * one hypercall.
2860 */
224101ed 2861 arch_start_context_switch(prev);
9226d125 2862
710390d9 2863 if (likely(!mm)) {
1da177e4
LT
2864 next->active_mm = oldmm;
2865 atomic_inc(&oldmm->mm_count);
2866 enter_lazy_tlb(oldmm, next);
2867 } else
2868 switch_mm(oldmm, mm, next);
2869
710390d9 2870 if (likely(!prev->mm)) {
1da177e4 2871 prev->active_mm = NULL;
1da177e4
LT
2872 rq->prev_mm = oldmm;
2873 }
3a5f5e48
IM
2874 /*
2875 * Since the runqueue lock will be released by the next
2876 * task (which is an invalid locking op but in the case
2877 * of the scheduler it's an obvious special-case), so we
2878 * do an early lockdep release here:
2879 */
2880#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2881 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2882#endif
1da177e4
LT
2883
2884 /* Here we just switch the register state and the stack. */
2885 switch_to(prev, next, prev);
2886
dd41f596
IM
2887 barrier();
2888 /*
2889 * this_rq must be evaluated again because prev may have moved
2890 * CPUs since it called schedule(), thus the 'rq' on its stack
2891 * frame will be invalid.
2892 */
2893 finish_task_switch(this_rq(), prev);
1da177e4
LT
2894}
2895
2896/*
2897 * nr_running, nr_uninterruptible and nr_context_switches:
2898 *
2899 * externally visible scheduler statistics: current number of runnable
2900 * threads, current number of uninterruptible-sleeping threads, total
2901 * number of context switches performed since bootup.
2902 */
2903unsigned long nr_running(void)
2904{
2905 unsigned long i, sum = 0;
2906
2907 for_each_online_cpu(i)
2908 sum += cpu_rq(i)->nr_running;
2909
2910 return sum;
f711f609 2911}
1da177e4
LT
2912
2913unsigned long nr_uninterruptible(void)
f711f609 2914{
1da177e4 2915 unsigned long i, sum = 0;
f711f609 2916
0a945022 2917 for_each_possible_cpu(i)
1da177e4 2918 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2919
2920 /*
1da177e4
LT
2921 * Since we read the counters lockless, it might be slightly
2922 * inaccurate. Do not allow it to go below zero though:
f711f609 2923 */
1da177e4
LT
2924 if (unlikely((long)sum < 0))
2925 sum = 0;
f711f609 2926
1da177e4 2927 return sum;
f711f609 2928}
f711f609 2929
1da177e4 2930unsigned long long nr_context_switches(void)
46cb4b7c 2931{
cc94abfc
SR
2932 int i;
2933 unsigned long long sum = 0;
46cb4b7c 2934
0a945022 2935 for_each_possible_cpu(i)
1da177e4 2936 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2937
1da177e4
LT
2938 return sum;
2939}
483b4ee6 2940
1da177e4
LT
2941unsigned long nr_iowait(void)
2942{
2943 unsigned long i, sum = 0;
483b4ee6 2944
0a945022 2945 for_each_possible_cpu(i)
1da177e4 2946 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2947
1da177e4
LT
2948 return sum;
2949}
483b4ee6 2950
69d25870
AV
2951unsigned long nr_iowait_cpu(void)
2952{
2953 struct rq *this = this_rq();
2954 return atomic_read(&this->nr_iowait);
2955}
46cb4b7c 2956
69d25870
AV
2957unsigned long this_cpu_load(void)
2958{
2959 struct rq *this = this_rq();
2960 return this->cpu_load[0];
2961}
e790fb0b 2962
46cb4b7c 2963
dce48a84
TG
2964/* Variables and functions for calc_load */
2965static atomic_long_t calc_load_tasks;
2966static unsigned long calc_load_update;
2967unsigned long avenrun[3];
2968EXPORT_SYMBOL(avenrun);
46cb4b7c 2969
2d02494f
TG
2970/**
2971 * get_avenrun - get the load average array
2972 * @loads: pointer to dest load array
2973 * @offset: offset to add
2974 * @shift: shift count to shift the result left
2975 *
2976 * These values are estimates at best, so no need for locking.
2977 */
2978void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2979{
2980 loads[0] = (avenrun[0] + offset) << shift;
2981 loads[1] = (avenrun[1] + offset) << shift;
2982 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2983}
46cb4b7c 2984
dce48a84
TG
2985static unsigned long
2986calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2987{
dce48a84
TG
2988 load *= exp;
2989 load += active * (FIXED_1 - exp);
2990 return load >> FSHIFT;
2991}
46cb4b7c
SS
2992
2993/*
dce48a84
TG
2994 * calc_load - update the avenrun load estimates 10 ticks after the
2995 * CPUs have updated calc_load_tasks.
7835b98b 2996 */
dce48a84 2997void calc_global_load(void)
7835b98b 2998{
dce48a84
TG
2999 unsigned long upd = calc_load_update + 10;
3000 long active;
1da177e4 3001
dce48a84
TG
3002 if (time_before(jiffies, upd))
3003 return;
1da177e4 3004
dce48a84
TG
3005 active = atomic_long_read(&calc_load_tasks);
3006 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3007
dce48a84
TG
3008 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3009 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3010 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3011
dce48a84
TG
3012 calc_load_update += LOAD_FREQ;
3013}
1da177e4 3014
dce48a84
TG
3015/*
3016 * Either called from update_cpu_load() or from a cpu going idle
3017 */
3018static void calc_load_account_active(struct rq *this_rq)
3019{
3020 long nr_active, delta;
08c183f3 3021
dce48a84
TG
3022 nr_active = this_rq->nr_running;
3023 nr_active += (long) this_rq->nr_uninterruptible;
783609c6 3024
dce48a84
TG
3025 if (nr_active != this_rq->calc_load_active) {
3026 delta = nr_active - this_rq->calc_load_active;
3027 this_rq->calc_load_active = nr_active;
3028 atomic_long_add(delta, &calc_load_tasks);
1da177e4 3029 }
46cb4b7c
SS
3030}
3031
3032/*
dd41f596
IM
3033 * Update rq->cpu_load[] statistics. This function is usually called every
3034 * scheduler tick (TICK_NSEC).
46cb4b7c 3035 */
dd41f596 3036static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3037{
495eca49 3038 unsigned long this_load = this_rq->load.weight;
dd41f596 3039 int i, scale;
46cb4b7c 3040
dd41f596 3041 this_rq->nr_load_updates++;
46cb4b7c 3042
dd41f596
IM
3043 /* Update our load: */
3044 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3045 unsigned long old_load, new_load;
7d1e6a9b 3046
dd41f596 3047 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3048
dd41f596
IM
3049 old_load = this_rq->cpu_load[i];
3050 new_load = this_load;
a25707f3
IM
3051 /*
3052 * Round up the averaging division if load is increasing. This
3053 * prevents us from getting stuck on 9 if the load is 10, for
3054 * example.
3055 */
3056 if (new_load > old_load)
3057 new_load += scale-1;
dd41f596
IM
3058 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3059 }
46cb4b7c 3060
dce48a84
TG
3061 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3062 this_rq->calc_load_update += LOAD_FREQ;
3063 calc_load_account_active(this_rq);
46cb4b7c 3064 }
46cb4b7c
SS
3065}
3066
dd41f596 3067#ifdef CONFIG_SMP
8a0be9ef 3068
46cb4b7c 3069/*
38022906
PZ
3070 * sched_exec - execve() is a valuable balancing opportunity, because at
3071 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3072 */
38022906 3073void sched_exec(void)
46cb4b7c 3074{
38022906 3075 struct task_struct *p = current;
70b97a7f 3076 struct migration_req req;
38022906 3077 int dest_cpu, this_cpu;
1da177e4 3078 unsigned long flags;
70b97a7f 3079 struct rq *rq;
46cb4b7c 3080
38022906
PZ
3081again:
3082 this_cpu = get_cpu();
3083 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3084 if (dest_cpu == this_cpu) {
3085 put_cpu();
3086 return;
46cb4b7c
SS
3087 }
3088
1da177e4 3089 rq = task_rq_lock(p, &flags);
38022906
PZ
3090 put_cpu();
3091
46cb4b7c 3092 /*
38022906 3093 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3094 */
96f874e2 3095 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3096 || unlikely(!cpu_active(dest_cpu))) {
3097 task_rq_unlock(rq, &flags);
3098 goto again;
46cb4b7c
SS
3099 }
3100
1da177e4
LT
3101 /* force the process onto the specified CPU */
3102 if (migrate_task(p, dest_cpu, &req)) {
3103 /* Need to wait for migration thread (might exit: take ref). */
3104 struct task_struct *mt = rq->migration_thread;
dd41f596 3105
1da177e4
LT
3106 get_task_struct(mt);
3107 task_rq_unlock(rq, &flags);
3108 wake_up_process(mt);
3109 put_task_struct(mt);
3110 wait_for_completion(&req.done);
dd41f596 3111
1da177e4
LT
3112 return;
3113 }
1da177e4 3114 task_rq_unlock(rq, &flags);
1da177e4 3115}
dd41f596 3116
1da177e4
LT
3117#endif
3118
1da177e4
LT
3119DEFINE_PER_CPU(struct kernel_stat, kstat);
3120
3121EXPORT_PER_CPU_SYMBOL(kstat);
3122
3123/*
c5f8d995 3124 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3125 * @p in case that task is currently running.
c5f8d995
HS
3126 *
3127 * Called with task_rq_lock() held on @rq.
1da177e4 3128 */
c5f8d995
HS
3129static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3130{
3131 u64 ns = 0;
3132
3133 if (task_current(rq, p)) {
3134 update_rq_clock(rq);
3135 ns = rq->clock - p->se.exec_start;
3136 if ((s64)ns < 0)
3137 ns = 0;
3138 }
3139
3140 return ns;
3141}
3142
bb34d92f 3143unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3144{
1da177e4 3145 unsigned long flags;
41b86e9c 3146 struct rq *rq;
bb34d92f 3147 u64 ns = 0;
48f24c4d 3148
41b86e9c 3149 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3150 ns = do_task_delta_exec(p, rq);
3151 task_rq_unlock(rq, &flags);
1508487e 3152
c5f8d995
HS
3153 return ns;
3154}
f06febc9 3155
c5f8d995
HS
3156/*
3157 * Return accounted runtime for the task.
3158 * In case the task is currently running, return the runtime plus current's
3159 * pending runtime that have not been accounted yet.
3160 */
3161unsigned long long task_sched_runtime(struct task_struct *p)
3162{
3163 unsigned long flags;
3164 struct rq *rq;
3165 u64 ns = 0;
3166
3167 rq = task_rq_lock(p, &flags);
3168 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3169 task_rq_unlock(rq, &flags);
3170
3171 return ns;
3172}
48f24c4d 3173
c5f8d995
HS
3174/*
3175 * Return sum_exec_runtime for the thread group.
3176 * In case the task is currently running, return the sum plus current's
3177 * pending runtime that have not been accounted yet.
3178 *
3179 * Note that the thread group might have other running tasks as well,
3180 * so the return value not includes other pending runtime that other
3181 * running tasks might have.
3182 */
3183unsigned long long thread_group_sched_runtime(struct task_struct *p)
3184{
3185 struct task_cputime totals;
3186 unsigned long flags;
3187 struct rq *rq;
3188 u64 ns;
3189
3190 rq = task_rq_lock(p, &flags);
3191 thread_group_cputime(p, &totals);
3192 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3193 task_rq_unlock(rq, &flags);
48f24c4d 3194
1da177e4
LT
3195 return ns;
3196}
3197
1da177e4
LT
3198/*
3199 * Account user cpu time to a process.
3200 * @p: the process that the cpu time gets accounted to
1da177e4 3201 * @cputime: the cpu time spent in user space since the last update
457533a7 3202 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3203 */
457533a7
MS
3204void account_user_time(struct task_struct *p, cputime_t cputime,
3205 cputime_t cputime_scaled)
1da177e4
LT
3206{
3207 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3208 cputime64_t tmp;
3209
457533a7 3210 /* Add user time to process. */
1da177e4 3211 p->utime = cputime_add(p->utime, cputime);
457533a7 3212 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3213 account_group_user_time(p, cputime);
1da177e4
LT
3214
3215 /* Add user time to cpustat. */
3216 tmp = cputime_to_cputime64(cputime);
3217 if (TASK_NICE(p) > 0)
3218 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3219 else
3220 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3221
3222 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3223 /* Account for user time used */
3224 acct_update_integrals(p);
1da177e4
LT
3225}
3226
94886b84
LV
3227/*
3228 * Account guest cpu time to a process.
3229 * @p: the process that the cpu time gets accounted to
3230 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3231 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3232 */
457533a7
MS
3233static void account_guest_time(struct task_struct *p, cputime_t cputime,
3234 cputime_t cputime_scaled)
94886b84
LV
3235{
3236 cputime64_t tmp;
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3238
3239 tmp = cputime_to_cputime64(cputime);
3240
457533a7 3241 /* Add guest time to process. */
94886b84 3242 p->utime = cputime_add(p->utime, cputime);
457533a7 3243 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3244 account_group_user_time(p, cputime);
94886b84
LV
3245 p->gtime = cputime_add(p->gtime, cputime);
3246
457533a7 3247 /* Add guest time to cpustat. */
ce0e7b28
RO
3248 if (TASK_NICE(p) > 0) {
3249 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3250 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3251 } else {
3252 cpustat->user = cputime64_add(cpustat->user, tmp);
3253 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3254 }
94886b84
LV
3255}
3256
1da177e4
LT
3257/*
3258 * Account system cpu time to a process.
3259 * @p: the process that the cpu time gets accounted to
3260 * @hardirq_offset: the offset to subtract from hardirq_count()
3261 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3262 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3263 */
3264void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3265 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3266{
3267 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3268 cputime64_t tmp;
3269
983ed7a6 3270 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3271 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3272 return;
3273 }
94886b84 3274
457533a7 3275 /* Add system time to process. */
1da177e4 3276 p->stime = cputime_add(p->stime, cputime);
457533a7 3277 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3278 account_group_system_time(p, cputime);
1da177e4
LT
3279
3280 /* Add system time to cpustat. */
3281 tmp = cputime_to_cputime64(cputime);
3282 if (hardirq_count() - hardirq_offset)
3283 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3284 else if (softirq_count())
3285 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3286 else
79741dd3
MS
3287 cpustat->system = cputime64_add(cpustat->system, tmp);
3288
ef12fefa
BR
3289 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3290
1da177e4
LT
3291 /* Account for system time used */
3292 acct_update_integrals(p);
1da177e4
LT
3293}
3294
c66f08be 3295/*
1da177e4 3296 * Account for involuntary wait time.
1da177e4 3297 * @steal: the cpu time spent in involuntary wait
c66f08be 3298 */
79741dd3 3299void account_steal_time(cputime_t cputime)
c66f08be 3300{
79741dd3
MS
3301 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3302 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3303
3304 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3305}
3306
1da177e4 3307/*
79741dd3
MS
3308 * Account for idle time.
3309 * @cputime: the cpu time spent in idle wait
1da177e4 3310 */
79741dd3 3311void account_idle_time(cputime_t cputime)
1da177e4
LT
3312{
3313 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3314 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3315 struct rq *rq = this_rq();
1da177e4 3316
79741dd3
MS
3317 if (atomic_read(&rq->nr_iowait) > 0)
3318 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3319 else
3320 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3321}
3322
79741dd3
MS
3323#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3324
3325/*
3326 * Account a single tick of cpu time.
3327 * @p: the process that the cpu time gets accounted to
3328 * @user_tick: indicates if the tick is a user or a system tick
3329 */
3330void account_process_tick(struct task_struct *p, int user_tick)
3331{
a42548a1 3332 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3333 struct rq *rq = this_rq();
3334
3335 if (user_tick)
a42548a1 3336 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3337 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3338 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3339 one_jiffy_scaled);
3340 else
a42548a1 3341 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3342}
3343
3344/*
3345 * Account multiple ticks of steal time.
3346 * @p: the process from which the cpu time has been stolen
3347 * @ticks: number of stolen ticks
3348 */
3349void account_steal_ticks(unsigned long ticks)
3350{
3351 account_steal_time(jiffies_to_cputime(ticks));
3352}
3353
3354/*
3355 * Account multiple ticks of idle time.
3356 * @ticks: number of stolen ticks
3357 */
3358void account_idle_ticks(unsigned long ticks)
3359{
3360 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3361}
3362
79741dd3
MS
3363#endif
3364
49048622
BS
3365/*
3366 * Use precise platform statistics if available:
3367 */
3368#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3369void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3370{
d99ca3b9
HS
3371 *ut = p->utime;
3372 *st = p->stime;
49048622
BS
3373}
3374
0cf55e1e 3375void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3376{
0cf55e1e
HS
3377 struct task_cputime cputime;
3378
3379 thread_group_cputime(p, &cputime);
3380
3381 *ut = cputime.utime;
3382 *st = cputime.stime;
49048622
BS
3383}
3384#else
761b1d26
HS
3385
3386#ifndef nsecs_to_cputime
b7b20df9 3387# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3388#endif
3389
d180c5bc 3390void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3391{
d99ca3b9 3392 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3393
3394 /*
3395 * Use CFS's precise accounting:
3396 */
d180c5bc 3397 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3398
3399 if (total) {
d180c5bc
HS
3400 u64 temp;
3401
3402 temp = (u64)(rtime * utime);
49048622 3403 do_div(temp, total);
d180c5bc
HS
3404 utime = (cputime_t)temp;
3405 } else
3406 utime = rtime;
49048622 3407
d180c5bc
HS
3408 /*
3409 * Compare with previous values, to keep monotonicity:
3410 */
761b1d26 3411 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3412 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3413
d99ca3b9
HS
3414 *ut = p->prev_utime;
3415 *st = p->prev_stime;
49048622
BS
3416}
3417
0cf55e1e
HS
3418/*
3419 * Must be called with siglock held.
3420 */
3421void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3422{
0cf55e1e
HS
3423 struct signal_struct *sig = p->signal;
3424 struct task_cputime cputime;
3425 cputime_t rtime, utime, total;
49048622 3426
0cf55e1e 3427 thread_group_cputime(p, &cputime);
49048622 3428
0cf55e1e
HS
3429 total = cputime_add(cputime.utime, cputime.stime);
3430 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3431
0cf55e1e
HS
3432 if (total) {
3433 u64 temp;
49048622 3434
0cf55e1e
HS
3435 temp = (u64)(rtime * cputime.utime);
3436 do_div(temp, total);
3437 utime = (cputime_t)temp;
3438 } else
3439 utime = rtime;
3440
3441 sig->prev_utime = max(sig->prev_utime, utime);
3442 sig->prev_stime = max(sig->prev_stime,
3443 cputime_sub(rtime, sig->prev_utime));
3444
3445 *ut = sig->prev_utime;
3446 *st = sig->prev_stime;
49048622 3447}
49048622 3448#endif
49048622 3449
7835b98b
CL
3450/*
3451 * This function gets called by the timer code, with HZ frequency.
3452 * We call it with interrupts disabled.
3453 *
3454 * It also gets called by the fork code, when changing the parent's
3455 * timeslices.
3456 */
3457void scheduler_tick(void)
3458{
7835b98b
CL
3459 int cpu = smp_processor_id();
3460 struct rq *rq = cpu_rq(cpu);
dd41f596 3461 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3462
3463 sched_clock_tick();
dd41f596 3464
05fa785c 3465 raw_spin_lock(&rq->lock);
3e51f33f 3466 update_rq_clock(rq);
f1a438d8 3467 update_cpu_load(rq);
fa85ae24 3468 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3469 raw_spin_unlock(&rq->lock);
7835b98b 3470
49f47433 3471 perf_event_task_tick(curr);
e220d2dc 3472
e418e1c2 3473#ifdef CONFIG_SMP
dd41f596
IM
3474 rq->idle_at_tick = idle_cpu(cpu);
3475 trigger_load_balance(rq, cpu);
e418e1c2 3476#endif
1da177e4
LT
3477}
3478
132380a0 3479notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3480{
3481 if (in_lock_functions(addr)) {
3482 addr = CALLER_ADDR2;
3483 if (in_lock_functions(addr))
3484 addr = CALLER_ADDR3;
3485 }
3486 return addr;
3487}
1da177e4 3488
7e49fcce
SR
3489#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3490 defined(CONFIG_PREEMPT_TRACER))
3491
43627582 3492void __kprobes add_preempt_count(int val)
1da177e4 3493{
6cd8a4bb 3494#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3495 /*
3496 * Underflow?
3497 */
9a11b49a
IM
3498 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3499 return;
6cd8a4bb 3500#endif
1da177e4 3501 preempt_count() += val;
6cd8a4bb 3502#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3503 /*
3504 * Spinlock count overflowing soon?
3505 */
33859f7f
MOS
3506 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3507 PREEMPT_MASK - 10);
6cd8a4bb
SR
3508#endif
3509 if (preempt_count() == val)
3510 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3511}
3512EXPORT_SYMBOL(add_preempt_count);
3513
43627582 3514void __kprobes sub_preempt_count(int val)
1da177e4 3515{
6cd8a4bb 3516#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3517 /*
3518 * Underflow?
3519 */
01e3eb82 3520 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3521 return;
1da177e4
LT
3522 /*
3523 * Is the spinlock portion underflowing?
3524 */
9a11b49a
IM
3525 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3526 !(preempt_count() & PREEMPT_MASK)))
3527 return;
6cd8a4bb 3528#endif
9a11b49a 3529
6cd8a4bb
SR
3530 if (preempt_count() == val)
3531 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3532 preempt_count() -= val;
3533}
3534EXPORT_SYMBOL(sub_preempt_count);
3535
3536#endif
3537
3538/*
dd41f596 3539 * Print scheduling while atomic bug:
1da177e4 3540 */
dd41f596 3541static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3542{
838225b4
SS
3543 struct pt_regs *regs = get_irq_regs();
3544
3df0fc5b
PZ
3545 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3546 prev->comm, prev->pid, preempt_count());
838225b4 3547
dd41f596 3548 debug_show_held_locks(prev);
e21f5b15 3549 print_modules();
dd41f596
IM
3550 if (irqs_disabled())
3551 print_irqtrace_events(prev);
838225b4
SS
3552
3553 if (regs)
3554 show_regs(regs);
3555 else
3556 dump_stack();
dd41f596 3557}
1da177e4 3558
dd41f596
IM
3559/*
3560 * Various schedule()-time debugging checks and statistics:
3561 */
3562static inline void schedule_debug(struct task_struct *prev)
3563{
1da177e4 3564 /*
41a2d6cf 3565 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3566 * schedule() atomically, we ignore that path for now.
3567 * Otherwise, whine if we are scheduling when we should not be.
3568 */
3f33a7ce 3569 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3570 __schedule_bug(prev);
3571
1da177e4
LT
3572 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3573
2d72376b 3574 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3575#ifdef CONFIG_SCHEDSTATS
3576 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3577 schedstat_inc(this_rq(), bkl_count);
3578 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3579 }
3580#endif
dd41f596
IM
3581}
3582
6cecd084 3583static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3584{
a64692a3
MG
3585 if (prev->se.on_rq)
3586 update_rq_clock(rq);
3587 rq->skip_clock_update = 0;
6cecd084 3588 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3589}
3590
dd41f596
IM
3591/*
3592 * Pick up the highest-prio task:
3593 */
3594static inline struct task_struct *
b67802ea 3595pick_next_task(struct rq *rq)
dd41f596 3596{
5522d5d5 3597 const struct sched_class *class;
dd41f596 3598 struct task_struct *p;
1da177e4
LT
3599
3600 /*
dd41f596
IM
3601 * Optimization: we know that if all tasks are in
3602 * the fair class we can call that function directly:
1da177e4 3603 */
dd41f596 3604 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3605 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3606 if (likely(p))
3607 return p;
1da177e4
LT
3608 }
3609
dd41f596
IM
3610 class = sched_class_highest;
3611 for ( ; ; ) {
fb8d4724 3612 p = class->pick_next_task(rq);
dd41f596
IM
3613 if (p)
3614 return p;
3615 /*
3616 * Will never be NULL as the idle class always
3617 * returns a non-NULL p:
3618 */
3619 class = class->next;
3620 }
3621}
1da177e4 3622
dd41f596
IM
3623/*
3624 * schedule() is the main scheduler function.
3625 */
ff743345 3626asmlinkage void __sched schedule(void)
dd41f596
IM
3627{
3628 struct task_struct *prev, *next;
67ca7bde 3629 unsigned long *switch_count;
dd41f596 3630 struct rq *rq;
31656519 3631 int cpu;
dd41f596 3632
ff743345
PZ
3633need_resched:
3634 preempt_disable();
dd41f596
IM
3635 cpu = smp_processor_id();
3636 rq = cpu_rq(cpu);
d6714c22 3637 rcu_sched_qs(cpu);
dd41f596
IM
3638 prev = rq->curr;
3639 switch_count = &prev->nivcsw;
3640
3641 release_kernel_lock(prev);
3642need_resched_nonpreemptible:
3643
3644 schedule_debug(prev);
1da177e4 3645
31656519 3646 if (sched_feat(HRTICK))
f333fdc9 3647 hrtick_clear(rq);
8f4d37ec 3648
05fa785c 3649 raw_spin_lock_irq(&rq->lock);
1e819950 3650 clear_tsk_need_resched(prev);
1da177e4 3651
1da177e4 3652 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3653 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3654 prev->state = TASK_RUNNING;
16882c1e 3655 else
2e1cb74a 3656 deactivate_task(rq, prev, 1);
dd41f596 3657 switch_count = &prev->nvcsw;
1da177e4
LT
3658 }
3659
3f029d3c 3660 pre_schedule(rq, prev);
f65eda4f 3661
dd41f596 3662 if (unlikely(!rq->nr_running))
1da177e4 3663 idle_balance(cpu, rq);
1da177e4 3664
df1c99d4 3665 put_prev_task(rq, prev);
b67802ea 3666 next = pick_next_task(rq);
1da177e4 3667
1da177e4 3668 if (likely(prev != next)) {
673a90a1 3669 sched_info_switch(prev, next);
49f47433 3670 perf_event_task_sched_out(prev, next);
673a90a1 3671
1da177e4
LT
3672 rq->nr_switches++;
3673 rq->curr = next;
3674 ++*switch_count;
3675
dd41f596 3676 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3677 /*
3678 * the context switch might have flipped the stack from under
3679 * us, hence refresh the local variables.
3680 */
3681 cpu = smp_processor_id();
3682 rq = cpu_rq(cpu);
1da177e4 3683 } else
05fa785c 3684 raw_spin_unlock_irq(&rq->lock);
1da177e4 3685
3f029d3c 3686 post_schedule(rq);
1da177e4 3687
6d558c3a
YZ
3688 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3689 prev = rq->curr;
3690 switch_count = &prev->nivcsw;
1da177e4 3691 goto need_resched_nonpreemptible;
6d558c3a 3692 }
8f4d37ec 3693
1da177e4 3694 preempt_enable_no_resched();
ff743345 3695 if (need_resched())
1da177e4
LT
3696 goto need_resched;
3697}
1da177e4
LT
3698EXPORT_SYMBOL(schedule);
3699
c08f7829 3700#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3701/*
3702 * Look out! "owner" is an entirely speculative pointer
3703 * access and not reliable.
3704 */
3705int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3706{
3707 unsigned int cpu;
3708 struct rq *rq;
3709
3710 if (!sched_feat(OWNER_SPIN))
3711 return 0;
3712
3713#ifdef CONFIG_DEBUG_PAGEALLOC
3714 /*
3715 * Need to access the cpu field knowing that
3716 * DEBUG_PAGEALLOC could have unmapped it if
3717 * the mutex owner just released it and exited.
3718 */
3719 if (probe_kernel_address(&owner->cpu, cpu))
3720 goto out;
3721#else
3722 cpu = owner->cpu;
3723#endif
3724
3725 /*
3726 * Even if the access succeeded (likely case),
3727 * the cpu field may no longer be valid.
3728 */
3729 if (cpu >= nr_cpumask_bits)
3730 goto out;
3731
3732 /*
3733 * We need to validate that we can do a
3734 * get_cpu() and that we have the percpu area.
3735 */
3736 if (!cpu_online(cpu))
3737 goto out;
3738
3739 rq = cpu_rq(cpu);
3740
3741 for (;;) {
3742 /*
3743 * Owner changed, break to re-assess state.
3744 */
3745 if (lock->owner != owner)
3746 break;
3747
3748 /*
3749 * Is that owner really running on that cpu?
3750 */
3751 if (task_thread_info(rq->curr) != owner || need_resched())
3752 return 0;
3753
3754 cpu_relax();
3755 }
3756out:
3757 return 1;
3758}
3759#endif
3760
1da177e4
LT
3761#ifdef CONFIG_PREEMPT
3762/*
2ed6e34f 3763 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3764 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3765 * occur there and call schedule directly.
3766 */
3767asmlinkage void __sched preempt_schedule(void)
3768{
3769 struct thread_info *ti = current_thread_info();
6478d880 3770
1da177e4
LT
3771 /*
3772 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3773 * we do not want to preempt the current task. Just return..
1da177e4 3774 */
beed33a8 3775 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3776 return;
3777
3a5c359a
AK
3778 do {
3779 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3780 schedule();
3a5c359a 3781 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3782
3a5c359a
AK
3783 /*
3784 * Check again in case we missed a preemption opportunity
3785 * between schedule and now.
3786 */
3787 barrier();
5ed0cec0 3788 } while (need_resched());
1da177e4 3789}
1da177e4
LT
3790EXPORT_SYMBOL(preempt_schedule);
3791
3792/*
2ed6e34f 3793 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3794 * off of irq context.
3795 * Note, that this is called and return with irqs disabled. This will
3796 * protect us against recursive calling from irq.
3797 */
3798asmlinkage void __sched preempt_schedule_irq(void)
3799{
3800 struct thread_info *ti = current_thread_info();
6478d880 3801
2ed6e34f 3802 /* Catch callers which need to be fixed */
1da177e4
LT
3803 BUG_ON(ti->preempt_count || !irqs_disabled());
3804
3a5c359a
AK
3805 do {
3806 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3807 local_irq_enable();
3808 schedule();
3809 local_irq_disable();
3a5c359a 3810 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3811
3a5c359a
AK
3812 /*
3813 * Check again in case we missed a preemption opportunity
3814 * between schedule and now.
3815 */
3816 barrier();
5ed0cec0 3817 } while (need_resched());
1da177e4
LT
3818}
3819
3820#endif /* CONFIG_PREEMPT */
3821
63859d4f 3822int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3823 void *key)
1da177e4 3824{
63859d4f 3825 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3826}
1da177e4
LT
3827EXPORT_SYMBOL(default_wake_function);
3828
3829/*
41a2d6cf
IM
3830 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3831 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3832 * number) then we wake all the non-exclusive tasks and one exclusive task.
3833 *
3834 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3835 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3836 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3837 */
78ddb08f 3838static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3839 int nr_exclusive, int wake_flags, void *key)
1da177e4 3840{
2e45874c 3841 wait_queue_t *curr, *next;
1da177e4 3842
2e45874c 3843 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3844 unsigned flags = curr->flags;
3845
63859d4f 3846 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3847 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3848 break;
3849 }
3850}
3851
3852/**
3853 * __wake_up - wake up threads blocked on a waitqueue.
3854 * @q: the waitqueue
3855 * @mode: which threads
3856 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3857 * @key: is directly passed to the wakeup function
50fa610a
DH
3858 *
3859 * It may be assumed that this function implies a write memory barrier before
3860 * changing the task state if and only if any tasks are woken up.
1da177e4 3861 */
7ad5b3a5 3862void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3863 int nr_exclusive, void *key)
1da177e4
LT
3864{
3865 unsigned long flags;
3866
3867 spin_lock_irqsave(&q->lock, flags);
3868 __wake_up_common(q, mode, nr_exclusive, 0, key);
3869 spin_unlock_irqrestore(&q->lock, flags);
3870}
1da177e4
LT
3871EXPORT_SYMBOL(__wake_up);
3872
3873/*
3874 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3875 */
7ad5b3a5 3876void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3877{
3878 __wake_up_common(q, mode, 1, 0, NULL);
3879}
3880
4ede816a
DL
3881void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3882{
3883 __wake_up_common(q, mode, 1, 0, key);
3884}
3885
1da177e4 3886/**
4ede816a 3887 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3888 * @q: the waitqueue
3889 * @mode: which threads
3890 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3891 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3892 *
3893 * The sync wakeup differs that the waker knows that it will schedule
3894 * away soon, so while the target thread will be woken up, it will not
3895 * be migrated to another CPU - ie. the two threads are 'synchronized'
3896 * with each other. This can prevent needless bouncing between CPUs.
3897 *
3898 * On UP it can prevent extra preemption.
50fa610a
DH
3899 *
3900 * It may be assumed that this function implies a write memory barrier before
3901 * changing the task state if and only if any tasks are woken up.
1da177e4 3902 */
4ede816a
DL
3903void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3904 int nr_exclusive, void *key)
1da177e4
LT
3905{
3906 unsigned long flags;
7d478721 3907 int wake_flags = WF_SYNC;
1da177e4
LT
3908
3909 if (unlikely(!q))
3910 return;
3911
3912 if (unlikely(!nr_exclusive))
7d478721 3913 wake_flags = 0;
1da177e4
LT
3914
3915 spin_lock_irqsave(&q->lock, flags);
7d478721 3916 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3917 spin_unlock_irqrestore(&q->lock, flags);
3918}
4ede816a
DL
3919EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3920
3921/*
3922 * __wake_up_sync - see __wake_up_sync_key()
3923 */
3924void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3925{
3926 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3927}
1da177e4
LT
3928EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3929
65eb3dc6
KD
3930/**
3931 * complete: - signals a single thread waiting on this completion
3932 * @x: holds the state of this particular completion
3933 *
3934 * This will wake up a single thread waiting on this completion. Threads will be
3935 * awakened in the same order in which they were queued.
3936 *
3937 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3938 *
3939 * It may be assumed that this function implies a write memory barrier before
3940 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3941 */
b15136e9 3942void complete(struct completion *x)
1da177e4
LT
3943{
3944 unsigned long flags;
3945
3946 spin_lock_irqsave(&x->wait.lock, flags);
3947 x->done++;
d9514f6c 3948 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3949 spin_unlock_irqrestore(&x->wait.lock, flags);
3950}
3951EXPORT_SYMBOL(complete);
3952
65eb3dc6
KD
3953/**
3954 * complete_all: - signals all threads waiting on this completion
3955 * @x: holds the state of this particular completion
3956 *
3957 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3958 *
3959 * It may be assumed that this function implies a write memory barrier before
3960 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3961 */
b15136e9 3962void complete_all(struct completion *x)
1da177e4
LT
3963{
3964 unsigned long flags;
3965
3966 spin_lock_irqsave(&x->wait.lock, flags);
3967 x->done += UINT_MAX/2;
d9514f6c 3968 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3969 spin_unlock_irqrestore(&x->wait.lock, flags);
3970}
3971EXPORT_SYMBOL(complete_all);
3972
8cbbe86d
AK
3973static inline long __sched
3974do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3975{
1da177e4
LT
3976 if (!x->done) {
3977 DECLARE_WAITQUEUE(wait, current);
3978
3979 wait.flags |= WQ_FLAG_EXCLUSIVE;
3980 __add_wait_queue_tail(&x->wait, &wait);
3981 do {
94d3d824 3982 if (signal_pending_state(state, current)) {
ea71a546
ON
3983 timeout = -ERESTARTSYS;
3984 break;
8cbbe86d
AK
3985 }
3986 __set_current_state(state);
1da177e4
LT
3987 spin_unlock_irq(&x->wait.lock);
3988 timeout = schedule_timeout(timeout);
3989 spin_lock_irq(&x->wait.lock);
ea71a546 3990 } while (!x->done && timeout);
1da177e4 3991 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3992 if (!x->done)
3993 return timeout;
1da177e4
LT
3994 }
3995 x->done--;
ea71a546 3996 return timeout ?: 1;
1da177e4 3997}
1da177e4 3998
8cbbe86d
AK
3999static long __sched
4000wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4001{
1da177e4
LT
4002 might_sleep();
4003
4004 spin_lock_irq(&x->wait.lock);
8cbbe86d 4005 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4006 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4007 return timeout;
4008}
1da177e4 4009
65eb3dc6
KD
4010/**
4011 * wait_for_completion: - waits for completion of a task
4012 * @x: holds the state of this particular completion
4013 *
4014 * This waits to be signaled for completion of a specific task. It is NOT
4015 * interruptible and there is no timeout.
4016 *
4017 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4018 * and interrupt capability. Also see complete().
4019 */
b15136e9 4020void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4021{
4022 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4023}
8cbbe86d 4024EXPORT_SYMBOL(wait_for_completion);
1da177e4 4025
65eb3dc6
KD
4026/**
4027 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4028 * @x: holds the state of this particular completion
4029 * @timeout: timeout value in jiffies
4030 *
4031 * This waits for either a completion of a specific task to be signaled or for a
4032 * specified timeout to expire. The timeout is in jiffies. It is not
4033 * interruptible.
4034 */
b15136e9 4035unsigned long __sched
8cbbe86d 4036wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4037{
8cbbe86d 4038 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4039}
8cbbe86d 4040EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4041
65eb3dc6
KD
4042/**
4043 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4044 * @x: holds the state of this particular completion
4045 *
4046 * This waits for completion of a specific task to be signaled. It is
4047 * interruptible.
4048 */
8cbbe86d 4049int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4050{
51e97990
AK
4051 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4052 if (t == -ERESTARTSYS)
4053 return t;
4054 return 0;
0fec171c 4055}
8cbbe86d 4056EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4057
65eb3dc6
KD
4058/**
4059 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4060 * @x: holds the state of this particular completion
4061 * @timeout: timeout value in jiffies
4062 *
4063 * This waits for either a completion of a specific task to be signaled or for a
4064 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4065 */
b15136e9 4066unsigned long __sched
8cbbe86d
AK
4067wait_for_completion_interruptible_timeout(struct completion *x,
4068 unsigned long timeout)
0fec171c 4069{
8cbbe86d 4070 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4071}
8cbbe86d 4072EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4073
65eb3dc6
KD
4074/**
4075 * wait_for_completion_killable: - waits for completion of a task (killable)
4076 * @x: holds the state of this particular completion
4077 *
4078 * This waits to be signaled for completion of a specific task. It can be
4079 * interrupted by a kill signal.
4080 */
009e577e
MW
4081int __sched wait_for_completion_killable(struct completion *x)
4082{
4083 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4084 if (t == -ERESTARTSYS)
4085 return t;
4086 return 0;
4087}
4088EXPORT_SYMBOL(wait_for_completion_killable);
4089
be4de352
DC
4090/**
4091 * try_wait_for_completion - try to decrement a completion without blocking
4092 * @x: completion structure
4093 *
4094 * Returns: 0 if a decrement cannot be done without blocking
4095 * 1 if a decrement succeeded.
4096 *
4097 * If a completion is being used as a counting completion,
4098 * attempt to decrement the counter without blocking. This
4099 * enables us to avoid waiting if the resource the completion
4100 * is protecting is not available.
4101 */
4102bool try_wait_for_completion(struct completion *x)
4103{
7539a3b3 4104 unsigned long flags;
be4de352
DC
4105 int ret = 1;
4106
7539a3b3 4107 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4108 if (!x->done)
4109 ret = 0;
4110 else
4111 x->done--;
7539a3b3 4112 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4113 return ret;
4114}
4115EXPORT_SYMBOL(try_wait_for_completion);
4116
4117/**
4118 * completion_done - Test to see if a completion has any waiters
4119 * @x: completion structure
4120 *
4121 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4122 * 1 if there are no waiters.
4123 *
4124 */
4125bool completion_done(struct completion *x)
4126{
7539a3b3 4127 unsigned long flags;
be4de352
DC
4128 int ret = 1;
4129
7539a3b3 4130 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4131 if (!x->done)
4132 ret = 0;
7539a3b3 4133 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4134 return ret;
4135}
4136EXPORT_SYMBOL(completion_done);
4137
8cbbe86d
AK
4138static long __sched
4139sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4140{
0fec171c
IM
4141 unsigned long flags;
4142 wait_queue_t wait;
4143
4144 init_waitqueue_entry(&wait, current);
1da177e4 4145
8cbbe86d 4146 __set_current_state(state);
1da177e4 4147
8cbbe86d
AK
4148 spin_lock_irqsave(&q->lock, flags);
4149 __add_wait_queue(q, &wait);
4150 spin_unlock(&q->lock);
4151 timeout = schedule_timeout(timeout);
4152 spin_lock_irq(&q->lock);
4153 __remove_wait_queue(q, &wait);
4154 spin_unlock_irqrestore(&q->lock, flags);
4155
4156 return timeout;
4157}
4158
4159void __sched interruptible_sleep_on(wait_queue_head_t *q)
4160{
4161 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4162}
1da177e4
LT
4163EXPORT_SYMBOL(interruptible_sleep_on);
4164
0fec171c 4165long __sched
95cdf3b7 4166interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4167{
8cbbe86d 4168 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4169}
1da177e4
LT
4170EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4171
0fec171c 4172void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4173{
8cbbe86d 4174 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4175}
1da177e4
LT
4176EXPORT_SYMBOL(sleep_on);
4177
0fec171c 4178long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4179{
8cbbe86d 4180 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4181}
1da177e4
LT
4182EXPORT_SYMBOL(sleep_on_timeout);
4183
b29739f9
IM
4184#ifdef CONFIG_RT_MUTEXES
4185
4186/*
4187 * rt_mutex_setprio - set the current priority of a task
4188 * @p: task
4189 * @prio: prio value (kernel-internal form)
4190 *
4191 * This function changes the 'effective' priority of a task. It does
4192 * not touch ->normal_prio like __setscheduler().
4193 *
4194 * Used by the rt_mutex code to implement priority inheritance logic.
4195 */
36c8b586 4196void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4197{
4198 unsigned long flags;
83b699ed 4199 int oldprio, on_rq, running;
70b97a7f 4200 struct rq *rq;
83ab0aa0 4201 const struct sched_class *prev_class;
b29739f9
IM
4202
4203 BUG_ON(prio < 0 || prio > MAX_PRIO);
4204
4205 rq = task_rq_lock(p, &flags);
4206
d5f9f942 4207 oldprio = p->prio;
83ab0aa0 4208 prev_class = p->sched_class;
dd41f596 4209 on_rq = p->se.on_rq;
051a1d1a 4210 running = task_current(rq, p);
0e1f3483 4211 if (on_rq)
69be72c1 4212 dequeue_task(rq, p, 0);
0e1f3483
HS
4213 if (running)
4214 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4215
4216 if (rt_prio(prio))
4217 p->sched_class = &rt_sched_class;
4218 else
4219 p->sched_class = &fair_sched_class;
4220
b29739f9
IM
4221 p->prio = prio;
4222
0e1f3483
HS
4223 if (running)
4224 p->sched_class->set_curr_task(rq);
dd41f596 4225 if (on_rq) {
60db48ca 4226 enqueue_task(rq, p, 0, oldprio < prio);
cb469845
SR
4227
4228 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4229 }
4230 task_rq_unlock(rq, &flags);
4231}
4232
4233#endif
4234
36c8b586 4235void set_user_nice(struct task_struct *p, long nice)
1da177e4 4236{
dd41f596 4237 int old_prio, delta, on_rq;
1da177e4 4238 unsigned long flags;
70b97a7f 4239 struct rq *rq;
1da177e4
LT
4240
4241 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4242 return;
4243 /*
4244 * We have to be careful, if called from sys_setpriority(),
4245 * the task might be in the middle of scheduling on another CPU.
4246 */
4247 rq = task_rq_lock(p, &flags);
4248 /*
4249 * The RT priorities are set via sched_setscheduler(), but we still
4250 * allow the 'normal' nice value to be set - but as expected
4251 * it wont have any effect on scheduling until the task is
dd41f596 4252 * SCHED_FIFO/SCHED_RR:
1da177e4 4253 */
e05606d3 4254 if (task_has_rt_policy(p)) {
1da177e4
LT
4255 p->static_prio = NICE_TO_PRIO(nice);
4256 goto out_unlock;
4257 }
dd41f596 4258 on_rq = p->se.on_rq;
c09595f6 4259 if (on_rq)
69be72c1 4260 dequeue_task(rq, p, 0);
1da177e4 4261
1da177e4 4262 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4263 set_load_weight(p);
b29739f9
IM
4264 old_prio = p->prio;
4265 p->prio = effective_prio(p);
4266 delta = p->prio - old_prio;
1da177e4 4267
dd41f596 4268 if (on_rq) {
ea87bb78 4269 enqueue_task(rq, p, 0, false);
1da177e4 4270 /*
d5f9f942
AM
4271 * If the task increased its priority or is running and
4272 * lowered its priority, then reschedule its CPU:
1da177e4 4273 */
d5f9f942 4274 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4275 resched_task(rq->curr);
4276 }
4277out_unlock:
4278 task_rq_unlock(rq, &flags);
4279}
1da177e4
LT
4280EXPORT_SYMBOL(set_user_nice);
4281
e43379f1
MM
4282/*
4283 * can_nice - check if a task can reduce its nice value
4284 * @p: task
4285 * @nice: nice value
4286 */
36c8b586 4287int can_nice(const struct task_struct *p, const int nice)
e43379f1 4288{
024f4747
MM
4289 /* convert nice value [19,-20] to rlimit style value [1,40] */
4290 int nice_rlim = 20 - nice;
48f24c4d 4291
78d7d407 4292 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4293 capable(CAP_SYS_NICE));
4294}
4295
1da177e4
LT
4296#ifdef __ARCH_WANT_SYS_NICE
4297
4298/*
4299 * sys_nice - change the priority of the current process.
4300 * @increment: priority increment
4301 *
4302 * sys_setpriority is a more generic, but much slower function that
4303 * does similar things.
4304 */
5add95d4 4305SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4306{
48f24c4d 4307 long nice, retval;
1da177e4
LT
4308
4309 /*
4310 * Setpriority might change our priority at the same moment.
4311 * We don't have to worry. Conceptually one call occurs first
4312 * and we have a single winner.
4313 */
e43379f1
MM
4314 if (increment < -40)
4315 increment = -40;
1da177e4
LT
4316 if (increment > 40)
4317 increment = 40;
4318
2b8f836f 4319 nice = TASK_NICE(current) + increment;
1da177e4
LT
4320 if (nice < -20)
4321 nice = -20;
4322 if (nice > 19)
4323 nice = 19;
4324
e43379f1
MM
4325 if (increment < 0 && !can_nice(current, nice))
4326 return -EPERM;
4327
1da177e4
LT
4328 retval = security_task_setnice(current, nice);
4329 if (retval)
4330 return retval;
4331
4332 set_user_nice(current, nice);
4333 return 0;
4334}
4335
4336#endif
4337
4338/**
4339 * task_prio - return the priority value of a given task.
4340 * @p: the task in question.
4341 *
4342 * This is the priority value as seen by users in /proc.
4343 * RT tasks are offset by -200. Normal tasks are centered
4344 * around 0, value goes from -16 to +15.
4345 */
36c8b586 4346int task_prio(const struct task_struct *p)
1da177e4
LT
4347{
4348 return p->prio - MAX_RT_PRIO;
4349}
4350
4351/**
4352 * task_nice - return the nice value of a given task.
4353 * @p: the task in question.
4354 */
36c8b586 4355int task_nice(const struct task_struct *p)
1da177e4
LT
4356{
4357 return TASK_NICE(p);
4358}
150d8bed 4359EXPORT_SYMBOL(task_nice);
1da177e4
LT
4360
4361/**
4362 * idle_cpu - is a given cpu idle currently?
4363 * @cpu: the processor in question.
4364 */
4365int idle_cpu(int cpu)
4366{
4367 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4368}
4369
1da177e4
LT
4370/**
4371 * idle_task - return the idle task for a given cpu.
4372 * @cpu: the processor in question.
4373 */
36c8b586 4374struct task_struct *idle_task(int cpu)
1da177e4
LT
4375{
4376 return cpu_rq(cpu)->idle;
4377}
4378
4379/**
4380 * find_process_by_pid - find a process with a matching PID value.
4381 * @pid: the pid in question.
4382 */
a9957449 4383static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4384{
228ebcbe 4385 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4386}
4387
4388/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4389static void
4390__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4391{
dd41f596 4392 BUG_ON(p->se.on_rq);
48f24c4d 4393
1da177e4
LT
4394 p->policy = policy;
4395 p->rt_priority = prio;
b29739f9
IM
4396 p->normal_prio = normal_prio(p);
4397 /* we are holding p->pi_lock already */
4398 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4399 if (rt_prio(p->prio))
4400 p->sched_class = &rt_sched_class;
4401 else
4402 p->sched_class = &fair_sched_class;
2dd73a4f 4403 set_load_weight(p);
1da177e4
LT
4404}
4405
c69e8d9c
DH
4406/*
4407 * check the target process has a UID that matches the current process's
4408 */
4409static bool check_same_owner(struct task_struct *p)
4410{
4411 const struct cred *cred = current_cred(), *pcred;
4412 bool match;
4413
4414 rcu_read_lock();
4415 pcred = __task_cred(p);
4416 match = (cred->euid == pcred->euid ||
4417 cred->euid == pcred->uid);
4418 rcu_read_unlock();
4419 return match;
4420}
4421
961ccddd
RR
4422static int __sched_setscheduler(struct task_struct *p, int policy,
4423 struct sched_param *param, bool user)
1da177e4 4424{
83b699ed 4425 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4426 unsigned long flags;
83ab0aa0 4427 const struct sched_class *prev_class;
70b97a7f 4428 struct rq *rq;
ca94c442 4429 int reset_on_fork;
1da177e4 4430
66e5393a
SR
4431 /* may grab non-irq protected spin_locks */
4432 BUG_ON(in_interrupt());
1da177e4
LT
4433recheck:
4434 /* double check policy once rq lock held */
ca94c442
LP
4435 if (policy < 0) {
4436 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4437 policy = oldpolicy = p->policy;
ca94c442
LP
4438 } else {
4439 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4440 policy &= ~SCHED_RESET_ON_FORK;
4441
4442 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4443 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4444 policy != SCHED_IDLE)
4445 return -EINVAL;
4446 }
4447
1da177e4
LT
4448 /*
4449 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4450 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4451 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4452 */
4453 if (param->sched_priority < 0 ||
95cdf3b7 4454 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4455 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4456 return -EINVAL;
e05606d3 4457 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4458 return -EINVAL;
4459
37e4ab3f
OC
4460 /*
4461 * Allow unprivileged RT tasks to decrease priority:
4462 */
961ccddd 4463 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4464 if (rt_policy(policy)) {
8dc3e909 4465 unsigned long rlim_rtprio;
8dc3e909
ON
4466
4467 if (!lock_task_sighand(p, &flags))
4468 return -ESRCH;
78d7d407 4469 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4470 unlock_task_sighand(p, &flags);
4471
4472 /* can't set/change the rt policy */
4473 if (policy != p->policy && !rlim_rtprio)
4474 return -EPERM;
4475
4476 /* can't increase priority */
4477 if (param->sched_priority > p->rt_priority &&
4478 param->sched_priority > rlim_rtprio)
4479 return -EPERM;
4480 }
dd41f596
IM
4481 /*
4482 * Like positive nice levels, dont allow tasks to
4483 * move out of SCHED_IDLE either:
4484 */
4485 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4486 return -EPERM;
5fe1d75f 4487
37e4ab3f 4488 /* can't change other user's priorities */
c69e8d9c 4489 if (!check_same_owner(p))
37e4ab3f 4490 return -EPERM;
ca94c442
LP
4491
4492 /* Normal users shall not reset the sched_reset_on_fork flag */
4493 if (p->sched_reset_on_fork && !reset_on_fork)
4494 return -EPERM;
37e4ab3f 4495 }
1da177e4 4496
725aad24 4497 if (user) {
b68aa230 4498#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4499 /*
4500 * Do not allow realtime tasks into groups that have no runtime
4501 * assigned.
4502 */
9a7e0b18
PZ
4503 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4504 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4505 return -EPERM;
b68aa230
PZ
4506#endif
4507
725aad24
JF
4508 retval = security_task_setscheduler(p, policy, param);
4509 if (retval)
4510 return retval;
4511 }
4512
b29739f9
IM
4513 /*
4514 * make sure no PI-waiters arrive (or leave) while we are
4515 * changing the priority of the task:
4516 */
1d615482 4517 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4518 /*
4519 * To be able to change p->policy safely, the apropriate
4520 * runqueue lock must be held.
4521 */
b29739f9 4522 rq = __task_rq_lock(p);
1da177e4
LT
4523 /* recheck policy now with rq lock held */
4524 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4525 policy = oldpolicy = -1;
b29739f9 4526 __task_rq_unlock(rq);
1d615482 4527 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4528 goto recheck;
4529 }
dd41f596 4530 on_rq = p->se.on_rq;
051a1d1a 4531 running = task_current(rq, p);
0e1f3483 4532 if (on_rq)
2e1cb74a 4533 deactivate_task(rq, p, 0);
0e1f3483
HS
4534 if (running)
4535 p->sched_class->put_prev_task(rq, p);
f6b53205 4536
ca94c442
LP
4537 p->sched_reset_on_fork = reset_on_fork;
4538
1da177e4 4539 oldprio = p->prio;
83ab0aa0 4540 prev_class = p->sched_class;
dd41f596 4541 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4542
0e1f3483
HS
4543 if (running)
4544 p->sched_class->set_curr_task(rq);
dd41f596
IM
4545 if (on_rq) {
4546 activate_task(rq, p, 0);
cb469845
SR
4547
4548 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4549 }
b29739f9 4550 __task_rq_unlock(rq);
1d615482 4551 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4552
95e02ca9
TG
4553 rt_mutex_adjust_pi(p);
4554
1da177e4
LT
4555 return 0;
4556}
961ccddd
RR
4557
4558/**
4559 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4560 * @p: the task in question.
4561 * @policy: new policy.
4562 * @param: structure containing the new RT priority.
4563 *
4564 * NOTE that the task may be already dead.
4565 */
4566int sched_setscheduler(struct task_struct *p, int policy,
4567 struct sched_param *param)
4568{
4569 return __sched_setscheduler(p, policy, param, true);
4570}
1da177e4
LT
4571EXPORT_SYMBOL_GPL(sched_setscheduler);
4572
961ccddd
RR
4573/**
4574 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4575 * @p: the task in question.
4576 * @policy: new policy.
4577 * @param: structure containing the new RT priority.
4578 *
4579 * Just like sched_setscheduler, only don't bother checking if the
4580 * current context has permission. For example, this is needed in
4581 * stop_machine(): we create temporary high priority worker threads,
4582 * but our caller might not have that capability.
4583 */
4584int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4585 struct sched_param *param)
4586{
4587 return __sched_setscheduler(p, policy, param, false);
4588}
4589
95cdf3b7
IM
4590static int
4591do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4592{
1da177e4
LT
4593 struct sched_param lparam;
4594 struct task_struct *p;
36c8b586 4595 int retval;
1da177e4
LT
4596
4597 if (!param || pid < 0)
4598 return -EINVAL;
4599 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4600 return -EFAULT;
5fe1d75f
ON
4601
4602 rcu_read_lock();
4603 retval = -ESRCH;
1da177e4 4604 p = find_process_by_pid(pid);
5fe1d75f
ON
4605 if (p != NULL)
4606 retval = sched_setscheduler(p, policy, &lparam);
4607 rcu_read_unlock();
36c8b586 4608
1da177e4
LT
4609 return retval;
4610}
4611
4612/**
4613 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4614 * @pid: the pid in question.
4615 * @policy: new policy.
4616 * @param: structure containing the new RT priority.
4617 */
5add95d4
HC
4618SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4619 struct sched_param __user *, param)
1da177e4 4620{
c21761f1
JB
4621 /* negative values for policy are not valid */
4622 if (policy < 0)
4623 return -EINVAL;
4624
1da177e4
LT
4625 return do_sched_setscheduler(pid, policy, param);
4626}
4627
4628/**
4629 * sys_sched_setparam - set/change the RT priority of a thread
4630 * @pid: the pid in question.
4631 * @param: structure containing the new RT priority.
4632 */
5add95d4 4633SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4634{
4635 return do_sched_setscheduler(pid, -1, param);
4636}
4637
4638/**
4639 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4640 * @pid: the pid in question.
4641 */
5add95d4 4642SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4643{
36c8b586 4644 struct task_struct *p;
3a5c359a 4645 int retval;
1da177e4
LT
4646
4647 if (pid < 0)
3a5c359a 4648 return -EINVAL;
1da177e4
LT
4649
4650 retval = -ESRCH;
5fe85be0 4651 rcu_read_lock();
1da177e4
LT
4652 p = find_process_by_pid(pid);
4653 if (p) {
4654 retval = security_task_getscheduler(p);
4655 if (!retval)
ca94c442
LP
4656 retval = p->policy
4657 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4658 }
5fe85be0 4659 rcu_read_unlock();
1da177e4
LT
4660 return retval;
4661}
4662
4663/**
ca94c442 4664 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4665 * @pid: the pid in question.
4666 * @param: structure containing the RT priority.
4667 */
5add95d4 4668SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4669{
4670 struct sched_param lp;
36c8b586 4671 struct task_struct *p;
3a5c359a 4672 int retval;
1da177e4
LT
4673
4674 if (!param || pid < 0)
3a5c359a 4675 return -EINVAL;
1da177e4 4676
5fe85be0 4677 rcu_read_lock();
1da177e4
LT
4678 p = find_process_by_pid(pid);
4679 retval = -ESRCH;
4680 if (!p)
4681 goto out_unlock;
4682
4683 retval = security_task_getscheduler(p);
4684 if (retval)
4685 goto out_unlock;
4686
4687 lp.sched_priority = p->rt_priority;
5fe85be0 4688 rcu_read_unlock();
1da177e4
LT
4689
4690 /*
4691 * This one might sleep, we cannot do it with a spinlock held ...
4692 */
4693 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4694
1da177e4
LT
4695 return retval;
4696
4697out_unlock:
5fe85be0 4698 rcu_read_unlock();
1da177e4
LT
4699 return retval;
4700}
4701
96f874e2 4702long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4703{
5a16f3d3 4704 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4705 struct task_struct *p;
4706 int retval;
1da177e4 4707
95402b38 4708 get_online_cpus();
23f5d142 4709 rcu_read_lock();
1da177e4
LT
4710
4711 p = find_process_by_pid(pid);
4712 if (!p) {
23f5d142 4713 rcu_read_unlock();
95402b38 4714 put_online_cpus();
1da177e4
LT
4715 return -ESRCH;
4716 }
4717
23f5d142 4718 /* Prevent p going away */
1da177e4 4719 get_task_struct(p);
23f5d142 4720 rcu_read_unlock();
1da177e4 4721
5a16f3d3
RR
4722 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4723 retval = -ENOMEM;
4724 goto out_put_task;
4725 }
4726 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4727 retval = -ENOMEM;
4728 goto out_free_cpus_allowed;
4729 }
1da177e4 4730 retval = -EPERM;
c69e8d9c 4731 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4732 goto out_unlock;
4733
e7834f8f
DQ
4734 retval = security_task_setscheduler(p, 0, NULL);
4735 if (retval)
4736 goto out_unlock;
4737
5a16f3d3
RR
4738 cpuset_cpus_allowed(p, cpus_allowed);
4739 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4740 again:
5a16f3d3 4741 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4742
8707d8b8 4743 if (!retval) {
5a16f3d3
RR
4744 cpuset_cpus_allowed(p, cpus_allowed);
4745 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4746 /*
4747 * We must have raced with a concurrent cpuset
4748 * update. Just reset the cpus_allowed to the
4749 * cpuset's cpus_allowed
4750 */
5a16f3d3 4751 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4752 goto again;
4753 }
4754 }
1da177e4 4755out_unlock:
5a16f3d3
RR
4756 free_cpumask_var(new_mask);
4757out_free_cpus_allowed:
4758 free_cpumask_var(cpus_allowed);
4759out_put_task:
1da177e4 4760 put_task_struct(p);
95402b38 4761 put_online_cpus();
1da177e4
LT
4762 return retval;
4763}
4764
4765static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4766 struct cpumask *new_mask)
1da177e4 4767{
96f874e2
RR
4768 if (len < cpumask_size())
4769 cpumask_clear(new_mask);
4770 else if (len > cpumask_size())
4771 len = cpumask_size();
4772
1da177e4
LT
4773 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4774}
4775
4776/**
4777 * sys_sched_setaffinity - set the cpu affinity of a process
4778 * @pid: pid of the process
4779 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4780 * @user_mask_ptr: user-space pointer to the new cpu mask
4781 */
5add95d4
HC
4782SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4783 unsigned long __user *, user_mask_ptr)
1da177e4 4784{
5a16f3d3 4785 cpumask_var_t new_mask;
1da177e4
LT
4786 int retval;
4787
5a16f3d3
RR
4788 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4789 return -ENOMEM;
1da177e4 4790
5a16f3d3
RR
4791 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4792 if (retval == 0)
4793 retval = sched_setaffinity(pid, new_mask);
4794 free_cpumask_var(new_mask);
4795 return retval;
1da177e4
LT
4796}
4797
96f874e2 4798long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4799{
36c8b586 4800 struct task_struct *p;
31605683
TG
4801 unsigned long flags;
4802 struct rq *rq;
1da177e4 4803 int retval;
1da177e4 4804
95402b38 4805 get_online_cpus();
23f5d142 4806 rcu_read_lock();
1da177e4
LT
4807
4808 retval = -ESRCH;
4809 p = find_process_by_pid(pid);
4810 if (!p)
4811 goto out_unlock;
4812
e7834f8f
DQ
4813 retval = security_task_getscheduler(p);
4814 if (retval)
4815 goto out_unlock;
4816
31605683 4817 rq = task_rq_lock(p, &flags);
96f874e2 4818 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4819 task_rq_unlock(rq, &flags);
1da177e4
LT
4820
4821out_unlock:
23f5d142 4822 rcu_read_unlock();
95402b38 4823 put_online_cpus();
1da177e4 4824
9531b62f 4825 return retval;
1da177e4
LT
4826}
4827
4828/**
4829 * sys_sched_getaffinity - get the cpu affinity of a process
4830 * @pid: pid of the process
4831 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4832 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4833 */
5add95d4
HC
4834SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4835 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4836{
4837 int ret;
f17c8607 4838 cpumask_var_t mask;
1da177e4 4839
cd3d8031
KM
4840 if (len < nr_cpu_ids)
4841 return -EINVAL;
4842 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4843 return -EINVAL;
4844
f17c8607
RR
4845 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4846 return -ENOMEM;
1da177e4 4847
f17c8607
RR
4848 ret = sched_getaffinity(pid, mask);
4849 if (ret == 0) {
8bc037fb 4850 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4851
4852 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4853 ret = -EFAULT;
4854 else
cd3d8031 4855 ret = retlen;
f17c8607
RR
4856 }
4857 free_cpumask_var(mask);
1da177e4 4858
f17c8607 4859 return ret;
1da177e4
LT
4860}
4861
4862/**
4863 * sys_sched_yield - yield the current processor to other threads.
4864 *
dd41f596
IM
4865 * This function yields the current CPU to other tasks. If there are no
4866 * other threads running on this CPU then this function will return.
1da177e4 4867 */
5add95d4 4868SYSCALL_DEFINE0(sched_yield)
1da177e4 4869{
70b97a7f 4870 struct rq *rq = this_rq_lock();
1da177e4 4871
2d72376b 4872 schedstat_inc(rq, yld_count);
4530d7ab 4873 current->sched_class->yield_task(rq);
1da177e4
LT
4874
4875 /*
4876 * Since we are going to call schedule() anyway, there's
4877 * no need to preempt or enable interrupts:
4878 */
4879 __release(rq->lock);
8a25d5de 4880 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4881 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4882 preempt_enable_no_resched();
4883
4884 schedule();
4885
4886 return 0;
4887}
4888
d86ee480
PZ
4889static inline int should_resched(void)
4890{
4891 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4892}
4893
e7b38404 4894static void __cond_resched(void)
1da177e4 4895{
e7aaaa69
FW
4896 add_preempt_count(PREEMPT_ACTIVE);
4897 schedule();
4898 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4899}
4900
02b67cc3 4901int __sched _cond_resched(void)
1da177e4 4902{
d86ee480 4903 if (should_resched()) {
1da177e4
LT
4904 __cond_resched();
4905 return 1;
4906 }
4907 return 0;
4908}
02b67cc3 4909EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4910
4911/*
613afbf8 4912 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4913 * call schedule, and on return reacquire the lock.
4914 *
41a2d6cf 4915 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4916 * operations here to prevent schedule() from being called twice (once via
4917 * spin_unlock(), once by hand).
4918 */
613afbf8 4919int __cond_resched_lock(spinlock_t *lock)
1da177e4 4920{
d86ee480 4921 int resched = should_resched();
6df3cecb
JK
4922 int ret = 0;
4923
f607c668
PZ
4924 lockdep_assert_held(lock);
4925
95c354fe 4926 if (spin_needbreak(lock) || resched) {
1da177e4 4927 spin_unlock(lock);
d86ee480 4928 if (resched)
95c354fe
NP
4929 __cond_resched();
4930 else
4931 cpu_relax();
6df3cecb 4932 ret = 1;
1da177e4 4933 spin_lock(lock);
1da177e4 4934 }
6df3cecb 4935 return ret;
1da177e4 4936}
613afbf8 4937EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4938
613afbf8 4939int __sched __cond_resched_softirq(void)
1da177e4
LT
4940{
4941 BUG_ON(!in_softirq());
4942
d86ee480 4943 if (should_resched()) {
98d82567 4944 local_bh_enable();
1da177e4
LT
4945 __cond_resched();
4946 local_bh_disable();
4947 return 1;
4948 }
4949 return 0;
4950}
613afbf8 4951EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4952
1da177e4
LT
4953/**
4954 * yield - yield the current processor to other threads.
4955 *
72fd4a35 4956 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4957 * thread runnable and calls sys_sched_yield().
4958 */
4959void __sched yield(void)
4960{
4961 set_current_state(TASK_RUNNING);
4962 sys_sched_yield();
4963}
1da177e4
LT
4964EXPORT_SYMBOL(yield);
4965
4966/*
41a2d6cf 4967 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4968 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4969 */
4970void __sched io_schedule(void)
4971{
54d35f29 4972 struct rq *rq = raw_rq();
1da177e4 4973
0ff92245 4974 delayacct_blkio_start();
1da177e4 4975 atomic_inc(&rq->nr_iowait);
8f0dfc34 4976 current->in_iowait = 1;
1da177e4 4977 schedule();
8f0dfc34 4978 current->in_iowait = 0;
1da177e4 4979 atomic_dec(&rq->nr_iowait);
0ff92245 4980 delayacct_blkio_end();
1da177e4 4981}
1da177e4
LT
4982EXPORT_SYMBOL(io_schedule);
4983
4984long __sched io_schedule_timeout(long timeout)
4985{
54d35f29 4986 struct rq *rq = raw_rq();
1da177e4
LT
4987 long ret;
4988
0ff92245 4989 delayacct_blkio_start();
1da177e4 4990 atomic_inc(&rq->nr_iowait);
8f0dfc34 4991 current->in_iowait = 1;
1da177e4 4992 ret = schedule_timeout(timeout);
8f0dfc34 4993 current->in_iowait = 0;
1da177e4 4994 atomic_dec(&rq->nr_iowait);
0ff92245 4995 delayacct_blkio_end();
1da177e4
LT
4996 return ret;
4997}
4998
4999/**
5000 * sys_sched_get_priority_max - return maximum RT priority.
5001 * @policy: scheduling class.
5002 *
5003 * this syscall returns the maximum rt_priority that can be used
5004 * by a given scheduling class.
5005 */
5add95d4 5006SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5007{
5008 int ret = -EINVAL;
5009
5010 switch (policy) {
5011 case SCHED_FIFO:
5012 case SCHED_RR:
5013 ret = MAX_USER_RT_PRIO-1;
5014 break;
5015 case SCHED_NORMAL:
b0a9499c 5016 case SCHED_BATCH:
dd41f596 5017 case SCHED_IDLE:
1da177e4
LT
5018 ret = 0;
5019 break;
5020 }
5021 return ret;
5022}
5023
5024/**
5025 * sys_sched_get_priority_min - return minimum RT priority.
5026 * @policy: scheduling class.
5027 *
5028 * this syscall returns the minimum rt_priority that can be used
5029 * by a given scheduling class.
5030 */
5add95d4 5031SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5032{
5033 int ret = -EINVAL;
5034
5035 switch (policy) {
5036 case SCHED_FIFO:
5037 case SCHED_RR:
5038 ret = 1;
5039 break;
5040 case SCHED_NORMAL:
b0a9499c 5041 case SCHED_BATCH:
dd41f596 5042 case SCHED_IDLE:
1da177e4
LT
5043 ret = 0;
5044 }
5045 return ret;
5046}
5047
5048/**
5049 * sys_sched_rr_get_interval - return the default timeslice of a process.
5050 * @pid: pid of the process.
5051 * @interval: userspace pointer to the timeslice value.
5052 *
5053 * this syscall writes the default timeslice value of a given process
5054 * into the user-space timespec buffer. A value of '0' means infinity.
5055 */
17da2bd9 5056SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5057 struct timespec __user *, interval)
1da177e4 5058{
36c8b586 5059 struct task_struct *p;
a4ec24b4 5060 unsigned int time_slice;
dba091b9
TG
5061 unsigned long flags;
5062 struct rq *rq;
3a5c359a 5063 int retval;
1da177e4 5064 struct timespec t;
1da177e4
LT
5065
5066 if (pid < 0)
3a5c359a 5067 return -EINVAL;
1da177e4
LT
5068
5069 retval = -ESRCH;
1a551ae7 5070 rcu_read_lock();
1da177e4
LT
5071 p = find_process_by_pid(pid);
5072 if (!p)
5073 goto out_unlock;
5074
5075 retval = security_task_getscheduler(p);
5076 if (retval)
5077 goto out_unlock;
5078
dba091b9
TG
5079 rq = task_rq_lock(p, &flags);
5080 time_slice = p->sched_class->get_rr_interval(rq, p);
5081 task_rq_unlock(rq, &flags);
a4ec24b4 5082
1a551ae7 5083 rcu_read_unlock();
a4ec24b4 5084 jiffies_to_timespec(time_slice, &t);
1da177e4 5085 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5086 return retval;
3a5c359a 5087
1da177e4 5088out_unlock:
1a551ae7 5089 rcu_read_unlock();
1da177e4
LT
5090 return retval;
5091}
5092
7c731e0a 5093static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5094
82a1fcb9 5095void sched_show_task(struct task_struct *p)
1da177e4 5096{
1da177e4 5097 unsigned long free = 0;
36c8b586 5098 unsigned state;
1da177e4 5099
1da177e4 5100 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5101 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5102 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5103#if BITS_PER_LONG == 32
1da177e4 5104 if (state == TASK_RUNNING)
3df0fc5b 5105 printk(KERN_CONT " running ");
1da177e4 5106 else
3df0fc5b 5107 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5108#else
5109 if (state == TASK_RUNNING)
3df0fc5b 5110 printk(KERN_CONT " running task ");
1da177e4 5111 else
3df0fc5b 5112 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5113#endif
5114#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5115 free = stack_not_used(p);
1da177e4 5116#endif
3df0fc5b 5117 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5118 task_pid_nr(p), task_pid_nr(p->real_parent),
5119 (unsigned long)task_thread_info(p)->flags);
1da177e4 5120
5fb5e6de 5121 show_stack(p, NULL);
1da177e4
LT
5122}
5123
e59e2ae2 5124void show_state_filter(unsigned long state_filter)
1da177e4 5125{
36c8b586 5126 struct task_struct *g, *p;
1da177e4 5127
4bd77321 5128#if BITS_PER_LONG == 32
3df0fc5b
PZ
5129 printk(KERN_INFO
5130 " task PC stack pid father\n");
1da177e4 5131#else
3df0fc5b
PZ
5132 printk(KERN_INFO
5133 " task PC stack pid father\n");
1da177e4
LT
5134#endif
5135 read_lock(&tasklist_lock);
5136 do_each_thread(g, p) {
5137 /*
5138 * reset the NMI-timeout, listing all files on a slow
5139 * console might take alot of time:
5140 */
5141 touch_nmi_watchdog();
39bc89fd 5142 if (!state_filter || (p->state & state_filter))
82a1fcb9 5143 sched_show_task(p);
1da177e4
LT
5144 } while_each_thread(g, p);
5145
04c9167f
JF
5146 touch_all_softlockup_watchdogs();
5147
dd41f596
IM
5148#ifdef CONFIG_SCHED_DEBUG
5149 sysrq_sched_debug_show();
5150#endif
1da177e4 5151 read_unlock(&tasklist_lock);
e59e2ae2
IM
5152 /*
5153 * Only show locks if all tasks are dumped:
5154 */
93335a21 5155 if (!state_filter)
e59e2ae2 5156 debug_show_all_locks();
1da177e4
LT
5157}
5158
1df21055
IM
5159void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5160{
dd41f596 5161 idle->sched_class = &idle_sched_class;
1df21055
IM
5162}
5163
f340c0d1
IM
5164/**
5165 * init_idle - set up an idle thread for a given CPU
5166 * @idle: task in question
5167 * @cpu: cpu the idle task belongs to
5168 *
5169 * NOTE: this function does not set the idle thread's NEED_RESCHED
5170 * flag, to make booting more robust.
5171 */
5c1e1767 5172void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5173{
70b97a7f 5174 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5175 unsigned long flags;
5176
05fa785c 5177 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5178
dd41f596 5179 __sched_fork(idle);
06b83b5f 5180 idle->state = TASK_RUNNING;
dd41f596
IM
5181 idle->se.exec_start = sched_clock();
5182
96f874e2 5183 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5184 __set_task_cpu(idle, cpu);
1da177e4 5185
1da177e4 5186 rq->curr = rq->idle = idle;
4866cde0
NP
5187#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5188 idle->oncpu = 1;
5189#endif
05fa785c 5190 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5191
5192 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5193#if defined(CONFIG_PREEMPT)
5194 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5195#else
a1261f54 5196 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5197#endif
dd41f596
IM
5198 /*
5199 * The idle tasks have their own, simple scheduling class:
5200 */
5201 idle->sched_class = &idle_sched_class;
fb52607a 5202 ftrace_graph_init_task(idle);
1da177e4
LT
5203}
5204
5205/*
5206 * In a system that switches off the HZ timer nohz_cpu_mask
5207 * indicates which cpus entered this state. This is used
5208 * in the rcu update to wait only for active cpus. For system
5209 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5210 * always be CPU_BITS_NONE.
1da177e4 5211 */
6a7b3dc3 5212cpumask_var_t nohz_cpu_mask;
1da177e4 5213
19978ca6
IM
5214/*
5215 * Increase the granularity value when there are more CPUs,
5216 * because with more CPUs the 'effective latency' as visible
5217 * to users decreases. But the relationship is not linear,
5218 * so pick a second-best guess by going with the log2 of the
5219 * number of CPUs.
5220 *
5221 * This idea comes from the SD scheduler of Con Kolivas:
5222 */
acb4a848 5223static int get_update_sysctl_factor(void)
19978ca6 5224{
4ca3ef71 5225 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5226 unsigned int factor;
5227
5228 switch (sysctl_sched_tunable_scaling) {
5229 case SCHED_TUNABLESCALING_NONE:
5230 factor = 1;
5231 break;
5232 case SCHED_TUNABLESCALING_LINEAR:
5233 factor = cpus;
5234 break;
5235 case SCHED_TUNABLESCALING_LOG:
5236 default:
5237 factor = 1 + ilog2(cpus);
5238 break;
5239 }
19978ca6 5240
acb4a848
CE
5241 return factor;
5242}
19978ca6 5243
acb4a848
CE
5244static void update_sysctl(void)
5245{
5246 unsigned int factor = get_update_sysctl_factor();
19978ca6 5247
0bcdcf28
CE
5248#define SET_SYSCTL(name) \
5249 (sysctl_##name = (factor) * normalized_sysctl_##name)
5250 SET_SYSCTL(sched_min_granularity);
5251 SET_SYSCTL(sched_latency);
5252 SET_SYSCTL(sched_wakeup_granularity);
5253 SET_SYSCTL(sched_shares_ratelimit);
5254#undef SET_SYSCTL
5255}
55cd5340 5256
0bcdcf28
CE
5257static inline void sched_init_granularity(void)
5258{
5259 update_sysctl();
19978ca6
IM
5260}
5261
1da177e4
LT
5262#ifdef CONFIG_SMP
5263/*
5264 * This is how migration works:
5265 *
70b97a7f 5266 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5267 * runqueue and wake up that CPU's migration thread.
5268 * 2) we down() the locked semaphore => thread blocks.
5269 * 3) migration thread wakes up (implicitly it forces the migrated
5270 * thread off the CPU)
5271 * 4) it gets the migration request and checks whether the migrated
5272 * task is still in the wrong runqueue.
5273 * 5) if it's in the wrong runqueue then the migration thread removes
5274 * it and puts it into the right queue.
5275 * 6) migration thread up()s the semaphore.
5276 * 7) we wake up and the migration is done.
5277 */
5278
5279/*
5280 * Change a given task's CPU affinity. Migrate the thread to a
5281 * proper CPU and schedule it away if the CPU it's executing on
5282 * is removed from the allowed bitmask.
5283 *
5284 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5285 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5286 * call is not atomic; no spinlocks may be held.
5287 */
96f874e2 5288int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5289{
70b97a7f 5290 struct migration_req req;
1da177e4 5291 unsigned long flags;
70b97a7f 5292 struct rq *rq;
48f24c4d 5293 int ret = 0;
1da177e4
LT
5294
5295 rq = task_rq_lock(p, &flags);
e2912009 5296
6ad4c188 5297 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5298 ret = -EINVAL;
5299 goto out;
5300 }
5301
9985b0ba 5302 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5303 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5304 ret = -EINVAL;
5305 goto out;
5306 }
5307
73fe6aae 5308 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5309 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5310 else {
96f874e2
RR
5311 cpumask_copy(&p->cpus_allowed, new_mask);
5312 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5313 }
5314
1da177e4 5315 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5316 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5317 goto out;
5318
6ad4c188 5319 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5320 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5321 struct task_struct *mt = rq->migration_thread;
5322
5323 get_task_struct(mt);
1da177e4
LT
5324 task_rq_unlock(rq, &flags);
5325 wake_up_process(rq->migration_thread);
693525e3 5326 put_task_struct(mt);
1da177e4
LT
5327 wait_for_completion(&req.done);
5328 tlb_migrate_finish(p->mm);
5329 return 0;
5330 }
5331out:
5332 task_rq_unlock(rq, &flags);
48f24c4d 5333
1da177e4
LT
5334 return ret;
5335}
cd8ba7cd 5336EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5337
5338/*
41a2d6cf 5339 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5340 * this because either it can't run here any more (set_cpus_allowed()
5341 * away from this CPU, or CPU going down), or because we're
5342 * attempting to rebalance this task on exec (sched_exec).
5343 *
5344 * So we race with normal scheduler movements, but that's OK, as long
5345 * as the task is no longer on this CPU.
efc30814
KK
5346 *
5347 * Returns non-zero if task was successfully migrated.
1da177e4 5348 */
efc30814 5349static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5350{
70b97a7f 5351 struct rq *rq_dest, *rq_src;
e2912009 5352 int ret = 0;
1da177e4 5353
e761b772 5354 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5355 return ret;
1da177e4
LT
5356
5357 rq_src = cpu_rq(src_cpu);
5358 rq_dest = cpu_rq(dest_cpu);
5359
5360 double_rq_lock(rq_src, rq_dest);
5361 /* Already moved. */
5362 if (task_cpu(p) != src_cpu)
b1e38734 5363 goto done;
1da177e4 5364 /* Affinity changed (again). */
96f874e2 5365 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5366 goto fail;
1da177e4 5367
e2912009
PZ
5368 /*
5369 * If we're not on a rq, the next wake-up will ensure we're
5370 * placed properly.
5371 */
5372 if (p->se.on_rq) {
2e1cb74a 5373 deactivate_task(rq_src, p, 0);
e2912009 5374 set_task_cpu(p, dest_cpu);
dd41f596 5375 activate_task(rq_dest, p, 0);
15afe09b 5376 check_preempt_curr(rq_dest, p, 0);
1da177e4 5377 }
b1e38734 5378done:
efc30814 5379 ret = 1;
b1e38734 5380fail:
1da177e4 5381 double_rq_unlock(rq_src, rq_dest);
efc30814 5382 return ret;
1da177e4
LT
5383}
5384
03b042bf
PM
5385#define RCU_MIGRATION_IDLE 0
5386#define RCU_MIGRATION_NEED_QS 1
5387#define RCU_MIGRATION_GOT_QS 2
5388#define RCU_MIGRATION_MUST_SYNC 3
5389
1da177e4
LT
5390/*
5391 * migration_thread - this is a highprio system thread that performs
5392 * thread migration by bumping thread off CPU then 'pushing' onto
5393 * another runqueue.
5394 */
95cdf3b7 5395static int migration_thread(void *data)
1da177e4 5396{
03b042bf 5397 int badcpu;
1da177e4 5398 int cpu = (long)data;
70b97a7f 5399 struct rq *rq;
1da177e4
LT
5400
5401 rq = cpu_rq(cpu);
5402 BUG_ON(rq->migration_thread != current);
5403
5404 set_current_state(TASK_INTERRUPTIBLE);
5405 while (!kthread_should_stop()) {
70b97a7f 5406 struct migration_req *req;
1da177e4 5407 struct list_head *head;
1da177e4 5408
05fa785c 5409 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5410
5411 if (cpu_is_offline(cpu)) {
05fa785c 5412 raw_spin_unlock_irq(&rq->lock);
371cbb38 5413 break;
1da177e4
LT
5414 }
5415
5416 if (rq->active_balance) {
5417 active_load_balance(rq, cpu);
5418 rq->active_balance = 0;
5419 }
5420
5421 head = &rq->migration_queue;
5422
5423 if (list_empty(head)) {
05fa785c 5424 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5425 schedule();
5426 set_current_state(TASK_INTERRUPTIBLE);
5427 continue;
5428 }
70b97a7f 5429 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5430 list_del_init(head->next);
5431
03b042bf 5432 if (req->task != NULL) {
05fa785c 5433 raw_spin_unlock(&rq->lock);
03b042bf
PM
5434 __migrate_task(req->task, cpu, req->dest_cpu);
5435 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5436 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5437 raw_spin_unlock(&rq->lock);
03b042bf
PM
5438 } else {
5439 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5440 raw_spin_unlock(&rq->lock);
03b042bf
PM
5441 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5442 }
674311d5 5443 local_irq_enable();
1da177e4
LT
5444
5445 complete(&req->done);
5446 }
5447 __set_current_state(TASK_RUNNING);
1da177e4 5448
1da177e4
LT
5449 return 0;
5450}
5451
5452#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5453
5454static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5455{
5456 int ret;
5457
5458 local_irq_disable();
5459 ret = __migrate_task(p, src_cpu, dest_cpu);
5460 local_irq_enable();
5461 return ret;
5462}
5463
054b9108 5464/*
3a4fa0a2 5465 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5466 */
48f24c4d 5467static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5468{
70b97a7f 5469 int dest_cpu;
e76bd8d9
RR
5470
5471again:
5da9a0fb 5472 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 5473
e76bd8d9
RR
5474 /* It can have affinity changed while we were choosing. */
5475 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5476 goto again;
1da177e4
LT
5477}
5478
5479/*
5480 * While a dead CPU has no uninterruptible tasks queued at this point,
5481 * it might still have a nonzero ->nr_uninterruptible counter, because
5482 * for performance reasons the counter is not stricly tracking tasks to
5483 * their home CPUs. So we just add the counter to another CPU's counter,
5484 * to keep the global sum constant after CPU-down:
5485 */
70b97a7f 5486static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5487{
6ad4c188 5488 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5489 unsigned long flags;
5490
5491 local_irq_save(flags);
5492 double_rq_lock(rq_src, rq_dest);
5493 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5494 rq_src->nr_uninterruptible = 0;
5495 double_rq_unlock(rq_src, rq_dest);
5496 local_irq_restore(flags);
5497}
5498
5499/* Run through task list and migrate tasks from the dead cpu. */
5500static void migrate_live_tasks(int src_cpu)
5501{
48f24c4d 5502 struct task_struct *p, *t;
1da177e4 5503
f7b4cddc 5504 read_lock(&tasklist_lock);
1da177e4 5505
48f24c4d
IM
5506 do_each_thread(t, p) {
5507 if (p == current)
1da177e4
LT
5508 continue;
5509
48f24c4d
IM
5510 if (task_cpu(p) == src_cpu)
5511 move_task_off_dead_cpu(src_cpu, p);
5512 } while_each_thread(t, p);
1da177e4 5513
f7b4cddc 5514 read_unlock(&tasklist_lock);
1da177e4
LT
5515}
5516
dd41f596
IM
5517/*
5518 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5519 * It does so by boosting its priority to highest possible.
5520 * Used by CPU offline code.
1da177e4
LT
5521 */
5522void sched_idle_next(void)
5523{
48f24c4d 5524 int this_cpu = smp_processor_id();
70b97a7f 5525 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5526 struct task_struct *p = rq->idle;
5527 unsigned long flags;
5528
5529 /* cpu has to be offline */
48f24c4d 5530 BUG_ON(cpu_online(this_cpu));
1da177e4 5531
48f24c4d
IM
5532 /*
5533 * Strictly not necessary since rest of the CPUs are stopped by now
5534 * and interrupts disabled on the current cpu.
1da177e4 5535 */
05fa785c 5536 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5537
dd41f596 5538 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5539
94bc9a7b 5540 activate_task(rq, p, 0);
1da177e4 5541
05fa785c 5542 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5543}
5544
48f24c4d
IM
5545/*
5546 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5547 * offline.
5548 */
5549void idle_task_exit(void)
5550{
5551 struct mm_struct *mm = current->active_mm;
5552
5553 BUG_ON(cpu_online(smp_processor_id()));
5554
5555 if (mm != &init_mm)
5556 switch_mm(mm, &init_mm, current);
5557 mmdrop(mm);
5558}
5559
054b9108 5560/* called under rq->lock with disabled interrupts */
36c8b586 5561static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5562{
70b97a7f 5563 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5564
5565 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5566 BUG_ON(!p->exit_state);
1da177e4
LT
5567
5568 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5569 BUG_ON(p->state == TASK_DEAD);
1da177e4 5570
48f24c4d 5571 get_task_struct(p);
1da177e4
LT
5572
5573 /*
5574 * Drop lock around migration; if someone else moves it,
41a2d6cf 5575 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5576 * fine.
5577 */
05fa785c 5578 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5579 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5580 raw_spin_lock_irq(&rq->lock);
1da177e4 5581
48f24c4d 5582 put_task_struct(p);
1da177e4
LT
5583}
5584
5585/* release_task() removes task from tasklist, so we won't find dead tasks. */
5586static void migrate_dead_tasks(unsigned int dead_cpu)
5587{
70b97a7f 5588 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5589 struct task_struct *next;
48f24c4d 5590
dd41f596
IM
5591 for ( ; ; ) {
5592 if (!rq->nr_running)
5593 break;
b67802ea 5594 next = pick_next_task(rq);
dd41f596
IM
5595 if (!next)
5596 break;
79c53799 5597 next->sched_class->put_prev_task(rq, next);
dd41f596 5598 migrate_dead(dead_cpu, next);
e692ab53 5599
1da177e4
LT
5600 }
5601}
dce48a84
TG
5602
5603/*
5604 * remove the tasks which were accounted by rq from calc_load_tasks.
5605 */
5606static void calc_global_load_remove(struct rq *rq)
5607{
5608 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5609 rq->calc_load_active = 0;
dce48a84 5610}
1da177e4
LT
5611#endif /* CONFIG_HOTPLUG_CPU */
5612
e692ab53
NP
5613#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5614
5615static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5616 {
5617 .procname = "sched_domain",
c57baf1e 5618 .mode = 0555,
e0361851 5619 },
56992309 5620 {}
e692ab53
NP
5621};
5622
5623static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5624 {
5625 .procname = "kernel",
c57baf1e 5626 .mode = 0555,
e0361851
AD
5627 .child = sd_ctl_dir,
5628 },
56992309 5629 {}
e692ab53
NP
5630};
5631
5632static struct ctl_table *sd_alloc_ctl_entry(int n)
5633{
5634 struct ctl_table *entry =
5cf9f062 5635 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5636
e692ab53
NP
5637 return entry;
5638}
5639
6382bc90
MM
5640static void sd_free_ctl_entry(struct ctl_table **tablep)
5641{
cd790076 5642 struct ctl_table *entry;
6382bc90 5643
cd790076
MM
5644 /*
5645 * In the intermediate directories, both the child directory and
5646 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5647 * will always be set. In the lowest directory the names are
cd790076
MM
5648 * static strings and all have proc handlers.
5649 */
5650 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5651 if (entry->child)
5652 sd_free_ctl_entry(&entry->child);
cd790076
MM
5653 if (entry->proc_handler == NULL)
5654 kfree(entry->procname);
5655 }
6382bc90
MM
5656
5657 kfree(*tablep);
5658 *tablep = NULL;
5659}
5660
e692ab53 5661static void
e0361851 5662set_table_entry(struct ctl_table *entry,
e692ab53
NP
5663 const char *procname, void *data, int maxlen,
5664 mode_t mode, proc_handler *proc_handler)
5665{
e692ab53
NP
5666 entry->procname = procname;
5667 entry->data = data;
5668 entry->maxlen = maxlen;
5669 entry->mode = mode;
5670 entry->proc_handler = proc_handler;
5671}
5672
5673static struct ctl_table *
5674sd_alloc_ctl_domain_table(struct sched_domain *sd)
5675{
a5d8c348 5676 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5677
ad1cdc1d
MM
5678 if (table == NULL)
5679 return NULL;
5680
e0361851 5681 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5682 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5683 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5684 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5685 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5686 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5687 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5688 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5689 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5690 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5691 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5692 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5693 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5694 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5695 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5696 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5697 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5698 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5699 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5700 &sd->cache_nice_tries,
5701 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5702 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5703 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5704 set_table_entry(&table[11], "name", sd->name,
5705 CORENAME_MAX_SIZE, 0444, proc_dostring);
5706 /* &table[12] is terminator */
e692ab53
NP
5707
5708 return table;
5709}
5710
9a4e7159 5711static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5712{
5713 struct ctl_table *entry, *table;
5714 struct sched_domain *sd;
5715 int domain_num = 0, i;
5716 char buf[32];
5717
5718 for_each_domain(cpu, sd)
5719 domain_num++;
5720 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5721 if (table == NULL)
5722 return NULL;
e692ab53
NP
5723
5724 i = 0;
5725 for_each_domain(cpu, sd) {
5726 snprintf(buf, 32, "domain%d", i);
e692ab53 5727 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5728 entry->mode = 0555;
e692ab53
NP
5729 entry->child = sd_alloc_ctl_domain_table(sd);
5730 entry++;
5731 i++;
5732 }
5733 return table;
5734}
5735
5736static struct ctl_table_header *sd_sysctl_header;
6382bc90 5737static void register_sched_domain_sysctl(void)
e692ab53 5738{
6ad4c188 5739 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5740 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5741 char buf[32];
5742
7378547f
MM
5743 WARN_ON(sd_ctl_dir[0].child);
5744 sd_ctl_dir[0].child = entry;
5745
ad1cdc1d
MM
5746 if (entry == NULL)
5747 return;
5748
6ad4c188 5749 for_each_possible_cpu(i) {
e692ab53 5750 snprintf(buf, 32, "cpu%d", i);
e692ab53 5751 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5752 entry->mode = 0555;
e692ab53 5753 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5754 entry++;
e692ab53 5755 }
7378547f
MM
5756
5757 WARN_ON(sd_sysctl_header);
e692ab53
NP
5758 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5759}
6382bc90 5760
7378547f 5761/* may be called multiple times per register */
6382bc90
MM
5762static void unregister_sched_domain_sysctl(void)
5763{
7378547f
MM
5764 if (sd_sysctl_header)
5765 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5766 sd_sysctl_header = NULL;
7378547f
MM
5767 if (sd_ctl_dir[0].child)
5768 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5769}
e692ab53 5770#else
6382bc90
MM
5771static void register_sched_domain_sysctl(void)
5772{
5773}
5774static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5775{
5776}
5777#endif
5778
1f11eb6a
GH
5779static void set_rq_online(struct rq *rq)
5780{
5781 if (!rq->online) {
5782 const struct sched_class *class;
5783
c6c4927b 5784 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5785 rq->online = 1;
5786
5787 for_each_class(class) {
5788 if (class->rq_online)
5789 class->rq_online(rq);
5790 }
5791 }
5792}
5793
5794static void set_rq_offline(struct rq *rq)
5795{
5796 if (rq->online) {
5797 const struct sched_class *class;
5798
5799 for_each_class(class) {
5800 if (class->rq_offline)
5801 class->rq_offline(rq);
5802 }
5803
c6c4927b 5804 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5805 rq->online = 0;
5806 }
5807}
5808
1da177e4
LT
5809/*
5810 * migration_call - callback that gets triggered when a CPU is added.
5811 * Here we can start up the necessary migration thread for the new CPU.
5812 */
48f24c4d
IM
5813static int __cpuinit
5814migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5815{
1da177e4 5816 struct task_struct *p;
48f24c4d 5817 int cpu = (long)hcpu;
1da177e4 5818 unsigned long flags;
70b97a7f 5819 struct rq *rq;
1da177e4
LT
5820
5821 switch (action) {
5be9361c 5822
1da177e4 5823 case CPU_UP_PREPARE:
8bb78442 5824 case CPU_UP_PREPARE_FROZEN:
dd41f596 5825 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5826 if (IS_ERR(p))
5827 return NOTIFY_BAD;
1da177e4
LT
5828 kthread_bind(p, cpu);
5829 /* Must be high prio: stop_machine expects to yield to it. */
5830 rq = task_rq_lock(p, &flags);
dd41f596 5831 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5832 task_rq_unlock(rq, &flags);
371cbb38 5833 get_task_struct(p);
1da177e4 5834 cpu_rq(cpu)->migration_thread = p;
a468d389 5835 rq->calc_load_update = calc_load_update;
1da177e4 5836 break;
48f24c4d 5837
1da177e4 5838 case CPU_ONLINE:
8bb78442 5839 case CPU_ONLINE_FROZEN:
3a4fa0a2 5840 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5841 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5842
5843 /* Update our root-domain */
5844 rq = cpu_rq(cpu);
05fa785c 5845 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5846 if (rq->rd) {
c6c4927b 5847 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5848
5849 set_rq_online(rq);
1f94ef59 5850 }
05fa785c 5851 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5852 break;
48f24c4d 5853
1da177e4
LT
5854#ifdef CONFIG_HOTPLUG_CPU
5855 case CPU_UP_CANCELED:
8bb78442 5856 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5857 if (!cpu_rq(cpu)->migration_thread)
5858 break;
41a2d6cf 5859 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5860 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5861 cpumask_any(cpu_online_mask));
1da177e4 5862 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5863 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5864 cpu_rq(cpu)->migration_thread = NULL;
5865 break;
48f24c4d 5866
1da177e4 5867 case CPU_DEAD:
8bb78442 5868 case CPU_DEAD_FROZEN:
470fd646 5869 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5870 migrate_live_tasks(cpu);
5871 rq = cpu_rq(cpu);
5872 kthread_stop(rq->migration_thread);
371cbb38 5873 put_task_struct(rq->migration_thread);
1da177e4
LT
5874 rq->migration_thread = NULL;
5875 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5876 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5877 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5878 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5879 rq->idle->sched_class = &idle_sched_class;
1da177e4 5880 migrate_dead_tasks(cpu);
05fa785c 5881 raw_spin_unlock_irq(&rq->lock);
470fd646 5882 cpuset_unlock();
1da177e4
LT
5883 migrate_nr_uninterruptible(rq);
5884 BUG_ON(rq->nr_running != 0);
dce48a84 5885 calc_global_load_remove(rq);
41a2d6cf
IM
5886 /*
5887 * No need to migrate the tasks: it was best-effort if
5888 * they didn't take sched_hotcpu_mutex. Just wake up
5889 * the requestors.
5890 */
05fa785c 5891 raw_spin_lock_irq(&rq->lock);
1da177e4 5892 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5893 struct migration_req *req;
5894
1da177e4 5895 req = list_entry(rq->migration_queue.next,
70b97a7f 5896 struct migration_req, list);
1da177e4 5897 list_del_init(&req->list);
05fa785c 5898 raw_spin_unlock_irq(&rq->lock);
1da177e4 5899 complete(&req->done);
05fa785c 5900 raw_spin_lock_irq(&rq->lock);
1da177e4 5901 }
05fa785c 5902 raw_spin_unlock_irq(&rq->lock);
1da177e4 5903 break;
57d885fe 5904
08f503b0
GH
5905 case CPU_DYING:
5906 case CPU_DYING_FROZEN:
57d885fe
GH
5907 /* Update our root-domain */
5908 rq = cpu_rq(cpu);
05fa785c 5909 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5910 if (rq->rd) {
c6c4927b 5911 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5912 set_rq_offline(rq);
57d885fe 5913 }
05fa785c 5914 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5915 break;
1da177e4
LT
5916#endif
5917 }
5918 return NOTIFY_OK;
5919}
5920
f38b0820
PM
5921/*
5922 * Register at high priority so that task migration (migrate_all_tasks)
5923 * happens before everything else. This has to be lower priority than
cdd6c482 5924 * the notifier in the perf_event subsystem, though.
1da177e4 5925 */
26c2143b 5926static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5927 .notifier_call = migration_call,
5928 .priority = 10
5929};
5930
7babe8db 5931static int __init migration_init(void)
1da177e4
LT
5932{
5933 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5934 int err;
48f24c4d
IM
5935
5936 /* Start one for the boot CPU: */
07dccf33
AM
5937 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5938 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5939 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5940 register_cpu_notifier(&migration_notifier);
7babe8db 5941
a004cd42 5942 return 0;
1da177e4 5943}
7babe8db 5944early_initcall(migration_init);
1da177e4
LT
5945#endif
5946
5947#ifdef CONFIG_SMP
476f3534 5948
3e9830dc 5949#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5950
f6630114
MT
5951static __read_mostly int sched_domain_debug_enabled;
5952
5953static int __init sched_domain_debug_setup(char *str)
5954{
5955 sched_domain_debug_enabled = 1;
5956
5957 return 0;
5958}
5959early_param("sched_debug", sched_domain_debug_setup);
5960
7c16ec58 5961static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5962 struct cpumask *groupmask)
1da177e4 5963{
4dcf6aff 5964 struct sched_group *group = sd->groups;
434d53b0 5965 char str[256];
1da177e4 5966
968ea6d8 5967 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5968 cpumask_clear(groupmask);
4dcf6aff
IM
5969
5970 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5971
5972 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5973 printk("does not load-balance\n");
4dcf6aff 5974 if (sd->parent)
3df0fc5b
PZ
5975 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5976 " has parent");
4dcf6aff 5977 return -1;
41c7ce9a
NP
5978 }
5979
3df0fc5b 5980 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5981
758b2cdc 5982 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5983 printk(KERN_ERR "ERROR: domain->span does not contain "
5984 "CPU%d\n", cpu);
4dcf6aff 5985 }
758b2cdc 5986 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5987 printk(KERN_ERR "ERROR: domain->groups does not contain"
5988 " CPU%d\n", cpu);
4dcf6aff 5989 }
1da177e4 5990
4dcf6aff 5991 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5992 do {
4dcf6aff 5993 if (!group) {
3df0fc5b
PZ
5994 printk("\n");
5995 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5996 break;
5997 }
5998
18a3885f 5999 if (!group->cpu_power) {
3df0fc5b
PZ
6000 printk(KERN_CONT "\n");
6001 printk(KERN_ERR "ERROR: domain->cpu_power not "
6002 "set\n");
4dcf6aff
IM
6003 break;
6004 }
1da177e4 6005
758b2cdc 6006 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6007 printk(KERN_CONT "\n");
6008 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6009 break;
6010 }
1da177e4 6011
758b2cdc 6012 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6013 printk(KERN_CONT "\n");
6014 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6015 break;
6016 }
1da177e4 6017
758b2cdc 6018 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6019
968ea6d8 6020 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6021
3df0fc5b 6022 printk(KERN_CONT " %s", str);
18a3885f 6023 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6024 printk(KERN_CONT " (cpu_power = %d)",
6025 group->cpu_power);
381512cf 6026 }
1da177e4 6027
4dcf6aff
IM
6028 group = group->next;
6029 } while (group != sd->groups);
3df0fc5b 6030 printk(KERN_CONT "\n");
1da177e4 6031
758b2cdc 6032 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6033 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6034
758b2cdc
RR
6035 if (sd->parent &&
6036 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6037 printk(KERN_ERR "ERROR: parent span is not a superset "
6038 "of domain->span\n");
4dcf6aff
IM
6039 return 0;
6040}
1da177e4 6041
4dcf6aff
IM
6042static void sched_domain_debug(struct sched_domain *sd, int cpu)
6043{
d5dd3db1 6044 cpumask_var_t groupmask;
4dcf6aff 6045 int level = 0;
1da177e4 6046
f6630114
MT
6047 if (!sched_domain_debug_enabled)
6048 return;
6049
4dcf6aff
IM
6050 if (!sd) {
6051 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6052 return;
6053 }
1da177e4 6054
4dcf6aff
IM
6055 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6056
d5dd3db1 6057 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6058 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6059 return;
6060 }
6061
4dcf6aff 6062 for (;;) {
7c16ec58 6063 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6064 break;
1da177e4
LT
6065 level++;
6066 sd = sd->parent;
33859f7f 6067 if (!sd)
4dcf6aff
IM
6068 break;
6069 }
d5dd3db1 6070 free_cpumask_var(groupmask);
1da177e4 6071}
6d6bc0ad 6072#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6073# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6074#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6075
1a20ff27 6076static int sd_degenerate(struct sched_domain *sd)
245af2c7 6077{
758b2cdc 6078 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6079 return 1;
6080
6081 /* Following flags need at least 2 groups */
6082 if (sd->flags & (SD_LOAD_BALANCE |
6083 SD_BALANCE_NEWIDLE |
6084 SD_BALANCE_FORK |
89c4710e
SS
6085 SD_BALANCE_EXEC |
6086 SD_SHARE_CPUPOWER |
6087 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6088 if (sd->groups != sd->groups->next)
6089 return 0;
6090 }
6091
6092 /* Following flags don't use groups */
c88d5910 6093 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6094 return 0;
6095
6096 return 1;
6097}
6098
48f24c4d
IM
6099static int
6100sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6101{
6102 unsigned long cflags = sd->flags, pflags = parent->flags;
6103
6104 if (sd_degenerate(parent))
6105 return 1;
6106
758b2cdc 6107 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6108 return 0;
6109
245af2c7
SS
6110 /* Flags needing groups don't count if only 1 group in parent */
6111 if (parent->groups == parent->groups->next) {
6112 pflags &= ~(SD_LOAD_BALANCE |
6113 SD_BALANCE_NEWIDLE |
6114 SD_BALANCE_FORK |
89c4710e
SS
6115 SD_BALANCE_EXEC |
6116 SD_SHARE_CPUPOWER |
6117 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6118 if (nr_node_ids == 1)
6119 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6120 }
6121 if (~cflags & pflags)
6122 return 0;
6123
6124 return 1;
6125}
6126
c6c4927b
RR
6127static void free_rootdomain(struct root_domain *rd)
6128{
047106ad
PZ
6129 synchronize_sched();
6130
68e74568
RR
6131 cpupri_cleanup(&rd->cpupri);
6132
c6c4927b
RR
6133 free_cpumask_var(rd->rto_mask);
6134 free_cpumask_var(rd->online);
6135 free_cpumask_var(rd->span);
6136 kfree(rd);
6137}
6138
57d885fe
GH
6139static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6140{
a0490fa3 6141 struct root_domain *old_rd = NULL;
57d885fe 6142 unsigned long flags;
57d885fe 6143
05fa785c 6144 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6145
6146 if (rq->rd) {
a0490fa3 6147 old_rd = rq->rd;
57d885fe 6148
c6c4927b 6149 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6150 set_rq_offline(rq);
57d885fe 6151
c6c4927b 6152 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6153
a0490fa3
IM
6154 /*
6155 * If we dont want to free the old_rt yet then
6156 * set old_rd to NULL to skip the freeing later
6157 * in this function:
6158 */
6159 if (!atomic_dec_and_test(&old_rd->refcount))
6160 old_rd = NULL;
57d885fe
GH
6161 }
6162
6163 atomic_inc(&rd->refcount);
6164 rq->rd = rd;
6165
c6c4927b 6166 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6167 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6168 set_rq_online(rq);
57d885fe 6169
05fa785c 6170 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6171
6172 if (old_rd)
6173 free_rootdomain(old_rd);
57d885fe
GH
6174}
6175
fd5e1b5d 6176static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6177{
36b7b6d4
PE
6178 gfp_t gfp = GFP_KERNEL;
6179
57d885fe
GH
6180 memset(rd, 0, sizeof(*rd));
6181
36b7b6d4
PE
6182 if (bootmem)
6183 gfp = GFP_NOWAIT;
c6c4927b 6184
36b7b6d4 6185 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6186 goto out;
36b7b6d4 6187 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6188 goto free_span;
36b7b6d4 6189 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6190 goto free_online;
6e0534f2 6191
0fb53029 6192 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6193 goto free_rto_mask;
c6c4927b 6194 return 0;
6e0534f2 6195
68e74568
RR
6196free_rto_mask:
6197 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6198free_online:
6199 free_cpumask_var(rd->online);
6200free_span:
6201 free_cpumask_var(rd->span);
0c910d28 6202out:
c6c4927b 6203 return -ENOMEM;
57d885fe
GH
6204}
6205
6206static void init_defrootdomain(void)
6207{
c6c4927b
RR
6208 init_rootdomain(&def_root_domain, true);
6209
57d885fe
GH
6210 atomic_set(&def_root_domain.refcount, 1);
6211}
6212
dc938520 6213static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6214{
6215 struct root_domain *rd;
6216
6217 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6218 if (!rd)
6219 return NULL;
6220
c6c4927b
RR
6221 if (init_rootdomain(rd, false) != 0) {
6222 kfree(rd);
6223 return NULL;
6224 }
57d885fe
GH
6225
6226 return rd;
6227}
6228
1da177e4 6229/*
0eab9146 6230 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6231 * hold the hotplug lock.
6232 */
0eab9146
IM
6233static void
6234cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6235{
70b97a7f 6236 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6237 struct sched_domain *tmp;
6238
6239 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6240 for (tmp = sd; tmp; ) {
245af2c7
SS
6241 struct sched_domain *parent = tmp->parent;
6242 if (!parent)
6243 break;
f29c9b1c 6244
1a848870 6245 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6246 tmp->parent = parent->parent;
1a848870
SS
6247 if (parent->parent)
6248 parent->parent->child = tmp;
f29c9b1c
LZ
6249 } else
6250 tmp = tmp->parent;
245af2c7
SS
6251 }
6252
1a848870 6253 if (sd && sd_degenerate(sd)) {
245af2c7 6254 sd = sd->parent;
1a848870
SS
6255 if (sd)
6256 sd->child = NULL;
6257 }
1da177e4
LT
6258
6259 sched_domain_debug(sd, cpu);
6260
57d885fe 6261 rq_attach_root(rq, rd);
674311d5 6262 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6263}
6264
6265/* cpus with isolated domains */
dcc30a35 6266static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6267
6268/* Setup the mask of cpus configured for isolated domains */
6269static int __init isolated_cpu_setup(char *str)
6270{
bdddd296 6271 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6272 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6273 return 1;
6274}
6275
8927f494 6276__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6277
6278/*
6711cab4
SS
6279 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6280 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6281 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6282 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6283 *
6284 * init_sched_build_groups will build a circular linked list of the groups
6285 * covered by the given span, and will set each group's ->cpumask correctly,
6286 * and ->cpu_power to 0.
6287 */
a616058b 6288static void
96f874e2
RR
6289init_sched_build_groups(const struct cpumask *span,
6290 const struct cpumask *cpu_map,
6291 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6292 struct sched_group **sg,
96f874e2
RR
6293 struct cpumask *tmpmask),
6294 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6295{
6296 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6297 int i;
6298
96f874e2 6299 cpumask_clear(covered);
7c16ec58 6300
abcd083a 6301 for_each_cpu(i, span) {
6711cab4 6302 struct sched_group *sg;
7c16ec58 6303 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6304 int j;
6305
758b2cdc 6306 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6307 continue;
6308
758b2cdc 6309 cpumask_clear(sched_group_cpus(sg));
18a3885f 6310 sg->cpu_power = 0;
1da177e4 6311
abcd083a 6312 for_each_cpu(j, span) {
7c16ec58 6313 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6314 continue;
6315
96f874e2 6316 cpumask_set_cpu(j, covered);
758b2cdc 6317 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6318 }
6319 if (!first)
6320 first = sg;
6321 if (last)
6322 last->next = sg;
6323 last = sg;
6324 }
6325 last->next = first;
6326}
6327
9c1cfda2 6328#define SD_NODES_PER_DOMAIN 16
1da177e4 6329
9c1cfda2 6330#ifdef CONFIG_NUMA
198e2f18 6331
9c1cfda2
JH
6332/**
6333 * find_next_best_node - find the next node to include in a sched_domain
6334 * @node: node whose sched_domain we're building
6335 * @used_nodes: nodes already in the sched_domain
6336 *
41a2d6cf 6337 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6338 * finds the closest node not already in the @used_nodes map.
6339 *
6340 * Should use nodemask_t.
6341 */
c5f59f08 6342static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6343{
6344 int i, n, val, min_val, best_node = 0;
6345
6346 min_val = INT_MAX;
6347
076ac2af 6348 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6349 /* Start at @node */
076ac2af 6350 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6351
6352 if (!nr_cpus_node(n))
6353 continue;
6354
6355 /* Skip already used nodes */
c5f59f08 6356 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6357 continue;
6358
6359 /* Simple min distance search */
6360 val = node_distance(node, n);
6361
6362 if (val < min_val) {
6363 min_val = val;
6364 best_node = n;
6365 }
6366 }
6367
c5f59f08 6368 node_set(best_node, *used_nodes);
9c1cfda2
JH
6369 return best_node;
6370}
6371
6372/**
6373 * sched_domain_node_span - get a cpumask for a node's sched_domain
6374 * @node: node whose cpumask we're constructing
73486722 6375 * @span: resulting cpumask
9c1cfda2 6376 *
41a2d6cf 6377 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6378 * should be one that prevents unnecessary balancing, but also spreads tasks
6379 * out optimally.
6380 */
96f874e2 6381static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6382{
c5f59f08 6383 nodemask_t used_nodes;
48f24c4d 6384 int i;
9c1cfda2 6385
6ca09dfc 6386 cpumask_clear(span);
c5f59f08 6387 nodes_clear(used_nodes);
9c1cfda2 6388
6ca09dfc 6389 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6390 node_set(node, used_nodes);
9c1cfda2
JH
6391
6392 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6393 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6394
6ca09dfc 6395 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6396 }
9c1cfda2 6397}
6d6bc0ad 6398#endif /* CONFIG_NUMA */
9c1cfda2 6399
5c45bf27 6400int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6401
6c99e9ad
RR
6402/*
6403 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6404 *
6405 * ( See the the comments in include/linux/sched.h:struct sched_group
6406 * and struct sched_domain. )
6c99e9ad
RR
6407 */
6408struct static_sched_group {
6409 struct sched_group sg;
6410 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6411};
6412
6413struct static_sched_domain {
6414 struct sched_domain sd;
6415 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6416};
6417
49a02c51
AH
6418struct s_data {
6419#ifdef CONFIG_NUMA
6420 int sd_allnodes;
6421 cpumask_var_t domainspan;
6422 cpumask_var_t covered;
6423 cpumask_var_t notcovered;
6424#endif
6425 cpumask_var_t nodemask;
6426 cpumask_var_t this_sibling_map;
6427 cpumask_var_t this_core_map;
6428 cpumask_var_t send_covered;
6429 cpumask_var_t tmpmask;
6430 struct sched_group **sched_group_nodes;
6431 struct root_domain *rd;
6432};
6433
2109b99e
AH
6434enum s_alloc {
6435 sa_sched_groups = 0,
6436 sa_rootdomain,
6437 sa_tmpmask,
6438 sa_send_covered,
6439 sa_this_core_map,
6440 sa_this_sibling_map,
6441 sa_nodemask,
6442 sa_sched_group_nodes,
6443#ifdef CONFIG_NUMA
6444 sa_notcovered,
6445 sa_covered,
6446 sa_domainspan,
6447#endif
6448 sa_none,
6449};
6450
9c1cfda2 6451/*
48f24c4d 6452 * SMT sched-domains:
9c1cfda2 6453 */
1da177e4 6454#ifdef CONFIG_SCHED_SMT
6c99e9ad 6455static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6456static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6457
41a2d6cf 6458static int
96f874e2
RR
6459cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6460 struct sched_group **sg, struct cpumask *unused)
1da177e4 6461{
6711cab4 6462 if (sg)
1871e52c 6463 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6464 return cpu;
6465}
6d6bc0ad 6466#endif /* CONFIG_SCHED_SMT */
1da177e4 6467
48f24c4d
IM
6468/*
6469 * multi-core sched-domains:
6470 */
1e9f28fa 6471#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6472static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6473static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6474#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6475
6476#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6477static int
96f874e2
RR
6478cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6479 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6480{
6711cab4 6481 int group;
7c16ec58 6482
c69fc56d 6483 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6484 group = cpumask_first(mask);
6711cab4 6485 if (sg)
6c99e9ad 6486 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6487 return group;
1e9f28fa
SS
6488}
6489#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6490static int
96f874e2
RR
6491cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6492 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6493{
6711cab4 6494 if (sg)
6c99e9ad 6495 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6496 return cpu;
6497}
6498#endif
6499
6c99e9ad
RR
6500static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6501static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6502
41a2d6cf 6503static int
96f874e2
RR
6504cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6505 struct sched_group **sg, struct cpumask *mask)
1da177e4 6506{
6711cab4 6507 int group;
48f24c4d 6508#ifdef CONFIG_SCHED_MC
6ca09dfc 6509 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6510 group = cpumask_first(mask);
1e9f28fa 6511#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6512 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6513 group = cpumask_first(mask);
1da177e4 6514#else
6711cab4 6515 group = cpu;
1da177e4 6516#endif
6711cab4 6517 if (sg)
6c99e9ad 6518 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6519 return group;
1da177e4
LT
6520}
6521
6522#ifdef CONFIG_NUMA
1da177e4 6523/*
9c1cfda2
JH
6524 * The init_sched_build_groups can't handle what we want to do with node
6525 * groups, so roll our own. Now each node has its own list of groups which
6526 * gets dynamically allocated.
1da177e4 6527 */
62ea9ceb 6528static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6529static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6530
62ea9ceb 6531static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6532static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6533
96f874e2
RR
6534static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6535 struct sched_group **sg,
6536 struct cpumask *nodemask)
9c1cfda2 6537{
6711cab4
SS
6538 int group;
6539
6ca09dfc 6540 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6541 group = cpumask_first(nodemask);
6711cab4
SS
6542
6543 if (sg)
6c99e9ad 6544 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6545 return group;
1da177e4 6546}
6711cab4 6547
08069033
SS
6548static void init_numa_sched_groups_power(struct sched_group *group_head)
6549{
6550 struct sched_group *sg = group_head;
6551 int j;
6552
6553 if (!sg)
6554 return;
3a5c359a 6555 do {
758b2cdc 6556 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6557 struct sched_domain *sd;
08069033 6558
6c99e9ad 6559 sd = &per_cpu(phys_domains, j).sd;
13318a71 6560 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6561 /*
6562 * Only add "power" once for each
6563 * physical package.
6564 */
6565 continue;
6566 }
08069033 6567
18a3885f 6568 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6569 }
6570 sg = sg->next;
6571 } while (sg != group_head);
08069033 6572}
0601a88d
AH
6573
6574static int build_numa_sched_groups(struct s_data *d,
6575 const struct cpumask *cpu_map, int num)
6576{
6577 struct sched_domain *sd;
6578 struct sched_group *sg, *prev;
6579 int n, j;
6580
6581 cpumask_clear(d->covered);
6582 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6583 if (cpumask_empty(d->nodemask)) {
6584 d->sched_group_nodes[num] = NULL;
6585 goto out;
6586 }
6587
6588 sched_domain_node_span(num, d->domainspan);
6589 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6590
6591 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6592 GFP_KERNEL, num);
6593 if (!sg) {
3df0fc5b
PZ
6594 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6595 num);
0601a88d
AH
6596 return -ENOMEM;
6597 }
6598 d->sched_group_nodes[num] = sg;
6599
6600 for_each_cpu(j, d->nodemask) {
6601 sd = &per_cpu(node_domains, j).sd;
6602 sd->groups = sg;
6603 }
6604
18a3885f 6605 sg->cpu_power = 0;
0601a88d
AH
6606 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6607 sg->next = sg;
6608 cpumask_or(d->covered, d->covered, d->nodemask);
6609
6610 prev = sg;
6611 for (j = 0; j < nr_node_ids; j++) {
6612 n = (num + j) % nr_node_ids;
6613 cpumask_complement(d->notcovered, d->covered);
6614 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6615 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6616 if (cpumask_empty(d->tmpmask))
6617 break;
6618 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6619 if (cpumask_empty(d->tmpmask))
6620 continue;
6621 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6622 GFP_KERNEL, num);
6623 if (!sg) {
3df0fc5b
PZ
6624 printk(KERN_WARNING
6625 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6626 return -ENOMEM;
6627 }
18a3885f 6628 sg->cpu_power = 0;
0601a88d
AH
6629 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6630 sg->next = prev->next;
6631 cpumask_or(d->covered, d->covered, d->tmpmask);
6632 prev->next = sg;
6633 prev = sg;
6634 }
6635out:
6636 return 0;
6637}
6d6bc0ad 6638#endif /* CONFIG_NUMA */
1da177e4 6639
a616058b 6640#ifdef CONFIG_NUMA
51888ca2 6641/* Free memory allocated for various sched_group structures */
96f874e2
RR
6642static void free_sched_groups(const struct cpumask *cpu_map,
6643 struct cpumask *nodemask)
51888ca2 6644{
a616058b 6645 int cpu, i;
51888ca2 6646
abcd083a 6647 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6648 struct sched_group **sched_group_nodes
6649 = sched_group_nodes_bycpu[cpu];
6650
51888ca2
SV
6651 if (!sched_group_nodes)
6652 continue;
6653
076ac2af 6654 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6655 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6656
6ca09dfc 6657 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6658 if (cpumask_empty(nodemask))
51888ca2
SV
6659 continue;
6660
6661 if (sg == NULL)
6662 continue;
6663 sg = sg->next;
6664next_sg:
6665 oldsg = sg;
6666 sg = sg->next;
6667 kfree(oldsg);
6668 if (oldsg != sched_group_nodes[i])
6669 goto next_sg;
6670 }
6671 kfree(sched_group_nodes);
6672 sched_group_nodes_bycpu[cpu] = NULL;
6673 }
51888ca2 6674}
6d6bc0ad 6675#else /* !CONFIG_NUMA */
96f874e2
RR
6676static void free_sched_groups(const struct cpumask *cpu_map,
6677 struct cpumask *nodemask)
a616058b
SS
6678{
6679}
6d6bc0ad 6680#endif /* CONFIG_NUMA */
51888ca2 6681
89c4710e
SS
6682/*
6683 * Initialize sched groups cpu_power.
6684 *
6685 * cpu_power indicates the capacity of sched group, which is used while
6686 * distributing the load between different sched groups in a sched domain.
6687 * Typically cpu_power for all the groups in a sched domain will be same unless
6688 * there are asymmetries in the topology. If there are asymmetries, group
6689 * having more cpu_power will pickup more load compared to the group having
6690 * less cpu_power.
89c4710e
SS
6691 */
6692static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6693{
6694 struct sched_domain *child;
6695 struct sched_group *group;
f93e65c1
PZ
6696 long power;
6697 int weight;
89c4710e
SS
6698
6699 WARN_ON(!sd || !sd->groups);
6700
13318a71 6701 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6702 return;
6703
6704 child = sd->child;
6705
18a3885f 6706 sd->groups->cpu_power = 0;
5517d86b 6707
f93e65c1
PZ
6708 if (!child) {
6709 power = SCHED_LOAD_SCALE;
6710 weight = cpumask_weight(sched_domain_span(sd));
6711 /*
6712 * SMT siblings share the power of a single core.
a52bfd73
PZ
6713 * Usually multiple threads get a better yield out of
6714 * that one core than a single thread would have,
6715 * reflect that in sd->smt_gain.
f93e65c1 6716 */
a52bfd73
PZ
6717 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6718 power *= sd->smt_gain;
f93e65c1 6719 power /= weight;
a52bfd73
PZ
6720 power >>= SCHED_LOAD_SHIFT;
6721 }
18a3885f 6722 sd->groups->cpu_power += power;
89c4710e
SS
6723 return;
6724 }
6725
89c4710e 6726 /*
f93e65c1 6727 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6728 */
6729 group = child->groups;
6730 do {
18a3885f 6731 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6732 group = group->next;
6733 } while (group != child->groups);
6734}
6735
7c16ec58
MT
6736/*
6737 * Initializers for schedule domains
6738 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6739 */
6740
a5d8c348
IM
6741#ifdef CONFIG_SCHED_DEBUG
6742# define SD_INIT_NAME(sd, type) sd->name = #type
6743#else
6744# define SD_INIT_NAME(sd, type) do { } while (0)
6745#endif
6746
7c16ec58 6747#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6748
7c16ec58
MT
6749#define SD_INIT_FUNC(type) \
6750static noinline void sd_init_##type(struct sched_domain *sd) \
6751{ \
6752 memset(sd, 0, sizeof(*sd)); \
6753 *sd = SD_##type##_INIT; \
1d3504fc 6754 sd->level = SD_LV_##type; \
a5d8c348 6755 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6756}
6757
6758SD_INIT_FUNC(CPU)
6759#ifdef CONFIG_NUMA
6760 SD_INIT_FUNC(ALLNODES)
6761 SD_INIT_FUNC(NODE)
6762#endif
6763#ifdef CONFIG_SCHED_SMT
6764 SD_INIT_FUNC(SIBLING)
6765#endif
6766#ifdef CONFIG_SCHED_MC
6767 SD_INIT_FUNC(MC)
6768#endif
6769
1d3504fc
HS
6770static int default_relax_domain_level = -1;
6771
6772static int __init setup_relax_domain_level(char *str)
6773{
30e0e178
LZ
6774 unsigned long val;
6775
6776 val = simple_strtoul(str, NULL, 0);
6777 if (val < SD_LV_MAX)
6778 default_relax_domain_level = val;
6779
1d3504fc
HS
6780 return 1;
6781}
6782__setup("relax_domain_level=", setup_relax_domain_level);
6783
6784static void set_domain_attribute(struct sched_domain *sd,
6785 struct sched_domain_attr *attr)
6786{
6787 int request;
6788
6789 if (!attr || attr->relax_domain_level < 0) {
6790 if (default_relax_domain_level < 0)
6791 return;
6792 else
6793 request = default_relax_domain_level;
6794 } else
6795 request = attr->relax_domain_level;
6796 if (request < sd->level) {
6797 /* turn off idle balance on this domain */
c88d5910 6798 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6799 } else {
6800 /* turn on idle balance on this domain */
c88d5910 6801 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6802 }
6803}
6804
2109b99e
AH
6805static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6806 const struct cpumask *cpu_map)
6807{
6808 switch (what) {
6809 case sa_sched_groups:
6810 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6811 d->sched_group_nodes = NULL;
6812 case sa_rootdomain:
6813 free_rootdomain(d->rd); /* fall through */
6814 case sa_tmpmask:
6815 free_cpumask_var(d->tmpmask); /* fall through */
6816 case sa_send_covered:
6817 free_cpumask_var(d->send_covered); /* fall through */
6818 case sa_this_core_map:
6819 free_cpumask_var(d->this_core_map); /* fall through */
6820 case sa_this_sibling_map:
6821 free_cpumask_var(d->this_sibling_map); /* fall through */
6822 case sa_nodemask:
6823 free_cpumask_var(d->nodemask); /* fall through */
6824 case sa_sched_group_nodes:
d1b55138 6825#ifdef CONFIG_NUMA
2109b99e
AH
6826 kfree(d->sched_group_nodes); /* fall through */
6827 case sa_notcovered:
6828 free_cpumask_var(d->notcovered); /* fall through */
6829 case sa_covered:
6830 free_cpumask_var(d->covered); /* fall through */
6831 case sa_domainspan:
6832 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6833#endif
2109b99e
AH
6834 case sa_none:
6835 break;
6836 }
6837}
3404c8d9 6838
2109b99e
AH
6839static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6840 const struct cpumask *cpu_map)
6841{
3404c8d9 6842#ifdef CONFIG_NUMA
2109b99e
AH
6843 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6844 return sa_none;
6845 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6846 return sa_domainspan;
6847 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6848 return sa_covered;
6849 /* Allocate the per-node list of sched groups */
6850 d->sched_group_nodes = kcalloc(nr_node_ids,
6851 sizeof(struct sched_group *), GFP_KERNEL);
6852 if (!d->sched_group_nodes) {
3df0fc5b 6853 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6854 return sa_notcovered;
d1b55138 6855 }
2109b99e 6856 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6857#endif
2109b99e
AH
6858 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6859 return sa_sched_group_nodes;
6860 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6861 return sa_nodemask;
6862 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6863 return sa_this_sibling_map;
6864 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6865 return sa_this_core_map;
6866 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6867 return sa_send_covered;
6868 d->rd = alloc_rootdomain();
6869 if (!d->rd) {
3df0fc5b 6870 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6871 return sa_tmpmask;
57d885fe 6872 }
2109b99e
AH
6873 return sa_rootdomain;
6874}
57d885fe 6875
7f4588f3
AH
6876static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6877 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6878{
6879 struct sched_domain *sd = NULL;
7c16ec58 6880#ifdef CONFIG_NUMA
7f4588f3 6881 struct sched_domain *parent;
1da177e4 6882
7f4588f3
AH
6883 d->sd_allnodes = 0;
6884 if (cpumask_weight(cpu_map) >
6885 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6886 sd = &per_cpu(allnodes_domains, i).sd;
6887 SD_INIT(sd, ALLNODES);
1d3504fc 6888 set_domain_attribute(sd, attr);
7f4588f3
AH
6889 cpumask_copy(sched_domain_span(sd), cpu_map);
6890 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6891 d->sd_allnodes = 1;
6892 }
6893 parent = sd;
6894
6895 sd = &per_cpu(node_domains, i).sd;
6896 SD_INIT(sd, NODE);
6897 set_domain_attribute(sd, attr);
6898 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6899 sd->parent = parent;
6900 if (parent)
6901 parent->child = sd;
6902 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6903#endif
7f4588f3
AH
6904 return sd;
6905}
1da177e4 6906
87cce662
AH
6907static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6908 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6909 struct sched_domain *parent, int i)
6910{
6911 struct sched_domain *sd;
6912 sd = &per_cpu(phys_domains, i).sd;
6913 SD_INIT(sd, CPU);
6914 set_domain_attribute(sd, attr);
6915 cpumask_copy(sched_domain_span(sd), d->nodemask);
6916 sd->parent = parent;
6917 if (parent)
6918 parent->child = sd;
6919 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6920 return sd;
6921}
1da177e4 6922
410c4081
AH
6923static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6924 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6925 struct sched_domain *parent, int i)
6926{
6927 struct sched_domain *sd = parent;
1e9f28fa 6928#ifdef CONFIG_SCHED_MC
410c4081
AH
6929 sd = &per_cpu(core_domains, i).sd;
6930 SD_INIT(sd, MC);
6931 set_domain_attribute(sd, attr);
6932 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6933 sd->parent = parent;
6934 parent->child = sd;
6935 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6936#endif
410c4081
AH
6937 return sd;
6938}
1e9f28fa 6939
d8173535
AH
6940static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6941 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6942 struct sched_domain *parent, int i)
6943{
6944 struct sched_domain *sd = parent;
1da177e4 6945#ifdef CONFIG_SCHED_SMT
d8173535
AH
6946 sd = &per_cpu(cpu_domains, i).sd;
6947 SD_INIT(sd, SIBLING);
6948 set_domain_attribute(sd, attr);
6949 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6950 sd->parent = parent;
6951 parent->child = sd;
6952 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6953#endif
d8173535
AH
6954 return sd;
6955}
1da177e4 6956
0e8e85c9
AH
6957static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6958 const struct cpumask *cpu_map, int cpu)
6959{
6960 switch (l) {
1da177e4 6961#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6962 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6963 cpumask_and(d->this_sibling_map, cpu_map,
6964 topology_thread_cpumask(cpu));
6965 if (cpu == cpumask_first(d->this_sibling_map))
6966 init_sched_build_groups(d->this_sibling_map, cpu_map,
6967 &cpu_to_cpu_group,
6968 d->send_covered, d->tmpmask);
6969 break;
1da177e4 6970#endif
1e9f28fa 6971#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6972 case SD_LV_MC: /* set up multi-core groups */
6973 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6974 if (cpu == cpumask_first(d->this_core_map))
6975 init_sched_build_groups(d->this_core_map, cpu_map,
6976 &cpu_to_core_group,
6977 d->send_covered, d->tmpmask);
6978 break;
1e9f28fa 6979#endif
86548096
AH
6980 case SD_LV_CPU: /* set up physical groups */
6981 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6982 if (!cpumask_empty(d->nodemask))
6983 init_sched_build_groups(d->nodemask, cpu_map,
6984 &cpu_to_phys_group,
6985 d->send_covered, d->tmpmask);
6986 break;
1da177e4 6987#ifdef CONFIG_NUMA
de616e36
AH
6988 case SD_LV_ALLNODES:
6989 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6990 d->send_covered, d->tmpmask);
6991 break;
6992#endif
0e8e85c9
AH
6993 default:
6994 break;
7c16ec58 6995 }
0e8e85c9 6996}
9c1cfda2 6997
2109b99e
AH
6998/*
6999 * Build sched domains for a given set of cpus and attach the sched domains
7000 * to the individual cpus
7001 */
7002static int __build_sched_domains(const struct cpumask *cpu_map,
7003 struct sched_domain_attr *attr)
7004{
7005 enum s_alloc alloc_state = sa_none;
7006 struct s_data d;
294b0c96 7007 struct sched_domain *sd;
2109b99e 7008 int i;
7c16ec58 7009#ifdef CONFIG_NUMA
2109b99e 7010 d.sd_allnodes = 0;
7c16ec58 7011#endif
9c1cfda2 7012
2109b99e
AH
7013 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7014 if (alloc_state != sa_rootdomain)
7015 goto error;
7016 alloc_state = sa_sched_groups;
9c1cfda2 7017
1da177e4 7018 /*
1a20ff27 7019 * Set up domains for cpus specified by the cpu_map.
1da177e4 7020 */
abcd083a 7021 for_each_cpu(i, cpu_map) {
49a02c51
AH
7022 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7023 cpu_map);
9761eea8 7024
7f4588f3 7025 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7026 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7027 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7028 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7029 }
9c1cfda2 7030
abcd083a 7031 for_each_cpu(i, cpu_map) {
0e8e85c9 7032 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7033 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7034 }
9c1cfda2 7035
1da177e4 7036 /* Set up physical groups */
86548096
AH
7037 for (i = 0; i < nr_node_ids; i++)
7038 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7039
1da177e4
LT
7040#ifdef CONFIG_NUMA
7041 /* Set up node groups */
de616e36
AH
7042 if (d.sd_allnodes)
7043 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7044
0601a88d
AH
7045 for (i = 0; i < nr_node_ids; i++)
7046 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7047 goto error;
1da177e4
LT
7048#endif
7049
7050 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7051#ifdef CONFIG_SCHED_SMT
abcd083a 7052 for_each_cpu(i, cpu_map) {
294b0c96 7053 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7054 init_sched_groups_power(i, sd);
5c45bf27 7055 }
1da177e4 7056#endif
1e9f28fa 7057#ifdef CONFIG_SCHED_MC
abcd083a 7058 for_each_cpu(i, cpu_map) {
294b0c96 7059 sd = &per_cpu(core_domains, i).sd;
89c4710e 7060 init_sched_groups_power(i, sd);
5c45bf27
SS
7061 }
7062#endif
1e9f28fa 7063
abcd083a 7064 for_each_cpu(i, cpu_map) {
294b0c96 7065 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7066 init_sched_groups_power(i, sd);
1da177e4
LT
7067 }
7068
9c1cfda2 7069#ifdef CONFIG_NUMA
076ac2af 7070 for (i = 0; i < nr_node_ids; i++)
49a02c51 7071 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7072
49a02c51 7073 if (d.sd_allnodes) {
6711cab4 7074 struct sched_group *sg;
f712c0c7 7075
96f874e2 7076 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7077 d.tmpmask);
f712c0c7
SS
7078 init_numa_sched_groups_power(sg);
7079 }
9c1cfda2
JH
7080#endif
7081
1da177e4 7082 /* Attach the domains */
abcd083a 7083 for_each_cpu(i, cpu_map) {
1da177e4 7084#ifdef CONFIG_SCHED_SMT
6c99e9ad 7085 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7086#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7087 sd = &per_cpu(core_domains, i).sd;
1da177e4 7088#else
6c99e9ad 7089 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7090#endif
49a02c51 7091 cpu_attach_domain(sd, d.rd, i);
1da177e4 7092 }
51888ca2 7093
2109b99e
AH
7094 d.sched_group_nodes = NULL; /* don't free this we still need it */
7095 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7096 return 0;
51888ca2 7097
51888ca2 7098error:
2109b99e
AH
7099 __free_domain_allocs(&d, alloc_state, cpu_map);
7100 return -ENOMEM;
1da177e4 7101}
029190c5 7102
96f874e2 7103static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7104{
7105 return __build_sched_domains(cpu_map, NULL);
7106}
7107
acc3f5d7 7108static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7109static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7110static struct sched_domain_attr *dattr_cur;
7111 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7112
7113/*
7114 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7115 * cpumask) fails, then fallback to a single sched domain,
7116 * as determined by the single cpumask fallback_doms.
029190c5 7117 */
4212823f 7118static cpumask_var_t fallback_doms;
029190c5 7119
ee79d1bd
HC
7120/*
7121 * arch_update_cpu_topology lets virtualized architectures update the
7122 * cpu core maps. It is supposed to return 1 if the topology changed
7123 * or 0 if it stayed the same.
7124 */
7125int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7126{
ee79d1bd 7127 return 0;
22e52b07
HC
7128}
7129
acc3f5d7
RR
7130cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7131{
7132 int i;
7133 cpumask_var_t *doms;
7134
7135 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7136 if (!doms)
7137 return NULL;
7138 for (i = 0; i < ndoms; i++) {
7139 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7140 free_sched_domains(doms, i);
7141 return NULL;
7142 }
7143 }
7144 return doms;
7145}
7146
7147void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7148{
7149 unsigned int i;
7150 for (i = 0; i < ndoms; i++)
7151 free_cpumask_var(doms[i]);
7152 kfree(doms);
7153}
7154
1a20ff27 7155/*
41a2d6cf 7156 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7157 * For now this just excludes isolated cpus, but could be used to
7158 * exclude other special cases in the future.
1a20ff27 7159 */
96f874e2 7160static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7161{
7378547f
MM
7162 int err;
7163
22e52b07 7164 arch_update_cpu_topology();
029190c5 7165 ndoms_cur = 1;
acc3f5d7 7166 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7167 if (!doms_cur)
acc3f5d7
RR
7168 doms_cur = &fallback_doms;
7169 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7170 dattr_cur = NULL;
acc3f5d7 7171 err = build_sched_domains(doms_cur[0]);
6382bc90 7172 register_sched_domain_sysctl();
7378547f
MM
7173
7174 return err;
1a20ff27
DG
7175}
7176
96f874e2
RR
7177static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7178 struct cpumask *tmpmask)
1da177e4 7179{
7c16ec58 7180 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7181}
1da177e4 7182
1a20ff27
DG
7183/*
7184 * Detach sched domains from a group of cpus specified in cpu_map
7185 * These cpus will now be attached to the NULL domain
7186 */
96f874e2 7187static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7188{
96f874e2
RR
7189 /* Save because hotplug lock held. */
7190 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7191 int i;
7192
abcd083a 7193 for_each_cpu(i, cpu_map)
57d885fe 7194 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7195 synchronize_sched();
96f874e2 7196 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7197}
7198
1d3504fc
HS
7199/* handle null as "default" */
7200static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7201 struct sched_domain_attr *new, int idx_new)
7202{
7203 struct sched_domain_attr tmp;
7204
7205 /* fast path */
7206 if (!new && !cur)
7207 return 1;
7208
7209 tmp = SD_ATTR_INIT;
7210 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7211 new ? (new + idx_new) : &tmp,
7212 sizeof(struct sched_domain_attr));
7213}
7214
029190c5
PJ
7215/*
7216 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7217 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7218 * doms_new[] to the current sched domain partitioning, doms_cur[].
7219 * It destroys each deleted domain and builds each new domain.
7220 *
acc3f5d7 7221 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7222 * The masks don't intersect (don't overlap.) We should setup one
7223 * sched domain for each mask. CPUs not in any of the cpumasks will
7224 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7225 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7226 * it as it is.
7227 *
acc3f5d7
RR
7228 * The passed in 'doms_new' should be allocated using
7229 * alloc_sched_domains. This routine takes ownership of it and will
7230 * free_sched_domains it when done with it. If the caller failed the
7231 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7232 * and partition_sched_domains() will fallback to the single partition
7233 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7234 *
96f874e2 7235 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7236 * ndoms_new == 0 is a special case for destroying existing domains,
7237 * and it will not create the default domain.
dfb512ec 7238 *
029190c5
PJ
7239 * Call with hotplug lock held
7240 */
acc3f5d7 7241void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7242 struct sched_domain_attr *dattr_new)
029190c5 7243{
dfb512ec 7244 int i, j, n;
d65bd5ec 7245 int new_topology;
029190c5 7246
712555ee 7247 mutex_lock(&sched_domains_mutex);
a1835615 7248
7378547f
MM
7249 /* always unregister in case we don't destroy any domains */
7250 unregister_sched_domain_sysctl();
7251
d65bd5ec
HC
7252 /* Let architecture update cpu core mappings. */
7253 new_topology = arch_update_cpu_topology();
7254
dfb512ec 7255 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7256
7257 /* Destroy deleted domains */
7258 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7259 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7260 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7261 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7262 goto match1;
7263 }
7264 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7265 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7266match1:
7267 ;
7268 }
7269
e761b772
MK
7270 if (doms_new == NULL) {
7271 ndoms_cur = 0;
acc3f5d7 7272 doms_new = &fallback_doms;
6ad4c188 7273 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7274 WARN_ON_ONCE(dattr_new);
e761b772
MK
7275 }
7276
029190c5
PJ
7277 /* Build new domains */
7278 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7279 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7280 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7281 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7282 goto match2;
7283 }
7284 /* no match - add a new doms_new */
acc3f5d7 7285 __build_sched_domains(doms_new[i],
1d3504fc 7286 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7287match2:
7288 ;
7289 }
7290
7291 /* Remember the new sched domains */
acc3f5d7
RR
7292 if (doms_cur != &fallback_doms)
7293 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7294 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7295 doms_cur = doms_new;
1d3504fc 7296 dattr_cur = dattr_new;
029190c5 7297 ndoms_cur = ndoms_new;
7378547f
MM
7298
7299 register_sched_domain_sysctl();
a1835615 7300
712555ee 7301 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7302}
7303
5c45bf27 7304#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7305static void arch_reinit_sched_domains(void)
5c45bf27 7306{
95402b38 7307 get_online_cpus();
dfb512ec
MK
7308
7309 /* Destroy domains first to force the rebuild */
7310 partition_sched_domains(0, NULL, NULL);
7311
e761b772 7312 rebuild_sched_domains();
95402b38 7313 put_online_cpus();
5c45bf27
SS
7314}
7315
7316static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7317{
afb8a9b7 7318 unsigned int level = 0;
5c45bf27 7319
afb8a9b7
GS
7320 if (sscanf(buf, "%u", &level) != 1)
7321 return -EINVAL;
7322
7323 /*
7324 * level is always be positive so don't check for
7325 * level < POWERSAVINGS_BALANCE_NONE which is 0
7326 * What happens on 0 or 1 byte write,
7327 * need to check for count as well?
7328 */
7329
7330 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7331 return -EINVAL;
7332
7333 if (smt)
afb8a9b7 7334 sched_smt_power_savings = level;
5c45bf27 7335 else
afb8a9b7 7336 sched_mc_power_savings = level;
5c45bf27 7337
c70f22d2 7338 arch_reinit_sched_domains();
5c45bf27 7339
c70f22d2 7340 return count;
5c45bf27
SS
7341}
7342
5c45bf27 7343#ifdef CONFIG_SCHED_MC
f718cd4a 7344static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7345 struct sysdev_class_attribute *attr,
f718cd4a 7346 char *page)
5c45bf27
SS
7347{
7348 return sprintf(page, "%u\n", sched_mc_power_savings);
7349}
f718cd4a 7350static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7351 struct sysdev_class_attribute *attr,
48f24c4d 7352 const char *buf, size_t count)
5c45bf27
SS
7353{
7354 return sched_power_savings_store(buf, count, 0);
7355}
f718cd4a
AK
7356static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7357 sched_mc_power_savings_show,
7358 sched_mc_power_savings_store);
5c45bf27
SS
7359#endif
7360
7361#ifdef CONFIG_SCHED_SMT
f718cd4a 7362static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7363 struct sysdev_class_attribute *attr,
f718cd4a 7364 char *page)
5c45bf27
SS
7365{
7366 return sprintf(page, "%u\n", sched_smt_power_savings);
7367}
f718cd4a 7368static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7369 struct sysdev_class_attribute *attr,
48f24c4d 7370 const char *buf, size_t count)
5c45bf27
SS
7371{
7372 return sched_power_savings_store(buf, count, 1);
7373}
f718cd4a
AK
7374static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7375 sched_smt_power_savings_show,
6707de00
AB
7376 sched_smt_power_savings_store);
7377#endif
7378
39aac648 7379int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7380{
7381 int err = 0;
7382
7383#ifdef CONFIG_SCHED_SMT
7384 if (smt_capable())
7385 err = sysfs_create_file(&cls->kset.kobj,
7386 &attr_sched_smt_power_savings.attr);
7387#endif
7388#ifdef CONFIG_SCHED_MC
7389 if (!err && mc_capable())
7390 err = sysfs_create_file(&cls->kset.kobj,
7391 &attr_sched_mc_power_savings.attr);
7392#endif
7393 return err;
7394}
6d6bc0ad 7395#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7396
e761b772 7397#ifndef CONFIG_CPUSETS
1da177e4 7398/*
e761b772
MK
7399 * Add online and remove offline CPUs from the scheduler domains.
7400 * When cpusets are enabled they take over this function.
1da177e4
LT
7401 */
7402static int update_sched_domains(struct notifier_block *nfb,
7403 unsigned long action, void *hcpu)
e761b772
MK
7404{
7405 switch (action) {
7406 case CPU_ONLINE:
7407 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7408 case CPU_DOWN_PREPARE:
7409 case CPU_DOWN_PREPARE_FROZEN:
7410 case CPU_DOWN_FAILED:
7411 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7412 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7413 return NOTIFY_OK;
7414
7415 default:
7416 return NOTIFY_DONE;
7417 }
7418}
7419#endif
7420
7421static int update_runtime(struct notifier_block *nfb,
7422 unsigned long action, void *hcpu)
1da177e4 7423{
7def2be1
PZ
7424 int cpu = (int)(long)hcpu;
7425
1da177e4 7426 switch (action) {
1da177e4 7427 case CPU_DOWN_PREPARE:
8bb78442 7428 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7429 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7430 return NOTIFY_OK;
7431
1da177e4 7432 case CPU_DOWN_FAILED:
8bb78442 7433 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7434 case CPU_ONLINE:
8bb78442 7435 case CPU_ONLINE_FROZEN:
7def2be1 7436 enable_runtime(cpu_rq(cpu));
e761b772
MK
7437 return NOTIFY_OK;
7438
1da177e4
LT
7439 default:
7440 return NOTIFY_DONE;
7441 }
1da177e4 7442}
1da177e4
LT
7443
7444void __init sched_init_smp(void)
7445{
dcc30a35
RR
7446 cpumask_var_t non_isolated_cpus;
7447
7448 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7449 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7450
434d53b0
MT
7451#if defined(CONFIG_NUMA)
7452 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7453 GFP_KERNEL);
7454 BUG_ON(sched_group_nodes_bycpu == NULL);
7455#endif
95402b38 7456 get_online_cpus();
712555ee 7457 mutex_lock(&sched_domains_mutex);
6ad4c188 7458 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7459 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7460 if (cpumask_empty(non_isolated_cpus))
7461 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7462 mutex_unlock(&sched_domains_mutex);
95402b38 7463 put_online_cpus();
e761b772
MK
7464
7465#ifndef CONFIG_CPUSETS
1da177e4
LT
7466 /* XXX: Theoretical race here - CPU may be hotplugged now */
7467 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7468#endif
7469
7470 /* RT runtime code needs to handle some hotplug events */
7471 hotcpu_notifier(update_runtime, 0);
7472
b328ca18 7473 init_hrtick();
5c1e1767
NP
7474
7475 /* Move init over to a non-isolated CPU */
dcc30a35 7476 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7477 BUG();
19978ca6 7478 sched_init_granularity();
dcc30a35 7479 free_cpumask_var(non_isolated_cpus);
4212823f 7480
0e3900e6 7481 init_sched_rt_class();
1da177e4
LT
7482}
7483#else
7484void __init sched_init_smp(void)
7485{
19978ca6 7486 sched_init_granularity();
1da177e4
LT
7487}
7488#endif /* CONFIG_SMP */
7489
cd1bb94b
AB
7490const_debug unsigned int sysctl_timer_migration = 1;
7491
1da177e4
LT
7492int in_sched_functions(unsigned long addr)
7493{
1da177e4
LT
7494 return in_lock_functions(addr) ||
7495 (addr >= (unsigned long)__sched_text_start
7496 && addr < (unsigned long)__sched_text_end);
7497}
7498
a9957449 7499static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7500{
7501 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7502 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7503#ifdef CONFIG_FAIR_GROUP_SCHED
7504 cfs_rq->rq = rq;
7505#endif
67e9fb2a 7506 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7507}
7508
fa85ae24
PZ
7509static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7510{
7511 struct rt_prio_array *array;
7512 int i;
7513
7514 array = &rt_rq->active;
7515 for (i = 0; i < MAX_RT_PRIO; i++) {
7516 INIT_LIST_HEAD(array->queue + i);
7517 __clear_bit(i, array->bitmap);
7518 }
7519 /* delimiter for bitsearch: */
7520 __set_bit(MAX_RT_PRIO, array->bitmap);
7521
052f1dc7 7522#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7523 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7524#ifdef CONFIG_SMP
e864c499 7525 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7526#endif
48d5e258 7527#endif
fa85ae24
PZ
7528#ifdef CONFIG_SMP
7529 rt_rq->rt_nr_migratory = 0;
fa85ae24 7530 rt_rq->overloaded = 0;
05fa785c 7531 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7532#endif
7533
7534 rt_rq->rt_time = 0;
7535 rt_rq->rt_throttled = 0;
ac086bc2 7536 rt_rq->rt_runtime = 0;
0986b11b 7537 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7538
052f1dc7 7539#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7540 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7541 rt_rq->rq = rq;
7542#endif
fa85ae24
PZ
7543}
7544
6f505b16 7545#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7546static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7547 struct sched_entity *se, int cpu, int add,
7548 struct sched_entity *parent)
6f505b16 7549{
ec7dc8ac 7550 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7551 tg->cfs_rq[cpu] = cfs_rq;
7552 init_cfs_rq(cfs_rq, rq);
7553 cfs_rq->tg = tg;
7554 if (add)
7555 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7556
7557 tg->se[cpu] = se;
354d60c2
DG
7558 /* se could be NULL for init_task_group */
7559 if (!se)
7560 return;
7561
ec7dc8ac
DG
7562 if (!parent)
7563 se->cfs_rq = &rq->cfs;
7564 else
7565 se->cfs_rq = parent->my_q;
7566
6f505b16
PZ
7567 se->my_q = cfs_rq;
7568 se->load.weight = tg->shares;
e05510d0 7569 se->load.inv_weight = 0;
ec7dc8ac 7570 se->parent = parent;
6f505b16 7571}
052f1dc7 7572#endif
6f505b16 7573
052f1dc7 7574#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7575static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7576 struct sched_rt_entity *rt_se, int cpu, int add,
7577 struct sched_rt_entity *parent)
6f505b16 7578{
ec7dc8ac
DG
7579 struct rq *rq = cpu_rq(cpu);
7580
6f505b16
PZ
7581 tg->rt_rq[cpu] = rt_rq;
7582 init_rt_rq(rt_rq, rq);
7583 rt_rq->tg = tg;
ac086bc2 7584 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7585 if (add)
7586 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7587
7588 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7589 if (!rt_se)
7590 return;
7591
ec7dc8ac
DG
7592 if (!parent)
7593 rt_se->rt_rq = &rq->rt;
7594 else
7595 rt_se->rt_rq = parent->my_q;
7596
6f505b16 7597 rt_se->my_q = rt_rq;
ec7dc8ac 7598 rt_se->parent = parent;
6f505b16
PZ
7599 INIT_LIST_HEAD(&rt_se->run_list);
7600}
7601#endif
7602
1da177e4
LT
7603void __init sched_init(void)
7604{
dd41f596 7605 int i, j;
434d53b0
MT
7606 unsigned long alloc_size = 0, ptr;
7607
7608#ifdef CONFIG_FAIR_GROUP_SCHED
7609 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7610#endif
7611#ifdef CONFIG_RT_GROUP_SCHED
7612 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7613#endif
df7c8e84 7614#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7615 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7616#endif
434d53b0 7617 if (alloc_size) {
36b7b6d4 7618 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7619
7620#ifdef CONFIG_FAIR_GROUP_SCHED
7621 init_task_group.se = (struct sched_entity **)ptr;
7622 ptr += nr_cpu_ids * sizeof(void **);
7623
7624 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7625 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7626
6d6bc0ad 7627#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7628#ifdef CONFIG_RT_GROUP_SCHED
7629 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7630 ptr += nr_cpu_ids * sizeof(void **);
7631
7632 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7633 ptr += nr_cpu_ids * sizeof(void **);
7634
6d6bc0ad 7635#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7636#ifdef CONFIG_CPUMASK_OFFSTACK
7637 for_each_possible_cpu(i) {
7638 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7639 ptr += cpumask_size();
7640 }
7641#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7642 }
dd41f596 7643
57d885fe
GH
7644#ifdef CONFIG_SMP
7645 init_defrootdomain();
7646#endif
7647
d0b27fa7
PZ
7648 init_rt_bandwidth(&def_rt_bandwidth,
7649 global_rt_period(), global_rt_runtime());
7650
7651#ifdef CONFIG_RT_GROUP_SCHED
7652 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7653 global_rt_period(), global_rt_runtime());
6d6bc0ad 7654#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7655
7c941438 7656#ifdef CONFIG_CGROUP_SCHED
6f505b16 7657 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7658 INIT_LIST_HEAD(&init_task_group.children);
7659
7c941438 7660#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7661
4a6cc4bd
JK
7662#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7663 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7664 __alignof__(unsigned long));
7665#endif
0a945022 7666 for_each_possible_cpu(i) {
70b97a7f 7667 struct rq *rq;
1da177e4
LT
7668
7669 rq = cpu_rq(i);
05fa785c 7670 raw_spin_lock_init(&rq->lock);
7897986b 7671 rq->nr_running = 0;
dce48a84
TG
7672 rq->calc_load_active = 0;
7673 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7674 init_cfs_rq(&rq->cfs, rq);
6f505b16 7675 init_rt_rq(&rq->rt, rq);
dd41f596 7676#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7677 init_task_group.shares = init_task_group_load;
6f505b16 7678 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7679#ifdef CONFIG_CGROUP_SCHED
7680 /*
7681 * How much cpu bandwidth does init_task_group get?
7682 *
7683 * In case of task-groups formed thr' the cgroup filesystem, it
7684 * gets 100% of the cpu resources in the system. This overall
7685 * system cpu resource is divided among the tasks of
7686 * init_task_group and its child task-groups in a fair manner,
7687 * based on each entity's (task or task-group's) weight
7688 * (se->load.weight).
7689 *
7690 * In other words, if init_task_group has 10 tasks of weight
7691 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7692 * then A0's share of the cpu resource is:
7693 *
0d905bca 7694 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7695 *
7696 * We achieve this by letting init_task_group's tasks sit
7697 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7698 */
ec7dc8ac 7699 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7700#endif
354d60c2
DG
7701#endif /* CONFIG_FAIR_GROUP_SCHED */
7702
7703 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7704#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7705 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7706#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7707 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7708#endif
dd41f596 7709#endif
1da177e4 7710
dd41f596
IM
7711 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7712 rq->cpu_load[j] = 0;
1da177e4 7713#ifdef CONFIG_SMP
41c7ce9a 7714 rq->sd = NULL;
57d885fe 7715 rq->rd = NULL;
3f029d3c 7716 rq->post_schedule = 0;
1da177e4 7717 rq->active_balance = 0;
dd41f596 7718 rq->next_balance = jiffies;
1da177e4 7719 rq->push_cpu = 0;
0a2966b4 7720 rq->cpu = i;
1f11eb6a 7721 rq->online = 0;
1da177e4 7722 rq->migration_thread = NULL;
eae0c9df
MG
7723 rq->idle_stamp = 0;
7724 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7725 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7726 rq_attach_root(rq, &def_root_domain);
1da177e4 7727#endif
8f4d37ec 7728 init_rq_hrtick(rq);
1da177e4 7729 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7730 }
7731
2dd73a4f 7732 set_load_weight(&init_task);
b50f60ce 7733
e107be36
AK
7734#ifdef CONFIG_PREEMPT_NOTIFIERS
7735 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7736#endif
7737
c9819f45 7738#ifdef CONFIG_SMP
962cf36c 7739 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7740#endif
7741
b50f60ce 7742#ifdef CONFIG_RT_MUTEXES
1d615482 7743 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7744#endif
7745
1da177e4
LT
7746 /*
7747 * The boot idle thread does lazy MMU switching as well:
7748 */
7749 atomic_inc(&init_mm.mm_count);
7750 enter_lazy_tlb(&init_mm, current);
7751
7752 /*
7753 * Make us the idle thread. Technically, schedule() should not be
7754 * called from this thread, however somewhere below it might be,
7755 * but because we are the idle thread, we just pick up running again
7756 * when this runqueue becomes "idle".
7757 */
7758 init_idle(current, smp_processor_id());
dce48a84
TG
7759
7760 calc_load_update = jiffies + LOAD_FREQ;
7761
dd41f596
IM
7762 /*
7763 * During early bootup we pretend to be a normal task:
7764 */
7765 current->sched_class = &fair_sched_class;
6892b75e 7766
6a7b3dc3 7767 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7768 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7769#ifdef CONFIG_SMP
7d1e6a9b 7770#ifdef CONFIG_NO_HZ
49557e62 7771 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7772 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7773#endif
bdddd296
RR
7774 /* May be allocated at isolcpus cmdline parse time */
7775 if (cpu_isolated_map == NULL)
7776 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7777#endif /* SMP */
6a7b3dc3 7778
cdd6c482 7779 perf_event_init();
0d905bca 7780
6892b75e 7781 scheduler_running = 1;
1da177e4
LT
7782}
7783
7784#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7785static inline int preempt_count_equals(int preempt_offset)
7786{
234da7bc 7787 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7788
7789 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7790}
7791
d894837f 7792void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7793{
48f24c4d 7794#ifdef in_atomic
1da177e4
LT
7795 static unsigned long prev_jiffy; /* ratelimiting */
7796
e4aafea2
FW
7797 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7798 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7799 return;
7800 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7801 return;
7802 prev_jiffy = jiffies;
7803
3df0fc5b
PZ
7804 printk(KERN_ERR
7805 "BUG: sleeping function called from invalid context at %s:%d\n",
7806 file, line);
7807 printk(KERN_ERR
7808 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7809 in_atomic(), irqs_disabled(),
7810 current->pid, current->comm);
aef745fc
IM
7811
7812 debug_show_held_locks(current);
7813 if (irqs_disabled())
7814 print_irqtrace_events(current);
7815 dump_stack();
1da177e4
LT
7816#endif
7817}
7818EXPORT_SYMBOL(__might_sleep);
7819#endif
7820
7821#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7822static void normalize_task(struct rq *rq, struct task_struct *p)
7823{
7824 int on_rq;
3e51f33f 7825
3a5e4dc1
AK
7826 on_rq = p->se.on_rq;
7827 if (on_rq)
7828 deactivate_task(rq, p, 0);
7829 __setscheduler(rq, p, SCHED_NORMAL, 0);
7830 if (on_rq) {
7831 activate_task(rq, p, 0);
7832 resched_task(rq->curr);
7833 }
7834}
7835
1da177e4
LT
7836void normalize_rt_tasks(void)
7837{
a0f98a1c 7838 struct task_struct *g, *p;
1da177e4 7839 unsigned long flags;
70b97a7f 7840 struct rq *rq;
1da177e4 7841
4cf5d77a 7842 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7843 do_each_thread(g, p) {
178be793
IM
7844 /*
7845 * Only normalize user tasks:
7846 */
7847 if (!p->mm)
7848 continue;
7849
6cfb0d5d 7850 p->se.exec_start = 0;
6cfb0d5d 7851#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7852 p->se.statistics.wait_start = 0;
7853 p->se.statistics.sleep_start = 0;
7854 p->se.statistics.block_start = 0;
6cfb0d5d 7855#endif
dd41f596
IM
7856
7857 if (!rt_task(p)) {
7858 /*
7859 * Renice negative nice level userspace
7860 * tasks back to 0:
7861 */
7862 if (TASK_NICE(p) < 0 && p->mm)
7863 set_user_nice(p, 0);
1da177e4 7864 continue;
dd41f596 7865 }
1da177e4 7866
1d615482 7867 raw_spin_lock(&p->pi_lock);
b29739f9 7868 rq = __task_rq_lock(p);
1da177e4 7869
178be793 7870 normalize_task(rq, p);
3a5e4dc1 7871
b29739f9 7872 __task_rq_unlock(rq);
1d615482 7873 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7874 } while_each_thread(g, p);
7875
4cf5d77a 7876 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7877}
7878
7879#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7880
7881#ifdef CONFIG_IA64
7882/*
7883 * These functions are only useful for the IA64 MCA handling.
7884 *
7885 * They can only be called when the whole system has been
7886 * stopped - every CPU needs to be quiescent, and no scheduling
7887 * activity can take place. Using them for anything else would
7888 * be a serious bug, and as a result, they aren't even visible
7889 * under any other configuration.
7890 */
7891
7892/**
7893 * curr_task - return the current task for a given cpu.
7894 * @cpu: the processor in question.
7895 *
7896 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7897 */
36c8b586 7898struct task_struct *curr_task(int cpu)
1df5c10a
LT
7899{
7900 return cpu_curr(cpu);
7901}
7902
7903/**
7904 * set_curr_task - set the current task for a given cpu.
7905 * @cpu: the processor in question.
7906 * @p: the task pointer to set.
7907 *
7908 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7909 * are serviced on a separate stack. It allows the architecture to switch the
7910 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7911 * must be called with all CPU's synchronized, and interrupts disabled, the
7912 * and caller must save the original value of the current task (see
7913 * curr_task() above) and restore that value before reenabling interrupts and
7914 * re-starting the system.
7915 *
7916 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7917 */
36c8b586 7918void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7919{
7920 cpu_curr(cpu) = p;
7921}
7922
7923#endif
29f59db3 7924
bccbe08a
PZ
7925#ifdef CONFIG_FAIR_GROUP_SCHED
7926static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7927{
7928 int i;
7929
7930 for_each_possible_cpu(i) {
7931 if (tg->cfs_rq)
7932 kfree(tg->cfs_rq[i]);
7933 if (tg->se)
7934 kfree(tg->se[i]);
6f505b16
PZ
7935 }
7936
7937 kfree(tg->cfs_rq);
7938 kfree(tg->se);
6f505b16
PZ
7939}
7940
ec7dc8ac
DG
7941static
7942int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7943{
29f59db3 7944 struct cfs_rq *cfs_rq;
eab17229 7945 struct sched_entity *se;
9b5b7751 7946 struct rq *rq;
29f59db3
SV
7947 int i;
7948
434d53b0 7949 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7950 if (!tg->cfs_rq)
7951 goto err;
434d53b0 7952 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7953 if (!tg->se)
7954 goto err;
052f1dc7
PZ
7955
7956 tg->shares = NICE_0_LOAD;
29f59db3
SV
7957
7958 for_each_possible_cpu(i) {
9b5b7751 7959 rq = cpu_rq(i);
29f59db3 7960
eab17229
LZ
7961 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7962 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7963 if (!cfs_rq)
7964 goto err;
7965
eab17229
LZ
7966 se = kzalloc_node(sizeof(struct sched_entity),
7967 GFP_KERNEL, cpu_to_node(i));
29f59db3 7968 if (!se)
dfc12eb2 7969 goto err_free_rq;
29f59db3 7970
eab17229 7971 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7972 }
7973
7974 return 1;
7975
dfc12eb2
PC
7976 err_free_rq:
7977 kfree(cfs_rq);
bccbe08a
PZ
7978 err:
7979 return 0;
7980}
7981
7982static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7983{
7984 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7985 &cpu_rq(cpu)->leaf_cfs_rq_list);
7986}
7987
7988static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7989{
7990 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7991}
6d6bc0ad 7992#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7993static inline void free_fair_sched_group(struct task_group *tg)
7994{
7995}
7996
ec7dc8ac
DG
7997static inline
7998int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7999{
8000 return 1;
8001}
8002
8003static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8004{
8005}
8006
8007static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8008{
8009}
6d6bc0ad 8010#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8011
8012#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8013static void free_rt_sched_group(struct task_group *tg)
8014{
8015 int i;
8016
d0b27fa7
PZ
8017 destroy_rt_bandwidth(&tg->rt_bandwidth);
8018
bccbe08a
PZ
8019 for_each_possible_cpu(i) {
8020 if (tg->rt_rq)
8021 kfree(tg->rt_rq[i]);
8022 if (tg->rt_se)
8023 kfree(tg->rt_se[i]);
8024 }
8025
8026 kfree(tg->rt_rq);
8027 kfree(tg->rt_se);
8028}
8029
ec7dc8ac
DG
8030static
8031int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8032{
8033 struct rt_rq *rt_rq;
eab17229 8034 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8035 struct rq *rq;
8036 int i;
8037
434d53b0 8038 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8039 if (!tg->rt_rq)
8040 goto err;
434d53b0 8041 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8042 if (!tg->rt_se)
8043 goto err;
8044
d0b27fa7
PZ
8045 init_rt_bandwidth(&tg->rt_bandwidth,
8046 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8047
8048 for_each_possible_cpu(i) {
8049 rq = cpu_rq(i);
8050
eab17229
LZ
8051 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8052 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8053 if (!rt_rq)
8054 goto err;
29f59db3 8055
eab17229
LZ
8056 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8057 GFP_KERNEL, cpu_to_node(i));
6f505b16 8058 if (!rt_se)
dfc12eb2 8059 goto err_free_rq;
29f59db3 8060
eab17229 8061 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8062 }
8063
bccbe08a
PZ
8064 return 1;
8065
dfc12eb2
PC
8066 err_free_rq:
8067 kfree(rt_rq);
bccbe08a
PZ
8068 err:
8069 return 0;
8070}
8071
8072static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8073{
8074 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8075 &cpu_rq(cpu)->leaf_rt_rq_list);
8076}
8077
8078static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8079{
8080 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8081}
6d6bc0ad 8082#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8083static inline void free_rt_sched_group(struct task_group *tg)
8084{
8085}
8086
ec7dc8ac
DG
8087static inline
8088int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8089{
8090 return 1;
8091}
8092
8093static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8094{
8095}
8096
8097static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8098{
8099}
6d6bc0ad 8100#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8101
7c941438 8102#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8103static void free_sched_group(struct task_group *tg)
8104{
8105 free_fair_sched_group(tg);
8106 free_rt_sched_group(tg);
8107 kfree(tg);
8108}
8109
8110/* allocate runqueue etc for a new task group */
ec7dc8ac 8111struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8112{
8113 struct task_group *tg;
8114 unsigned long flags;
8115 int i;
8116
8117 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8118 if (!tg)
8119 return ERR_PTR(-ENOMEM);
8120
ec7dc8ac 8121 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8122 goto err;
8123
ec7dc8ac 8124 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8125 goto err;
8126
8ed36996 8127 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8128 for_each_possible_cpu(i) {
bccbe08a
PZ
8129 register_fair_sched_group(tg, i);
8130 register_rt_sched_group(tg, i);
9b5b7751 8131 }
6f505b16 8132 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8133
8134 WARN_ON(!parent); /* root should already exist */
8135
8136 tg->parent = parent;
f473aa5e 8137 INIT_LIST_HEAD(&tg->children);
09f2724a 8138 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8139 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8140
9b5b7751 8141 return tg;
29f59db3
SV
8142
8143err:
6f505b16 8144 free_sched_group(tg);
29f59db3
SV
8145 return ERR_PTR(-ENOMEM);
8146}
8147
9b5b7751 8148/* rcu callback to free various structures associated with a task group */
6f505b16 8149static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8150{
29f59db3 8151 /* now it should be safe to free those cfs_rqs */
6f505b16 8152 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8153}
8154
9b5b7751 8155/* Destroy runqueue etc associated with a task group */
4cf86d77 8156void sched_destroy_group(struct task_group *tg)
29f59db3 8157{
8ed36996 8158 unsigned long flags;
9b5b7751 8159 int i;
29f59db3 8160
8ed36996 8161 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8162 for_each_possible_cpu(i) {
bccbe08a
PZ
8163 unregister_fair_sched_group(tg, i);
8164 unregister_rt_sched_group(tg, i);
9b5b7751 8165 }
6f505b16 8166 list_del_rcu(&tg->list);
f473aa5e 8167 list_del_rcu(&tg->siblings);
8ed36996 8168 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8169
9b5b7751 8170 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8171 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8172}
8173
9b5b7751 8174/* change task's runqueue when it moves between groups.
3a252015
IM
8175 * The caller of this function should have put the task in its new group
8176 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8177 * reflect its new group.
9b5b7751
SV
8178 */
8179void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8180{
8181 int on_rq, running;
8182 unsigned long flags;
8183 struct rq *rq;
8184
8185 rq = task_rq_lock(tsk, &flags);
8186
051a1d1a 8187 running = task_current(rq, tsk);
29f59db3
SV
8188 on_rq = tsk->se.on_rq;
8189
0e1f3483 8190 if (on_rq)
29f59db3 8191 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8192 if (unlikely(running))
8193 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8194
6f505b16 8195 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8196
810b3817
PZ
8197#ifdef CONFIG_FAIR_GROUP_SCHED
8198 if (tsk->sched_class->moved_group)
88ec22d3 8199 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8200#endif
8201
0e1f3483
HS
8202 if (unlikely(running))
8203 tsk->sched_class->set_curr_task(rq);
8204 if (on_rq)
ea87bb78 8205 enqueue_task(rq, tsk, 0, false);
29f59db3 8206
29f59db3
SV
8207 task_rq_unlock(rq, &flags);
8208}
7c941438 8209#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8210
052f1dc7 8211#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8212static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8213{
8214 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8215 int on_rq;
8216
29f59db3 8217 on_rq = se->on_rq;
62fb1851 8218 if (on_rq)
29f59db3
SV
8219 dequeue_entity(cfs_rq, se, 0);
8220
8221 se->load.weight = shares;
e05510d0 8222 se->load.inv_weight = 0;
29f59db3 8223
62fb1851 8224 if (on_rq)
29f59db3 8225 enqueue_entity(cfs_rq, se, 0);
c09595f6 8226}
62fb1851 8227
c09595f6
PZ
8228static void set_se_shares(struct sched_entity *se, unsigned long shares)
8229{
8230 struct cfs_rq *cfs_rq = se->cfs_rq;
8231 struct rq *rq = cfs_rq->rq;
8232 unsigned long flags;
8233
05fa785c 8234 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8235 __set_se_shares(se, shares);
05fa785c 8236 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8237}
8238
8ed36996
PZ
8239static DEFINE_MUTEX(shares_mutex);
8240
4cf86d77 8241int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8242{
8243 int i;
8ed36996 8244 unsigned long flags;
c61935fd 8245
ec7dc8ac
DG
8246 /*
8247 * We can't change the weight of the root cgroup.
8248 */
8249 if (!tg->se[0])
8250 return -EINVAL;
8251
18d95a28
PZ
8252 if (shares < MIN_SHARES)
8253 shares = MIN_SHARES;
cb4ad1ff
MX
8254 else if (shares > MAX_SHARES)
8255 shares = MAX_SHARES;
62fb1851 8256
8ed36996 8257 mutex_lock(&shares_mutex);
9b5b7751 8258 if (tg->shares == shares)
5cb350ba 8259 goto done;
29f59db3 8260
8ed36996 8261 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8262 for_each_possible_cpu(i)
8263 unregister_fair_sched_group(tg, i);
f473aa5e 8264 list_del_rcu(&tg->siblings);
8ed36996 8265 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8266
8267 /* wait for any ongoing reference to this group to finish */
8268 synchronize_sched();
8269
8270 /*
8271 * Now we are free to modify the group's share on each cpu
8272 * w/o tripping rebalance_share or load_balance_fair.
8273 */
9b5b7751 8274 tg->shares = shares;
c09595f6
PZ
8275 for_each_possible_cpu(i) {
8276 /*
8277 * force a rebalance
8278 */
8279 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8280 set_se_shares(tg->se[i], shares);
c09595f6 8281 }
29f59db3 8282
6b2d7700
SV
8283 /*
8284 * Enable load balance activity on this group, by inserting it back on
8285 * each cpu's rq->leaf_cfs_rq_list.
8286 */
8ed36996 8287 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8288 for_each_possible_cpu(i)
8289 register_fair_sched_group(tg, i);
f473aa5e 8290 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8291 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8292done:
8ed36996 8293 mutex_unlock(&shares_mutex);
9b5b7751 8294 return 0;
29f59db3
SV
8295}
8296
5cb350ba
DG
8297unsigned long sched_group_shares(struct task_group *tg)
8298{
8299 return tg->shares;
8300}
052f1dc7 8301#endif
5cb350ba 8302
052f1dc7 8303#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8304/*
9f0c1e56 8305 * Ensure that the real time constraints are schedulable.
6f505b16 8306 */
9f0c1e56
PZ
8307static DEFINE_MUTEX(rt_constraints_mutex);
8308
8309static unsigned long to_ratio(u64 period, u64 runtime)
8310{
8311 if (runtime == RUNTIME_INF)
9a7e0b18 8312 return 1ULL << 20;
9f0c1e56 8313
9a7e0b18 8314 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8315}
8316
9a7e0b18
PZ
8317/* Must be called with tasklist_lock held */
8318static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8319{
9a7e0b18 8320 struct task_struct *g, *p;
b40b2e8e 8321
9a7e0b18
PZ
8322 do_each_thread(g, p) {
8323 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8324 return 1;
8325 } while_each_thread(g, p);
b40b2e8e 8326
9a7e0b18
PZ
8327 return 0;
8328}
b40b2e8e 8329
9a7e0b18
PZ
8330struct rt_schedulable_data {
8331 struct task_group *tg;
8332 u64 rt_period;
8333 u64 rt_runtime;
8334};
b40b2e8e 8335
9a7e0b18
PZ
8336static int tg_schedulable(struct task_group *tg, void *data)
8337{
8338 struct rt_schedulable_data *d = data;
8339 struct task_group *child;
8340 unsigned long total, sum = 0;
8341 u64 period, runtime;
b40b2e8e 8342
9a7e0b18
PZ
8343 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8344 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8345
9a7e0b18
PZ
8346 if (tg == d->tg) {
8347 period = d->rt_period;
8348 runtime = d->rt_runtime;
b40b2e8e 8349 }
b40b2e8e 8350
4653f803
PZ
8351 /*
8352 * Cannot have more runtime than the period.
8353 */
8354 if (runtime > period && runtime != RUNTIME_INF)
8355 return -EINVAL;
6f505b16 8356
4653f803
PZ
8357 /*
8358 * Ensure we don't starve existing RT tasks.
8359 */
9a7e0b18
PZ
8360 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8361 return -EBUSY;
6f505b16 8362
9a7e0b18 8363 total = to_ratio(period, runtime);
6f505b16 8364
4653f803
PZ
8365 /*
8366 * Nobody can have more than the global setting allows.
8367 */
8368 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8369 return -EINVAL;
6f505b16 8370
4653f803
PZ
8371 /*
8372 * The sum of our children's runtime should not exceed our own.
8373 */
9a7e0b18
PZ
8374 list_for_each_entry_rcu(child, &tg->children, siblings) {
8375 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8376 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8377
9a7e0b18
PZ
8378 if (child == d->tg) {
8379 period = d->rt_period;
8380 runtime = d->rt_runtime;
8381 }
6f505b16 8382
9a7e0b18 8383 sum += to_ratio(period, runtime);
9f0c1e56 8384 }
6f505b16 8385
9a7e0b18
PZ
8386 if (sum > total)
8387 return -EINVAL;
8388
8389 return 0;
6f505b16
PZ
8390}
8391
9a7e0b18 8392static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8393{
9a7e0b18
PZ
8394 struct rt_schedulable_data data = {
8395 .tg = tg,
8396 .rt_period = period,
8397 .rt_runtime = runtime,
8398 };
8399
8400 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8401}
8402
d0b27fa7
PZ
8403static int tg_set_bandwidth(struct task_group *tg,
8404 u64 rt_period, u64 rt_runtime)
6f505b16 8405{
ac086bc2 8406 int i, err = 0;
9f0c1e56 8407
9f0c1e56 8408 mutex_lock(&rt_constraints_mutex);
521f1a24 8409 read_lock(&tasklist_lock);
9a7e0b18
PZ
8410 err = __rt_schedulable(tg, rt_period, rt_runtime);
8411 if (err)
9f0c1e56 8412 goto unlock;
ac086bc2 8413
0986b11b 8414 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8415 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8416 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8417
8418 for_each_possible_cpu(i) {
8419 struct rt_rq *rt_rq = tg->rt_rq[i];
8420
0986b11b 8421 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8422 rt_rq->rt_runtime = rt_runtime;
0986b11b 8423 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8424 }
0986b11b 8425 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8426 unlock:
521f1a24 8427 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8428 mutex_unlock(&rt_constraints_mutex);
8429
8430 return err;
6f505b16
PZ
8431}
8432
d0b27fa7
PZ
8433int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8434{
8435 u64 rt_runtime, rt_period;
8436
8437 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8438 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8439 if (rt_runtime_us < 0)
8440 rt_runtime = RUNTIME_INF;
8441
8442 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8443}
8444
9f0c1e56
PZ
8445long sched_group_rt_runtime(struct task_group *tg)
8446{
8447 u64 rt_runtime_us;
8448
d0b27fa7 8449 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8450 return -1;
8451
d0b27fa7 8452 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8453 do_div(rt_runtime_us, NSEC_PER_USEC);
8454 return rt_runtime_us;
8455}
d0b27fa7
PZ
8456
8457int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8458{
8459 u64 rt_runtime, rt_period;
8460
8461 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8462 rt_runtime = tg->rt_bandwidth.rt_runtime;
8463
619b0488
R
8464 if (rt_period == 0)
8465 return -EINVAL;
8466
d0b27fa7
PZ
8467 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8468}
8469
8470long sched_group_rt_period(struct task_group *tg)
8471{
8472 u64 rt_period_us;
8473
8474 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8475 do_div(rt_period_us, NSEC_PER_USEC);
8476 return rt_period_us;
8477}
8478
8479static int sched_rt_global_constraints(void)
8480{
4653f803 8481 u64 runtime, period;
d0b27fa7
PZ
8482 int ret = 0;
8483
ec5d4989
HS
8484 if (sysctl_sched_rt_period <= 0)
8485 return -EINVAL;
8486
4653f803
PZ
8487 runtime = global_rt_runtime();
8488 period = global_rt_period();
8489
8490 /*
8491 * Sanity check on the sysctl variables.
8492 */
8493 if (runtime > period && runtime != RUNTIME_INF)
8494 return -EINVAL;
10b612f4 8495
d0b27fa7 8496 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8497 read_lock(&tasklist_lock);
4653f803 8498 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8499 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8500 mutex_unlock(&rt_constraints_mutex);
8501
8502 return ret;
8503}
54e99124
DG
8504
8505int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8506{
8507 /* Don't accept realtime tasks when there is no way for them to run */
8508 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8509 return 0;
8510
8511 return 1;
8512}
8513
6d6bc0ad 8514#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8515static int sched_rt_global_constraints(void)
8516{
ac086bc2
PZ
8517 unsigned long flags;
8518 int i;
8519
ec5d4989
HS
8520 if (sysctl_sched_rt_period <= 0)
8521 return -EINVAL;
8522
60aa605d
PZ
8523 /*
8524 * There's always some RT tasks in the root group
8525 * -- migration, kstopmachine etc..
8526 */
8527 if (sysctl_sched_rt_runtime == 0)
8528 return -EBUSY;
8529
0986b11b 8530 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8531 for_each_possible_cpu(i) {
8532 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8533
0986b11b 8534 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8535 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8536 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8537 }
0986b11b 8538 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8539
d0b27fa7
PZ
8540 return 0;
8541}
6d6bc0ad 8542#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8543
8544int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8545 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8546 loff_t *ppos)
8547{
8548 int ret;
8549 int old_period, old_runtime;
8550 static DEFINE_MUTEX(mutex);
8551
8552 mutex_lock(&mutex);
8553 old_period = sysctl_sched_rt_period;
8554 old_runtime = sysctl_sched_rt_runtime;
8555
8d65af78 8556 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8557
8558 if (!ret && write) {
8559 ret = sched_rt_global_constraints();
8560 if (ret) {
8561 sysctl_sched_rt_period = old_period;
8562 sysctl_sched_rt_runtime = old_runtime;
8563 } else {
8564 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8565 def_rt_bandwidth.rt_period =
8566 ns_to_ktime(global_rt_period());
8567 }
8568 }
8569 mutex_unlock(&mutex);
8570
8571 return ret;
8572}
68318b8e 8573
052f1dc7 8574#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8575
8576/* return corresponding task_group object of a cgroup */
2b01dfe3 8577static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8578{
2b01dfe3
PM
8579 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8580 struct task_group, css);
68318b8e
SV
8581}
8582
8583static struct cgroup_subsys_state *
2b01dfe3 8584cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8585{
ec7dc8ac 8586 struct task_group *tg, *parent;
68318b8e 8587
2b01dfe3 8588 if (!cgrp->parent) {
68318b8e 8589 /* This is early initialization for the top cgroup */
68318b8e
SV
8590 return &init_task_group.css;
8591 }
8592
ec7dc8ac
DG
8593 parent = cgroup_tg(cgrp->parent);
8594 tg = sched_create_group(parent);
68318b8e
SV
8595 if (IS_ERR(tg))
8596 return ERR_PTR(-ENOMEM);
8597
68318b8e
SV
8598 return &tg->css;
8599}
8600
41a2d6cf
IM
8601static void
8602cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8603{
2b01dfe3 8604 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8605
8606 sched_destroy_group(tg);
8607}
8608
41a2d6cf 8609static int
be367d09 8610cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8611{
b68aa230 8612#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8613 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8614 return -EINVAL;
8615#else
68318b8e
SV
8616 /* We don't support RT-tasks being in separate groups */
8617 if (tsk->sched_class != &fair_sched_class)
8618 return -EINVAL;
b68aa230 8619#endif
be367d09
BB
8620 return 0;
8621}
68318b8e 8622
be367d09
BB
8623static int
8624cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8625 struct task_struct *tsk, bool threadgroup)
8626{
8627 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8628 if (retval)
8629 return retval;
8630 if (threadgroup) {
8631 struct task_struct *c;
8632 rcu_read_lock();
8633 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8634 retval = cpu_cgroup_can_attach_task(cgrp, c);
8635 if (retval) {
8636 rcu_read_unlock();
8637 return retval;
8638 }
8639 }
8640 rcu_read_unlock();
8641 }
68318b8e
SV
8642 return 0;
8643}
8644
8645static void
2b01dfe3 8646cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8647 struct cgroup *old_cont, struct task_struct *tsk,
8648 bool threadgroup)
68318b8e
SV
8649{
8650 sched_move_task(tsk);
be367d09
BB
8651 if (threadgroup) {
8652 struct task_struct *c;
8653 rcu_read_lock();
8654 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8655 sched_move_task(c);
8656 }
8657 rcu_read_unlock();
8658 }
68318b8e
SV
8659}
8660
052f1dc7 8661#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8662static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8663 u64 shareval)
68318b8e 8664{
2b01dfe3 8665 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8666}
8667
f4c753b7 8668static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8669{
2b01dfe3 8670 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8671
8672 return (u64) tg->shares;
8673}
6d6bc0ad 8674#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8675
052f1dc7 8676#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8677static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8678 s64 val)
6f505b16 8679{
06ecb27c 8680 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8681}
8682
06ecb27c 8683static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8684{
06ecb27c 8685 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8686}
d0b27fa7
PZ
8687
8688static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8689 u64 rt_period_us)
8690{
8691 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8692}
8693
8694static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8695{
8696 return sched_group_rt_period(cgroup_tg(cgrp));
8697}
6d6bc0ad 8698#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8699
fe5c7cc2 8700static struct cftype cpu_files[] = {
052f1dc7 8701#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8702 {
8703 .name = "shares",
f4c753b7
PM
8704 .read_u64 = cpu_shares_read_u64,
8705 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8706 },
052f1dc7
PZ
8707#endif
8708#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8709 {
9f0c1e56 8710 .name = "rt_runtime_us",
06ecb27c
PM
8711 .read_s64 = cpu_rt_runtime_read,
8712 .write_s64 = cpu_rt_runtime_write,
6f505b16 8713 },
d0b27fa7
PZ
8714 {
8715 .name = "rt_period_us",
f4c753b7
PM
8716 .read_u64 = cpu_rt_period_read_uint,
8717 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8718 },
052f1dc7 8719#endif
68318b8e
SV
8720};
8721
8722static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8723{
fe5c7cc2 8724 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8725}
8726
8727struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8728 .name = "cpu",
8729 .create = cpu_cgroup_create,
8730 .destroy = cpu_cgroup_destroy,
8731 .can_attach = cpu_cgroup_can_attach,
8732 .attach = cpu_cgroup_attach,
8733 .populate = cpu_cgroup_populate,
8734 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8735 .early_init = 1,
8736};
8737
052f1dc7 8738#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8739
8740#ifdef CONFIG_CGROUP_CPUACCT
8741
8742/*
8743 * CPU accounting code for task groups.
8744 *
8745 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8746 * (balbir@in.ibm.com).
8747 */
8748
934352f2 8749/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8750struct cpuacct {
8751 struct cgroup_subsys_state css;
8752 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8753 u64 __percpu *cpuusage;
ef12fefa 8754 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8755 struct cpuacct *parent;
d842de87
SV
8756};
8757
8758struct cgroup_subsys cpuacct_subsys;
8759
8760/* return cpu accounting group corresponding to this container */
32cd756a 8761static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8762{
32cd756a 8763 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8764 struct cpuacct, css);
8765}
8766
8767/* return cpu accounting group to which this task belongs */
8768static inline struct cpuacct *task_ca(struct task_struct *tsk)
8769{
8770 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8771 struct cpuacct, css);
8772}
8773
8774/* create a new cpu accounting group */
8775static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8776 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8777{
8778 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8779 int i;
d842de87
SV
8780
8781 if (!ca)
ef12fefa 8782 goto out;
d842de87
SV
8783
8784 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8785 if (!ca->cpuusage)
8786 goto out_free_ca;
8787
8788 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8789 if (percpu_counter_init(&ca->cpustat[i], 0))
8790 goto out_free_counters;
d842de87 8791
934352f2
BR
8792 if (cgrp->parent)
8793 ca->parent = cgroup_ca(cgrp->parent);
8794
d842de87 8795 return &ca->css;
ef12fefa
BR
8796
8797out_free_counters:
8798 while (--i >= 0)
8799 percpu_counter_destroy(&ca->cpustat[i]);
8800 free_percpu(ca->cpuusage);
8801out_free_ca:
8802 kfree(ca);
8803out:
8804 return ERR_PTR(-ENOMEM);
d842de87
SV
8805}
8806
8807/* destroy an existing cpu accounting group */
41a2d6cf 8808static void
32cd756a 8809cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8810{
32cd756a 8811 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8812 int i;
d842de87 8813
ef12fefa
BR
8814 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8815 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8816 free_percpu(ca->cpuusage);
8817 kfree(ca);
8818}
8819
720f5498
KC
8820static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8821{
b36128c8 8822 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8823 u64 data;
8824
8825#ifndef CONFIG_64BIT
8826 /*
8827 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8828 */
05fa785c 8829 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8830 data = *cpuusage;
05fa785c 8831 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8832#else
8833 data = *cpuusage;
8834#endif
8835
8836 return data;
8837}
8838
8839static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8840{
b36128c8 8841 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8842
8843#ifndef CONFIG_64BIT
8844 /*
8845 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8846 */
05fa785c 8847 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8848 *cpuusage = val;
05fa785c 8849 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8850#else
8851 *cpuusage = val;
8852#endif
8853}
8854
d842de87 8855/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8856static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8857{
32cd756a 8858 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8859 u64 totalcpuusage = 0;
8860 int i;
8861
720f5498
KC
8862 for_each_present_cpu(i)
8863 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8864
8865 return totalcpuusage;
8866}
8867
0297b803
DG
8868static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8869 u64 reset)
8870{
8871 struct cpuacct *ca = cgroup_ca(cgrp);
8872 int err = 0;
8873 int i;
8874
8875 if (reset) {
8876 err = -EINVAL;
8877 goto out;
8878 }
8879
720f5498
KC
8880 for_each_present_cpu(i)
8881 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8882
0297b803
DG
8883out:
8884 return err;
8885}
8886
e9515c3c
KC
8887static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8888 struct seq_file *m)
8889{
8890 struct cpuacct *ca = cgroup_ca(cgroup);
8891 u64 percpu;
8892 int i;
8893
8894 for_each_present_cpu(i) {
8895 percpu = cpuacct_cpuusage_read(ca, i);
8896 seq_printf(m, "%llu ", (unsigned long long) percpu);
8897 }
8898 seq_printf(m, "\n");
8899 return 0;
8900}
8901
ef12fefa
BR
8902static const char *cpuacct_stat_desc[] = {
8903 [CPUACCT_STAT_USER] = "user",
8904 [CPUACCT_STAT_SYSTEM] = "system",
8905};
8906
8907static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8908 struct cgroup_map_cb *cb)
8909{
8910 struct cpuacct *ca = cgroup_ca(cgrp);
8911 int i;
8912
8913 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8914 s64 val = percpu_counter_read(&ca->cpustat[i]);
8915 val = cputime64_to_clock_t(val);
8916 cb->fill(cb, cpuacct_stat_desc[i], val);
8917 }
8918 return 0;
8919}
8920
d842de87
SV
8921static struct cftype files[] = {
8922 {
8923 .name = "usage",
f4c753b7
PM
8924 .read_u64 = cpuusage_read,
8925 .write_u64 = cpuusage_write,
d842de87 8926 },
e9515c3c
KC
8927 {
8928 .name = "usage_percpu",
8929 .read_seq_string = cpuacct_percpu_seq_read,
8930 },
ef12fefa
BR
8931 {
8932 .name = "stat",
8933 .read_map = cpuacct_stats_show,
8934 },
d842de87
SV
8935};
8936
32cd756a 8937static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8938{
32cd756a 8939 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8940}
8941
8942/*
8943 * charge this task's execution time to its accounting group.
8944 *
8945 * called with rq->lock held.
8946 */
8947static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8948{
8949 struct cpuacct *ca;
934352f2 8950 int cpu;
d842de87 8951
c40c6f85 8952 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8953 return;
8954
934352f2 8955 cpu = task_cpu(tsk);
a18b83b7
BR
8956
8957 rcu_read_lock();
8958
d842de87 8959 ca = task_ca(tsk);
d842de87 8960
934352f2 8961 for (; ca; ca = ca->parent) {
b36128c8 8962 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8963 *cpuusage += cputime;
8964 }
a18b83b7
BR
8965
8966 rcu_read_unlock();
d842de87
SV
8967}
8968
fa535a77
AB
8969/*
8970 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8971 * in cputime_t units. As a result, cpuacct_update_stats calls
8972 * percpu_counter_add with values large enough to always overflow the
8973 * per cpu batch limit causing bad SMP scalability.
8974 *
8975 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8976 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8977 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8978 */
8979#ifdef CONFIG_SMP
8980#define CPUACCT_BATCH \
8981 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8982#else
8983#define CPUACCT_BATCH 0
8984#endif
8985
ef12fefa
BR
8986/*
8987 * Charge the system/user time to the task's accounting group.
8988 */
8989static void cpuacct_update_stats(struct task_struct *tsk,
8990 enum cpuacct_stat_index idx, cputime_t val)
8991{
8992 struct cpuacct *ca;
fa535a77 8993 int batch = CPUACCT_BATCH;
ef12fefa
BR
8994
8995 if (unlikely(!cpuacct_subsys.active))
8996 return;
8997
8998 rcu_read_lock();
8999 ca = task_ca(tsk);
9000
9001 do {
fa535a77 9002 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9003 ca = ca->parent;
9004 } while (ca);
9005 rcu_read_unlock();
9006}
9007
d842de87
SV
9008struct cgroup_subsys cpuacct_subsys = {
9009 .name = "cpuacct",
9010 .create = cpuacct_create,
9011 .destroy = cpuacct_destroy,
9012 .populate = cpuacct_populate,
9013 .subsys_id = cpuacct_subsys_id,
9014};
9015#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9016
9017#ifndef CONFIG_SMP
9018
9019int rcu_expedited_torture_stats(char *page)
9020{
9021 return 0;
9022}
9023EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9024
9025void synchronize_sched_expedited(void)
9026{
9027}
9028EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9029
9030#else /* #ifndef CONFIG_SMP */
9031
9032static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9033static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9034
9035#define RCU_EXPEDITED_STATE_POST -2
9036#define RCU_EXPEDITED_STATE_IDLE -1
9037
9038static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9039
9040int rcu_expedited_torture_stats(char *page)
9041{
9042 int cnt = 0;
9043 int cpu;
9044
9045 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9046 for_each_online_cpu(cpu) {
9047 cnt += sprintf(&page[cnt], " %d:%d",
9048 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9049 }
9050 cnt += sprintf(&page[cnt], "\n");
9051 return cnt;
9052}
9053EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9054
9055static long synchronize_sched_expedited_count;
9056
9057/*
9058 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9059 * approach to force grace period to end quickly. This consumes
9060 * significant time on all CPUs, and is thus not recommended for
9061 * any sort of common-case code.
9062 *
9063 * Note that it is illegal to call this function while holding any
9064 * lock that is acquired by a CPU-hotplug notifier. Failing to
9065 * observe this restriction will result in deadlock.
9066 */
9067void synchronize_sched_expedited(void)
9068{
9069 int cpu;
9070 unsigned long flags;
9071 bool need_full_sync = 0;
9072 struct rq *rq;
9073 struct migration_req *req;
9074 long snap;
9075 int trycount = 0;
9076
9077 smp_mb(); /* ensure prior mod happens before capturing snap. */
9078 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9079 get_online_cpus();
9080 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9081 put_online_cpus();
9082 if (trycount++ < 10)
9083 udelay(trycount * num_online_cpus());
9084 else {
9085 synchronize_sched();
9086 return;
9087 }
9088 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9089 smp_mb(); /* ensure test happens before caller kfree */
9090 return;
9091 }
9092 get_online_cpus();
9093 }
9094 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9095 for_each_online_cpu(cpu) {
9096 rq = cpu_rq(cpu);
9097 req = &per_cpu(rcu_migration_req, cpu);
9098 init_completion(&req->done);
9099 req->task = NULL;
9100 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9101 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9102 list_add(&req->list, &rq->migration_queue);
05fa785c 9103 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9104 wake_up_process(rq->migration_thread);
9105 }
9106 for_each_online_cpu(cpu) {
9107 rcu_expedited_state = cpu;
9108 req = &per_cpu(rcu_migration_req, cpu);
9109 rq = cpu_rq(cpu);
9110 wait_for_completion(&req->done);
05fa785c 9111 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9112 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9113 need_full_sync = 1;
9114 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9115 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9116 }
9117 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9118 synchronize_sched_expedited_count++;
03b042bf
PM
9119 mutex_unlock(&rcu_sched_expedited_mutex);
9120 put_online_cpus();
9121 if (need_full_sync)
9122 synchronize_sched();
9123}
9124EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9125
9126#endif /* #else #ifndef CONFIG_SMP */